115 research outputs found

    Extracting biomedical relations from biomedical literature

    Get PDF
    Tese de mestrado em Bioinformática e Biologia Computacional, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018A ciência, e em especial o ramo biomédico, testemunham hoje um crescimento de conhecimento a uma taxa que clínicos, cientistas e investigadores têm dificuldade em acompanhar. Factos científicos espalhados por diferentes tipos de publicações, a riqueza de menções etiológicas, mecanismos moleculares, pontos anatómicos e outras terminologias biomédicas que não se encontram uniformes ao longo das várias publicações, para além de outros constrangimentos, encorajaram a aplicação de métodos de text mining ao processo de revisão sistemática. Este trabalho pretende testar o impacto positivo que as ferramentas de text mining juntamente com vocabulários controlados (enquanto forma de organização de conhecimento, para auxílio num posterior momento de recolha de informação) têm no processo de revisão sistemática, através de um sistema capaz de criar um modelo de classificação cujo treino é baseado num vocabulário controlado (MeSH), que pode ser aplicado a uma panóplia de literatura biomédica. Para esse propósito, este projeto divide-se em duas tarefas distintas: a criação de um sistema, constituído por uma ferramenta que pesquisa a base de dados PubMed por artigos científicos e os grava de acordo com etiquetas pré-definidas, e outra ferramenta que classifica um conjunto de artigos; e a análise dos resultados obtidos pelo sistema criado, quando aplicado a dois casos práticos diferentes. O sistema foi avaliado através de uma série de testes, com recurso a datasets cuja classificação era conhecida, permitindo a confirmação dos resultados obtidos. Posteriormente, o sistema foi testado com recurso a dois datasets independentes, manualmente curados por investigadores cuja área de investigação se relaciona com os dados. Esta forma de avaliação atingiu, por exemplo, resultados de precisão cujos valores oscilam entre os 68% e os 81%. Os resultados obtidos dão ênfase ao uso das tecnologias e ferramentas de text mining em conjunto com vocabulários controlados, como é o caso do MeSH, como forma de criação de pesquisas mais complexas e dinâmicas que permitam melhorar os resultados de problemas de classificação, como são aqueles que este trabalho retrata.Science, and the biomedical field especially, is witnessing a growth in knowledge at a rate at which clinicians and researchers struggle to keep up with. Scientific evidence spread across multiple types of scientific publications, the richness of mentions of etiology, molecular mechanisms, anatomical sites, as well as other biomedical terminology that is not uniform across different writings, among other constraints, have encouraged the application of text mining methods in the systematic reviewing process. This work aims to test the positive impact that text mining tools together with controlled vocabularies (as a way of organizing knowledge to aid, at a later time, to collect information) have on the systematic reviewing process, through a system capable of creating a classification model which training is based on a controlled vocabulary (MeSH) that can be applied to a variety of biomedical literature. For that purpose, this project was divided into two distinct tasks: the creation a system, consisting of a tool that searches the PubMed search engine for scientific articles and saves them according to pre-defined labels, and another tool that classifies a set of articles; and the analysis of the results obtained by the created system when applied to two different practical cases. The system was evaluated through a series of tests, using datasets whose classification results were previously known, allowing the confirmation of the obtained results. Afterwards, the system was tested by using two independently-created datasets which were manually curated by researchers working in the field of study. This last form of evaluation achieved, for example, precision scores as low as 68%, and as high as 81%. The results obtained emphasize the use of text mining tools, along with controlled vocabularies, such as MeSH, as a way to create more complex and comprehensive queries to improve the performance scores of classification problems, with which the theme of this work relates

    Novel Extensions of Label Propagation for Biomarker Discovery in Genomic Data

    Get PDF
    One primary goal of analyzing genomic data is the identification of biomarkers which may be causative of, correlated with, or otherwise biologically relevant to disease phenotypes. In this work, I implement and extend a multivariate feature ranking algorithm called label propagation (LP) for biomarker discovery in genome-wide single-nucleotide polymorphism (SNP) data. This graph-based algorithm utilizes an iterative propagation method to efficiently compute the strength of association between a SNP and a phenotype. I developed three extensions to the LP algorithm, with the goal of tailoring it to genomic data. The first extension is a modification to the LP score which yields a variable-level score for each SNP, rather than a score for each SNP genotype. The second extension incorporates prior biological knowledge that is encoded as a prior value for each SNP. The third extension enables the combination of rankings produced by LP and another feature ranking algorithm. The LP algorithm, its extensions, and two control algorithms (chi squared and sparse logistic regression) were applied to 11 genomic datasets, including a synthetic dataset, a semi-synthetic dataset, and nine genome-wide association study (GWAS) datasets covering eight diseases. The quality of each feature ranking algorithm was evaluated by using a subset of top-ranked SNPs to construct a classifier, whose predictive power was evaluated in terms of the area under the Receiver Operating Characteristic curve. Top-ranked SNPs were also evaluated for prior evidence of being associated with disease using evidence from the literature. The LP algorithm was found to be effective at identifying predictive and biologically meaningful SNPs. The single-score extension performed significantly better than the original algorithm on the GWAS datasets. The prior knowledge extension did not improve on the feature ranking results, and in some cases it reduced the predictive power of top-ranked variants. The ranking combination method was effective for some pairs of algorithms, but not for others. Overall, this work’s main results are the formulation and evaluation of several algorithmic extensions of LP for use in the analysis of genomic data, as well as the identification of several disease-associated SNPs

    The Future of Data Analysis in the Neurosciences

    Get PDF
    Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative big-sample datasets on microanatomy, synaptic connections, optogenetic brain-behavior assays, and high-level cognition. While growing data availability and information granularity have been amply discussed, we direct attention to a routinely neglected question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more central to distill neurobiological knowledge from healthy and pathological brain recordings. We believe that large-scale data analysis will use more models that are non-parametric, generative, mixing frequentist and Bayesian aspects, and grounded in different statistical inferences

    On quantitative issues pertaining to the detection of epistatic genetic architectures

    Get PDF
    Converging empirical evidence portrays epistasis (i.e., gene-gene interaction) as a ubiquitous property of genetic architectures and protagonist in complex trait variability. While researchers employ sophisticated technologies to detect epistasis, the scarcity of robust instances of detection in human populations is striking. To evaluate the empirical issues pertaining to epistatic detection, we analytically characterize the statistical detection problem and elucidate two candidate explanations. The first examines whether population-level manifestations of epistasis arising in nature are small; consequently, for sample-sizes employed in research, the power delivered by detectors may be disadvantageously small. The second considers whether gene-environmental association generates bias in estimates of genotypic values diminishing the power of detection. By simulation study, we adjudicate the merits of both explanations and the power to detect epistasis under four digenic architectures. In agreement with both explanations, our findings implicate small epistatic effect-sizes and gene-environmental association as mechanisms that obscure the detection of epistasis

    Artificial intelligence for dementia research methods optimization

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care. HIGHLIGHTS: Machine learning (ML) can improve diagnosis, prevention, and management of dementia. Inadequate reporting of ML procedures affects reproduction/replication of results. ML models built on unrepresentative datasets do not generalize to new datasets. Obligatory metrics for certain model structures and use cases have not been defined. Interpretability and trust in ML predictions are barriers to clinical translation
    corecore