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Abstract

The aim of the thesis is to create and validate models of visual attention. To

this extent, a novel unsupervised object detection and tracking framework has been

developed by the author. It is demonstrated on people, faces and moving objects

and the output is integrated in modelling of visual attention. The proposed approach

integrates several types of modules in initialisation, target estimation and validation.

Tracking is �rst used to introduce high-level features, by extending a popular model

based on low-level features[1]. Two automatic models of visual attention are further

implemented. One based on winner take it all and inhibition of return as the mech-

anisms of selection on a saliency model with high- and low-level features combined.

Another which is based only on high-level object tracking results and statistic proper-

ties from the collected eye-traces, with the possibility of activating inhibition of return

as an additional mechanism. The parameters of the tracking framework thoroughly

investigated and its success demonstrated. Eye-tracking experiments show that high-

level features are much better at explaining the allocation of attention by the subjects

in the study. Low-level features alone do correlate signi�cantly with real allocation

of attention. However, in fact it lowers the correlation score when combined with

high-level features in comparison to using high-level features alone. Further, �ndings

in collected eye-traces are studied with qualitative method, mainly to discover direc-

tions in future research in the area. Similarities and dissimilarities between automatic

models of attention and collected eye-traces are discussed
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Glossary

Adaboost Short for �adaptive boosting�, a machine

learning algorithm that uses the output of sev-

eral weak classi�ers to make a �nal decision,

53

animacy Degree of being sentient or alive, 31

blob Set of connected pixels, 55

cold cognition Cognition driven by information, 30

endogenous Caused by factors inside the organism or sys-

tem, 27

exogenous Caused by factors or an agent from outside

the organism or system, 28

ghost Area falsely outputted as foreground due to a

foreground object moving from this area, 54

hot cognition Cognition driven by a�ect or motivation, 30

inferior temporal cortex An area of the brain crucial for visual object

recognition, 32

13
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inhibition of return (IOR) A mechanism that temporarily inhibits real-

location to previously attended points, 3

lateral intraparietal area A part of the intraparietal sulcus located at

the lateral surface of the parietal lobe, thought

to be involved with saccade generation and

working memory in guiding eye movements,

27

MPEG-1 The standard on which such products as

Video CD and MP3 are based, 40

MPEG-2 The standard on which such products as Dig-

ital Television set top boxes and DVD are

based, 146

MPEG-4 The standard for multimedia for the �xed and

mobile web, 40

phenomenology Phenomenology takes the intuitive experience

of phenomena (what presents itself to us in

phenomenological re�ection) as its starting

point and tries to extract from it the essen-

tial features of experiences and the essence of

what we experience., 19

pop-out An e�ect where a part of the stimuli stands

out in comparison to its neighbourhood, 25

posterior parietal complex Receives somatosensory, proprioreceptive,

and visual inputs and plays a role in voluntary

movements, 32

primary visual cortex A brain area highly specialized for processing

information about static and moving objects

and for pattern recognition, 32
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priming A process in which the processing of a target

stimulus is aided or altered by the presenta-

tion of a previously presented stimulus, 29

retino-geniculo-striate A pathway to the primary visual cortex

that conveys elemental information for visual

perception[2], 32

saccade Fast eye-movement between �xation points,

21

saliency map A 2D array that encodes the relative attrac-

tiveness of each point to visual attention, 18

smooth pursuit Following a moving object with gaze, 46

subliminal below threshold for conscious perception, 29

superior colliculus A major component of the vertebrate mid-

brain, processing input from the eyes as well

as other sensory systems, 27

TEO A part of extrastriate visual cortex associated

with form and color vision, 24

the pulvinar of thalamus the most posterior region of the thalamus, 24

V1 See primary visual cortex, 32

V2 A extrastriate visual cortical area sending and

receiving strong feedback connections to V1,

32

V4 One of the visual areas in the extrastriate vi-

sual cortex of the macaque monkey. The ho-

mologue in humans is disputed, 24
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vergence The simultaneous movement of the eyes in op-

posite direction to obtain or maintain binoc-

ular vision, 30

visual cortex The part of the cerebral cortex responsible for

processing visual information, 17

what stream A neural processing pathway that is involved

with object identi�cation, 31

where stream A neural pathway that processes spatial infor-

mation, 31



Chapter 1

Introduction

1.1 Motivation

Visual attention is a mechanism by which the organism chooses particular points of interest

in the surroundings[3]. A small focal area around an attended point is processed with

extraordinary resources in comparison to other areas of visual input. About 50% of the

primary visual cortex is devoted to processing input from the central 2% of the visual

�eld[4]. It is actually only in this small area that the visual input is clear enough to make

an accurate picture of the surroundings, which is surprising since humans often experience

a clear 180◦ view. The explanation for this is that the brain actively �lls in what is missing

in the rest of the view. A clear example of this phenomenon is the blind spot where no

information is received at all. But people are normally not at all aware of this gap in the

receptive �elds.

There are several reasons for a selective visual attention mechanism. First, obviously

humans have a limited view of the surroundings, which makes body, head and eye move-

ments necessary to gather enough data about the surrounding. Further, the mechanism of

attention provides a way to serially process visual input[5]. The process of scene under-

standing is thus rapid with limited capacity and enables real-time operation despite these

limitations of the brain. During evolution it has been important for animals to swiftly

become aware of important events in the surroundings.

Many factors are in�uencing the way allocation of attention is done. In frogs, the

eyes are largely comparable to humans eyes, but the processing is di�erent. Low- and

17
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perhaps mid-level vision is involved in localising small moving object for consumption of

possible prey. The actual capturing of the pray is instinctual. In humans higher-level

representations and processes are involved. There is a lot of evidence that cognitive state

and personality a�ect the way people look[6, 7]. For example �task� is a high-level concept

that humans engage in as opposed to being hungry in the case of a frog.

So, where do people look, and how can you take advantage of a visual attention model

in computer vision. There are plenty of possible application areas of visual attention in

multimedia processing, illustrating the importance of studies in the �eld. One is to utilise

a visual attention mechanism for scene interpretation[8], to retrieve semantic information

from video sequences. A saliency map can contribute to highlight important events in a

CCTV camera capture. An interesting research question would be if the attention mech-

anism can help to make sense out of a video sequence. For example, particular series of

�xations could possibly be a means to classify events. Let's say a thief is trying to steal

a bag at an airport. Given the importance of features like faces and moving objects, a

saliency map could easily encode the face and the moving bag as important areas to at-

tend, and would probably produce a speci�c trace of attentional �xations. The output of

such a system would be a classi�cation of video events after comparison with a trained

database.

This thesis investigates human visual attention and exploit this to model visual at-

tention. Such modelling of visual attention for computer vision applications is something

that has not been thoroughly studied, due to the complicated nature of visual attention,

and given the impact of such a system it is worth doing. However, as I will mention in

this thesis visual attention has been used for example in video compression applications[9],

object detection[10] and object recognition[11]. My work covers �rst the state of the art

on visual attention. Then experimental work is presented that has been aimed at trying to

model the visual attention mechanism. First, a saliency map from the low-level features:

colour contrast, intensity contrast, orientation, similarly to previous work[1, 12, 13], and

high-level features as illustrated in Fig. 1.1, has been built. The second goal was to gen-

erate automatic eye-traces on dynamic media which is done by two di�erent approaches

described in Chapter 4. The �rst one involves shifts of attention with winner-take-it-all and

inhibition-of-return (IOR) mechanism on low- and high-level feature maps, and the second
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Figure 1.1: Low-level features: intensity, colour and contrast (extracted with
existing methods[12]) and high-level features: faces, moving objects and pedestrians.
These can be utilised to generate a combined saliency map and further automatic
eye-traces given winner-take-it-all and inhibition-of-return. High-level features can
also be fed directly into the module for statistical generation of eye movements.

one involves shifts of attention between high-level objects based on statistical properties

of sampled eye-tracking data.

1.2 Main contributions

Main contributions of the work are as follows:

Face, pedestrian and moving object tracking: Since visual attention to high-level

object was to be studied the aim was to develop an algorithm that extracts such

objects automatically. A tracking system for faces, humans and four and �ve di-

mensional tracker for moving objects has been developed[14], where others in the

MMV research group have contributed with particle �ltering[15] and people/moving

object detection[16]. The system is validated against state of the art methods, and

its parameters are optimised for accuracy and precision.

Models of visual attention: Models of visual attention have been developed and val-

idated to test theories of its functionality. First, correlation scores have been cal-

culated between saliency based on combined low� and high�level features, and eye-
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traces of subjects watching the same videos, enabling us to study which features

attract attention the most, how they interact, as well as the spatial extend of object

based attention. The eye-tracking data has been studied phenomenologically and

quanti�ed to build one model based on winner-take-it-all and inhibition of return as

well as one model based on Gaussian statistics. In the �rst case comparisons are

made between with and without including high-level features. In the second case

comparisons are made with the original eye�traces, and a phenomenological analysis

is presented.

1.3 Organisation of the thesis

This thesis consist of the following chapters:

• Previous work : State of the art in visual attention modelling as well as detection and

tracking is covered.

• Object detection and tracking : The implemented system for object detection and

tracking is described in detail.

• High-level and low-level visual attention: The generation of combined saliency map

with low-level and high-level features, as well as eye-tracking measurements are de-

scribed. Validation of the proposed model in Fig. 1.1 is presented. Qualitative de-

scriptions of eye-traces are given. Two models of generating eye-traces are described

where one uses statistical properties of eye-traces in terms of saccade 1 frequency and

saccade speed.

• Conclusions: Achievements are summarised and conclusions drawn.

1A saccade is fast eye-movement between targets, see section 2.3.1 for a thorough description



Chapter 2

Previous work

2.1 Introduction

The most used description of visual attention is the analogy of a spotlight. By directing

the eyes to di�erent areas in the surrounding these are highlighted with respect to the rest.

This is consistent with the fact that the centre of the eye is packed with photo-receptors

and gives the picture that visual attention is used to successively scan the surroundings

for interesting objects.

The study area of visual attention extends from neurology, psychophysics, cognitive

psychology, cognitive science and computer vision. Understanding the attentional mecha-

nism is challenging. As a result there is a lack of a big picture of visual attention, merely

theories of parts of its functionality.

When it comes to visual attention within computer vision or multimedia processing,

studies have mostly been concerned with images, and have been focused on low-level fea-

tures. In images low-level features like intensity gradient, colour gradient and orientation

have been used to predict visual attention. In videos motion and �icker tend to attract

visual attention more[1]. These studies compare collected eye-traces, de�ned as the path

visual attention follows over time, and compare to the model. Eye-traces are more sim-

ilar between di�erent persons on videos, which makes videos more feasible to create an

automatic model.

Models of eye-movements are usually governed by inhibition of return. This produces

something similar to human scan patterns on images but as will be shown is not su�cient

21
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for videos. Here eye-movement only consist of saccades , i.e. fast eye-movements from one

point to another, but also smooth-pursuit, i.e. a consistent tracking of one object over time.

In this chapter aspects of visual attention and theories about these are covered, as well

as some background on work within the �eld of computer vision and state of the art in

detection and tracking. A summary of papers read about modelling visual attention is

presented in table 2.1.
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Ref Method Application Features Purpose Validation Level Interest

[17] Eye tracking and
summing of feature
maps correlated

Stereo image pairs Depth plus colour
contrast

To test the impor-
tance of disparity in
attention

Yes Low 5

[18] Cognitive architec-
ture with attention
and eye movements

A visual attention
model (EMMA) as
part of a cognitive
architecture (ACT-
R-PM) demon-
strated on equation
solving

To capture impor-
tant aspects of be-
haviour

Yes High 3

[10] Motion pop out Object detection
and recognition

Colour sub-band
features plus con-
text based object
presence (saliency
map)

To test a sort of top-
down process

Yes High/low 8

[19] Maximum entropy
model (MEM) with
image seq., audio
and text

Baseball highlight
detection

Colour, edge dis-
tribution and esti-
mated camera mo-
tion + audio, text

To detect and
classify important
events in baseball

No Low
(high
level
text)

3

[20] Bottom-up saliency
calculation

Robot guidance Features plus moti-
vational bias

To test theory in
robot

No Low 4

[21] SVM-classi�er Video classi�cation 3D - Saliency vol-
ume, K-Means, fea-
ture vector, colour
histograms, entropy,
inertia, energy and
homogeneity

To classify soccer,
baseball, swimming,
boxing and snooker

No Low 8

[9] Feature saliency Compression Centre-surround
on colour contrast,
temporal �icker,
intensity contrast,
four orientations
and motion energies

To build saliency
map and also
foveation areas

Yes Low 9

[13] Centre surround to
conspicuity maps

Validation of
saliency map tech-
nique

Intensity, two chro-
matic features, four
local orientations

To validate saliency
maps against mean
saccade maps and
to build a testing
framework

Yes Low 8

[1] Saccade/random
vs. saliency

Model and data
comparison

Centre-surround
on colour contrast,
temporal �icker,
intensity contrast,
four orientations
and motion energies

To validate the
bottom-up in�uence
on allocation of
visual attention

Yes low 10

Table 2.1: Relevant papers on modelling of visual attention.
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2.2 Visual attention

2.2.1 Attention as selection

An de�nition that further clari�es the workings of attention is given by[22]:

This process of selecting and disregarding environmental stimuli for further

processing is called attention.

The process of listening only to relevant voices in a crowd is captured and it �ts well with the

view of visual attention as a spotlight. Some stress the serial nature of visual attention. The

theory is that there is a single processing resource with limited capacity available, which

can change what to process serially. This has been demonstrated[23] with performance

measures on dual tasks that show that when one task performance increases the other

decreases, conforming to the hypotheses that a single resource is available. Similar results

have been found[24] by measuring resource allocation in multiple object tracking. However,

it has been claimed[25] that there are two independent belonging to each hemisphere and by

pointing to fMRI(functional Magnetic Resonance Imaging) data from subjects �xating an

area with task irrelevant sequence of digits, with relevant sequences of digits and letters to

the left and right. The task was to report matching digits and letters to the left and right.

The fMRI data indicate that corresponding retinoscopic areas to, left and right eye, are

activated during task engagement. Evidence has been provided[26] that more resources

are utilised in dual tasks. With a task of pointing towards locations bi-manually (with

both left and right hands), simultaneously reporting letters either at the same position or

the other. By comparing with a uni-manual condition they show that more resources are

deployed in the bi-manual task.

Visual attention has been portrayed as a multilevel selection process[27], distinguishing

four di�erent levels from functional brain imaging research. The �rst one is located to an

area called lateral geniculate nucleus, the second areas are V4 and TEO , the third areas

are in frontal and parietal cortex, and the fourth in the pulvinar of thalamus. Such a

position allows the possibility that serial and parallel processes cooperate, which I �nd

credible.

Although attention is related to awareness, attention and visual awareness can be

separated. With psychological/theoretical and neurological arguments, Lamme[28] �rst
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notes that items, that are visually attended, results in either unconscious or concious

experience, and also claim that conscious data can be attended or unattended at a later

stage, resulting in phenomenal awareness as or access awareness respectively. Phenomenal

experience is short-lived, vulnerable and not easily reported, whereas access awareness is

more durable. Neural correlates are further supporting the theory.

2.2.2 Visual search

In a visual search paradigm a slightly di�erent de�nition of attention has been given by[29]

as

attention is a set of strategies that attempts to reduce the computational cost

of the search processes inherent in visual perception

Visual search involves several di�erent levels of visual processing. Early in the visual cortex

parallel activation is processed, resulting in for example the pop-out e�ect, where a part

of the stimuli protrudes visually due to the visual attention mechanism. Further, covert

attention can focus on parts of visual input and speci�c areas are foveated.

In this area of visual search, interesting evidence can be found for top�down modulation

of low�level saliency. Eye-movements are guided to areas with orientation and spatial

frequencies close to the target[30]. Evidence has been found that semantic priming can

a�ect visual search for an odd-one-out target[31], thus proposedly higher�level processes

interacts with low�level saliency calculation. Also, in the multiple target paradigm it

has been shown that suppression of distractor targets is intelligent in the sense that only

confusable distractors are suppressed[32]. Thus task based conspicuity involves top�down

information.

A recent study on how visual working memory interacts with visual search supports

that the in�uence is under strategic control[33]. The study investigate attentional responses

to distractors identical to the content of an object visual working memory, and �nd that

the covert attention instead directed away from the distractors in the experiment. Even in

the mechanism of pop-out, top-down processing has been proposed[34], shown with studies

of event related potentials (ERP) on Monkeys, where the FEFs are which are involved in

top-down processing has activation �rst. They conclude that temporal cascade of selective

activity is similar for both e�cient and ine�cient search tasks. In a study[35] visual
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working memory content is varied, testing attentional selection, with results supporting

the view that top-down processes is involved in pop-out.

Detecting objects in cluttered scenes is a di�cult task. Work has integrated top-

down and bottom-up frameworks for saliency calculation[36, 37], where top-down saliency

is de�ned as the weighted sum of features that are salient for a particular object being

looked for. Another method uses statistics of natural images, feature target resemblance

and prior knowledge of where the target is likely to be[38].

Research in arti�cial intelligence has been directed towards the problem of detection of

objects in cluttered scenes[39]. It is a di�cult task that humans do well in a two stage model

where the entire visual �eld is processed in parallel in the early visual system and serially

as regions of interest selected by the attentional spotlight. It has been argued that this

is a strategy to overcome the limitation of purely feed forward processing in the presence

of clutter and crowding. A computer implementation[40] replicates phenomena such as

pop-out, multiplicative modulation and change in contrast response, emerging naturally

as a property of the network. Another psychological model takes cognitive factors into

account[41].

For visual search, a model has been implemented[42] that is much faster that previous

models (SWIFT[43], HMAX[44]) without loosing performance. It is used for top�down

guided search. The algorithm learns 42 separate Gaussian distributions corresponding to

each feature and is able to output the probability of an object being located at a particular

position. Following the maximization of gain train of thought Bayesian models have been

proposed as of how humans solve the visual search problem of deciding whether or not a

target is present in a scene or not[45].

2.2.3 Covert and overt attention

The attention mechanism can be divided into covert and overt attention. It is possible that

the eye is focused on one spot, whereas another point in the periphery is actually attended.

Overt attention is where the eye is currently focusing, whereas covert attention is where the

brain is focusing. The highest resolution is obtained in the overtly attended area. There

is also psychophysical evidence that visual attention can actively enhance the resolution.

In a study[46] performance was tested in covert attended and unattended condition with



CHAPTER 2. PREVIOUS WORK 27

stimuli designed to measure spatial acuity (e.g. a square with a small gap on one side).

There is also evidence that contrast[47] is enhanced where exogenously attended areas are

described as having more contrast when they in fact have the same as non-attended ones.

It has been claimed[48] that covert attention to peripheral cues can even decrease acuity

in unattended locations . Such di�erences between attended and unattended areas in the

visual �eld points to early economization of resources.

The pre-motor theory of attention states that covert or spatial attention is equivalent to

planning but not executing a saccade[49, 50, 51]. Evidence for this includes the coupling of

covert attention and saccade preparation observations that neurons in sensorimotor struc-

tures such as frontal eye �elds (FEF), that the trajectories of saccades can be in�uenced by

the allocation of attention, and that electrical stimulation of FEF and superior colliculus

can in�uence the allocation of attention. Further it has been found that neural activity

in the lateral intraperietal area has been associated with attention to a location in visual

space, and with the intention to make saccadic eye movements[52], a similarity also found

in other areas[53, 54]. It has been claimed[55] that information about upcoming movement

mediates this shift of attention.

Recent evidence suggest that covert and overt attention are more decoupled[56, 57].

As a result it is possible to covertly attend an area without executing a saccade. Neuro-

physiological studies with monkeys have shown that covert attention can be directed to

a particular salient area for an extended period without causing eye movement and even

inhibit saccades[58]. One explanation is that all considered �xation points are attended

in parallel prior to saccade execution[59]. It has been argued[60] that this can only hap-

pen during endogenous covert shifts of attention. In has been claimed[61] that no covert

attention is required for overt attention but only pre-attentive parallel processing.

Research indicates that that there is a common mechanism for covert and overt atten-

tion as far as the selection process goes[62]. It has also been claimed[62] that a functional

di�erence between covert and overt attention exists in that attentional modulation is sep-

arate from saccade programming.

The interaction of overt and covert attention is particularly important for models con-

cerned with visual search[12]. A model of this interaction is also necessary for the under-

standing of mechanisms like saccadic suppression, dynamic remapping of the saliency map
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and inhibition of return, covert pre-selection of targets for overt saccades, and the on-line

understanding of complex visual scenes. Evidence[63] supports that a parallel mechanism

is involved in visual search not necessarily involving relocation of attention.

How exactly covert attention operates is quite unknown. It has been shown that atten-

tion can be split between two targets[64]. Some �ndings indicate that the divided spotlight

is actually a rapid temporal switching[65]. Also that selective attention need not be me-

diated by spatial attention[66], since you can see a sensory element without mediation by

spatial attention. Except for the spacial extent of attentional processing, space�time maps

of both endogenous and exogenous visual attention has been outlined[67]. The theories

of covert attention are disparate and further research needs to be done to draw de�nite

conclusions.

2.2.4 Bottom-up and top-down processing

Two distinguishable processes are involved in attentional allocation, bottom-up (image-

based) and top-down (task-based) processes. The di�erence between these two kinds of

processes is the origin of action/activity or in this case eye-movement. In bottom-up pro-

cessing the origin is stimuli. For example simple features like contrast, corners and crosses

attract attention. In top-down processing the origin is high-level cognitive processes. A

clear cut example is when people are asked for example �Where is the red car?�, which leads

people to direct the attention to a red car if present. It has been demonstrated[68] that

bottom-up information is more important in unknown images whereas in speci�c kinds like

web sites top�down is more important.

Studies indicate a fundamentally di�erent visual and abstract information process-

ing [69]. For example dissociation between automatic and controlled processes have been

demonstrated[70] and enhanced methodology for this[71] has been developed. As further

evidence for distinct neural mechanism in endogenous and exogenous attention is the de-

pendence on shift time on distance between attentional points[72]. A computational model

based on experimental results[73] has been developed that proposes that stimulus�driven

allocation of attention exists early at appearance of attractor, but is later modulated by

top�down signals. Similarly in research on visual search it has been shown that, although

bottom�up processes initially control attention, top�down processes de�ned as accumulat-
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ing scene knowledge quickly take over and dominate search[74].

For bottom-up processing there is neurological evidence that some sort of saliency map

is calculated[75]. This saliency map encodes how important particular areas are and is

hypothesised to be the primary guide for the attention mechanism. Several computational

models have been implemented to simulate such a process[5, 12], where features like colour

contrast, intensity contrast and orientation are used to build the saliency map. These maps

have been validated with eye-tracking data[13, 5], which provide evidence that bottom-up

processes contribute signi�cantly to the selection of �xation points. Additional experiments

indicate that selecting interesting objects in a scene is largely constrained by low-level visual

features[76]. It has been claimed[77] that salience map models contributes signi�cantly, but

accounts only for a small amount of the variance in where people �xate, especially pointing

to that scan-path sequences are not predicted by a saliency map. Research on stimuli

manipulation con�rms that visual saliency is a poor predictor of real observer scan-paths[1],

and in fact objects are better candidates for �xation points[78]. Some research though

indicate that top�down search strategies cannot override re�exive attentional capture[79].

The pure bottom-up and top-down processes are pretty simplistic as described above.

Bottom-up processing requires only visual input for its functionality whereas top-down

processing needs a cognitive model of the surroundings (i.e. where to look for the red car),

and knowledge about the world (what is a red car?). An important question is how these

processes interact. Evidence points to that these compete for focal attention[80] and one

possibility to unite top-down and bottom-up is the Unitary Saliency Map Model where

both types of processes feed into the same saliency map[81]. It has been proposed that

integration of multiple sources, i.e. sensory, motor and cognitive variables, is done in the

lateral intraparietal area (LIP)[82].

It has been proposed[83] that there are three main sources of guidance information

available when watching a new image: low-level saliency, target template information and

scene context. The saliency being purely bottom-up, a target template matches features

and attention is directed according to match. Further, scene context indicates where to

look for particular targets. Supporting the template target information theory subliminally

primed targets attract attention[84] better than semantic priming. Furthermore, occluded

object parts attract attention[85]. With respect to representation of visual categories some
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evidence points towards an example based representation working as a template guiding

search[86]. Evidence has been found on that contextual conspicuity and physical presence

are governed by distinct neural mechanisms[87].

A study[88] indicate that purely top-down processes provides a much closer match

to human behaviour than a mixture model using bottom-up information. In the study

bottom-up saliency as well as a feature template match to a stored representation is used

to predict eye�movements in visual search. In another study[89] involving a hand pointing

task it has been found that initial saccades are directed towards saliency as de�ned by

low�level features however the subsequent towards the target. Although attention in the

everyday sense evokes conscious mediation of the stimuli, advanced aspects of attention

are dissociable from awareness[90].

It has been demonstrated that saccades are in�uenced by visual working memory and

these are thus controlled at least partly top�down[91]. Interesting studies have been done

on how spatial working memory operates to control planned sequences of eye-movements,

possibly clarifying aspects of automatic attention models[92, 93]. Another study has mod-

elled the way implicit knowledge a�ect eye-movements[94].

Not only cold cognitions (information based) operate attention, but also hot ones like

emotions. Attention move rapidly towards threat[95] consistent with theories of emo-

tion. Further, reward and attentional systems are interdependent[96, 97]. Here reward-

associated stimuli are preferentially processed over other valanced stimuli[98]. It has been

shown that reward information is readily integrated with saliency in the sense that it af-

fect target selection and exact landing position of a saccade, but this is a time-consuming

process[99].

It has, furthermore, been shown that eye movements such as saccades and vergence are

guided by the perceived stimulus and during �xation by the physical stimulus. Thus disso-

ciation between perception and eye-movement during �xation has been demonstrated[100].

2.2.5 Attention to objects

Some have argued that attention to objects is orthogonal to saliency driven attention since

the visual stimuli of objects, which is not salient, are still attracting attention[101]. Further,

there seems to be both bottom-up and top-down object processing since recent results
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suggest that object-based attentional capture guide both types of attentional orienting

[102]. Some make claims that saliency mainly acts through objects in as it is the objects

that attract attention[103].

To direct attention towards object they must be detected. Grouping is then an impor-

tant step[104]. The ground-breaking work, by the Gestalt perception work done (e.g. [105]),

postulate that there are a number of di�erent principles of perceptual organisation that

bind features in stimuli together, and continue to inspire researchers today. Some of the

principles are closure (�lling in missing parts), similarity, proximity, symmetry and com-

mon fate (two object share same motion endpoint). For example texton-based segregation

can be used to �nd object boundaries[106], which is based on feature similarity. Another

method is edge extraction and interpretation, which build on all of the principles except

common fate. Possibly objects are also recognised and thus attended to because of its

importance as object type or instance. A question is if object recognition is done in par-

allel, with all visible object attended at the same time, or serially, with one object being

attended at a time. Recent research rejects both serial processing, and unrestricted parallel

processing, as the best model of object recognition[107] and proposes a parallel model with

restricted capacity.

It has been shown that higher level properties such as animacy and goal-directed be-

haviour improve higher�level classi�cation of behaviour as opposed to random movements,

a spatio�temporal property assigned to the particular object being looked for[108]. Thus

not only spatial properties of objects are important in visual attention. Similarly object�

tracking predictability matters for multiple object tracking in as so far as that objects

moving in a predictive way are more easily tracked[109]. Finally, some evidence point to

that attentional object tracking is carried out independently by each brain hemisphere[110].

2.2.6 The �where� and �what� streams

There are proposedly two separate neurological information processing streams in the vi-

sual attention mechanism, the where and what streams. The existence of these have been

investigated in a behavioural study[111], where the internal object representation has been

separated into a �motor� and a �sensory� memory. Each of these chains re�ect an alter-

nating sequence of elementary motor and sensory signals which are expected to arrive in



CHAPTER 2. PREVIOUS WORK 32

response to each action. These are used in subconscious behavioural recognition when the

object is known. The matching of incoming sensory stimuli is compared with the expected

from executed motor commands.

Also, neurological experiments have found two major low-level bottom-up streams in

the visual system[112]. Information from the retino-geniculo-striate pathways enters the

visual cortex through primary visual cortex V1 in the occipital lope and proceeds into two

separated streams. The �rst one leads through extrastriate visual cortical areas V2, V4 to

IT (the inferior temporal cortex), and is mainly concerned with object recognition. The

second one leads through PP (posterior parietal complex) and is responsible for maintaining

a spatial map of an object's location and the spatial relationships between object parts as

well as the spatial allocation of attention. Neurological and behavioural �ndings represent

two separate lines of research that have produced convergent results on visual attention and

scene understanding. Thus this model has a sound scienti�c base and might be considered

for computer implementations of visual attention.

2.2.7 Fixations on faces

Faces are of importance to humans and thus extraordinary resources are utilised to �nd,

scan and remember faces[113]. When it comes to visual attention in the past it has been

found that the human visual system can detect animals in a complex natural scene very

fast (120�130ms before saccade), and new research has found that saccades towards faces

are even faster[114].

On still images people tend to �rst look at a centre-point of the face and then succes-

sively scan features like the eyes, the nose and the mouth. Further, a study[115] show that

involuntary attraction of visual attention to faces is stronger than other visual objects.

Many studies have been on frontal faces but people look at pro�le faces too[116]. Recent

�ndings[117] show that no preference for eyes exists for dynamic faces. Rather, attention is

adjusted to dynamics, i.e. speech induces attention to the mouth area, face looking directly

into camera induces attention to eyes, looking at another person to the other person and

�nally during face movement to the nose, which is attributed to optimal tracking of the

face as a moving object.
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2.2.8 Attention and scene understanding

To understand the more complicated aspects of the visual attention the processes of scene

understanding, learning, expectations, competition and consciousness must be considered.

Visual attention not only results in scene understanding but is an integrated part of it

as has been shown[118] that entire stimulus or objects can be selected as a whole by the

attention mechanism, including all its features. For example, the picture of a target is a

good cue in a search task[119]. Some more elaborate theories are here described that try to

describe the attentional system from a functional point of view, thereby linking bottom-up

and top-down processes.

One of the earliest models is MORSEL (Multiple Object Recognition and attentional

SELection[120, 121]). This model is applied to the recognition of words processed through

a recognition hierarchy. Without attentional selection, the representations of several words

in a scene would con�ict and confuse that recognition hierarchy, yielding multiple super-

imposed representations at top level. The addition of a top-down attentional selection

process allowed the model to disambiguate recognition by focusing on one word at a time.

Another theory[122], supported by recent experiments[123] states that the next �xation

point is chosen as to maximize the gain of information about the object currently inves-

tigated. This means discrimination is permitted between current candidate object classes

in a hierarchical internal tree of objects and object classes.

A model has been proposed[124] related to the where and what streams which relate

to di�erent neurological pathways in the brain. This theory states that particular scan

paths are learned during the lifespan of a human for each particular object or scene to be

recognized. In a particular scene a person chooses between scan paths that are particularly

useful for the understanding of that scene and objects in that scene. The result of following

a scan path in the �where� memory is compared to object appearance templates in the

�what� memory, and thus object recognition and scene understanding is possible. The two

di�erent approaches that has lead to converging results gives broad scienti�c support to

the theory of the �what� and �where� memory.

Another proposed model[112] combines bottom-up selection of object locations and

object recognition. Here object locations are found in a bottom-up manner at a coarse

scale. Candidate locations are scanned serially at progressively �ner scales until object
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recognition is completed. This model has been supported by psychophysical studies that

show attentional enhancement of spatial resolution as mentioned earlier.

Finally, a theory that emphasize top-down processes has been proposed[125, 126]. Ac-

cording to this theory what we see is only vaguely related to what is received at a retinal

level, which is supported by the fact that people experience a vivid perception of the full

view, whereas only the attended part is actually clear. This is called the �scan path� theory

and states that a cognitive model of the surroundings is the main basis of selection of focal

points. Here the attentional system is more of an adjusting mechanism to be able to cope

with the details of the environment that adjusts according to the task.

2.3 Eye movements

There are several di�erent types of eye�movements. These are[127] saccade: fast voluntary

jump-like movements, vestibular�ocular re�ex : stabilizes visual image on retina as head

moves, nystagmus: resetting of compensatory movements, optokinetic nystagmus: stabi-

lizes gaze during low�frequency rotations at a constant rate, smooth pursuit : voluntary

tracking of moving stimuli, vergence: coordinated movements of both eyes to account for

divergence and torsion: coordinated rotation of eyes around optical axis, dependent on

head tilt and eye elevation. In the following subsections fast eye movements (like sac-

cades), smooth-pursuit, inhibition of return as well as application areas of eye-movement

models are covered.

2.3.1 Fast eye movements

Shifts of attention are very rapid and are called saccades. These takes in the order of

100− 300ms to plan and execute[128], and are the fastest movements produced by the hu-

man body with speed up to almost 1000◦/s. Most of the time the eyes are directed to points

in the surrounding that are important for the current task a human is engaged in. Saccades

often land at the middle point of targets[129]. There are several types of saccades: re�exive

saccades, memory guided saccades, antisaccades and catch�up saccades[130]. Characteris-

tically saccades do not follow motion of objects. In target selection, at least for saccadic eye

movements the superiour colluculus in primates play a role[131]. It has been shown[132]
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that two saccades can be programmed simultaneously which can lead to a very short inter�

saccadic interval.

Recent �ndings indicate that several brain mechanisms can be involved to a varying

degree[133], as opposed to previously assumed either indirect versus direct control. Sac-

cades can be abrupted and continued to another location as a result of race[134]. Also, both

common and di�erentiated activation can be traced in comparing saccades and vergent eye

movements[135]. Further, some have found a di�erence between within object saccades and

between object saccades[136]. Here it is claimed that they operate in di�erent coordinate

systems (retino�centric and oculo�centric).

A distinction is made[55] between re�exive and volitional saccades. The theory is that

re�exive saccades are triggered by peripheral stimuli automatically and is often faster with

latencies in the order of 180ms. Volitional saccades are the e�ort of intention to locate

towards the target, typically measured by a target that does not trigger re�exive saccades.

Latencies for volitional saccades are in the order of 250ms. Evidence has been found that

re�exive and voluntary saccades are programmed in parallel[137]. However, apart from

targets, it has been shown that linguistic cues can induce involuntary programming of

eye movements[138]. This puts the proposed distinction between re�exive and voluntary

programming of saccades in question in that higher�level concepts are involved in the

involuntary programming. Contrary to the belief that the fastest saccades are re�exive

both verbal and visual information in working memory has been shown a�ect these[139].

So the subject area might need more detailed philosophical analysis.

A sequence of saccades is often taken as to have an intrinsic order, called scan�path.

Previous �xation point is an important predictor of subsequent saccade, including both

target selection and �xation duration[140]. Recorded scan-paths on arti�cial displays with

arranged targets have shown evidence for scanning strategies based on both directional

orientation (raster�like) and global external contour[141]. A simple search strategy where

the scene is scanned in a coarse-to-�ne manner has been proposed[142]. Here it was found

that mean saccade amplitude decreased and mean �xation length increased as a function

of the ordinal saccade and �xation number. Although over the years it has been assumed

that covert shifts of attention mediates serial scanning newer research points to that it

could be limited capacity parallel processing[143].
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Small fast movements are called microsaccades, which are not as investigated, but

refer to shorter �xational changes. Competing motor plans generate microsaccades and

saccades. Some[144] seem to argue that microsaccades are produced with great in�uence

from noise (activation spread to nearby areas). Others have noted that microsaccades not

only counteract perceptual �lling in, but also maintain �gure�ground separation[145]. Yet

others[146] claim that there is no evidence that microsaccades serve as a necessary role in

improving oculomotor control or in keeping the world visible.

2.3.2 Smooth pursuit

Smooth pursuit is primarily driven by visual motion[147]. A qualitative di�erence has been

shown between smooth pursuit and �xation as simply steady smooth pursuit. Changes in

visual feedback have little e�ect when subjects �xate a stationary target, but the same

changes produce large oscillations in eye velocity when the subject tracks a moving target.

It has also been found that object recognition performance is lower during smooth pursuit

than �xation[148].

Past research has empathised the automatic character of smooth pursuit. For example

the latencies for smooth pursuit is shorter (100-125ms) than for saccades (200-250ms).

However more recent �ndings show that pathways, such as the basal ganglia, the superior

colliculus, and the nuclei in the brain stem reticular formation, suggesting that smooth

pursuit has a similar functional architecture to that of the saccadic system, being controlled

more volitionary than previously believed. Humans also have the capability of predictive

smooth pursuit, i.e. following an occluded target. Predictive smooth pursuit is driven by

an internal representation of target motion that evolves with time[149]. However, it has

been pointed to that[150] pursuit initiation is driven by retinal image motion signals, not

yet processed for �gure completion.

The spatial location and extent of visual attention during smooth pursuit has been

tested by[151], who found that attention is biased just in front of the pursuit stimulus

(about 1◦ ahead) extending an angle of about 6◦, by measuring the response time to

peripheral targets. It moves away from the pursuit stimulus as target velocity increases.

Others claim[152] that there is no appreciable lead or lag, but showing that smooth pursuit

of a translating string does not improve attention with a lead or lag. The di�erent result
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could possibly be explained by that higher-level processes must be involved to recognise

characters, and in such case there would be an extra sensitivity to low-level events in

front of the followed objects, but not resources to recognise characters. Another study[153]

shows that visual short term memory is impaired for the position of peripheral objects in

comparison to when �xating an object.

Older neurophysiological evidence points to di�erence between neuronal pathways for

pursuit and saccades. However, more recent �ndings indicate that the neuronal pathways

are not independent in some structures in the brain[154]. Based on the �nding a new

model where pursuit and saccades are coordinated is presented where it is proposed that

covert attention is engaged to plan saccade to and pursuit of a new target.

2.3.3 Inhibition of return

Inhibitory mechanisms play an important role in cognitive processes. When confronted

with an environment that contains hundreds of objects our thoughts and actions are di-

rected to only a few of these. This volitional mechanism thus inhibits processing of irrele-

vant stimuli or objects.

Studies over the years have shown that there exists a low-level inhibitory mechanism,

inhibition of return (or IOR)[155]. This is a bottom-up mechanism that simply prevents the

human visual system to attend one point several times, and it is proposed that this provides

an e�cient low-level strategy to scan the environment. By inhibiting return to the same

point it is ensured that several interest points in the environments are attended instead

of only one. Here no volitional thought is necessary and the selection procedure is thus

extremely fast. This mechanism has been used in a object recognition framework[11] where

a visual attention algorithm is implemented as a way to highlight interesting objects or

object groups. In a review it was found, from an evaluation of results obtained in research

on visual search, that IOR lasts for at least 1000ms or about four previous inspected

items[156].

It is debated whether the IOR e�ect is predominantly a perceptual or a motor process

[155]. Some theorists argues that it is solely a perceptual process and that perceptual

processing is inhibited at the previously attended location. Others believe that it is solely

a motor process, and that motor responses toward the previously attended location are
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suppressed and thus delayed. Yet others claim that it is a mixed process[157]. The IOR

mechanism has often been studied in cued/target perceptual experiments, where the tar-

get is cued before presented. Measurements of the time it takes for a saccade to reach the

target depends on the cue. For example if a cue is placed in the target position, the IOR

e�ect ensures that a saccade toward the target is delayed (e.g. [155]). In that particular

experiment the authors managed to contrast the two explanations in a single behavioural

task. Their conclusions where that the IOR is predominantly a perceptual response. The

e�ect could possibly be simply due to the data being maintained in visual working memory

and thus not needing update[158]. This supports a view where motoric inhibition is not in-

volved in inhibition of return. Other recent �ndings[159] also indicate a sensory component

of inhibition of return, i.e sensory data is adjusted.

2.3.4 Automatic eye movements

Most models of automatic eye-movements utilise saliency maps, either with bottom-up

components only or with top-down in�uences on bottom-up saliency[75, 160]. Considering

the complicated mechanisms in cognition it is questionable if real task related top-down

processing is replicated since higher level cognitive processes are traceable in saccadic

patterns[161]. Considering the limited capacity of computers from a computational point

of view, the bottom-up saliency with high-level in�uences is a reasonable approximation.

However top-down information, including non-image based, needs to be integrated in the

process of selecting focal points. Early such models include adding object recognition as

input to an interest map[162].

An early active vision system[163] uses iconic scene descriptions to guide attention to

targets. An example of an overt visual attention mechanism based on saliency dynamics

has been presented[164]. Here a robot is to localize and position the number of relevant

coloured objects in the environment, and this is done by continuous scanning of the scene

incorporating objects as �xation point candidates, saliency, IOR and winner take it all as

�nal selection. Objects are tracked by having an object memory that is projected onto the

scene and matched with camera input. Pioneer �xation points are introduced periodically

as a systematic sweep. If an object is considered relevant it is inserted as a new �xation

point.
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An application has been presented[11], that uses more of the components of the saliency

model. In their work, a saliency model is used to detect and segment objects, for learning

and recognition of events in a cluttered background. The saliency map is used to �nd

regions of interest at di�erent spatial locations in the input image. Thereafter the object

boundaries are found by tracing back which feature contributed most to the saliency at

that particular point and segmenting by this feature. The idea is that if the salient point

is on a red book, then it is best to segment the book in the feature map for red. This

model uses unsupervised learning and is able to learn and recognize objects and groups of

objects (for example a pile of books).

Interacting with the internal world a social robot has been implemented where attention

is directed on bottom-up saliency calculations modulated by motivational factors[165].

Considering search as an essential feature of attention, a clear cut example of a robot

realisation of the search in 3D space for an object has been presented[166]. Finally, an

interesting model on oculomotor dynamics during smooth pursuit involving 1D and 2D

motion cues as input to a Bayesian model has been implemented[167].

2.3.5 Other applications of a model of eye movements

The goal is not only to model visual attention but also to �nd application areas of visual

attention not only considering it as a robot module. The application areas are plenty,

e.g. video compression, video shot classi�cation and object detection. Other areas of com-

puter vision like object recognition would bene�t to be studied from a visual attention

perspective.

One area of application is video compression. Since only 2◦ of our 140◦ view provides

a clear input image, only that area around where people are actually looking needs to be

transmitted with a high bitrate, whereas the rest only needs a fraction of the bandwidth.

A model[168] implements a predictive encoding of video based on where the observer has

been looking at in previous frames. The user is equipped with an eye-tracker and the

eye-tracker information is continuously sent to the encoder. The encoder then predicts the

eye-gaze at to be sent frames, and thus reduces bandwidth. In this system simple motion

prediction is used with a Gaussian visual window. The result is signi�cant perceptual gain

with limited bandwidth. The importance of localising faces in a saliency model for video
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compression is obvious in telecommunication applications.

Another predictive coding scheme has been presented[9]. Here an entire video sequence

is encoded by predicting visual attention with a saliency model. Two di�erent models are

tested. One where the original saliency map directly is used to determine where people

with a certain likelihood will look, and another where circular areas follow the most salient

area with a spring based dynamical model. The less salient areas are blurred according

to the predicted likelihood. The sequences are later compressed with MPEG-1 or MPEG-

4, resulting in less information encoded for the blurred or less salient areas. Signi�cant

compression ratios down to 11% are obtained, however with di�erent perceptual quality.

Such a scheme has been used[169] to control quality/bitrate across a single frame in real�

time computer animations. Another model has been implemented[170], where higher�level

content is used to determine the way the features are added up in a saliency map.

Top-down bias, i.e. modi�ed bottom-up components by top-down information, has

been implemented in an object detection framework[10], where contextual information is

used to modulate the saliency map. A statistical model is here manually trained enabling

prediction of the locations of people in di�erent images. The result is a probability density

function (pdf ) that determines the likelihood of a person in a particular location. Eye-

tracking data validates that the addition of context as a top-down process in attention,

here biasing the saliency map, produces better predictions of actual human saccades in

images.

Another system that uses top-down processes as modulation of the saliency maps has

been implemented[20]. Here bias coe�cients are learned for each object that the algorithm

tries to �nd. In this way the actual features that are presented are favoured in the calcu-

lation of the saliency map. This is successfully used in a robot navigation framework. A

saliency model with a winner-take-it-all choice mechanism is used to navigate the robot

toward the selected object. Experiments show that the robot attention modelling with the

top-down e�ects included it is very successful. A fast implementation of visual attention

based on feature saliency for humanoid robots has been presented[171].

A clear cut video classi�cation system that uses a saliency-based model has been

implemented[21]. Here a saliency calculation scheme is developed that works in the spatio-

temporal domain. Interesting or salient events are extracted and used to train simple
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SVM classi�ers[172] to discriminate between soccer, swimming, basket, boxing and snooker

videos. The model is able to discriminate between the di�erent sports with very high ac-

curacy. This indicates that saliency models has the potential to highlight characteristic

spatial or temporal events in a video sequence, facilitating information extraction or clas-

si�cation.

Attention modelling can be used in 3D rendering. With the goal to render virtual

environment, task related attentional factors have been studied with respect to interaction

of notice of degradation[173], with perceptual quality in the sense that regions of interest are

given more processing power. Further, top�down selective visual attention has also been

used to improve SLAM[174] and bottom up visual attention has been used to segment

active contours[175].

Visual attention can be used to extract semantics from media. For example image

retrieval by semantics using region saliency has been done[176]. Saliency has also been

used for video event detection and summarization[177]. Further, selective visual attention

has been used in pattern recognition[178], here speci�cally handwritten numerals. Fea-

ture based attention has been used for moving object segmentation[179]. Spatio-temporal

saliency has also been used in a background subtraction task showing good performance

on di�cult stimuli[180].

Regarding medical application, saccade trajectories deviations can reveal a lot about

psychological processes[181]. Thus it might be possible to use saliency models in psychi-

atry, to distinguish persons with Attention De�cit Hyperactivity Disorder (ADHD), Fetal

Alcohol Spectrum Disorder (FASD) and Parkinson's Disease (PD) from other persons by

comparing correlation between salience and gaze[182].

2.4 Saliency

Most relevant research in the area is concerned with the bottom-up processing of features,

which basically has been done by calculating saliency maps that encode the relative impor-

tance of di�erent areas of visual stimuli. Others have included top-down information in the

saliency map calculations, for example context[10]. However, it has been pointed out that

saliency a�ect attention even when saliency is task irrelevant[183]. There is neurological

evidence that guides the construction of such models, and most of this research has been fo-
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cused on the processing of still images. The impact of di�erent type of features varies[184],

for example there is evidence that intensity contrast is a very important feature, and espe-

cially junctions formed by such contrasts (i.e corners and crosses). Others have shown that

the relative weighting of these features varies in a context dependent matter on task and

training[118]. Additionally, there seems to be little evidence for considerable interaction

between di�erent modalities (e.g. [185]), including motion processing[186]. Finally, feature

contrast, as spatial di�erence of feature values, seems to be of most importance and not

the features themselves, i.e. interesting areas are where something happens in the spatial

plane.

Research have also been done of visual attention on video sequences[1, 187], but to a

lesser extent. The most important �nding here is that motion and temporal change are

stronger predictors of human saccades than features like colours, intensity or orientation

features, (i.e gradient along particular directions). It has been found that a majority of

the saccades are directed toward a minority of the salient locations. This further �ltering

of saliency is necessary, either by recalculating or fusing with additional information. An

example of such information could be new motion, i.e. objects that start to move, new

objects appearing and the combination, since they attract attention better than motion

and objects themselves. According to one study[188] new objects seem to attract attention

the most. In dynamic scenes the relevance of the bottom-up generated saliency map looses

validity[189]. Further, it has been shown that disparity information changes basic eye

movement properties and that subjects tend to �rst �xate closer locations and later more

distant[190], however this has not been extensively studied since most studies has been

on 2D image displays. Finally, biological motion attracts attention[191] more than other

motion.

Many model utilize saliency as the only input to attentional selection. Assuming that

other processes do not contribute to a global saliency map there is a severe limitation. It

has been shown that saliency driven attention only a�ects visual selection shortly from

the onset of a visual scene[192, 193]. Algorithmic approaches have been used to speed up

saliency calculations while preserving performance[194].
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Figure 2.1: The calculation of centre surround di�erences as sum of scale di�er-
ences in the model[11].

2.4.1 Computational models: Saliency maps

Several di�erent types of computational models have been constructed to calculate saliency

maps. In one of the most common types presented[5], features, e.g. colours, intensity and

orientation are extracted. Centre-surround di�erences[5, 195] are calculated, to account for

the fact that feature contrast is important and not the features themselves. These feature

contrast maps are then normalized and linearly combined to create a �nal saliency map.

One such model[11], is a straightforward implementation that can stand as a typical

example of saliency models. Here the input image I is sub sampled into a Gaussian

pyramid, and each pyramid level σp is decomposed into channels for red(R), green(G),

blue(B), yellow(Y ), intensity(I) and local orientation(Oθ). If r, g and b are the red, green

and blue colours of a image, normalized by the intensity(I), then R = r − (g + b)/2,

G = g− (r+ b)/2, B = b− (r+ g)/2 and Y = r+ g− 2(|r− g|+ b). Local orientations are

obtained by applying steerable �lters to the images in the intensity pyramid I. From here

centre-surround maps are generated as illustrated in Fig. 2.1 with the following formulas:

FI,c,s = N(|I(c)	 I(s)|), (2.1)

FRG,c,s = N(|R(c)−G(c))	 (R(s)−G(s))|), (2.2)

FBY,c,s = N(|B(c)− Y (c))	 (B(s)− Y (s))|), (2.3)

Fθ,c,s = N(|Oθ(c)	Oθ(s))|), (2.4)



CHAPTER 2. PREVIOUS WORK 44

where 	 denotes across-scale di�erence between two maps at the centre (c) and the sur-

round (s) levels of the respective feature pyramids. N(·) is an iterative non-linear normal-

isation operator. These feature maps are further summed

Fl = N(⊕4
c=2 ⊕c+4

s=c+3 Fl,c,s) ∀l ∈ LI ∪ LC ∪ Lθ (2.5)

with ⊕ denoting summation that is done across scale and

LI = {I}, LC = {RG,BY }, Lθ = {0◦, 45◦, 90◦, 135◦}. (2.6)

The di�erent colour and orientation channels are each summed and conspicuity maps

are formed as

CI = FI , CC = N(
∑
l∈LC

Fl), CO = N(
∑
l∈Lθ

Fl) (2.7)

Finally the saliency map is computed as a sum of the conspicuity maps

S =
1
3

∑
k∈{I,C,O}

Ck (2.8)

A common way to model visual attention here is to use the winner-take it all model

and make use of the Inhibition of Return (IOR) mechanism. This has for example been

implemented[196] by temporarily attenuating a circular area around the most salient lo-

cation. After that the next most salient location will be attended, and so on. In still

images this only creates an e�ect which will enable focus on a number of points. In video

sequences, however, this can produce a more advanced model where di�erent important

areas are attended as the sequence continues.

Several issues here are worth thorough investigation. The �rst one is to �nd out, which

low-level features contribute most to a saliency map. Colour, intensity, orientations are

used in several di�erent computational models. Second, it would be of interest to �nd

out which high-level cues are important. There is considerable evidence that the brain

has a more or less separate system to process faces, and that attention is focused at

faces to a considerable extent[197]. Therefore faces are bene�cial to include in saliency

calculation. Further, motion is also important. Would a change detector do, or is tracking
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of moving objects necessary? Moreover, relevant objects like people should be tracked,

since reasonably these are frequently attended. Finally, there is the issue of combination

of conspicuity maps. In all articles I have read a linear combination is used. The question

is �rst what the coe�cients in a linear combinational model should be? Second, is there

something better than a linear combinational model? Eye-tracking data should be used

to optimize the combinational model. It has been shown that using only �rst order terms

instead of including second order terms is signi�cantly better[198]. Attempts have already

been made to optimize the combination of features as well as receptive �eld sizes[199].

Finally, is the linear combination of features feasible as the only way to fuse di�erent sort

of information to determine allocation of attention. Given an intelligent human behind

the choices of �xation points, although most decision visual attention orienting probably

is unconscious, and not mediated by rational thought, but still high-level processes, it

would seem not. For example a combination of features do or do not portray an object

a judgement that is most likely not proportional to the content of feature contrast in the

neighbourhood.

2.4.2 Saliency with top�level in�uence

There are limitations to bottom-up saliency models of visual attention as for example

these predict �xational patterns poorly in relevant contexts like social scenes[200]. It has

been shown that when top down�target information is available bottom-up information is

discarded[201]. The addition of top-down information, i.e. prior knowledge, expectations

and contextual guidance, has been investigated[202]. Top�down search can be done based

on low�level features[203]. A number of di�erent ways to integrate top�down information

with bottom-up saliency has been tested.

An early model using non�linear relaxation was developed to integrate bottom�up and

top�down cues[204]. In another model inhibitory top�down processes in�uence the bottom�

up saliency[205]. Further, an attentional system where top�down task and context biases

bottom-up saliency has been developed[206]. A modern model incorporates feature�based

attention as an active top�down inference process where top-down activated features are

enhanced[207]. Another model (SUN, Saliency Using Natural statistics) calculates top-

down saliency based on natural statistics[208]. Here an object based representation is
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looked for to generate the top-down term in the saliency calculations.

Another way to solve the problem with integration is to incorporate switching be-

tween top�down and bottom�up processes[209]. This is here a solution to the problem

of top-down biased bottom-up saliency not providing enough discrimination to localize a

target. Attempts to involve a visual working memory module in visual attention have

been made[210]. A stochastic model based on saliency[1] uses previous eye-movements as

further input. Studies have shown that scene context guide attention in that detection of

scene-constrained targets are done faster and with fewer eye movements[211]. More ini-

tial saccades are directed towards target-consistent scene regions and more time is spent

scanning those areas.

2.4.3 Validation of saliency models with eye-tracking data

Saliency models with high and low�level features have been validated with eye-tracking

data, with slightly di�erent techniques. In most studies some sort of experimental vali-

dation is applied[1, 12, 17, 13]. Quantitative measurements are needed not only to test

a certain technique, but also to adjust the model and its mathematical parameters. One

could use standard measurements like mean distance between predicted saccade locations

and real saccade locations[10], but this is not appropriately testing the full value of a

saliency map.

Another approach is to use a correlational approach[13]. Here the stimuli are still

images and a Gaussian smoothed mean human attention map (see Fig. 2.2 for a saliency

map and Fig. 2.3 for a Gaussian smoothed mean map) is calculated from saccade locations.

A correlation score is calculated between the human attention map and the �nal saliency

map. This technique has the advantage of being intuitive since one can easily compare

the output of the human map and the saliency map, and a correlational score is easily

interpreted. The correlational score works �ne for still images since on every frame each

individual is directing their attention to several points. By taking the mean of several

people a human attention map is obtained which is similar in character to the saliency

map itself.

In another method[1] �xations to random �xations are compared. Here calibrated

eye movement data is segmented into saccades, eye-blinks, and �xation/smooth pursuit
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(a) (b)

Figure 2.2: Example of saliency map (b) calculated from a video frame (a).

(a) (b)

Figure 2.3: Example of a Gaussian smoothed mean human attention map (b)
calculated from eye-traces on a video frame (a).
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periods. The following samples were taken into account for each video frame:

• Sh: Saliency at human eye position, computed as the maximum over a circular

aperture of diameter 5.6◦ (9 pixels in the saliency map) of the model's dynamical

saliency map sampled at the moment a saccade starts and around the location of the

future endpoint of that saccade.

• Sr: Saliency at a random location, computed in exactly the same manner as Sh except

that a random endpoint within the image (with uniform probability) is considered

rather than a given human saccade endpoint.

• Smax: Maximum saliency over the entire frame, computed as the maximum over the

spatial extent of the entire dynamical saliency map, at the same instant as the other

measurements were taken.

The validity of the saliency model can then be tested with a one-way ANOVA (ANalysis

Of Variance) as the di�erence between S(h)/Smax and Sr/Smax. In the same study the

correlation between saliency and saccade duration was also calculated. Interesting to note,

no such correlation was found in the study.

An issue with most research concerned with eye�trajectories is that gaze patterns from

free viewing of natural dynamic scenes di�ers from those obtained with still images or

professionally cut material[212], and results can not be generalised to allocation of attention

real life.

2.5 Low�level features

Common features used for generation of saliency maps are depth, colour contrast, audio

and entropy. A summary of features used in di�erent papers is presented in table. 2.2.

Classical features are colour contrast and orientation.
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Features Explanation Papers

Intensity (r + g + b)/3 [213],[214]
Intensity contrast centre-surround �ltered I = (r + g + b)/3 [9],[1],[214],[215],[216]

Colour contrast centre-surround �ltered R = r̂− (ĝ+ b̂)/2, G = ĝ− (r̂+

b̂)/2, B = b̂ − (r̂ + ĝ)/2, Y = (r̂ + ĝ)/2 − |r̂ − ĝ|/2 − b̂
where r̂, ĝ, b̂ are rgb normalised with I

[17] ,[9],[5],[216]

Chromatic features Hue R - G and B - Y (Y = R + G / 2) [213]
Orientation (Gabor) Cosine gratings in 2D-Gaussian envelope [10],[9],[213], [214],[1],[215]
Skin tone Model from[217] [170]
Motion Change detection as deviation from model moving/non-

moving region Gaussian modelling
[170]

Oriented motion energies Shifted Gabors by one pixel [9],[1]

Optical �ow V from ∇I(x, y, t)V (x, y, t) +
∂I(x,y,t)

∂t
= 0 [215]

Temporal �icker Absolute di�erence In - In-1 [9],[1]
Entropy H(x) = −

Pn
i=1 p(xi)logbp(xi) [21]

Inertia
P

i=0
P

j=0 |i− j|
2P (i, j) [21]

Energy
P

i=0
P

j=0 P (i, j) [21]

Homogeneity
P

i=0
P

j=0
P (i,j)

1−|i−j| [21]

Self information − log (p(X)) [218]
Spectral residual R(f) = L(f)− A(f) [219]
Self resemblance likeliness of pixel to its surroundings [220]

Bayesian surprise
R
M P (M|D)log

P (M|D)
P (M) dM [221]

Texture directional high pass �lters [170]
Object context [10]
Depth Disparity contrast,Depth, 3D-Curvature [17],[213]
Audio [19]

Table 2.2: A table of features used in di�erent papers that models visual attention.
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2.5.1 Colour and intensity features

Colour and intensity are biologically supported features, for example the pop-out e�ect

have been reported for colour and intensity[222]. These features have been suggested to

model visual attention[75]. The features are readily available in the image as RGB channels

or simple derivatives and can be rapidly processed[222]. They have also been extensively

tested[1]. What is interesting is feature contrast and is here measured with centre-surround

�elds, thus producing of pop-out e�ect.

Further work has included utilizing chromaticity and intensity[216] in a coherent psycho-

visual space which improves performance in comparison to previous results[5]. A spectral

residual method has been developed[219] which is a fast way of computing saliency. Also,

attempts have been made to add skin (and motion) detection to a saliency map[223].

2.5.2 Orientation feature

One of the most commonly used biologically motivated processing unit in computer models

of visual processing is the Gabor �lters. The Gabor �lter is composed of the product of a

cosine grating and a 2D Gaussian envelope[222], and is applied as a �lter at a number of

di�erent orientations, say 12, to sample orientation as intensity contrast along a number

or directions. These are plausible as �lters since they are localised orientation responses of

variable scale, responses that have been found in neurons in physiological measurements

(e.g. [224]). The detection of a contour for example can be construed as the detection of

connected orientation elements. Pop-out has been demonstrated for orientation[222]

Not only real contours attract attention but also illusory contours. A typical example

of illusory contours is the missing parts of the Kanizsa triangle[105] as presented in Fig. 2.4.

Here people tend to actually see a triangle in front of a couple of discs, and these illusory

contours might even attract attention. Thus a model of short-range suppressive cross-

orientation and cooperative long range interaction e�ect given orientation measures[225]

and cognitive completion[8] could be studied in a saliency model.

2.5.3 Motion and dynamic features

Motion and dynamic events have received little attention since the bulk of studies are

focused on still images. However, motion and dynamic events seem to attract attention
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Figure 2.4: A version of the Kanizsa triangle.

more than static features, thus it is utmost important to extract and use such information

in a model of visual attention[1]. Temporal �icker (i.e. onset and o�set of light) and

orientational motion energies[226] are fast to extract and simple features to use in a model

of visual attention.

Although, some research by Abrams et. al. [227, 228] indicated that the onset of motion

attract attention not the motion itself, a study[229] show that onset of motion is not

necessary for motion to capture attention. Abrams et. al. replied[230] that the onset of

motion does capture attention but in addition motion itself possibly attract attention.

Further, some[231] have found that change detection is guided by bottom-up saliency as

such, thus making it a secondary feature. This is demonstrated with experiments that

show that low-level saliency, as de�ned by the Itti et. al. model[5](hereafter only called the

Itti et. al. model), predict performance in a change detection task.

Temporal saliency has been calculated by hierarchical block matching motion estima-

tion [232] and a method[220] using a self-resemblance measure has been proposed, which

is a united model for static and space-time saliency detection, based on calculating the

posterior probability given model and feature including values in a surrounding region.

2.5.4 Statistically based features

Common statistical measures have been used. The features of entropy, inertia and energy

are supported by statistical analysis of the input signal (visual stimuli), but lack both

empirical as well as biological support. Another model uses a precise mathematical formu-

lation based on maximisation of information gain[218], where Shannon's self-information

is calculated as −log(p(f)) where f is a local feature vector derived from independent com-
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ponent analysis (ICA) performed on a large sample of small RGB patches in the image,

improving performance in comparison to the Itti et. al. Discriminant saliency has been

calculated[233], where discriminant information is salient. These are de�ned as the points

that best separate the class of interest from all others. By computing the salient feature of

each texture class on a training database, enabling calculation of saliency on test images.

Unfortunately, comparison to the Itti et. al. model is lacking, but results show improve-

ment with respect to using the Harris saliency detector (corner detector) and Scale saliency

detector (entropy measures, see [234]).

A massively parallel method has been presented[214], where a graph based calculation

method improves results in comparison to what was produced by Itti et. al. [5]. Further,

a space-time saliency model has been implemented[215], thus introducing dynamic events.

Utilizing surprise to detect events has been successfully applied[235] and has been used[236]

to calculate saliency.

With regards to the theory of information gain some research has shown that this is

not driving attentional selection but rather the features currently being processed[237].

Further, it has been shown that statistical regularities guide the deployment of visual

attention without semantic scene recognition[238].

Object based saliency calculation has also been obtained from grouping[239]. Here it

is claimed that the Gestalt grouping principles form the necessary bridge between space

based and object based attention.

2.6 Object detection

2.6.1 Classi�er based detection

Object detection and speci�cally detection of faces, humans and moving objects is a di�cult

task where the detector must be reliable during change in illumination, pose and occlusion.

Detection must often also be done across scale and is thus potentially a time consuming

process. Heuristics must thus ensure speed-up in processing. Detection of human and faces

is done on a still image basis and detection of moving objects on videos. These are thus

two quite di�erent problems.

Faces have been the most important feature to extract in the experimental work behind
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this thesis, and these algorithms extract either local or holistic features, to distinguish faces

from the background[240]. Di�erent representations have been used in face detection, for

example pixel�based[241, 242]. Only frontal faces have been detected[241] with a neural

network and one of the problems is to select non-face training examples. This is solved

by using the classi�er during training to select non-face training examples, with typically

around 8000 non-face ones used in a �nal training run. Their method detects 90.5% of the

test set faces. Here a window is moved over the image in progressively down�scaled image

and the area is classi�ed as a face or not. To speed up classi�cation a larger more general

network is used of size 30× 30 at intervals of 10 pixel. This network detects smaller faces

than the window, and the detection is veri�ed and more exactly localised with a 20 × 20

network in each position. The networks rely most heavily on the eyes, then the nose and

then the mouth, and outperform both clustering and support vector machine methods..

Instead of full face feature representations, in a study[243], parts are represented as

transformations of wavelet coe�cients, with properties in space, frequency and orientation.

Classi�cation is done in stages where each stage can classify an area as not containing a

face, and detect frontal as well as pro�le faces. Each part is detected as well as the

con�guration of the parts to classify a patch as a positive sample. A true positive rate of

60 − 85% is obtained, which can de�nitely be improved with other methods, but there is

a speed-up as compared to the neural-network approach.

Local edge features[244] have also been studied. Arrangements of oriented edge frag-

ments are found from training examples. The information considered are comparisons of

intensity di�erences and thus we have invariance to linear transformations on the grayscale

and no histogram equalization needs to be done, being a speed�up in comparison to other

methods. Discriminating arrangements of elementary edge test are done, by testing for

speci�c edge arrangements, in a cascade to �nd faces in the image. A problem is that the

smaller the scale the smaller is the probability of �nding an arrangement of oriented edge

fragments.

Finally, features with rectangular elements have been studied in an Adaboost trained

detector[245] which detects faces in real-time and performs well even under partial occlu-

sion. It is fast since the rectangular elements can be computed on the integral image. The

cascaded weak classi�ers are each representing a particular feature combination. In the
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used implementation, opencv 1, the �rst one represents the eye and nose regions. Availabil-

ity, speed and accuracy have been the reasons to choose this method in this thesis work for

the detection of faces and pedestrians. It was at the point of selection of this algorithm not

tested how well it performs in pedestrian detection and has been the work of a college[16]

to test this in association with the work presented in this thesis.

2.6.2 Motion based detection

In video surveillance, foreground objects and their behaviours are the main objects of

interest. Several techniques have been used to detect and analyse them. These techniques

range from pixel-level change detection to higher level semantic object detection. The

former are usually unsupervised methods whereas later ones requires some supervision.

Motion based object detection aims to identify the pixels that belong to a moving object

between two frames. The �rst problem is to �nd pixels in one frame that are signi�cantly

di�erent from the previous ones[246]. Change can come from appearance or disappearance

of objects, motion of objects relative to background, shape changes of objects as well as

changes in brightness or colour, and the second problem is to �lter out unimportance

change with respect to important change.

Techniques are background subtraction, temporal di�erencing and optical �ow[247].

There are several problems that arise during pixel segmentation: bootstrapping (need to

initialize), foreground aperture (inner part not segmented), ghosts (where background is

suddenly visible doe to object leaving area), stopped objects, illumination changes (and

shadows), camou�age (pixel features in background and foreground to similar), clutter in

motion (movements of background pixels) and camera motion.

Background subtraction in its most simple form consists of taking a background refer-

ence frame and subtract the background from each frame. An improvement is to update

the background each frame by a fraction. More recent approaches involve statistically

modelling each pixel or groups of pixels, where outliers are classi�ed as foreground pixels.

Temporal di�erencing is done by instead calculating the di�erence between the current

frame and the previous frame. The advantages of using temporal di�erence is that it is

indi�erent to illumination changes, requires no bootstrapping and handles stopped objects

1Open Computer Visual Library url: http://sourceforge.net/projects/opencvlibrary/
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well. A problem is that it generates ghost objects, since uncovered background becoming

visible will be detected as moving pixels. Hybrid algorithms (e.g. [248]) that take advantage

of both background subtraction and frame di�erencing have been developed.

Optical �ow is an algorithm where feature points between frames are matched, calculat-

ing a �ow of motion for each pixel. In such a way it works well even under camera motion.

Moving objects can be segmented by looking at blobs having coherent motion, but su�ers

from limitations due to noise and background motion. Optical �ow is computationally

demanding and fails if constant brightness of objects and velocity smoothness conditions

are violated[249], but can provide information that gives more detail on the movement of

the target, for example distinguishing between rotation and translation.

The choice in this thesis work is background subtraction, which provides a fast algo-

rithm that avoids the problem of ghosts. A reference frame is always available. Limitations

of using simple reference frame di�erencing can be circumvented with statistical modelling.

The output is viable both as simple evidence of a pixel being part of the foreground and

as detections using blob grouping. As will be demonstrated shadows can also be removed

with post-processing.

2.7 Object tracking

Tracking estimates the state of an object through frames in a video sequence. The problem

consists in localizing and describing the same objects in successive frames. The state

space can consist of a di�erent number of parameters, for example position, width, height,

contour, and pose. A summary of papers presenting tracking applications where detector

input is utilised is presented in table 2.3.

Surveillance is the tracking of object for the purpose of detection, monitoring and

identi�cation. In surveillance the tracking of objects can be used to �nd and track faces

and moving objects in outdoor or indoor scenes. In indoor o�ce scenarios an object

tracker in combination with a face recognition module can be used for identi�cation and

monitoring of people. Further, the tracking of the face of a lecturer can be used for

automatic redirection of cameras. In multimedia database retrieval systems the knowledge

of whereabouts of faces and moving objects can be used to build an indexing system for

e�cient retrieval of multimedia[250, 251, 252].
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Several di�culties must be addressed in tracking. One of the major problems is auto-

matic initialization, usually through a detection process. Present detectors fails to reliably

detect objects of interest in every frame, and produce many false detections, which ne-

cessitates additional modules to avoid initializing false tracks. Another problem is partial

or full occlusion. Partial occlusion is di�cult since tracking should continue although the

entire object is not fully visible. This is a problem of matching between model and data,

since only partial data is available. Full occlusion or even disappearance of the target from

the screen is di�erent. Here tracking of the target should be terminated, and the same

track should continue in case of reappearance of the target. In the visual attention system

rescue saccades have been postulated for recovering occlusion[253].

2.7.1 Particle �ltering

Tracking using particle �ltering has been used extensively in the literature, for example

in person tracking[254], tracking of active contours[255] and multiple object tracking[256].

It is a recursive estimator belonging to the probabilistic Bayesian family of estimators.

Albeit slower than Kalman �ltering[257] it can represent non-Gaussian and multi-modal

distributions. Particle �ltering estimates states from previous observations and uses an

object model to calculate a posterior probability. Often a colour histogram model is used

to model the object. A limitation of using a colour histogram object model is, that even if

it is updated per frame basis, it cannot follow abrupt changes in illumination, or changes

in which part of the object that is visible.

Particle �ltering is a sequential Monte Carlo method and works with a discretization

of the state space. Particles represent a pdf in a certain interesting amount of the state

space. This pdf is successively updated for each frame with a motion model and an object

model. The position in the current frame can be estimated from the previous position and

velocity by spreading particles to an area around the estimation and then comparing an

object model to what is found in image areas, as de�ned by each particle.

Let us represent the target state as xt = [x, y, w, h], where t is the time, (x, y) is the

centre of an ellipse approximating the shape of a target, and (w, h) the width and height
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of the ellipse. The posterior pdf of object location in state space is

p(x0:t|z1:t) ≈
Ns∑
n=1

wnt δ(x0:t − xn0:t);
Ns∑
n=1

wnt = 1, (2.9)

which is a sum of dirac-functions centred around particles x0:k with weights wnt , and the

number of particles is Ns.

Particles are spread according a zero order motion model around the previous particle

position in state space. In particle �ltering the update of the pdf consists of recalculating

the weights with

wnt ∝ wnt−1

p(zt|xnt )p(xnt |xnt−1)
q(xnt |xnt−1, zt)

, (2.10)

where zt is the measurement and xnt the state of the nth particle in frame t. Thus p(zt|xnt ) is

the probability of the measurement or likelihood, given state xnt , p(x
n
t |xn−1

t ) the state tran-

sition probability and q(xnt |xnt−1, zt) the proposal distribution (see [258]). The current sys-

tem uses a sampling importance re-sampling �lter[258], which means that wnt−1 = 1/N∀n

and Eq. 2.10 simpli�es to

wnt ∝
p(zt|xnt )p(xnt |xnt−1)
q(xnt |xnt−1, zt)

. (2.11)

The presented tracker uses a colour histogram as object model[259, 260]. Note that there

are two types of object models: one from the classi�cation and one for tracking. Tracking

object modelM is initialized with detection and updated online (see next section).

The likelihood is calculated as

p(zt|xnt ) ∝ 1√
2πσl

e

dJ (zt,x
n
t )2

2σ2
l , (2.12)

with normalisation obtained later since we require
∑Ns

n=1w
n
t = 1. dJ(zt,xnt ) is the colour

distance between the histogram associated to a particle and the colour model as measured

by Je�rey divergence[261],

dJ(φM, φp) =
∑
r,g,b

(ϕMr,g,blog(
ϕMr,g,b
ϕµr,g,b

) + ϕpr,g,blog(
ϕpr,g,b
ϕµr,g,b

)), (2.13)

where φM = [ϕM1,1,1, ..., ϕ
M
R,G,B] and φp = [ϕp1,1,1, ..., ϕ

p
R,G,B] are the two histograms and

φµr,g,b is the mean of the histogram elements. The histogram has 10 × 10 × 10 uniformly
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quantized bins in the RGB space.

2.7.2 Integration of object detection with particle �ltering

The incorporation of recent high-level observations with particle �ltering improves perfor-

mance [262]. It has for example been used in a hockey player tracking system[259]. Here

the observation is the output of an Adaboost detector. The integration is done by adding

a term into the distribution which consists of a Gaussian distribution around the detection

in state space.

Instead of using the transition prior only, the proposal distribution will include current

detections. First, some particles are spread according to the zero-order motion model,

whereas the rest are spread around the classi�cation results. This is incorporated in

Eq. 2.10[259] with:

q(xnt |xnt−1, zt) = αcqd(xt|xt−1, zt) + (1− αc)p(xt,xt−1), (2.14)

where αc is the fraction of particles spread around the detection in state space, c is f

for face or p for people, qd(xt|xt−1, zt) a Gaussian around the detection and p(xt|xt−1)

a Gaussian according to the zero-order motion model. Without an associated detection

however αc = 0 and Eq. 2.14 reduces to

q(xnt |xnt−1, zt) = p(xt|xt−1), (2.15)

and Eq. 2.11 reduces to

wnt ∝ p(zt|xnt ). (2.16)

A limitation of this method is that manual initialization is necessary, a problem dealt

with in this thesis.

2.7.3 Variation to detector integration

An alternative method is to use a contour extraction algorithm instead of a detector[260].

Then you can include the contour as a part of a combined object model. This facilitates a

much more robust estimation of state space than the colour model itself.
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The contour is incorporated in the likelihood so that Eq. 2.12 becomes

p(zt|xnt ) = αspg + (1− αs)pc, (2.17)

where pc is the likelihood that the candidate location colour belongs to the object This

according to the Bhattacharyya coe�cient on histogram distributions fed into a Gaussian

instead of the Je�rey divergence measure (see [260] for details). pg is the likelihood that

the contour belongs to the object. For this the maximum gradient

gr(xi, yi) = max
(yR,yR)∈LR

gr(xn, yn) (2.18)

is calculated by traversing in the local search along the normal direction for each contour

point. The gradient is calculated with

grx(xn, yn) = I(xn − 2, yn) + 2I(xn − 1, yn)− 2I(xn + 1, yn)− I(xn + 2, yn), (2.19)

gry(xn, yn) = I(xn, yn − 2) + 2I(xn, yn − 1)− 2I(xn, yn + 1)− I(xn, yn + 2) (2.20)

and

gr(xn, yn) =
√
grx(xn, yn)2 + gry(xn, yn)2. (2.21)

A normalised average

Ψgr(s) =
1
Ns

Ns∑
i=1

gr(xi, gryi), (2.22)

given state s and number of contour pixels of the state ellipse Ns, is calculated and fed

into a Gaussian with

pg =
1√

2πσΨ

e
− (1/Ψ)2

2σ2
Ψ . (2.23)

2.7.4 Other methods

Other modern tracking applications also rely on combined face detection and prediction

from the previous frame. A stochastical model has been implemented[263] to track faces,

where faces are detected in a coarse-to-�ne network producing a hierarchical trace of face

detections. This is used in a trained probabilistic framework to determine face positions.

For each frame not only the detections are considered, but also face states close to the
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previous frame.

Here the probability of a trace is calculated as

P (X∗ = x∗) =
∏
η∈T ∗

Pη(xη) (2.24)

where T is the trace and the conditional probability given an observation θ

P (X∗|θ) ∝ P (X∗(i(θ))|θ)
P (X∗(i(θ))|B)

, (2.25)

where P (X∗(i(θ))|B) is the marginal probability given background modelB. Pη are learned

and the state is estimated by the MAP estimator given current measurement and previous

observations where

θ̂t = argmax
θt∈Θ

P (X∗t |θt)P (θt|θt−1). (2.26)

This is very similar to particle �ltering integrated with a detector in the sense that

current detection data is integrated into the tracking process, and in fact Eq. 2.25 could

be used as the likelihood in a particle �ltering framework. Instead a Markov model is

used depending only on the previous frame, which does carry less information forward.

The advantage of this method is the speed-up in computation from using a coarse to

�ne hierarchy of detectors, only requiring �ne calculations on ambiguous areas. Some

other methodologies (see Table 2.3) involve Kalman �lter, neural networks and PDAF

(Probabilistic Data Association Filter).
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Ref Target Detector Tracker Where info from detector is inte-
grated

[260] Face Contour extrac-
tion

Particle �lter Contour incorporated into the ob-
ject model in a particle �lter.

[263] Face Coarse to �ne Markov model Positions close to the previous posi-
tion are considered as well as detec-
tion positions.

[264] Face Neural Network Motion segmenta-
tion

Positions close to estimation by mo-
tion segmentation are considered by
the neural network.

[265] Moving objects Change detector Entropy model The detector output is used directly
and only matched with the entropy
model to create tracks.

[257] Moving objects Histogram match-
ing and pixel-wise
likelihood

Kalman �lter The Kalman �lter object model is
updated each frame.

[259] Hockey player Adaboost Particle �lter Particles assigned to the detection
area.

[266] Dim targets Bayes detector Maximum a pos-
teriori (MAP)

The detector and MAP probabilities
are combined.

[267] any target Bayes Detection Probabilistic data
association �lter

Detection data inputted to PDAF.

Table 2.3: Summary of papers presenting trackers where a detector is integrated in the tracking process.
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2.8 Summary

To model visual attention is a challenging task, since so many processes are involved,

and the few ones known are not well characterized. Current research explores models

that imitate aspects of human visual attention. Considerable research has been done on

bottom-up visual attention modelling, but one of the most important questions to answer

is how top-down processing comes into the equation, e.g. task and context. Questions

remaining to be answered are what are the processes to decode the visual information

stream, what are the representations and what are the driving forces and ultimately goals

of visual attention.

How visual input is decoded into in the end cognitive descriptions of the outer world is

intriguing. The intermediate representation used to interpret the world, e.g. 21
2 sketch of

Marr's theory of perception[268] has not yet been described. It is the mid-level processes

and representation connecting low-level and high-level mechanisms that are most unknown.

Obviously, features like colour, intensity and orientation are elements that are processed.

However, the elements are most likely grouped[105] to form objects of higher abstraction

order, such as thoughts, that can be conveyed in spoken language and manipulated in a

conventional logical or rational manner and in turn later be fed back to fuse as information

guiding visual attention. Top-down processes provide task, context and object templates

to be matched with the incoming data, bottom-up at least features and similar low-level

information. Yet, how much bottom-up processing is done before fusion with top-down

information is an open question.

Visual attention from low-level features alone is without the higher-level cognitions

like goals and without psychic energies, or spirit, that set the organism into motion. For

example, hunger might lead to �xations on food, and might form the goal of obtaining a

meal. In the context of a kitchen the person is most likely �xating on utensils, to grab

them, and prepare the dinner. In this hypothetical scenario the subject is an acting agent

and visual attention is a part of interacting with the outer world. Low�level saliency could

simply be sort of a guide to these activities, but cannot account reasonably for the entire

allocation of visual attention. Thus higher level concepts are most likely necessary to

incorporate as factors in�uencing attention.

Adding high-level features to a saliency map will provide us with relevant experimental
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data. Attention to objects is �rst related to the general interpretative mechanism of the

brain. Seeing objects is an ongoing process in a seemingly task-less environment. In other

scenarios like surveillance and talking to others it is an inherent part of the task.

Low-level spatial features like colour contrast, intensity contrast, orientation as well as

the dynamic feature �ickering have a well established biological base. For example colour

features invoke excitation in speci�c areas in the brain and contribute to a pop-up e�ect,

especially interesting from the perspective of visual attention. Given the low-level features

of Itti's validated model[1] to calculate low-level saliency, it is easy to expand with high-level

features as a matter of further investigating the multifaceted aspects of visual attention.

Valuable insight can be made in how saliency (if a biological fact) is fused with higher-

level information, via some sort of global saliency map that includes top-down information

or via di�erent direction modules that distribute motor commands. For this it might be

necessary to study the intricate structure of visual attention in terms of di�erent processes

that might give rise to di�erent patterns in eye-traces, perhaps temporally de�ned[269].

Trivially, e.g. �xations and saccades can be extracted from eye-tracking data with the

help of automated classi�cation[270]. In the combined method IOR should be possible to

measure. The integration of low�level and high�level information can also be studied by

attempting to generate eye-traces automatically given di�erent models.

In the area of tracking, particle �ltering is a reliable established technique that not only

can be used in itself but also can be improved with additional information like detections of

varying types and structural entities like contour. If the start of the track can be established

with detections and the tracking with the integrated system, it should be possible to build a

good tracker. The Adaboost-trained detector based on features with rectangular elements

is a widely used detector that is especially tested for faces. The cascade of classi�ers

and the use of intensity image speeds up calculations, �rst since features with rectangular

elements are simply calculated from the input image, and second since most areas are

rejected early, concentrating computation on ambiguous areas similarly to the coarse to

�ne method[263]. Change detection is a good choice for a classi�er that detects for example

vehicles and other moving objects in surveillance scenarios, that will be the visual input

to the developed algorithms in later chapters.

To sum up the limitations of current described models are that high-level features
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are not tracked, and are based on the saliency, winner-take-it-all and inhibition-of-return

paradigm, which do generate a scan-path. In this theses these limitations are addressed,

�rst by adding the output of tracking modules into a saliency model of attention. Second

a new model is developed, that breaks with the saliency, winner-take-it-all and inhibition-

of-return paradigm, and is based on attention to objects and statistics of real eye-traces,

and qualitative descriptions of traces point to some of the mechanisms needed in a visual

attention model. Finally, some visual attention concepts are analysed, which leads to

theoretical clari�cations as well as suggestions for future experimental work.



Chapter 3

Object detection and tracking

3.1 Introduction

In this chapter a multi-object tracking system is presented that uses an object detection

algorithm and integrates its output into an object tracking module based on particle �lter-

ing. The original idea behind this is to use the detector to detect objects of interest (faces,

people or moving objects), in frames where the detector works, and to use the particle

�lter to track the objects in between detections. In this work this idea has been extended

to enable more elaborate interaction between modules. Initialization and termination is

done automatically. The particle �lter[15] and pedestrian and moving object detection

modules[16] have been developed within the MMV lab and the extension to the tracking

framework used in this work has been published[14].

Tracking of objects in videos o�ers many challenges. Objects change shape and ap-

pearance and a good tracker needs to be able to manage initialisation (object appearance),

termination (object disappearance) and reinitialisation (object reappearance), after tem-

porary occlusion events. There is a limitation to the shape and appearance changes particle

�ltering using a colour histogram model can do alone and the integration with detections

enable better tracking, by adjusting the state with information from the detection process,

as well as updating the object model.

The detection of faces and people is done by a cascaded Adaboost algorithm and the

detection of moving objects by a change detector. In this face and pedestrian detection use

four dimensions (width, height, x, and y) to support object tracking in four dimension.

65
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Figure 3.1: A �ow chart of the face and people tracking system. To the left the
image is inputted to segmentation and detection. The information is feed into a
particle �lter (tracking) algorithm. Initialisation and terminations rules determine
the beginning and end of tracks.

When it comes to using change detection, grouped into blobs, four or �ve dimensions can

be used. Detections are not only utilised to overcome the limitation of particle �ltering

alone, but in addition to initialize and terminate tracks.

Two di�erent systems have been developed. The �rst one tracks faces and people,

relying directly on detectors for the particular tracked object (see Fig. 3.1). The basic

buildings block is fusion of detection and segmentation data to the left and its integration

with particle �ltering to the right (propagation, likelihood and expectation). Further, the

initialisation rules and termination rules are important separate functions in the chart.

The second one is a moving object tracker, at this point able to discriminate people from

vehicles, set up to track in four dimensional or �ve dimensional mode (see Fig. 3.2). The

major di�erence is how detection is done.
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Figure 3.2: A �ow chart of the four and �ve dimensional moving object tracking
system. The information is feed into a particle �lter (tracking) algorithm. Initiali-
sation and terminations rules determine the beginning and end of tracks.

3.2 Detection

3.2.1 Adaboost face and people detection

Prior knowledge about object category is incorporated by training an object classi�er. In

particular, an Adaboost trained, rectangular element based, feature classi�er [258, 271, 272]

is used to detect faces and people. I will not go through the details here (see [271, 272]),

but only explain why it is fast. This is since there is a restriction to utilize only rectangular

areas in the features, which enables calculation on the integral image I(x, y), de�ned as

I(x, y) =
x∑
i=1

y∑
j=1

I(i, j), (3.1)

where I(i, j) represents the original image intensity. Since the features are di�erences

between sums of all pixels within particular sub-windows, using Eq.(3.1), the sum of all

pixels within a sub-rectangle R can be calculated with only four lookups

∑
(x,y)∈R

I(x, y) = I(x2, y2)− I(x1, y2)− I(x2, y1) + I(x1, y1), (3.2)
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Figure 3.3: Illustration of how a feature rectangular element is calculated from
the integral image.

where (x1, y1) and (x2, y2) are the top-left and bottom-right corners (see Fig. 3.3 for an

explanation). Another integral image rotated by 45◦ is also calculated since rotated features

are used as well.

For faces, a trained classi�er[273] for frontal, left and right pro�le faces have been

used. For people, training has been performed using 13 features [273, 272]. The method of

training is Adaboost[274]. In the process the number of training samples is nt = n+
t +n−t =

4285 with n+
t = 2543 positive training samples, selected from CLEAR[275] sequences, of

resolution 10 × 24 and n−t = 1742 negative samples of di�erent resolutions to train the

classi�er. Since there is one weak classi�er for each distinct feature combination, e�ectively

there are 2543×13 = 33059 weak classi�ers for people classi�cation. The Adaboost training

selects and orders the best classi�ers for fast classi�cation (see [274] for details). Example

output is presented in Fig. 3.6a.

The result of object classi�cation is Ôct (x, y, h, w, n), where c is the object class, n =

1, ..., Nc is the number of the object of a certain category c in a frame at time t, (x, y) is the

centre of the detection and (w, h) is the width and height of the detection. The tentative

detection needs to be con�rmed by low-level segmentation, described in the next section.
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Figure 3.4: Skin colour ends up in a connected area in C ′bC
′
r space. Centres of

ellipses de�ning skin colours in 38 sequences from the CLEAR evaluation video
sequences on face tracking are marked with asterisks. The larger ellipse includes all
these speci�c ellipses and is used to model skin chromaticity in the general case.

3.2.2 Skin chromaticity segmentation

Skin chromaticity segmentation is based on a non-linear transformation of the Y CbCr

colour space[217], which results in a new two-dimensional ad-hoc chromaticity plane C ′bC
′
r.

For grey pixels chromaticity is degenerate, and thus pixels with

0.975 <
R

B
,
G

R
< 1.025, (3.3)

in the RGB colour space are discarded. To distinguish skin pixels in the C
′
bC
′
r plane an

ellipse encircling skin chromaticity is de�ned as

x2

a2
+
y2

b2
= 1, (3.4)

with  x

y

 =

 cos θ sin θ

− sin θ cos θ

 C
′
b − cx

C
′
r − cy

 . (3.5)

For the experimental results in this paper skin chromaticity was sampled from segments

of the CLEAR [275] evaluation video sequences, determining the values cx = 110, cy = 152,

a = 25, b = 15 and θ = 2.53 which are similar to the replicated model[217] (see Fig. 3.4).
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Figure 3.5: Sampling of face pixels in C ′bC
′
r-space generate a peak in (a). By

encircling this peak (b) skin colour can be separated from background colour.

The transformation is de�ned in the following set of equations:

C
′
τ =

 (Cτ (Y )− C̄τ (Y )) · WCτ
WCτ (Y ) + C̄τ (Kh) if Y < Kl or Kh < Y

Cτ (Y ) if Y ∈ [Kl,Kh]
, (3.6)

WCτ (Y ) =


WLcτ + (Y−Ymin)·(WCτ−WLCτ )

Kl−Ymin if Y < Kl

WHCτ + (Ymin−Y )·(WCτ−WHCτ )
Ymin−Kh if Kh < Y

, (3.7)

C̄b(Y ) =


108 + (Kl−Y )·(118−108)

Kl−Ymin if Y < Kl

108 + (Y−Kh)·(118−108)
Ymax−Kh if Kh < Y

, (3.8)

and

C̄r(Y ) =


154− (Kl−Y )·(154−144)

Kl−Ymin if Y < Kl

154 + (Y−Kh)·(154−132)
Ymax−Kh if Kh < Y

, (3.9)

where Cτ stands for either Cr or Cb, WCb = 46.97, WLCb = 23, WHcb = 14, WCr = 38.76,

WLCr = 20, WHCr = 10, K1 = 125, Kh = 188, Ymin = 16 and Ymax = 235.

Skin colour has also been sampled from some web-camera sequences (see Fig. 3.5). Here

the centre of the ellipse is outside of the model in Fig. 3.4.
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3.2.3 Motion segmentation

Motion segmentation in people tracking is used to support the detections (see section

3.2.4). It is also used as detector of moving objects, either using simply blob bounding

boxes in the case of four dimensional moving object tracking, or �tted ellipses in the case

of �ve dimensional moving object tracking.

In the presented system, foreground segmentation is performed using a statistical colour

based change detector [276], to detect changes with respect to constructed reference back-

ground. The result of the segmentation is heavily a�ected by noise introduced in the

acquisition process. To overcome the e�ect of noise, a procedure was used, which is based

on the hypothesis that the additive noise a�ecting each image of the sequence respects a

Gaussian distribution with mean µn and standard deviation σn. The σn value of Gaus-

sian, in each sequence is selected by performing the histogram analysis of image di�erence

(in areas without moving objects) in RGB colour space. From the data sampled in these

histograms the standard deviation σn is estimated for each sequence. Any isolated noise

is further removed using the morphological operators erosion and dilation.

3.2.4 Evidence fusion

Segmentation results are used to remove false positive detections. The detection denoted

Ôct (xd, yd, wd, hd, n), with (xd, yd, wd, hd) being the centre (xd, yd), width, height and de-

tection number in frame, and is accepted if

|Ôct (xd, yd, hd, wd, n) ∩ Sc(i, j)|
|Ôct (xd, yd, wd, hd, n)|

> λc, (3.10)

where |.| is the cardinality of a set, λc is the overlap ratio and Sc(i, j) segmentation result

for each pixel (i, j). The results of colour segmentation support the �nal decision by

requiring that a face must contain at least 10% skin pixels (λf = 0.1). The results of

motion segmentation support the �nal decision by requiring that a person detection from

Adaboost classi�cation must contain at least 20% change pixels (λp = 0.2). The reason for

low thresholds is that detections often contain background as well as hair in case of faces.

The λ values have been validated experimentally. Further, both segmentation algorithms

produce a low percentage of segmented pixels for true object in rare cases, e.g. due to
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Figure 3.6: Examples of removal of false positives using segmentation. (a) People
detection using Adaboost. (b) Removed false people detections. (c) Face detection
using Adaboost. (d) Removed false detections.

poor illumination conditions for face and mixture of object with background for change

detection. Detection with and without fusion of segmentation is displayed in Fig. 3.6. The

results on tracks are illustrated in Fig. 3.7.

3.2.5 Fitting an ellipse to motion segments

Previously it has been assumed that detected objects (i.e. blobs) have no orientation θ = 0,

i.e. they have been marked with an axis-aligned ellipse. For �ve dimensional tracking an

ellipse �t metric has been developed in this work which estimates objects physical location

better. The �t is established by �rst performing PCA on the blob of each moving object.

This identi�es the major and minor axis and provides an estimate of radii, which is used

as initial state in a maximization algorithm, where the �t is iteratively maximised. This

restriction will ensure that parts of the blob like minor shadows are not included in the

detection.

The blob �t is based on the following measure

Fb =
N3
b

N2
eAb

, (3.11)
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: (a) Face tracks (instantaneous) generated without fusion of colour
segmentation results. (b) Colour segmentation results. (c) Face tracks generated
with fusion of colour segmentation results. (d) People tracks generated without
fusion of motion segmentation results. (e) Change segmentation results. (f) People
tracks generated with fusion of change segmentation results.

where Nb is the number of blob pixels within the ellipse, Ne the pixel area of the ellipse

and Ab is the pixel area of blob. For Nb the blob pixels are only counted if the pixel is

within the blob bounding box, ensuring that blob pixels are not counted from objects close

by. The formula is based on that we want to maximise the number of blob pixels in the

ellipse and at the same time minimise the pixel area of the ellipse. The former tends to

expand an good ellipse and the latter contracts it and the opposing forces will stabilise a

good intuitive �t of an ellipse to a blob.

The maximisation algorithm works by iterating in each dimension in the range [−10 10]

from the previous location in steps of 1. This equates to �nding

argmaxd(Fb(p+ δ)); δ ∈ [−10, 10], (3.12)

where d refers to the dimension (i.e. x, y, w, h or θ) and p the previous best value. For

each dimension the best ellipse is moved forward, and this is continued until no better

�t is found within the range for each dimension. To use the range [−10 10] ensures that

the algorithm does not just �nd the �rst local optimum. The algorithm lacks resolution
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(a) (b)

Figure 3.8: Illustration of the �t of ellipses to blobs with a �t measure and a
maximisation algorithm. (a) The original image. (b) Fitted ellipses to each object
blob as outputted by the moving object detection process. The four dimensional
tracker uses the bounding boxes as detection input, whereas the �ve dimensional
code uses the ellipses.

invariance, but is su�cient for the range of resolutions used on this thesis. Fig. 3.8 displays

the result of this, and as can be seen the orientation of the bus in (a) is re�ected in the

estimated ellipse in (b). Basically, the four dimensional moving object tracking result in

tracks that are of the size of the bounding boxes of each object, thus covering areas of the

input image that does not contain moving objects.

A possibility is to use the di�erence image instead of the blob image to do the �tting

of the ellipse. In such case equation 3.11 becomes

Fd =
∑

e Id(i, j)
3

N2
eAb

, (3.13)

where Id(i, j) are the pixels of the di�erence image within the ellipse e. Similarly only

pixels within the bounding box are counted. One problem using the di�erence image is

that it is not certain that pixels with higher di�erence values are more important than

other ones in determining �t. In some cases half of the object has a colour which has a

lower di�erence than the other half, resulting on only half of the object being tracked. In

other cases the shadow of an object has higher di�erence intensities than the object itself,

resulting in mostly the shadow of the object being tracked. This e�ect is shown in Fig. 3.9,

where the maximisation by equation 3.11 produces better estimation of the object state

(Fig. 3.9c) for the car to the left, than equation 3.13 (Fig. 3.9b).
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(a)

(b)

(c)

Figure 3.9: Illustration of better performance of the �t measure in equation 3.11
than of equation 3.13. (a) The original image. (b) Fitted ellipses to each object
by equation 3.13. (c) Fitted ellipses to each object by equation 3.11. The leftmost
ellipse in (b) encircles only parts of the entire car due to low di�erence values on
the top of the car, whereas the ellipse in (c) encircles the entire car.
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3.3 Tracking

3.3.1 Integration of object detection with particle �ltering

Instead of using the same object model over time, the colour histogram model M is up-

dated based on the successive detections. This update allows to continue tracking the

object during pose as well as illumination changes. Let's say one side of an object which

previously has been turned away from the camera appears from one frame and on, and

that side contains pixels colours which are not present in previous frames. By updating

the colour histogram model, this new side can be a part of the object model in successive

frames. Without this update, the colour histogram model will always ensure exclusion

of this new side. More frequently there are small colour changes in face tracks, due to

orientation changes, as well as relatively larger changes in people tracking, since a part of

the background is often present in the model. The histogram is updated according to

ϕM(r,g,b)(t) = βϕd(r,g,b)(t) + (1− β)ϕM(r,g,b)(t− 1) ∀r = 1, ..., R; g = 1, ..., G; b = 1, ..., B

(3.14)

where r, g and b are the indexes in respective histogram ϕ and β = 0.25 the fraction of

update, and (r, g, b) indices in the histograms. To update the object modelM online helps

helps improving the robustness of the tracking algorithm even if object appearance changes

drastically during the sequence (due to illumination, size or orientation changes).

In tracking, updating the colour model might cause drift if background pixels start to

become a part of the model M. Also, the colour model in people tracking often contain

some background colour and this can make the track stick on the background if the person

moves to an area with a di�erently coloured background. Since the histogram is updated

only when there is an associated detection, this does not happen though, and instead it

prevents drift in people tracking. Further, a modi�cation to 2.12 is done for �ve dimensional

moving object tracking by setting

p(zt|xnt ) ∝ 1√
2πσl

e

dJ (zt,x
n
t )2

2σ2
l + Fb (3.15)

This ensures that states that �t a blob with the correct orientation are promoted by giving

a higher value if many blob pixels are within the ellipse.
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Theoretically, setting α = 1.0 and β = 1.0 (Eq. 2.14 and 3.14) when there is an

association, would make the track follow the detections almost completely. However, this

would not create smooth tracks, since the detectors are not 100% reliable in terms of

position and size.

For the integration between particles and detections to take place, an association must

be established between existing tracks with states at time t xt = (xt, yt, wt, ht) and current

detections Oct (xd, yd, hd, wd, n). The association is done using a gated nearest neighbour

�lter. The proximity conditions are



|xd − xtr| < δc(wtr + ηchtr)

|yd − ytr| < δc(ηcwtr + htr)

(1− γ)wtr < wd < (1 + γ)wtr

(1− γ)htr < hd < (1 + γ)htr

(3.16)

where c is either f for face or p for human, ηf = 1 and ηp = 0, δp = 0.5 and δf = 0.25,

xd and xtr are the horizontal centres of the detection and the track ellipse, and wtr and

htr are the width and height of the track ellipse. Further, for the width w and height h;

where wd and wd are the width of the detection and the track ellipse respectively; γf = 0.5,

γp = 0.25, and δ = 0.5 were determined experimentally. If the proximity conditions are

not satis�ed, a new candidate track is initialized.

The result of integrating detections with particle �ltering is illustrated in Fig. 3.10 and

3.11. Fig. 3.10 shows sample tracking result using the detector for track initialisation only.

In several occasions the tracker loses the target and the ellipse visualising the target result

does not overlap with the faces. In 3.11 there is no update of the colour histogram model,

and one of the state estimation of the target is unsatisfying.

3.3.2 Track management

To account for initialisation and termination of tracks a number of rules are implemented.

A detection in a new area is considered a candidate object appearance event(see table 3.1).

Tracking is started but the track is in sleeping mode, i.e. it is not producing any output.

Switching of tracks from sleeping to active mode is controlled by the successive detections.

A certain number of detections are needed in successive frames to activate a track. The
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(a) (b)

Figure 3.10: Illustration of limitation of particle �ltering using the detector for
initialisation only. (a) Tracks lost without integration of the detection with the
particle �ltering state estimation. (b) Better results with integration.
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(a) (b)

Figure 3.11: Illustration of limitation of particle �ltering without update of the
the colour model. Without update of the colour histogram model state estimation
is unsatisfying (a) however with update (b) state is accurately estimated.
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Nbr. Name Description
1. Initialisation rule Ni detections, whereNi depends on frequency,

initialises a track.
2. Termination rules

a) Lack of detections 25 frames without detections terminates a
track.

b) Segmentation A track is terminated when it is not supported
by segmentation results.

c) Overlap removal A score is kept for each track based on length
of track and frequency of detections. When
two tracks overlap the one with lowest score is
removed.

d) Je�rey divergence When the Je�rey distance between model and
current track is to large the track is termi-
nated.

e) Size To small or to large faces are discarded based
on the mean and standard deviation of initial
face detections.

f) Face ratio Face tracks are terminated if w
h > 1.5.

g) Border objects When the detection of a moving object is
touching the border of the frame it is dis-
carded. No new tracks are initialized in the
borders.

Table 3.1: Proposed rules to use in tracking.

required number Ni is given by

Ni = min

(
3

2− 1
f

f, 9

)
, (3.17)

where f is the frequency of detections and f = 9/20 the lowest allowed frequency, a limit

validated by qualitative evaluation of tracks. If there is not a su�cient number of successive

detections the track is discarded.

For the moving object tracker, with detections based on change detection blobs, another

rule has been necessary. When for example a car moves quickly into the camera view, �rst

a too small track tends to initialise, since only a part of the object is visible. The track

which fails to follow the car later on due to large inconsistencies in colour histogram model,

and also in state space. Therefore a track is not initialised when the detector bounding

box is touching the border of the screen.
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3.3.3 Track termination

The most important rule used for termination is �rst the use of the segmentation described

previously (section 3.2.2-3.2.3) for face and people tracking. A track is terminated if

the low-level segmentation results do not provide enough evidence for the presence of an

object i.e.
|T̂ ct (xd, yd, hd, wd, n) ∩ Sc(i, j)|

|T̂ ct (xd, yd, hd, wd, n)|
< λc, (3.18)

where c is f for face or p for people, and T̂ ct (xd, yd, hd, wd, n) is the nth target estimation

at time t.

A person track is terminated if it contains < λp change pixels (λp = 20%) according

to Eq. 3.18. A face track is terminated if it contains < λf skin pixels (λf = 10%). The

e�ect of using this rule is illustrated in Fig. 3.12, which shows that false tracks on the

background are successfully removed.

In people tracking, tracks are sometimes initiated on other moving objects like vehicles.

Motion segmentation does provide support for such tracks, since there will be detected

change in their occupied region. There needs to be another way to terminate such tracks.

This is done by terminating tracks if there are Nt = 25 successive frames without an

associated detection.

For face tracking, additional termination rules has been implemented. This since it

sometimes happens that a track drifts away from a face to the background. The Je�rey

divergence measure (Eq. 2.13) is used to calculate the di�erence d between the current

target and the colour histogram model. A cut-o� distance of d = 0.15 has been found ap-

propriate. There are however cases where tracks are over segmented, yet this phenomenon

can be easily corrected with a post-processing step, as described later in section 3.3.4. The

result of applying the histogram based rule is illustrated in Fig. 3.13.

A second rule is based on sampling occurring sizes of faces. The average face size

µfs, where face size is mean of width and height, and the standard deviation σfs are

estimated from the �rst 150 tracked face states (see Fig. 3.14). Then tracks where the

size of the face track state deviate more than 3σfs are discarded. The application of

this rule is illustrated in Fig. 3.15, where one clearly false track has been successfully

removed. Similarly, this rule can also incorrectly segment (i.e. cut) tracks short when the
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(a) (b)

Figure 3.12: Illustration of using colour to distinguish between faces and non�
faces for frames 50, 150 and 250 from a sequence in the CLEAR [275] evaluation
dataset. In (a) colour is not used. In (b) three false positives have been removed.
Here also the right most track has changed colour in the consecutive frames, which
is due to fragmentation of tracks caused by the colour information.
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(a) (b)

Figure 3.13: Illustration of termination by model (i.e. histogram) distance. In (a)
a track has degenerated and does not follow the correct object any more. In (b)
the track has been removed by measuring the Je�rey divergence between the colour
histogram model and current track.
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(a) (b) (c)

Figure 3.14: Sizes of the �rst 300 faces are sampled. Di�erent distributions are
obtained from example video sequences 1, 26 and 27 in the VACE face tracking
dataset, as displayed in (a), (b) and (c) respectively. This is later used to remove
faces which di�er more that 3σ from the mean. In (c) outliers are sampled too the
right, but these are still successfully removed by the model.

three standard deviations assumption does not hold. But this over-segmentation is also

addressed with post-processing described in section 3.3.4.

Finally, it is very uncommon that real faces have a width/height ratio higher than 1.5.

Therefore such tracks are removed as well. Unfortunately the width/height ration does

not always hold when we track faces in pro�le pose.

3.3.4 Track veri�cation, post processing and external knowledge

Detection can be generated in sub-parts of the tracked object, and to cope with this track

veri�cation is used, removing overlapping tracks. For example the face detector might �nd

that the ear looks reasonably like a face, while the entire face is also detected. Also, the
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(a) (b)

Figure 3.15: In many scenarios faces have sizes in a limited range. This can be
utilized to remove the false track on the body in (a). This has been done in (b) by
measuring the mean and standard deviation of faces in previous frames.

combination of two pro�le detectors and one frontal generate a lot of overlapping detections

on faces. Since, longer tracks are more likely to be true tracks, as well as tracks with a

high frequency of detection a probability of being a track being true can be estimated. If

two tracks overlap the one with lowest probability to be a true positive is removed. For

this purpose a score is calculated as:

snt = (0.6Nf )/50 + 0.4frd, (3.19)

where snt is the score for track n at time t, Nf is the number of frames tracked up to 50 and

frd is the frequency of detection. The di�erent weights on Nf (0.6) and frd (0.4) favour

tracks with a long history before new ones with a high frequency, and are only heuristically

motivated. The e�ect of the use of the track veri�cation score to remove overlapping tracks

is illustrated in Fig. 3.16.

The tracks are post�processed to �x two of the problems generated by the face tracker.

First, as mentioned some of the termination rules cause segmentation of tracks, and this

can easily be �xed by rejoining tracks. This is done by �nding pairs of tracks, where one

track starts within 35 frames after the other one ends, where a limit of 35 was judged

appropriate to exclude other objects moving to the end position of another track. If the
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(a) (b)

Figure 3.16: Illustration of removal of overlapping tracks. In a) no removal of
overlapping objects is done and several false tracks are generated on a face. In b)
however only the correct track is kept.

following proximity conditions are satis�ed:



|x1 − x2| < (w1 + w2)/4

|y1 − y2| < (h1 + h2)/4

0.5w2 < w1 < 1.5w2

0.5h2 < h1 < 1.5h2

, (3.20)

where (x1, y1, w1, h1) and (x2, y2, w2, h2) are the ending and starting track states, the two

tracks are joined and the gap is linearly interpolated. Second, the integration of particle

�ltering with detection data reduces the temporal smoothing aspect of the particle �lter.

Therefore, a triangular kernel of width 15 is convolved with the track, to remove high

frequency components:

xiconv(t) =
1
64

7∑
j=−7

(8− |j|)xi(t+ j) (3.21)

where xiconv is the �ltered i'th dimension of track state at time t. Finally, very short tracks

are likely to be clutter and therefore tracks shorter than 15 frames are removed. The

improvement is di�cult to show in images but output videos will have more temporally

stable state space estimation.

External knowledge is the input to the trackers derived from training as well as knowl-



CHAPTER 3. OBJECT DETECTION AND TRACKING 86

edge like size ratio. For face tracking external knowledges is provided by features of the

face detector, as well as the parameters of the ellipse used for the colour segmentation. For

the people tracker there are the features of the people detector, as well as parameters of the

motion segmentation. For the moving object tracker there are the features used to classify

people versus non people, bound on sizes and size ratios for people and vehicles, used in

combination with the Adaboost detector, as well as parameters of motion segmentation.

3.4 Four trackers

Four di�erent trackers have been developed using the same basic structure: a face tracker,

a human tracker, a four dimensional moving object tracker and a �ve dimensional moving

object tracker. The output of all the system is annotation (xml) in terms of trajectories.

In addition to that the trackers have the capability to extract object examples, and in the

case of faces these are classi�ed into frontal, left and right pro�le, in the case of moving

object, into human and vehicles.

3.4.1 Face and human tracker

Face and human tracking use the same framework as illustrated in Fig. 3.1. The di�erence

is mainly in track management. In face tracking rules 2b-f, of table 3.1, are used, whereas

the human tracker uses rules 2a-c. The people detector produces quite a lot of false

negatives, thus the speci�c initialization rule in table 3.1 is not used. Instead a track is

initiated after only one detection. The face and people trackers use the result of Adaboost

detection, supported by low-level segmentation for the integration with particle �ltering.

The resulting tracker is able to reliably track objects under di�erent illumination con-

ditions and di�erent poses, can handle occlusions, object appearing from the side or any

other position in the frame and object disappearing from the screen. An example frame

with a face track is presented in Fig. 3.17a. The output of the system is an ellipse that en-

circles the object area. The system works with multiple faces (see Fig. 3.17b) and handles

partial occlusion and di�erent illumination conditions (see Fig. 3.18). The people tracker

has problems with estimating the size of people (see Fig. 3.24) and with detecting humans

on a dark background (see Fig. 3.25).
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(a) (b)

Figure 3.17: Example tracks generated by the face tracker for (a) one face and
(b) three faces.

(a) (b)

Figure 3.18: Example tracks generated by the face tracker under (a) partial oc-
clusion and (b) low illumination.
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(a) (b)

Figure 3.19: (a) Vehicle tracking between frames 3300 and 3400 (b) Vehicle and
Pedestrian tracking between frame 3600 and 3530.

3.4.2 Four dimensional object tracking

The moving object tracker is similar to the people and face tracker, especially in the

overall input and output of the modules. The rules used for termination are 2a, 2c and

2g. The output of vehicle and pedestrian detection and tracking is presented in Fig. 3.19.

Fig. 3.19b also shows the e�ect of the illumination change, due to vehicle head lights, on

the segmentation results of the change detector.

Instead of using Adaboost detectors it uses bounding boxes of blobs in the motion

segmentation results. Motion segmentation generates a lot of small spurious detection,

and to remove such noise only detections with blob area Ab > 200 are considered. Further,

the detections are classi�ed into people and vehicle by a number of conditions (see Fig. 3.20)

and the Ababoost people detector is used as a component of this. The �rst conditions is

that there is a person detection within the bounding box, that Ab < Avmin

3·hd
3.8 > wd

, (3.22)
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(a) (b)

(c) (d)

Figure 3.20: Example moving object detections for frame (a) 28, (b) 44, (c) 135
and (d) 202 on a selected sequence. Green indicates people and blue vehicle.

where Avmin = 200pixels is the minimum area of a vehicle and (wd, hd) is the width and

height of the detection. Further it is required that


Ab < Apmax

wd < wim/4

hd < him/2.5

, (3.23)

where Apmax is the maximum area of a person, and (wim, him) the width and height of

the video frame. Finally the moving object tracker can optionally treat border objects in

a speci�c way (illustrated in Fig. 3.22). In this case the detection output is directly sent

to the tracker, short-circuiting the particle �lter module. The reason is simply that the

particle �lter fails to follow border objects as explained earlier.

3.4.3 Five dimensional object tracking

In addition to the four dimensional vehicle tracker described above also a �ve dimensional

tracker has been developed. There were several reasons to develop this tracker. First, the
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colour model does not work properly in situation where the di�erence in colour between

object and background is not clearly de�ned, when a part of the object has the same

colour as the background or the opposite. The �t measurement of equation 3.11 provides

a way of keeping track of an object independent of colour, thus providing a model that

better discriminates between object and background. Further, it can remove shadows of

pedestrians and accurately track vehicles that are aligned neither to the horizontal nor the

vertical direction (see Fig. 3.8).

For the �ve dimensional tracker �tted ellipses according to equation 3.11 are used to

initialise tracks, and inputted as detections to the particle �lter (see equation 3.14). A

further change to the algorithm is the association of a track to a detection. For this,

bounding boxes of track ellipses are calculated and compared with the bounding boxes of

detections. The rule is that a track bounding box must be contained within the detection

bounding box and a frame of 40 pixels in all directions (see Fig. 3.21):



xtr − wtr/2 > xd − wd/2− 40

xtr + wtr/2 < xd + wd/2 + 40

ytr − htr/2 < yd − hd/2− 40

ytr + htr/2 < yd + hd/2 + 40

(3.24)

The reason for this is that for example the ellipse around the pedestrian with a shadow in

Fig. 3.8b is much smaller than the detection bounding box, and the conditions in equation

3.16 become inappropriate.

Finally, border objects are treated speci�cally. The detector ellipse output is directly

inputted to the tracker and no particle �ltering is done as illustrated in Fig. 3.22. In total

only termination rule 2a according to table 3.1 is used.

The output of the �ve dimensional tracker is illustrated in Fig. 3.23. The main limita-

tion of the algorithm is the output of the change detector, for example ghost objects and

noise causing fragmentation of objects.
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(a) (b)

Figure 3.21: For the �ve dimensional change tracker an association between a
track and a detection is established if a track ellipse bounding box (in red) is within
a detection bounding box (in cyan) with a frame of 40 pixels. (a) The tracks in a
frame of sequence PVTRA101a04. (b) The change detector output, bounding boxes
plus bounding boxes of tracks.

(a) (b)

Figure 3.22: Border objects are treated in the �ve dimensional moving object
tracker by temporarily not using the particle �lter, but directly using the �tted
ellipse from detections as estimation of state space. This is the case for the bus
in (a) and the group of pedestrians in (b) with change detector output and �tted
ellipses above.
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(a) (b)

(c) (d)

Figure 3.23: Example output from the �ve dimensional tracker processing se-
quence PVTRA101a04. The tracks covering non existing objects are actually ghost
objects, that have not been removed by the change detector.
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3.5 Results

3.5.1 Performance measures

To quantitatively evaluate the performance of the proposed system, two groups of mea-

sures where used. The �rst group of evaluation measures were for the annotation relating

existence of object and detection. These are precision P and recall R and are de�ned as: P = TP
TP+FP

R = TP
TP+FN ,

(3.25)

where TP is the number of true positives (true detections), FP is the number of false

positives (false detections) and FN is the number of false negatives (missed detections).

The second group of performance measures is for the evaluation of the tracking itself

(typical tracking metrics) that evaluate the system precision and accuracy as de�ned by

the VACE evaluation standard[275]. The measures are Multiple Object Tracking Accuracy

(MOTA) and Multiple Object Tracking Precision (MOTP) as well as DICE (dD, from Lee

Raymond Dice[277]) and DIST (dDist), weighted distance). MOTP and MOTA are de�ned

as follows:

MOTP =

∑Nfn
n=1

∑Nfr
t=1

[
| G(t)

n ∩D(t)
n |

| G(t)
n ∪D(t)

n |

]
∑Nfr

u=1N
u
fn

, (3.26)

where G
(t)
n is ground truth and D

(t)
n is detection, and

MOTA = 1−
∑Nfr

n=1(csfn(fnn) + csfp(fpn) + loge(idsw))∑Nfr
i=1 N

n
G

, (3.27)

where Nfn is the number of mapped objects over the entire track, Nu
fn to the number of

mapped objects in the uth frame, Nfr is the number of frames, csfn(fnt) and csfp(fpt)

are the cost functions for the missed detections and false positives, and idsw is the number

of false identity switches for each object during the sequence.

The measure dD is similar to MOTP, but has been used for some evaluations, since it
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was decided to use this in the publication related to this thesis. It is de�ned as

dD = 1−

∑Nfn
n=1

∑Nfr
t=1

[
2 | G(t)

n ∩D(t)
t |

| G(t)
ngt +D

(t)
t |

]
∑Nfr

u=1N
u
fn

. (3.28)

dDist is the distance between track ellipse and ground truth centres normalized by the

width wg and height hg of the ground truth and is de�ned as

dDist =

∑Nfn
n=1

∑Nfr
t=1

√
(xd−xgwg

)2 + (yd−yghg
)2∑Nfr

u=1N
u
fn

. (3.29)

3.5.2 Experimental results

The evaluation of the face and people trackers consists of quantitative measurements,

graphs and illustrations. Based on the experimental results, we �rst demonstrate that

the integration of particle �ltering with a detector improve state estimation of targets.

To this end we simulate ideal detections reading them from the ground truth instead of

using the output of the Adaboost trained classi�ers. This was done to isolate the detection

part from tracking part. Further, the full system has been tested against regular particle

�ltering and the nearest neighbour algorithm. The nearest neighbour �lter simply connects

detections that are close in state space and time. Also initialization and termination the

ground-truth instead of using track management has been evaluated. Tracks generated

under these di�erent conditions are displayed and discussed.

The system has been tested on standard datasets; i.e. the CLEAR 1 dataset for face

detection and tracking task and four face sequences of the AMI corpus 2 for a surveillance

task as well as one sequence from the PETS 2001 dataset 3 for people tracking. These

are static single camera scenarios of people in meeting rooms for face tracking and people

and vehicles on roads for the people tracking task. The dataset has both indoor and

outdoor scenarios with varying illumination conditions. The details of sequences used for

quantitative evaluation is given in Table 4.1.

1See http://www.clear-evaluation.org/ for information about the competition and data used.
2The AMI Corpus Publicly available at http://www.idiap.ch/amicorpus.
3The PETS 2001 corpus is publicly available at http://www.cvg.cs.rdg.ac.uk/cgi-

bin/PETSMETRICS/page.cgi?dataset.
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For the evaluation a variance of σ = 1.8 was used and a kernel size of k = 3 in

the statistical change detector. The particle �ltering algorithm is run with 150 particles

per object and a transition factor of 12 pixels per frames. For the likelihood (Eq. 2.12)

αl = 0.068.

First, several of the parameters of the face tracker and people tracker have been tested

against four selected sequences each. Here no post-processing of the tracks have been done,

which might give non-accurate indications if di�erences are small. The MOTP and MOTA

scores are denoted P and A in Table 3.2.

For face α = 1.0 (in Eq. 2.14) gives highest MOTP scores, however MOTA scores seems

to be reduced, with the conclusion that α = 0.9 is the best choice of the tested values.

For people the value α = 0.5 produce good results in general, however the scores are very

similar. When it comes to the β parameter β = 0.25 seems to be a reasonable value for

both face and people tracking. A γ (see Eq. 3.16) value of 0.5 seems to produce best

results in general for faces, whereas it is more di�cult to say for people tracking. Basically,

a low value gives better MOTP, but a high one gives better MOTA. The reason for this is

that the people detector often produce output which di�er in size quite substantially from

the actual person being tracked, which lowers accuracy. Higher accuracy is due to the fact

that the detection supports the track in terms of existence. This is congruent with better

results for lower values of α as well.

Removal by Je�rey divergence (rule 2d) improves accuracy, however, it lowers precision

for face tracking, and in general lowers scores for people tracking. The conclusion is that

this rule is useful for faces in the sense that it removes false positives, and the loss of

precision if very low, most likely due to segmentation of tracks. It is not useful for people

tracking though, and this is probably due to frequent interference of background in the

colour histogram model, due to not precise boundaries in the people detections.

Speci�c rules have been tested only on the respective trackers. First, to use an ini-

tialization bu�er for people is not useful according to results. The use of the size model

(rule 2e) for termination of face tracks lowers MOTP in three out of four cases, possibly

due to segmentation of tracks. MOTA is markedly higher in sequence 9 (0.37 vs. 0.5) and

a slightly higher in sequence 12 with termination by size (0.52 vs. 0.55), but it is slightly

lower in sequence 10 and 11 (0.91 vs. 0.90, and 0.38 vs. 0.48,). The latter is because se-
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(a) (b)

Figure 3.24: Example frames of successful people tracking. The people detector
fails to estimate the size of the person in many cases, which results in too large
target ellipses.

Figure 3.25: Because of limitations in the people detector, in some sequences
many frames lack tracks on a majority of present people. The wall behind the
people to the left prevents the detector from working.

quence 10 and 11 contain only one face, and the size model constructed from that has a

very low standard deviation. Thus, when the head turns and size changes, the model is

no longer appropriate. This could possibly be �xed by using a di�erent threshold than 3σ

when only one face is present.

Finally, the improvement of using the colour segmentation was substantial. Accuracy

scores were markedly improved when the colour model was better adjusted for the video

data. The results with the title �ellipse� uses the ellipse described in section 3.2.2. The

results with the title �circle� uses the same centre, but has both a = 25 and b = 25 in

Eq. 3.4.

To test the integration between detection and particle �ltering, experiments were con-

ducted where detections were taken from the ground truth instead of the Adaboost classi-

�ers, thus removing problems arising from imperfect detections. Here tracks are initialized

and terminated by the ground truth only and the results have been obtained with detec-



CHAPTER 3. OBJECT DETECTION AND TRACKING 97

People

5 6 7a 8a

P A P A P A P A

α 0.0 0.58 0.15 0.52 0.34 0.49 0.35 0.54 0.32
0.25 0.61 0.16 0.53 0.34 0.49 0.35 0.55 0.30
0.5 0.60 0.16 0.53 0.35 0.48 0.35 0.54 0.33

0.75 0.59 0.16 0.52 0.34 0.48 0.36 0.55 0.32

β 0.0 0.54 0.18 0.45 0.38 0.50 0.36 0.49 0.37
0.1 0.57 0.19 0.49 0.43 0.49 0.35 0.54 0.37
0.25 0.61 0.20 0.52 0.44 0.48 0.35 0.51 0.38

0.5 0.63 0.19 0.55 0.40 0.46 0.36 0.52 0.35

γ 0.1 0.65 0.10 0.55 0.29 0.52 0.27 0.58 0.24
0.25 0.60 0.16 0.53 0.35 0.48 0.35 0.54 0.33
0.5 0.55 0.16 0.50 0.35 0.45 0.35 0.50 0.34
0.75 0.52 0.16 0.46 0.37 0.43 0.36 0.48 0.35

λp 0.1 0.60 0.14 0.50 0.32 0.47 0.33 0.51 0.30
0.2 0.60 0.16 0.53 0.35 0.48 0.35 0.54 0.33

0.3 0.61 0.17 0.55 0.35 0.51 0.35 0.54 0.30

Je�rey Y 0.59 0.15 0.56 0.34 0.46 0.32 0.54 0.31
N 0.60 0.16 0.53 0.35 0.48 0.35 0.54 0.33

Bu�er Y 0.59 0.15 0.58 0.30 0.48 0.28 0.53 0.26
N 0.60 0.16 0.53 0.35 0.48 0.35 0.54 0.33

Faces

9 10 11 12

P A P A P A P A

α 0.5 0.27 0.30 0.21 0.95 0.22 0.09 0.15 0.55
0.9 0.29 0.48 0.18 0.97 0.22 -0.07 0.11 0.55

1.0 0.31 0.37 0.23 0.81 0.23 0.07 0.17 0.50

β 0.1 0.27 0.20 0.20 0.97 0.21 -0.13 0.06 0.56

0.25 0.29 0.48 0.18 0.97 0.22 -0.07 0.11 0.55
0.5 0.29 0.45 0.09 0.89 0.23 0.05 0.16 0.55

γ 0.25 0.27 0.37 0.21 0.90 0.22 -0.45 0.10 0.56

0.5 0.29 0.48 0.18 0.97 0.22 -0.07 0.11 0.55
0.75 0.23 -0.17 0.09 0.99 0.16 -0.22 0.24 0.35

Size Y 0.29 0.50 0.19 0.90 0.22 0.38 0.13 0.55

N 0.29 0.37 0.18 0.91 0.22 0.40 0.15 0.52

Je�rey Y 0.26 0.51 0.17 0.92 0.22 0.48 0.15 0.58

N 0.29 0.37 0.18 0.91 0.22 0.40 0.15 0.52

Colour Ellipse 0.28 0.66 0.19 0.95 0.22 0.74 0.16 0.59

Circle 0.29 0.48 0.18 0.97 0.22 -0.07 0.11 0.55

Table 3.2: Comparison MOTA (A) and MOTP(P) scores using di�erent parameter
settings for face and people tracking.
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Figure 3.26: Performance improves in general as frequency of detections inte-
grated into particle �ltering increases. Scores (a) dD (b) dDist(c) P̄ (d) R̄ have been
calculated. This is not completely consistent thought, especially recall and precision
scores for sequence S4 (IS1004a.R), as well as dD and dDist scores for sequence S13
(pets1_seg).

tions taken from the ground truth at di�erent frequencies. The parameter values used are

α = 0.9, β = 0.35 and γ = 0.5 both face and human tracking. Fig. 3.26 shows clearly that

dD and dDist are lower for higher detection frequencies. The left most value in all graphs

indicate only particle �ltering, whereas the right most value fd = 1 indicates detections

every frame. Further, the R̄ and P̄ improve with frequency. Exceptions are R̄ and P̄ for

sequence S4 as well as dD and dDist for sequence S13.

To test the integration in the real system a series of experiments were conducted. Here

the parameter values di�ers for faces and people. For faces αf = 0.9, βf = 0.35 and

γf = 0.5 and for people αp = 0.5, βp = 0.1 and γp = 0.5, values that have been found

appropriate after extensive testing. The sequences are the same as the ones used for testing

ideal integration. The result is displayed in Table 3.3 and the conditions were �rst divided
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into NOGT, GTIT and GTIO, which stands for that no ground truth has been used and

ground truth for initialization and termination as well as ground truth for initialization

only. The NOGT, GTIT were divided into integration with detection (Int.) and no

integration with detection (PF). The evaluation scores used are D̄R, dDist, R̄ and P̄ , and

a mean of 8 runs has been calculated with standard deviation within parentheses.

First, the comparison of integration vs. particle �ltering alone in the NOGT condition

for faces show that DICE and DIST scores are lower for three out of four face sequences

indicating better correspondence between track ellipses and ground truth. Further, recall

and precision are higher for the same sequences. The reason the results were better without

integration for the �rst face sequence is that this sequence is very simple, with only one face

in a not too changing posture and therefore particle �ltering alone works �ne for the 500

frames tracked. Similar results are obtained in the GTIT condition. For people tracking

the scores were better with integration in the NOGT condition for two of three sequences,

whereas they are worse in all three cases in theGTIT condition. Example tracks generated

from the two conditions are displayed in Fig. 3.27(a-b). Better estimation is obtained with

integration as can be seen in Fig. 3.28.

Further, comparison of theNOGT condition vs. theGTIT condition shows in general

better performance in the NOGT condition. This is most likely due to lost tracks in the

GTIT condition. Using ground-truth for initialization only (GTIO), gives in general

lowest DICE and DIST scores as well as higher precision scores, however recall scores

are lower due to a huge amount of false negatives. The result of track management was

segmented tracks, but this leads to an improvement due to refresh (i.e. terminated and

reinitialised tracks) as can be seen in Fig. 3.27(c-d) and Fig. 3.29.

Finally, it was also tested what happens if you change the particle �lter to a simple

nearest neighbour �lter, where a detection determines the next state position if proximity

condition of Eq. 3.16 are met. No particle �ltering is done. Comparing the NN condition

with NOGT Int. shows using particle �ltering is better than using the nearest neighbour

algorithm for 5 out of 7 sequences.

Since increased frequency of detection does not always improve accuracy a further ex-

periment was conducted. Further, Fig. 3.27b indicate that particle �ltering might work

better in the short run. Therefore experiments where conducted where a maximum fre-
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Figure 3.27: Example tracks under di�erent conditions. (a) Integration with
detection (INT) yields better results than particle �ltering alone (PF), especially
for face sequences. (b) Sometimes the particle �lter outperforms integration in the
short run, whereas integration is better in the long run. (c) One e�ect of track
management is segmented tracks (IT). (d) In many cases thought the e�ect of
termination and reinitialization is refresh of the track. When the track degenerates
in the GT condition it is never properly recovered.

(a) (b)

Figure 3.28: Targets are better estimated with integration (b) than with particle
�ltering alone (a).
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(a) (b)

Figure 3.29: Frame 270 with and without track management from the tracks in
Fig. 3.27a. (a) Using ground truth for initialisation and termination prevents refresh
of tracks. (b) Due to termination and reinitialisation the target is estimated more
accurately in the long run.
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Figure 3.30: Performance depending on maximum frequency of detections. (a)
dD scores. (b) R̄ scores.

quency of detections was set by requiring a minimum gap between detections. Results

of running with di�erent maximum frequencies are presented in Fig. 3.30. In no case is

the performance improving consistently with maximum frequency of detections, rather it

varies.

3.5.3 Investigated applications

The applications of tracking are plenty. For example the face tracking maintains infor-

mation about pose and identity. This can be used to gather face examples of people in

video (see Fig. 3.31), for direct identi�cation purposes or for storage in a database. In
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Faces

NOGT GTIT GTIO NN

Seq. Int. PF Int. PF Int. Int.

1 dD(σdD ) 0.29(0.17) 0.17(0.01) 0.30(0.01) 0.19(0.01) 0.33

dDist(σdDist
) 0.04(0.04) 0.08(0.01) 0.18(0.02) 0.10(0.01) 0.20

P̄ (σP̄ ) 0.96(0.05) 1(0) 0.91(0.05) 1(0) 0.91
R̄(σR̄) 0.96(0.05) 1(0) 0.91(0.05) 1(0) 0.91

2 dD(σdD ) 0.27(0.01) 0.37(0.02) 0.30(0.02) 0.6(0.01) 0.20(0.02) 0.27

dDist(σdDist
) 0.10(0.004) 0.30(0.04) 0.13(0.01) 0.43(0.002) 0.09(0.005) 0.11

P̄ (σP̄ ) 0.92(0.08) 0.95(0.002) 0.94(0.02) 0.89(0.004) 0.90(0) 0.89
R̄(σR̄) 0.88(0.06) 0.87(0.04) 0.99(0.02) 0.94(0.02) 0.13(0) 0.96

3 dD(σdD ) 0.24(0.01) 0.26(0.03) 0.48(0.05) 0.48(0.04) 0.21(0.03) 0.28

dDist(σdDist
) 0.12(0.002) 0.19(0.03) 0.26(0.04) 0.26(0.02) 0.16(0.02) 0.12

P̄ (σP̄ ) 0.89(0.004) 0.63(0.007) 0.73(0.07) 0.46(0.08) 0.99(0.003) 0.73
R̄(σR̄) 0.71(0.02) 0.68(0.02) 0.82(0.08) 0.51(0.09) 0.13(0.01) 0.92

4 dD(σdD ) 0.32(0.02) 0.42(0.01) 0.32(0.02) 0.45(0.01) 0.29(0.03) 0.25

dDist(σdDist
) 0.23(0.02) 0.37(0.01) 0.23(0.02) 0.30(0.01) 0.20(0.04) 0.17

P̄ (σP̄ ) 0.81(0.05) 0.61(0.05) 0.84(0.07) 0.76(0.05) 0.98(0.04) 0.25
R̄(σR̄) 0.74(0.06) 0.40(0.02) 0.85(0.07) 0.77(0.5) 0.40(0.12) 0.59

People

NOGT GTIT GTIO NN

Seq. Int. PF Int. PF Int. Int.

7b dD(σdD ) 0.21(0.04) 0.19(0.01) 0.37(0.02) 0.23(0.01) 0.16(0.01) 0.26

dDist(σdDist
) 0.17(0.01) 0.14(0.01) 0.41(0.03) 0.20(0.02) 0.13(0.01) 0.22

P̄ (σP̄ ) 0.97(0.01) 0.95(0.01) 0.32(0.01) 0.39(0.01) 1.0(0.001) 0.38
R̄(σR̄) 0.43(0.02) 0.49(0.03) 0.60(0.02) 0.72(0.02) 0.15(0.01) 0.95

8b dD(σdD ) 0.42(0.02) 0.43(0.02) 0.33(0.02) 0.25(0.02) 0.15(0.02) 0.37

dDist(σdDist
) 0.21(0.01) 0.24(0.01) 0.22(0.05) 0.10(0.01) 0.10(0.02) 0.16

P̄ (σP̄ ) 0.91(0.01) 0.91(0.01) 0.41(0.04) 0.97(0.05) 1(0) 0.74
R̄(σR̄) 0.74(0.01) 0.75(0.01) 0.46(0.04) 0.37(0.05) 0.22(0.03) 1

13 dD(σdD ) 0.36(0.02) 0.39(0.05) 0.28(0.01) 0.26(0.01) 0.28(0.02) 0.38

dDist(σdDist
) 0.20(0.01) 0.25(0.04) 0.18(0.02) 0.18(0.003) 0.18(0.02) 0.19

P̄ (σP̄ ) 0.76(0.01) 0.75(0.01) 0.59(0.01) 0.72(0.01) 0.98(0.004) 0.51
R̄(σR̄) 0.65(0.01) 0.63(0.02) 0.68(0.01) 0.78(0.01) 0.55(0.03) 0.83

Table 3.3: Comparison of tracking performance

an example based indexing application, each face example could be linked to the video

sequence, where that person appears.

Sampled trajectories of two face sequences are displayed in Fig. 3.32. It is possible

to tell quite a lot about the sequence by analysing the trajectories. One possibility is

to use this information for video shot classi�cation, for example separating meeting and

surveillance shots. This can also be used for event detection and to extract information

about the camera. For example analysis might reveal that two or more people are meeting

Figure 3.31: Examples of extracted faces of frontal, left and right pro�le.
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Figure 3.32: Results of face tracking illustrated as tracks projected on an example
frame (a) and as tracks evolving in time (b). Di�erent colours are assigned to each
track.
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(a) (b) (c) (d)

Figure 3.33: Example of a passage monitoring application. When people ap-
proach the camera they are tracked (a-c). Just before passage the face is tracked
(c) and face examples extracted (d).

for a conversation in a particular part of a video sequence. Another application area is

surveillance of passage, through doors or gates. Using people tracking and face tracking in

combination can be used to �rst detect approaching persons, then locate faces as persons

approach, and at that stage extract several face examples of passing persons as illustrated

in Fig. 3.33. Noti�cation that a person is arriving can be sent to a security guard and

enlarged presentation of the shots to the guard would enable identi�cation of the person

passing trough.

3.5.4 Moving object tracking

The four and �ve dimensional moving object trackers have been evaluated with MOTP and

MOTA scores with di�erent parameter settings. The results are divided into people and

vehicle tracking. For four dimensional tracking results (see Table 3.4) for people tracking

is �rst that it is unclear which value is best for α, β = 0.1 gives highest value in two cases

and γ = 0.1 is de�nitely the best choice. For vehicle tracking α = 0.5 , β = 0.25 and

γ = 0.25 is clearly best.

Further, some other aspects of the four dimensional tracker has been tested. First,

an experiment to test what happens if you only use the area covered by change pixels to

build and update the colour histogram model (condition Blob in table 3.4). It turns out

that this reduced performance in both people and vehicle tracking. Then, it was tested if

treating border object speci�cally improves performance, and it turns out it does not for

either people or vehicle tracking. Finally, results where obtained with and without mask.

The mask improves accuracy scores (A) in 7 cases out of 8, whereas it reduces precision

scores (P) in 6 out of 8 sequences.
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People

5 6 7a 8a

P A P A P A P A

α 0.3 0.60 0.01 0.50 0.01 0.58 0.24 0.57 0.24
0.5 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25
0.7 0.57 0.09 0.49 -0.01 0.59 0.23 0.57 0.25

β 0 0.57 0.08 0.50 0.008 0.55 0.22 0.55 0.25
0.1 0.54 0.09 0.47 0.024 0.58 0.24 0.57 0.24
0.25 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25

γ 0.1 0.70 0.11 0.57 0.08 0.66 0.19 0.66 0.20
0.25 0.62 0.09 0.53 0.05 0.60 0.21 0.62 0.23
0.5 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25
0.75 0.57 0.10 0.44 0.02 0.55 0.25 0.54 0.25

Blob Y 0.49 0.09 0.44 0.10 0.47 0.20 0.48 0.23
N 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25

Border Y 0.48 0.008 0.46 0.11 0.48 0.37 0.51 0.44
N 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25

Mask Y 0.45 0.15 0.47 -0.11 0.55 0.27 0.55 0.44
N 0.62 0.10 0.48 0.001 0.58 0.24 0.55 0.25

Vehicle

9 10 11 12

P A P A P A P A

α 0.3 0.65 0.18 0.62 -0.31 0.51 0.06 0.61 0.20
0.5 0.65 0.20 0.66 -0.30 0.54 0.09 0.61 0.20
0.7 0.63 0.20 0.58 -0.28 0.50 0.07 0.58 0.21

β 0 0.65 0.19 0.56 -0.46 0.47 0.06 0.58 0.21
0.1 0.62 0.14 0.62 -0.31 0.54 0.07 0.60 0.21
0.25 0.65 0.20 0.66 -0.30 0.54 0.08 0.61 0.20

γ 0.1 0.66 0.08 0.67 -0.24 0.63 0.06 0.68 0.09
0.25 0.68 0.17 0.59 -0.37 0.63 0.05 0.63 0.19
0.5 0.65 0.20 0.66 -0.30 0.54 0.09 0.61 0.20
0.75 0.66 0.18 0.60 -0.31 0.60 0.08 0.61 0.21

Blob Y 0.56 0.15 0.52 -0.42 0.43 0.07 0.58 0.20
N 0.65 0.20 0.66 -0.30 0.54 0.09 0.61 0.20

Border N 0.56 0.16 0.47 -0.35 0.54 0.04 0.57 0.21
Y 0.65 0.20 0.66 -0.30 0.54 0.09 0.61 0.20

Mask Y 0.45 0.15 0.47 -0.11 0.55 0.27 0.55 0.44
N 0.65 0.20 0.66 -0.30 0.54 0.09 0.61 0.20

Table 3.4: Comparison MOTA (A) and MOTP (P) scores using di�erent param-
eter settings for four dimensional moving object tracking.

When it comes to the �ve dimensional tracker it is di�cult to say which α value is

best since it di�ers according to sequence and tracker. Perhaps spread of particles around

the detection area is not improving performance since almost the same measure is already

expressed into the likelihood. Further, the selection of state from particles is modulated

in the SELECTION condition. The conditions are BEST (B), SELECTED AVERAGE

(SA) and AVERAGE (A). In the BEST condition the particle with highest likelihood is

used as state, in the SELECTED AVERAGE condition the average of the particles with

weight higher than the total average is selected and in the AVERAGE condition the total

average is used. For people SELECTED AVERAGE has more top scores than the other

conditions. For vehicles AVERAGE is the best choice according to the results.
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People

5 6 7a 8a

P A P A P A P A

α 0 0.54 -0.21 0.47 0.04 0.47 0.29 0.51 0.21
0.25 0.55 -0.18 0.46 0.03 0.46 0.32 0.51 0.21
0.5 0.55 -0.17 0.47 0.03 0.47 0.31 0.50 0.21

Selection B 0.53 -0.22 0.48 0.07 0.45 0.30 0.49 0.20
SA 0.55 -0.18 0.46 0.03 0.46 0.32 0.51 0.21
A 0.53 -0.21 0.47 0.04 0.47 0.29 0.51 0.21

Vehicle

9 10 11 12

P A P A P A P A

α 0 0.66 0.54 0.51 -0.33 0.66 0.12 0.63 0.64
0.25 0.63 0.62 0.55 -0.37 0.68 0.21 0.65 0.60
0.5 0.64 0.58 0.51 -0.25 0.70 0.20 0.60 0.63

SELECTION B 0.60 0.59 0.57 -0.31 0.70 0.15 0.58 0.53
SA 0.63 0.62 0.55 -0.37 0.68 0.21 0.65 0.60
A 0.68 0.50 0.58 -0.28 0.72 0.12 0.62 0.62

Table 3.5: Comparison MOTA (A) and MOTP (P) scored using di�erent param-
eter settings for �ve dimensional moving object tracking.

3.6 Conclusions

The presented tracking framework does not only annotate video in terms of object and

trajectories, it is also able to produce additional information about the tracked object and

extract pictorial examples. Moreover, it is intended to be able to track other objects in

addition to faces, people and moving objects. The requirement for tracking any object type

is only an appropriate detector for that particular object type. A system that can track

and classify a larger amount of objects has potential to be utilised in semantic annotation

of video. With enough information, in the end, complete story lines could be produced,

describing person interaction and other important events. With a face recognition module,

video could be annotated semantically with identity information of the appearing persons.

It has been shown that segmentation increase robustness of detection. Still the main

limitation of the tracking algorithm is the accuracy of the detectors. To improve the

detection of faces, which is needed primarily to reduce false positives, solutions are �rst to

work more with colour segmentation. Possibly the hue saturation colour space is better for

this purpose than the Y CbCr space. It would also be interesting to analyse the behaviour

of system by adding more feature detectors for eyes, mouth and nose, to use the contrast

contour of the faces as input to the algorithm, or to take advantage of the fact that the

face is connected to a body, e.g. to detect shoulders with edge detection.

One of the limitations of the used person detector is that it fails to detect people against

a dark background. Possible solutions to this are to use edges for the Adaboost training

or to train several di�erently tuned detectors and integrate the output. There is also a
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problem of too large people detections, which possibly could be �xed by adjusting the

bounding box with either edge content in the image, or the bounding boxes of the motion

segmentation.

Integrating detections with particle �ltering is obviously not only limited to using

Adaboost trained detectors. With the moving object tracker it is shown that the framework

can be used with other types of detections as well as be adjusted to work in �ve dimensional

mode.

The initialisation and termination rules presented does �lter out lots of false tracks,

�rst by not starting tracks on false positives outputted from the detector and second to

stop tracks once the object disappears from view. There are still limitations to the rules

since all false positives are not removed, and tracks are segmented.

The presented work di�ers from previous work �rst since any type of object can be

tracked, and in particular face, pedestrians and moving objects have been tracked. Further,

several track management rules have been implemented.



Chapter 4

High- and low-level visual attention

4.1 Introduction

Modelling visual attention given current knowledge and processing powers in a standard

PC is a di�cult task. Previous models have mostly focused on low-level saliency, sometimes

with top-down modulation of saliency and the inclusion of context as a factor. The interplay

between the observers' goals, expectations, ideas and the outer visual world is still to be

depicted.

In watching video sequences imaging meeting scenarios, the expectation is most likely

to see faces and the goal is to follow the interplay between humans in the meeting and in a

real scenario to interact with other participants. When it comes to surveillance scenarios

you would expect to see people, and in the context of tra�c, cars. Thus the addition

of high�level features introduces top�down factors in the interplay between observer and

stimuli.

As proposed, top-down in�uence could simply be an additional contribution to a �nal

saliency map encoding both bottom-up and top-down information before a motor action

is selected, and then the most salient feature is scanned for relevant information. Another

possibility is that bottom-up and top-down factors in�uence the selection of focus points

in parallel, where one of them takes control in a competitive way, for example re�exive

saccades initially and volitional saccades at a later stage. In both cases, location of the

target is the most interesting information, and either before top�down saliency arises or

during competition between several top-down informations the type of object is of impor-

108
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tance. Since both types of information in the trackers is extracted one can easily integrate

this information with low�level saliency.

Considering only low-level features do not discriminate between background and fore-

ground. For this reason, models relying on low-level features will not only allocate the

majority of �xation on the interesting objects part of the scene, where people presumably

look, and will allocate far too much attention on the background. Further, on videos ob-

jects are moving. Previous measurements have illustrated that �icker and change attract

far more attention than spatial features[1]. The object trackers described in chapter 3

have been developed to allow for incorporation of these high�level features in models of

visual attention. With the developed tracker tools, moving high�level features as such are

combined with the saliency map generated using low-level features only. The end result is

a video where saliency from low- and high-level features are added up pixel-wise. These

are further processed to generate a scan-path with the IOR mechanism described in section

2.3.3, which has been utilised with some success in the past[196] using mainly low-level

feature analysis. Another model, developed by the author, utilises the output from tracker

modules more directly, by using the centre of objects as the candidate targets of attentional

�xation.

It must be noted that the detection of high�level objects can in part or even completely

be a bottom-up process. The detection of faces could possibly be special in such a way

as the detection is made without expectations to see faces and without prior exposition

to faces. The latter is the case since infants look for faces and direct their gaze towards

them early in development. Because of the importance of faces there could be hard�

coded neural pathways to assign saliency to areas where faces appear. Further, bottom�up

grouping processes can identify objects without top�down information. Here is an area

where the study of visual attention in the context of scene interpretation is required.

First in this chapter it is outlines how saliency can be generated from low-level feature,

high-level features and the combination as well as variations. These saliency models are

validated with eye-tracking experiments. Also, in this chapter the collected eye-traces will

be described qualitatively and quantitatively as well as one model based on winner-take-

it-all and inhibition-of-return. Furthermore, an object based attention module based on

these data will be described.



CHAPTER 4. HIGH- AND LOW-LEVEL VISUAL ATTENTION 110

4.2 Saliency with high- and low-level features

4.2.1 Low-level features

Primary bottom-up processes work similar to simple image processing techniques like edge

and corner extraction. More complicated processes involve both bottom-up and top-down

like processes at di�erent levels of abstraction for any type of visual processing of stimuli

i.e. object detection, visual search or scene interpretation. It is believed that a primary

mechanism exists to swiftly direct attention towards features like corners and crosses and a

low-level feature extractor is needed to mimic this mechanism. Much work has been done

in this area before with di�erent models[1, 13].

In this work, low-level features are extracted with the Itti et. al. model[1]. Twelve neu-

ronal features extracts colour contrast (red/green and blue/yellow, separately), temporal

�icker (onset and o�set of light intensity, combined), intensity contrast (light-on-dark and

dark-on-light, combined), four orientations (0◦, 45◦, 90◦, 135◦), and four motion energies

(up, down, left and right). Centre-surround di�erences are then calculated as di�erences

between dyadic pyramid scale levels. This yields in total 72 feature maps. Finally, there is

within-scale, within-feature and across-scale competition in each feature map before they

are added up into one saliency map.

4.2.2 High-level features

The limitation of using low�level features alone is that processes on a higher abstraction

level are involved in the selection of interest points. In processes like scene interpretation,

higher level patterns and objects must be dealt with. Locations and outlines of objects

can be found with low-level processes[10]. As these kind of methods are limited in their

success in this work we have relied on the tracker tool[14] presented in 3. The types

of objects extracted are three: faces, pedestrians and unclassi�ed moving objects. The

tracker utilises particle �ltering integrated with detection and is able to track faces and

pedestrians, moving object during the entire sequence.



CHAPTER 4. HIGH- AND LOW-LEVEL VISUAL ATTENTION 111

(a) (b)

(c) (d)

Figure 4.1: Example of saliency generated from image 326 from sequence S2. (a)
Image, (b) low-level features only, (c) high-level and (d) low-level and high-level
combined.

4.2.3 Combination

With the object tracker tools, described herein, moving high�level features as such are

combined with the saliency map generated with low-level features only. The end result is

a video where saliency with low- and high-level features with the current model (Fig. 1.1)

are linearly combined pixel-wise.

To add up low-level and high-level features the following procedure is followed. First

faces, pedestrians and moving objects are tracked. After that low-level features are ex-

tracted. Finally, a tool developed to add up low- and high-level features is used which

projects Gaussians corresponding to the tracks generated by each tracker onto the low-

level features only map. Examples of generated saliency maps are displayed in Fig. 4.1-4.4.

4.2.4 Variation

Variations of the combined map have been generated to optimise the match between

saliency map and real eye-tracking data. The �rst variation is to use a bridge between

high-level objects as illustrated in Fig. 4.5. Here a quadrilateral bridge is generated with
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(a) (b)

(c) (d)

Figure 4.2: Example of saliency generated from image 300 from sequence S3. (a)
Image, (b) low-level features only, (c) high-level and (d) low-level and high-level
combined.

(a) (b)

(c) (d)

Figure 4.3: Example of saliency generated from image 87 from sequence S13. (a)
Image, (b) low-level features only, (c) high-level and (d) low-level and high-level
combined.
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(a) (b)

(c) (d)

Figure 4.4: Example of saliency generated from image 231 from sequence S8b.
(a) Image, (b) low-level features only, (c) high-level and (d) low-level and high-level
combined.

the saliency value 100 in the interior of the polygon. The quadrilateral is created with

two sides perpendicular to the line between detection centres with a length li = hi + wi,

where wi and hi are the width and height of the respective detection. Another variation is

to only include low-level features on top of objects as illustrated in Fig. 4.6 (abbreviated

OOO for only on objects). Finally the saliency maps are also tested against �xed saliency

maps with the same image throughout the video (see Fig. 4.7)

(a) (b)

Figure 4.5: (a) Original frame. (b) Saliency map with bridge between objects.
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(a) (b)

Figure 4.6: (a) Original frame. (b) Saliency map with low-level features added
only on objects.

(a) (b)

(c) (d)

Figure 4.7: Manually created saliency maps for the Fake condition. (a) Used for
sequence S2. (b) Used for sequence S3. (c) Used for sequence S13. (d) Used for
sequence S7b and S8b.
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Figure 4.8: Experimental setup.

4.3 Eye-tracking

4.3.1 Experimental setup

Eye-tracking is necessary to compare saliency models with real �xations. For the collection

of eye-traces data a desktop computer equipped with an IR light emitter as well as an IR

camera has been utilised. Subjects have been seated in a comfortable chair with their

chin resting in a chin-rest and the eyes located approximately 62cm from the screen. The

entire set-up is illustrated in Fig. 4.8. The hardware utilised is called the Eyegaze Analysis

System and is developed by LC Technologies Inc. It consists of the computer with the

camera attached to the 15in LCD monitor. A further black and white monitor is connected

directly to the camera to show the captured image. A small IR light emitting diode is

attached to the camera. The camera captures at a rate of 60Hz. The Eyegaze System uses

the Pupil-Centre/Corneal-Re�ection method to determine the eye's gaze direction.

Eye-tracking software has been utilised to display the video. It consists of a program

that displays videos and records the eye-�xations in a text �le. The timing and position is

written on each line. Before recording the eye-tracker must be calibrated. This consists of

instructions given to the subject to �xate on a �xation point on a black screen that moves

to 10 di�erent locations. Fixation points that were missed are redisplayed until all points

have been �xated by the subject reasonably well. The calibration accuracy is typically

0.10− 0.20in. The sequences used for the sampling are described in Table 4.1.
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Dataset Seq. nbr. Sequence Frames

AMI S1. EN2001b.Closeup1 100�600
S2. EN2001b.Closeup4 1�500
S3. IS1003c.L 1-500
S4. IS1004a.R 250-750

VACE S5. PVTRA102a09 500�3001
S6. PVTRA102a10 3007�5701
S7a. PVTRA102a11 1003�3010
S7b. PVTRA102a11 1�500
S8a. PVTRA102a12 3000�5107
S8b. PVTRA102a12 1000�1500
S9. CMU_20050912�0900.cam3 20005�23605
S10. EDI_20050216�1051.cam1 11800�15300
S11. EDI_20050216�1051.cam3 25000�30000
S12. VT_20051027�1400.cam2 75000�76200

PETS S13. Camera1 2045�2545

Table 4.1: Short information about video sequences used for quantitative measures

4.3.2 Procedure

Before the experiment starts instructions are given to the subject:

Two types of videos are shown. 5 sequences are surveillance sequences that

contain pedestrians and moving vehicles. 5 sequences are meeting scenarios

containing talking people. Watch the surveillance sequences as if you are doing

a surveillance task monitoring the events on the video. For the meeting scenar-

ios pretend that you are a part of a teleconference, equipped with headphones

and a microphone. Before each video there is a calibration, with instructions

given in text on the screen.

For each video the eye-tracks are recorded preceded by the calibration, and then the

playback of the video is started. The output is a text �le for each video containing the

timing and position of recorded �xation. The meeting scenarios are sequences S9, S2, S3,

S4 and S12 and the surveillance scenarios are sequences S13, S5, S6, S7b and S8b, played

in the given order.
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4.4 Saliency based on �xations

To compare the automatic model with real data, saliency based on several measurements

(see Fig. 4.9-4.10) have been used. This saliency map is constructed by adding up Gaussians

around each �xation point into one saliency map with a standard deviation of 10 pixels.

This was selected to cover a reasonable angle of focus according to the spotlight model of

attention as well as the limitation of accuracy of the eye-tracker which is about 0.1−0.15in.

4.5 Eye-tracks based on winner-take-it-all

A simple program that generates tracks on images as well as video have been developed

that utilises the winner-take-it-all and IOR mechanism to generate a scan�path on videos

similar to previous models[196]. The purpose is to test the developed model in plausibility

of generated eye-traces as well as the generation model itself. Contrary to previous work

we applied it on videos instead of still images. The problem of using this simple mechanism

is obvious for two reasons. First, �xations on for example faces are continuous on one area

for extended periods of time. Second, �xations on moving objects follow the object in

smooth pursuit. For this reason only traces generated on images are displayed in Fig. 4.11.

The selection of �xation point is �rst done with a winner-take-it all mechanism that

chooses the brightest point in the saliency map of that frame for �xation. Once a point has

been �xated an IOR mechanism is applied to an area around the �xation, with a Gaussian

added to an inhibition map. In subsequent frames selection of �xation point is based on

the brightest point in the product of the saliency map and the inhibition map. As time

pass the inhibition map is relaxed, i.e. values are decremented until they reach zero.

4.6 Characterisation of collected data

To be able to qualitatively and quantitatively describe eye-tracking data with respect

to stimuli and internal states of mind, would be to solve the problem of automatically

generating eye-traces. With generalizability of such description, a model of visual attention

would be obtained.
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(a) (b)

Figure 4.9: Sample results of saliency mapping from eye tracking data of 20
persons. (a) Original frames from top to bottom: 85, 224, 368 and 432 from sequence
S4. (b) Saliency type maps for each frame generated by projecting Gaussians from
20 subjects on eye-�xation points.
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(a) (b)

Figure 4.10: Sample results of saliency mapping from eye tracking data of 20
persons. (a) Original frames from top to bottom: 33, 11, 324 and 447 from sequence
S5. (b) Saliency type maps for each frame generated by projecting Gaussians from
20 subjects on eye-�xation points.
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(a) (b) (c)

Figure 4.11: Here trajectories have been automatically generated on di�erent
images from top to bottom. (a) From low-level features only. (b) From high-level
features only. (c) From the combination of features.
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Qualitative description

A qualitative description of eye�traces can give guideline in building theoretical models by

capturing the types of processes that underlie gaze patterns. Unfortunately, qualitative

research methods can su�er from lack of objectivity and might be a�icted by the authors

personal beliefs etc. Especially in example based presentations an author could possibly

put forward only examples that con�rm a given hypothesis masking a true interpretation

of the results. Perhaps the theme of object based attention in this work might just a�ect

such conclusions.

In an attempt to understand the basic mechanisms I have written down notes on the

di�erent types of scenarios in Table 4.2 and Table 4.3. I will here try to summarize these

and to some extent discuss the results. This involves two components of phenomenological

analysis. First, in making the "transcriptions" of the eye-traces and, second, in summariz-

ing, attempting to derive the essence of visual attention.

When it comes to meeting scenarios people tend to look at faces, in particular eyes,

mouth and nose. People also look at items on tables, walls, on the �oor, and look at

hands. Moreover, there are more advanced patterns in that people follow conversation by

following the gaze of meeting participants, and watching the one who is speaking at the

moment. So, an eye for social interaction seems to be fairly noticeable. Further, people

look at items, and if that is because of spatial properties like contrast content or that these

are physical objects, that could be of interest to the observer in interpreting the scene or

both, is a question left unanswered. People also look at objects participants hold.

In surveillance scenarios participants look at pedestrians, moving cars and cyclists.

Many times the gaze is directed toward the centre of the object, however on pedestrians

gaze is often directed towards the head and occasionally towards the feet. On cars it

happens that people look in front of the car. People tend to shortly �xate areas with

strong contrast for example occupied by poles. Further they follow edges with their gaze

and look at windows and corners.

The major conclusion that can be drawn from this is that people look at faces, and

at moving objects. Further, not surprisingly people look at social interactions, possibly

trying to �gure out the social/communicative signi�cance of these events. Also people look

at spatial events like poles and curb edges. Finally objects (e.g. paper) seem to attract
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Subject No. Observations

1 mouth, centre of head, following gaze. Ear, nose, eyes. Items on table

2
items on table, follow gaze, attention to particular social interaction,
eyes, mouth, centre of head, hands,papers on table, centre of head, hands

3

centre of head, items on table, following conversation, eyes, nose, mouth,
items on background with high frequency, browsing background, faces,
papers on table, browse background,hands

4 centre of head, following gaze, shifting between persons, hands head

5

Tend to watch faces and hands. Especially following the gaze of meeting
participants. Some in centre of face but some tend to lie a bit outside of
the face. Eye nose ear and sometimes centre of body. With two faces,
fairly fast switches between faces. Items on table.

6
Eyes, hands, item in hands, mouth, item on wall, hands, follow gaze to
item/person, centre of head

7
head, following gaze, eyes, centre of head, mouth, shifting between heads,
hands, head and body scanning, centre of face, movement of face, hands

8 browsing the scene, follow centre of head, items on wall etc.

9

Head follow gaze, following conversation, centre of head body, shift be-
tween heads, heads, hands, heads, hands, items on table, suit, hair, eyes,
heads, suits, papers on table

10 Follow gaze, head, items on table, items on �oor, eyes, forehead

Table 4.2: Observations of eye-traces on meeting scenarios.

attention and not the background (e.g. table), possibly due to their spatial properties

and possibly to due to object as a meaningful conceptualisations of the scene in terms of

relevance to the beholder.

4.6.1 Classi�cation of eye�traces

The distinction between saccades and smooth�pursuit on dynamic stimuli is protrudent

in eye-gaze patterns. To be able to quantitatively describe saccades and smooth pursuit

a classi�cation method has been developed, based on speed. Here the speed is calculated

at each sample point. If speed in normalised device coordinates (width = height = 1.0)

per second is above 0.5, the sample is considered a part of a saccade and else-wise part of

smooth pursuit. The tracks are then divided into saccades and smooth pursuit, making it

possible to sample the duration in time of each. Further, speed of saccade is sampled, with

speeds above 10000 pixels per second in the data are considered outliers and is discarded.
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Subject No. Observations

1

centre of person, cyclist, standing cars, moving cars, shift between centre
of pedestrians, feet, head, following walls,centre of person head of person,
poles, in front of moving car

2

pedestrians, moving cards, cyclist poles,heads of pedestrians, feet of
pedestrians edges, moving car, switching between pedestrians and mov-
ing cars as well as one edge

3
heads, windows, moving car, poles, cyclists, bus, head, moving cars,
centre of cars, in front of cars, corners on cars, centre of moving cars

4

browsing of houses, parked cars, house surroundings,head of pedestrian,
wall, centre of pedestrian, head, feet, centre of moving bus, cars,centre
of pedestrian, centre of moving car, head, pole, corner of car, centre of
pedestrian, corner of wall

5
heads, corners edges, poles, pedestrians, moving cars, in front of moving
cars

6
pedestrians head centre, along street, poles, contrasts, shift between mov-
ing cars, in front of pedestrian

7

Head of pedestrian cyclist moving car, centre of pedestrian, head of
pedestrian, corner, Shifting between centre of pedestrians, cars, espe-
cially moving, centre of bus, centre of cars

8
Following pedestrian, cyclist, looking along cars, houses, heads, cars cen-
tre of person, poles, moving cars, speed, heads, centre of cars

9

centre of pedestrians, head of pedestrian, centre of moving car, parked
cars, cyclist, in front of cyclist,shift between pedestrian heads, poles shift
between centre of pedestrians, moving cars, poles

10

centre of pedestrian, cyclist, feet, head, contrast (curb edges), following
edges,in front of car, cars, in front of pedestrians, centre of pedestrians,
corners, poles

Table 4.3: Observations of eye-traces on surveillance scenarios.
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Smooth
pursuit Prediction

t>tk

IOR SaccadeStart

Figure 4.12: Flowchart of automatic trace generation

4.7 A statistical model

A statistical model is build upon the results from the classi�er. Speed during saccade

ŝs = 856.262pixels/s as well as mean duration of smooth pursuit t̂sp = 0.347932 and

standard deviation σsp = 0.663629 have been estimated. The idea is to test theory on

visual attention, by comparing real eye-traces with a model that outputs data with similar

statistical characters.

From this an automatic visual attention mechanism is implemented which involves

high�level object knowledge, inhibition of return, prediction of target and the statistical

properties derived illustrated in Fig. 4.12. The system starts by �nding a high�level object

to follow in smooth pursuit. Such a target is taken from the output of the tracker, that

has been calculated in advance. A random number is taken from a Gaussian distribution

with mean and standard deviation taken as estimations from the sampled data. This is

used as the duration for which smooth pursuit is continued. After that a saccade is done

with the speed |vs| = ŝs. It is traversed in a predictive manner in that it collides with the

target in the short future. When it is su�ciently close to the target the system goes into

smooth pursuit, and the cycle restarts. The selection of next object to follow is completely

random in case the IOR module is inactive, and it is just as likely that the same object is

selected as any other. If the IOR module is active an inhibition map is maintained that

encodes the relative probability of a point becoming a future target given an object being

centred there. When a point is �xated a Gaussian with standard deviation 25 pixels and

maximum value 128 is added to the inhibition map. Every frame each pixel in the inhibition

map is subtracted by 1. So for each possible saccade endpoint the relative probability is

retrieved. Each target endpoint is evaluated in the inhibition map with respect to its

relative probability and a �nal choice of �xation point is done accordingly.
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4.8 Results

4.8.1 Evaluation

The above mentioned saliency models have been validated with eye-tracking data, with

slightly di�erent techniques. In most studies, some sort of experimental validation has

been applied[1, 12, 17, 13]. The need for quantitative measurements is needed not only to

test a certain technique, but also to adjust the model and mathematical parameters of the

model.

In a study[13] a correlational approach is used. Here the stimuli are still images and

a Gaussian smoothed mean human attention map is calculated from saccade locations. A

correlation score is calculated between the human attention map and the �nal saliency

map. This technique has the advantage of being intuitive since one can easily compare

the output of the human map and the saliency map, and a correlational score is easily

interpreted. The correlational score works �ne for still images since on every frame each

individual is directing their attention to several points. By taking the mean of several

people a human attention map is obtained which is similar in character to the saliency

map itself.

4.8.2 Measurement

Since videos are used in the experiment and comparisons are done between di�erent com-

binations of features, correlation has been chosen to measure the similarity between model

and data. The correlation coe�cient rxy is calculated with the following formula:

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2
i − (

∑
xi)2

√
n
∑
y2
i − (

∑
yi)2

, (4.1)

where xi and yi are the pixel values ordered in scan order through each frame in the

automatically generated saliency map and the saliency map generated from eye-tracks and

n is the number of total pixels in the videos. Using the second measurement in section 2.4.3

gets a answer to the question whether the di�erence between saliency at �xation points

and at random locations is statistically signi�cant.

Scores show that the correspondences with high-level features are higher than with
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PF Both GM Veh GM Ped GM

S1 2 3
S2 2 3
S3 2 3
S4 2 3
S15 30 30 30 30
S5 35 40 50 40
S6 60 70 60 70
S7b 50 40 55 40
S8b 60 80 60 65

Table 4.4: Optimal sizes of Gaussian on eye-traces.

PF Both GM Veh GM Ped GM

S15 3 2 1.8 1.0
S5 1.2 1 1 1.0
S6 1.6 1.2 1.2 1.2
S7b 1.2 1.2 1.4 1.2
S8b 1.2 1 1.2 1.0

Table 4.5: Optimal relative size of Gaussian on objects measured as ratio between
standard deviation and track width and height.

low-level features alone. The number of samples are in terms of millions or billions since it

represents all pixels in the video and even small di�erences are signi�cant. The outcome

of the calculations is shown in table 4.6-4.9. Since the number of samples are in the order

of n ≈ 107, any di�erence in the third digit is considered signi�cant. This means that all

di�erences between correlations in table 4.6 and 4.7 are signi�cant.

4.8.3 Optimizing comparison

To optimize the comparison between saliency maps and eye-traces several experiments

have been made. To start with initial experiments have made clear that the Gaussian on

objects should cover the entire object and not parts of it. After that, several experiments

have been made with varying size of Gaussians on objects as well as on eye-traces. As

can be seen in the table 4.4 optimal size of Gaussians on each eye �xation di�ers quite

substantially between sequences. For meeting scenarios (S1-S4) the best score between 2-3

pixels and for surveillance scenarios (S15, S5, S6, S7b, S8b) between 30-80 pixels. This

is probably due to faces being smaller in combination with the fact that these sequences



CHAPTER 4. HIGH- AND LOW-LEVEL VISUAL ATTENTION 127

have lower resolution than surveillance ones. A contributing factor should also be the

strong aggregation of �xations on the centres of the faces. The one that stands out of the

surveillance scenarios is S15 which has lower resolution. An in�uence could also be due to

the di�erent set-up of the camera with respect to tra�c.

Table 4.5 reveals the relative size of Gaussians on objects which varies between 1.0 and

3. Especially deviating is the surveillance sequence S15, in cases of using only PF or in

using vehicles with and without persons in combination. In the �rst case it could be due

to degenerating sized of tracks from PF and in the second case it could be due to that the

sequence in question is inappropriate for vehicle tracking. A value of 1.3 is a sound value

to use and was used in subsequent experiments.

4.8.4 Combination of features

First, it was tested how to combine high-level information from face and pedestrian tracking

and low-level features. Results are displayed in table 4.6. The conditions are low-level

features alone (Low-level), high-level features alone (High-level), combination of low- and

high-level features (Combination), combination with bridge between all high-level features

(Bridge), combination with low-level features only on objects (OOO), fake saliency map

(Fake) and saliency maps generated from tracking ground-truth alone (GT). Examples of

combined saliency maps and the corresponding eye-tracks are illustrated in Fig. 4.13. In

the Bridge condition a wide connection has been made between objects and in the OOO

condition low-level features are added only onto high-level features. The fake saliency

maps used have been created by hand by the author and contains only one image, each

illustrated in Fig. 4.7, throughout the videos.

Table 4.6 indicates strongly that the combination of low- and high-level features are

much better than low-level features alone, especially for simple meeting scenarios like

sequence S2. Furthermore even using high-level features alone gives higher scores than the

combination in two cases (S2 and S4) and worse in only one of the cases (S13), which is

due to failure of the tracker. The correlation measure does not give a strong di�erence

(presented equal) between low-level features alone and the combination (S13, S7b and S8b).

Also, the correlation scores in the Fake condition are signi�cantly higher than change levels,

which must be due to overlap between generated Fake saliency maps and real �xations,
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perhaps due to objects appearing in the middle of the camera since the camera is placed

so that this occurs, and the fact that faked maps have saliency more in the centres. It is

lower than the scores in the High-level condition except in sequence S13 and S8b though.

In S13 the di�erence is not that signi�cant, but it is in S8b, which should be due to fake

saliency in Fig. 4.7d.

The Bridge condition improves scores especially for surveillance sequences. This is not

surprising since, as we shall see later, subjects move their gaze more frequently between

pedestrians and other moving objects, on these sequences and in S2 there is only one

relevant high-level object attended. The OOO condition does improve in comparison to

the Combination condition, however not in comparison to the high-level features alone.

Finally, the ground-truth gives considerably better scores on sequence S3 and S13, most

likely due to inaccurate tracking of high-level features in the model. This indicates that

it is actually the detection of objects that improve the similarity to real eye-traces. On

the other sequences except for S4 we have similar results. The exception must be due to a

random successful correlation between false positives from tracking and real �xations.

In table 4.7 a combination of high-level and low-level features are compared with di�er-

ent weights given to the low-level features. The table shows that, in 3 of 8 sequences, lower

weights on low-level features yield higher scores in comparison to higher weight. Only in

one case (seq. S6) does the correlation improve, but then only to decay again.

The conditions used in table 4.8 are similar to the ones in 4.6 except for the fake and

GT condition since these would be duplicates. Here change is tracked on �ve surveillance

sequences. Similarly to 4.6 high-level features produce higher scores than low-level features

and also more than the combination in one case, however similar in the other four. Further,

the Bridge improve scores in 4 of 5 sequences signi�cantly and the OOO condition introduce

improvement in one of four sequence. The other sequences show no change with respect

to using high-level features alone. As in the case of pedestrian sequences the Bridge

condition is successful due to many movements between objects. The improvement in the

OOO condition could possibly be due to the observed tendency of subjects to �xate on

low�level features on vehicles, e.g. corners of cars.

Table 4.9 illustrates that introducing low-level features decrease correlation scores in

one case and keeps it constant in the other. As the results with faces and pedestrians
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Saliency maps have been evaluated against eye-traces that have been
projected as Gaussians and added up from 20 subjects. (a,d) Original frame. (b,e)
Saliency map with low- and high-level features. (c,f) Saliency map generated from
eye-traces.

Seq. Low-level High-level Combination Bridge OOO Fake GT
S2 0.09 0.63 0.60 0.60 0.61 0.17 0.60
S3 0.01 0.24 0.24 0.26 0.25 0.01 0.51
S4 -0.01 0.22 0.17 0.19 0.18 -0.02 0.13
S13 0.02 0.01 0.08 0.15 0.10 0.09 0.15
S5 0.03 0.12 0.12 0.16 0.12 0.09 0.11
S6 0.04 0.09 0.09 0.17 0.09 0.08 0.08
S7b 0.03 0.10 0.10 0.16 0.10 0.08 0.08
S8b 0.04 0.11 0.11 0.18 0.11 0.30 0.12

Table 4.6: Correlations scores in 7 di�erent conditions between automatically
generated saliency maps and a saliency like map generated from initial experiments
with 20 subjects. The high-level features used are faces in sequence S2, S3, S4, S13
and pedestrians in sequence S5, S6, S7b and S8b.

low-level features does not improve correlation scores.

The results show that the combination of high and low-level features is much better

than low-level features alone. This is especially evident for meeting scenarios. However,

higher scores are obtained with high-level features alone. The experiments with di�erent

weights on low-level features show clearly that lower weights give higher correlations. This

is probably because of the fact that the majority of �xations are on high-level features

and that low-level features introduce much excitation on the saliency map that does not

produce real attentional attraction. Low-level features might still give guidance for spurious

�xations on the background. Adding a bridge between objects is obviously improving

results as shown in Table 4.7, which is not much of a surprise since attention shifts between

objects.
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Seq. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S2 0.63 0.63 0.63 0.63 0.62 0.62 0.62 0.61 0.61 0.60
S3 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
S4 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17
S13 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.84
S5 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
S6 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.09
S7b 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
S8b 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Table 4.7: Correlations scores between automatically generated saliency maps and
a saliency map generated from experiments with 20 subjects with di�erent weights
on low-level feature contribution. The high-level features used are faces in sequence
S2, S3, S4, S13 and pedestrians in sequence S5, S6, S7b and S8b.

Seq. Low-level High-level Combination Bridge OOO
S13 0.02 0.08 0.07 0.13 0.09
S5 0.02 0.07 0.07 0.10 0.07
S6 0.03 0.12 0.12 0.15 0.12
S7b 0.03 0.07 0.07 0.09 0.07
S8b 0.04 0.12 0.12 0.12 0.12

Table 4.8: Correlations scores in 5 di�erent conditions between automatically
generated saliency maps with moving objects as high-level features and a saliency
like map generated from initial experiments with 20 subjects.

Seq. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
S13 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07
S5 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
S6 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
S7b 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
S8b 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

Table 4.9: Correlations scores between automatically generated saliency maps
with moving objects as high-level features and a saliency like map generated from
initial experiments with 20 subjects with di�erent weights on low-level feature con-
tribution.
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4.8.5 Analysis of automatic model

The model based on eye-tracking statistics is compared with the eye tracking data itself

in hope that the di�erence will comprise of qualities that re�ect relevant mechanisms in

visual attention. Lines have been drawn between �xation points indicating the generated

scan�paths in both automatically generated movements and real movements. Results are

depicted in Fig. 4.14-4.17.

One can see in Fig. 4.14-4.17 (see also 4.18), that tracking in the human visual atten-

tional system produces more stable tracks than the presented tracker at least at higher

frequencies. Thus tremor and micro-saccades are hardly visible in current displays. More

importantly, the current model does not include any �xations to points in the background.

Although most �xations are on faces, pedestrians and moving objects, some can be seen

actually on the background as well. One could here speculate whether other objects are of

interest to viewers and in such case which, lets say papers on the table or hands (see table

4.2), or if it is low-level features that attract attention (see table 4.3). Furthermore, in

Fig. 4.14-4.15 one can see that the entire frame is scanned, which could be interpreted as a

task of surveillance. This is not done in Fig. 4.16-4.17, where traces are more constrained

to faces and to some extent body parts, with exception for subject 3 and 8 in table 4.2.

Further, real eye-traces produce longer saccades on surveillance scenarios, which also

re�ects the task of surveillance since it is reasonable to scan one area and then go to another

area, but further investigation is needed to draw any de�nite conclusions. Thus a model

of visual attention should re�ect a distribution of real saccade length and not do saccades

of any length with the same probability. Moreover, it seams the collected traces follow

pattens with periods of movement in predominantly horizontal or vertical orientations (or

more precisely in a similar orientation), thus previous �xation point and previous saccade

could both be factors that contribute to the determination to the selection of the next

�xation point. I also propose that global orientation in the image as in Fig. 4.15c is also a

contributing factor, which in this case is determined by the road as a near strait path and

the building surrounding it symmetrically.

Also, frame-wise comparison between �xation points and automatically generated traces

can possibly give further indication to the underlying processes. In Fig. 4.18 one can see

the comparison in a sequence containing one face only. First of all, the similarity between
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(a) (b)

(c) (d)

Figure 4.14: Comparison between automatically generated eye traces (a) no IOR
and (b) with IOR and eye�traces from two subjects (c) and (d) on sequence S7b.

(a) (b)

(c) (d)

Figure 4.15: Comparison between automatically generated eye traces (a) no IOR
and (b) with IOR and eye�traces from two subjects (c) and (d) on sequence S6
frames 4500�5000.
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(a) (b)

(c) (d)

Figure 4.16: Comparison between automatically generated eye traces (a) no IOR
and (b) with IOR and eye�traces from two subjects (c) and (d) on sequence S4.

(a) (b)

(c) (d)

Figure 4.17: Comparison between automatically generated eye traces (a) no IOR
and (b) with IOR and eye�traces from two subjects (c) and (d) on sequence S2.
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model and collected data is striking. However, the automatically generated traces contain

a consistent higher frequency component. But the real trace does instead contain small

within-object shifts of attention with a lower frequency.

The mismatch between model and data is obvious in other sequences. For example, in

Fig. 4.19 the automatically generated traces are following only one or a few objects whereas

the subject appears to follow several and/or to �xate on the background, as also indicated

in Fig. 4.14-4.17. There could be two reasons the automatically generated traces do not

change object of smooth�pursuit as often as real subjects. Possibly the tracker is, due to

limitations, not tracking all objects in every scene and so real �xations are spread on more

objects. When only one tracked high�level object is tracked there are no shift of attention

in the automatic model. It is also possible that the proposed classi�cation of traces into

saccades and smooth-pursuit is inaccurate, and in a better model more saccades should be

generated per minute. In fact the model deviates from the sampled data as well since a

saccade can be done to the currently tracked object, i.e. not producing a true saccade, but

still being registered as a saccade in the statistical model.

Results have suggested that people follow the gaze of the other attendees as indicated

by table 4.2. It is not completely ruled out though, that people direct their attention, due

to for example hands moving an object in that area, is the cause of �xation.

There is further a di�erence between subjects in the duration of �xations or smooth pur-

suit phases as illustrated in Fig. 4.21, possibly revealing di�erences in state and trait vari-

ables between subjects. Also some subjects �xate more on the background (see Fig. 4.22).

The IOR mechanism a�ects the traces in two opposite directions. In some cases there

are more changes of �xations, as in Fig. 4.23, possibly due to the current position being

inhibited for further pursuit. In (a-b) there are just more saccades in the end of the

sequence, with the IOR e�ect. In (c-d) there is a saccade earlier in (d) than (c). Also,

obviously return to a previous location is inhibited, making it more likely that a current

position is in pursuit in the short run with the IOR mechanism, as illustrated in Fig. 4.24

4.9 Conclusions

Introduction of high-level features on saliency maps strongly improve the general feasibility

of the saliency map. Eye-tracking measurements show that a majority of �xations are on
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Figure 4.18: Comparison between real traces (blue) and automatically generated
(red) on sequence S2.
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Figure 4.19: In some sequences (a) S4 (b) S6) subjects (blue) follow more objects
than the automatic model (red).
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Figure 4.20: The frame-wise comparison between automatically generated (red)
and real eye-traces (blue) in (a,d) reveal a deviation that is explained by �xations
that follow gaze (b,e-c-f)
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(a) (b)

Figure 4.21: Some subjects (a) spend longer time in smooth pursuit per object
than others (b). This is shown by more frequent abrupt changes in the track of (b).
Red indicates automatically generated traces and blue subject gaze patterns.
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Figure 4.22: Some people (a) tend to spend more time on the background than
others (b). Red indicates automatically generated traces and blue subject gaze
patterns.
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Figure 4.23: (a) Results without the IOR mechanism on sequence S3. (b) With
the IOR mechanism on sequence S3. (c) Without the IOR mechanism on sequence
S13. (d) With the IOR mechanism on sequence S13. Red indicates automatically
generated traces and blue subject gaze patterns.
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Figure 4.24: (a) Results without the IOR mechanism on sequence S6. (b) With
the IOR mechanism on sequence S6.

these high-level features, which presently are limited to faces, pedestrians and moving

objects. Automatically generated eye-tracks on images using high- and low-level features

are much more realistic than either alone. It has clearly been demonstrated that the

addition or use of high-level features instead on low-level in a model of visual attention is

promising.

It has been clearly demonstrated that high-level features are better than low-level

features in a model of visual attention for videos. Videos can certainly be categorised

by the generated scan-paths. Further, the extension of the above tracking framework

using more high-level features would make it possible to model visual attention in other

frameworks as well. It could also be experimented with how audiovisual events a�ect

attention[278].

We are de�nitely following the most relevant objects, i.e. faces, pedestrians and moving

objects. Which additional objects or features that are attended to should be further

investigated. This could be investigated with task dependence in mind, for example in

a video compression module in teleconferencing where the task is especially to follow the

important objects of the conference. Also contextually de�ned objects like objects on the

table, or objects that participants touch should be included in such a model as well as

other task relevant objects.

Further, the model should be extended to exhibit �xations according to low-level fea-

tures as well. Then we would have variation in type of integration of low-level and high-level

features in the two presented models for automatic generation of traces. However, low-level

contribution to correlation between model and data is low.
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Further, using a Gaussian distribution of �xation duration might not be the best choice

since there are no �xations with less duration than 0s. Sampling of �xation lengths across

subjects has been done, showing that it is a shrewd distribution[279]. A Gaussian assump-

tion was made for the scope of this thesis. An obvious limitation of a model of saccade

timing is that �xation might be re�ecting the time it takes to analyse the target[280].

It should thus not be a random variable, but re�ecting the output of several di�erent

processes generating such a statistical distribution, the unknowns that we would like to

investigate. However, since the output of several competing processes of complicated and

unpredictable nature, a random model is applicable. We do �nd a statistical regularity in

the real tracks with a frequency in medium range though (see Fig. 4.19-4.24).

The IOR e�ect could be a mechanism that determines frequency of saccades in such a

way that after a while the current �xated position is inhibited for further pursuit and thus

a change of object occurs. This could be further studied in relation to possibly explaining

regularities in eye-tracking data in more detail.

It is important to analyse di�erences between subjects in relation to �xations to back-

ground/foreground and also length of smooth pursuit periods (see Fig. 4.21-4.22. What

variables does this depend on? Is it consistent within persons? If so does it depend on trait

personality variables (for example compliance to authorities) or (for example temporary

tiredness)? So, does it depend the person conducting the eye-tracking experiments, if it is

a a professor or a student. Does anxiety levels in�uence the results? For example it could

be an indicator of the motivation the subject has in following the instructions. In such

case it would be of interest to change instructions and see if there is a change in behaviour.

One could speculate whether a subject is really focusing attention in the broad sense on

executing the task. For example lack of concentration could induce �xations on task irrel-

evant points. Another explanation is that subjects interpret instructions di�erently and

thus �xate on di�erent objects/features on the scene.

Results on meeting scenarios indicate that saccades are dependent on events, like for

example that one person starts talking, noticeable from mouth movements, then looks at

another person. What happens in this case is that attention is �rst allocated to the mouth

area and then allocated to the eyes and then to the person where the gaze is directed

towards. This pattern is most likely due to the fact that the subject is trying to follow the
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conversation in the meeting scenario. The goal with a visual attention system that mimics

the human visual attention system must be to capture such processes. The current model

only involves task factors in so far as the higher�level objects tracked are task�congruent.

Thus, further studies of visual attention in the context of scene/event interpretation would

be fruitful. In general the eye-traces are dependent on task as it di�ers in surveillance

scenarios, where except for objects being tracked, areas are scanned, possibly for new

suspicious events.



Chapter 5

Conclusions

5.1 Summary of achievements

A fully automatic multi-object tracker has been implemented. Not only does detection ini-

tialize and terminated tracks, but the statistical formulation can integrate with detectors

of any sort of object and any type of classi�cation method. Further, low-level segmenta-

tion of chosen type can easily be used as validation of tracks and structure information

can be integrated in the model matching of the tracked object. Speci�cally, a four dimen-

sional face and human tracker has been developed that uses a cascade of Adaboost trained

classi�ers for detection and skin chromaticity and motion segmentation respectively to val-

idate tracks. Further, a four and �ve dimensional moving object tracker that uses blobs

from motion detection and, in the case of the �ve dimensional tracker, a blob measure as

structure information, has been developed. It has been shown that the proposed system

successfully initializes and terminates tracks automatically and have higher precision scores

than particle �ltering alone.

Moreover, a saliency model combining low- and high level features has been developed

and evaluated against eye-tracking data. Here the major accomplishment is validation of

the saliency model, and the �nding that high-level objects account for the majority of

the correlation with eye-tracking data, and low-level features even lower correlation scores.

Also, the span of object based attention has been investigated.

The eye-traces collected has been evaluated qualitatively, giving better understanding

of allocation of human attention on surveillance and meeting scenarios. A simple classi�er

141



CHAPTER 5. CONCLUSIONS 142

that identi�es saccades and �xation/smooth-pursuit has been developed. Also statistics of

the collected eye-traces have been extracted.

Perhaps the most interesting results come from models of visual attention on images and

video, that have been implemented illustrating the bene�ts of adding high�level objects,

as direct or by saliency mediated attractors. Also, similarities/dissimilarities between

automatically generated traces and real traces on the same video illustrate some interesting

qualities.

5.2 Philosophical considerations

The theory on visual attention in chapter 2 covers much more that is relevant for the

experiments presented in this thesis. I would also like to take the opportunity to write down

philosophical conclusions that I have made during reading this theory. This is important

to be able to understand visual attention as well as modelling it computationally. We need

to be able to interpret psychological, neurological and psychophysical �ndings, to draw

conclusions about how to structure a visual attention system, what are the constituents

and how do they relate to each other. I also would like to prepare for a look at the future,

which directions I would like to take in case I continue to study visual attention later on.

5.2.1 Search for meaning

First, I would like to discuss the de�nition of attention as a mechanism of search optimi-

sation. In my perspective one subtask of visual processing is to construct meaning out

of the surroundings with respect to internal motives. Humans and other animals are not

primarily engaged in a task of �nding a particular target, although this ought to be a task

they engage in at occasion. One of the subtasks of visual attention is de�nitely to inter-

pret the world in terms of categories that are accessible to higher-level processes like goal

achievement for example grouping spatially dispersed object parts into a whole. I have

myself[8] done experiments showing how visual attention can speed up search for a object

scene decomposition. The synthesis of the two perspectives is then that meaning arises

naturally as a match between internal motives and external stimuli, where the goal is to

�nd a match. The search for meaning involves not only the sensory data as to manipulate

in parallel or as memory scratch pad objects but also the internal top-down �ow of data,
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i.e. goals, ideas and desires, and visual attention can be viewed as an optimisation strategy

to �nd this meaning.

5.2.2 Covert attention

From the de�nition of attention given[22], and considering that covert attention is where

the brain is focusing, covert attention is any selection process except overt orienting of

the eyes. From these de�nitions I �nd it di�cult to believe that covert attention can

be readily de�ned as one distinct process, as opposed to consisting of several di�erent

selection processes, given that several di�erent levels of processing and pathways towards

experiencing and reacting to outer stimuli in the brain. Instead there should be di�erent

mechanism that all are given the name covert attention.

One possible type of covert attention is volitional attentional enhancement of an area

that a human is not looking directly at. Another type is exogenously primed targets

[281, 282]. A third type is the simple pop-out e�ects of early processing. Since some

link covert attention directly to saccade preparation I propose looking for a saccade target

involves a distinguishable �covert� attention mechanism instead of all covert attention being

a mechanism that prepares saccades.

Experimental evidence has also been provided[283], for in this model, two sources of

visual attentional control. The �rst one explains higher performance due to attention

on noisy stimuli (integration mask), and the second on interruption mask. In the study

with the conditions of with and without each masking and with both types of masking,

performance is always improved by cuing the target. It has been argued[283] that since

the combination does not give the strongest response it must be two di�erent processes

underlying. Although not explicitly proven, the �rst type is believed to be early visual

enhancement and the second type late, corresponding to transference of stimuli to visual

short term memory.

5.2.3 Object detection and recognition

Given that attention to objects, as meaningful units, mediates the quest of interacting with

the outer world and achieving goals, objects must be detected and recognised. First, we

would like to know how saliency relate to object based attention. For example, saliency
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driven attention could be a mechanism that reveals the structure and is a guide to detecting

and recognizing objects as such, thus allocating attention to objects in the scene. In such

case objects arise from the stimuli, as a sort of grouping process before being matched

with an internal object template. The question here is how much the stimuli is processed

bottom-up for object detection and before recognition occurs. This is an area called mid�

level processing. If saliency and objects attract attention completely orthogonally there

should little processing before recognition.

One improvement to using detection modules that try to detect every type of object in

every position, every 3D-orientation and scale is to �nd possible objects by grouping pro-

cesses that �nd position and scale and perhaps even 3D-orientation of objects. Only type of

object must now be established, and the computational complexity has been signi�cantly

reduced.

I would also like to suggest to interpret the �ndings of the neurological dissociation of

where and what information processing in terms of object detection and recognition. In

such a way possibly the �where� stream does detection and the �what� stream recognition.

If so the what stream does not provide top-down information about the particular object

category or identity before detection, and detection of objects is done as a grouping process

before recognition starts. In this way reallocation of attention is done due to detection

with the purpose of recognizing an object. The two pathways is also a possible solution to

whether object recognition is serial or parallel in that parts of the processes are disparate

and can have di�erent type of processing.

From the above it follows that advanced models of grouping of visual stimuli should

be incorporated into a model of visual attention, and visual attention is guided to points

of interest due to bottom-up object indications (e.g. a colour segmented red car). Of

course if recognition occurs more close to the unprocessed stimuli, we should de�nitely

have object speci�c detectors that try to �nd every type of object in every position and

at every scale of visual input. Given the potential reduction of computational complexity

later object recognition is a viable alternative for a visual processing system. Research

on the conspicuity of object-hood (e.g. [284]) does point to that objects are attracting

attention in an early grouping face, before recognition. One might want to study attention

to arti�cial displays (e.g. 2.4), introducing low-level as well as mid�level cues, like proximity
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and continuity independently. Possibly one could study how attention to objects in videos

relate to extracted low-level features.

5.2.4 Semantic gap and mid-level processing

The concept of the semantic gap de�nes the di�erence in representation and processing of

sensory and higher-level reasoning, a gap the brain bridges per de�nition. The problems

of recalculating data from one representation to the other is di�cult theoretically. In my

view the gap needs to be �lled in with mid-level representations and processes. If we

can bridge the semantic gap and do this with systems that operate in real-time we can

solve possibly many problems in multi-media processing, for example video compression

and building multimedia retrieval systems. Possibly research on mid-level processing will

provide relevant results in present day computational model. For example, I am personally

investigating using mid-level processes[14] in object tracking in my work at RetCorr AB,

Helsingborg, Sweden. Mid-level processing is very much a way to make sensory data

available for higher-level conceptualisations, and the importance of such a system is why

I stress the relevance of study of scene interpretation in relation to visual attention in

the presented thesis. Technologies derived from present day computer vision models can

at least provide short-cuts between low-level and high-level representations, and it is not

clear whether these can provide just as good or even better computational models than

the human brain presents. However, it is at least reasonable to believe that deriving ideas

from studies of the human brain is something that is and will be fruitful, since we want to

do what the brain does.

5.3 Future work

• Improved tracking: People and moving objects are of high interest at least in the

studied types of scenarios, thus better trackers of such objects should be developed.

The pedestrian tracker has low performance due to many false negatives and the

moving object tracker due to inaccurate change detection. A possibility to improve

pedestrian tracking is to train the feature based classi�er with re�ned data like edges

instead of intensity arrays, or to use other feature based approaches especially tuned

for person detection.
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• Gaze following behaviour: Since it was found that visual attention follows the gaze

of persons in meeting scenarios it would be interesting to take advantage of gaze

and attentional tracking of people in video[285]. Particularly in the context of video

conferences this could be used in the application area of video compression. Further,

the tracking of additional objects/body parts should be included in such a model.

• Task in�uence: The in�uence of task on eye�traces could also be studied. For exam-

ple giving di�erent instructions to subjects in di�erent groups, perhaps none in one

group, higher-level concepts in�uencing on direction of attention at the population

level could be investigated. For example does task relevance a�ect allocation of at-

tention to particular classes of objects. The question then is how and when object

recognition occurs before overt orienting.

• Video compression: The major area the presented work could be utilised almost

immediately in is video compression. By combining high- and low-level features

in a saliency map improved compression ratios, given a experienced quality stan-

dard, could easily be obtained with current compression frameworks MPEG-2 and

MPEG-4 similarly to the work by Itti et. al. [9] using low-level features alone. An

extension to this would be to encode objects of interest to visual attention separately

in the MPEG-4, improving over motion prediction. Possibly objects could even be

expressed as modi�cations of the features that distinguish them from other objects,

e.g. the features in the presented tracker framework, thus signi�cantly reducing di-

mensionality.

• Semantic content retrieval: Another possible application area is semantic description

of multimedia, e.g. to build a multimedia retrieval system. In a multimedia retrieval

system we would like to ask for media that match our criteria, for example in surveil-

lance videos short sequences that contain threatening or suspicious behaviour.I think

current state of the art, in object and event detection, can provide the tools to extract

relevant information to some extent, however a visual attention mechanism might be

necessary to extract only the information that is relevant to the person who searches

for videos, based on automatically annotated videos. For example the following of

a conversation, who is speaking and to whom is that person directing their speech.
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In the more general case a complete story line should be done, and doing so by the

automatic system involves �ltering out unimportant data with respect to important

data, both generally but also with the story line itself considered. In most motion

pictures it is not signi�cant if mosquito enters the scene, since this is probably a ran-

dom unimportant event, but in a program about nature it is of utmost important.

For a more re�ned abstraction of sensory data, given internal model of the world,

then perhaps more advances technologies taking advantage of evolved systems in the

human brain could be utilised.
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