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Abstract

The aim of the thesis is to create and validate models of visual attention. To
this extent, a novel unsupervised object detection and tracking framework has been
developed by the author. It is demonstrated on people, faces and moving objects
and the output is integrated in modelling of visual attention. The proposed approach
integrates several types of modules in initialisation, target estimation and validation.
Tracking is first used to introduce high-level features, by extending a popular model
based on low-level features[1]. Two automatic models of visual attention are further
implemented. One based on winner take it all and inhibition of return as the mech-
anisms of selection on a saliency model with high- and low-level features combined.
Another which is based only on high-level object tracking results and statistic proper-
ties from the collected eye-traces, with the possibility of activating inhibition of return
as an additional mechanism. The parameters of the tracking framework thoroughly
investigated and its success demonstrated. Eye-tracking experiments show that high-
level features are much better at explaining the allocation of attention by the subjects
in the study. Low-level features alone do correlate significantly with real allocation
of attention. However, in fact it lowers the correlation score when combined with
high-level features in comparison to using high-level features alone. Further, findings
in collected eye-traces are studied with qualitative method, mainly to discover direc-
tions in future research in the area. Similarities and dissimilarities between automatic

models of attention and collected eye-traces are discussed
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what stream

where stream
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ular vision, 30

The part of the cerebral cortex responsible for

processing visual information, 17

A neural processing pathway that is involved
with object identification, 31
A neural pathway that processes spatial infor-

mation, 31
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Chapter 1

Introduction

1.1 Motivation

Visual attention is a mechanism by which the organism chooses particular points of interest
in the surroundings[3]. A small focal area around an attended point is processed with
extraordinary resources in comparison to other areas of visual input. About 50% of the
primary visual cortex is devoted to processing input from the central 2% of the visual
field|4]. It is actually only in this small area that the visual input is clear enough to make
an accurate picture of the surroundings, which is surprising since humans often experience
a clear 180° view. The explanation for this is that the brain actively fills in what is missing
in the rest of the view. A clear example of this phenomenon is the blind spot where no
information is received at all. But people are normally not at all aware of this gap in the
receptive fields.

There are several reasons for a selective visual attention mechanism. First, obviously
humans have a limited view of the surroundings, which makes body, head and eye move-
ments necessary to gather enough data about the surrounding. Further, the mechanism of
attention provides a way to serially process visual input|5]. The process of scene under-
standing is thus rapid with limited capacity and enables real-time operation despite these
limitations of the brain. During evolution it has been important for animals to swiftly
become aware of important events in the surroundings.

Many factors are influencing the way allocation of attention is done. In frogs, the

eyes are largely comparable to humans eyes, but the processing is different. Low- and

17



CHAPTER 1. INTRODUCTION 18

perhaps mid-level vision is involved in localising small moving object for consumption of
possible prey. The actual capturing of the pray is instinctual. In humans higher-level
representations and processes are involved. There is a lot of evidence that cognitive state
and personality affect the way people look|[6, 7]|. For example “task” is a high-level concept
that humans engage in as opposed to being hungry in the case of a frog.

So, where do people look, and how can you take advantage of a visual attention model
in computer vision. There are plenty of possible application areas of visual attention in
multimedia processing, illustrating the importance of studies in the field. One is to utilise
a visual attention mechanism for scene interpretation|3], to retrieve semantic information
from video sequences. A saliency map can contribute to highlight important events in a
CCTYV camera capture. An interesting research question would be if the attention mech-
anism can help to make sense out of a video sequence. For example, particular series of
fixations could possibly be a means to classify events. Let’s say a thief is trying to steal
a bag at an airport. Given the importance of features like faces and moving objects, a
saliency map could easily encode the face and the moving bag as important areas to at-
tend, and would probably produce a specific trace of attentional fixations. The output of
such a system would be a classification of video events after comparison with a trained
database.

This thesis investigates human visual attention and exploit this to model visual at-
tention. Such modelling of visual attention for computer vision applications is something
that has not been thoroughly studied, due to the complicated nature of visual attention,
and given the impact of such a system it is worth doing. However, as I will mention in
this thesis visual attention has been used for example in video compression applications|9],
object detection[l10] and object recognition[l1]. My work covers first the state of the art
on visual attention. Then experimental work is presented that has been aimed at trying to
model the visual attention mechanism. First, a saliency map from the low-level features:
colour contrast, intensity contrast, orientation, similarly to previous work|!l, 12, 13], and
high-level features as illustrated in Fig. 1.1, has been built. The second goal was to gen-
erate automatic eye-traces on dynamic media which is done by two different approaches
described in Chapter 4. The first one involves shifts of attention with winner-take-it-all and

inhibition-of-return (IOR) mechanism on low- and high-level feature maps, and the second
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(Existing work)

Low-level features

i Intensity ——» E—— i
i Colour ——— = E o —> i \
i Orientation —— & & 2 — |ig \
i a 19 . .
3 Flicker ———» — |z s: Winner take it all
i Motion —— —_— i 2 i
e i — 3| Saliency ‘ and
3 >
High-level features (tracking) 3 map inhibition of return
Faces > /
Pedestrians > 7'
Moving objects >
Statistically

generated eye-

traces

Figure 1.1: Low-level features: intensity, colour and contrast (extracted with
existing methods[12]) and high-level features: faces, moving objects and pedestrians.
These can be utilised to generate a combined saliency map and further automatic
eye-traces given winner-take-it-all and inhibition-of-return. High-level features can
also be fed directly into the module for statistical generation of eye movements.

one involves shifts of attention between high-level objects based on statistical properties

of sampled eye-tracking data.

1.2 Main contributions

Main contributions of the work are as follows:

Face, pedestrian and moving object tracking: Since visual attention to high-level
object was to be studied the aim was to develop an algorithm that extracts such
objects automatically. A tracking system for faces, humans and four and five di-
mensional tracker for moving objects has been developed|l1], where others in the
MMV research group have contributed with particle filtering[15] and people/moving
object detection[l6]. The system is validated against state of the art methods, and

its parameters are optimised for accuracy and precision.

Models of visual attention: Models of visual attention have been developed and val-
idated to test theories of its functionality. First, correlation scores have been cal-

culated between saliency based on combined low— and high—level features, and eye-
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traces of subjects watching the same videos, enabling us to study which features
attract attention the most, how they interact, as well as the spatial extend of object
based attention. The eye-tracking data has been studied phenomenologically and
quantified to build one model based on winner-take-it-all and inhibition of return as
well as one model based on Gaussian statistics. In the first case comparisons are
made between with and without including high-level features. In the second case
comparisons are made with the original eye—traces, and a phenomenological analysis

is presented.

1.3 Organisation of the thesis

This thesis consist of the following chapters:

o Previous work: State of the art in visual attention modelling as well as detection and

tracking is covered.

o Object detection and tracking: The implemented system for object detection and

tracking is described in detail.

o High-level and low-level visual attention: The generation of combined saliency map
with low-level and high-level features, as well as eye-tracking measurements are de-
scribed. Validation of the proposed model in Fig. 1.1 is presented. Qualitative de-
scriptions of eye-traces are given. Two models of generating eye-traces are described
where one uses statistical properties of eye-traces in terms of saccade ! frequency and

saccade speed.

o (Conclusions: Achievements are summarised and conclusions drawn.

! A saccade is fast eye-movement between targets, see section 2.3.1 for a thorough description



Chapter 2

Previous work

2.1 Introduction

The most used description of visual attention is the analogy of a spotlight. By directing
the eyes to different areas in the surrounding these are highlighted with respect to the rest.
This is consistent with the fact that the centre of the eye is packed with photo-receptors
and gives the picture that visual attention is used to successively scan the surroundings
for interesting objects.

The study area of visual attention extends from neurology, psychophysics, cognitive
psychology, cognitive science and computer vision. Understanding the attentional mecha-
nism is challenging. As a result there is a lack of a big picture of visual attention, merely
theories of parts of its functionality.

When it comes to visual attention within computer vision or multimedia processing,
studies have mostly been concerned with images, and have been focused on low-level fea-
tures. In images low-level features like intensity gradient, colour gradient and orientation
have been used to predict visual attention. In videos motion and flicker tend to attract
visual attention more[l]. These studies compare collected eye-traces, defined as the path
visual attention follows over time, and compare to the model. Eye-traces are more sim-
ilar between different persons on videos, which makes videos more feasible to create an
automatic model.

Models of eye-movements are usually governed by inhibition of return. This produces

something similar to human scan patterns on images but as will be shown is not sufficient

21



CHAPTER 2. PREVIOUS WORK 22

for videos. Here eye-movement only consist of saccades , i.e. fast eye-movements from one
point to another, but also smooth-pursuit, i.e. a consistent tracking of one object over time.

In this chapter aspects of visual attention and theories about these are covered, as well
as some background on work within the field of computer vision and state of the art in
detection and tracking. A summary of papers read about modelling visual attention is

presented in table 2.1.



Ref Method Application Features Purpose Validation Level Interest
[17] Eye tracking and Stereo image pairs Depth plus colour To test the impor- Yes Low 5
summing of feature contrast tance of disparity in
maps correlated attention
[18] Cognitive architec- A visual attention To capture impor- Yes High 3
ture with attention model (EMMA) as tant aspects of be-
and eye movements part of a cognitive haviour
architecture (ACT-
R-PM) demon-
strated on equation
solving
[10] Motion pop out Object detection Colour sub-band To test a sort of top- Yes High/low 8
and recognition features plus con- down process
text based object
presence  (saliency
map)
[19] Maximum entropy Baseball  highlight Colour, edge dis- To detect and No Low 3
model (MEM) with detection tribution and esti- classify important (high
image seq., audio mated camera mo- events in baseball level
and text tion + audio, text text)
[20] Bottom-up saliency Robot guidance Features plus moti- To test theory in No Low 4
calculation vational bias robot
[2 SVM-classifier Video classification 3D - Saliency vol- To classify soccer, No Low 8
ume, K-Means, fea- baseball, swimming,
ture vector, colour boxing and snooker
histograms, entropy,
inertia, energy and
homogeneity
[9] Feature saliency Compression Centre-surround To build saliency Yes Low 9
on colour contrast, map and also
temporal flicker, foveation areas
intensity  contrast,
four orientations
and motion energies
[13] Centre surround to Validation of Intensity, two chro- To validate saliency Yes Low 8
conspicuity maps saliency map tech- matic features, four maps against mean
nique local orientations saccade maps and
to build a testing
framework
[1] Saccade/random Model and data Centre-surround To  validate the Yes low 10

vs. saliency

comparison

on colour contrast,

temporal flicker,
intensity  contrast,
four orientations

and motion energies

bottom-up influence
on allocation  of
visual attention

Table 2.1: Relevant papers on modelling of visual attention.
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2.2 Visual attention

2.2.1 Attention as selection

An definition that further clarifies the workings of attention is given by[22]:

This process of selecting and disregarding environmental stimuli for further

processing is called attention.

The process of listening only to relevant voices in a crowd is captured and it fits well with the
view of visual attention as a spotlight. Some stress the serial nature of visual attention. The
theory is that there is a single processing resource with limited capacity available, which
can change what to process serially. This has been demonstrated|23] with performance
measures on dual tasks that show that when one task performance increases the other
decreases, conforming to the hypotheses that a single resource is available. Similar results
have been found[2] by measuring resource allocation in multiple object tracking. However,
it has been claimed|25] that there are two independent belonging to each hemisphere and by
pointing to fMRI(functional Magnetic Resonance Imaging) data from subjects fixating an
area with task irrelevant sequence of digits, with relevant sequences of digits and letters to
the left and right. The task was to report matching digits and letters to the left and right.
The fMRI data indicate that corresponding retinoscopic areas to, left and right eye, are
activated during task engagement. Evidence has been provided[26] that more resources
are utilised in dual tasks. With a task of pointing towards locations bi-manually (with
both left and right hands), simultaneously reporting letters either at the same position or
the other. By comparing with a uni-manual condition they show that more resources are
deployed in the bi-manual task.

Visual attention has been portrayed as a multilevel selection process|27], distinguishing
four different levels from functional brain imaging research. The first one is located to an
area called lateral geniculate nucleus, the second areas are V4 and TEO , the third areas
are in frontal and parietal cortex, and the fourth in the pulvinar of thalamus. Such a
position allows the possibility that serial and parallel processes cooperate, which I find
credible.

Although attention is related to awareness, attention and visual awareness can be

separated. With psychological/theoretical and neurological arguments, Lamme|28] first
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notes that items, that are visually attended, results in either unconscious or concious
experience, and also claim that conscious data can be attended or unattended at a later
stage, resulting in phenomenal awareness as or access awareness respectively. Phenomenal
experience is short-lived, vulnerable and not easily reported, whereas access awareness is

more durable. Neural correlates are further supporting the theory.

2.2.2 Visual search

In a visual search paradigm a slightly different definition of attention has been given by[29]

as

attention is a set of strategies that attempts to reduce the computational cost

of the search processes inherent in visual perception

Visual search involves several different levels of visual processing. Early in the visual cortex
parallel activation is processed, resulting in for example the pop-out effect, where a part
of the stimuli protrudes visually due to the visual attention mechanism. Further, covert
attention can focus on parts of visual input and specific areas are foveated.

In this area of visual search, interesting evidence can be found for top—down modulation
of low-level saliency. Eye-movements are guided to areas with orientation and spatial
frequencies close to the target[30]. Evidence has been found that semantic priming can
affect visual search for an odd-one-out target[31], thus proposedly higher—level processes
interacts with low—level saliency calculation. Also, in the multiple target paradigm it
has been shown that suppression of distractor targets is intelligent in the sense that only
confusable distractors are suppressed[32]. Thus task based conspicuity involves top—down
information.

A recent study on how visual working memory interacts with visual search supports
that the influence is under strategic control|[33]. The study investigate attentional responses
to distractors identical to the content of an object visual working memory, and find that
the covert attention instead directed away from the distractors in the experiment. Even in
the mechanism of pop-out, top-down processing has been proposed[34], shown with studies
of event related potentials (ERP) on Monkeys, where the FEFs are which are involved in
top-down processing has activation first. They conclude that temporal cascade of selective

activity is similar for both efficient and inefficient search tasks. In a study[35] visual
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working memory content is varied, testing attentional selection, with results supporting
the view that top-down processes is involved in pop-out.

Detecting objects in cluttered scenes is a difficult task. Work has integrated top-
down and bottom-up frameworks for saliency calculation[36, 37|, where top-down saliency
is defined as the weighted sum of features that are salient for a particular object being
looked for. Another method uses statistics of natural images, feature target resemblance
and prior knowledge of where the target is likely to be[38].

Research in artificial intelligence has been directed towards the problem of detection of
objects in cluttered scenes|39]. It is a difficult task that humans do well in a two stage model
where the entire visual field is processed in parallel in the early visual system and serially
as regions of interest selected by the attentional spotlight. It has been argued that this
is a strategy to overcome the limitation of purely feed forward processing in the presence
of clutter and crowding. A computer implementation[!(] replicates phenomena such as
pop-out, multiplicative modulation and change in contrast response, emerging naturally
as a property of the network. Another psychological model takes cognitive factors into
account|11].

For visual search, a model has been implemented|12] that is much faster that previous
models (SWIFT[43], HMAX]44]) without loosing performance. It is used for top-down
guided search. The algorithm learns 42 separate Gaussian distributions corresponding to
each feature and is able to output the probability of an object being located at a particular
position. Following the maximization of gain train of thought Bayesian models have been
proposed as of how humans solve the visual search problem of deciding whether or not a

target is present in a scene or not[15].

2.2.3 Covert and overt attention

The attention mechanism can be divided into covert and overt attention. It is possible that
the eye is focused on one spot, whereas another point in the periphery is actually attended.
Overt attention is where the eye is currently focusing, whereas covert attention is where the
brain is focusing. The highest resolution is obtained in the overtly attended area. There
is also psychophysical evidence that visual attention can actively enhance the resolution.

In a study[46] performance was tested in covert attended and unattended condition with
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stimuli designed to measure spatial acuity (e.g. a square with a small gap on one side).
There is also evidence that contrast|17] is enhanced where exogenously attended areas are
described as having more contrast when they in fact have the same as non-attended ones.
It has been claimed[!8] that covert attention to peripheral cues can even decrease acuity
in unattended locations . Such differences between attended and unattended areas in the
visual field points to early economization of resources.

The pre-motor theory of attention states that covert or spatial attention is equivalent to
planning but not executing a saccade[19, 50, 51|. Evidence for this includes the coupling of
covert attention and saccade preparation observations that neurons in sensorimotor struc-
tures such as frontal eye fields (FEF), that the trajectories of saccades can be influenced by
the allocation of attention, and that electrical stimulation of FEF and superior colliculus
can influence the allocation of attention. Further it has been found that neural activity
in the lateral intraperietal area has been associated with attention to a location in visual
space, and with the intention to make saccadic eye movements|52], a similarity also found
in other areas|53, 54]. It has been claimed|55] that information about upcoming movement
mediates this shift of attention.

Recent evidence suggest that covert and overt attention are more decoupled[56, 57].
As a result it is possible to covertly attend an area without executing a saccade. Neuro-
physiological studies with monkeys have shown that covert attention can be directed to
a particular salient area for an extended period without causing eye movement and even
inhibit saccades[58]. One explanation is that all considered fixation points are attended
in parallel prior to saccade execution[59]. It has been argued|60] that this can only hap-
pen during endogenous covert shifts of attention. In has been claimed[61] that no covert
attention is required for overt attention but only pre-attentive parallel processing.

Research indicates that that there is a common mechanism for covert and overt atten-
tion as far as the selection process goes[62]. It has also been claimed[62] that a functional
difference between covert and overt attention exists in that attentional modulation is sep-
arate from saccade programming.

The interaction of overt and covert attention is particularly important for models con-
cerned with visual search|[12]. A model of this interaction is also necessary for the under-

standing of mechanisms like saccadic suppression, dynamic remapping of the saliency map
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and inhibition of return, covert pre-selection of targets for overt saccades, and the on-line
understanding of complex visual scenes. Evidence[63] supports that a parallel mechanism
is involved in visual search not necessarily involving relocation of attention.

How exactly covert attention operates is quite unknown. It has been shown that atten-
tion can be split between two targets|[6]. Some findings indicate that the divided spotlight
is actually a rapid temporal switching|[65]. Also that selective attention need not be me-
diated by spatial attention[G6], since you can see a sensory element without mediation by
spatial attention. Except for the spacial extent of attentional processing, space—time maps
of both endogenous and exogenous visual attention has been outlined[67]. The theories
of covert attention are disparate and further research needs to be done to draw definite

conclusions.

2.2.4 Bottom-up and top-down processing

Two distinguishable processes are involved in attentional allocation, bottom-up (image-
based) and top-down (task-based) processes. The difference between these two kinds of
processes is the origin of action/activity or in this case eye-movement. In bottom-up pro-
cessing the origin is stimuli. For example simple features like contrast, corners and crosses
attract attention. In top-down processing the origin is high-level cognitive processes. A
clear cut example is when people are asked for example “Where is the red car?”, which leads
people to direct the attention to a red car if present. It has been demonstrated|[68] that
bottom-up information is more important in unknown images whereas in specific kinds like
web sites top—down is more important.

Studies indicate a fundamentally different visual and abstract information process-
ing [69]. For example dissociation between automatic and controlled processes have been
demonstrated[70] and enhanced methodology for this[71] has been developed. As further
evidence for distinct neural mechanism in endogenous and exogenous attention is the de-
pendence on shift time on distance between attentional points|[72]. A computational model
based on experimental results|[73] has been developed that proposes that stimulus—driven
allocation of attention exists early at appearance of attractor, but is later modulated by
top—down signals. Similarly in research on visual search it has been shown that, although

bottom—up processes initially control attention, top—down processes defined as accumulat-



CHAPTER 2. PREVIOUS WORK 29

ing scene knowledge quickly take over and dominate search|[74].

For bottom-up processing there is neurological evidence that some sort of saliency map
is calculated|75]. This saliency map encodes how important particular areas are and is
hypothesised to be the primary guide for the attention mechanism. Several computational
models have been implemented to simulate such a process[5, 12|, where features like colour
contrast, intensity contrast and orientation are used to build the saliency map. These maps
have been validated with eye-tracking data[l3, 5], which provide evidence that bottom-up
processes contribute significantly to the selection of fixation points. Additional experiments
indicate that selecting interesting objects in a scene is largely constrained by low-level visual
features|[76]. It has been claimed|77] that salience map models contributes significantly, but
accounts only for a small amount of the variance in where people fixate, especially pointing
to that scan-path sequences are not predicted by a saliency map. Research on stimuli
manipulation confirms that visual saliency is a poor predictor of real observer scan-paths|1],
and in fact objects are better candidates for fixation points|78]. Some research though
indicate that top—down search strategies cannot override reflexive attentional capture[79].

The pure bottom-up and top-down processes are pretty simplistic as described above.
Bottom-up processing requires only visual input for its functionality whereas top-down
processing needs a cognitive model of the surroundings (i.e. where to look for the red car),
and knowledge about the world (what is a red car?). An important question is how these
processes interact. Evidence points to that these compete for focal attention|[30] and one
possibility to unite top-down and bottom-up is the Unitary Saliency Map Model where
both types of processes feed into the same saliency map|81]. It has been proposed that
integration of multiple sources, i.e. sensory, motor and cognitive variables, is done in the
lateral intraparietal area (LIP)[32].

It has been proposed|33] that there are three main sources of guidance information
available when watching a new image: low-level saliency, target template information and
scene context. The saliency being purely bottom-up, a target template matches features
and attention is directed according to match. Further, scene context indicates where to
look for particular targets. Supporting the template target information theory subliminally
primed targets attract attention|%4] better than semantic priming. Furthermore, occluded

object parts attract attention[35]. With respect to representation of visual categories some
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evidence points towards an example based representation working as a template guiding
search[36]. Evidence has been found on that contextual conspicuity and physical presence
are governed by distinct neural mechanisms|37].

A study|[88] indicate that purely top-down processes provides a much closer match
to human behaviour than a mixture model using bottom-up information. In the study
bottom-up saliency as well as a feature template match to a stored representation is used
to predict eye-movements in visual search. In another study[29] involving a hand pointing
task it has been found that initial saccades are directed towards saliency as defined by
low—level features however the subsequent towards the target. Although attention in the
everyday sense evokes conscious mediation of the stimuli, advanced aspects of attention
are dissociable from awareness|90].

It has been demonstrated that saccades are influenced by visual working memory and
these are thus controlled at least partly top—down[91]. Interesting studies have been done
on how spatial working memory operates to control planned sequences of eye-movements,
possibly clarifying aspects of automatic attention models[92, 93]. Another study has mod-
elled the way implicit knowledge affect eye-movements|[94].

Not only cold cognitions (information based) operate attention, but also hot ones like
emotions. Attention move rapidly towards threat|[95] consistent with theories of emo-
tion. Further, reward and attentional systems are interdependent|96, 97]. Here reward-
associated stimuli are preferentially processed over other valanced stimuli|98]. It has been
shown that reward information is readily integrated with saliency in the sense that it af-
fect target selection and exact landing position of a saccade, but this is a time-consuming
process|99)].

It has, furthermore, been shown that eye movements such as saccades and vergence are
guided by the perceived stimulus and during fixation by the physical stimulus. Thus disso-

ciation between perception and eye-movement during fixation has been demonstrated|100].

2.2.5 Attention to objects

Some have argued that attention to objects is orthogonal to saliency driven attention since
the visual stimuli of objects, which is not salient, are still attracting attention|[101]. Further,

there seems to be both bottom-up and top-down object processing since recent results
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suggest that object-based attentional capture guide both types of attentional orienting
[102]. Some make claims that saliency mainly acts through objects in as it is the objects
that attract attention|l03].

To direct attention towards object they must be detected. Grouping is then an impor-
tant step[104]. The ground-breaking work, by the Gestalt perception work done (e.g. [105]),
postulate that there are a number of different principles of perceptual organisation that
bind features in stimuli together, and continue to inspire researchers today. Some of the
principles are closure (filling in missing parts), similarity, proximity, symmetry and com-
mon fate (two object share same motion endpoint). For example texton-based segregation
can be used to find object boundaries[106], which is based on feature similarity. Another
method is edge extraction and interpretation, which build on all of the principles except
common fate. Possibly objects are also recognised and thus attended to because of its
importance as object type or instance. A question is if object recognition is done in par-
allel, with all visible object attended at the same time, or serially, with one object being
attended at a time. Recent research rejects both serial processing, and unrestricted parallel
processing, as the best model of object recognition[107] and proposes a parallel model with
restricted capacity.

It has been shown that higher level properties such as animacy and goal-directed be-
haviour improve higher—level classification of behaviour as opposed to random movements,
a spatio—temporal property assigned to the particular object being looked for[108]. Thus
not only spatial properties of objects are important in visual attention. Similarly object—
tracking predictability matters for multiple object tracking in as so far as that objects
moving in a predictive way are more easily tracked[109]. Finally, some evidence point to

that attentional object tracking is carried out independently by each brain hemisphere[110].

2.2.6 The “where” and “what” streams

There are proposedly two separate neurological information processing streams in the vi-
sual attention mechanism, the where and what streams. The existence of these have been
investigated in a behavioural study[l11], where the internal object representation has been
separated into a “motor” and a “sensory” memory. Each of these chains reflect an alter-

nating sequence of elementary motor and sensory signals which are expected to arrive in
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response to each action. These are used in subconscious behavioural recognition when the
object is known. The matching of incoming sensory stimuli is compared with the expected
from executed motor commands.

Also, neurological experiments have found two major low-level bottom-up streams in
the visual system[112]|. Information from the retino-geniculo-striate pathways enters the
visual cortex through primary visual cortex V1 in the occipital lope and proceeds into two
separated streams. The first one leads through extrastriate visual cortical areas V2, V4 to
IT (the inferior temporal cortex), and is mainly concerned with object recognition. The
second one leads through PP (posterior parietal complex) and is responsible for maintaining
a spatial map of an object’s location and the spatial relationships between object parts as
well as the spatial allocation of attention. Neurological and behavioural findings represent
two separate lines of research that have produced convergent results on visual attention and
scene understanding. Thus this model has a sound scientific base and might be considered

for computer implementations of visual attention.

2.2.7 Fixations on faces

Faces are of importance to humans and thus extraordinary resources are utilised to find,
scan and remember faces[113]. When it comes to visual attention in the past it has been
found that the human visual system can detect animals in a complex natural scene very
fast (120-130ms before saccade), and new research has found that saccades towards faces
are even faster|[l14].

On still images people tend to first look at a centre-point of the face and then succes-
sively scan features like the eyes, the nose and the mouth. Further, a study|!15] show that
involuntary attraction of visual attention to faces is stronger than other visual objects.
Many studies have been on frontal faces but people look at profile faces too[!16]. Recent
findings|!17] show that no preference for eyes exists for dynamic faces. Rather, attention is
adjusted to dynamics, i.e. speech induces attention to the mouth area, face looking directly
into camera induces attention to eyes, looking at another person to the other person and
finally during face movement to the nose, which is attributed to optimal tracking of the

face as a moving object.
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2.2.8 Attention and scene understanding

To understand the more complicated aspects of the visual attention the processes of scene
understanding, learning, expectations, competition and consciousness must be considered.
Visual attention not only results in scene understanding but is an integrated part of it
as has been shown|! 18] that entire stimulus or objects can be selected as a whole by the
attention mechanism, including all its features. For example, the picture of a target is a
good cue in a search task[119]. Some more elaborate theories are here described that try to
describe the attentional system from a functional point of view, thereby linking bottom-up
and top-down processes.

One of the earliest models is MORSEL (Multiple Object Recognition and attentional
SELection|[120, |). This model is applied to the recognition of words processed through
a recognition hierarchy. Without attentional selection, the representations of several words
in a scene would conflict and confuse that recognition hierarchy, yielding multiple super-
imposed representations at top level. The addition of a top-down attentional selection
process allowed the model to disambiguate recognition by focusing on one word at a time.

Another theory[122], supported by recent experiments|123] states that the next fixation
point is chosen as to maximize the gain of information about the object currently inves-
tigated. This means discrimination is permitted between current candidate object classes
in a hierarchical internal tree of objects and object classes.

A model has been proposed|124] related to the where and what streams which relate
to different neurological pathways in the brain. This theory states that particular scan
paths are learned during the lifespan of a human for each particular object or scene to be
recognized. In a particular scene a person chooses between scan paths that are particularly
useful for the understanding of that scene and objects in that scene. The result of following
a scan path in the “where” memory is compared to object appearance templates in the
“what” memory, and thus object recognition and scene understanding is possible. The two
different approaches that has lead to converging results gives broad scientific support to
the theory of the “what” and “where” memory.

Another proposed model[l12] combines bottom-up selection of object locations and
object recognition. Here object locations are found in a bottom-up manner at a coarse

scale. Candidate locations are scanned serially at progressively finer scales until object
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recognition is completed. This model has been supported by psychophysical studies that
show attentional enhancement of spatial resolution as mentioned earlier.

Finally, a theory that emphasize top-down processes has been proposed|125, |. Ac-
cording to this theory what we see is only vaguely related to what is received at a retinal
level, which is supported by the fact that people experience a vivid perception of the full
view, whereas only the attended part is actually clear. This is called the “scan path” theory
and states that a cognitive model of the surroundings is the main basis of selection of focal
points. Here the attentional system is more of an adjusting mechanism to be able to cope

with the details of the environment that adjusts according to the task.

2.3 Eye movements

There are several different types of eye-movements. These are[127] saccade: fast voluntary
jump-like movements, wvestibular—ocular reflex: stabilizes visual image on retina as head
moves, nystagmus: resetting of compensatory movements, opfokinetic nystagmus: stabi-
lizes gaze during low—frequency rotations at a constant rate, smooth pursuit: voluntary
tracking of moving stimuli, vergence: coordinated movements of both eyes to account for
divergence and forsion: coordinated rotation of eyes around optical axis, dependent on
head tilt and eye elevation. In the following subsections fast eye movements (like sac-
cades), smooth-pursuit, inhibition of return as well as application areas of eye-movement

models are covered.

2.3.1 Fast eye movements

Shifts of attention are very rapid and are called saccades. These takes in the order of
100 — 300ms to plan and execute[128], and are the fastest movements produced by the hu-
man body with speed up to almost 1000°/s. Most of the time the eyes are directed to points
in the surrounding that are important for the current task a human is engaged in. Saccades
often land at the middle point of targets[129]. There are several types of saccades: reflexive
saccades, memory guided saccades, antisaccades and catch—up saccades|130]. Characteris-
tically saccades do not follow motion of objects. In target selection, at least for saccadic eye

movements the superiour colluculus in primates play a role[131]. It has been shown|[132]
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that two saccades can be programmed simultaneously which can lead to a very short inter—
saccadic interval.

Recent findings indicate that several brain mechanisms can be involved to a varying
degree|133], as opposed to previously assumed either indirect versus direct control. Sac-
cades can be abrupted and continued to another location as a result of race|[134]. Also, both
common and differentiated activation can be traced in comparing saccades and vergent eye
movements|135]. Further, some have found a difference between within object saccades and
between object saccades|136]. Here it is claimed that they operate in different coordinate
systems (retino—centric and oculo—centric).

A distinction is made[55] between reflexive and volitional saccades. The theory is that
reflexive saccades are triggered by peripheral stimuli automatically and is often faster with
latencies in the order of 180ms. Volitional saccades are the effort of intention to locate
towards the target, typically measured by a target that does not trigger reflexive saccades.
Latencies for volitional saccades are in the order of 250ms. Evidence has been found that
reflexive and voluntary saccades are programmed in parallel[137]. However, apart from
targets, it has been shown that linguistic cues can induce involuntary programming of
eye movements|138|. This puts the proposed distinction between reflexive and voluntary
programming of saccades in question in that higher-level concepts are involved in the
involuntary programming. Contrary to the belief that the fastest saccades are reflexive
both verbal and visual information in working memory has been shown affect these[139].
So the subject area might need more detailed philosophical analysis.

A sequence of saccades is often taken as to have an intrinsic order, called scan—path.
Previous fixation point is an important predictor of subsequent saccade, including both
target selection and fixation duration|[l10]. Recorded scan-paths on artificial displays with
arranged targets have shown evidence for scanning strategies based on both directional
orientation (raster—like) and global external contour|[141]. A simple search strategy where
the scene is scanned in a coarse-to-fine manner has been proposed|[112]|. Here it was found
that mean saccade amplitude decreased and mean fixation length increased as a function
of the ordinal saccade and fixation number. Although over the years it has been assumed
that covert shifts of attention mediates serial scanning newer research points to that it

could be limited capacity parallel processing[143].
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Small fast movements are called microsaccades, which are not as investigated, but
refer to shorter fixational changes. Competing motor plans generate microsaccades and
saccades. Some|l14| seem to argue that microsaccades are produced with great influence
from noise (activation spread to nearby areas). Others have noted that microsaccades not
only counteract perceptual filling in, but also maintain figure—ground separation|115]. Yet
others[146] claim that there is no evidence that microsaccades serve as a necessary role in

improving oculomotor control or in keeping the world visible.

2.3.2 Smooth pursuit

Smooth pursuit is primarily driven by visual motion[117]. A qualitative difference has been
shown between smooth pursuit and fixation as simply steady smooth pursuit. Changes in
visual feedback have little effect when subjects fixate a stationary target, but the same
cha