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ABSTRACT 

The objective of this research is first to investigate the applicability and advantage of 

statistical state estimation methods for predicting tool wear in machining nickel-based 

superalloys over deterministic methods, and second to study the effects of cutting tool 

wear on the quality of the part. Nickel-based superalloys are among those classes of 

materials that are known as hard-to-machine alloys. These materials exhibit a unique 

combination of maintaining their strength at high temperature and have high resistance to 

corrosion and creep. These unique characteristics make them an ideal candidate for harsh 

environments like combustion chambers of gas turbines. However, the same 

characteristics that make nickel-based alloys suitable for aggressive conditions introduce 

difficulties when machining them. High strength and low thermal conductivity accelerate 

the cutting tool wear and increase the possibility of the in-process tool breakage. A blunt 

tool nominally deteriorates the surface integrity and damages quality of the machined part 

by inducing high tensile residual stresses, generating micro-cracks, altering the 

microstructure or leaving a poor roughness profile behind. As a consequence in this case, 

the expensive superalloy would have to be scrapped. The current dominant solution for 

industry is to sacrifice the productivity rate by replacing the tool in the early stages of its 

life or to choose conservative cutting conditions in order to lower the wear rate and 

preserve workpiece quality. Thus, monitoring the state of the cutting tool and estimating 

its effects on part quality is a critical task for increasing productivity and profitability in 

machining superalloys.  
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This work aims to first introduce a probabilistic-based framework for estimating tool 

wear in milling and turning of superalloys and second to study the detrimental effects of 

functional state of the cutting tool in terms of wear and wear rate on part quality. In the 

milling operation, the mechanisms of tool failure were first identified and, based on the 

rapid catastrophic failure of the tool, a Bayesian inference method (i.e., Markov Chain 

Monte Carlo, MCMC) was used for parameter calibration of tool wear using a power 

mechanistic model. The calibrated model was then used in the state space probabilistic 

framework of a Kalman filter to estimate the tool flank wear. Furthermore, an on-

machine laser measuring system was utilized and fused into the Kalman filter to improve 

the estimation accuracy. In the turning operation the behavior of progressive wear was 

investigated as well. Due to the nonlinear nature of wear in turning, an extended Kalman 

filter was designed for tracking progressive wear, and the results of the probabilistic-

based method were compared with a deterministic technique, where significant 

improvement (more than 60% increase in estimation accuracy) was achieved. To fulfill 

the second objective of this research in understanding the underlying effects of wear on 

part quality in cutting nickel-based superalloys, a comprehensive study on surface 

roughness, dimensional integrity and residual stress was conducted. The estimated results 

derived from a probabilistic filter were used for finding the proper correlations between 

wear, surface roughness and dimensional integrity, along with a finite element simulation 

for predicting the residual stress profile for sharp and worn cutting tool conditions.  

The output of this research provides the essential information on condition 

monitoring of the tool and its effects on product quality. The low-cost Hall effect sensor 
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used in this work to capture spindle power in the context of the stochastic filter can 

effectively estimate tool wear in both milling and turning operations, while the estimated 

wear can be used to generate knowledge of the state of workpiece surface integrity. 

Therefore the true functionality and efficiency of the tool in superalloy machining can be 

evaluated without additional high-cost sensing. 
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CHAPTER ONE 

1. INTRODUCTION

Research Objective 

The objective of this research is first to investigate the applicability and advantage of 

statistical state estimation methods for predicting tool wear in machining nickel-based 

superalloys over deterministic methods, and second to study the effects of cutting tool 

wear on the quality of the part. This work aims to describe cutting tool functionality in 

machining nickel-based superalloys as a combination of tooling condition and workpiece 

quality, in order to maximize the useful life of the tool, and to reduce tooling cost in 

addition to preserving the end-product quality. This is achieved by using stochastic-based 

filters for tracking progressive tool wear in both milling and turning operations by 

utilizing a low cost power sensing, followed by extensive experimental study for 

identifying the relationship of the tool wear and workpiece quality parameters, i.e., 

surface roughness, dimensional tolerances and residual stresses. 

Motivation 

With advances in the aerospace and power generation industry designs, demand is 

increasing for materials with better fatigue and fracture resistance. Nickel-based 

superalloys are a special class of material with exceptional corrosion and temperature 

resistivity, which makes them an ideal candidate for manufacturing advanced engines or 

gas turbines. Therefore, there has been a rapid acceleration in development of a new 

generation of Ni-based alloys that can handle operational stresses at higher temperatures. 

As shown in Figure  1-1, advanced processing, alloy development, thermal barrier coating 
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and effective cooling schemes have led to a 4°F increase per year in temperature 

resistance capability of these materials [1]. Nickel-based superalloys are among those 

materials that are also classed as hard-to-machine alloys. These materials exhibit a unique 

combination of maintaining strength at high temperatures and high resistance to corrosion 

and creep. Therefore, more than 50% of a typical jet engine as shown in Figure  1-2, 

including turbine blades, turbine exhaust case and combustion chambers, are made of Ni-

based alloys [2]. 

 

Figure  1-1: Increase in temperature resistance capability of Ni-based alloys (dimensionless 

temperature is the ratio of gas-to-metal temperature difference over gas-to-coolant temperature 

difference). [1] 
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Figure  1-2: Ni-based alloys used on various compartment of a Pratt & Whitney jet engine [2] 

Several traditional and non-traditional machining processes used for manufacturing 

Ni-based alloys from raw materials are summarized by Thakur and Gangopadhyay [3] for 

different sections of a jet engine as shown in Figure  1-3. While these materials have 

found extensive use in power generation designs, the low thermal conductivity and high 

strength make machining them a challenging task. High tool wear rate of Ni-based alloys 

leads to more frequent change of the cutting tool and therefore decreases the productivity 

rate, and increases the idle time of the machine. 

 

Figure  1-3: Machining operation on different parts of a jet engine [3] 
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A worn-out tool deteriorates the surface finish (see Figure  1-4) and dimensional 

integrity of the end product in addition to inducing high tensile residual stress on the 

machined surface, which can accelerate micro-crack nucleation and cause early fatigue 

failure (see Figure  1-5). Hence, estimating and monitoring the tool wear and its rate, as 

well as the corresponding effects of wear on a part quality is a critical task.  

 

Figure  1-4: Poor quality of machined surface (Ra>1500µm) compared to acceptable surface 

quality (Ra<800µm) in a typical machining application. 

 

Figure  1-5: Subsurface damage due to tool wear: (a) plastically-deformed grains (work-hardened 

area) along the cutting direction, and (b) resultant high tensile residual stress (=800MPa) on the 

surface 

Problem Statement 
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Machining operations can be studied from different aspects. In general, the state of 

health of machining can be divided into three approaches: (1) health of the tool, (2) health 

of the workpiece, and (3) health of the machine; these are depicted in Figure  1-6. The 

state of health for the tool is described as the ability of the tool to properly cut the 

material. The typical metrics describing it are tool wear, tool wear rate, tool run-out, or a 

combination of these parameters. The state of health for the workpiece is the ability of the 

workpiece to meet the quality standards. Quality metrics such as surface roughness, 

dimensional tolerances and subsurface damage are typical parameters used for describing 

part quality. Lastly, the state of health of the machine describes the overall performance 

of the machine in terms of maintenance intervals, average time between failure of 

components, and prediction of impending faults. As an example, bearing vibration levels 

over a frequency spectrum, temperature and lubrication state are typical metrics for 

rotational machinery. Each of these three states of health, individually or together give 

rise to productivity and profitability of a manufacturing process. Therefore, to maximize 

the productivity and minimize cost it is important to actively monitor the most influential 

health factors (tool, part, and machine), and also understand the interactions between 

them.   

Tool wear is known to have significant influence on the machining productivity rate 

since 20% of the machining downtime is rooted in changing a dull or damaged tool 

[4].While several models are proposed for describing the progressive wear, all of the 

existing models are based on simplifying the process, by ignoring or reducing the 

parameters considered affecting wear generation. 
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Figure  1-6: State of health in machining operations 

The complex dynamics and lack of understanding of the evolution of wear during 

machining leads to introducing several wear formulations based on different assumptions. 

Factors such as residual stresses, tool run-out, tolerances, and lubrication can 

significantly affect the process and makes extending the traditional monitoring models 

based on deterministic modeling of the tool wear unsuccessful. The high tool wear rate in 

machining Ni-based alloys also introduces an additional challenge in developing wear 

models, since fewer experiments are available, and the resultant lack of information 

affects the accuracy of the model. All of these factors can be categorized as sources of 

uncertainties in the system, and can be divided into the following: 

1. Material: This includes the material properties and material structure. For example, 

in Ni-based alloys; existence of residual stress beneath the surface, percent 

concentration of hard carbide or boride particles on grain boundaries, difference in 



7 
 

the weight distribution of elements in the 𝛾′ phase in addition to inhomogeneity in 

material structure, give different machining characteristics to one particular alloy 

or different alloys. 

2. Lubrication: Machining lubrication such as dry cutting, wet cutting with flood 

coolant, minimum quantity lubrication or cryogenic significantly affect the cutting 

process and wear behavior.  

3. Cutting tool: Ceramic tools or type of tool coating (e.g. coated, uncoated tools) in 

addition to tool geometry (e.g. tool nose radius and rake angle) can accelerate or 

decelerate tool wear rate. 

4. Machine dynamics: Design and dynamic stability in terms of machine stiffness can 

also affect the wear behavior in terms of undesired self-exciting vibrations, such as 

chatter which shortens the tool life and damages workpiece quality. 

Modeling all of these factors is not possible in practice. However, they can be 

introduced into a modeling framework as uncertainty parameters which change the tool 

wear as a deterministic state of the operation to probabilistic state and stochastic-based 

tools must be utilized for tracking the probability distribution of it. The other critical 

factor that should be studied alongside the wear evolution is the influence of wear on the 

workpiece quality. In process planning and execution, specific care should be given to 

avoid any damage to the workpiece due to factors like excessive tool wear. Although 

significant attention has been given to understand effects of tool coating, geometry, 

lubrication or cutting conditions on the surface integrity of nickel-based alloys, few 

literature sources have discussed or considered the role of wear in machining health. 
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Therefore it is critical to be able to identify and estimate the detrimental effects of wear 

on the process performance.   

Research Questions 

In order to fulfill the above research objective, the following research questions will 

be addressed in this work: 

Research Question 1: What is the applicability of Bayesian inference in model 

parameter calibration when limited experimental data is available? How is the accuracy 

of such a modeling approach, and how can a probabilistic-based estimation framework be 

utilized for tracking progressive wear in machining Ni-based alloys? 

Research Question 2: What are the parameters representative of surface integrity for Ni-

based alloys, and what is the relationship between tool wear, tool wear rate and 

workpiece quality? Is it possible to use the developed tool condition monitoring methods 

in RQ1 to preserve a product quality in addition to maximizing tool life? 
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CHAPTER TWO 

 2. BACKGROUND  

Material Characteristics of Nickel-Based Superalloys 

The same reasons making Ni-based superalloys exceptional candidate for high 

temperature/stress applications, make machining them a challenging task. Ni-based alloys 

exhibit a unique combination of low-thermal conductivity, high work-hardening, and the 

ability to preserve ultimate stress at elevated temperatures.  Hence, they are categorized 

as hard-to-machine materials. It is known that the generated temperature at tool-

workpiece contacting surface is the main factor affecting the conventional machining 

operations (e.g. milling, turning, drilling, and grinding) [2-3-5]. Therefore, due to the low 

thermal conductivity of these alloys, heat is accumulated at the tool tip and elevated 

temperature degrades the coating and damages the tool. Moreover, accumulated heat at 

the tool-workpiece contacting surface induces a large plastic deformation region in the 

form of compressive residual stress and work-hardened region beneath the machined 

surface. Therefore, enormous cutting force is required for cutting the material on the next 

machining pass. This excessive cutting force can easily damage the tool or cause 

catastrophic failure in addition to deteriorating the surface integrity and quality of 

workpiece. The ability of these materials for maintaining their strength at high 

temperature is attributed to the existence of 𝛾 and 𝛾′ phase in their microstructure. At the 

micro level, Ni-based alloys are distinguished with three phases in their microstructure as 

the following: 
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1. Gamma (𝛾) phase: 𝛾 phase is a Face Centered Cubic (FCC) matrix of austenite 

phase that mostly contains elements like nickel, cobalt, chromium, tungsten, and 

molybdenum [6].  

2. Gamma-prime (𝛾′) phase: 𝛾′ phase contains the strengthening precipitates that 

are dispersing in the 𝛾 phase. Titanium, Aluminum, and Tantalum are the three major 

elements that stabilize the 𝛾′ phase [7] in the FCC 𝛾 phase. The percentage of 𝛾′ 

precipitates and their growth rate are highly dependent on the cooling rate of 𝛾 phase [6]. 

The dispersion of this phase in FCC 𝛾 matrix gives an exceptional strength at elevated 

temperature to these materials. An Image of transmission electron microscopy (TEM) 

used by Doi et al. is shown in Figure  2-1. The cuboidal shapes are the 𝛾′ in the direction 

of  𝛾 matrix. The perfect compatibility between the matrix and the precipitate give an 

exceptional chemical compatibility to the 𝛾′ phase. The ductility of the 𝛾′ phase provides 

the strength to the matrix in addition to lowering the fracture toughness [8].    

 

Figure  2-1: Dispersion of cuboidal 𝜸′ phase in 𝜸 matrix for Ni-8.5Al-5.4Ti alloy aged at 1213K 

for 2.7×103 seconds [9] 
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3. Carbide and borides particles: Small quantities (< 0.5%) of elements such as 

boron and carbon are added to the microstructure to control the grain boundaries and 

material properties. These carbide and boride particles will reside at the grain boundaries 

to protect it during wrought processing [6]. According to Bowman, there is no consensus 

about the carbide particles, whether they are detrimental or beneficial to the superalloys 

properties. But the in general opinion, the carbide particles help maintain the strength at 

high temperatures [8]. The alloy elements exist in the Ni-based superalloys structure is 

shown in Figure  2-2. 

Machining Characteristics of Nickel-based Superalloys 

As explained in previous section, Ni-based alloys maintain their strength during 

machining operation. Therefore, high cutting force and cutting power are produced 

during machining these materials compared to other conventional materials such as 

Aluminum or Steel. An extensive study in CU-ICAR machining lab was conducted to 

demonstrate the machinability performance of various difficult-to-machine alloys, which 

is shown in Figure  2-3. 

 

Figure  2-2: General alloy elements exist in Ni-based superalloys [6] 
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The comparison of cutting force for Ni-based alloys and Stainless Steel is also shown 

in Figure  2-4. It is clear from Figure  2-4 that cutting 𝛾′ strengthened alloys requires 

significantly higher force than 304-stainless steel. 

 

Figure  2-3: Machinability comparison of different Ni-based alloys and stainless steel alloys, the 

base materials is IN718 [10] 

 

Figure  2-4: Resultant force comparison of Ni-based alloys and 304-stainless steel [11] 

Another characteristic of Ni-based alloys are their high tool wear rate. Due to 

generation of high temperature up to 900-1000oC [12] at the tool tip and low thermal 
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conductivity, the degradation rate of tool is significantly high. High tool wear rate 

increases the frequency of tool change, which eventually leads to a higher machine 

downtime and lower productivity rate. Moreover, excessive tool wear can damage the 

surface quality and dimensional accuracy of the workpiece and in severe case can 

damage the machine. Therefore, studying tool wear in Ni-based alloys has significant 

importance to avoid any catastrophic damage. 

The literature existing in the field of tool wear study of Ni-based alloys can be 

divided into three categories. The first is those works studying the mechanisms of tool 

wear and parameters affecting them in the micro or macro level. The second category is 

those works using empirical methods or first principles to model the tool wear in different 

machining operations and the third category belongs to works that are intending to 

estimate or predict the tool wear. In the following, each category and their significant 

findings will be reviewed.  

Tool Wear Mechanisms in Machining Ni-based Superalloys 

ISO-8688 standard defines the tool wear as a change to the shape of tool during 

cutting process [13]. This is due to the thermo-mechanical interaction combined with 

thermochemical reaction of tool and workpiece. There are several wear failure 

mechanisms observed in research articles in milling, turning and drilling of superalloys 

with different inserts and cutting conditions. These mechanisms have been reviewed 

comprehensively by several researchers. According to the state of the art paper of Zhu et 

al. and Akhtar et al., wear failure mechanisms in Ni-based alloys are classified as 

abrasive, adhesive, diffusion, oxidation (chemical), and debonding failures [14-15]. 



14 
 

Existence of each wear failure mechanism is highly dependent on the workpiece material; 

insert geometry, and cutting conditions. In some cases, the wear progress is only 

dependent on one particular mechanism, in some other cases multiple wear mechanisms 

progress together or sometimes tool wear starts with a particular mechanism (abrasive 

wear) and will be replaced halfway by the nucleation of another mechanisms (adhesion 

and diffusion) until failure occurs [16]. In the following, each wear mechanism will be 

discussed briefly. 

Abrasive Wear 

This type of wear exists in all the machining operations including milling, turning, 

drilling and grinding. The main cause for abrasive wear is the extreme rubbing and 

sliding motion of hard particles from the tool into the workpiece or vise-versa. As shown 

in Figure  2-5. In machining Ni-based alloys, the hard peeled off particles from tool 

substrate and hard carbide particles in workpiece are responsible for scratching the tool 

cutting face and cause abrasive wear [15]. A Scanning Electron Microscopy (SEM) of 

abrasive wear in cutting Inconel 718 (IN718) with ceramic inserts is shown in Figure  2-6. 

As can be seen in this figure, abrasive wear is identifiable on the cutting (flank) face of 

ceramic insert as the regions with parallel grooves. 
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Figure  2-5: Inclusion of hard carbide particles into cutting face of the insert (sliding motion from 

left to right) [17] 

 

Figure  2-6: SEM micrographs of the wear profile of ceramic coated cutting tool when machining 

IN718 nickel-based alloys [18] 

Adhesive Wear 

Adhesive wear or cold welding happens when workpiece material under high 

temperature and pressure adheres to the rake or flank face of the cutting tool which can 

be observed in the shape of Build-Up Edge (BUE) or Build-Up Layer (BUL). BUE and 

BUL eventually peel off from the surface in subsequent cutting passes and cause damage 



16 
 

to the surface quality of workpiece. Moreover, BUE and BUL work as insulation units 

and prevent heat from dissipating from the tool tip, cause higher temperatures in 

machining Ni-based alloys and consequently lower tool life. High temperature which 

constantly exists in cutting superalloys is the main cause of adhesive wear [19-20]. The 

BUE generated on a coated insert while machining IN718 is shown in Figure  2-7.  

 

Figure  2-7: BUE generation in worn out insert in high speed cutting of Inconel 718 with coated 

insert [21] 

Diffusion Wear 

Diffusion wear occurs in high temperatures at the tool-workpiece and tool-chip 

interface. Diffusion happens when an element or particle from the tool or the workpiece 

diffuses into the other. Deng et al. found the existence of diffused Ni and Co element into 

the tool material using ceramic insert [18]. Chen et al. observed extensive diffusion wear 

with TiAlN coated insert when milling IN718 with more than 30 m/min cutting speed 

[22]. Existence of diffusion wear as the major tool failure mechanism was reported by 

several researchers in turning, drilling and milling of Ni-based alloys [23-25]. 
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Oxidation and Chemical Wear 

Oxidation occurs when the tool substrate is exposed to the air. At very high 

temperatures, a chemical reaction can happen between surrounding environment (such as 

oxygen in the air) and the tool elements. As stated by Akhtar et al., although high 

temperature exists in machining Ni-based superalloys, but this type of wear is less 

reported in the literature. Since chemical wear can be interpreted as diffusion wear [15]. 

Debonding Wear 

Debonding wear is the most complex type of wear, which is a consequence of 

accumulation of several types of wear such as abrasive, adhesion, diffusion and 

oxidation. In this type of wear, pieces of tool are peeled off from the tool surface. 

Debonding while machining Nickel-based alloys was reported in the work of several 

researchers as chipping, flaking, notch wear or catastrophic failure [26-29]. Flank wear, 

chipping, notch wear and flaking are shown in Figure  2-8. 

 

Figure  2-8: Common type of wear in milling IN718. (a) Flank wear, (b) Chipping, (c) Notch wear 

and (d) Flaking [29] 
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Tool Wear Maps  

 Tool wear maps are commonly used for identifying the dominant wear mechanisms 

in different cutting conditions for optimal cutting selection. Lim carried out an extensive 

study on designing the wear map for flank and crater faces of the uncoated carbide tools 

in dry turning. He found an interesting results that even an small change in feed can 

change the wear rate significantly [30]. The result of his work for High Strength Steel 

(HSS) uncoated tools is shown in Figure  2-9. Later on, Lim et al. found the wear map for 

TiC coated tools in addition to safety regions for flank wear where tool wear rate are the 

lowest as shown in Figure  2-10.  

 

Figure  2-9: Tool wear map on the flank side for carbide cutting tools [30] 
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Figure  2-10: Tool wear map for TiC coated inserts in dry turning [31] 

Jaffery and Mativenga performed the similar experiments for finding the wear map in 

P10 carbide insert in dry turning of EN8 Steel [32]. Their result is shown in Figure  2-11. 

Recently Kuttolamadom [33] studied the wear failure mechanisms of Ti6Al4V in end-

milling with WC uncoated insert, however his map (shown in Figure  2-12) was designed 

based on limited experiments. 

 

Figure  2-11: Wear map in dry turning of EN8 with P10 carbide tool [32] 
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Figure  2-12: Tool wear map in end-milling of Ti6Al4V with WC uncoated insert [33] 

Tool Wear Assessment in Nickel-based Superalloys and Measurement Metrics  

It is known that tool wear in machining has detrimental effects on the overall 

performance of the machine. As explained above, BUE or chipping of tool during 

operation can deteriorate the surface quality or cause abrupt dimensional inaccuracy. 

Deteriorated surfaces can cause the workpiece to be scrapped at the end of the production 

line due to quality control metrics.  This is a particularly critical consideration when 

dealing with Ni-based alloys since these materials are expensive. The cost for a bar of 1′ 

long and 2′′ diameter in 2014 of some Ni-based alloys are compared in Figure  2-13 to the 

other widely used materials in industry, where their cost is about 50 times greater than 

Aluminum, AISI steel and stainless steel and 2.6 times greater than the cost of Ti-based 

alloys. 
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Figure  2-13: Cost comparison of different materials used in industry (source: McMaster-Carr, 

date accessed: November 2015) 

Secondly, the detrimental effect of tool wear induces tensile residual stress at the 

contacting surface of workpiece. Therefore, a worn out tool increases the likelihood of 

early failure and reduces the fatigue life. This effect is reported in the literature by many 

researchers studying the effect of tool condition on residual stress [34-36]. The change in 

magnitude of tensile residual stress at the surface of machined IN718 for sharp and worn 

inserts are selected from the work of Sharman et al. [34] and is shown in Figure  2-14.  
 

 

Figure  2-14: Surface and subsurface residual stress in turning IN718 with coated insert. (a) Sharp 

insert (b) Worn-out insert [34] 

http://www.mcmaster.com/
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Third, the detrimental effect of a worn tool is the tearing, generation of micro-cracks 

and inclusion of carbide particles on the surface of workpiece which is shown in 

Figure  2-15. This inclusions and micro-cracks reduce the fatigue life and cause early 

failures in the operation.  

 

Figure  2-15: Surface damage due to worn tool in turning IN718. (a) Dragged carbide particle on 

the surface of workpiece [37] (b) Tearing and cracking of the surface [34] 

The importance of tool wear in manufacturing Ni-based alloys emerges when all the 

above effects are taken into consideration. Particularly by considering the major 

application of Ni-based alloys, which is in sensitive industries like aerospace and power 

generation, where any unpredicted failure can lead to millions of dollars damage. 

Tool wear is conventionally measured on two surfaces, i.e. flank face and rake face. 

The flank face is in direct contact with the surface of workpiece and directly influences 

the surface quality of workpiece. The wear area on the flank face, which is called flank 

wear and its average width, is considered as the primary measure of flank wear. 

According to ISO-8688 standard, a tool with maximum of 300μm flank wear is 

considered “worn-out.” On the other hand, the rake face is in contact with the chip flow 

of material and usually the depth of crater generated by sliding the chip on the rake face 
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is measured as crater wear. Flank and rake faces with their wear area are shown in 

Figure  2-16. Chipping, notch wear and flaking are another types of wear which are 

already shown in Figure  2-8. 

 

Figure  2-16: Flank and rake face with corresponding flank and crater wear 

Tool Condition Monitoring 

In automated manufacturing systems, accurate estimation and monitoring of 

important process states (e.g. tool wear) is a critical factor to reduce downtime, avoid 

catastrophic failure, and preserve the quality of the final product. In Ni-based materials, 

the wear rate of inserts during machining is relatively high compared to conventional 

materials [14]. Such a high tool wear rate while machining makes establishing an 

accurate tool wear model a challenging task because only a limited number of 

experiments can be completed before tool failure. 

Tool wear studies can be divided into two major categories: the first is the empirical 

or semi-empirical study based on the observed relationships of cutting conditions such as 

feed and cutting speed to tool wear. Taylor tool life model is the most commonly used 
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empirical model developed and still widely in use in the machining industry [38]. While 

convenient to use, Taylor tool life model is blind to the tool wear mechanisms and cannot 

be used for modern machining such as high speed machining [39]. The second category 

is model-based studies that use pre-developed mechanistic models for certain 

mechanisms of tool wear. Such studies include the Takeyama and Murata model of tool 

flank wear that considers mechanical abrasion and physicochemical type of wear [40], 

the Usui model of crater wear that uses a 3-dimensional heat transfer model of the chip to 

derive the wear characteristic Equation assuming only the diffusion mechanism exists 

[19], the Koren model where only abrasion and diffusion mechanisms were considered 

for wear model development [41], and the Rabinowicz model where only the abrasive 

mechanism was investigated for modeling tool wear [42]. Numerical studies are a 

subcategory of mechanistic methods that are based on finite element analysis (FEA) of 

mechanical interactions between the tool and the workpiece material [39-43]. While FEA 

is accurate in modeling tool wear, the major drawback is its time inefficiency which 

makes it impractical for industrial use. One of the subcategories of empirical models are 

data-driven methods. As implied from its name, these methods rely on input data and its 

correlation to tool wear. The advantages of data-driven techniques are mostly realized in 

situations where the process model is not available. This feature is particularly useful for 

studying tool wear in machining Ni-based materials due to the lack of mechanistic 

models.  

To use data-driven methods, three main decisions need to be made: The type of signal 

to use, the features of the signal to extract, and the method to select. Force data is the 
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most widely used measurement signal in tool wear studies. Despite being precise, the 

measurement device (i.e. dynamometer) needs continuous calibration [44], limits the 

workpiece size [45], and is expensive, making it almost impossible to implement in 

industrial machine shops. Vibration and Acoustic Emission (AE) signals have shown 

good capability in studying tool wear; however, the mounting location of the AE sensor 

or the accelerometer has significant influence on their performance [44-46]. On the other 

hand, Hall effect sensors used for power sensing are relatively inexpensive, they can be 

easily mounted in the machine, and they do not limit the size of the workpiece, which 

make them suitable candidates for machining performance assessment in industrial 

applications. However, the power signal, which is representative of the resultant force, is 

not always as sensitive to the tool condition as cutting force [47]. Due to the differences 

in the nature of sensors, each can capture different information from the system. Thus, by 

using sensor fusion methods, it is possible to extract more informative information from 

the signals. Wang et al. fused two sensors for flank wear estimation of ASSAB718 steel 

in dry milling, namely a vision system (direct measurement) and a force sensor (indirect 

measurement) [48]. Their results were promising for flank wear estimation. However, 

their method was only applicable for dry milling. The flow of coolant in machining 

titanium and nickel-based materials makes using the vision measurement systems almost 

impossible. Segreto et al. combined force, AE and vibration sensors for tool wear 

classification of Inconel 718 with a backpropagation neural network in wet machining 

[46-49]. They could achieve a success rate of 98% for discrimination between a sharp 

and worn insert. They also reported small contribution of the vibration sensor due to the 
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environmental noise in machining. While the use of classifiers, make combining the 

effect of multiple tool wear mechanisms possible, the output is less informative than 

estimators since no information will be provided on the evolution of particular tool wear 

mechanisms. Similar work on tool wear classification of AISI4340 steel was conducted 

by Cho et al. [50]. They compared the performance of different classifiers, multilayer 

perception neural network, radial basis function neural network, support vector machine, 

and machine learning ensemble, in fusing 4 different sensors (Force, Vibration, AE and 

Power) with 11 different combinations [50]. According to their results, machine learning 

ensemble had the highest accuracy with 97% success rate with the combination of 

vibration and force sensors. Vibration and power sensors, which are well suited for 

industrial applications, were fused in the work of Trejo-Hernandez et al.. They created a 

FPGA (Field Programmable Gate Array) smart sensor for predicting tool wear area in 

turning of AISI 1045 and showed, by fusion of the aforementioned sensors, that 

estimation results improved 3 times as compared with a single sensor [51]. In the recent 

work of Zhang et al., AE and cutting sound (microphone) sensors were utilized in turning 

superalloy GH2135 for flank wear estimation with support vector regression for 

predicting tool wear and support vector machine for classifying the tool state [52]. Based 

on their results the prediction accuracy of fused sensors is very close to the prediction 

result of a single AE sensor, which makes using sound sensors a redundant choice [52]. 

Moreover, linear behavior was observed in their result, which enables using simpler 

methods such as linear regression and time series modeling.  
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In addition to available data driven tools, several works in the literature studied 

feature selection techniques. The features of the acquired signal related to tool wear are 

categorized as time domain, frequency domain, and time-frequency domain features. 

Scheffer et al. used correlation and the statistical overlap factor of statistical features of 

force signals in the time domain, and showed that the standard deviation of the force 

signal is the most sensitive feature in turning to tool wear [53]. In another effort, Segreto 

et al. used time domain features of AE, vibration, and force signals in addition to 

principal component analysis and linear predictive analysis for tool wear classification of 

Inconel 718 in turning [46-49].  Fang et al. studied the frequency domain features of the 

fast Fourier transform of the vibration signal for tool edge wear assessment of Inconel 

718 [54]. Time-frequency decomposition of the signal using wavelet transforms has been 

considered by different researchers. As mentioned by Xiaoli, a successful feature 

selection method should be as sensitive as possible to tool wear and insensitive to 

changes in cutting conditions and other external factors [44]. Xiaoli used Continuous 

Wavelet Transform (CWT) for decomposing AC motor current and Discrete Wavelet 

Transform (DWT) for decomposing AC servomotor current for small drill bit breakage 

detection [44]. Choi et al. studied the relationship between Root Mean Square (RMS) of 

Discrete Wavelet Transform of a force signal in ramp cuts of AISI 1018, and showed that 

the RMS value of the wavelet coefficient exhibits a linear relationship to tool wear in 

different cutting conditions [55]. However, they proposed a separate model for each 

cutting condition and could not develop a generalized tool wear model. Chuangwen and 

Hualing used the Wavelet Packet Decomposition (WPD) of the vibration signal and 
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introduced a new feature selection procedure for eliminating the effect of cutting 

conditions [56]. In another effort, Jemielniak et al. introduced two new correlation 

coefficients for selecting the statistical features of wavelet coefficients of WPD for rough 

turning of Inconel 625 [57]. The variability of different feature selection methods is 

shown in Table  2.1. The focus of the majority of literature in the field of Tool Condition 

Monitoring (TCM) is on conventionally available material such as steel. Recently the 

attention is shifted toward nickel-based alloys, but mainly on classification purposes, 

which does not provide information on tool wear evolution.  

One of the challenges in tool wear monitoring is the complexity of its dynamics, and 

quantifying the effect of various variables such as tool coating, tool geometry, material 

structure, lubrication, tool run-out and initial residual stresses. Since controlling all these 

parameters is impossible, they act as the sources of uncertainties in machining. Therefore 

a stochastic-based method can be used for analyzing the state of the tool. One of the early 

works in this field is the work of Schmitz et al. on stochastic estimation based on mesh 

grid method for identification of unknown parameters in 2-D Merchant model [58].  

Table  2.1: Selected sensors and features for TCM 

Authors Signal Method Feature Material 
[59] 

AE 
WPD Root Mean Square 40Cr Steel 

[60] DWT Energy of wavelet 
coefficient AISI 6150  

[61] 

 
Vibration 

 

WPD 
Peak to valley / Crest 

factor / Mean / 
Variance / Kurtosis 

AISI 45 

[56] WPD Normalized energy - 
 

[62] Time 
Domain 

Mean / Variance / 
Skewness / Kurtosis - 

[63] Time 
Domain / Root Mean Square AISI 45 
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WPD 

[64] 

Force 
 

DWT Mean / Variance of 
local maxima  ASSAB 760  

[55] DWT RMS AISI 1018  

[65] Time 
Domain 

Variance / Energy 
around certain 

frequency 
Aluminum alloy 

[53] 

Time 
Domain – 
Frequency 

Domain 

Variance / Energy 
around certain 

frequency 
Aluminum alloy 

[66] SOM Average / Variance 
over one revolution ASSAB 718HH  

[48] WPD Energy of signal ASSAB 718HH 

[45] Current DWT Low frequency in 
wavelet coefficients 

AISI 1018 
 

[67] WPD Mean Mild steel 

[68] Image 
(Vision) WPD Energy 25Cr3Mo3NiNb 

[54] Force / 
Vibration WPD Root Mean Square Inconel 718 

[57] Force / AE WPD 

Root Mean Square / 
log- energy / Skewness 
/ Kurtosis / Ring down 

counts / pulse width 

Inconel 625 

[46] Force / AE / 
Vibration 

Time 
Domain 

Coefficients of 
Principal Component 

Analysis 
Inconel 718 

[49] Time 
Domain 

Linear predictive 
analysis Inconel 718 

[44] Motor/Axis 
Current 

CWT / 
DWT - AISI 45 quench 

steel 
 

The identified parameters were fed into the model for predicting cutting force and its 

uncertainty and experimentally validated on turning AISI-1045 steel [58]. In another 

effort by Karandikar et al., the authors used the mesh grid method and Markov Chain 

Monte Carlo (Metropolis algorithm) for Bayesian parameter inference on Taylor tool life 

and extended Taylor life in milling of AISI-4137 steel.  They compared the results with 

deterministic approach (maximum likelihood estimation) and showed that by using the 
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Bayesian method and combining the prior knowledge to the likelihood function, fewer 

experiments were required for parameter inference [69-70]. An alternative stochastic 

approach for tool wear studies is based on reliability and injury theory. Salonitis and 

Kolios investigated the applicability of using Monte Carlo simulation and first order 

reliability method for characterizing the probability of tool failure in different feed and 

cutting speed [71]. In an interesting research by Braglia and Catellano and Braglia et al., 

they derived the distribution of the tool life based on progressive behavior of the tool 

wear with diffusion theory and Fokker-Plank equation. They calculated the average and 

the uncertainty of progressive tool wear which were in agreement with experimental 

results [72-73]. While diffusion theory is successful in tracking progressive tool wear, it 

cannot be used for chipping or breakage detection; this will limit the applicability of their 

method. 

Concluding Remarks 

In this chapter, material characteristics of nickel-based alloys, wear failure 

mechanism, its effect on surface integrity in addition to existing Tool Condition 

Monitoring (TCM) methods were reviewed. By looking at the state-of-the-art literatures 

reviewing tool wear mechanisms and surface integrity of Ni-based alloys [2-3-5-14-15], 

the existing research gap in selecting the proper signal, proper feature and proper TCM 

method is still observable. In over 300 papers reviewed by the recently-published 

superalloy machining state-of-the-art paper of Thakur and Gangopadhyay, none was 

about monitoring methods. The extensive literature review shows that, the total number 

of research articles about TCM specifically used for Ni-based are not more than 25 
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journal articles or conference proceedings. Moreover, while the effect of cutting 

conditions, tool coating or lubrication on surface integrity of nickel-based alloys have 

been widely studied, the tool wear effects as one of the most important features in 

machining superalloys has not been taken into consideration yet. Therefore, a secondary 

research gap in connecting the tooling health to the health of the end-product still exists. 
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CHAPTER THREE 

3. BAYESIAN INFERENCE FOR POWER-MODEL

PARAMETER CALIBRATION 

Several models have been proposed to describe the relationship between cutting 

parameters and machining outputs such as cutting forces and tool wear. However, these 

models usually cannot be generalized, due to the inherent uncertainties that exist in the 

process. These uncertainties may originate from machining, workpiece material 

composition, and measurements, and are particularly significant in Ni-based alloys. A 

stochastic approach should be utilized to compensate for the lack of certainty in 

machining, particularly for rapid tool wear evolution leading into a small dataset. The 

Markov Chain Monte Carlo (MCMC) method is a powerful tool for 

addressing uncertainties in machining parameter estimation. The Hybrid Metropolis-

Gibbs algorithm has been chosen estimate the unknown parameters in a mechanistic 

tool wear model for end milling of a Ni-based alloy and its performance is compared 

with the deterministic approach.  

Theoretical Background 

Bayes Rule 

Bayesian data analysis is a powerful tool used for statistical inference. Thomas Bayes 

introduced the Bayesian inference and proposed the basic formulation, known as the 

Bayes rule, in the 18th century [74]. According to the Bayes rule, the probability of an 

event θ, is derived by multiplying initial belief or previous knowledge to the likelihood 
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function p(y|θ) as in Equation  3-1. Where p(θ|y) is a posterior probability of event θ, p(θ) 

is the initial belief and p(y) is a marginal distribution. 

( | ) ( )( | ) ,  ( ) ( | ) ( )
( )

p y pp y p y p y p d
p y
θ θθ θ θ θ= = ∫   3-1 

Assuming independent and identically distributed (i.i.d.) observations, the likelihood 

function, p(y|θ), is simplified as the product of each observation probability as in 

Equation  3-2. In many cases, finding a closed form solution for marginal distribution is 

somewhat tedious or even impossible [75], so it is convenient to treat p(y) as a 

normalizing and simplify Equation  3-1 to Equation  3-3. Although finding the closed form 

solution of posterior probability distribution -p(θ|y)- in some cases is possible, in many 

cases numerical approximations such as Markov Chain Monte Carlo (MCMC) methods 

like Gibbs sampler or Random-Walk Metropolis algorithm are proposed to generate 

samples from the posterior probability instead of calculating it.  

1 2
1

( | ) ( ,..., | ) ( | )
n

i
i

p Y P y y p yθ θ θ
=

= =∏   3-2 

( | ) ( | ) ( )p Y p Y pθ θ θ∝   3-3 

Gibbs Sampler 

The Gibbs sampler is proposed as one of the Markov Chain Monte Carlo methods to 

sample from a posterior distribution when a closed from solution of posterior probability 

distribution is not available [76]. To implement the Gibbs sampler, the closed form 

solution for the full conditional probability distribution of each parameter given all the 

remaining parameters is required. To illustrate how Gibbs sampler works, one needs to 
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consider a linear regression model as in Equation  3-4. Where Yϵ{y1,…,yn} is the set of 

observations, βi is an unknown coefficient, X=[x1,…,xi]T is a set of known variables and ε 

is a measurement error, which is assumed to be normally distributed with zero mean and 

unknown variance σ2. In this case, there are two unknown values - βi and σ2 - that should 

be identified within Bayesian framework.  

T
iY Xβ ε= +   3-4 

 Joint posterior probability density of the unknowns can be written as Equation  3-5. 

The term p(βi|σ2, xi, y1,…,yn) is called the full conditional of βi, and the term p(σ2|xi , 

y1,…,yn) is called the marginal distribution of σ2 where calculating its closed form 

solution is tedious except with some special assumptions. However, the Gibbs sampler 

states that if the full conditional of unknown parameters βi and σ2 are known, samples 

taken from them belong to the their joint posterior distribution. Full conditional of βi can 

be written as Equation  3-6, where p(βi) is an initial belief with mean β0 and variance Σ0. 

2 2 2
1 1 1( , | , ,... ) ( | , , ,... ) ( | , ,... )i n i n np X y y p X y y p X y yβ σ β σ σ∝   3-5 

2 2 2
1 1

2
1

( | , , ,... ) ( ,... | , , ) ( | , )

( ,... | , , ) ( )
i n n i i

n i i

p X y y p y y X p X
p y y X p
β σ β σ β σ

β σ β

∝

=
 3-6 

Assuming i.i.d. observations and after some simplifications, full conditional of βi is 

derived as a Normal distribution with the mean βn and the covariance Σn as in 

Equations  3-7 to  3-9. 

2
1( | , , ,... ) ( , )i n n np X y y Nβ σ β∝ ∑  3-7 
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The next is finding the full conditional of σ2. This can be written as Equation  3-10, 

where p(σ2) is the initial belief of measurement variance. It has been shown by Hoff, that 

this distribution can be considered as an inverse-gamma distribution (see Equation  3-11) 

with v0 and 𝜎𝜎02 as a sample size and sample variance respectively [75]. 

2 2 2
1 1

2 2
1

( | , , ,... ) ( ,... | , , ) ( | , )

( ,... | , , ) ( )
i n n i i

n i

p X y y p y y X p X
p y y X p
σ β β σ σ β

β σ σ

∝

=
 3-10 

2
2 0 0 0( ) ( , )

2 2
p IG ν ν σσ ∝  3-11 

By plugging in Equation  3-11into the Equation  3-10, the full conditional of 

measurement error variance is calculated as shown in Equation  3-12, where SSE is a sum 

of squared errors equivalent to ∑ (𝑌𝑌𝑖𝑖 − 𝛽𝛽𝑇𝑇𝑋𝑋)2𝑛𝑛
𝑖𝑖=1  and n is a number of observations. 

Therefore, the full conditional probability distribution of unknown parameters in linear 

systems is available and the Gibbs sampler can be easily used to draw samples to 

characterize the posterior distribution. This algorithm is described in Figure  3-1. 
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Figure  3-1: Gibbs sampler algorithm 

Random-Walk Metropolis Algorithm 

The Gibbs sampler is an easy to implement and practical method in the case of linear 

models, while it does not work for nonlinear models or in cases where closed form 

solution of the full conditional distributions of unknown parameters are not available. 

Another technique proposed by Metropolis et al., where a distribution called proposal 

density is used to approximate the posterior distribution of parameters [77]. Since the 

proposal density does not fully capture the features of the posterior distribution, an 

acceptance-rejection method should be implemented to reject the samples that are 

generated from the regions with lower probability. Unlike the Gibbs sampler that accepts 

all the samples, the Metropolis algorithm accepts a portion of them. The step-by-step 

guide for the Metropolis algorithm is shown in Figure  3-2. 

𝛽𝛽𝑖𝑖𝑘𝑘~ 𝑁𝑁(𝛽𝛽𝑛𝑛 ,  𝛴𝛴𝑛𝑛) 

• (0) Find the full conditional of unknowns 
• (1) start with k=1 

        - Draw a sample 𝛽𝛽𝑖𝑖𝑘𝑘 from full conditional of β
i 
: 

• (2) Use the drawn sample 𝛽𝛽𝑖𝑖𝑘𝑘  
                    - Calculate sum of squared error:  

- 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ �𝑌𝑌𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑘𝑘
𝑇𝑇𝑋𝑋𝑖𝑖�𝑛𝑛

𝑖𝑖=1
2
 

- Draw a sample 𝜎𝜎𝑘𝑘2 from the full conditional of 𝜎𝜎2: 
- 𝜎𝜎𝑘𝑘2~ 𝐼𝐼𝐼𝐼 (𝜐𝜐0+𝑛𝑛

2
,  𝜐𝜐0𝜎𝜎0

2+𝑆𝑆𝑆𝑆𝑆𝑆
2

) 
• (3) ADD (+1) to k and GO to line (1)  
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Figure  3-2: Metropolis algorithm 

In practical applications, a symmetric probability density (i.e. a Normal distribution 

with zero mean and arbitrary variance δ2) is used as the proposal density function. Lynch 

2007 reported that finding the variance δ2 is more of an art than science and it depends on 

the experience level of the user [78]. Therefore, several studies exist about techniques for 

finding an optimal proposal density variance [79-81]. The proper choice of the proposal 

density function, plays a critical role in the acceptance rate of candidate points. If a very 

small variance is chosen for δ2, it takes a long time for the Markov-chain to converge to 

the true values and if a very large variance is chosen the rejection rate of drawn samples 

increases and this affects the efficiency of the chain. It is reported that the 25-35% 

acceptance rate can be considered as appropriate for the convergence of Markov chain 

𝑞𝑞𝑘𝑘~ 𝑁𝑁(0, 𝛿𝛿2) 

𝛽𝛽𝑖𝑖∗ = 𝛽𝛽𝑖𝑖𝑘𝑘 + 𝑞𝑞𝑘𝑘 

𝑟𝑟 =
𝑝𝑝(𝛽𝛽𝑖𝑖∗|𝜎𝜎2,𝑋𝑋, 𝑦𝑦1, … ,  𝑦𝑦𝑛𝑛)
𝑝𝑝(𝛽𝛽𝑖𝑖𝑘𝑘�𝜎𝜎2,𝑋𝑋,𝑦𝑦1 ,  … , 𝑦𝑦𝑛𝑛)

 

= exp{
−1
2

[
𝑆𝑆𝑆𝑆𝑆𝑆(𝛽𝛽𝑖𝑖∗) − 𝑆𝑆𝑆𝑆𝑆𝑆�𝛽𝛽𝑖𝑖𝑘𝑘�

𝜎𝜎𝑘𝑘2
+ 𝑁𝑁(𝛽𝛽0,  𝛴𝛴0)|𝛽𝛽𝑖𝑖∗ − 𝑁𝑁(𝛽𝛽0,  𝛴𝛴0)|𝛽𝛽𝑖𝑖𝑘𝑘]} 

𝑈𝑈~𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢[0,1] 

𝛼𝛼 = min{1, 𝑟𝑟} 

• (0) Select the proposal density function 
• (1) Select the starting point as 𝛽𝛽𝑖𝑖1 , 𝜎𝜎12 
• (2) FOR k=1:N 

- Select a candidate point 𝑞𝑞𝑘𝑘  from proposal density: 

       - Calculate a candidate point 𝛽𝛽𝑖𝑖∗: 

•  (3) Calculate the r ratio 

• (4) Select a point U from the uniform distribution 

• (5) Find the acceptance ratio  

• (6) IF U<α 
- Accept the candidate point: 𝛽𝛽𝑖𝑖𝑘𝑘+1 = 𝛽𝛽𝑖𝑖∗ 

•        OTHERWISE 
- Reject the candidate point: 𝛽𝛽𝑖𝑖𝑘𝑘+1 = 𝛽𝛽𝑖𝑖𝑘𝑘 

• (8) END IF 
• (9) END FOR 
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[75]. In this work, a method used by Solonen 2006 based on calculating the Jacobian 

matrix was used to find with the proposal density variance [82]. It is worth mentioning 

that in addition to Metropolis algorithm, there are many other algorithms developed such 

as Metropolis–Hasting algorithm, Delayed Rejection algorithm, and Adaptive Metropolis 

to increase the performance of sampling procedure [75-81-83]. The last part of this 

section explains the Solonen method to approximate the proposal density variance (δ2). 

Solonen showed that an optimal value of the covariance matrix δ2 can be approximated as 

Equation  3-13, where MSSE is the minimum sum of squared error derived after plugging 

in the optimal value of βi that minimizes squared error function and J is a Jacobian matrix 

of outputs with respect to the unknowns as in Equation  3-14. 

 2 1( )TJ J MSSEδ −=   3-13 

 
1

...opt opt
i

Y YJ
β β

 ∂ ∂
=  ∂ ∂ 

  3-14 

Mechanistic Tool Wear Model 

The tangential force in milling is proportional to the chip area as in Equation  3-15, 

where Ks is an unknown cutting pressure and A denotes chip area. There have been 

several attempts in the literature to find a closed-form solution for the cutting pressure. 

Koenigsberger and Sabberwal proposed that the cutting pressure is a function of average 

chip thickness [84], which was later confirmed by the other authors [85-89]. Therefore, 

assuming the cutting pressure is dependent on the average chip thickness (ℎ), 

Equation  3-15 can be written as Equation  3-17. Where 𝐾𝐾𝑠′ and c are constants, ap is the 
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depth of cut, f is the feed, m is the number of cutting tooth and φ is the instantaneous 

angle of rotation (see Figure  3-3). 

 s sF K A=   3-15 

 c
s sK K h′=   3-16 

 sinc
s s s p s p

fF K A K a h F K h a
m

ϕ′= = → =   3-17 

 sinc
t pF K h a f ϕ′=   3-18 

 

Figure  3-3: Milling Schematic [90] 

The mean chip thickness ℎ� can be found in terms of the entrance and exit immersion 

angles (ψ1 and ψ2, respectively) as shown in Equation  3-19. Assuming the geometrical 

relationship as Equation  3-20, the relationship between average chip thickness and feed is 

derived in Equation  3-21. In conventional milling tests demonstrated in Figure  3-3, these 

two angles are constant. Thus, the Equation  3-19 reduces to Equation  3-22 with constant 

C1. 
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1h C f=   3-22 

It was shown with an increase in the tool wear, the magnitude of the cutting force 

increases as well [91]. Rubenstein showed that the change in magnitude of tangential 

force Ft is a function of the material hardness Hh, friction coefficient μ, tool flank wear 

VB and tool wear length s represented by Equation  3-23, where s is assumed to be equal 

to the depth of cut ap [92-93]. All the parameters in Equation  3-23 can be assumed 

constant in milling except for VB, which changes relative to the volume of removed 

material in the process. By adding Equation  3-23 to Equation  3-18, the resultant 

tangential force can be written as Equation  3-24, where C2 is a constant summarizing the 

constant variables. 

 wear
t hF VBH sµ=   3-23 

 1
1 2sinc

t pF K C f a C VBϕ+′= +   3-24 

Waldorf et al. 1992 showed that the constant 𝐾𝐾′ is dependent on cutting conditions 

including feed, and depth of cut [93] as in Equation  3-25, where C3 is a constant, and α1- 

α2 denotes the feed and depth of cut exponents. Plugging Equation  3-25 into 
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Equation  3-24, the tangential force is derived as a function of cutting conditions. 

Multiplying the tangential force Ft with the cutter diameter D and spindle speed N yields 

to instantaneous cutting power P as in Equation  3-27. The average power can be simply 

determined by integrating Equation  3-27 from the entering angle to the exiting angle as in 

Equation  3-28, where K1 to K3 are unknown parameters that need to be identified. 

 1 2
3 pK C f aα α′ =   3-25 

 1 21 1
1 3 2sinc

t pF C C f a C VBα α ϕ+ + += +   3-26 

 1 21 1
1 3 2sinc

pP C C Df Na C DNVBα α ϕ+ + += +   3-27 

 2
1 3

KP K Nf K NVB= +   3-28 

Milling Experimental Setup 

Material used for this experimental study is a Ni-based superalloy known as Rene-

108 (R-108). An OKUMA GENOS M460-VE 3-axis CNC machine was used to end-mill 

(in down-milling direction) rectangular blocks of size 60 mm× 80 mm× 25 mm, using a 

water-soluble coolant with 8% concentration. A 2-flute indexable tool holder with a 

diameter of 15.875 mm was used, and the width of cut was chosen to be 9.5 mm that 

corresponds to 60% tool engagement, as this was the maximum manufacturer 

recommendation for the particular tool holder. Full length of the blocks (60 mm) was 

utilized for machining. At the chosen width of cut, 8 tests were conducted on the block: 4 

tests with 2 replications. 4 additional tests were also conducted to cover the full range of 

cutting conditions for validating the results. Depth of cut for each pass is kept constant at 

0.5 mm, and cutting speed and feed were changed as excitation factors for parameter 
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identification. Tool Monitoring Adaptive Controller (TMAC) installed on the machine 

was used for measuring spindle current to monitor spindle power consumption in real 

time. However, due to the low sampling frequency of commercial software (~50 Hz), an 

external data acquisition device (DAQ) was programmed to capture the data with high 

sampling rate. To measure spindle power in high sampling frequency, the output of the 

transducer (Figure  3-4) was fed into a NI9215 analog input module mounted on NI-

cRIO9103 chassis programmed with LabVIEW2010. Data was collected in voltage at 

sampling rate of 10.24 kHz. 

 

Figure  3-4: Data Acquisition with NI-cRIO9103 

Tests for the R-108 were designed in a fashion that the effect of each parameter can 

be observed, therefore selecting a high and a low level of cutting speed and feed. Two 

levels of cutting speed at 25 and 50 m/min, two levels of feed at 0.1 and 0.2 mm/rev, and 

a constant depth of cut of 0.5 mm were used to identify the constants K1, K2 and K3 in 

Equation  3-28. These cutting parameters were selected at both their relatively mild values 
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to show the behavior of the inserts under normal machining conditions, and at their 

relatively aggressive values to show the behavior of the inserts under high material 

removal rate condition. Cutting parameters for validation tests were selected between the 

mild and aggressive values. Design of Experiment (DoE) used in this work is shown in 

Table  3.1. Spindle power consumption was measured for each pass. The change in 

spindle power consumption is shown in Figure  3-5, where the increase in the power 

illustrates the developing flank wear during the cutting process. The mean value of 

cutting power between 42-48 mm cutting distances (70-80% of total cutting distance) was 

selected as the average cutting power affected by the tool flank wear at each test. One 

portion of this value is contributed to the power required to cut the workpiece (i.e. 

𝐾𝐾1𝑁𝑁𝑢𝑢𝐾𝐾2), and another portion is due to the effect of the tool wear on increasing cutting 

power magnitude (i.e. 𝐾𝐾3𝑁𝑁𝑁𝑁𝑁𝑁). 

Inserts used in this work were Sandvik Coromill (R390-11 T3 08M-PM 1030) coated 

insert. The 1030 grade is recommended by Sandvik for milling R-108 due to its 

resistance to material build-up on the cutting edge and plastic deformation [94]. The 

shape of the insert and the tool holder is shown in Figure  3-6 and Figure  3-7 with their 

corresponding dimensions in Table  3.2 and Table  3.3. Fresh unworn inserts were used for 

each test, and the flank wear on the bottom edge of each insert was measured using an 

Olympus optical microscope and average flank wear was calculated. Measured tool flank 

wear for tests 1-4 is shown in Figure  3-8. 
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Table  3.1: DoE table for end-milling R-108 Ni-based superalloy 

Test 

[#] 

Vc  

[m/min] 

f  

[mm/rev] 

P  

[×10-3 hp] 

VB 

[μm] 

1 25 0.1 36 88 

2 25 0.2 57 73 

3 50 0.1 82 85 

4 50 0.2 154 113 

5 25 0.1 36 88 

6 25 0.2 47 82 

7 50 0.1 62 97 

8 50 0.2 165 82 

 

Figure  3-5: Cutting power of test 3, Vc=50 m/min, f=0.1 mm/rev  
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Figure  3-6: Tool holder shape[94] 

Table 4 - 1: Dimension of the tool holder 

in end-milling operation [94] 

Parameter Value 
Dc [mm] 15.875 

dmm [mm] 19 
l1 [mm] 56.8 
l2 [mm] 82.6 
l3 [mm] 25.9 
ap [mm] 10 

λs [°] 13.43 
 

 

Figure  3-7: Sandvik-1030 insert shape [94] 

Table  3.2: Dimensions of the insert in 

end-milling operation [94] 

Parameter Value 
la [mm] 11 

iW [mm] 6.8 

s [mm] 3.59 
bs [mm] 1.2 
rε [mm] 0.8 

 

To shed a light on tool failure mechanisms in end-milling of Rene-108, Scanning 

Electron Microscopy (SEM) along with x-ray elemental analysis were used to study the 

flank side of the insert in different cutting conditions. As shown in Figure  3-8(a), the 

elemental analysis showed an extensive amount of elemental nickel on the flank face of 

the insert in the mildest feed and cutting speed, which represents adhesion wear in the 

cutting process. Parallel grooves on the flank face were also observed, which represent 

abrasion wear. With an increase in feed, initial chipping of coating was observed in 

Figure  3-8(b). High content of elemental tungsten which is the base material for the insert 

revealed the coating was damaged during the cutting process. Considering Figure  3-8(c), 

where only cutting speed is increased showed a larger chipped off area from the flank 
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face; therefore it can be concluded that cutting speed has more influence on exciting the 

chipping mechanism in the process. In the most aggressive cutting condition, where both 

feed and cutting speed increased together, extensive chipping was observed. The SEM 

image in Figure  3-8(d) demonstrates a completely failed insert in these cutting 

conditions. The existence of each wear failure mode is summarized graphically in 

Table  3.4. It is clear that chipping starts in the first pass except for the mildest conditions. 

Chipping has detrimental effect on the insert health and can be detected from the power 

signal as a sudden drop in the signal.   

Table  3.3: Contribution of tool failure mechanisms to the flank wear 

Test  
[#] 

Feed 
[mm/rev] 

Cutting 
speed 

[m/min] 

Tool wear 
mechanisms 

Blue: Abrasion 
Green: Diffusion 
Red: Chipping 

1 0.1 25  
 

2 0.2 25  
 

3 0.1 50  
 

4 0.2 50  
 

Bayesian Inference on Model Parameters 

The objective of this section is to identify unknown parameters K1, K2 and K3 and 

measurement error variance σ2 when limited number of experiments exist. Due to the 

nonlinearity of Equation  3-28, finding the full conditional distribution of the unknown 

parameters is not possible but the full conditional of measurement error variance (σ2) is 

available as in Equation  3-12.  It is possible to use a Hybrid Gibbs-Metropolis algorithm 

to characterize the posterior distribution of the unknowns. In such case, the Metropolis 
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algorithm is used to generate samples from the unknown distribution of parameters K1, K2 

and K3 and the Gibbs sampler is used to characterize the distribution of the measurement 

error variance σ2. In Figure  3-9, the flow chart of the combined algorithm is shown. Since 

the full conditional of σ2 is available, all the samples drawn with using the Gibbs method 

were accepted automatically, but a rejection-acceptance method should be implemented 

for the samples generated by the Metropolis algorithm. 

 

Figure  3-8: SEM image for (a) feed of 0.1 mm/rev and cutting speed of 25 mm/min, (b) feed of 

0.2 mm/rev and cutting speed of 25 mm/min, (c) feed of 0.1 mm/rev and cutting speed of 50 

mm/min and (d) feed of 0.2 mm/rev and cutting speed of 50 mm/min 
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The prior belief for unknown parameters is chosen as normal distribution with the 

mean of 1 and a large variance (Equation  3-29). The prior belief for measurement 

covariance is chosen as inverse gamma function with ν0=1 and σ0
2=100 (Equation  3-30). 
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To avoid singularity of the covariance matrix, spindle power consumption is 

multiplied by 1000 so that K1 and K3 are in the same range as K2. The rest of this study is 

based on the normalized value for K1 and K3. The optimal value of unknown parameters 

(Equation  3-31) was calculated from the data in Table  3.1 using unconstrained derivative 

free optimization method. This method uses simplex search algorithm described by [95]. 

At each iteration, new points are generated around the simplex, and the points with the 

lowest output function are rejected. The process is repeated until the optimal points that 

minimize the output function are found. Since this searching algorithm relies on 

minimizing the squared error of the measurement and the model output (i.e. maximizing 

the likelihood of the model output given the measurements), it is classified as a 

regression based method in classical Frequentist view. 

 [ ] [ ]2
1 3 1 2 3 Freq.

: arg max 0.94 1.21 0.15TK
iK K Nf K NVB K K K Τ + → =    3-31 
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Figure  3-9: Flowchart of hybrid Metropolis-Gibbs algorithm 

The Jacobian matrix shown in Equation  3-32 was calculated using Kopt from simplex 

search (Equation  3-31) for each test the Solonen formula [82] was used for finding the 

proposal density covariance matrix which is shown in Equation  3-33. The optimal points 

Kopt were used for initializing the Markov-chain. The total number of points in the chain 

was selected as N=2000. 
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Results and Discussion 

MCMC trace plot for the parameters K1, K2 and K3 following the procedure described 

in previous section with N=2000 points is shown in Figure  3-10(a).  The first set of 

iterations are usually discarded (burn-in period) to reduce the effect of initial errors at the 

start of the chain [75]. In this work, the first 20% of the iterations (400 points) were 

discarded as the burn-in period. After removing the first 400 points, the acceptance ratio 

was calculated as 19%. To assess the convergence of the Markov-chain, autocorrelation 

plot of samples shown in Figure  3-10(b) should be taken into consideration. In a 

converged chain, samples become uncorrelated to each other after some time. However, 

as it is shown in Figure  3-10(b) samples are heavily correlated which indicates that the 

Markov-chain was not able to converge to the posterior density. According to Hoff to 

improve the performance of Markov-chain, the posterior variance of samples can be an 

efficient choice of proposal variance [75]. Therefore, to improve the current run (named 

as “Pilot run” from now), the information from the generated samples was used as the 

initial belief of parameters for a next MCMC run (named as “Main Run”). The mean and 

covariance matrices of the Pilot Run were extracted from the chain and implemented as a 

prior belief. The covariance matrix of parameters was also used as the proposal density 

covariance (=δ2), and the final point of the chain was used as the initial point of the new 

chain. For the Main Run, number of generated samples was selected as N=10,000. 
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Figure  3-10: Pilot run samples (a) Trace plot (b) Samples Autocorrelation (Diverged Chain) 

The trace plot and the autocorrelation plot of samples are shown in Figure  3-11. After 

modifying the proposal density variance and the initial prior the chain has converged and 

parameters are mixing well. After removing the first 20% of the samples (2,000 points) as 

the burn-in period, a comparison of each pair of parameters distribution is shown in 

Figure  3-12, where contour (a) is the initial belief (prior distribution) from the Pilot Run, 

and contour (b) to (d) is the posterior belief of parameters. The multivariate posterior 

distribution of identified parameters is shown in Equation  3-33. Figure  3-13 also 

demonstrates the improvement in the degree of uncertainties after each MCMC run. 

Analysis starts with an initial degree of uncertainties which is collected from previous 

available data or a rational guess. The initial belief as shown in Figure  3-13 covers a wide 

range of possible values for unknown parameters (i.e. large variance, shown as dashed 

red curve), however by running the MCMC method and bringing new information, the 
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range of possible values for unknown parameters shrinks and at the same time its 

probability distribution moves toward the true values of actual parameters (shown as 

solid blue and dashed black curves). 
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Figure  3-11: Main run samples (a) Trace plot (b) Samples Autocorrelation (Converged Chain) 

 Furthermore, gamma distribution of the inverse of measurement error variance (1/σ2) 
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straightforward to find the posterior distribution of observations (posterior predictive 

distribution) as shown in Figure  3-15. 

The expectation is that the measured power be within the 95% confidence interval for 

each of the 4 tests. As shown in Figure  3-16, the model is able to predict the measured 

power with good accuracy. Percent error between the measurement and the prediction 

mean for each test is compared in Table  3.5. Maximum 18% error indicates that the 

algorithm is capable to predict spindle power consumptions with good degree of 

accuracy, which implies validity of identified parameters. As demonstrated in 

Figure  3-16, at test 4 some of samples of the posterior predictive distribution are 

generated in the negative area which is physically impossible. The nature of a large 

variance in power prediction in test 4 is due to the limited number of available 

experiments for establishing the model. Limited experiments cause a significantly large 

measurement error variance which produces a large variation in the output of the model. 

However, considering the mean of output prediction in comparison to the measured 

power, the error is in acceptable range (only 5% in test 4).  

The performance of Bayesian and Frequentist (deterministic) views in terms of 

percentage error in estimating spindle power are compared in Figure  3-17. While there is 

no significant difference observed in the identification sets, the Bayesian inference 

showed a better performance in the validation tests (more than 50% reduction of error in 

validation tests 2 and 4). The performance of the model based on these two views and the 

advantageous of Bayesian inference will be further investigated in Chapter  44.   
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Figure  3-12: Prior and posterior distributions after main run, (a) prior probability of Ki and Kj, (b) 

posterior probability of K1 and K2, (c) posterior probability of K3 and K1 and (d) posterior 

probability of K3 and K2 

Figure  3-13: Distribution of parameters for prior belief, pilot run, and main run (the y-axis is not 

normalized) 

Figure  3-14: Gamma distribution of the inverse of measurement error variance 
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Figure  3-15: Posterior predictive distribution algorithm 

Table  3.4: Validation Tests cutting conditions, measured power and tool flank wear 

Test 

[#] 

Vc 

[m/min] 

f 

[mm/rev] 

P 

[×10-3 hp] 

VB 

[μm] 

1 30 0.18 64 84 

2 35 0.15 65 73 

3 40 0.12 56 92 

4 45 0.05 41 80 

𝜀𝜀𝑘𝑘~ 𝑁𝑁(0,𝜎𝜎𝑘𝑘2) 

𝑃𝑃𝑘𝑘 = 𝐾𝐾1𝑘𝑘𝑁𝑁𝑓𝑓𝐾𝐾2
𝑘𝑘

+ 𝐾𝐾3𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜀𝜀𝑘𝑘 

• (1) FOR k=1:N
- Sample 𝐾𝐾𝑖𝑖𝑘𝑘 from posterior distribution
- Sample 𝜎𝜎𝑘𝑘2 from its posterior distribution
- Sample 𝜀𝜀𝑘𝑘 as measurement error

• (2) Calculate the power output

• (3) END FOR
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Figure  3-16: Posterior predictive distribution with 95% confidence interval (black bars) and 

spindle power – Validation test 1-4 

Table  3.5: Percentage Error of prediction and measurement 

Test 
[#] 

Pmeasurment

[×10-3 hp] 
Ppredicted 

[×10-3 hp] 
Error 
[%] 

1 64 76 18 
2 65 68 4 
3 56 67 19 
4 41 39 5 
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Figure  3-17: Percentage error of tests used for model establishment and validation tests – 

comparison of Bayesian and Frequentist views 

Concluding Remarks 

This work deals with the Bayesian parameter identification of a mechanistic model of 

the tool wear. The focus of this section was on hard-to-machine Ni-based material Rene-

108 which has been shown to have a poor machinability due to several reasons such as 

low thermal conductivity and high strength. High tool wear rate while machining this 

material is a major challenge in industrial application since it limits the productivity rate. 

In addition, excessive tool wear can damage surface quality and causes undesired residual 

stress beneath the machined surface. The aforementioned challenge also limits the 

available number of experiments for establishing accurate models since the cutting tool 

worn-out quickly. To have the accurate estimation of the unknown model parameters, 

Bayesian parameter identification method, i.e. a hybrid technique of Markov-Chain 
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available, a feature that is beneficial and cost-effective in studying Ni-based alloys. The 

main conclusions are summarized as below: 

• The Hybrid Gibbs-Metropolis algorithm was formulated for prediction of the

unknown parameters in the nonlinear mechanistic cutting power model in milling

of Rene-108. The Metropolis algorithm with a symmetric proposal density was

used for predicting the model parameters, while the Gibbs sampler used for

updating measurement error variance.

• A design of experiment with mild and aggressive cutting condition was used

along with high frequency DAQ to capture wide range of tool wear and spindle

power consumption. The performance of algorithm improved significantly after

using a data from the first run of MCMC as prior belief for the second run.

Predicted parameters were successful in estimating the spindle power

consumption with a maximum 18% error and average error of 8.5%.

• Performance of the Bayesian inference was compared to deterministic approach

and it was shown that the Bayesian inference outperforms the deterministic

method by reducing the prediction error by more than 50%.
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CHAPTER FOUR 

4. PROBABLISTIC TOOL WEAR ESTIMATION

IN MILLING 

Monitoring tool wear in machining processes is one of the critical factors for 

maximizing profitability and productivity by redu rcing machine downtime. However, 

tool wear estimation is still considered a challenge in modern manufacturing processes 

due to machining, workpiece material composition and measurement uncertainties. A 

previously developed model from the Chapter 3 will be used in this chapter for tracking 

the progressive tool wear in terms of its mean and variance (uncertainty) in the Kalman 

filter framework. Furthermore, to increase the performance of the filter, a laser 

measurement system is deployed in collaboration with a low cost sensing technology of 

measuring spindle power consumption. 

Kalman Filter Framework 

Using the Bayes rule, Rudolf Kálmán introduced a method of estimation where a 

Gaussian model is assumed for the states of stochastic events. For state estimation, the 

Kalman filter uses a discrete linear state space Equation  4-1, where k is the time step, A is 

a matrix that relates the states at the previous time step (k-1) to the current time step (k), 

B is a matrix that relates inputs u at the previous time step to the current states, and wk is 

the noise (uncertainty) for states. This noise is assumed to have a normal distribution with 

zero mean and variance Q (Equation  4-2). The measurement equation is described as a 

discrete stochastic model that relates current state to the measured signals (Equation  4-3), 

where zk is the measured signal, H is a matrix that relates current states of the system to 
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the most recent measurements and vk is the measurement noise which is assumed to have 

a normal distribution with zero mean and variance R (Equation  4-4). 

1 1 1k k k kx Ax Bu w− − −= + +   4-1 

~ (0, )kw N Q  4-2 

k k kz Hx v= +  4-3 

~ (0, )kv N R  4-4 

Assuming observability of states, the Kalman filter is an optimal observer that 

minimizes the expected value of sum of squared errors of xk given the previous 

observations. Using the closed-loop observer formulation for state estimation 

(Equation  4-5 with K as the observer gain), Kalman filter starts with a priori information 

at time k, which is updated based on the previous knowledge at time k-1. As soon as the 

measurements become available, a priori will be updated to find a posteriori of states.  

1 1ˆ ˆ ˆ( )k k k k kx Ax Bu K z Hx− −= + + −   4-5 

The first update in the algorithm to find a priori is called the time update and the 

second update to find a posteriori is called the measurement update.  Time and 

measurement updates are described as Equations  4-6 to  4-10. 

1. Time update

 4-6 

 4-7 

2. Measurement update

1 1 1ˆ ˆk k k kx A x Bu−
− − −= +

1 1 1 1
T

k k k k kP A P A Q−
− − − −= +
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 4-8 

 4-9 

 4-10 

Here, Pk
-  is the a priori error variance of states, Pk is the a posteriori error variance of 

states, x�k
-  is the a priori estimation of states, x�k is the a posteriori estimation of states, Kk 

is the Kalman gain, and Rk is the measurement error variance [96]. Note that when a 

measurement is not available, only the time update of the Kalman filter will be used. In 

that case, the current knowledge of states makes future predictions possible. 

Measurement covariance (Rk) can be calculated by evaluating multiple measurements of 

the signal z when the system is in static mode. On the other hand, calculating the state 

noise is not that simple. A suggested solution is where the states can be measured offline; 

in that case the maximum covariance of multiple offline measurement of states can be 

considered as the state error covariance Qk. However, tuning the state covariance matrix 

by trial and error is also suggested to get the best estimation. The Kalman filter algorithm 

and its schematic is shown in Figure  4-1 and Figure  4-2. 

1
1 1( )T T

k k k k k k kK P H H P H R− − −
− −= +

ˆ ˆ ˆ( )k k k k k kx x K z H x− −= + −

( )k k k kP I K H P−= −
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Figure  4-1: The Kalman filter algorithm 

Figure  4-2: The Kalman filter diagram where the Bayesian-based or Frequentist-based models 

can be fed into as the measurement model 

Experimental Setup for Continuous Cutting in Milling 

The same experimental setup as Chapter 3 was used in this chapter. However, a total 

of 8 experiments (see Figure  4-3) with 3 replications were conducted to study the tool 
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• (3) Kalman gain
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• (4) Measurement update 
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flank wear when machining the R-108 Ni-based superalloy. At the chosen width of cut, 

24 tests were conducted on the block: 8 tests with 3 replications. According to the 

Table  3.3, chipping has a significant contribution to the tool life. Therefore to avoid or 

delay chipping it was decided to keep the cutting condition at the least aggressive 

condition and constant throughout the whole experiments. Hence depth of cut, cutting 

velocity and feed for each pass were chosen at 0.5 mm, 25 m/min and 0.1 mm/rev 

respectively. Each replication started with a sharp insert and continued with the same 

insert until extensive chipping was observed. After only eight consecutive cuts, the insert 

reached a failure region as shown in Figure  4-4, where chipped off coating can be seen in 

Figure  4-4(b). 

Figure  4-3: Schematic of continuous milling experiments 
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Figure  4-4: Progress of the tool flank wear from the (a) 1st cut to (b) 8th cut 

Same insert and tool holder as in Chapter 3 were used in these series of tests. 

However, the difference is that the fresh unworn inserts were used at the beginning of 

each test, and operation was continued with the same insert until reaching a catastrophic 

failure (8 passes in total). Spindle power consumption was measured in 5 cutting 

distances (shown with “×” mark in Figure  4-3), each around 10, 20, 30, 40 and 50 mm. In 

Figure  4-5, an exemplified description of the smoothed spindle cutting power is shown 

for test 1.3. Measured power and the tool flank wear of all the 3 replications are shown in 

Table  4.1. Note that only the power at the 5th location of workpiece, i.e. P5 is shown in 

Table  4.1.  
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Figure  4-5: Smoothed cutting power for test 1.3 

Table  4.1: Spindle power and flank wear measurement for replication sets 

Replication 1 Replication 2 Replication 3 

Test 

[#] 

P5 VB Test 

[#] 

P5 VB Test 

[#] 

P5 VB 

[×10-3 hp] [μm] [×10-3 hp] [μm] [×10-3 hp] [μm] 

1.1 29 84 2.1 32 83 3.1 32 81 

1.2 32 89 2.2 36 87 3.2 33 87 

1.3 24 100 2.3 38 103 3.3 35 99 

1.4 33 108 2.4 37 107 3.4 34 103 

1.5 36 111 2.5 44 109 3.5 39 109 

1.6 41 116 2.6 30 116 3.6 38 115 

1.7 37 119 2.7 41 125 3.7 36 116 

1.8 36 125 2.8 44 127 3.8 42 120 

Stochastic Model of Tool Flank Wear 

The dynamic behavior of tool wear is nonlinear at the initial stages, linear at 

intermediate stages, and nonlinear at the final stages before catastrophic failure [41]. Due 

to the high strength and hardness of R-108, the progress of the tool wear was very fast, 

and the first stages of the tool wear were not captured while testing. Hence, tool wear 
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progress was considered as a linear function of volume of material removed (MR) while 

machining.  

Considering the linear region for tool wear and assuming the flank wear VB and slope 

of the tool wear growth rate 𝑁𝑁𝑁𝑁′ as the states of the system, the discretized state space 

equation can be written as Equation  4-11, where Δt is the time-step size. Assuming re as 

radial immersion, Δt can be written equivalent to the volume of removed material (MR) 

as Equation  4-12. Because the cutting conditions were kept constant, the rate of tool wear 

(𝑁𝑁𝑁𝑁′) is constant and therefore can be written as Equation  4-13. 

( ) ( 1) ( ) ( 1) ( )VB k VB k VB k VB k VB k t
t

− − ′ ′= = − + ∆
∆

 4-11 

120

p e

D MRt
fVa r
π ×

∆ =  4-12 

( ) ( 1)VB k VB k′ ′= −

 

 4-13 

The state error should be included into the state equations as normally distributed 

noise. The error variances for tool wear and tool wear rate are assumed to be independent 

of one another as well. The stochastic state space equation is described in matrix format 

in Equations  4-14 and  4-15. 

 4-14 

 4-15 

The variance Q1=1.36×102 μm2 was calculated based on the maximum variance in 

tool flank wear measurements between replications and the variance Q2 = 1.6×10-6 
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µm2/mm6 was calculated as the variance between slopes of linear progressive tool wear. 

In all the experiments, cutting conditions were kept constant, so Equation  3-28 can be 

simplified as a linear Equation  4-16 between spindle power consumption and tool wear. 

The parameters Kp1 and Kp2 were determined from the results of Bayesian and Frequentist 

methods described in Chapter 3. These parameters are shown in Table  4.2. 

  4-16 

Measurement error variance for spindle power was calculated from the experimental 

results the same way as Q1 as 11.3×10-3 hp2 and Equation  4-16 was re-written in discrete 

matrix format to run the Kalman filter as given in Equations  4-17 and  4-18 where the 

measurement error v(k) was defined as a normal distribution with zero mean and 

covariance matrix R. Note that, it is possible to tune the measurement errors and states 

error covariance based on the performance of the filter. By decreasing R, the effect of a 

priori will be strengthened on the estimations. 

Table  4.2: Comparison of Bayesian and linear regression estimation 

Parameter Linear regression analysis Bayesian parameter inference 

Model 2

1 2

cte. cutting condition
1 3

K
p pP K Nf K NVB P K K VB= + → = +  

Kp1 29 15.8 

Kp2 75.1 215.4 

2

( )
( ) 0 ( )

( )p

VB k
P k K v k

VB k
 

 ∆ = +   ′ 
 4-17 

( ) (0, )v k N R

 4-18 

1 2p pP K K VB= +
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To run the Kalman filter, an initial point and an initial covariance for the states are 

required. The initial point (x0) was calculated simply as the mean of predicted flank wear 

from test 1.1, 2.1, and 3.1. To find the initial error of the flank wear, the error between 

the mean of measured flank wear for first tests of each replication which appears as 

expected value of VBi,1 in Equation  4-19 and estimated flank wear based on measured 

power which appears as expected value of ΔPi,1/Kp2, was calculated.  The error of the 

flank wear rate was calculated as the difference between the slope of measured the flank 

wear (first term in Equation  4-20) and predicted flank wear using the test sets (1.1, 1.2 

and 1.3) and (2.1, 2.2 and 2.3) for each replication (second term in Equation  4-20). 

Combining these two errors together, the initial error covariance of tool wear and tool 

wear rate were 4.8μm and 7.7µm2/mm3 respectively.  
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0 ,1

1

  1,2,3i
i

p

P
e E VB E i

K
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Before proceeding to the next section, it is worth considering only the deterministic 

measurement model (Equation  4-16) with linear regression analysis and studying its 

performance for the tool flank wear estimation. The linear curve fit and corresponding 

R2
adjusted as goodness of fit is shown in Figure  4-6.  According to this figure, 0.51, 0.58 

and 0.75 values of R2
adjusted shows a weak linear relation between the measurements and 
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the tool flank wear which is due to the low signal to noise level (SNL) of the collected 

power and incompleteness of measurement model. This can be compensated by adding 

the state model (Equation  4-14) to the measurement model (Equation  4-17) and use 

filtering method to reduce the effect of noise. 

Figure  4-6: Deterministic linear regression for the tool flank wear estimation using spindle power 

measurement 

Results Using the Kalman filter 

To run the Kalman filter the coefficients Kp1 and Kp2 of the measurement model can 

be chosen from the maximum likelihood parameter estimation (Frequentist view) or 

Bayesian parameter inference (Bayesian view). According to Table  4.2 (columns 2-3), 

these values have drastic differences. Therefore, each method offers different 

measurement model.  

Bayesian and Frequentist models were fed as the measurement model in the Kalman 

filter. The Kalman filter outputs using these two approaches are shown in Figure  4-7 and 
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Figure  4-8. A significant error reduction in the output of the Kalman filter was observed 

when a Bayesian-based model was used as the measurement model. However, unlike the 

measured tool wear, the estimated wear does not exhibit a linear monotonically 

increasing function specifically for first and second replications in Figure  4-8. This 

behavior is attributed to insert chipping. When small pieces of the insert coating chips off 

the flank face during the operation, a sudden drop follows by a rise in the measurement 

can be detected. Since the chipped particle at the tool tip reduces the contact area between 

flank face and the workpiece, the power magnitude cannot reach the same magnitude 

when the rubbing surfaces had full contact. This effect shown in Figure  4-9 appeared as a 

reduction in the power signal, which eventually affects the estimated flank wear causing 

an unrealistic drop in the estimated wear. Note that the Kalman filter estimates the mean 

and covariance of the states, therefore uncertainty in Figure  4-7 and Figure  4-8 represents 

the variance of estimated tool wear probability density; the evolution of the tool wear 

represented by the Gaussian function is shown in Figure  4-10. 

Figure  4-7: Estimated tool flank wear and its corresponding uncertainty when Frequentist-based 

power model is used, (a) first replication, (b) second replication and (c) third replication 
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Figure  4-8: Estimated tool flank wear and its corresponding uncertainty when Bayesian-based 

power model is used, (a) first replication, (b) second replication and (c) third replication 

Figure  4-9: Chipping effect as drop and rise in power signal for test 1.7 
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Figure  4-10: Evolution of tool wear distribution over time for the 1st replication (with Bayesian-

based measurement model), subscript i represents the estimated tool wear at the actual 

measurement point 

Feasibility of Fusing Direct and Indirect Measurements for TCM 

As discussed above, excessive chipping while milling Rene-108 and low SNL of the 

spindle power (which appears as a measurement noise) produced a non-increasing 

function of the estimated tool wear. One simple compensating solution is the visual 

inspection of the tool wear after certain number of cuts and updating the Kalman filter 

gain (K). However, this leads to the interruption of automated machining operation and 

adds human error into the estimated results. The other alternative is using a pre-installed 

non-contact probe in the machine to read the tool wear length after each pass and relate 

its change to the tool wear. A BLUM laser measuring system was utilized for this 

purpose. Before and after each pass, the tool length was measured 3 times, by the laser 

measuring system and the change in the tool length was saved in the machine. This way a 

direct measurement method can be fused with indirect measuring technique to improve 
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the estimation accuracy. The BLUM measuring device when measuring the tool length is 

shown in Figure  4-11.  

Figure  4-11: BLUM laser measuring system conventionally used for measuring tool offset 

Tool Length Change Model 

As the tool wears out during the process, the length of the insert gradually decreases 

until catastrophic failure occurs. Mechanical Touch probes have already been used to 

measure tool length change [11]. However, the process is time consuming because it 

involves multiple repetitions to eliminate the measurement error. The application of laser 

in assisting the cutting process and reducing tool wear rate by thermal softening of metal 

has been shown previously in machining operations [97-100]. However, a laser 

measurement system can also be used as an alternative method that can be implemented 

for precise and accurate measurement of tool length change and detecting tool breakage. 

Accuracy, fast multiple measurement, and ability to measure length of the rotating and 

non-rotating tools are some of the advantages of the laser measurement systems over 
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mechanical touch probes. Due to the direct contact of the tool to the touch probes, they 

are prone to mechanical damage, but laser-based systems make non-contact measurement 

possible and eliminate mechanical damage to the tool or the measurement device. 

However, accuracy of the machine axis and the laser measurement systems is in the same 

order, which can induce error into the final results [11]. High cost of implementation is 

another drawback of such systems. 

Considering Figure  4-12, the model relating the change of the tool length to the tool 

flank wear was derived using the geometry of the insert as shown as in Equation  4-22. 

Where ψ and λs are geometrical properties of the insert which are constants, ΔL is the 

change in tool length after the cutting process, and 𝐾𝐾′′ is the constant coefficient that is 

found based on fitting a linear curve on the data. Note that only axial change of the tool 

length was considered in this work and radial change was neglected. The measurement 

results with the change in the tool length after each pass is shown in Table  4.3.  

1 ) tan( )
tan( ) sVB L VB K Lλ

ψ
  ′′= ∆ − → = ∆ 
 

 4-22 

Figure  4-12: Change in the tool length after each pass [11] 
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Table  4.3: Change in the tool length after each pass 

Replication 1 Replication 2 Replication 3 

Test 

[#] 

ΔL Test 

[#] 

ΔL Test 

 [#] 

ΔL 

[μm] [mm] [mm]

1.1 5 2.1 2 3.1 4 

1.2 10 2.2 5 3.2 8 

1.3 16 2.3 7 3.3 13 

1.4 21 2.4 25 3.4 21 

1.5 21 2.5 28 3.5 30 

1.6 25 2.6 33 3.6 37 

1.7 30 2.7 33 3.7 48 

1.8 35 2.8 36 3.8 56 

Assuming that the spindle power measurement and the tool length change 

measurement were independent of one another, the measurement model can be written as 

Equations  4-23 and  4-24, where R2 is calculated as 1.4×10-4 mm2. This way a direct and 

indirect measurement of tool wear were fused together in the Kalman filter framework.  

The results of estimation are shown in Figure  4-13, where significant improvement 

was observed. Furthermore, the chipping effect was significantly compensated. To 

evaluate the improvement of fusing direct method into the indirect method (using only 

power signal), three errors were selected:  the root mean square error (RMSE), mean 

absolute error (MAE) and maximum error; they are compared in Table  4.4. Moreover, the 

percentage error between the estimated wear and the actual wear for all the replications 

are compared in Table  4.5. 

12
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Figure  4-13: Estimated tool flank wear and its corresponding uncertainty when direct and indirect 

method fused together, (a) first replication, (b) second replication and (c) third replication 

Table  4.4: Error comparison for each replication 

Method 

Replication 1 Replication 2 Replication 3 

RMSE MAE 
Max. 

Error 
RMSE MAE 

Max. 

Error 
RMSE MAE 

Max. 

Error 

Frequentist-based 

model 
11.1 30.4 79.6 27.1 34.7 83.8 3.1 19.8 43.2 

Bayes.-based 

model 
13.8 13.8 25.0 0.06 5.7 21.2 7.9 8.3 15.1 

Fusion with direct 

measurement 
7.5 7.4 13.6 5.4 5.4 10.7 3.7 3.7 12.5 

Table  4.5: Error between estimated and actual tool wear 

Using Indirect Bayesian-based measurement model ` 

Replication 1 Replication 2 Replication 3 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

1.1 84 63 25 2.1 83 80 4 3.1 81 76 6 

1.2 89 79 11 2.2 87 98 13 3.2 87 79 9 
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1.3 100 87 13 2.3 103 99 4 3.3 99 93 6 

1.4 108 88 19 2.4 107 106 1 3.4 103 90 13 

1.5 111 110 1 2.5 109 130 19 3.5 109 104 5 

1.6 116 115 1 2.6 116 101 13 3.6 115 103 10 

1.7 119 100 16 2.7 125 125 0 3.7 116 101 13 

1.8 125 100 20 2.8 127 129 2 3.8 120 122 2 

Fusing Direct Method with Indirect Bayesian-based measurement model 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

Test 

[#] 

VBmeasured

[μm] 

VBestimate

[μm] 

Error 

[%] 

1.1 84 78 7 2.1 83 2 1.5 3.1 81 81 0 

1.2 89 86 3 2.2 87 5 7.1 3.2 87 85 2 

1.3 100 94 6 2.3 103 11 10.4 3.3 99 94 5 

1.4 108 98 9 2.4 107 1 0.8 3.4 103 98 5 

1.5 111 106 5 2.5 109 9 9.2 3.5 109 109 0 

1.6 116 111 4 2.6 116 4 4.2 3.6 115 114 1 

1.7 119 108 9 2.7 125 4 3.7 3.7 116 120 3 

1.8 125 111 11 2.8 127 3 2.8 3.8 120 133 11 

Concluding Remarks 

In this section, a linear optimal estimation method (i.e. Kalman filter) was used for 

the tool flank wear estimation in end-milling of Ni-based superalloy Rene-108. Spindle 

power consumption was used as the observed signal due to the low cost and easy 

implementation of Eddy current sensors in CNC machines used in real-life applications 

as well as the laser measuring system as a direct measuring method. The main 

conclusions of this section are given as below: 

• A discrete linear model of mechanistic tool wear was formulated to be used with

the Kalman filter. A design of experiment with relatively mild cutting conditions
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was used along with a high frequency DAQ system to capture spindle power 

consumption. 

• Proper variances of state and measurement error were identified and the Kalman

filter was tuned to have the least possible error in estimation. It was shown that

the Kalman filter can estimate tool flank wear with a maximum error of 25%

when spindle power consumption is used as the measuring signal along with the

model based on Bayesian parameter inference.

• The effect of establishing the cutting power model using Bayesian inference and

MLE inference on the Kalman filter estimation error was discussed and it was

shown that the model based on Bayesian inference reduced the estimation error at

least 2 times greater than the model based on MLE.

• In addition to spindle power consumption, BLUM laser measuring system was

used as a direct sensing device to measure the change in axial length of the insert.

A discrete linear model was developed for relating the tool length change to the

tool flank wear and fused into the Kalman filter.

• The performance of the Kalman filter with a direct signal from laser device was

investigated and it was shown that with using direct measurement the undesired

effects of chipping and low SNL in measured power can be compensated. In this

case, a more realistic function of estimated tool wear (nearly monotonically

increasing function) was generated.
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CHAPTER FIVE 

5. FUNCTIONAL STATE OF THE TOOL IN

TURNING 

In the previous chapter, the focus of the work was on establishing a Bayesian-based 

model of the tool wear and incorporating the model into the online estimation framework. 

The selection of selected material, insert and machining operation made the insert fails 

after a few experiments. In this chapter, more stable cutting process (i.e. turning) is 

selected and the focus of study will not be solely on stochastic estimation, and the effect 

of process uncertainties on end-product quality, workpiece dimensional accuracy and 

residual stresses will be taken into account. 

Extended Kalman Filter 

For state estimation, the Kalman filter uses a closed-form discrete state space 

equation for linear systems and an approximation solution for nonlinear systems known 

as Extended Kalman filter (EKF). In the EKF, the nonlinear state or measurement model 

is linearized first and then the Kalman filter is applied for updating the mean and variance 

of the states. Depending on the system’s degree of nonlinearity, the EKF might not be 

accurate. In this case, deterministic sampling methods such as Unscented Kalman Filters 

(UKF) [101] or random sampling methods such as Particle Filters (PF) [102] are 

proposed and are utilized in the manufacturing domain with a continuous resampling 

strategy for joint state and time-varying parameter estimation by Wang and Gao in 

predicting tool wear growth and engine performance tracking, and was further validated 

with experimental results [103-104]. 
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Assuming a discrete nonlinear state and measurement functions as f and g, the state 

space representation of the system can be written as Equations  5-1 and 5-2; where k is the 

time step, x is the state vector, w is the state noise, v is the measurement noise and y is a 

measurement. In the context of machining, x will be the tool wear; y will be the sensor 

measurement. 

( )1 1k k kx f x w− −= +  5-1 

( )k k ky g x v= +  5-2 

The states and measurements models f and g can be approximated by the 1st order 

Taylor expansion into Equations  5-3 and  5-4, where 𝑥𝑥� is a posterior estimate of the state 

x, and J and G are Jacobians of functions f and g with respect to state x. These Jacobians 

are shown in Equation  5-5. 

( ) ( )
1

1 1 1 1ˆ
ˆ ˆ

k
k k k k kx

x f x J x x w
−

− − − −≈ + − +  5-3 

( ) ( )ˆ
ˆ ˆ

k
k k k k kx

y g x G x x v≈ + − +  5-4 

1
1ˆ

ˆ( )  
k

i
ij kx

j

fJ x
x−

−

∂
=
∂ ˆ

ˆ( ) 
k

i
ij kx

j

gG x
x
∂

=
∂

 5-5 

Using the linear Equations  5-3 and  5-4, Kalman filter can be applied as described by time 

update (Equations  5-6 and  5-7) and measurement update (Equations  5-8 and  5-10). 

Time Update: 

( )1ˆ ˆk kx f x−
−=  5-6 

1 1
1 1ˆ ˆk k

T
k k kx x

P J P J Q
− −

−
− −= +  5-7 
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Measurement Update: 

( ) 1

ˆˆ ˆ
T T

k k k kxx x
K P G G P G R−− −

−
− −= +  5-8 

( )( )ˆ ˆ ˆk k k k kx x K y g x− −= + −  5-9 

( )ˆ
T

k k kx
P I K G P−

−= −  5-10 

Experimental Setup in Turning 

The experiments were conducted on an OKUMA CNC lathe machine with Sandvik 

Coromant CNGG 12 04 04 SGF with TiAlN coating. The workpiece material is annealed 

IN718 Ni-based alloys which contains 53.8% Ni, 18.44% Cr, 17.33% Fe, 5.31% Nb+Ta, 

0.97% Ti, 0.58 Al and less than 0.1% of other elements with 94±2 HRB hardness. The 

test procedure is as follows: In the preparation step, the IN718 bar was turned three times 

with a sharp insert with feed 0.05 mm/rev, depth of cut 0.1 mm and cutting speed of 80 

m/min. This process was chosen to eliminate any remaining residual stress underneath 

the cutting surface during the previous operations or manufacturing process. In the next 

step (testing) the old insert was replaced with a new sharp one to turn 50 mm of IN718 

cantilever bar as shown in Figure  5-1. The cutting continues until the measured tool wear 

width reaches 900μm.   

Due to rapid work-hardening and high strength of the IN718, the use of coolant for 

elongating the tool life was necessary. Therefore, flood coolant lubrication technique 

with 6% oil concentration was selected in both preparation and testing steps. The coolant 

pressure, oil concentration and nozzle directions were continuously checked to minimize 

the coolant effect on the surface integrity parameters and tool life. Moreover, to avoid 
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chatter and excessive vibrational effects, it was decided to replace the workpiece when 

the diameter reaches below 20 mm. To study the effect of wear on surface integrity 

parameters of IN718 in different cutting conditions, the feed was changed from the 

lowest of 0.05 mm/rev to the highest of 0.15 mm/rev. However, cutting speed and depth 

of cut were kept constant as 80 mm/min and 0.1 mm/rev as recommended by insert 

manufacturer. Five replications in feeds 0.05, 0.1 and 0.15 mm/rev were conducted, 

where the direct measurement of tool flank wear is available for only 4 replications and 

surface integrity parameters are available in 2 replications. To test the proposed method, 

two additional replications in feeds 0.063, 0.088, 0.113 and 0.138 mm/rev were 

conducted, where flank wear data was only available for one replication. This 

information is summarized in Table  5.1. The spindle power was measured with 100 Hz 

sampling frequency using Hall effect sensor and NI-cRIO acquisition system shown in 

Figure  5-1. Then the mean value of the signal between 85%-95% of the cutting length 

was calculated as measurement signal (y) in  5-9.  

Figure  5-1: Experiment setup with data acquisition system for measuring spindle power 



83 

Table  5.1: Design of Experiment (DoE) table for turning IN718 

Cutting 

Speed 

[m/min] 

Feed 

[mm/rev] 

Depth of 

cut [mm] 

Replications with 

VB available 

[#] 

Replications with 

surface parameters 

available 

[#] 

Total 

replications 

[#] 

80 0.050 0.1 4 2 5 

80 0.100 0.1 4 2 5 

80 0.150 0.1 4 2 5 

80 0.063 0.1 1 2 2 

80 0.088 0.1 1 2 2 

80 0.113 0.1 1 2 2 

80 0.138 0.1 1 2 2 

The results of the tool wear width and spindle power measurement for all the 4 

replications of the feeds 0.05, 0.1 and 0.15 mm/rev is shown in Figure  5-2 to Figure  5-4. 

The lowest variation in the tool flank wear belongs to the lowest feed (0.05 mm/rev) and 

the largest variation belongs to the mid-feed (0.1 mm/rev) where significant departure 

observed after the reaching approximately 200μm of  tool wear width).  

Figure  5-2: Tool wear width (left) and Spindle power (right) for feed of 0.05 mm/rev 
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Figure  5-3: Tool wear width (left) and Spindle power (right) for feed of 0.1 mm/rev 

Figure  5-4: Tool wear width (left) and Spindle power (right) for feed of 0.15 mm/rev 

Identification of Tool flank Wear Mechanisms in Turning IN718 

To better capture mechanisms of wear on the flank face of the tool, a Scanning 
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which shows the existence of temperature-driven adhesion mechanism. Also, high 

content of Tungsten on the flank face shown in Figure  5-7(d), demonstrates the additional 

damage to the coating of the insert due to high load and temperature where peeled off 

coating is observable in Figure  5-7(b). In summary, abrasion as an imminent result of 

friction between tool and workpiece in addition to adhesion, and chipping at the tip of the 

tool contribute most to the tool failure in turning IN718. As mentioned by Zhu et al. 

existence of cobalt content on the carbide tools represents the diffusion wear [14]. Since 

low content of cobalt was observed on the flank face, it was concluded that diffusion 

mechanism has no contribution to the wear evolution. 

Figure  5-5: Evolution of tool flank wear for cutting feed of 0.05 mm/rev, cutting speed 80 m/min 

and depth of cut 0.1 mm, (a) initial wear, (b) 300μm of flank wear, (c) 600μm of flank wear, and 

(d) 900μm of flank wear
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Figure  5-6: Detailed view of the for (a) 300µm flank wear width (b) 3x magnification at the tool 

tip, (c) 60x magnification at the tool tip and (d) X-ray elemental analysis and high content of 

nickel demonstrates existence of adhesion mechanism 

Figure  5-7: Detailed view of the for (a) 900µm flank wear width (b) 5x magnification at the 

bottom end of wear land, (c) X-ray elemental analysis with high content of nickel as a sign of 

adhesion (d) X-ray elemental analysis and high content of tungsten as a sign of damaged coating 
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Stochastic State and Measurement Models 

The tool wear width in the Figure  5-2 to Figure  5-4 can be represented by an 

empirical 3rd order polynomial function with more than 95% 𝑅𝑅𝑎𝑑𝑗2  as goodness of fit 

shown in Equation  5-11, where MR denotes material removed, a, b and c are the feed-

dependent polynomial coefficients and VB is the flank wear width. By taking derivate of 

this function the VB rate can be found as 2nd order polynomial shown in Equation  5-12. 

However, to write the state space model, the trajectory of the state VB is required, i.e. the 

parameter MR should be eliminated from the Equations  5-11 and  5-12 and the VB rate 

should be written as function of VB. 

3 2VB aMR bMR cMR= + +   5-11 

23 2VB aMR bMR c′ = + +  5-12 

In the 16th century, Gelarmo Cardano found a solution for explicitly obtaining roots 

from cubic functions. Using the Cardano’s formula, a closed-form solution for 

Equation  5-11 was found and substituted into the Equation  5-12. After some 

simplifications Equations  5-13 to  5-15 can be derived representing continuous function of 

VB rate and VB. In these equations, w represents the added normally distributed noise.  

2 2 2
3 33 2

3
bVB a aA c w
a

α β
 

′ = + − + − + 
 

 5-13 

2 3 2 3

  ,  
2 4 27 2 4 27
B B A B B Aα β= − + + = + +   5-14 

3 3

2 3 2

2  ,  
3 27 3

c b VB b bcA B
a a a a a

−
= − = + −  5-15 
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Writing the VB rate in Equation  5-13 as 𝑉𝐵𝑘𝑘−𝑉𝐵𝑘𝑘−1
𝛥𝑀𝑅

, the discretized nonlinear state 

function can be written as Equations  5-16. The last step is linearizing this equation by 

taking the Jacobian of the nonlinear function f. This is shown in Equations  5-17 and  5-18.  

( )

2 2
3 3

2

1 1 1

1

3 2
3k k k k k k k

k k k

bVB MR a aA c VB MR w
a

f VB MR w

α β− − −

−

  
= ∆ + − + − + + ∆  

  
= + ∆
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3 3

1 1 1 1
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2 1kk k k k k
k

fJ a MR
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− −
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−
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   

  5-18 

Unlike VB that exhibits a nonlinear progressive curve, average tool wear length (L) 

can be modeled as linear progressive curve. The rate of change for average tool wear 

length (L) was derived from experimental results and is feed-dependent. The discretized 

state space model of tool wear length is shown in Equations  5-19 and  5-20, where G is 

feed dependent tool length rate, and ψ the zero mean Gaussian noise with variance of 

7.5×10-11 mm2. 

 

1
DISCRETIZATI

Adding N

O

oise

k k k
N

L G MR L G
L L MRG MR

ψ

ψ+

′= × → = +

→ = +∆ + ∆
 5-19 

5 54 10 9.7 10G f− −= − × + ×

 

 5-20 

The next step is developing the relationship of the tool wear and the spindle power. 

As described in Chapter 3 an analytical solution suggested by Rubenstein based on shape 

and properties of adhered asperities on the flank face of the tool was used in [92]. As 
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discussed in Rubenstein work, the cutting force can be written as Equation  5-21, where 

Fc´ is a constant for a given tool, geometry and cutting parameters, µ is friction coefficient 

assumed equal to 0.1 in wet cutting, Hm is the hardness of the tool, L is wear length, VB is 

wear width and c1 is a constant. Both parameter L and VB are unknown with their 

function described in Equations  5-16 and  5-19. They need to be estimated 

simultaneously. The cutting power is simply the product of cutting force (Fc) and cutting 

speed (Vm) which is kept constant in all of the experiments of this work.  

1 1   c c m c c c mF F c H wVB P F V c V H L VBµ µ′ ′= + → = + ×   5-21 

The product of parameters c1, Vc, µ and Hm  are constants and can be found as the 

average slope of spindle power versus tool wear width curves. The parameter Fc´ of 

Equation  5-21 was considered to be feed dependent. Therefore the product of this 

parameter to cutting speed represents the amount of power required to cut the material 

when using a sharp insert. To find the relationship, 4 replications of tests with sharp 

inserts in 5 different feeds were conducted and a linear model with 93% R2 was fitted to 

the data accordingly. The measured results are shown in Figure  5-8 and Table  5.2 and the 

measurement model is described in Equation  5-22 where fe  represents feed.  

Table  5.2: Effect of different feeds on spindle power when sharp tool is used 

Power [Watt] 

=Fc´×Vc 
Feed - fe [mm/rev] 

0.05 0.075 0.1 0.125 0.15 

P1 33.6 38.6 59.2 48.0 113.8 

P2 24.5 55.6 74.4 71.7 91.7 

P3 39.2 41.1 59.1 83.1 122.9 
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P4 40.9 71.7 84.1 81.4 83.1 

Average 34.56 51.73 69.22 71.07 102.87 

Standard Deviation 7.39 15.29 12.26 16.16 18.59 

Figure  5-8: Spindle power change with feed when sharp insert is used 

644 504 645 655DISCRETIZATION
e c k k k e c kP LVB f V P L VB f V v= + → = + +   5-22 

Uncertainty Quantification for the State and Measurement Models 

Since the variation in the spindle power is relatively constant throughout the whole 

process (see Figure  5-2 to Figure  5-4), the maximum standard deviation of the measured 

power of the 4 replications of each feed was calculated equal to 20 Watts. On the other 

hand, a different strategy should be taken to find the uncertainty for the parameters of VB. 

Considering Figure  5-9(a) which shows the standard deviation in different feeds, an 

interesting fact was emerged. The uncertainties in the tool wear decreases at the 

beginning of the process and reaches a relatively constant value around VB =200-400µm. 

Then it starts to increase with an increase in the tool wear which explains the large 
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variation and departure of the tool wear curves after 400µm. The uncertainties behavior 

which represents the bathtub failure probability curve can be modeled with a closed form 

function shown in Equation  5-23. Considering this equation and after normalizing the 

tool wear to be within 0 to 1, an unconstrained optimization method based on simplex 

search algorithm was chosen to find the unknown coefficients (see Table  5.3). The state 

model uncertainty was then calculated based on the bathtub curve model and is shown in 

Figure  5-9(b). 

3 5

1 2 4
( ) ( )1

0.65 0.65

c c
a a

k
Vb k Vb kq c c c   = + + −   
   

 5-23 

Figure  5-9: Uncertainties propagation (a) different feeds and (b) Modeled bathtub curve for state 

uncertainty function 

Table  5.3: Identified coefficients of bathtub function based on simplex search algorithm 

Model 
3 5

1 2 4
( ) ( )

1
0.65 0.65

c c
a a

k
Vb k Vb k

q c c c   = + + −   
   

Ci C1 C2 C3 C4 C5 

Value -1.1E-05 1.8E-05 0.59 1.9E-05 5.00 
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The state space representation of the system is summarized as Equations  5-24 to  5-27. 

Note than in Equation  5-24, VBk-1 is embedded in α and β parameters as well. 

2 2 2
3 3

1 1 1 1

1

State Models

3 2 0
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0
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k k k k k k

k k

k k
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 5-24 
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0.65 0.65

~ (0, ) where  8.6 10

a a
k k k

k k k

Vb k Vb kw N q q

Nψ

−

−

    = − + + − ×         
Φ Φ = ×

 5-25 

Measurment Model 644 504k k k e c kP L VB f V v→ = + +  5-26 

2~ (0, )  where  20k k kv N r r =   5-27 

EKF Estimation Results and Discussion 

To test the performance of the EKF in estimating the tool flank wear width, first its 

performance was tested on all the 4 replications for feeds 0.05, 0.1 and 0.15 mm/rev. The 

initial value of VB0 and L0 were chosen as 50µm and 380µm with the initial variances of 

0.0025 mm2 and 0.002 mm2 respectively in all the estimations. The resulting estimated 

tool flank wear width using EKF and deterministic estimation using only Equation  5-21 

is shown in Figure  5-10 to Figure  5-12. 
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Figure  5-10: Estimated tool wear width for feed 0.05 mm/rev, (a) Replication 1, (b) Replication 2, 

(c) Replication 3 and (d) Replication 4

Figure  5-11: Estimated tool wear width for feed 0.10 mm/rev, (a) Replication 1, (b) Replication 2, 

(c) Replication 3 and (d) Replication 4
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Figure  5-12: Estimated tool wear width for feed 0.15 mm/rev, (a) Replication 1, (b) Replication 2, 

(c) Replication 3 and (d) Replication 4

According to the Figure  5-10, in the 1st replication, the EKF was able to estimate the 

tool wear width only up to 300 µm, and had poor estimation after that. This is due to the 

effect of measured power, which reduced abruptly as shown in Figure  5-2. For the feed 

0.1 and 0.15mm/rev, the EKF performed well except for the 4th replication of feed 

0.15mm/rev. This is due to the large variations that exist in experimental replications 

which make the state model less accurate.  In the other replications almost all of the 

experimental measurement fell in the 95% prediction interval of the filter.  

To better assess the performance of the EKF, validation sets were used for estimating 

the progressive tool flank wear width. Figure  5-13 through Figure  5-16 show the results 

of the estimation. To have a closer look at the performance of the EKF in predicting tool 
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the progressive tool wear function are shown side by side. As can be seen in these 

figures, the EKF is able to have an accurate estimation for the tool wear width with less 

than 0.07 mm2 RMSE, however there is still inaccuracy in estimating of the tool wear 

rate specifically after reaching 0.6 mm. To emphasis on significance of stochastic filter in 

improving estimation accuracy the RMSE and Mean Absolute Error (MAE) of the 

estimated tool wear are compared in Figure  5-17 for all the 4 tests with a deterministic 

estimation which only uses the power-tool wear width relation shown in Equation  5-21 

(without additive noise νk). It can be seen from this figure that the EKF estimation 

outperformed the deterministic method in by 65%, 73%, 65% and 68% improvements in 

RMSE values which are significant in estimation results. 

Figure  5-13: Estimated tool wear and tool wear rate for feed 0.0625 mm/rev, (a) estimated tool 

wear and (b) trajectory estimation 
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Figure  5-14: Estimated tool wear and tool wear rate for feed 0.0875 mm/rev, (a) estimated tool 

wear and (b) trajectory estimation 

Figure  5-15: Estimated tool wear and tool wear rate for feed 0.1125 mm/rev, (a) estimated tool 

wear and (b) trajectory estimation 
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Figure  5-16: Estimated tool wear and tool wear rate for feed 0.1375 mm/rev, (a) estimated tool 

wear and (b) trajectory estimation 

Figure  5-17: Comparison of error between stochastic and deterministic methods in the estimated 

tool wear  
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IN718 bar was measured three times after each pass, using a Mititoyo caliper with 

±0.025mm accuracy. The arithmetic average of the workpiece surface roughness (Ra) was 

selected to represent quality of the surface. A Mahr surface profilometer was used to 

measure roughness (with a sweeping range of 5.6mm) at three different workpiece 

locations. Lastly, the surface/subsurface damage to the workpiece was represented by 

residual stress. The residual stress was measured only in the cutting direction (i.e., hoop 

stress) for six different cutting conditions. A first series of measurements was made with 

a sharp insert in three different feeds; 0.05, 0.1 and 0.15 mm/rev. The second series of 

measurements was made with a worn tool; 300, 600 and 900µm of flank wear width only 

in the feed of 0.1 mm/rev. As mentioned before, all the experiments were carried out in 

wet-cutting with flood lubrication condition.  

Effects of Wear and Wear Rate on Dimensional Integrity of the Workpiece 

Evolution of flank wear during the process causes gradual changes in the geometry of 

the tool. With an increase in the flank wear width, the height of the tool will be reduced 

and consequently dimensional deviation in the workpiece from the target dimension 

occurs. Considering the schematic of a simple cutting tool shown in Figure  5-18(a), it is 

possible to estimate the dimensional deviation with an accurate estimation of the flank 

wear width and using the exact tool geometry shown in Figure  5-18(b). The geometrical 

relationship was derived based on the configuration setup of the insert with -6o rake angle 

and +6o clearance angle and 0.4mm of Tool Nose Radius (TNR). The large TNR 

produces a curve at the tip of the tool which was linearized with three regions according 

to Figure  5-18(b). The first region correlates dimensional deviation to maximum of 
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200µm of the flank wear, the second region correlates dimensional deviation to 

maximum of 500µm of the flank wear and the third region correlates dimensional 

deviation to 900µm of the flank wear. The geometrical relationship for each region is 

shown in Equation  5-28, where Δd is the dimensional deviation, and VB is the flank wear 

width. It has been shown in this chapter that by using the stochastic-based Extended 

Kalman Filter (EKF), an accurate estimation of flank wear probability density becomes 

possible; therefore diameter deviation can be found using Equation  5-28 and the 

estimated probability density of the flank wear (VB). 

Figure  5-18: Effect of wear on diameter deviation, (a) schematic of simple cutting tool and (b) 

detailed geometry of Sandvik CNGG insert, three regions represents three different geometrical 

relation. 

 5-28 
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Stochastic Tools for Diameter Deviation Classification 

Extended Kalman Filter for Classification 

The diameter deviation results from the experimental measurement for all the seven 

feeds are shown in Figure  5-19. As shown in this figure, the diameter deviation has an 

increasing trend with maximum of 0.2mm when the flank wear reaches 900µm, however 

large variability in the replications and therefore poor repeatability is observed. 

Reduction in the diameter of the workpiece and consequently undesired vibration due to 

stiffness change, in addition to the generation of different wear failure modes such as 

chipping or build up edge on each replication are the main sources of the poor 

repeatability of the data. 

To emphasize the practical applications of the method, it was decided to categorize 

the deviation from the target diameter into three distinct classes. The first class represents 

the deviations below 0.05 mm which is labeled as “acceptable”, the second class 

represents the deviation between 0.05 to 0.15 mm which indicates that “re-work” is 

required for the workpiece and the third class represents deviation above 0.15 mm which 

indicates the requirement for “major rework with inspection”.  

The probability density function of the flank wear (which is assumed to be a normal 

distribution function based on the Kalman filter theory) can be estimated after each pass 

using the EKF method described before. Since the flank wear distribution is considered 

as a Gaussian function, its mean and standard deviation can be simply plugged into 

Equation  5-28 to find the estimated probability distribution of the diameter deviation. 
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Lastly, the probability of the each class can be calculated and the maximum value 

represents the classification results. This process is shown in Figure  5-20. 

Naïve Bayes for Classification 

To be able to compare the classification performance of the EKF-based method, it is 

worthy to compare it with other techniques. The naïve Bayes method is a simple yet 

efficient probabilistic-based algorithm based on Bayes theorem for classification 

purposes. In this method an initial belief of each class is combined with a likelihood 

function of model features; this determines the decision probability of each class. 

Equations  5-29 and  5-30 describe the classification strategy based on the naïve Bayes, 

where Ci represents a class with i={1, 2, 3} and X represent the selected features. Five 

features were selected as the estimated results of flank wear (VB), and flank wear 

uncertainties (σVB), the estimated results of flank wear rate (VBr) and its corresponding 

uncertainties (σVBr) from the EKF method and direct measurement of spindle power (P) 

from the Hall effect sensor (see Figure  5-1). 
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Figure  5-19: Diameter deviation in seven different feeds 



103 

To be able to evaluate the performance of the naïve Bayes classifier, out of 14 sets of 

experiments; 9 sets were selected for training and 5 sets for testing. The likelihood 

function Pr(X|Ci) was assumed as Normal distribution function with mean and standard 

deviation derived from the training sets. An equal initial belief probability Pr(Ci) of 1/3 

was assumed for three classes.  

Figure  5-20: Estimation of the flank wear probability density with EKF and the relation to 

diameter deviation with classification strategy 
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Deterministic Tools for Diameter Deviation Classification 

Support Vector Machine (SVM) 

It has been shown by several researchers that the SVM method performs well in tool 

wear classification purposes [105-107]. The underlying assumptions in using the SVM is 

finding the optimal hyperplane using selected feature vectors called support vectors that 

maximizes the safety margin 2/||w||2, where w is the normal vector to the hyperplane. The 

optimal hyperplane with maximum safety margin can be found by solving the quadratic 

optimization problem as in Equation  5-31, where yi is +1 if the feature vector xi  belongs 

to the first class and -1 if the xi  belongs to the second class, b is a constant and m is the 

number of feature vectors in the training set. To solve this optimization problem, a 

Lagrangian multiplier with two constraints as shown in Equation  5-32 should be solved. 

To be able to tackle the nonlinearity of the data, kernel transformation manipulations 

have been suggested to map the data into the higher dimensional space and make it 

linearly separable [108]. Both linear and Radial Basis Function (RBF) kernels were used 

for classification. However, no significant improvement in the classification results 

obtained in using RBF kernel as compared to the linear one. Therefore the latter was 

selected. Since the SVM method is generally being used for 2-class problems, a pair by 

pair comparison was done and the class with the maximum votes was selected as a result. 

The same five feature vectors namely VB, σVB, VBr, σVBr and P were selected on the same 

training and testing sets as naïve Bayes. 
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Classification Results and Discussion 

To be able to compare the performance of each method, the misclassification rate of 

each set of data for both training (9 sets with total of 283 data points) and testing sets (5 

sets with total of 195 points) are compared in Figure  5-21 and Figure  5-22.  It can be seen 

from these figures that The EKF-based method outperforms the naïve Bayes and the 

SVM in the first and third classes, “acceptable” and “major rework with inspection” 

respectively. However, the EKF has a very poor performance in the second class 

(“rework”) and was outperformed by the naïve Bayes method. Moreover, large errors 

were observed in some of the testing/training sets (e.g. large misclassification error of 

naïve Bayes algorithm for third class of testing set 12. This is due to the poor 

repeatability and high noise contamination of the data, which is clear from the 

Figure  5-19. Therefore, it is concluded that large variance in the dataset lowers the 

classification rate. The total misclassification error is compared for all the classes in 

training and testing sets in Table  5.4. Note that just relying on Table  5.4 for selecting the 

best method can be misleading since according to this table naïve Bayes has the highest 
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error (34%) while according to Figure  5-22, it has the best performance (the lowest error) 

in labeling “rework” class. Hence, Figure  5-22 together with Table  5.4 should be used for 

selecting the optimal method. In this case, the EKF for classifying 1st and 3rd classes and 

the naïve Bayes for classifying 2nd class is the best solution. 

Figure  5-21: Error comparison in training set of the EKF, naïve Bayes and SVM for diameter 

deviation classification 

Figure  5-22: Error comparison in testing set of the EKF, naïve Bayes and SVM for 

diameter deviation classification 

The other factor that should be noted is the extra advantage of statistical-based 

methods (i.e., naïve Bayes and EKF) in providing additional information in the form of 
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the probability of being in each class which can be later incorporated into a risk function 

to determine the risk of misclassification as well. The deterministic method (i.e., SVM) is 

not able to give any information on this probability.   

Table  5.4: Misclassification rate of SVM, naïve Bayes and EKF methods 

Misclassification 

Rate [%] 

Support Vector 

Machine 

Naïve 

Bayes 

Extended Kalman 

Filter 

Method Deterministic Probabilistic Probabilistic 

Training Set 20.8% 20.8% 26.8% 

Testing Set 27.7% 34.4% 28.7% 

Effects of Wear on Surface Quality 

As discussed above, the quality of the machined surface as one of the workpiece 

health factors can be described by the average surface roughness (Ra). Considering 

Figure  5-23 which describes the relation between estimated flank wear (VB) and 

measured surface roughness in various feeds reveals an interesting finding that there 

exists extremely poor, almost nonexistent repeatability between the same tests. To further 

investigate the effect of wear on the surface roughness, Analysis of Variance (ANOVA) 

was deployed. The estimated wear values were converted into categorical format by 

dividing them into four equi-distant regions between 0 to 900µm where each region 

represents a unique state of wear. The ANOVA test results in Table  5.5 with more than 

0.05 p-value show that the wear state is not a significant factor on surface quality, which 

is in agreement with the poor repeatability results of Figure  5-23. This conclusion is 

extremely important since a general belief in many research articles is on detrimental 

effect of wear on surface roughness. However, as can be seen from Figure  5-23, on 
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occasions with more than 600μm of flank wear; surface roughness still remains below 

0.8µm. 

An unanswered question here is what the underlying cause(s) for such a large 

variations/uncertainties are in surface roughness. Three factors could cause the poor 

repeatability in surface roughness data. First is the change in diameter of the IN718 bar 

from one test to another. Reduction in diameter which changes the stiffness of the 

workpiece can cause undesired vibration during each cut and therefore affect the surface 

roughness profile. One way to avoid this is by using several workpieces with the same 

diameter, which in practice is extremely costly. Second is the formation of continuous 

chip and entanglement around the workpiece; which can cause abrupt changes in surface 

roughness due to the rubbing of chip on the surface of the workpiece. This phenomenon 

has been captured by high speed camera and demonstrated as Figure  5-24. One way to 

avoid this is increasing the depth of cut in order to break the chip. However, due to the 

high strength of nickel-based alloys, this could accelerate tool wear rate and cause early 

tool failure. Third is an internal variation in the combination of workpiece and tool as a 

dynamic system which causes variation in the output, e.g., surface roughness. Therefore 

to be able to quantify the effect of wear on surface roughness, a very large number of 

replications would be required. 
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Table  5.5: ANOVA table with 0.51 p-value (rejecting null hypothesis) 

Source of 

Variation 

Sums of 

Square 

Degrees of 

freedom 

Mean 

Square 

F-

value 
p-value Fcritical 

Between Groups 0.95 3 0.32 0.76 0.51 2.6 

Within Groups 196.4 472 0.42 

Total 197.3 475 

Effect of Wear on Surface and Subsurface Damage 

Depth of Machining Affected Zone 

The depth of Machining Affected Zone (MAZ) was calculated using the etched 

samples of IN718 bar under four different wear conditions as shown in Figure  5-25. The 

results are interesting since the MAZ while cutting with flank wear of 600μm has the 

highest impact on the microstructure alteration beneath the surface. While smaller depth 

was observed in larger flank wear width.  

Chip Formation Model 

The surface and subsurface damage can be quantified with the residual stress 

remained on/beneath the surface after cutting process. A Finite Element (FE) model with 

Lagrangian approach developed using ABAQUS/Explicit 6.14 and the results of the FE 

model were compared with experimental results measured with X-ray diffraction in the 

cutting direction. To be able to accurately predict residual stress due to mechanical and 

thermal loads, a coupled thermal-displacement simulation using C3D8RT elements with 

total simulation time of 1 millisecond was used. The exact geometry of the tip of the 

cutting insert and workpiece was modeled in 3-D space as shown in Figure  5-26(a). The 

minimum length of elements at the cutting zone was chosen to be 10µm and the 
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maximum length was chosen as 36µm away from the cutting zone for a total of 219,776 

elements. To investigate the effect of flank wear on residual stress, the geometry of the 

tool was updated before the simulation. The geometry of flank wear as shown in 

Figure  5-26(b) was found by intersecting a XY-plane with the bottom of the tool. It 

shows a very close relationship with the actual shape of the tool wear from the 

experimental results as demonstrated as in Figure  5-26(c). However, the chipping effect 

of the tool edge cannot be accurately modeled with this method. To accelerate the 

simulation, the tool was considered as a rigid shell with 1,500 triangular elements of 

R3D3 type with tool edge of 10µm. Also, the wear land clearance angle in the worn tool 

was considered to be 0o in contrast to +6o of clearance angle for the sharp tool as shown 

in Figure  5-26(c). 
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Figure  5-23: Surface roughness change with respect to estimated flank wear in different feeds 

Figure  5-24: Chip entanglement and damage to the surface roughness, (a) chip is exiting with no 

entanglement, (b) chip start to trap in the clearance zone between tool and workpiece, and (c) full 

entanglement with workpiece/chip rubbing against each other 

Figure  5-25: Machining affected zone in different wear state and feed 0.1 mm/rev, (a) etched 

IN718 sample, (b) 0 mm depth of MAZ with Sharp tool, (c) 0.12mm depth of MAZ with 300µm 

flank wear width, (d) 0.2mm depth of MAZ with 600µm flank wear width and (e) 0.085mm depth 

of MAZ with 900µm flank wear width 
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Figure  5-26: 3-D chip formation model, (a) workpiece dimension with sharp tool model, 

clearance angle +6o, (b) updated geometry of the tool with 0o clearance angle at wear land and (c) 

comparison of actual wear land and the model of worn tool in XY-plane 

Material Plasticity and Damage Model 

To model the visco-plastic behavior of IN718, the Johnson-Cook (J-C) constitutive 

plasticity model as in Equation  5-33 was selected, where 𝜎𝜎� is the equivalent plastic stress, 

𝜀𝜀 ̅is the equivalent plastic strain, 𝜀𝜀̅̇ is the equivalent plastic strain rate, 𝜀𝜀0�̇  is the reference 

plastic strain, T is the temperature, Tm is the melting temperature, T0 is the room 

temperature, A is the yield stress, and B, c, n and m are the material-dependent J-C model 

constants. There are several research articles published on finding the J-C model 

constants for IN718, however the majority of the reports are given to age-hardened IN718 

[109-111].  Byun and Farrell compared the tensile properties of a precipitation-hardened 

alloy with a solution-annealed one and found the parameter n=0.9 and a range of 500-

1100 MPa for the parameter B [112]. Their results were in agreement with the work of 
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Pereira and Lerch whom found the parameter A=317MPa and C=0.0312 as well [113]. At 

the time writing this dissertation, the author could not find any published articles on the 

temperatures softening exponent (m) of annealed IN718 therefore the value of m was 

considered equal to 1.3 based on the age-hardened IN718 property [111]. The material 

properties and J-C model parameters are summarized in Table  5.6 and Table  5.7. To be 

able to model the large deformation and rapid strain rate in chip formation, a damage 

model using the element deletion method is required. Therefore the damage initiation 

criteria were selected as shear damage with maximum shear of 2. The deletion process of 

the elements starts when the shear strain reaches 2, and the element will be deleted 

completely when the maximum degradation reaches unity. 
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Table  5.6: Material properties parameters for annealed IN718 

Material 

properties 

Density 

[ρ] 

Modules of 

elasticity [E] 

Poisson 

Ratio [ν] 

Conductivity 

[κ] 

Specific 

heat [c] 

Expansion 

Coeff. [α] 

Unit kg/m3 GPa - W/mK J/kgoC µm/moC 

Value 8810 200 0.3 11 435 13 

Table  5.7: Johnson-Cook model parameters for annealed IN718 

J-C constant A(=σy) B Tm T0 𝜀𝜀0�̇   n C m 

Unit MPa MPa oC oC s-1 - - - 

Value 317 800 1270 20 1 0.9 0.0312 1.3 
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Friction Model 

It was assumed that the coefficient of friction in wet cutting remains constant (=0.1) 

in 1 msec of simulation. The sticking condition of the Coulomb friction law was defined 

based on maximum shear stress between the contacting surfaces equal to 187MPa 

(=𝜎𝜎𝑦/√3 ). After the shear stress between the contacting surfaces exceeds this value, 

slipping occurs. Moreover, element-based contact was defined to be able to establish 

contact condition for the internal surfaces contacting the tool when element deletion 

occurs. It was assumed that the 100% of heat generation due contact turns into the heat 

and 50% of this heat distributes into the workpiece.  

In wet cutting, a large portion of the generated heat will be taken away from the tool 

and workpiece by the flow of the coolant. Since modeling the effect of coolant was not in 

the scope of this work, the thermal dissipation and the behavior of coolant was modeled 

as a convection heat transfer condition with convection coefficient of coolant as 3000 

W/m2K.  

Residual Stress Prediction and Experimental Validation 

To validate the FE model for residual stress prediction, first the results for the sharp 

tool shown in Figure  5-26(a) in three different feeds (0.05, 0.1 and 0.15 mm/rev) were 

compared to experimental results in the cutting direction, i.e., X-direction in 

Figure  5-26(a). As shown in Figure  5-27, the prediction of the residual stress has a very 

good match with the experimental results which shows the validity of the FE model.  

In the next step, the FE model with the worn tool was compared with the 

experimental results in Figure  5-28 for the feed of 0.1 mm/rev and 300, 600 and 900 µm 
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of flank wear width. It is clear from Figure  5-28 that the FE model can predict the tensile 

stress at the surface with relatively good accuracy. However, Figure  5-28 shows 

inaccuracy in predicting the compressive stress that remains below the surface up to 0.3 

mm depth.  

Several factors can be attributed to this error, such as assuming a constant friction 

coefficient, simplifying the coolant effect with a convection heat transfer problem and 

inaccuracy of the worn tool geometry. However, the major limitation in modeling the 

effect of the worn tool on residual stress is the effect of element deletion. In general, 

element deletion makes modeling chip formation and excessive distorted elements in 

high strain simulations such as machining possible. However, the deleted elements cause 

a sudden reduction in contact area which misleadingly appears as a fluctuation of cutting 

force. As shown in Figure  5-29, this is not a major issue while cutting with sharp insert, 

since the deleted elements at the tool rake face and chip (region 1 of Figure  5-29) will be 

replaced rapidly by new elements (region 2). However, in modeling worn tool with a 0° 

clearance angle wear land that comes into contact with the workpiece, the deleted 

elements on the surface of the workpiece as in region 3 of Figure  5-29 cannot be easily 

replaced by any other elements. Therefore a general loss of contact at region 4 occurs. 

The main reason behind the consistent compressive stress beneath the surface of the 

workpiece is the plowing frictional effect between the wear land and cutting surface 

which is dependent on contact pressure of the two surfaces. Therefore using the element 

deletion method puts a limitation in modeling the plowing effect, which eventually 

appears as error in predicting compressive residual stresses. To better compare the 
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formation of chips in the presence of wear, the FE model results under four conditions are 

shown in Figure  5-30.  

Figure  5-27: Comparison of residual of experiment and FE prediction in 3 different feeds, cutting 

speed (=80m/min) and depth of cut (=0.1mm) are constants – sharp tool was used 

Figure  5-28: Comparison of residual of experiment and FE prediction in 3 different wear 

conditions, feed (=0.1mm/rev) cutting speed (=80m/min) and depth of cut (=0.1mm) are 

constants 
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Figure  5-29: Loss of contact between tool and workpiece, the plowing frictional effect cannot be 

captured since element of region 3 are deleted during simulation and contact loss occurs at region 

4 

The maximum tensile residual stress at the surface and minimum compressive 

residual stress beneath the surface for both experiment and prediction are compared in  

Table  5.8: Comparison of maximum tensile stress and minimum compressive stress 

of experiments and FE model 

σtensile [MPa] σcompressive [MPa] 

Cutting speed 80m/min, depth of cut 0.1mm 

Feed [mm/rev] 0.05 0.1 0.15 0.05 0.1 0.15 

Experiment +854 +1204 +1447 -78 -138 -82

FE Prediction +461 +1049 +1144 -159 -206 -167

Cutting speed 80m/min, depth of cut 0.1mm, feed 0.1 mm/rev 

Flank wear 

width [µm] 
300 600 900 300 600 900 

Experiment +807 +741 +1353 -480 -511 -272

FE Prediction +987 +1333 +863 -207 -268 -192
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Figure  5-30: Equivalent stress with chip curl in FE model, (a) using sharp tool, (b) worn tool with 

300µm wear width, (c) worn tool with 600µm wear width, and (d) worn tool with 900µm wear 

width 

Concluding Remarks 

In this chapter a comprehensive study of the tool flank wear and tool flank wear rate 

estimation was conducted using the Extended Kalman filter (EKF). It was shown that the 

EKF provides a robust framework for estimating states of the system in the presence of 

noise. In addition, a comprehensive study on surface integrity parameters for IN718 

under the influence of tool flank wear was conducted. Three critical factors that 

determines the state of health of machining a IN718 bar were selected: surface roughness 

as a representation of surface quality, diametrical deviation from the target diameter as a 

representation of dimensional integrity, and residual stress as a representation of 

surface/subsurface damage. Each of these parameters were studied in the presence of the 
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tool flank wear as the major factor affecting tool life and productivity rate of the process. 

The following are the summary and conclusions of this chapter: 

• A large number of experiments was conducted to quantify the uncertainty

function of the  tool wear. The state and measurement models were found based

on four replication sets of the feeds 0.05, 0.1 and 0.15mm/rev. An analytical

solution was derived for the nonlinear function of the state model in addition to a

linear function for the measurement model.

• It was observed that up to the average tool wear width of 200-250μm, the

uncertainty decreases followed by an increase beyond this value. The uncertainty

in the state model was quantified with a failure probability function, as a bathtub

curve. This uncertainty was however considered constant for the measurement

model based on the experimental observations.

• The EKF performance was tested in 4 validation tests, and less than 0.06 mm2

RMSE was observed for the tool wear width estimation. All of the experimental

results remained in the 95% prediction interval of the EKF.

• Two probabilistic-based methods (i.e., EKF-based and naïve Bayes), along with a

deterministic-based method (SVM) were used for diameter deviation

classification and it was shown that the EKF-based method works better for

classifying “acceptable” and “major rework with inspection” classes while naïve

Bayes works better in classifying “rework” class.
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• The effect of wear on surface roughness was studied with an ANOVA test, and it

was shown that the tool wear does not have significant effect on surface

roughness.

• Residual stress due to sharp and worn tool was modeled in an FE simulation, and

the predictions were validated with experimental results. It was shown that the FE

model works well in predicting residual stresses when using sharp tool; however

it was unable to predict the existence of compressive stresses beneath the cutting

surface accurately using the worn tool. It is believed that this is due the element

deletion computational artifact and consequent loss of contact at the surface of

workpiece and flank face of the tool.
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CHAPTER SIX 

6. SUMMARY AND CONCLUSIONS

The objective of this research was first to investigate the applicability and advantage 

of statistical state estimation methods for predicting tool wear in machining nickel-based 

superalloys over deterministic methods, and second to study the effects of cutting tool 

wear on one the quality of the part. This work aimed to use a probabilistic methodology 

for estimating tool wear in machining nickel-based hard-to-machine superalloys. The 

probabilistic-based method was used in two machining operations: milling and turning. 

For milling machining, the mechanisms of tool failure were first identified, and based on 

the rapid catastrophic failure of the tool, a Bayesian inference method (i.e., Markov 

Chain Monte Carlo, MCMC) was used for tool wear through power model calibration. 

The Bayesian inference method is a powerful tool as compared to Frequentist 

deterministic methods where few experimental results are available or when running 

experiments are highly expensive. Both of these features applied to Ni-based alloys, since 

their high strength and rapid work-hardening shortens tool life significantly, which limits 

the availability of data before tool failure. Also, these alloys are expensive materials; it is 

therefore cost-effective to lower the total number of experiments for model parameter 

calibration. The model based on Bayesian inference was later used in the state space 

probabilistic framework of the Kalman filter to estimate tool flank wear.  

The possibility of using an on-machine laser measuring system as a direct measuring 

technique of tool geometry was also studied in this work. The laser system rapidly reads 

the length of the tool before and after the cutting process. The geometry of the tool makes 
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it possible to correlate the laser reading (i.e., tool length change) with the width of the 

flank wear. The information from the laser measuring system was then fused as an 

additional sensory information source into the Kalman filter measurement model, and 

significant improvement was obtained using this direct measuring method combined with 

an indirect method (i.e., spindle power measurements).  

The behavior of progressive wear was also investigated in a turning operation. Unlike 

milling with extremely rapid catastrophic tool failure, no catastrophic failure of the tool 

was observed in turning. Therefore a larger database of tool behavior information could 

be created. Due to the nonlinear evolution of wear, an extended Kalman filter was used 

for tracking progressive wear and the results of this probabilistic-based method in 

predicting flank wear width were compared with a deterministic method; significant 

improvement was achieved.  

To fulfill the second objective of this research in understanding the underlying effects 

of wear on surface integrity of the Ni-based alloys, a comprehensive study on surface 

roughness, dimensional deviation and residual stress was conducted. These three 

parameters taken together represent the workpiece state of health; the tool wear effect on 

each was investigated. It was shown that unlike the common belief of detrimental effects 

of wear on surface roughness, tool flank wear did not have a significant effect on the 

roughness profile of the workpiece. To study the effect of wear on dimensional integrity, 

the geometrical relation of the tool length change and flank wear width was derived 

similar to milling and the estimated results of wear from the extended Kalman filter were 

utilized for classification of dimensional deviation. The results were compared with 
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another probabilistic-based (i.e., naïve Bayes) and deterministic-based (i.e., Support 

Vector Machine) classification algorithms. For studying the wear effect on machining-

induced residual stresses, a finite element approach was taken. The results of the finite 

element model for a sharp tool were first validated with the experimental results, and then 

the sharp tool geometry was updated to represent a worn tool. It was shown that while the 

sharp tool model has a very good prediction of residual stress profile, the worn tool 

model exhibits large errors in predicting compressive stress beneath the machined 

surface. The potential causes of error were discussed and it was concluded that due to the 

necessary element deletion algorithm in the finite element model a proper plowing 

frictional effect could not be simulated.  

Contributions  

The primary contribution of this research is the improvement in traditional tool wear 

estimation techniques by using probabilistic-based approaches, which led to 60% 

increase in tool wear estimation accuracy compared to a deterministic spindle power –

wear formulation. The low cost of the spindle power sensor as a measurement signal 

provides a feasible solution for the proposed methodology to be used in industrial 

machine shops.  

The secondary contribution of this work is filling the gap between the effect of wear 

on the workpiece quality. This is important in online process monitoring of Ni-based 

materials, since the tool wear can be detrimental to the quality of expensive workpieces. 

Since tool wear alone does not necessarily reflect the performance of the machining 

operation, quantifying its effect on part quality in the form of surface quality, 
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dimensional integrity and residual stress leads to a better decision-making strategy for 

continuing or stopping the process. Therefore, this approach better guarantees the end-

product quality and increases the productivity rate.   

Future Impacts 

The immediate use of this estimation methodology is in machine shops for tracking 

tool state of health in terms of wear and wear rate. Since visual inspection of the tool is 

costly in practice, the current suboptimal solution is choosing a conservative cutting 

speed or depth of cut in machining expensive materials to avoid tool breakage or damage 

during the operation. Using the proposed method makes tracking tool wear possible and 

therefore lets the operator increase the productivity by increasing cutting speed or depth 

of cut. Moreover, the FE approach along with a proposed strategy for classifying wear-

induced dimensional tolerances of the workpiece can provide additional information 

about the workpiece integrity and depth of machining affected zone. In a larger scale the 

uncertainty quantification method implemented in this work can be extended to any 

application involves large variations/uncertainty, specifically in design of critical parts 

[114-116] or lack of knowledge due to complexity of problems in manufacturing domains 

[117-120].  

The output of this research produces a general knowledge of the performance of an 

individual machine in a production line. This information can be collected and analyzed 

based on the rate of tool change or rate of part scrap, which enables the profitability 

maximization in the machining operation.  
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GE Global research recently published an article about five targets that need to be 

achieved in their 2020 vision [121]: 

• Internet: hyper connectivity; a living network of the world’s machines, data &

people

• Brilliant Machines: Increasing system intelligence through embedded software,

advanced sensors, controls and software applications

• Big Data: Democratization of data, high frequency, real-time data

• Analytics: Predictive algorithms, physics-based analytics, deep domain expertise

on big industrial data

• People at Work: Connecting people at work or on the move; Supporting more

intelligent design, higher service quality operations, & safety maintenance

GE defines the idea of a brilliant factory as in Figure  6-1. An intelligent system 

combined with advanced sensors (Brilliant Machines) that have predictive ability 

(Analytics) to use algorithms in real-time (Big Data) to identify and mitigate faults. The 

output of this research is beneficial for large manufacturing plants such as GE, where 

high productivity and at the same time good quality of products is the end-goal. 
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Figure  6-1: GE 2020 brilliant factory [122] 

Bounds of Applicability 

The power-tool wear model that was used in this research can be easily applied to any 

machining operation; however the model coefficients are derived based on experimental 

results and are dependent on many factors such as the tool geometry, coating, material 

and cutting conditions. Therefore offline testing methods are required for calibrating the 

measurement model. The same applies to progressive wear models. As shown in 

Chapters 4 and 5, the progressive wear curves are completely different from milling (a 

linear curve until catastrophic failure at about 200-250µm of tool wear width) to turning 

(nonlinear curve with catastrophic failure up to 900µm of flank wear width). Therefore a 

unique equation for tool wear progress does not exist and should be derived empirically. 

Moreover, the laser measuring unit that was used in the milling operation is not a 

common measuring system in CNC machines and therefore its availability for use for 

estimation framework is limited.   
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To eliminate the poor repeatability that was observed in surface roughness results, a 

very large number of experiments and additional investigation into underlying causes of 

variability for the same condition are required to make a trend between roughness and 

wear observable. The excruciating and slow measurement process for surface roughness 

characterization is one aspect that hinders the pace of further investigation. Moreover, 

additional replication of residual stress testing in different cutting conditions and wear 

width values can provide a better insight on the validity of FE model. This could not be 

accomplished since the cost of residual stress testing is extremely high.  

Recommendations 

The following are some of the recommendations for future work: 

• The Bayesian inference from this work can be used for identifying the probability

distribution of the power model for a group of Ni-based alloys, ranging from

annealed IN718 with mechanical properties close to stainless steel to GTD-111 as

one of the hardest-to-machine superalloys. The probability distribution of power

model parameters will eventually act as a prior belief function for quick and

inexpensive calibration of unknown superalloys. This also can be applied in

different alloys such as titanium-based alloys to establish a general library of

hard-to-machine materials.

• In addition to variable feed; cutting speed and depth of cut can also be varied to

find a more general and more robust form of the progressive wear model.

• The coolant effect in FE model was considered as a simple heat convection

problem; however this can be modeled as a CFD simulation coupled with
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thermal-displacement chip formation analysis to accurately model the coolant 

effect on residual stress and forces.  

• The effect of temperature as one of the driving factors in rapid wear rate of the

Ni-based alloys can be included into the modeling scheme. Validation

experiments require embedded micro-sensors such as Figure  6-2 where the

thermocouple is embedded on the rake face of the tool to read the contacting

temperature in cutting.

Figure  6-2: Embedded thermocouple on the rake face of the tool (courtesy of Jun Shinozuka, 

Yokohama National University, Japan) 
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7. APPENDICES
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APPENDIX A: FEM Results 

Temperature and stress profile of FE prediction in different wear conditions. 

Figure  7-1: Equivalent von-Mises stress prediction for sharp tool – Feed 0.1mm/rev, depth of cut 

0.1mm and cutting speed 80m/min  

Figure  7-2: Nodal Temperature prediction for sharp tool – Feed 0.1mm/rev, depth of cut 0.1mm 

and cutting speed 80m/min  
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Figure  7-3: Equivalent von-Mises stress prediction for worn tool – Feed 0.1mm/rev, depth of cut 

0.1mm, cutting speed 80m/min, and wear width 300µm 

Figure  7-4: Nodal Temperature prediction for worn tool – Feed 0.1mm/rev, depth of cut 0.1mm, 

cutting speed 80m/min, and wear width 300µm  
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Figure  7-5: Equivalent von-Mises stress prediction for worn tool – Feed 0.1mm/rev, depth of cut 

0.1mm, cutting speed 80m/min, and wear width 600µm 

Figure  7-6: Nodal Temperature prediction for worn tool – Feed 0.1mm/rev, depth of cut 0.1mm, 

cutting speed 80m/min, and wear width 600µm  
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Figure  7-7: Equivalent von-Mises stress prediction for worn tool – Feed 0.1mm/rev, depth of cut 

0.1mm, cutting speed 80m/min, and wear width 900µm 

Figure  7-8: Nodal Temperature prediction for worn tool – Feed 0.1mm/rev, depth of cut 0.1mm, 

cutting speed 80m/min, and wear width 900µm 
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APPENDIX B: G-code for milling 

Below is the main code for slot-milling Rene 108 on OKUMA CNC machine: 

O0603(MEASURE ON BLUM LASER) 
N20 M3 S3000 (ROTATE SPINDLE) 
N30 G15 H1 (ACTIVATE WORK OFFSET) 
N40 G04 F=2. 
CALL O9603 PH=22. PE=0 PD=22. PB=3 PA=3 PR=0.001 PZ=.20 PX=.0000 
N60 G15H96 
N70 G56H22 
N80 M1 
(PREPASS) 
N90 G95 
N100 M3S1003 
N110 M8 
N130 G0 X-6 Y-20 Z1000 
N140 G0 X-6 Y-20 Z3.5 
N150 G1 X-6 Y-20 Z15 F0.1 (CHANGE DEPTH OF CUT Z=-0.5) 
N160 G1 X-6 Y75 F0.5 
N170 G0 X-6 Y75 Z1000 
N200 M1 
(CHANGE INSERTS) 
(TEST M1) 
O0603 (MEASURE ON BLUM LASER) 
N220 M3 S3000 (ROTATE SPINDLE) 
N230 G15 H1 (ACTIVATE WORK OFFSET) 
N240 G04 F=2. 
CALL O9603 PH=22. PE=0 PD=22. PB=3 PA=3 PR=0.001 PZ=.20 PX=.0000 
N260 G15H96 
N270 G56H22 
N280 M1 
N290 G95 
N300 M3S602 
N310 M08 
N320 G0 X3.5 Y-20 Z1000 
N330 G0 X3.5 Y-20 Z3.5 
N340 G1 X3.5 Y-20 Z-0.5 F0.1  
N350 G1 X3.5 Y75 F0.1 
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N360 G0 X3.5 Y75 Z1000 
M30
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APPENDIX C: G-code for turning 

Below is the main code for face-turning IN718 on OKUMA CNC lathe machine: 

G140 
G95 
G18 (XZ PLANE) 
G50 M42 S600 T0404 
(HIGH GEAR RANGE_ MAX SPINDLE SPEED_ TOOL SELECTION) 
G97 S300 M03 (JUST ROTATING) 
N05 DIAO=38   
N06 DIAI=0 (INNER DIAMETER) 
N07 ROT=80 (M/MIN) 
N08 FEED=0.05 (MM/REV) 
N09 DOC=0.0 (DEPTH OF CUT_ MM) 
M09 (COOLANT OFF) 
G01 X300 F10 
G01 Z300 F10 
G01 X300 Z=0.5 F5 (APPROACHING PART FACE)(CHANGE Z IN DIFFERENT 
CASES) 
M08 (COOLANT ON) 
(PREPARE DAQ)(OPTIONAL STOP _ CHECK) 
(CUTTING PROCESS) 
G01 X=DIAO+10 F5 (FACE ) 
G96 S=ROT M03 (CONSTABT CUTTING SPEED _ M/MIN) 
G01 Z=-DOC F5  (DOC OF FACING) 
G01 X=DIAI F=FEED (FACING UP TO INNER DIAMETER) 
(G01 X=DIAI+2.0 F=FEED) (GO UP A LITTLE BIT) 
G97 S500 M03 (CHANGE TO RPM) 
G01 Z100 F10  (TOOL GOES RIGHT) 
(G01 X300 F10)  (TOOL GOES UP) 
M09 
(G01 X-71 Z266 F5) (MEASURE FLANK WEAR) 
(M01) 
(G01 X151 Z266 F5) (MEASURE CRATER WEAR) 
M05 (STOP THE SPINDLE) 
M30 (STOP THE PROGRAM) 
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Below is the main code for bar-turning IN718 on OKUMA CNC lathe machine: 

G140 
G95 
G18 (XZ PLANE) 
G50 M42 S1500 T0404  
M3S500 (JUST ROTATING) 
N05 DIAM=31.00(CHANGE THIS MARTIN - DIAMETER) 
N06 ROT=80 (M/MIN) 
N07 FEED=0.1 (MM/REV) 
M09 (COOLANT OFF) 
G01 X300 Z300 F20 
G01 X300 Z20 F5 (APPROACHING PART FACE)(CHANGE Z IN DIFFERENT 
CASES) 
M09 (COOLANT ON) 
(PREPARE DAQ)(OPTIONAL STOP _ CHECK) 
M01 
(CUTTING PROCESS) 
G01 X=DIAM F5 (CHANAGE DEPTH OF CUT) 
G96 S=ROT M03 (CONSTABT CUTTING SPEED _ M/MIN) 
G01 Z-49 F=FEED  (CUTTING)(BE CAREFUL HERE WITH Z) 
G01 X=DIAM+1 F=FEED (GOING UP) 
G97 S200 M03 (CHANGE TO RPM) 
G01 Z200 F10  (TOOL GOES UP) 
(G01 X300 F10)  (TOOL GOES RIGHT) 
M05 (STOP THE SPINDLE) 
M30 (STOP THE PROGRAM) 
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