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Abstract 

Genetic associations have been discovered for many human complex traits, and yet for most 

associated loci the causal variants and molecular mechanisms remain unknown. Studies 

mapping quantitative trait loci (QTLs) for molecular phenotypes, such as gene expression, 

RNA splicing, and chromatin accessibility, provide rich data that can link variant effects in 

specific cell types with complex traits. These genetic effects can also now be modeled in 

vitro by differentiating human induced pluripotent stem cells (iPSCs) into specific cell types, 

including inaccessible cell types such as those of the brain. In this thesis, I explore a range 

of approaches for using QTLs to identify causal variants and to link these with molecular 

functions and complex traits. 

 

In Chapter 2, I describe QTL mapping in 123 sensory neuronal cell lines differentiated from 

human iPSCs. I observed that gene expression was highly variable across iPSC-derived 

neuronal cultures in specific gene categories, and that a portion of this variability was 

explained by commonly used iPSC culture conditions, which influenced differentiation 

efficiency. A number of QTLs overlapped with common disease associations; however, 

using simulations I showed that identifying causal regulatory variants with a recall-by-

genotype approach in iPSC-derived neurons is likely to require large sample sizes, even for 

variants with moderately large effect sizes. 

 

In Chapter 3, I developed a computational model that uses publicly available gene 

expression QTL data, along with molecular annotations, to generate cell type-specific 

probability of regulatory function (PRF) scores for each variant. I found that predictive power 

was improved when the model was modified to use the quantitative value of annotations. 

PRF scores outperformed other genome-wide scores, including CADD and GWAVA, in 

identifying likely causal eQTL variants. 

 

In Chapter 4, I used PRF scores to identify relevant cell types and to fine map potential 

causal variants using summary association statistics in six complex traits. By examining 

individual loci in detail, I showed how the enrichments contributing to a high PRF score are 

transparent, which can help to distinguish plausible causal variant predictions from model 

misspecification. 
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1 Introduction 
A decade ago, large-scale genome-wide association studies (GWAS) conducted as part of 

the Wellcome Trust Case Control Consortium led to the discovery of 24 genomic loci 

associated with common human diseases (Wellcome Trust Case Control Consortium 2007). 

Prior to this, linkage mapping in human pedigrees had been successful in identifying genes 

and genetic variants leading to Mendelian diseases, but had largely failed for complex traits. 

Although the amount of phenotypic variation explained by these GWAS associations was 

small, they provided the first unbiased, genome-wide view of the genetic architecture of 

complex traits. Since then, GWAS have been done with increasing sample sizes for many 

human traits, leading to thousands of genomic loci associated with hundreds of traits. 

However, at the vast majority of these loci the causal variants and molecular mechanisms 

are uncertain. At present, most GWAS associations only represent leads into a wealth of 

underlying biology that will require new data and new methods to unravel. If we can do so, 

there is the promise that they will lead to a new understanding of complex traits, and new 

treatments for common diseases that together affect a large fraction of the population. 

 

In this chapter, I outline the reasons that determining the causal variants and mechanisms 

behind GWAS associations is so challenging. I discuss how studies of molecular traits can 

provide insight into the functionality of different genomic regions, and introduce the reference 

datasets that many of my analyses are based on. Some human cell types are difficult to 

access, but differentiating specific cell types from induced pluripotent stem cells (iPSCs) can 

enable studying molecular traits in these cells in vitro. I provide background to the use of 

iPSC-derived cells as model systems, as well as the challenges to their use. Finally, I review 

existing methods that use functional genomic data to predict the functionality of genetic 

variants, and to fine-map causal variants at GWAS loci. 

1.1 The challenge of determining mechanisms 
underlying complex trait genetic associations 

1.1.1 Common variants with small effects 

A complex trait is one that is not determined by a single locus with a large effect, and can 

include anthropometric traits such as height, molecular traits such as metabolite levels, or 

risk for common diseases like cancer or type 2 diabetes. An early observation from GWAS 

was that across many human traits, the effect sizes of the loci discovered were small. 

Moreover, even for the most highly powered studies, the fraction of trait heritability explained 
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by all genome-wide significant loci together was also small, typically below 10%. This came 

to be termed the problem of “missing heritability” (Manolio et al. 2009). Based on this, some 

criticized the principle behind GWAS, suggesting that rare variants may explain more 

heritability than the common variants which GWAS is well-powered to discover (McClellan 

and King 2010). However, recent work has shown that when all assayed variants are 

accounted for, more than 30% of heritability can be explained by common variants for many 

complex traits (Speed et al. 2017), and for one of the most highly powered GWAS, human 

height, more than 50% is explained by all common variants at current sample sizes (Yang et 

al. 2015). This is supported more directly by large-scale sequencing, which for type 2 

diabetes has shown that low-frequency and rare variants appear to play only a minor role in 

disease risk (Fuchsberger et al. 2016). It appears that, to understand the genetic contribution 

to complex traits, unraveling the biology behind common variant GWAS associations is 

essential. 

 

It is common to refer to “causal variants” for complex traits, but it is not always explicit what 

this means. For Mendelian diseases the picture is clearer: most such diseases have high 

penetrance, and a single mutation either occurs de novo or segregates within a family along 

with a clear phenotype. The vast majority of Mendelian diseases with known genetic causes 

have been explained by mutations in protein-coding genes (Chong et al. 2015). In contrast, 

GWAS now routinely discover dozens of loci associated with individual complex traits. At 

each locus, there are usually many variants statistically associated with the trait, and it is 

assumed that only one or a small number of these variants causally influence the trait. Here, 

causal means that some molecular mechanism links a particular variant to the trait, and that 

having a different allele of that variant would alter the quantitative trait or the risk for disease. 

Because the effects of these loci are small, a given causal variant has only a minor influence 

on the value of a quantitative trait. Similarly, for common diseases a causal risk variant is 

neither necessary nor sufficient to cause disease. 

 

Pathway and tissue-specific enrichments of genes at common variant associations have led 

to new insights into the aetiopathogenesis of many disorders, including ankylosing 

spondylitis (Evans et al. 2011), schizophrenia (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium 2014), and obesity (Claussnitzer et al. 2015). However, 

GWAS identify associated variants rather than genes, and these enrichments are only 

possible by looking broadly at the genes in a window around each association. In other 

words, both the causal variants and the relevant genes at individual GWAS loci are usually 

unknown. 
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Identifying the causal variants for GWAS associations is important because it facilitates 

experiments to investigate disease mechanisms, which typically must be done in specific cell 

types (or model organisms) and with specific perturbations. This is increasingly done using 

genome editing with the CRISPR/Cas9 nuclease to engineer deletions or alter alleles of 

specific variants, followed by evaluating the molecular effects of the changes. Because these 

experiments are limited in throughput, it is essential to have a clear hypothesis as to which 

variant is causal. Genome editing experiments can then elucidate which genes are affected 

by causal variants, and this in turn can inform therapeutic hypotheses. However, a number 

of challenges make it difficult to identify causal variants at GWAS loci. 

1.1.2 Linkage disequilibrium and genotype imputation 

GWAS are based on the principle of “tagging” the majority of common genetic variation in 

the genome by assaying only a subset of variants, specifically, single nucleotide 

polymorphisms (SNPs). This cost-effective approach enables a large sample size, which 

maximizes the power to detect associated loci. Tagging is possible because nearby regions 

of a chromosome tend to be transmitted together to offspring, which leads to correlation 

between alleles that is referred to as linkage disequilibrium (LD). The level of LD between 

two variants is commonly measured by the R-squared (r2) of their correlation across 

chromosomes in a population. Over time, recombination of chromosomes between two 

alleles reduces their pairwise LD. Recombination is not evenly distributed across 

chromosomes, but tends to occur in hotspots. As a result, the human genome has segments 

of variable length, typically 10 - 100 kb but sometimes longer, with many alleles in high LD. 

 

Because only tag SNPs are measured, the causal variant for a GWAS association is often 

not among those tested. This has been changing with the availability of reference panels of 

genetic variation discovered using whole genome sequencing (WGS), such as the 1000 

genomes project (1000 Genomes Project Consortium et al. 2015). Using WGS, the full range 

of genetic variation in an individual can be discovered, including SNPs, but also insertions or 

deletions (indels) of various lengths, copy number variants (CNVs), and more complex 

structural variants. GWAS can leverage these reference data to impute genotypes at 

variants that are not directly assayed in the study. This enables association testing for all 5 - 

10 million common variants present in human populations. However, the LD which makes 

imputation possible also means that many variants at a locus have similar association 

statistics. 
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Imputation brings its own problems: while common variants can generally be well imputed, 

accuracy is reduced for low-frequency variants, and greatly reduced for rare variants (Howie 

et al. 2012), due to their lower LD with tag SNPs. Most GWAS to date have been imputed 

using the 1000 genomes project reference panel, which was based on low-depth (7x) whole 

genome sequencing of individuals from multiple global populations. Imputation can only be 

as accurate as the reference panel itself. While SNPs are accurately recovered in low-depth 

sequencing, sensitivity for detection of short indels is lower, and for different classes of 

structural variants ranges from 32% - 88% (Sudmant et al. 2015). Reference panels for 

imputation are improving — by combining together many low-depth WGS studies, the 

majority from European cohorts, the Haplotype Reference Consortium has created a panel 

of 64,976 haplotypes at ~39 million SNPs (S. McCarthy et al. 2016). Despite this, it is 

important to realise that association statistics are influenced by the quality of the genotypes 

for particular variants. As statistical power increases, the effects of genotyping inaccuracies 

on association statistics are amplified. 

 

In the future, high-depth WGS may become feasible for large-scale association studies. This 

will enable better discovery of rare variant associations and will overcome some of the 

challenges of genotype imputation. However, the difficulty of resolving causal common 

variants will remain due to broad LD at many associated loci. 

1.1.3 Most associated variants are non-coding 

At the majority of loci discovered by GWAS for complex traits, no variants in protein-coding 

genes are compelling candidates for explaining the association (Hindorff et al. 2009; H. 

Huang et al. 2017; Farh et al. 2015). This contrasts sharply with Mendelian diseases, where 

most causal variants alter protein-coding sequence, and are either de novo mutations or are 

extremely rare. A common hypothesis is that many complex trait associations are driven by 

changes to gene expression. A key mechanism whereby genetic variants influence gene 

expression is by altering DNA sequence motifs for transcription factors (TFs) at their binding 

sites (TFBS), which are commonly found at enhancer, repressor, and promoter elements. 

One of the pioneering studies demonstrating this showed that a variant 35 kb distal from 

SORT1 creates a C/EBP binding site and alters expression of SORT1 in liver hepatocytes 

(Musunuru et al. 2010). This in turn alters plasma LDL-C levels and provides a plausible 

explanation for the GWAS association of this locus with myocardial infarction. Examples are 

accumulating of complex trait-associated variants which disrupt or create TFBS, and thereby 

affect gene expression (Praetorius et al. 2013; Guenther et al. 2014; Soldner et al. 2016). 
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If we could predict which non-coding genetic variants are functional, then we might be able 

to unravel non-coding GWAS associations. Yet, despite a large body of work investigating 

the genetic basis of gene regulation, our ability to predict these effects remains poor. Unlike 

protein-coding variation, where the genetic code maps precisely from nucleotide sequence 

to amino acids, the rules governing noncoding sequence are more probabilistic and 

complex. Understanding this “regulatory code” is a key goal in genomics. 

 

Researchers therefore face clear challenges to interpreting non-coding GWAS associations. 

Many mechanisms for non-coding variants to influence complex traits are possible, including 

by altering gene splicing (Gregory et al. 2012), the action of noncoding RNAs (Ling et al. 

2013), or altering expression of microRNAs or their binding sites in the untranslated regions 

(UTRs) of genes (Ghanbari et al. 2016). Indeed, multiple noncoding variants can act 

independently or in concert to affect gene expression (Glubb et al. 2015; Bojesen et al. 

2013). In addition, regulatory variants can influence distal genes, and so at each locus many 

genes are candidates to mediate the association. Finally, because gene regulation can be 

cell type- and context-specific, it is difficult to know which context is the most relevant for 

investigating a given trait association. 

1.1.4 Non-coding associations may span long distances 

GWAS loci are also enriched near genes, but because the mechanisms for these 

associations are not generally known, it is unclear how often the nearest gene to a GWAS hit 

is the one mediating the association. In some fraction of cases, the top GWAS variants 

appear to be in or very near the causal genes. For example, there are cases where a GWAS 

association occurs in a gene that is the known target of a drug for the same disease, as with 

cholesterol-lowering statin drugs and the LDL association at HMGCR (Kathiresan et al. 

2008). Further, enrichment of genes at GWAS loci for known pathways and biological 

mechanisms has been shown for a number of traits, such as pancreatic islet cell function in 

type 2 diabetes (Pasquali et al. 2014), and inflammatory signalling pathways in a number of 

autoimmune disorders (Parkes et al. 2013). 

 

GWAS variants can also regulate distal genes. An early GWAS success was the discovery 

of a strong association between obesity and variants in introns 1-2 of FTO. This gene was 

initially seen as a strong candidate for regulating body mass, and indeed studies in mice 

showed that FTO knockout led to growth retardation and reduced adipose tissue (Fischer et 

al. 2009), while FTO overexpression increased body and fat mass (Church et al. 2010). 

However, these studies either removed or duplicated the FTO obesity risk region along with 
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FTO itself, and so did not preclude that the effect was mediated by another gene. 

Subsequently, it was found that the FTO intronic variants form long-range connections with 

IRX3, more than 500 kb distal (Smemo et al. 2014). It was then convincingly shown that the 

causal obesity risk variant acts through IRX3 rather than FTO (Claussnitzer et al. 2015). 

 

The number of examples of complex trait associations acting via distal genes is growing: the 

SNP that causes blond hair in Europeans likely acts via a reduction in KITLG expression, 

some 350 kb away (Guenther et al. 2014); a vascular disease association acts through 

EDN1, 600 kb away (Gupta et al. 2017); and a prostate cancer risk variant acts through 

SOX9, 1 Mb away (Zhang et al. 2012). Newly developed methods that integrate gene 

expression with summary association statistics from GWAS have estimated that around two-

thirds of GWAS associations are not mediated by the nearest gene (Zhu et al. 2016; Gusev 

et al. 2016). These examples illustrate that, even when a plausible gene overlaps a GWAS 

association, it is not safe to assume that it is causal for the association. 

1.1.5 Gene regulation can be cell type- and context-specific 

Genetic variants act via molecular pathways to alter higher-level phenotypes. It is intuitive 

that the effects of such variants will be specific to certain cell types relevant to the 

phenotype. A primary way to study these effects is by measuring gene expression in specific 

tissues across multiple individuals, which enables the discovery of loci that influence gene 

expression, termed expression quantitative trait loci (eQTLs). An early eQTL study examined 

primary fibroblasts, T cells, and lymphoblastoid cell lines (LCLs), and suggested that 68-70% 

of regulatory variants were cell type-specific (Dimas et al. 2009). However, the degree of 

overlap is highly dependent on power, and subsequent studies have demonstrated that the 

majority of eQTLs are shared (Ding et al. 2010; Nica et al. 2011). The pilot analysis of the 

genotype-tissue expression project (GTEx), examining eQTLs across 100 - 150 samples in 

nine tissues, found that more than 50% of eQTLs were shared across all nine tissues, and 

only 10-30% of eQTLs were tissue-specific (GTEx Consortium 2015). As GTEx increases its 

sample size and the number of tissues measured, the degree of tissue-specificity is likely to 

drop even lower. These results suggest that to integrate eQTLs with GWAS results, it may 

not be necessary to have a perfect match between the eQTL tissue and the “causal” tissue 

for the trait association. 

 

Despite the widespread sharing of gene regulatory effects across tissues, it would seem odd 

to investigate trait associations using a cell type with no apparent connection to the 

phenotype, not least because the results would be hard to interpret. Even if the genetic 
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effect of a trait-associated variant were detectable in such a cell type, the results might not 

reflect the downstream molecular mechanisms relevant to the trait. The high estimates of 

sharing from tissue studies may also reflect the broad mix of cell types present in whole 

tissues, and so underestimate eQTL specificity at the level of cell types. In the FTO and 

obesity example above, regulatory variants were found to influence IRX3 expression in pre-

adipocytes but not in whole adipose tissue (Claussnitzer et al. 2015), indicating that 

specificity is possible even across closely related cell types. For this reason, investigators 

are performing gene expression studies using increasingly specific cell types, such as sorted 

regulatory T cells implicated in autoimmune disease (Ferraro et al. 2014), specific brain 

regions associated with psychiatric and neurodegenerative disorders (Ramasamy et al. 

2014), and multiple regions of the colon associated with inflammatory bowel disease (Singh 

et al. 2015). 

 

In addition, some gene regulatory effects responsible for disease associations may only be 

detectable under specific conditions, such as in response to immune stimulus. Fairfax et al. 

exposed primary CD14+ human monocytes from 432 individuals to interferon-γ or two 

durations (2 and 24 hrs) of bacterial lipopolysaccharide (LPS), and found hundreds of 

context-specific eQTLs dependent on the type or duration of stimulus (Fairfax et al. 2014). 

Similarly, Lee et al. derived dendritic cells from human peripheral blood monocytes of 534 

individuals, and exposed these to either LPS, influenza virus, or the cytokine interferon-β 

(IFN-β), followed by measuring expression of 415 genes (M. N. Lee et al. 2014). Among the 

eQTLs they discovered were a number which overlapped with common disease associations 

and which were only discovered in stimulated cells. 

1.2 Genomics of molecular traits 
Deeper understanding of molecular traits holds great promise for revealing the mechanisms 

behind many complex trait associations. A large number of molecular traits are potentially 

informative, including gene expression and splicing, protein expression, chromatin 

accessibility, chromosomal conformation, histone modifications, and transcription factor 

binding. Whereas GWAS for complex traits generally only began to discover loci at genome-

wide significance with samples sizes of thousands of individuals, genetic studies of 

molecular traits routinely discover replicable effects with fewer than one hundred samples. A 

likely reason for this is that molecular traits are more directly downstream of DNA sequence 

in the cascade of events influenced by genetics. Also, the technologies and analysis 

methods differ between GWAS and molecular traits. For many molecular traits, we know 

where to look in the genome — it is common to statistically test only variants near the gene 



20 

or feature, since these are more likely to have an effect. To make appropriate inferences, it 

is important to understand the opportunities and limitations of these different types of data. 

1.2.1 Gene expression 

While proteins are key actors in carrying out cellular functions, it is technically difficult to 

measure protein levels in a precise and high-throughput manner, although some progress is 

being made towards these ends (Melzer et al. 2008; Stark et al. 2014; Battle et al. 2015). 

Due to the lower cost and more accessible technology, most studies of gene regulation have 

quantified steady-state mRNA levels. Early studies measured total expression using arrays 

of probes specific to one or more exons of each of the approximately 20,000 protein-coding 

genes in the human genome. Subsequently, the availability RNA sequencing made it 

possible to measure not just total expression levels, but also alternative splicing, which 

revealed previously unknown exons and alternative UTRs (J. K. Pickrell et al. 2010). 

 

When gene expression is measured genome-wide across many samples, mapping eQTLs is 

similar to doing a GWAS for each gene. However, a key difference is that it is common to 

only test variants within 1 Mb of each gene for association with the gene’s expression, since 

very few variants beyond this distance influence expression. For example, in data from a 

large-scale study of LCLs (Lappalainen et al. 2013), which is used in Chapter 3 of this thesis, 

only around 25% of lead eQTL variants are more than 50 kb from the genes they regulate. 

Since most eQTLs are local to the regulated gene, they are presumed to act in cis, that is, 

the alleles of a variant lead to differential expression of a target gene nearby on the same 

chromosome. When an individual is heterozygous for a variant within a gene transcript, 

allele-specific expression (ASE) can be detected, which can confirm that an eQTL acts in 

cis. While eQTLs can also act in trans, few trans-eQTLs have been discovered. 

 

Based on highly powered eQTL studies in blood, it has become clear that most genes in the 

genome have a detectable cis-eQTL (Battle et al. 2014; Westra et al. 2013). Furthermore, 

most eQTLs appear to propagate their effects to protein levels, and to be associated with 

changes to chromatin accessibility at nearby regulatory elements (Y. I. Li et al. 2016). This 

leads to the concept of a regulatory cascade: genetic variants alter TFBS at distal regulatory 

regions or promoters; this leads to changes in chromatin accessibility and histone 

modifications, followed by changes to gene expression, and finally translation and protein 

expression levels. Not all gene regulation occurs via this model, however. With RNA-seq 

data, QTLs can also be mapped for the rate of splicing of gene introns (sQTLs), and a recent 

study estimated at least as high an enrichment of GWAS hits for sQTLs as for eQTLs (Y. I. 
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Li et al. 2016). This suggests that, to date, changes to gene splicing may have been an 

underappreciated mechanism linking genetic variation to complex traits. 

 

Because eQTLs and sQTLs are linked to specific genes, a powerful way to interpret GWAS 

associations is to look for overlap with a QTL, in which case the regulated gene is a good 

candidate for mediating effects on the complex trait. Yet, despite growing eQTL datasets, 

only a few GWAS loci have been clearly demonstrated to act via this mechanism. In 

addition, estimates of the fraction of autoimmune GWAS loci that share causal genetic 

variants with eQTLs put the number at just 25% (Chun et al. 2017). This is puzzling, since in 

the absence of coding variant associations, effects on gene expression would seem to be 

the primary alternative explanation. A few reasons may explain the failure so far to link a 

large number of GWAS associations with eQTLs. First, eQTLs suffer the same problem as 

GWAS, in that LD makes it difficult to identify causal variants. Second, it is almost certain 

that we have not yet discovered all of the QTLs, across all cell types and contexts. Third, 

determining overlap between QTLs and GWAS associations is non-trivial, since the 

prevalence of QTLs across the genome means that chance overlaps are common 

(Lappalainen et al. 2013). Rigorous statistical methods, such as coloc (Giambartolomei et al. 

2014), are essential to evaluate whether a given overlap is more consistent with shared or 

distinct causal variants. However, the sensitivity of these methods to detect true overlaps, 

particularly in the case of multiple causal variants, is unknown. 

 

There remains hope that studies of gene expression will ultimately help to elucidate 

molecular mechanisms at a large fraction of GWAS loci. The GTEx project has to date 

released eQTL analyses for only about half of its target sample size. In contrast with 

previous reports, the latest GTEx analysis found that 52% of GWAS associations across 21 

traits were colocalized with an eQTL in at least one tissue (GTEx Consortium et al. 2017). As 

the GTEx sample size grows, this fraction is likely to increase. In addition, a number of 

ongoing eQTL studies are being performed in specific cell populations not profiled by GTEx, 

and under conditions of cellular stress or immune challenge. It is noteworthy, however, that 

half of the GWAS loci colocalized with a GTEx eQTL actually colocalized with more than one 

eGene. This implies that identifying the causal gene will still require further mechanistic 

evaluation of any colocalized eGenes. 

1.2.2 Transcription factor binding 

There are an estimated 1,000 - 2,000 human genes encoding transcription factors (TFs) 

(Vaquerizas et al. 2009). Each TF binds to DNA having specific sequence features, which is 
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primarily determined by the nucleotide sequence itself. The preferred sequences to which a 

TF binds can be captured as a short sequence motif (< 20 nucleotides). As a cell 

differentiates from pluripotent or progenitor cell states to more specific cell types, numerous 

genes are activated and others are repressed. A subset of TFs known as pioneer TFs are 

efficient at opening repressed chromatin, and these are often critical “master regulators” of 

specific cell lineages, such as FoxA for liver (Iwafuchi-Doi et al. 2016), GATA4 for heart (P. 

Zhou, He, and Pu 2012), and PU.1 and C/EBPα for macrophages (Ruffell et al. 2009; Heinz 

et al. 2010). Where pioneer TFs have opened the DNA, other TFs are then able to bind, 

creating loops between regulatory regions and gene promoters to determine expression 

levels of specific genes. This co-binding of multiple TFs is a common feature of gene 

regulation and lineage specification (Chronis et al. 2017). 

 

The ENCODE project has used chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) to profile the binding of dozens of TFs across many human cell types (ENCODE 

Project Consortium 2012). Since it is thought that many gene regulatory variants act by 

altering TF binding, a knowledge of the locations of TFBS should be highly informative for 

locating causal regulatory variants. There are a number of reasons why this has not yet been 

fully realized. First, even the more than 2,000 TF binding assays performed by ENCODE are 

still a sparse sampling of the full matrix of TFs and cell types. Second, high quality 

antibodies are only available for some TFs. Third, it is unknown what fraction of TBFS are 

functional; because TF motifs are short, they are highly numerous across the genome. Not 

all occurrences of a motif are bound by an expressed TF with preference for that motif, and 

conversely, not all TFBS have a distinguishable motif present. Lastly, TF binding can be 

influenced by factors outside of core motifs, such as DNA shape (Mathelier et al. 2016), DNA 

accessibility, and the co-binding of other TFs to nearby sites.  

1.2.3 Histone modifications 

Histones are proteins conserved across all living organisms which bind as octamers to DNA, 

composed of pairs of subunits H1, H2, H3, and H4. These histone octamers, called 

nucleosomes, each have around 150 base pairs of DNA wrapped around them, and are 

bound across most of the DNA in a cell. Histones are essential to compacting the billions of 

base pairs of DNA sequence in a eukaryotic cell into the nucleus. They also are key factors 

in determining which regions of DNA are active or repressed, which differs between cell 

types. The N-terminal tails of histones H3 and H4 protrude from the nucleosome, and 

specific amino acid residues can have covalent modifications added to them. These post-

translational modifications are highly correlated with different aspects of the DNA sequence, 
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such as transcribed and regulatory regions. For example, the gene bodies of actively 

transcribed genes tend to have nucleosomes with high levels of trimethylation at lysine 36 of 

histone H3, abbreviated H3K36me3. Both promoters and active transcriptional enhancers 

are often marked with acetylation at lysine 27 of histone H3 (H3K27ac). Antibodies are 

available for many specific histone modifications, so that ChIP-seq can be used to measure 

these genome-wide. There are more than a hundred sites at which histones can be modified 

(Tan et al. 2011), but only a few of these have been studied in depth, summarised in Table 1.  

 

Histone modification Association 

H3K4me1 activation: broad peaks at enhancers 

H3K4me3 activation: sharp peaks at promoters of poised and active 
genes 

H3K9ac activation: active promoters, release of paused RNA Pol II 
(Gates et al. 2017) 

H3K9me3 silencing: broad regions of heterochromatin 

H3K27ac activation: sharp peaks at active enhancers and promoters 
(Creyghton et al. 2010) 

H3K27me3 silencing: broad regions of Polycomb repression, 
poised/bivalent gene promoters 

H3K36me3 activation: active transcription, transcriptional elongation 

H3K79me1/me2 activation: active and silent promoters 

 

Table 1: Properties of widely studied histone modifications. Most are described in (Barski et al. 

2007). Abbreviations are as follows: me1: mono-methylation; me2: di-methylation; me3: tri-

methylation; ac: acetylation. 

 

Histone modifications have contributed greatly to the annotation of regulatory DNA. They are 

one of the widely-used inputs for genome segmentation, in which a model attempts to 

integrate multiple annotations to assign distinct states, such as enhancer, promoter, or 

transcriptional elongation, to each DNA segment across the genome (Ernst and Kellis 2012; 

Hoffman et al. 2012). Genome segmentation simplifies interpretation of the complex patterns 

of co-occurring histone modifications along the genome, which are often highly correlated 

amongst each other. However, because histones are present in nucleosomes with a 

periodicity along the DNA of ~150 - 200 bp, the resolution of regulatory information 

contained in histone modifications is also naturally limited to around 200 bp. 
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1.2.4 Chromatin accessibility 

Regulatory regions of the genome have a DNA conformation that is open and accessible to 

transcription factor binding, whereas most other genomic regions have lower accessibility. A 

key advantage of measuring chromatin accessibility is that it is agnostic to the particular TFs 

that bind and open DNA at regulatory regions and promoters. Therefore, these regions can 

be identified in any cell type, without a need to assay each TF independently. In addition, 

using TF sequence motifs it is sometimes possible to predict the TFs that are bound at a 

regulatory region without directly measuring them. A method based on this idea, called 

centisnp, suggested that 97% of genetic variants in inferred TF binding footprints have no 

effect on chromatin accessibility (Moyerbrailean et al. 2016). Predictions from this method 

are used as one of the inputs the model that I describe in Chapter 3. 

 

Until recently, chromatin accessibility was primarily measured by digesting native DNA with 

DNase I followed by sequencing, which found open chromatin covering about 1% of the 

genome. More recently, an alternative measure of chromatin accessibility based on 

integration of Tn5 transposase into native chromatin, known as ATAC-seq, has come into 

widespread use due to the simpler protocol and the ability to perform it with fewer cells 

(Buenrostro et al. 2013). Genetic variants influencing chromatin accessibility (caQTLs) can 

be identified with very modest sample sizes (< 100 individuals). While caQTLs do not directly 

indicate a target gene, the majority of caQTLs appear to be due to variants within the 

chromatin accessibility peak that they regulate (Degner et al. 2012). This suggests that 

overlap between eQTLs and caQTLs can be a powerful method to localise causal eQTL 

variants. 

1.2.5 Chromosomal conformation 

Techniques such as Hi-C, which capture information about chromosomal interactions 

genome-wide, have shown that the genome is organized into topologically associating 

domains (TADs) of around 100 kb - 1 Mb, with the regulation of genes in different TADs 

insulated from each other (Dixon et al. 2012; Rao et al. 2014). One of the key factors 

determining chromosomal conformation is CTCF, a transcription factor with a particularly 

clear binding motif, which is found at TAD boundaries. Whereas TAD boundaries are largely 

conserved across cell types and across species, DNA contacts within TADs, such as 

enhancer-promoter loops, are more dynamic and vary between cell types. Hi-C therefore 

has the potential to help in identifying causal regulatory variants by indicating the regulatory 

regions in contact with specific gene promoters. 

 



25 

Because Hi-C attempts to assay all pairwise interactions between DNA segments, achieving 

resolution of better than 25 kb requires a very large number of cells and deep sequencing 

(Rao et al. 2014). These requirements are reduced in promoter capture Hi-C, where an 

oligonucleotide pulldown enriches the Hi-C library for promoter-interacting regions before 

sequencing. Promoter capture Hi-C in 17 blood cell types by the BLUEPRINT consortium 

was used to prioritize 2,604 candidate genes for association with 31 GWAS traits (Javierre et 

al. 2016), although at each locus there were often a number of genes prioritized. Even when 

high resolution (<= 5 kb) is possible, it is difficult to detect significant interactions between 

DNA regions less than 25 kb apart, because nearby regions have a high rate of random 

collisions that are captured by the cross-linking used for Hi-C. However, it is clear from eQTL 

studies that the majority of causal regulatory variants are nearer than 25 kb from gene 

TSSes. This limitation reduces the utility of Hi-C data in localising causal regulatory variants. 

1.3 iPSC-derived cellular models 
While molecular traits can be measured in many cell types, technical limitations often make 

this difficult. Most assays require millions of cells, which are not always available from 

primary tissues, and this is particularly limiting for rare cell types. As a result, many of these 

assays have been performed on LCLs or cancer cell lines, even though these immortalized 

cells may not be good models for the relevant cell type. The use of induced pluripotent stem 

cells (iPSCs) provides a potential solution to both limiting cell numbers and poor cell type 

models. iPSCs can be expanded in vitro to the required number of cells, and then 

differentiated in to specific cell types. Because iPSC technology is still quite new, it is 

important to understand the current state of the art. 

1.3.1 Reprogramming somatic cells to pluripotency 

In 2006, Takahashi and Yamanaka reported that somatic cells can be reprogrammed to 

pluripotency by the ectopic expression of just four transcription factors (Takahashi and 

Yamanaka 2006). This led to great excitement about the potential uses of these iPSCs for 

regenerative medicine, and in particular their advantages over embryonic stem cells (ESCs). 

IPSCs derived from a patient’s own cells could provide an unlimited supply of stem cells, 

which could be differentiated into desired cell types for cell-replacement therapies, and 

would be unlikely to face immune rejection. An early demonstration of the potential for this 

was provided by the Jaenisch research group, who derived dopaminergic neurons from 

reprogrammed mouse fibroblasts, and showed that implanting these into the brains of rat 

models of Parkinson’s disease led to functional integration and improved disease symptoms 

(Wernig et al. 2008). The development of such therapies for humans, however, depends 
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upon a thorough assessment of the safety and reliability of iPSC-based cells for specific 

applications, as well as the development of efficient protocols to derive specific cell types. 

 

ESCs can differentiate into any cell type in the body; to be considered pluripotent, the same 

should be true of iPSCs. Although a number of reprogramming methods have now been 

developed, reprogramming is inefficient, and typically only up to 1% of somatic cells appear 

to attain pluripotency (Robinton and Daley 2012). As a result, iPS cell lines are grown from 

single-cell clones, and pluripotency is usually assessed by looking for molecular hallmarks, 

such as expression of genes OCT4, SOX2, and NANOG at levels comparable to ESCs. 

More robust validation of pluripotency can be obtained by showing that the cells can 

differentiate into the three embryonic germ layers in vitro. Even though iPSCs seem to be 

capable of differentiating into any cell type, a number of groups reported that individual cell 

lines showed more efficient differentiation to specific lineages (Kim et al. 2010). In particular, 

a concern is that iPSCs retain an epigenetic memory of the cell type they originated from, 

implying that reprogramming to pluripotency is generally incomplete (Bar-Nur et al. 2011; 

Polo et al. 2010). A problem with these comparisons was that the cell lines used were 

derived from different donors, and thereby had different genetic backgrounds. When Bock 

and colleagues used a quantitative differentiation assay as well as measuring DNA 

methylation in 20 ESC and 12 iPSC lines, they found substantial variation among ESCs as 

well as iPSCs (Bock et al. 2011). In addition, global differences in gene expression are more 

significant in earlier passages of iPSCs, suggesting that pluripotency is gradually established 

over time (Polo et al. 2010). 

 

More recently, cell banks of hundreds of human iPSC lines have been generated in a 

consistent manner by the NextGen consortium (Warren, Jaquish, and Cowan 2017) and the 

HIPSCI initiative (Kilpinen et al. 2017). These have revealed that donor genetic background 

contributes substantially to molecular variation in iPSCs. As well, improved protocols and 

characterisation of cell lines may help to overcome challenges related to the pluripotency 

and heterogeneity of iPSCs (D’Antonio et al. 2017; Panopoulos et al. 2017). For example, 

although it was was previously necessary to culture iPSCs on a “feeder” layer of mouse 

embryonic fibroblasts, new media with specific growth factors have enabled maintaining 

iPSCs without feeders, simplifying cell culture protocols. 

 

A growing use of iPSCs is to differentiate them into specific cell types to model disease 

phenotypes in vitro. This is particularly valuable for rare and inaccessible cell types, which 

otherwise would be difficult to study. iPSC-derived cells can be used to discover cell type-

specific molecular QTLs, to screen drugs for effects on cellular phenotypes, and to identify 
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causal variants via gene editing with CRISPR-Cas9. These capabilities provide the 

motivation for the experiments described in Chapter 2. We differentiated iPSC lines from 

different donors in the HIPSCI project to pain-sensing sensory neurons, a cell type that 

would be difficult to study in vivo. By collecting multiple molecular phenotypes across a large 

panel of cell lines, the aim was to link common genetic variation with both molecular traits 

and electrophysiological traits of sensory neurons. In parallel with this experiment, a GWAS 

was conducted comparing more than 18,000 individuals with chronic pain to controls. The 

hope was that molecular QTLs from our study would inform interpretation of any GWAS loci 

associated with pain. Unfortunately, no genome-wide significant loci for pain were found. 

Despite this limitation, we found a number of QTL-GWAS overlaps that likely reflect neuronal 

functions more broadly. In addition, during the course of our work we came across a 

challenge that has been noted in previous iPSC work, but which was particularly acute given 

the large number of differentiations in our study. 

1.3.2 Heterogeneity and limited maturity of iPSC-derived cells 

Differentiating iPSCs into defined cell types is a process that generally involves the addition 

of combinations of specific growth factors and media over a period of weeks, attempting to 

mimic endogenous developmental signals. A key challenge in using these as models is that 

although the resulting cells display characteristics of the desired cell type, they usually 

appear immature; this immaturity has been reported for multiple cell types, including neurons 

(Handel et al. 2016), hepatocytes (Dianat et al. 2013), cardiomyocytes (Veerman et al. 

2015), and hematopoietic cell types (Smith et al. 2013). This may reflect in part the trade-off 

between experimental throughput and the time allowed for differentiation; however, it could 

also indicate that full maturation of cells requires a multicellular tissue environment that is 

absent in most culture systems (Passier, Orlova, and Mummery 2016). 

 

A related but distinct challenge for iPSC-derived cell models is that differentiation tends to 

produce a mixture of cells, only a fraction of which express the expected marker genes. 

These differentiation outcomes can be highly variable between cell lines, and even across 

cultures of the same cell line. The nature of these “contaminating” cells is not generally 

known, but single-cell characterisation of cultures at multiple time points during 

differentiation is beginning to shed light on factors that lead to this variability. Reconstructing 

the differentiation course of cells undergoing MyoD-mediated reprogramming to contractile 

myotubes suggested that cells can take alternative branches, with those that select incorrect 

branches ending in aberrant cell states (Cacchiarelli et al. 2017). For some cell types and 

applications, it is possible to sort differentiated cells to enrich for the desired outcome. 
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Another approach was described recently for neurons, where single cells were measured 

with patch clamp electrophysiology, followed by sequencing of the same single cells (Bardy 

et al. 2016). This approach enabled the researchers to link molecular cell states directly with 

functional features of the same cells. 

 

Despite heterogeneity in iPSC differentiation, it has been possible to observe disease-

relevant phenotypes for Mendelian diseases in iPSC-derived cells. For example, iPSC-

derived sensory neurons from patients with inherited erythromelalgia, which is due to 

mutations in the sodium channel Nav1.7, showed greater spontaneous firing than those from 

control individuals, and this was reverted to normal with the addition of a Nav1.7-blocking 

drug (Cao et al. 2016). Similarly, iPSC-derived cardiomyocytes from individuals with long-QT 

syndrome showed prolonged action potentials, and this could be modulated by existing 

drugs used for long-QT syndrome (Itzhaki et al. 2011). 

 

Heterogeneity is likely to be a greater problem when attempting to model the effects of 

complex trait-associated variants in vitro, due to their smaller effect sizes. Studies reported 

as part of the NextGen consortium have taken the first steps in this effort. Warren et al. 

recruited individuals homozygous for the major or minor genotypes (17 each) at the LDL-C 

associated variant rs12740374. They differentiated 68 iPSC lines from these individuals into 

hepatocytes and adipocytes, demonstrating that rs12740374 influenced SORT1 expression 

primarily in hepatocytes (Warren et al. 2017). Pashos et al. differentiated iPSCs from 91 

healthy donors to hepatocyte-like cells, and used RNA-sequencing to map eQTLs. For four 

eQTLs that colocalized with GWAS associations for lipid traits, they used a massively 

parallel reporter assay to identify putative causal SNPs, followed by CRISPR/Cas9 genome 

editing to validate the candidate SNPs (Pashos et al. 2017). These impressive studies 

showed that using iPSC-derived cells to model complex trait associations is possible, but 

also revealed that doing so requires large samples sizes and very considerable effort. 

1.4 Predicting variant functionality 
Identifying causal variants for Mendelian or complex traits requires experimental validation. 

However, investigating the molecular effects of individual genetic variants is a laborious 

process that can usually only be done for a handful of variants at most. Computational 

approaches to prioritize variants to investigate are thus essential. The enormous growth in 

number and types of genomic data has fueled a growth in methods using these data to 

predict variant functionality and to fine-map GWAS associations. Predicting the functional 

effects of genetic variants is also of more general interest, since it may shed light on the 
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basic regulatory grammar that determines genome function. It is important to first clearly 

define what is meant by “functional”. 

 

A widely held assumption, supported by evolutionary theory, is that most genetic variants are 

neutral, meaning that they have little effect on organismal fitness. This is consistent with the 

observation that a relatively small fraction of the genome (4-7%) has significant sequence 

conservation across mammals (Siepel et al. 2005; Davydov et al. 2010). Moreover, since 

selection depletes deleterious variants, the fraction of common variants with fitness effects is 

likely to be even lower. However, conservation differs from function. First, transcription factor 

binding sites generally have low conservation across species, despite having clear functional 

effects if disrupted (Doniger and Fay 2007). Second, variants may have “functional” 

molecular effects without having organismal effects. Third, a functional variant may have a 

deleterious effect only late in life, and therefore have little effect on fitness and sequence 

conservation, even though it affects a trait. In this thesis, a functional variant is one with a 

molecular effect, regardless of whether that effect propagates to any other phenotype. Still, 

since neutral variants are unlikely to have effects on complex traits, functional variants are 

more likely to be causally related to complex traits. 

1.4.1 Variant annotation 

One way to stratify variants into classes that are more or less likely to have functional effects 

is to annotate them with available genomic features. A researcher can then manually assess 

the evidence for a given variant’s function using prior knowledge. Early annotation tools 

focused on identifying the effects of variants on protein-coding genes (Cingolani et al. 2012; 

McLaren et al. 2016). This is more technically challenging than it appears at first glance, and 

different tools often produce discordant annotations (D. J. McCarthy et al. 2014). Reasons 

for this include differences in gene annotations across reference databases, as well as the 

difficulty in determining the effects of variants on splicing. While these are essential tools, 

other annotations are important for predicting non-coding variant function. 

 

The tool HaploReg (Ward and Kellis 2012) integrates a large number of genomic datasets, 

and reports a variant’s overlap with genes, enhancer and promoter marks, DNase 

hypersensitive sites, protein binding sites, known eQTLs, and TF binding motifs. A useful 

feature is that it uses LD information to also annotate variants with r2 > 0.8 with the query 

variant. Interpreting the large number of overlaps is challenging, however. For GWAS 

associations it is typical to have dozens of variants in LD, a majority of which overlap some 

potentially relevant feature. RegulomeDB provides a heuristic solution to interpreting 
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overlapping annotations (Boyle et al. 2012): a variant is assigned to one of 14 handmade 

categories based on prior beliefs about the informativeness of each annotation. For 

example, a variant would receive a very high score if it alters a TF motif in a known TFBS, 

within a DNase hypersensitivity peak, and is also a known eQTL. A variant with fewer 

overlaps would receive a lower score depending on which annotations were absent. 

1.4.2 Integrative approaches to score variant functionality 

A general problem in predicting the functions of genetic variants is that informative 

annotations are correlated with each other. For example, while histone modifications 

H3K4me3 and H3K27ac are both enriched for eQTL variants, they frequently colocalise at 

gene promoters and transcribed enhancers, and so combining their independent 

enrichments would overly prioritise variants where these annotations overlap. Methods have 

been developed which address this problem to predict variant functionality more rigorously. 

 

Polyphen (Adzhubei et al. 2010) and SIFT (Kumar, Henikoff, and Ng 2009) are widely-used 

methods to predict the likelihood that a nonsynonymous protein-coding variant is deleterious. 

Both methods rely on the frequency of amino acid substitutions in homologous proteins, and 

Polyphen also considers protein structural features such as transmembrane domains and 

ligand-interacting regions. These methods are sometimes used as input to “meta-prediction” 

tools, which evaluate both protein-coding and non-coding variants genome-wide. 

 

CADD applied machine learning to integrate many annotation sources, assigning a 

“deleteriousness” score to coding and non-coding variants (Kircher et al. 2014). Its inputs 

include Polyphen and SIFT, as well sequence conservation, and annotations from ENCODE 

such as DNase hypersensitivity, TFBS, and genome segmentations. CADD’s score is based 

on a support vector machine trained to distinguish common variants and human derived 

alleles from simulated variants, which are not present in the genome and so are presumed to 

have been depleted by selection. CADD has been widely used to prioritize variants in 

studies of Mendelian disease. A particular strength is that it scores both coding and non-

coding variants on the same scale, which enables evaluating both of these types of variation 

in relation to disease. However, CADD’s prediction performance is likely to be different for 

coding and non-coding variants, and CADD has been criticized for performing poorly on 

identifying functional variants in eQTL datasets (Gulko et al. 2015). 

 

A number of methods focus exclusively on non-coding variation, such as GWAVA (Ritchie et 

al. 2014), LINSIGHT (Y.-F. Huang, Gulko, and Siepel 2017), DeepSEA (J. Zhou and 
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Troyanskaya 2015), and Basset (Kelley, Snoek, and Rinn 2016), and these are discussed in 

more detail in Chapter 3. Both the models implemented by these methods and the 

annotations used as input differ, which makes it difficult to disentangle the factors influencing 

their relative performance. The general lack of a gold standard set of functional non-coding 

variants means that prediction performance can only be assessed relative to proxies, such 

as results from reporter assays. Although these scores of variant deleteriousness or 

functionality are clearly useful in some contexts, it is not clear how a variant’s score relates 

to its probability of influencing a particular trait. For complex traits, there is a need for 

methods that can be applied in a rigorous way to help in identifying causal variants. 

1.5 Fine-mapping GWAS associations 
Identifying causal variants at a GWAS locus is a key step towards deciphering the molecular 

mechanism behind the association. The first step towards this is fine-mapping - reducing the 

set of candidate variants from all those at the locus to a smaller set that is highly likely to 

contain the causal variant. Although most GWAS have used sparse genotyping to tag causal 

variants, a key assumption of fine-mapping is that the causal variant is among the variants 

considered. Therefore, samples within the study must either have whole genome 

sequencing (the ideal case) or must have genotypes imputed using a reference panel from a 

genetically similar population of individuals. The set of candidate causal variants is often 

referred to as a credible set, which can be defined to have a specified probability of 

containing the causal variant(s), given that particular assumptions are met. Commonly, 95% 

or 99% credible sets are reported. Approaches to fine-mapping can be roughly divided into 

those which are purely statistical, those which leverage additional data such as epigenomics 

and gene annotations, and experimental approaches.  

1.5.1 Experimental evaluation of variants 

The gold standard evidence to indicate that a specific variant has a causal effect is to 

experimentally replace the allele in a native cellular context. Following allelic replacement, 

cellular phenotypes such as gene expression can be assayed to determine whether the 

alleles differ in their activity on the same genetic background, with the assumption that 

alleles showing a molecular effect are likely to also causally influence the complex trait.  

Only recently have “genome editing” molecular tools such as CRISPR/Cas9 made this 

feasible, and the number of GWAS loci validated in this way remains small. Performing even 

a single such “knock-in” currently takes months at a minimum, and is difficult to perform in 

some cell types. A slightly lower standard of evidence is to use CRISPR/Cas9 to create 

small deletions overlapping a variant, which can show that the region covering the variant is 
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functional. When applying these approaches, it is critical to be highly confident that the 

causal variant is among the small number that can feasibly be tested. 

 

A higher-throughput experimental alternative to genome editing is to use a reporter assay. 

Here, putative regulatory sequences, such as sequences surrounding highly ranked variants 

in an association study, are synthesized as oligonucleotides and inserted upstream of a 

reporter gene (e.g. green fluorescent protein (GFP) or luciferase) and transfected into cells. 

Sequences that regulate expression of the reporter gene will alter the measured level of 

GFP or luciferase. Reporter assays can also be done at scale. Tewhey and Sabetti used a 

massively parallel reporter assay (MPRA) to test 32,373 variants from 3,642 cis-eQTL loci 

for differential effect between alleles (Tewhey et al. 2016). Although this study focused on 

eQTLs rather than GWAS, the same approach could be used to test credible set variants 

from GWAS in cases where altered gene expression is the most likely mechanism. Even 

among eQTLs, MRPA only detected an expression-modulating effect of a genetic variant for 

~9% of eQTLs tested, some of which will be false positives (Tewhey et al. 2016). It should 

be kept in mind that MPRA will only detect an effect for variants that alter gene transcription 

levels, i.e. enhancer or promoter variants, and not mechanisms that alter splicing or post-

transcriptional regulation. Also, the effect that a variant has in a native cellular context may 

be unobservable or have a different direction of effect when tested in a reporter construct 

(Inoue et al. 2016). As a result, MPRA can be a useful complement to other fine-mapping 

approaches but does not obviate them. 

1.5.2 Statistical fine-mapping 

Early approaches to statistical fine-mapping, such as that used in the Wellcome Trust Case 

Control Consortium (Wellcome Trust Case Control Consortium et al. 2012), assumed that a 

single causal variant was present at an associated locus. A concern with this assumption is 

that when multiple causal variants do exist, the most strongly associated variants may be 

non-causal, due to being in LD with more than one causal variant. Leading methods 

developed more recently, such as CaviarBF (Chen et al. 2015), GUESSFM (Wallace et al. 

2015), and FINEMAP (Benner et al. 2016), account for the possibility that multiple causal 

variants may explain the association signal. These approaches require testing different 

combinations of putatively causal variants, a task which quickly becomes computationally 

infeasible as more causal variants are allowed. GUESSFM and FINEMAP search a 

subspace of potential causal variant configurations that approximates the results obtained 

from examining all configurations. CaviarBF and FINEMAP require only summary statistics 

from the association study, which extends their utility to the many cases where sample 
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genotypes are not available. To accomplish this, they depend upon an external reference 

panel of pairwise LD between variants, such as the 1000 genomes project or the Haplotype 

Reference Consortium. Importantly, the reference panel population’s ethnicity must be well-

matched with that of the GWAS, otherwise the statistical fine-mapping may give spurious 

results. An additional drawback of purely statistical approaches is that when there are 

multiple variants in very high LD, they are nearly statistically indistinguishable. 

1.5.3 Functional fine-mapping 

Another set of methods incorporates functional genomic information to prioritize variants that 

have similar association statistics. This approach is supported by simulations showing that 

the size of the credible set can be reduced while retaining an equal probability of containing 

the causal variant (van de Bunt et al. 2015). Relevant annotations include overlap with gene 

bodies and proximity to gene TSSes, as well as the epigenetic traits discussed previously, 

such as chromatin accessibility, histone modifications, DNA methylation, and genome 

segmentation. Large-scale international consortia, such as ENCODE, Roadmap 

Epigenomics (Roadmap Epigenomics Consortium et al. 2015), and FANTOM (FANTOM 

Consortium and the RIKEN PMI and CLST (DGT) et al. 2014), have collected epigenomic 

data across many cell lines and tissues. 

 

The vast scale of epigenomic datasets makes their use for variant interpretation especially 

challenging because most variants overlap some molecular annotation. Furthermore, in the 

context of GWAS it is unclear how much weight to place on the statistical association for a 

given variant versus the annotations the variant overlaps. There has been rapid progress in 

computational methods that attempt to solve these two problems simultaneously. Fgwas (J. 

Pickrell 2013) learns each annotation's overall enrichment for statistically associated variants 

directly from GWAS summary statistics, controlling for LD between variants. In a Bayesian 

framework, each variant's prior probability of causality then depends on its annotations, and 

this is combined with its association statistic to determine a posterior probability that the 

variant causes the association in a region. Fgwas assumes that a single variant in each 

region causes the association. PAINTOR (Kichaev et al. 2014) uses a similar Bayesian 

approach, but allows for multiple causal variants, at the cost of running time that increases 

exponentially with the number of potential causal variants allowed. Because these 

approaches rely on the signal from GWAS summary statistics, they are only likely to work 

well for highly powered GWAS where many associations contribute to the estimated 

annotation enrichments. RiVIERA-MT (Y. Li and Kellis 2016) and fastPAINTOR (Kichaev et 
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al. 2017) improve upon this by analyzing many GWAS jointly, while also allowing multiple 

causal variants at a locus. 

 

In general, these approaches are flexible in that the user can select any relevant annotations 

to use in the model. However, this imposes the considerable burden of identifying the 

most relevant annotations. Prior knowledge of a trait can often be used to select a relevant 

cell type, but the number of available cell type-specific annotations is still large. Including too 

many annotations in fine-mapping raises the risk of overfitting, which can worsen 

performance. This therefore leads to the related problem of identifying the most relevant cell 

types for a given trait. 

1.5.4 Identifying causal genes 

In many respects, it is more important to identify causal genes than causal variants, since 

the proteins encoded by genes are the targets for drug development. Identifying the causal 

variant for a GWAS association can sometimes implicate a particular gene as causal, such 

as when it is located at a promoter or in a gene’s transcript or splice sites. For other 

regulatory variants, because long-distance gene regulation is prevalent, the location of a 

causal variant is only weak evidence that nearby genes are involved. Hi-C and promoter-

capture Hi-C can suggest causal genes that are distal from a GWAS association peak, 

although most datasets are limited in resolution to blocks ~25 kb or larger. These data also 

have not yet been generated across the broad array of cell types for which other regulatory 

annotations are available. 

 

A unique approach to GWAS can discover associations directly tied to specific genes, and 

has been developed recently by several groups (Gamazon et al. 2015; Gusev et al. 2016; 

Zhu et al. 2016; Barbeira et al. 2017). These methods use reference eQTL data to predict 

gene expression levels in a GWAS cohort, and then test for association between the 

predicted expression and a trait. The latest of these methods can operate directly from 

GWAS summary statistics. In addition to defining the associated gene, they indicate the 

direction of effect between gene expression and the trait. Statistical power is dependent on 

the quality of eQTL reference dataset, as well as the match in LD patterns between the 

eQTL and GWAS cohorts. Just as many GWAS associations do not overlap with known 

eQTLs, not all associations discovered by traditional GWAS will be identified by GWAS for 

predicted gene expression. 
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1.6 Outline of the thesis 
In this thesis, I used two approaches to leverage molecular QTL data to understand genetic 

associations with human phenotypes. 

 

In Chapter 2, I describe mapping QTLs for gene expression and chromatin accessibility in 

123 cell lines differentiated from iPSCs to sensory neurons. A key observation in this effort 

was that the differentiated cells contained a mixture of neurons and contaminating fibroblast-

like cells that was highly variable from one differentiation to the next. Using single-cell RNA-

seq from one cell line, I generated reference gene expression profiles for the neurons and 

contaminating cells, and used these to estimate purity for each of the bulk samples. I found 

that sensory neuronal purity was influenced by whether the iPSCs they were derived from 

had been cultured on feeder cells or in feeder-free medium. Although this contributed to 

increased gene expression variability in the sensory neurons, by leveraging additional 

information from allele specific expression I found QTLs which were in high LD with with 

GWAS catalog associations, providing links to putative causal genes. 

 

In Chapters 3 and 4, I used public eQTL data to develop a model that uses functional 

genomic data to predict non-coding variant functionality, and subsequently applied this to 

fine-map GWAS associations from summary statistics. In Chapter 3, I evaluated a number of 

hypotheses on how genomic annotations could optimally be used to generate a model 

predicting the locations of causal eQTL variants. The resulting model enables the 

computation of genome-wide “PRF” scores, which reflect the cell type-specific probability of 

regulatory function, in any of 119 cell types profiled by the Roadmap Epigenomics project. In 

Chapter 4, I applied PRF scores to address two problems in post-GWAS analysis: (i) 

identifying relevant cell types, for individual loci and genome-wide, and (ii) fine-mapping to 

identify candidate causal variants. 

 

The work in this thesis illustrates how both iPSC-based cellular models and large-scale data 

integration can link human genetic variation to complex trait phenotypes. 
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2 Molecular and Functional Variation in iPSC-
Derived Sensory Neurons 

Collaboration note 
The work described in this chapter has been accepted (pending revisions) for publication by 

Nature Genetics (Schwartzentruber et al., 2017). Supplementary Tables are available at: 

https://github.com/js29/ipsdsn. Daniel Gaffney and Alex Gutteridge conceived and directed 

the project. Stefanie Foskolou performed all differentiations from iPSCs to sensory neurons. 

I performed nearly all data analyses described herein. Kaur Alasoo provided some of the 

code used for expression quantification and QTL calling. Helena Kilpinen determined which 

eQTLs were tissue specific. Alex Gutteridge performed quality control and analysis of 

neuronal calcium imaging and electrophysiology. Anna Wilbrey prepared samples for single-

cell sequencing, and Alex Gutteridge conducted preliminary analyses of the scRNA-seq 

data. 

2.1 Introduction 
Cellular disease models are critical for understanding the molecular mechanisms of disease 

and for the development of novel therapeutics. In principle, induced pluripotent stem cell 

(iPSC) technology enables the development of these models in any human cell type. Initial 

uses of iPSCs for disease modelling have focused mostly on highly penetrant, rare coding 

variants with large phenotypic effects (Itzhaki et al. 2011; G.-H. Liu et al. 2011; Wainger et 

al. 2014; G. Lee et al. 2009; Cao et al. 2016). However, there is growing interest in using 

iPSCs to model the effects of the common genetic variants of modest effect size that drive 

complex disease (Warren, Jaquish, and Cowan 2017). A key question is to what extent 

variability in directed differentiation is a barrier to studying the effects of common disease-

associated variants in iPSC-derived cells. In addition, because cultured cells are imperfect 

models of primary tissues, not all common disease-associated genetic variants also alter cell 

phenotypes in iPSC-derived systems. 

 

Here, we present the first large-scale study of common genetic effects in a neuronal cell type 

differentiated from human stem cells, iPSC-derived sensory neurons (IPSDSNs). Peripheral 

sensory nerve fibres innervate the skin and other organs and are brought together at the 

dorsal root ganglia (DRG) before synapsing with the spinal cord around the dorsal horn. The 

development of efficient protocols to differentiate iPSCs into nociceptive (pain-sensing) 

neurons (Young et al. 2014) provides the opportunity to model common genetic effects on 
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human sensory neuron function, which may underlie individual differences in pain sensitivity 

and chronic pain. We investigate how power to detect common genetic effects is affected by 

the variability introduced by differentiation and demonstrate how initial iPSC growing 

conditions influence cell phenotypes in IPSDSNs. We identify quantitative trait loci (QTLs) for 

gene expression, RNA splicing, and chromatin accessibility and identify a number of 

overlaps between molecular QTLs and common disease associations. In generating this 

gene regulatory map we establish effective techniques for using IPSDSN cells to model 

molecular phenotypes relevant to common diseases. 

2.2 Results 
2.2.1 Sensory neuron differentiation and characterisation 

We obtained 107 IPS cell lines derived from unrelated apparently healthy individuals by the 

HIPSCI resource (Kilpinen, Goncalves, et al. 2016), and followed an established small 

molecule protocol (Young et al. 2014) to differentiate these into sensory neurons of a 

nociceptor phenotype (Figure 1a). We performed a total of 123 differentiations; 13 of these 

were done with an early version of the protocol (P1) which was subsequently refined (P2) to 

reduce the number of differentiation failures and to yield a higher proportion of neuronal cells 

in the final cultures. One RNA-seq sample failed sequencing, and four others were outliers 

based on principal components analysis and were excluded. This left a set of 119 

differentiations with gene expression data from 100 unique iPSC donors; all subsequent 

analyses focused on the 106 P2 protocol samples, except for QTL calling, where we used all 

samples to maximize discovery power. 
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Figure 1  Characterization of molecular phenotypes in iPSC-derived sensory neurons. 

(a) Schematic of IPSDSN differentiation and assays. iPSCs were received in Essential 8 (E8) medium 

(N=82) or on mouse embryonic fibroblasts (MEFs, N=49), and transferred to KSR-XF medium. Over 

11 days, different inhibitor combinations were added (2i, 5i, 3i, see Methods), and N2B27 medium 

phased in, followed by transfer to growth factor medium at day 11 for neuronal maturation. (b) PCA 

plot projecting IPSDSN, iPSC, and DRG samples onto the first two principal components defined 

based on RNA-seq FPKMs in GTEx tissues. Some GTEx tissues are unlabeled due to overlapping 

labels. (c) Expression of sensory neuronal marker genes (SCN9A, DRGX) and key iPSC genes 

(NANOG, POU5F1). 

 

We clustered our gene expression data with 239 iPSC samples from the many of same 

donors, as well as 28 post-mortem DRG tissue samples from 10 different donors, and 44 

primary tissues from the GTEx project (Mele et al. 2015) (Figure 1b). Globally, IPSDSN 

samples showed greatest similarity to iPSCs (gene expression correlation Spearman 

⍴=0.89), followed by DRG (⍴=0.84), and then brain samples from GTEx. However, because 

different gene expression quantitation methods were used in GTEx, we cannot be certain of 

relative similarities between GTEx tissues and the samples we uniformly processed (DRG, 

IPSDSNs, iPSCs). The similarity to iPSCs may reflect lack of maturity in IPSDSNs, which is 

a well-recognized problem with iPSC-derived cells (Warren et al. 2017; Sala, Bellin, and 

Mummery 2016; Soldner et al. 2016; Pashos et al. 2017). We also note that because the 
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same iPSCs were differentiated to IPSDSNs, both donor genetic background and cell culture 

effects may contribute to the observed similarity. Despite this, key sensory neuronal marker 

genes were highly expressed in IPSDSNs, while pluripotency genes were not (Figure 1c). 

 

 
Figure 2: Functional characterization of IPSDSNs. (a) Ca2+ flux measurements on IPSDSN cultures 

(n=31) shows that neuronal firing is enhanced by veratridine (EC50/IC50 > 1) and is reduced by 

tetrodotoxin (EC50/IC50 < 1). (b) Rheobase is inversely related with resting membrane potential in 

individual neurons (n=616). (c) The distribution of rheobase values for the 31 samples with 

electrophysiology recordings, as well as literature values for DRG (leftmost bar). 

 

Using Ca2+ flux measurements on a subset of differentiated cultures (n=31) we confirmed 

that the cells consistently responded to veratridine (a sodium ion channel agonist) and 

tetrodotoxin (a selective sodium ion channel antagonist), as expected (Figure 2a). We also  

performed patch-clamp electrophysiology recordings for 616 individual neurons from 31 

donors, with a median of 21 cells measured per line. The rheobase is the minimum current 

input that will cause an individual neuron to fire an action potential, and we used this as a 

measure of the overall membrane excitability. Rheobase showed the expected inverse 

relationship with resting membrane potential (Figure 2b). The distribution of rheobases was 
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comparable to those obtained from primary DRG cells, but showed significant variation 

between donors (Figure 2c). 

 

We next investigated whether variation in excitability was reflected in differences in gene 

expression of cells derived from the same donor. We examined the correlation between 

expression of individual genes and mean rheobase, which were measured in sister cultures 

from the same donor and differentiation batch. After correcting for multiple testing, no 

individual genes were significantly correlated with rheobase at FDR < 0.1. Similarly, none of 

the first five gene expression principal components were correlated with mean rheobase. 

2.2.2 Quantifying differentiation variability using single-cell RNA-seq 

Our samples appeared to differ in the fraction of cells with a neuronal morphology in 

microscopy images. A previous study using the same differentiation protocol showed that not 

all individual cells express neuronal marker genes after differentiation (Young et al. 2014). 

To further characterize this heterogeneity, we sequenced 177 IPSDSN cells differentiated in 

three batches from one iPSC line, and clustered them based on expression profiles using 

SC3 (Kiselev et al. 2017). The data were best explained by two clusters, with 63% of cells 

forming a tight cluster expressing sensory-neuronal genes (e.g. SCN9A, CHRNB2), and the 

remaining 37% of cells forming a looser cluster expressing genes typical of a fibroblastic cell  

 

 
 
Figure 3: Single-cell sequencing of 177 IPSDSN cells. (a) Heatmap of RNA-seq data for ten marker 

genes of the two cell clusters identified by SC3. Color scale denotes normalized, Z-scaled gene 

expression counts for each gene. (b) PCA plot of PC1 vs. PC2 for 177 single cells, based on quantile 

normalized expression across all genes, with colour indicating SC3 cluster label. 
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type (e.g. MSN, VIM) (Figure 3a). The two cell types also separated cleanly in a principal 

components plot (Figure 3b), indicating that the cells do not fall on a smooth gradient from 

more neuronal to less, but rather have differentiated to distinct cell states. Comparing gene 

expression from each cluster to other tissues showed that the neuronal cluster was most 

similar to DRG (Spearman’s ⍴=0.654), followed by iPSCs (⍴=0.609) and GTEx brain (mean 

⍴=0.599) (Figure 4) while the fibroblast-like cluster was most similar to GTEx transformed 

fibroblasts (⍴=0.683), DRG (⍴=0.662), and iPSCs (⍴=0.653). The similarity of these cells to 

GTEx fibroblasts could suggest a general similarity of adherent cultured cells, although the 

neuronal cluster had lower similarity to GTEx fibroblasts (⍴=0.579) than many other tissues. 

 

 
Figure 4: Correlation of genome-wide gene expression in different tissues and cell cultures. Gene 

expression for IPSDSN single cells was averaged within a cluster (sc.neuron, sc.fibroblast). For each 

gene the mean expression (FPKM) in the group of samples was computed, and these values were 

correlated genome-wide across groups. Spearman correlation values are shown in each square. P1 

and P2 protocol samples are highly similar to each other, and compare similarly to other tissues. Both 

single cell neurons and single cell fibroblast-like cells have similarity to DRG, although single 

fibroblast-like cells have greater similarity with GTEx fibroblasts. 
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Next, we used CIBERSORT (Newman et al. 2015) to estimate the fraction of RNA from 

neuronal cells in our bulk RNA-seq samples, using the single cell gene expression counts 

with their cluster labels from SC3 as signatures of neuronal or fibroblast-like expression. The 

estimated neuronal content was strongly correlated with the first principal component of 

gene expression (R2 = 0.75, Figure 5), and this corresponded well with a visual assessment 

of neuronal content from microscopy images (Figure 6).  
 

 
Figure 5: Plot of estimated fibroblast percentage for bulk RNA-seq samples versus gene expression 

principal component 1, after excluding 5 outlier samples. Although many samples have estimated 

fibroblast percentage close to 100%, these samples contained a significant fraction of neuronal cells 

in microscopy images. 
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Figure 6: Images of four cell lines, taken 4 weeks post induction of differentiation, with their estimated 

fibroblast-like content shown. 

 

Although a majority of samples appeared by microscopy to have high neuronal content, 

CIBERSORT estimated relatively high fibroblast-like content for many samples (mean 49%). 

A factor contributing to this may be the greater RNA content of fibroblast-like cells, which 

had 2.3-fold more reads in the single-cell RNA-seq data. Indeed when the single cell counts 

were pooled, CIBERSORT estimated the fibroblast content of this “sample” as 60%, 

considerably higher than the 37% of single cells in the fibroblast-like cluster. A second 

consideration is that our scRNA-seq sample was matured for 8 weeks, whereas our bulk 

RNA-seq samples were matured for 4 weeks. Although gene expression changes are minor 

after 4 weeks maturation (Young et al. 2014), this difference in maturity means that our 

single cell reference profiles do not perfectly represent cells in our bulk samples. Despite 
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this, IPSDSN samples estimated to have high fibroblast content still showed greater 

similarity in genome-wide gene expression with DRG than with any GTEx tissue, including 

fibroblast cell lines (Figure 7). Although these similarities are reassuring, we note that 

technical factors could contribute to the greater similarity with DRG, as different gene 

expression quantification tools were used for GTEx (RNASeQC) and for our iPSC, DRG, and 

IPSDSN samples (featureCounts). 

 
 

 
Figure 7: Expression of sensory neuronal and fibroblast marker genes across IPSDSN samples, in 

comparison with DRG (N=28) and selected GTEx tissues (N=50 each). The overall similarity with 

DRG is high for neuronal markers, but less so for fibroblast markers. Gene expression was 

determined as log10(FPKM+0.1), and then was mean-centered and Z-score normalized across 

samples for each gene. 

 

2.2.3 Heterogeneity in IPSDSN gene expression 

A central issue for genetic studies in iPSC-derived cells is heterogeneity of cellular 

phenotypes. This heterogeneity could arise from donor genetic background, effects of clonal 

selection, and effects of the cell culture environment during reprogramming and 

differentiation. Genome-wide gene expression was highly correlated within lines 

differentiated multiple times (median Spearman ρ=0.96) and reduced slightly between 

IPSDSNs from different donors (median ρ=0.93) (Figure 8a). However, differentiation 
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replicates within donor cell lines did not consistently cluster together (Figure 8b), suggesting 

that variability due to differentiation was at least as large as that due to donor genetic 

background and iPSC reprogramming together. 

 

 
 
Figure 8: Global gene expression correlations across donors and differentiation replicates. (a) 

Histogram of pairwise spearman correlation coefficients of gene expression among RNA extraction 

replicates (N=7), differentiation replicates from the same donor (n=6 donors, 3 replicates each), or 

across donors (n=94). RNA extraction replicates were highly repeatable (spearman ρ of 0.97 - 0.98). 

Differentiation replicates within a donor cell line were less highly correlated (median ρ=0.96, range 

0.93 - 0.98), but had higher correlation than differentiations across donors (median ρ=0.93, range 

0.80 - 0.98). (b) Clustered heatmap of gene expression correlations between samples having 

differentiation replicates. Replicates for a given donor do not consistently cluster together. 
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Although marker genes specific to sensory neurons and nociceptors were expressed (FPKM 

> 1) in nearly all samples, we observed a high degree of heterogeneity in the level of 

expression of some genes compared with DRG and other tissues (Figure 9a), despite the 

fact that a cell culture system is theoretically more pure in cell type composition than a 

complex tissue. These observations were independent of sample size, and were robust 

when comparing with DRG samples from unique donors only, rather than all 28 DRG 

samples. Next, we examined how between-sample variability in global gene expression of 

IPSDSNs compared with other somatic tissues and cell lines. The distribution of coefficient 

of variation (CV) of gene expression in IPSDSNs fell within the range of most GTEx tissues 

(Figure 9b). However, the median CV of gene expression in IPSDSNs (0.37) was 

considerably higher than in DRG (0.23), indicating that IPSDSNs have greater between-

sample variability in expression than the primary tissue they are intended to model. 

 

 
Figure 9: Gene expression is highly variable across IPSDSN cell lines. (a) Distribution of expression 

levels for selected sensory neuronal marker genes in IPSDSN, DRG, GTEx tibial nerve, GTEx brain, 

and all other GTEx tissues. (b) Density plot of the coefficient of variation of genes across samples, 

separately for each GTEx tissue, IPSDSN samples (n=106, P2 protocol only), iPSC (n=200), and 

DRG (n=28).  
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Highly variable genes in IPSDSNs were enriched for function in neuronal differentiation and 

development (Supplementary Table 4). Genes that were significantly upregulated between 

iPSCs and IPSDSNs, which will include those essential for sensory neuronal function, were 

also more variable than remaining genes (Figure 10). Importantly, we did not observe similar 

levels of expression variability of neuronal or developmental gene groups in DRG, iPSCs, or 

GTEx nervous tissues (Figure 11). 

 
Figure 10: Genes upregulated at least 5-fold upon differentiation from iPSC to IPSDSN (FDR < 1%, 

N=4,246 genes) have increased variability relative to the remaining genes, despite similar levels of 

expression (median/mean FPKM of upregulated genes: 4.1 / 15.6; remaining genes: 4.6 / 11.8). 
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Figure 11: Median variability of genes in specific GO terms is compared to median variability for all 

genes, separately for IPSDSNs, iPSCs, DRG, and GTEx cerebellum and tibial nerve. Genes 

categories related to neuronal function and differentiation have increased median variability in 

IPSDSNs relative to all genes, but this is much less the case for iPSCs or nervous tissue samples, 

and for other gene categories such as immune response or cell cycle genes. 

 

These results highlight that expression of neuronal genes varies substantially more in 

IPSDSNs than in somatic nervous tissue, probably as a result of variability in differentiation. 

Consistent with this, variance components analysis (Figure 12) showed that as much or 

more variation was explained by differentiation batch (median 24.7%) as donor/iPSC line of 

origin (median 23.3%), which would include both donor and reprogramming effects. 
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Figure 12: Variance components analyses of IPSDSN gene expression. (a) Variance partitioning for 

119 samples (13 P1 protocol, 106 P2 protocol). (b) Variance partitioning for 18 samples, from 6 iPSC 

lines differentiated 3 times each. All 18 samples were from E8-medium iPSC lines derived from 

females, and were differentiated with the P2 protocol. 

 

2.2.4 iPSC culture conditions influence cell fate 

Intriguingly our variance components analysis suggested that, although the cell lines for this 

analysis were differentiated using an identical protocol, starting iPSC cell culture conditions 

influenced gene expression patterns in the IPSDSNs produced four weeks later (Figure 

13a). Of the 106 successful P2 protocol differentiations, 27 were from iPSCs maintained on 

mouse embryonic fibroblast (MEF) feeder cells (feeder-iPSCs), while the remaining 79 were 

grown in Essential 8 medium (E8-iPSCs). The first principal component (PC) of iPSC gene 

expression clearly differentiated feeder- and E8-iPSCs (Figure 13a), indicating that culture 

conditions are among the largest global effects on transcription. Similarly, PC1 of gene 

expression in IPSDSNs distinguished samples originating from feeder- and E8-iPSCs; 

moreover, IPSDSNs from E8-iPSCs had higher neuronal content (Figure 13b, 28% higher 

for E8-iPSCs, t-test p=1.84x10-5). A possible technical explanation for these results is that 

protocol implementation and batch effects changed subtly over the course of the project. 

However, the difference in neuronal content between IPSDSNs derived from E8 or feeder-

iPSCs remained when sample derivation date was included as an explanatory covariate 

(linear regression p=6.5x10-4, 36% higher for E8-iPSCs, Figure 13c).  
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Figure 13: Neural fraction and global gene expression in IPSDSNs is influenced by iPSC culture 

conditions. (a) Global gene expression differences between feeder- and E8-iPSCs are captured in 

PC1. (b) Estimated neural fraction of samples differs in IPSDSNs derived from feeder- and E8-iPSCs. 

(c) Neural fraction in IPSDSN samples varies with date and iPSC culture condition. Only P2 protocol 

samples are shown, and each dot represents the estimated neural fraction for one sample. We used 

linear models in R to estimate the effects of culture conditions or differentiation date on neural 

fraction. We either used date as a continuous variable, or split differentiation date into 2 bins (red line) 

or 3 bins (black and red lines). In all models including both factors, culture conditions were more 

strongly associated with neural fraction than was date, and the association of culture conditions 

remained significant. In contrast, the association of date with was not significant with date as a 

continuous variable or split into 2 bins (p>0.3), and was marginally significant with date split into 3 

bins (p=0.038). 

 

Next, we determined genes that were differentially expressed between E8- and feeder-

iPSCs and IPSDSNs (Figure 14). Genes more highly expressed in feeder-iPSCs were 

strongly enriched for mesenchyme development, stem cell differentiation, and Wnt and TGF-

β signalling, while genes more highly expressed in E8-iPSCs showed less clear enrichment 

(Supplementary Tables 5-7). Notably, inhibition of TGF-β/SMAD signalling is a key step in 

sensory neuronal differentiation. Top differentially expressed genes include early 

developmental regulators such as EMX1 (15-fold higher in E8-iPSCs), important for specific 

neuronal cell fates, and BMP2 (13-fold higher in feeders), which has been shown to 

suppress differentiation to sensory cell fates by antagonizing Wnt/beta-catenin (Kléber et al. 

2005) (Figure 14b). In addition, SCN9A and TAC1, key markers of sensory neurons, were 

expressed at low levels in iPSCs, with 2.2-fold and 2.9-fold higher expression in E8-iPSCs. 

We also considered genes differentially expressed between IPSDSNs derived from E8- and 

feeder-iPSCs (Figure 14c). Genes more highly expressed in IPSDSN samples from feeder-

iPSCs were overrepresented in extracellular matrix components, pattern specification, organ 
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morphogenesis, and Wnt signalling (Supplementary Tables 8-10), and include FGFR2, 

BMP7, and WNT5A (Figure 14d). Genes more highly expressed in IPSDSN samples from 

E8-iPSCs were overrepresented in ion channel complexes, peripheral nervous system 

development, and synapse organisation, and include SCN9A, DRGX, and CACNA1A. These 

differences likely reflect the increased neuronal content of samples from E8-iPSCs. Together 

these results suggest that iPSCs are primed towards different cell fates depending on the 

iPSC culture medium. 
 

 

Figure 14: (a) Differentially expressed genes (FDR 1%, blue and red points) between iPSC samples 

grown on feeders (n=68) vs. E8 medium (n=171). (b) Barplots of selected genes differentially 

expressed between feeder- and E8-iPSCs. (c) Differentially expressed genes (FDR 1%) between 

IPSDSNs from feeder- (n=27) and E8-iPSCs (n=79). Neuronal differentiation genes, such as RET and 

L1CAM, are more highly expressed in samples from E8-iPSCs. (d) Barplots of selected genes 

differentially expressed between IPSDSNs derived from feeder- and E8-iPSCs. 
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Since iPSC culture conditions influenced differentiation outcomes, we examined gene 

expression variability within subsets of IPSDSN samples. IPSDSNs differentiated from 

feeder-iPSCs had somewhat higher global gene expression variability, yet those from E8-

iPSCs were still highly variable relative to DRG and iPSCs (Figure 15), with neuronal and 

developmental gene sets enriched for highly variable genes (Supplementary Table 11). 

Among the 79 IPSDSNs from E8-iPSCs, samples with high fibroblast content had somewhat 

higher variability, but those with low fibroblast content still showed high variability relative to 

DRG and iPSCs.   
 

 
 
Figure 15: The natural log of the coefficient of variation across samples is plotted for different 

subgroups of samples. (a) Samples from feeder-iPSCs (N=27) have slightly higher variability than 

those from E8-iPSCs (N=79), but samples from E8-iPSCs still have much higher variability than iPSC 

or DRG. (b) Comparing DRG and P2 protocol IPSDSN samples from E8-iPSCs only, separated 

based on fibroblast-like content: low (estimated < 20%, N=24), medium (20-50%, N=31), and high (> 

50%, N=24). High fibroblast-like samples have slightly higher CV across all genes, but this accounts 

for only a fraction of the increased variability seen relative to primary DRG.  
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2.2.5 Genetic variants influence gene expression, splicing and 
chromatin accessibility in sensory neurons 

Using the linear model FastQTL (Ongen et al. 2016), we mapped 1,403 expression 

quantitative trait loci (eQTLs)  at FDR 10%, of which 746 were expressed at a moderate 

level (FPKM > 1). We noted that we discovered many fewer eQTLs than in GTEx tissues of 

comparable sample size (Figure 16a). This suggested that power for eQTL discovery was 

lower in IPSDSNs than somatic tissues, possibly due to additional variability introduced by 

differentiation. Using the allele-specific method RASQUAL (Kumasaka, Knights, and Gaffney 

2016) we detected 3,778 genes with expression-modifying genetic variants, termed eGenes, 

at FDR 10% (Supplementary Table 12), with 2,607 of these expressed at FPKM > 1. 

Notably, it was only using the additional information from allele specific signals that we 

achieved approximately similar statistical power to GTEx tissues with equivalent sample 

sizes. 

 

To identify eQTLs that were not already reported in GTEx (v6), we used a protocol described 

previously for the HIPSCI project (Kilpinen, Goncalves, et al. 2016). Of all 3,778 eGenes, 

954 had tissue-specific associations (Supplementary Table 15), including genes with known 

involvement in pain or neuropathies, such as SCN9A, GRIN3A, P2RX7, CACNA1H/Cav3.2, 

and NTRK2. Because these novel eQTLs were not seen in any GTEx tissue, this suggests 

that these regulatory variants may have IPSDSN-specific function. 

 

We investigated whether the improvement in power from using allele-specific information 

was related to gene expression variability. Splitting genes into quartiles of expression 

variability revealed that power improvement was greatest among genes with high variability 

across samples (Figure 16b,c). The fraction of novel eQTLs increased for both fastQTL and 

RASQUAL as gene variability increased (Figure 16d), with RASQUAL overall finding a 

higher fraction of novel eQTLs. One explanation would be a higher false positive rate for 

RASQUAL; however, various properties of the novel eQTLs did not differ significantly from 

known eQTLs, including expression levels, and eQTL variant allele frequency, hardy-

weinberg equilibrium, and mapping bias. In addition, the rate of novel eQTLs increased only 

moderately from the least to the most highly variable genes, and the trend was similar for 

FastQTL and for RASQUAL. It is possible that relative to GTEx, which used a linear model, 

RASQUAL finds true eQTLs that are more difficult to discover without examining allele-

specific expression. 
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Figure 16: (a) Number of eGenes discovered for IPSDSNs using either FastQTL (IPSDSN-FastQTL) 

or RASQUAL (IPSDSN-Rasqual), in relation to sample size, compared with GTEx tissues. (b) Number 

of eGenes discovered by RASQUAL and FastQTL across quartiles of gene expression variability. The 

bottom 25% of eGenes ranked by sample-to-sample expression variability are at the left, while the top 

25% are at the right. Bar colors show the number of eQTLs that overlap with a GTEx eQTL (“known”) 

or where no GTEx tissue has p < 0.01 for our lead eQTL SNP (“novel”). (c) Restricting to known 

eQTLs discovered by either method, the ratio of the number of eGenes discovered by RASQUAL to 

FastQTL is highest in the highest quartile of gene expression variability, although power gains from 

RASQUAL are high across the board. (d) The fraction of novel eQTLs, separately for fastQTL and 

RASQUAL, across quartiles of gene expression variability. 

 

Variants affecting gene splicing (sQTLs) often change either protein structure or context-

dependent gene regulation, and may be more enriched for complex trait loci than are eQTLs 

(Y. I. Li et al. 2016). To detect sQTLs we used the annotation-free method LeafCutter (Y. I. 

Li, Knowles, and Pritchard 2016) to define 30,591 clusters of alternatively spliced introns. 

Using FastQTL (Ongen et al. 2016) we discovered QTLs for 2,079 alternative splicing 

clusters at FDR 10% (Supplementary Table 13). Notably, only 538 (26%) of the lead variants 

for these splicing associations were in linkage disequilibrium (LD) r2 >= 0.5 with a lead eQTL 
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variant in our dataset, indicating that the sQTLs extend our catalog of expression-altering 

variants and are not merely proxies for gene-level eQTLs (or vice versa). 

 

 Number GWAS overlap 

eQTLs 3778 156 

sQTLs 2079 129 

ATAC QTLs 6318 172 

Joint ATAC/eQTLs 177 14 

 

Table 1: QTL associations. Columns show the number of associations, and the number of unique 

overlaps (r2 > 0.8) between lead QTL SNPs and GWAS catalog SNPs after removing duplicates for 

each GWAS trait. 

 

We collected ATAC-seq data for 31 samples (Buenrostro et al. 2013) and used this to 

identify active regulatory regions in IPSDSNs and to map 6,318 caQTLs chromatin 

accessibility QTLs (caQTLs) at FDR 10% (Supplementary Table 14). To identify transcription 

factors in IPSDSNs whose binding is altered by regulatory variants, we used the LOLA 

Bioconductor package (Sheffield and Christoph 2015) to test for enrichment of our lead QTL 

SNPs, relative to GTEx lead SNPs, in ENCODE ChIP-seq peaks and JASPAR transcription 

factor motifs (Supplementary Tables 16,17). Tissue-specific eQTLs were highly enriched 

within SMARCB1 and SMARCC2 peaks (odds ratios 5.8 and 14.1; p < 5x10-5), which are 

both members of the neuron-specific chromatin remodeling (nBAF) complex (Lessard et al. 

2007). Also enriched were REST/NRSF (OR=5.7, p=1.1x10-4) and SIN3A (OR=3.9, 

p=1.0x10-4), which bind neuron-restrictive silencer elements during development, but have 

suggested roles in the development and maintenance of neuropathic pain (Willis et al. 2016). 

Considering all IPSDSN eQTLs, we found enrichments for ELK1 and ELK4, as well as c-

Fos, a target of ELK1 and ELK4 which is widely expressed but is known to have specific 

functions in sensory neurons (Hunt, Pini, and Evan 1987; Kohno et al. 2003). Notably, DNA 

sequence motifs for REST, ELK1 and ELK4 are also among the most highly enriched motifs 

in our ATAC-seq peaks (Supplementary Table 18). 

2.2.6 Sensory neuron eQTLs and sQTLs overlap with complex trait loci 

While we were interested in comparing our set of QTLs with GWAS for pain, the largest 

GWAS for pain to date included just 1,308 samples and found no associations at genome-

wide significance (Peters et al. 2013). We therefore considered all GWAS catalog 

associations with p < 5x10-8 that were in high LD (r2 > 0.8) with a QTL in our dataset, with 
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two purposes in mind: to determine whether any GWAS traits are enriched overall for 

overlap with sensory neuron QTLs, and to find individual cases where a QTL is a strong 

candidate as a causal association for the GWAS trait. Overall, IPSDSN eQTLs were 

significantly enriched for overlap with GWAS catalog SNPs (p < 0.001) relative to 1000 

random sets of SNPs matched for minor allele frequency (MAF), distance to nearest gene, 

gene density, and LD (Pers, Timshel, and Hirschhorn 2015), and the overlap was consistent 

with that seen for eQTL studies in other tissues (Figure 17). Although nociceptive neurons 

are specialized for sensing and relaying pain signals, they share characteristics with other 

neurons; thus, we might expect enrichment for traits known to involve the nervous system 

more generally. However, among the 41 traits with at least 40 GWAS catalog associations, 

we could not detect any trait with significantly greater overlap with our QTL catalog than 

other traits after correcting for multiple testing (Supplementary Table 19). 

 

 
 
Figure 17: The number of overlaps at LD R2 > 0.8 between eQTLs in IPSDSNs and GWAS catalog 

SNPs is within the range seen for similarly powered tissues in GTEx. The number of eQTL-GWAS 

overlaps is heavily dependent on the number of eQTLs discovered, which is reflected in the tight 

linear relationship with the number of eGenes. 

 

Across all traits, we found 156 genes with an eQTL overlapping at least one GWAS 

association, and similarly 129 sQTLs and 172 caQTLs with GWAS overlap (full catalog in 

Supplementary Tables 20-22). We examined individual associations, in conjunction with 

ATAC-seq peaks and LD information, to identify candidate causal variants influencing both a 

molecular phenotype and a complex trait. For most of these associations we do not expect 

that sensory neurons are the most relevant cell type; rather the overlaps may reflect either 
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general neuronal mechanisms or non-cell-type-specific functions. We thus focused on traits 

where neurons are likely to be a relevant cell type. 

 

Among overlapping associations we found a number that relate to neuronal diseases, such 

as Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease. One striking overlap is 

between an eQTL for SNCA, encoding alpha synuclein, and Parkinson’s disease, for which a 

likely causal variant has recently been identified (Soldner et al. 2016). The lead GWAS SNP 

and our lead eQTL are both in perfect LD with rs356168 (1000 genomes MAF 0.39), which 

lies in an ATAC-seq peak in an intron of SNCA. Soldner et al. used CRISPR/Cas9 genome 

editing in iPSC-derived neurons to show that rs356168 alters both SNCA expression and 

binding of brain-specific transcription factors (Soldner et al. 2016). In IPSDSN cells we find 

that the G allele of rs356168 increases SNCA expression 1.14-fold, in line with Soldner et al. 

who reported 1.06- to 1.18-fold increases in neurons and neural precursors. However, 

despite residing in a visible ATAC-seq peak in our data, rs356168 is not detected as a 

caQTL (SNP p value = 0.22). eQTLs for SNCA have recently been reported in the latest 

GTEx release (v6p), but none of the tissue lead SNPs are in LD (r2 > 0.2) with rs356168, 

suggesting that the effect of this SNP can be more readily detected in specific cell and tissue 

types, including IPSDSNs and the frontal cortex tissue and iPSC derived neurons studied by 

Soldner et al.  

 

We also find multiple compelling overlaps between splice QTLs and GWAS associations 

(Figure 18). One known example is a strong sQTL for TNFRSF1A (p=9.9x10-29) with the 

same lead SNP (rs1800693, MAF 0.30) as a multiple sclerosis association. This likely causal 

SNP is located 10 base pairs from the donor splice site downstream of exon 6, and has been 

experimentally shown to cause skipping of exon 6, which results in a truncated, soluble form 

of TNFR1 that appears to reduce TNF signalling (Gregory et al. 2012). TNFRSF1A is highly 

expressed (>15 FPKM) in both IPSDSNs and in DRG. We do not see an effect of this variant  
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Figure 18: Splicing QTLs overlapping GWAS. (a) An sQTL for TNFRSF1A leads to skipping of exon 

6, and overlaps with a multiple sclerosis association. (b) An sQTL for SIPA1L2 leads to increased 

skipping of an unannotated exon between alternative promoters, and overlaps with a Parkinson’s 

disease association. (c) An sQTL for APOPT1 alters skipping of exons 2 and 3, and overlaps with a 

schizophrenia association. P values are from the beta approximation based on 10,000 permutations 

as reported by FastQTL. 

 

on total expression levels in our cells (p > 0.5), but we observe skipping of exon 6 in about 

12% of transcripts from individuals homozygous for rs1800693 (Figure 18a). Since these 

transcripts undergo nonsense-mediated decay (Gregory et al. 2012), the actual rate of exon 

skipping is likely to be higher. Given the broad role of TNF in inflammation and immunity, it is 

interesting that rs1800693 is associated with MS but not with other autoimmune disorders, 

apart from primary biliary cirrhosis (Gregory et al. 2012). Moreover, whereas TNF inhibitors 

are effective in many autoimmune disorders, they exacerbate MS, an effect that is mimicked 

by the reduction in TNF signalling produced by the TNFRSF1A splice variant. These 

observations suggest an interplay between cells of the CNS and immune system involving 

TNF signalling. TNF signalling has been shown to have both inflammatory and 

neuroprotective effects in the CNS and, despite a large body of research, the exact 



60 

mechanisms and cell types responsible for the genetic risk associated with TNF receptor 

polymorphisms remain unclear (Probert 2015). 

 
An sQTL for SIPA1L2 (rs16857578, MAF 0.23) is in LD with associations for both 

Parkinson’s disease (rs10797576, r2=0.93) and blood pressure (rs11589828, r2=0.94). An 

unannotated noncoding exon (chr1:232533490-232533583) between alternative SIPA1L2 

promoters is included in nearly 50% of transcripts in individuals with the reference genotype, 

but splicing in of the exon is abolished by the variant (Figure 18b). SIPA1L2, also known as 

SPAR2, is a Rap GTPase-activating protein expressed in the brain and enriched at synaptic 

spines (Spilker, Christina, and Kreutz 2010). Although its function is not yet clear, expression 

is seen in many tissues profiled by GTEx, with highest expression in the peripheral tibial 

nerve. Interestingly, the related protein SIPA1L1 exhibits an alternative protein isoform with 

an N-terminal extension that is regulated post-translationally to influence neurite outgrowth 

(Jordan et al. 2005). 

 

A complex sQTL for APOPT1 (rs4906337, MAF 0.22) is in near-perfect LD with a 

schizophrenia association (rs12887734). The splicing events involve skipping either of exon 

3 only or both exons 2 and 3 (Figure 18c). At least 20 variants are in high LD (r2 > 0.9), 

including rs4906337 which is 40 bp from the exon 3 acceptor splice site, and rs2403197 

which is 63 bp from the exon 4 donor splice site. No sQTL is reported in GTEx, and although 

eQTLs are reported for APOPT1, only the thyroid-specific eQTL (rs35496194) is in LD (r2 = 

0.94) with the schizophrenia-associated SNP rs12887734. APOPT1 is localized to 

mitochondria and is broadly expressed. Homozygous loss-of-function mutations in this gene 

lead to Cytochrome c oxidase deficiency and a distinctive brain MRI pattern showing 

cavitating leukodystrophy in the posterior region of the cerebral hemispheres, with affected 

individuals having variable motor and cognitive impairments and peripheral neuropathy 
(Melchionda et al. 2014). 

2.2.7 Recall by genotype studies in iPSC-derived cells will require 
large sample sizes 

One attractive future use of iPSCs is to experimentally characterise GWAS loci using a 

“recall by genotype” approach. Here, iPSC lines with specific genotypes are chosen from a 

large bank and differentiated into target cell types (for example, see (Warren et al. 2017)). 

Our observations suggested that, for certain protocols, the additional cellular heterogeneity 

introduced by differentiation could impact the power of these studies to detect the effects of 

common genetic variants. Importantly, our large set of differentiations gave us accurate 
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genome-wide estimates of effect size and expression variability in an iPSC-derived cell type, 

for use as a benchmark “ground truth”.  We investigated the performance of iPSC-based 

recall by genotype studies by bootstrap resampling from a stringent (FDR 1%) IPSDSN 

eQTL call set. For each eQTL gene we sampled expression counts from an equal number of 

major and minor homozygotes for the lead SNP, sampling with replacement to achieve a 

specific sample size. We then estimated power as the fraction of 100 bootstrap replicates 

where we found a significant difference (p < 0.05, Wilcoxon rank sum test) in expression 

between the homozygotes. 

 

 
 
Figure 19:  Power to detect a genetic effect in a single-variant single-gene test depends on sample 

size, allelic effect size, and gene expression variability. (a) TPR as a function of allelic fold change for 

five different numbers of replicates (half the total sample size). (b) TPR as a function of CV for five 

bins of allelic fold change, with 10 samples of each genotype. 

 

Our results illustrate important trends. First, recall by genotype studies in iPSC-derived cells 

are likely to require relatively large sample sizes, typically 20-80 unrelated individuals, for 

variants with a 1.5-2-fold effect size (Figure 19a). Second, as expected, highly variable 

genes are more challenging (Figure 19b) with power below 40% in a sample size of 20 for 

even moderately variable genes (CV 0.5 - 0.75). While expression noise will not typically be 

known accurately a priori, an estimate of effect size may be available from previous eQTL 

studies in specific tissues. This could enable estimating the number of samples needed to 

achieve a desired power. 

 

Note that these power estimates assume that a single gene is being tested, which is only 

likely to be the case when there is a very strong prior belief in the causal gene and few 

genes in the region. Where multiple genes are tested, power will be lower. These results 
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also suggest that large sample sizes will be required when using genome editing to identify 

causal GWAS-associated variants: although genetic background can be controlled in such 

an experiment, differentiation noise will continue to be a major contributor to gene 

expression variability. 

2.3 Discussion 
iPSC-derived cells enable the molecular mechanisms of disease to be studied in relevant 

human cell types, including those which are inaccessible as primary tissue samples. Because 

the effect sizes of common disease-associated risk alleles tend to be small, observing their 

effects in cellular models is challenging (Raghavan et al. 2016; Soldner et al. 2016). In an 

iPSC-based system, this difficulty is compounded by variability between samples in the 

success of differentiation, as described for hepatocytes (Dianat et al. 2013), hematopoietic 

progenitors (Smith et al. 2013), and neurons (Hu et al. 2010; Handel et al. 2016). 

 

Our study is the first that we are aware of to perform iPSC differentiation to a neuronal cell 

type  and functionally characterise the resulting cells at scale. Sample-to-sample variability in 

gene expression in the iPSC-derived cells was greater than in DRGs, with highly variable 

genes enriched in processes relating to neuronal differentiation and development. This 

highlights that genes likely to be of particular interest and relevance for the function of these 

cells are also among the most variable, a challenge which may be broadly true of iPSC-

derived cells. Despite the observed variability, we detected thousands of eQTLs, sQTLs, and 

caQTLs in IPSDSNs, most of which were discovered only with a model that statistically 

combines both allele-specific and between individual differences in expression to improve 

power for association mapping. Some of these overlap known expression-modifying variants 

that are associated with disease, such as an eQTL for SNCA associated with Parkinson’s 

disease. However, for most of these disease overlaps the causal variants are not known. 

This QTL map is thus a starting point for in-depth dissection of individual loci in iPSC-derived 

neurons where we have shown that a genetic effect is present. 

 

Although our study highlights the potential power of IPSC derived cells as model systems for 

studying human genetic variation, our results also illustrate the limitations of this approach. 

First, despite expressing key marker genes and exhibiting neuronal morphology and 

electrophysiology, it is clear from our data that IPSDSNs are transcriptionally distinct from 

the other cell types we examined, including DRGs. This reflects a limitation of existing in 

vitro differentiation protocols, which produce cells that are not as functionally or 

transcriptionally mature as primary tissues. Second, our differentiations did not produce pure 
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populations of neurons, nor could we measure the purity of the resulting cultures precisely. A 

portion of the sample-to-sample variability that we observed is likely due to this mixture of 

cell types, which varied across differentiations. Although mature neurons can be labeled for 

marker genes, they are not easily sorted by automated systems, which limits the high-

throughput options available for purifying neuronal populations. As a result, the eQTLs that 

we discovered do not represent those of a pure sensory neuronal cell type. For many cell 

types, sorting is more feasible, and could provide one solution to the variable maturity and 

heterogeneity of differentiated cell populations. 

 

We used single-cell RNA-seq from three differentiation batches to characterise IPSDSN 

heterogeneity, which showed that they cluster into neuronal cells and cells with more 

fibroblast-like gene expression. Using reference profiles from these clusters enabled us to 

estimate a proxy measure of neuronal cell purity in our bulk RNA-seq samples, and these 

estimates qualitatively agreed with the neuronal content in images from the cell cultures. Our 

method is similar to a deconvolution approach described recently using bulk and single-cell 

sequencing of primary human and mouse pancreas (Baron et al. 2016).  

 

The similarity of the fibroblast-like single cells to DRG raises the important question of 

whether these cells are immature sensory neurons. Single-cell sequencing at multiple time 

points during MYOD-mediated myogenic reprogramming has suggested that some individual 

cells traverse a desired course, while others terminate at incomplete or aberrant 

reprogramming outcomes (Cacchiarelli et al. 2017). Such an approach in IPSDSNs could 

reveal determinants of neuronal differentiation trajectories, and may yield useful insights for 

protocol changes to improve the purity of differentiated neurons, or to specify more precise 

neuronal subtypes. More generally, replacing bulk RNA-seq with single cell sequencing 

across many samples could enable in silico sorting of cells based on their transcriptome, and 

better characterisation of the sources of variation within a differentiated population of cells. 

Further, culturing cells from multiple donors in a pool, along with an scRNA-seq readout, 

could reduce differentiation-related batch effects while retaining the ability to identify donor-

specific genetic effects on gene expression. These advantages suggest to us that a move 

towards scRNA-seq will be extremely useful in iPSC-derived cell models. 

 

For iPSC models of common disease associated variants to be used effectively, it is critical 

to know which candidate disease associated variants exhibit a detectable cellular phenotype 

in an in vitro model. We used in silico resampling to estimate the sample sizes needed to 

detect the effects of noncoding regulatory variants in iPSC-derived cells using a recall by 

genotype design. Power above 80% is only achieved with surprisingly large (40+) samples, 
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even for alleles with a fold change of 1.5 to 2. Further, the power we report may be 

overestimated, due to ascertainment bias in defining a set of eQTLs as “true positives”, 

which fails to include true genetic effects that we did not discover in our samples. Even 

larger samples will be needed when multiple genes, for example in a single GWAS interval, 

are to be tested. These observations are consistent with a recent genome-editing 

experiment that required 136 differentiations in hepatocyte-like cells to discover an effect of 

rs12740374 on SORT1 gene expression (Warren et al. 2017). Notably, the modest effect of 

this variant on expression in hepatocyte-like cells (1.3-fold increase) stands in contrast to the 

large effect of the variant (4- to 12-fold increase) observed previously in primary liver 

(Musunuru et al. 2010). Where it is possible to use a coding SNP to assess the allele-

specific effect of a genome edit, as done for SNCA (Soldner et al. 2016), this may prove a 

more efficient approach to detecting causal effects of individual regulatory variants. 

 

In summary, we have measured multiple molecular phenotypes in a large panel of iPSC-

derived neurons. The catalog of QTLs we provide reveals a large set of common variants 

and target genes with detectable effects in IPSDSNs. These associations provide promising 

targets for functional studies to fine-map causal disease-associated alleles, such as by allelic 

replacement using CRISPR-Cas9, and our study describes the importance of considering 

differentiation-induced variability when planning these studies in iPSC-derived cells. 

 

Data Availability 
Code used for processing and analysing data is available at https://github.com/js29/ipsdsn.  

RNA-seq and ATAC-seq for open access samples are deposited in the European Nucleotide 

Archive under accession ERP020576. These data for managed access samples are 

deposited in the European Genome Archive under accession EGAD00001003145. Summary 

statistics and gene expression counts are available at 

https://www.ebi.ac.uk/biostudies/studies/S-BSST16. Sample genotypes and accession 

numbers are available at http://www.hipsci.org/data. 

2.4 Methods 

URLs 

CIBERSORT, cibersort.stanford.edu. 

ENCODE, www.encodeproject.org. 

GTEx, www.gtexportal.org. 

HIPSCI, www.hipsci.org. 
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IPS cell lines 

A summary of iPSC lines used is available in Supplementary Table 2, and details of 

processes and assays for these iPSCs generated by the HIPSCI project are available at 

www.hipsci.org. Briefly, 107 human iPSCs from 103 healthy donors were obtained from 

HIPSCI8. Of these, 38 were initially grown in feeder-dependent medium and the remainder 

were grown in feeder-free E8 medium.  All HIPSCI samples were collected from consented 

research volunteers recruited from the NIHR Cambridge BioResource, initially under existing 

ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with later samples 

collected under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013). 

Sensory neuron differentiation 

All differentiations in this study were performed by a single individual, and a summary of the 

IPSDSN cell lines is in Supplementary Table 1. Two protocols were used, named P1 (13 

differentiations) and P2 (110 differentiations). P1 protocol samples were included for QTL 

calling, and other analyses used P2 protocol samples exclusively. The P1 protocol 

(described in7) involved the addition of “2i” inhibitors (LDN193189 and SB-431542) for 5 

days, followed by “5i” inhibitors (LDN193189, SB-431542, CHIR99021, DAPT, SU5402) for 6 

days. When applying this protocol to a larger number of samples we observed excessive cell 

death prior to obtaining neural progenitors (days 9-12). We altered the protocol to make it 

more similar to (Chambers et al. 2012), by: 

● using E8 rather than mTeSR1 media when maintaining iPSCs prior to differentiation; 

● phasing in neurobasal media beginning at day 4, and gradually increasing this to 

100% by day 11; 

● beginning addition of inhibitors 5i at day 3 rather than day 5; 

● stopping addition of small molecule inhibitors LDN193189 and SB-431542 beginning 

at day 7 rather than day 11, referred to as “3i” for the 3 inhibitors that continued to be 

added. 

Functional assays (Ca2+ flux, response to Veratridine) confirmed that response of the 

sensory neurons produced by each protocol was equivalent; however, the P2 protocol 

performed more consistently across cell lines and culture parameters. 

 
P2 protocol details 
All reagents were from Life Technologies unless otherwise indicated. Clump-passaged 

iPSCs were single-cell seeded in E8 media on growth factor-reduced Matrigel (BD 

Biosciences) 48 hours prior to neural induction (day 0). KSR Media was prepared as 500ml 

DMEM-KO 130 ml Knockout Serum Replacement Xeno-Free, 1x NEAA, 1x Glutamax, 0.01 

mM β-mercaptoethanol (Sigma). KSR media containing small molecule inhibitors 
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LDN193189 (100 nM) and SB-431542 (10 µM) was added to cells from day 0 to 3 to drive 

anterior neuroectoderm specification. From day 3, CHIR99021 (3 µM), DAPT (10 µM) and 

SU5402 (10 µM) were also added to further promote neural crest phenotypes. N2B27 media 

was progressively phased in every two days from D4. N2B27 Media was prepared as 500 ml 

Neurobasal medium, 5 ml N2 supplement, 10 ml B27 supplement without vitamin A, 0.01mM 

β-mercaptoethanol (Sigma) and 1x Glutamax. On day 7, inhibitors LDN193189 and SB-

431542 were no longer used, while CHIR99021, DAPT, and SU5402 continued to be added. 

On day 11 cells were reseeded at 150,000 cells/cm2 in maturation media containing N2B27 

media with human-b-NGF, BDNF, NT3 and GDNF (each at 25 ng/ml). Mitomycin-C 

treatment (1 µg/ml) was used once at day 14 for 2 hrs to reduce the non-neuronal 

population. Cells were differentiated in T25 flasks for RNA and nuclei isolation, and onto 

coverslips and 96-well plates for electrophysiology and Ca2+-flux assays. 

 

P1 protocol details 
All reagents and concentrations used were identical to the P2 protocol; the difference was 

timing of addition. Clump-passaged iPSCs were single-cell seeded in mTeSR1 iPSC 

(StemCell Technologies, Vancouver) media on growth factor-reduced Matrigel (BD 

Biosciences) 48 hours prior to neural induction (day 0). KSR media containing LDN193189 

and SB-431542 was added to cells from day 0 to 5. From day 5, CHIR99021, DAPT and 

SU5402 were also added. As for the P2 protocol, cells were reseeded on day 11, and 

treated with Mitomycin-C on day 14. 

Single-cell RNA sequencing 

Blood-derived iPSCs from a single individual, who was not a HIPSCI donor, were 

differentiated to IPSDSNs in 3 batches using the P2 protocol, and were matured for 8 weeks. 

Dissociated cells were loaded onto a Fluidigm C1 for automatic cell separation, reverse 

transcription and amplification.  Libraries were prepared from C1 chambers containing single 

cells using the Illumina Nextera XT kit.  These were quantified with the Qubit dsDNA HS 

assay (Thermo Fisher) and KAPA Library Quantification Kit (KAPA Biosystems) and size-

checked with Agilent Bioanalyser DNA 1000.  Libraries were 96-way multiplexed and 

sequenced by Illumina Nextseq500 (2x75bp). Reads were aligned to GRCh38 and Ensembl 

80 transcript annotations using STAR v2.4.0d with default parameters. We excluded 9 cells 

expressing fewer than 20% of the ~56,000 quantified genes, and then used SC314 to cluster 

the remaining 177 cells based on expression counts. We examined alternative numbers of 

clusters from k=2 to 5. With two clusters, marker genes clearly identified one cluster (111 

cells) as neuronal, whereas the other cluster (66 cells) had high expression of extracellular 

matrix genes reminiscent of fibroblasts. With 3 and 4 clusters, the sensory-neuronal cell 
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cluster remained unchanged, and the fibroblast-like cluster became further subdivided. This 

suggests that a majority of the cells in this sample were terminally differentiated into sensory 

neurons, whereas the remaining cells were more heterogeneous in their gene expression. 

  

To display marker gene expression (Figure 2a), we used DESeq2’s variance stabilizing 

transformation, and then R’s “scale” function to mean-center and normalize expression 

values across cells, and plotted the result using the pheatmap R package. To compare gene 

expression between single-cell clusters and bulk RNA-seq samples (Figure 4), we computed 

the mean FPKM for each gene separately in single neurons and fibroblast-like cells. We 

subsetted to genes with nonzero expression in at least one GTEx tissue and in at least one 

of our tissues (iPSC, DRG, IPSDSN bulk, IPSDSN single cells), and computed the 

Spearman correlation between each pair of tissues. 

Genotypes 

We obtained imputed genotypes for all of the samples from the HIPSCI project. We used 

CrossMap (http://crossmap.sourceforge.net/) to convert variant coordinates from GRCh37 to 

GRCh38, and used bcftools (http://samtools.github.io/bcftools/) to retain only bi-allelic 

variants (SNPs and indels) with INFO > 0.8 and MAF > 0.05 in the 97 samples used for QTL 

calling. 

RNA sequencing 

The 131 RNA samples corresponded with 103 unique HIPSCI donors, as some samples 

were differentiation or RNA-extraction replicates. One sample failed in sequencing and was 

excluded. For QTL analyses, reads for each sample were aligned to GRCh38 and Ensembl 

79 transcript annotations using STAR v2.4.0j with default parameters. Using VerifyBamID 

v1.1.2 (Jun et al. 2012) we identified 5 mislabeled RNA samples for which the matching 

genotypes could be determined, as well as two samples with no matching genotypes and 

which were thus excluded. For comparisons among tissues, reads were aligned to the 1000 

Genomes GRCh37d5 reference with Gencode v19 transcript annotations using STAR 

2.5.3a. 

Gene expression quantification, quality control and exclusions 

Gencode Basic transcript annotations, GRCh38 release 79, were downloaded from 

www.gencodegenes.org. Gene expression was counted for uniquely mapping reads using 

featureCounts (v1.5.0) (Liao, Smyth, and Shi 2014) with options (-s 2 -p -C -D 2000 -d 25). A 

median of 45 million reads were generated per sample, with median 32.8 million reads 

(72%) uniquely mapping and assigned to genes. After excluding short RNAs and 
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pseudogenes, we normalised expression counts for 35,033 genes using the R package cqn 

v5.0.2 (Hansen, Irizarry, and Wu 2012). 

 

We determined pairwise correlation between samples using normalized counts for 14,215 

expressed genes (CQN > 1) and the first five principal components of gene expression 

against each other. We excluded four outlier samples from subsequent analyses, leaving 

126 samples from 97 donors. For QTL calling, replicate BAM files from same donor were 

merged together using samtools. 

  

To assess gene expression replicability, we determined the spearman correlation coefficient 

of CQN-normalized expression between samples across all genes for (a) extraction 

replicates, (b) differentiation replicates, and (c) all possible pairs of samples from different 

donors, and plotted the histogram of correlation coefficients in Figure 8a. 

DRG samples and sequencing 

Human tissue acquisition and handling was performed at Pfizer Neuroscience and Pain 

Research Unit in accordance with regulatory guidelines and ethical board approval. 

Postmortem human DRG were obtained in dissected form from Anabios or as an 

encapsulated sheath together with sensory/afferent axons from National Disease Research 

Interchange and were subsequently dissected to isolate the cell-body rich ganglion. The 

tissue was homogenised in QIAzol Lysis Reagent according to weight and processed 

according to the manufacturer's instructions for the Qiagen RNeasy Plus lipid-rich kit. RNA 

was prepared with the Illumina TruSeq Stranded mRNA Library Prep Kit and sequenced 

(2x100 bp reads) on Illumina HiSeq 2500. Reads were aligned to GRCh37 using STAR and 

gene counts and FPKMs obtained using featureCounts and Ensembl v75 gene annotations. 

ATAC library preparation and sequencing 

Nuclei isolation 
Media was removed from T25 flasks and washed twice with 10 mL of room temperature D-

PBS -/-. The adherent neuronal cultures were lifted by treating with 3 mL of Accutase 

(Millipore – SCR005) at room temperature for four minutes. The Accutase was quenched by 

adding 6 mL of 2% foetal bovine serum in D-PBS. The cells were transferred to a 15 mL 

conical tube and centrifuged at 300 g for 5 minutes at 4°C. The cell pellet was resuspended 

in 1 mL of ice-cold sucrose buffer (10 mM tris-Cl pH 7.5, 3 mM CaCl2, 2 mM MgCl2 and 320 

mM sucrose) and pipetted briefly to break up the large clumps before incubating on ice for 

12 minutes. 50 µL of 10% Triton-X 100 was added to the sucrose-treated cells and mixed 

briefly before incubating on ice for a further 6 minutes. Nuclei were released by performing 
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30 strokes with a tight dounce homogeniser on ice. Approximately 1 x 105 nuclei were 

transferred to a 1.5 mL microfuge tube and centrifuged at 300 g for 5 minutes at 4 °C. All 

traces of the lysis buffer were removed from the nuclei pellet. 

 

Tagmentation and sequencing 
The tagmentation and PCR methods used were as described in (Kumasaka, Knights, and 

Gaffney 2016), based on the Nextera tagmentation master mix (Illumina FC-121-1030). To 

remove excess unincorporated primers, dNTPS and primer dimers we used Agencourt 

AMPure XP magnetic beads (Beckman Coulter A63880), followed by size selection using 

1% agarose TAE gel electrophoresis, selecting library fragments from 120 bp to 1 kb. Gel 

slices were extracted with the MinElute Gel Extraction kit (Qiagen 28604), eluting in 20 µL of 

Buffer EB. A total of 31 ATAC-seq libraries each prepared with a unique Nextera i5 and i7 

tag combination were pooled. Index tag ratios were assessed by a single MiSeq run and 

were balanced before being sequenced at two per lane with paired-end reads (2x75) on a 

HiSeq with V4 chemistry. However, rebalancing did not appear to work correctly, as the 

number of reads varied from a minimum of 17 million to a maximum of 987 million. However, 

22 samples had over 100 million reads, and 30 samples had over 40 million reads. Across 

samples, a median of 56% of reads mapped to mitochondrial DNA. 

  

Read alignment 
We aligned reads to GRCh38 human reference genome using bwa mem v0.7.12. Reads 

mapping to the mitochondrial genome and alternative contigs were excluded. As for RNA-

seq data, we used VerifyBamID v1.1.2 (Jun et al. 2012) to detect sample swaps. This 

revealed one mislabeled sample, which we then corrected. We used Picard v1.134 

MarkDuplicates (https://broadinstitute.github.io/picard/) to mark duplicate fragments. 

 

Peak calling 
We used MACS2 v2.1.1 (Zhang et al. 2008) to call ATAC-seq peaks for individual samples 

with parameters ‘--nomodel --shift -25 --extsize 50 -q 0.01’. We defined a consensus set of 

peaks as regions in which peaks overlapped in at least 3 samples. At regions of overlap, the 

consensus peak was defined as the union of overlapping peaks. This resulted in 381,323 

peaks, with 98% of peaks ranging from 82 - 1191 base pairs.  

PCA plot clustering samples with GTEx tissues 

We downloaded the GTEx v6 gene RPKM file (GTEx_Analysis_v6_RNA-seq_RNA-

SeQCv1.1.8_gene_rpkm.gct.gz) as well as sample metadata 

(GTEx_Data_V6_Annotations_SampleAttributesDS.txt) from the GTEx web portal 
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(http://www.gtexportal.org/home/datasets). We computed RPKMs for all genes for the 28 

DRG samples, the 119 sensory neuron samples after QC exclusions, and 239 HIPSCI IPSC 

samples. We used genes that were quantified in all of these sample sets, and where at least 

50 GTEx samples had RPKM > 0.1. We passed log2(RPKM + 1) for 8,553 GTEx samples to 

the bigpca R package to compute the first 5 PCs using the SVD method. We determined 

sample loadings for each PC using the PC weights and log2(RPKM + 1) values for GTEx 

samples and for our in-house samples, and plotted PC1 vs. PC2 values as Figure 1b. 

Highly variable genes in IPSDSNs and GTEx 

For each of the 44 GTEx tissues, as well as IPSDSNs, DRG, and HIPSCI iPSCs, we 

calculated the coefficient of variation (CV) of each gene’s RPKM expression among samples 

of the same tissue (SMTSD in GTEx metadata). In each tissue, we subsetted the genes 

considered to those expressed at RPKM > 1. We plotted the distribution of CVs across all 

genes for each tissue as Figure 3a. 

  

We used GeneTrail2 (https://genetrail2.bioinf.uni-sb.de) to do a gene set over-representation 

analysis for the top 1000 most variable genes in IPSDSNs by CV (Supplementary Table 4). 

Similarly, gene set over-representation analysis in E8-IPSDSN subsets was done using 

Genetrail2 and the top 1000 most variable genes with RPKM > 1 (Supplementary Table 11). 

Variance components analysis 

For Figure 12a, we selected the 119 QC-passed samples, and used DESeq2 to get FPKM 

values for each gene after size factor normalization. We included all genes with mean FPKM 

> 1, and input log2-transformed counts per sample into the variancePartition Bioconductor R 

package. For Figure 12b, we used 18 samples for which we had 3 differentiation replicates 

from each of 6 donor cell lines; all 6 iPSC lines were from females and had been cultured in 

E8 medium. We therefore included only donor and differentiation in the design formula. 

Estimation of neuronal purity 

We used Cibersort (Newman et al. 2015) to estimate the fraction of RNA from neuronal cells 

in our bulk RNA-seq samples. We used the 14,786 genes with mean CQN expression > 0 in 

bulk RNA samples, and retrieved raw counts for these genes in our scRNA-seq data. We 

labeled the single cell counts as “neuron” or “fibroblast-like” based on the SC3 clustering, 

and used these as reference samples for CIBERSORT to generate custom signature genes. 

We used raw expression counts for the same genes for our 126 bulk RNA-seq samples as 

the mixture file for CIBERSORT to use in estimating the relative fractions of neuron and 

fibroblast-like cell RNA. 
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Electrophysiological recordings 

Six coverslips per line were placed singularly into a 12-well plate and washed 1x with 1 ml 

DPBS (+/+).  The coverslips were then coated with 1 ml of 0.33 mg/ml growth factor reduced 

matrigel for > 3 hr at room temperature. D14 cells were prepared at 1.6e6/ml in 15 ml media, 

then diluted in NB media to create a 0.3e6/ml suspension. The coverslips were transferred 

into a 12-well plate and 1 ml cell suspension was added. Plates were incubated at 37°C (5% 

CO2) for 24hr, after which the coverslips were transferred to a 12-well plate with 2 ml media. 

Cells were treated with Mitomycin C (0.001 mg/ml for 2hr hours at 37°C) post-plating on 

days 4 and 10. Media was changed twice weekly. 

  

Patch-clamp experiments were performed in whole-cell configuration using a patch-clamp 

amplifier 200B for voltage clamp and Multiclamp 700A or 700B for current clamp controlled 

by Pclamp 10 software (Molecular Devices). Experiments were performed at 35°C or 40°C 

controlled by an in-line solution heating system (CL-100, Warner Instruments). Temperature 

was calibrated at the outlet of the in-line heater daily before the experiments. Patch pipettes 

had resistances between 1.5 and 2 MΩ. Basic extracellular solution contained (mM) 135 

NaCl, 4.7 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose; pH was adjusted to 7.4 with 

NaOH. The intracellular (pipette) solution for voltage clamp contained (mM) 100 CsF, 45 

CsCl, 10 NaCl, 1 MgCl2, 10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with CsOH. For 

current clamp the intracellular (pipette) solution contained (mM) 130 KCl, 1 MgCl2, 5 MgATP, 

10 HEPES, and 5 EGTA; pH was adjusted to 7.3 with KOH. The osmolarity of solutions was 

maintained at 320 mOsm/L for extracellular solution and 300 mOsm/L for intracellular 

solutions. All chemicals were purchased from Sigma. Currents were sampled at 20 kHz and 

filtered at 5 kHz. Between 80% and 90% of the series resistance was compensated to 

reduce voltage errors. Rheobase was measured in current clamp mode by injecting 

increasing 30 milliseconds current steps until a single action potential was evoked. 

Intersweep intervals were 2 seconds. Current clamp data was analyzed using Spike2 

software (Cambridge Electronic Device, UK) and Origin 9.1 software (Originlab). 

Correlation of iPSC and IPSDSN gene expression with cell culture 
conditions 

We selected the 106 IPSDSN samples differentiated with the P2 protocol, as well as the 87 

iPSC samples these were derived from and for which we had RNA-seq data, and we used 

DESeq2’s variance stabilising transformation on the raw gene expression counts. We 

computed the first 5 principal components of gene expression separately in iPSC and 

IPSDSNs, and used corrplot to compute pairwise correlations among these PCs and sample 
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metadata: gender, iPSC passage number, iPSC culture conditions (wasFeeder), iPSC 

PluriTest score, IPSDSN fibroblast content, and IPSDSN processing date. 

  

We determined differentially expressed genes between feeder-iPSCs and E8-iPSCs using 

DESeq2 (Love, Huber, and Anders 2014), using expression counts for genes with median 

FPKM > 0.1 across iPSC samples (Supplementary Table 5). We removed associations 

driven by outliers, defined as a maximum Cook’s distance >= 5. Similarly, we determined 

differentially expressed genes in IPSDSNs derived from either feeder-iPSCs or E8-iPSCs 

(Supplementary Table 8), again for genes with median FPKM > 0.1. We used GeneTrail2 

(https://genetrail2.bioinf.uni-sb.de) to do a gene set over-representation analysis for the 717 

genes with expression at least 2-fold higher in feeder-iPSCs than E8-iPSCs, and similarly for 

the 631 genes at least 2-fold higher in E8-iPSCs (Supplementary Tables 6, 7). We did an 

equivalent gene set over-representation analysis for the 1,159 genes with expression at 

least 2-fold higher in IPSDSNs differentiated from feeder-iPSCs, and also for the 958 genes 

at least 2-fold higher in IPSDSNs from E8-iPSCs (Supplementary Tables 9, 10). 

  

To determine genes upregulated on differentiation from iPSCs to IPSDSNs, we first selected 

the 19,658 genes with expression FPKM > 1 in at least two samples (iPSC or IPSDSN). We 

used DESeq2 as before, removing genes with maximum Cook’s distance > 5, identifying 

4,246 differentially expressed genes at FDR 1%. 

QTL calling 

Expression QTLs 
To call cis-eQTLs we used RASQUAL (Kumasaka, Knights, and Gaffney 2016), which 

leverages allele-specific reads in heterozygous individuals to improve power for QTL 

discovery, while accounting for reference mapping bias and a number of other potential 

artifacts. With RASQUAL a feature is defined by a set of start and end coordinates; for 

calling a gene eQTL these are the start and end coordinates for exons, whereas for an 

ATAC-seq peak these are the peak coordinates. RASQUAL requires as input the allele-

specific read counts at each SNP within a feature. We used the Genome Analysis Toolkit 

(GATK) program ASEReadCounter (Castel et al. 2015) with options ‘-U 

ALLOW_N_CIGAR_READS -dt NONE --minMappingQuality 10 -rf MateSameStrand’ to 

count allele-specific reads at SNPs (and not indels). We then annotated the AS read counts 

in the INFO field of the VCF used as input for RASQUAL. 

 

We used RASQUAL’s makeCovariates.R script to determine principal components (PCs) to 

use as covariates, which determined 12 PCs as appropriate from the expression count data. 
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We ran RASQUAL separately for each of 35,033 genes (19,796 protein-coding genes and 

15,237 noncoding RNAs), passing in VCF lines for all SNPs and indels (MAF > 0.05, INFO > 

0.8) within 500 kb of the gene transcription start site. We used the --no-posterior-update 

option in RASQUAL, as we found that not doing so led to some genes having miniscule p 

values in permuted data. To correct for multiple testing we used permutations; however, 

because RASQUAL is computationally intensive, it would not be possible to run a thousand 

or more permutations for every gene. Therefore we used an approach to balance power and 

computational time. To correct for the number of SNPs tested per gene, we used EigenMT 

(Davis et al. 2016) to estimate the number of independent tests per gene, and then 

performed Bonferroni correction on a gene-by-gene basis. To estimate the false discovery 

rate (FDR) across genes, we used the --random-permutation option of RASQUAL and re-ran 

it once for every gene, saving the minimum p value (after eigenMT correction) of the SNPs 

tested for each gene. This gave a distribution of minimum p values across genes for the 

permuted data. To determine the FDR for eQTL discovery at a given gene, we used R to 

compute (#permuted data min p values < p) / (#real data min p values < p), where p is the 

minimum p value among SNPs for the gene in question. With this procedure we obtained 

3,778 genes with a cis-eQTL at FDR 10% (2,628 at FDR 5%). 

 

For QTL calling with FastQTL, we first computed principal components from the CQN-

transformed gene expression matrix (cqn v5.0.2 (Hansen, Irizarry, and Wu 2012)). We ran 

FastQTL with permutations 31 separate times, in each run including the first N principal 

components (N=0...30) as covariates. For each run we used a cis-window of 500 kb, and 

included SNPs and indels with MAF > 0.05, INFO > 0.8, as we did for RASQUAL. We plotted 

the number of eGenes found in each of these runs, which plateaued and remained relatively 

stable at ~1,400 eGenes (FDR 10%) when anywhere from 16 to 30 PCs were used. We 

arbitrarily chose to use the FastQTL run with 20 PCs in downstream analyses. 

 

ATAC QTLs 
As we did for gene expression, we used featureCounts v1.5.0 to count fragments 

overlapping consensus ATAC-seq peaks and ASEReadCounter to count allele-specific 

reads at SNPs (and not indels) within peaks. We ran RASQUAL separately for each of 

381,323 peaks, passing in VCF lines for SNPs and indels (MAF > 0.05, INFO > 0.8) within 1 

kb of the center of the peak. Since >99.9% of peaks were less than 2 kb in size, this meant 

that we tested effectively all SNPs within peaks. As we did when calling eQTLs, we ran 

RASQUAL with the --random-permutation option for every gene, and determined FDR as 

described above. Note that in this case we used Bonferroni correction based on the number 
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of SNPs tested, without using EigenMT, due to the small size of the windows tested. With 

this procedure we obtained 6,318 ATAC peaks with a cis-QTL at FDR 10%. 

 

Splice QTLs 
We downloaded LeafCutter from Github (https://github.com/davidaknowles/leafcutter) on 

April 17, 2016. We used the LeafCutter bam2junc.sh script to determine junction counts for 

each sample, followed by leafcutter_cluster.py. This resulted in 254,057 junctions in 59,736 

clusters. To focus on splicing events likely to be significant, we applied a number of filters, 

including: (a) removing junctions accounting for less than 2% of the cluster reads, (b) 

removing introns used (i.e. having at least 1 supporting read) in fewer than 5 samples, (c) 

retaining only clusters where at least 10 samples had 20 or more reads in the cluster. This 

yielded a filtered set of 95,786 junctions in 30,591 clusters. We first determined the read 

proportions for all junctions within alternatively excised clusters. We then Z-score 

standardised each junction read proportion across samples, and then quantile-normalised 

across introns. We used this as our phenotype matrix for input to FastQTL to test for 

associations between intron usage and variants within 15 kb of the center of each intron. We 

chose a cis-window size of 30 kb (2 x 15 kb) because >91% of introns are < 30 kb in size, 

and so this tests variants near exon/intron boundaries for the great majority of introns, while 

maximising power. 

 

We ran FastQTL in nominal pass mode 31 times specifying the first 0 to 30 principal 

components as covariates, and examined the number of intron QTLs with minimum SNP p 

value < 10-5. This showed that the number of QTLs plateaued when 5 PCs were used, and 

so we used 5 PCs in subsequent runs. We next ran FastQTL with 10,000 permutations to 

determine empirical p values for each alternatively excised intron. To correct for the number 

of introns tested per cluster, we used Bonferroni correction on the most significant intron p 

value per cluster. We then used the Benjamini-Hochberg method to estimate FDR across 

tested clusters. This yielded 2,079 significant SNP associations for intron usage (sQTLs) at 

FDR 10%. 

 

For significant sQTLs we used bedtools closest with GRCh38 release 84 to annotate the 

gene(s) nearest the lead SNP for the association. To ensure we had relevant genes, we 

filtered the annotation to include only genes where one of the exon boundaries matched the 

intron boundary for the sQTL. 
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Identifying tissue-specific eQTLs 

We determined the set of tissue-specific eQTLs using the same procedure and code as in 

the HIPSCI project (Kilpinen, Helena, et al. 2016). Briefly, we considered the full cis eQTL 

output of sensory neuron eQTLs and 44 tissues analyzed by the GTEx Project (GTEx 

Consortium 2015). To enable comparison, lead SNP positions for sensory neuron eQTLs 

were first lifted back from GRCh38 to GRCh37 using Crossmap (Zhao et al. 2014). For each 

discovery tissue (including sensory neurons), we tested for the replication of all lead eQTL - 

target eGene pairs reported at FDR 5%. If the lead eQTL variant was not reported in the 

comparison tissue, then the best high-LD proxy of the lead variant (r2 > 0.8 in the UK10k 

European reference panel) was used as the query variant. Replication was defined as the 

query variant having a nominal eQTL p < 2.2x10-4 (corresponding to p = 0.01 / 45, where 45 

refers to the total number of tissues tested) for the same eGene. We then extracted eGenes 

for which the lead eQTL did not show evidence of replication in any other tissue (p > 2.2x10-

4) or could not be tested (i.e. was not measured or reported as expressed in any other 

tissue). 

 

This analysis gave 954 eGenes where the eQTL is specific to sensory neurons 

(Supplementary Table 15). We note that some of these “tissue-specific” eGenes could be 

due to the difference in QTL-calling methods used, notably that we used RASQUAL, a 

method incorporating both allele-specific and population-level expression variation. 

Therefore, some of the tissue-specific eGenes we report may actually be present more 

broadly in GTEx tissues but missed by the linear QTL model used in GTEx. Among the 

1,403 eGenes called by FastQTL, 208 were tissue-specific to IPSDSNs. 

Motif enrichment analyses 

We used the R Bioconductor package LOLA (Sheffield and Christoph 2015) to identify 

enrichments in transcription factor binding sites (TFBS) and motifs. We defined three sets of 

loci to consider for enrichment: 1) tissue-specific eQTL SNPs with a window of 50 bp (+/- 25) 

around the SNP position, 2) all eQTL SNPs (50 bp window), and 3) all ATAC-seq peaks. For 

the QTLs we used all GTEx eQTL lead SNPs as the “universe” set against which we tested 

TFBS for enrichment. For this loaded GTEx eQTLs in R and used the liftOver function from 

rtracklayer to convert their coordinates to GRCh38. We tested for enrichment against the 

LOLA core database considering only ENCODE TFBS enrichments (Supplementary Tables 

16 and 17). We also tested ATAC-seq peaks for enrichment relative to DNaseHS for many 

tissues from (Sheffield et al. 2013), which are available in the LOLA catalog. Motif 

enrichments in ATAC-seq peaks are reported in Supplementary Table 18. 
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Power simulations 

Gene expression values were normalized to counts per million. We selected the 544 eGenes 

discovered by RASQUAL at FDR 1% which met the following criteria: 

● at least 10 P2-protocol samples homozygous for each allele of the lead eQTL variant, 

● mean expression among homozygous carriers was consistent with RASQUAL’s 

reported direction of effect, and 

● CV < 2 (this filter removed only 8 eGenes) 

For each gene we resampled the normalized expression values, with replacement, from 

IPSDSN samples to achieve a specified number of samples (N ∈ {4,6,10,20,40}) with each 

homozygous genotype. From 100 such resamplings, we defined the power to discover a 

given variant’s effect as the fraction of cases with p < 0.05 from a Wilcoxon rank sum test 

comparing expression in each genotype category. We determined the allelic fold change 

between genotypes using RASQUAL’s effect size (pi), as: 

fold change = max( pi / (1-pi), (1-pi) / pi) 

We used ggplot2 with geom_smooth to display the 95% confidence interval around the fitted 

mean TPR at each parameter combination. As can be seen on the plots, the deviation about 

this mean for individual genes is larger than the standard error of the mean. 

QTL overlap with GWAS catalog 

The GWAS catalog was downloaded from https://www.ebi.ac.uk/gwas/ on 2016-5-08. To 

determine overlap between variants in the GWAS catalog and our lead QTLs, we first 

extracted all lead variants (both QTLs and GWAS catalog variants) from the full VCF file. We 

used vcftools v0.1.14 (Danecek et al. 2011) to compute the correlation R2 between all lead 

variants within 500 kb of each other among our samples. We determined overlap separately 

for eQTLs, sQTLs, and ATAC QTLs, and retained only overlaps with R2 > 0.8 between lead 

variants. Note that a given GWAS variant may be in LD with an eQTL for more than one 

gene, and vice versa, an eQTL for a single gene may be in LD with more than one GWAS 

catalog entry. 

 

To determine whether our QTL overlaps were enriched in any specific GWAS catalog traits 

relative to other traits, we computed overlap with all GWAS catalog SNPs (p < 5x10-8) but 

sought to eliminate redundant overlaps. For traits that were reported with differing names 

(e.g. “Alzheimer's disease (cognitive decline)” and “Alzheimer's disease in APOE e4- 

carriers”), we grouped these into a single trait name (e.g. “Alzheimer's disease”). We then 

sorted overlaps by decreasing LD R2, and kept the single overlapping QTL with the highest 

R2 for each GWAS catalog entry. Similarly, we removed duplicates with the same reported 



77 

GWAS catalog SNP and trait, such as when successive GWAS of the same trait report the 

same SNP association. We counted the number of such unique GWAS-QTL overlaps 

separately for eQTLs, sQTLs, and caQTLs, and we report these in Table 1. To avoid bias 

due to correlation between GWAS power and LD patterns, we restricted our analysis to the 

41 traits with at least 40 GWAS catalog associations. We then considered the binomial 

probability of the observed overlap with each trait, with the expected overlap frequency being 

the proportion of QTL overlaps among all trait associations (6.2%). After correcting for 

multiple testing, no traits showed significantly greater overlap with our QTL catalog than 

other traits. 

 

To test for overall enrichment of QTLs overlapping with GWAS catalog SNPs, we used 

vcftools to identify 1000 Genomes SNPs in LD R2 > 0.8 with a GWAS catalog SNP, and 

removed duplicate SNPs. We used our IPSDSN eQTL lead SNPs as input to SNPsnap 

(https://data.broadinstitute.org/mpg/snpsnap/), and computed 1000 random sets of SNPs 

matched for LD partners, MAF, gene density, and distance to nearest gene. IPSDSN eQTL 

lead SNPs had more overlaps (92) with GWAS catalog + R2>0.8 SNPs than did any of the 

matched sets (median: 58, range 37-87). 
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3 PRF scores: predicting cell type-specific 
regulatory function of genetic variants 

Collaboration note 
Natsuhiko Kumasaka provided eQTL summary statistics for Geuvadis samples used in this 

chapter. All other work described here is my own, with advisory input from Daniel Gaffney. 

3.1 Introduction 
Prioritizing genetic variants likely to be functional is a general problem that is relevant to both 

Mendelian disease and complex traits. Because experimentally demonstrating the molecular 

effects of individual variants is laborious, computational approaches to prioritize variants to 

investigate can be extremely useful. Early approaches to variant effect prediction, such as 

PolyPhen (Adzhubei et al. 2010) and SIFT (Kumar, Henikoff, and Ng 2009), focused on the 

effects of nonsynonymous protein-coding variants, but these comprise fewer than 1% of all 

common variants. Effective methods to distinguish functional non-coding variants are 

essential: at least 85% of complex trait associations appear to be non-coding, and it is 

suspected that non-coding changes may be involved in Mendelian disease cases for which 

exome sequencing has failed to identify coding variants. 

 

The enormous growth of functional genomic data has led to a corresponding growth in 

methods using these data to predict non-coding variant functionality. The simplest 

approaches, such as HaploReg (Ward and Kellis 2012) and RegulomeDB (Boyle et al. 

2012), annotate variants based on their overlap with multiple datasets, but leave 

interpretation up to the user. This interpretation is particularly difficult because a large 

fraction of genetic variants overlap at least one functional genomic feature, and these 

features are also correlated amongst each other. More recently, methods have been 

developed that use statistical learning to integrate these diverse data inputs into a single 

score for each variant’s likelihood of having a functional effect. These can be broadly divided 

into two categories: i) those which attempt to distinguish benign from deleterious variants 

(such as CADD (Kircher et al. 2014), GWAVA (Ritchie et al. 2014), FATHMM-MKL (Shihab 

et al. 2015), and LINSIGHT (Y.-F. Huang, Gulko, and Siepel 2017)), and ii) those which 

learn DNA sequences that affect cell type-specific molecular phenotypes (such as deltaSVM 

(D. Lee et al. 2015), DeepSEA (J. Zhou and Troyanskaya 2015), and Basset (Kelley, Snoek, 

and Rinn 2016)). A key difference is that methods in the first category produce cell type-
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agnostic scores, whereas those in the second category are linked to the cell type-specific 

annotations used. 

 

The interpretation of these scores, and their utility for different purposes, depend upon both 

the supervised training data and the functional genomic annotations used as input. For 

example, CADD trained a support vector machine to distinguish common variants and 

human derived alleles from simulated variants, which are not present in the genome and so 

are presumed to have been depleted by selection. CADD therefore measures 

deleteriousness relevant to fitness, and is likely to be biased towards treating common 

variants as benign, even though common variants can have functional effects. GWAVA and 

FATHMM-MKL were trained to distinguish pathogenic variants in the human gene mutation 

database (HGMD) from common variants. However, the known examples of pathogenic non-

coding mutations likely have a massive ascertainment bias, as 75% are within 2 kb of an 

annotated TSS (Ritchie et al. 2014). The performance of these scores in predicting distal 

functional regulatory sites, as seems to be more common for GWAS associations, is 

unknown. In addition, all of these methods produce scores that are opaque, and it is difficult 

to know why one variant scored more highly than another, which limits mechanistic 

interpretation of the variants’ functions. 

 

Methods that predict the effect of variants on molecular phenotypes are in general tied to a 

particular cell type-specific dataset. Basset and deltaSVM predict the effect of a variant on 

DNase hypersensitivity from a given assay, but do not incorporate additional informative 

annotations, such as distance to TSS, TFBS and histone modifications. DeepSEA provides 

scores across many cell type-specific assays, including TFBS from ChIP-seq, but does not 

integrate these scores together, making their interpretation difficult.  

 

In this chapter, we describe PRF scores, which integrate a large set of functional genomic 

annotations to produce scores that reflect the cell type-specific probability of regulatory 

function for common, non-coding variants. PRF scores are transparent, as a variant’s score 

can be broken down into the contributions from individual annotations. Our primary 

annotation sources are the uniform epigenomic annotations in 119 cell types from the 

Roadmap epigenomics project, along with FANTOM TSS information, conservation, and 

gene annotations. Our model is trained using eQTL data, which makes our predictions 

particularly relevant to common regulatory variants, such as those hypothesized to underlie 

many GWAS associations. Although eQTL maps are being produced in many cell types by 

the GTEx consortium (GTEx Consortium 2013), these have limited sample size for many 

tissues, and cannot hope to cover the full range of human cell types and cellular 
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contexts/conditions. EQTL studies also provide no information at genomic positions where 

no variants are observed in the population studied, and are not well powered for low-frequency 

variants or those with small effect sizes. There thus remains a need for genome-wide 

predictions of variant regulatory effects across a broad range of cell types and conditions. 

 

In developing PRF scores, we explored alternative ways of using specific epigenomic 

annotations. We found that using the quantitative level of histone modification and DNase 

hypersensitivity signals can improve prediction performance. We also found that imputed 

signal tracks from Roadmap Epigenomics are more predictive of eQTLs than the measured 

data. We show that, compared with CADD and GWAVA, PRF scores are dramatically better 

at prioritizing likely causal eQTL variants when distance to the regulated gene is included, 

but only slightly superior when the relevant gene is not known. 

 

Unlike other variant scoring methods, PRF scores can be converted into relative probabilities 

that each variant regulates gene expression. When applied to fine-map eQTLs from GTEx, 

PRF scores reduced the size of the set of credibly causal variants for 67% of loci.  

3.2 Model development 
3.2.1 Overview 

The PRF score model uses eQTLs from the Geuvadis RNA-seq study of lymphoblastoid cell 

lines (LCLs) (Lappalainen et al. 2013) to learn enrichments for multiple annotations 

considered together. We used the negative binomial model implemented in RASQUAL 

(Kumasaka, Knights, and Gaffney 2016) to associate gene expression with single nucleotide 

polymorphisms (SNPs) in a 2 Mb window centered on each gene’s transcription start site 

(TSS) for 343 European donors in Geuvadis. We selected the 6,340 protein-coding genes 

with eQTL p < 10-6 for the lead variant, and passed association statistics for all tested SNPs 

as input to fgwas (J. Pickrell 2013). Fgwas implements a Bayesian hierarchical model in 

which the prior probability for a SNP to be causal is a function of the overall enrichment of 

each annotation it appears in, and is efficient enough to learn enrichments for hundreds of 

annotations across thousands of eQTLs. A summary of the fgwas model is provided in 

Appendix A. 

 

Building a predictive model relies upon having informative data as input. We sought to 

identify genomic annotations that are broadly available and predictive of the cell type-specific 

effects of genetic variants. The ENCODE Consortium has performed over 9,000 assays on 

human tissues and cell lines, including measuring histone modifications, DNase-seq, and 
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transcription factor ChIP-seq (ENCODE Project Consortium 2012). However, these 

experiments are distributed unevenly across tissues, and there is no core set of assays that 

is ubiquitous across a large set of tissues. This would make it difficult to develop a model in 

one cell type that could be easily translated to other cell types. We therefore focused on data 

from the NIH Roadmap Epigenomics Mapping Consortium, which performed multiple 

epigenomic assays across 111 body tissues and 16 cell lines (Roadmap Epigenomics 

Consortium et al. 2015). Five core assays were measured across all samples, namely, ChIP-

seq for the histone modifications H3K4me1, H3K4me3, H3K9me3, H3K27me3, and 

H3K36me3; a large fraction of samples also had assays for H3K27ac, H3K9ac, DNA 

methylation, and DNase hypersensitivity. Importantly, a sophisticated imputation algorithm 

was used to fill in missing data for samples lacking specific assays, by leveraging 

correlations across assays and samples (Ernst and Kellis 2015). 

 

We began by investigating hypotheses about how the predictive value of annotations could 

be optimized. Since distance to the TSS of a gene is a highly informative feature for gene 

regulation, we empirically determined an optimal set of distance annotations. We also 

hypothesized that the quantitative value of annotations would be more informative than 

binary assignment of variants as in/out of annotation peaks. We extended fgwas to enable 

this, and compared quantitative versus binary versions of the same annotations. Next, we 

compared the predictive value of imputed vs. measured annotation data from Roadmap 

Epigenomics. Throughout these investigations, we used cross-validation likelihood to assess 

the different models. In cross-validation, a fraction of the data (the training set) is used to 

estimate model parameters, and the remaining fraction is used to obtain the likelihood of the 

model given those parameters. This estimated likelihood is thus not influenced by overfitting 

on the training set. We used ten-fold cross-validation, so that in each of ten iterations a 

different 10% of the gene eQTLs were used as validation and the remaining 90% were used 

to train the model. 

3.2.2 Optimising gene distance annotations 

Both GWAS associations and eQTLs are highly enriched near the TSSes of genes. For 

eQTLs, SNP distance to TSS is more predictive of association than any other individual 

annotation, including DNase I hypersensitivity. Despite this, many cases are known of 

variants regulating genes from considerable distances (Spitz 2016). It is therefore important 

to effectively model distance to gene to predict regulatory variants. 
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3.2.2.1 FANTOM TSSes are more predictive than Ensembl TSSes 

Ensembl provides annotation of gene transcripts, including the locations of exons, and by 

implication the location of TSSes. Many genes in Ensembl have multiple transcript isoforms, 

making it unclear how to assign a specific TSS distance to each SNP. However, most genes 

express a single dominant transcript across tissues (Gonzàlez-Porta et al. 2013), suggesting 

that some Ensembl TSSes are less relevant than others. An alternative annotation of TSSes 

comes from the FANTOM consortium, which used cap analysis of gene expression (CAGE) 

to generate quantitative maps of TSS usage for many tissues (FANTOM Consortium and the 

RIKEN PMI and CLST (DGT) et al. 2014). The FANTOM annotation thus distinguishes 

highly used TSSes from those which are weakly used or unused. 

 

We used fgwas to compute the enrichment of causal eQTL SNPs in different distance bins 

for three different TSS distance annotations: 

1. distance to the nearest Ensembl TSS 

2. distance to the mean position of all Ensembl TSSes for a given gene 

3. distance to the nearest of the top 3 FANTOM TSSes in LCLs 

Using the minimum distance allows SNPs near a strongly used TSS to receive maximal 

enrichment, but requires that SNPs near weakly used TSSes also receive high enrichment, 

which could reduce prediction performance. Using distance to an average TSS position 

avoids labeling SNPs with a small TSS distance near different weakly used TSSes, but may 

fail to correctly label SNPs in the nearest bins for the highly used TSS. 

 

For all TSS-proximal distance bins, enrichment was highest when FANTOM TSSes were 

used (Figure 1), and this was reflected in a much higher cross-validation likelihood. This 

indicates that FANTOM TSSes are more informative in localising causal eQTL SNPs than 

are Ensembl TSSes, and so we used this method of TSS annotation in all subsequent 

models. 
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Figure 1: Enrichment of causal SNPs in fixed distance bins for the three TSS distance definitions 

described in the main text. 

3.2.2.2 An optimal spacing of distance bins 

When modeling distance to TSS, it is common to define bins at different distances so that 

each SNP can be assigned to a single bin. A drawback of such a definition is that 

neighbouring SNPs may fall in different bins and thus receive different enrichments, whereas 

SNPs many kilobases away but in the same bin receive the same enrichment. Binning is one 

of many possible smoothing functions, and the fit is less smooth than alternatives such as 

natural splines. However, splines are difficult to integrate into the iterative approach to model 

optimisation used in fgwas, since they need to be computed across all (x, y) points 

simultaneously (here, TSS distance and enrichment). As a binary annotation for each SNP, 

distance bin enrichments are also rapid to compute, which is essential for optimising the 

large, multi-annotation models that we evaluate later. 

 

Many previous models have used only coarse bins of TSS distance (e.g. 2 bins (Kindt et al. 

2013; J. Pickrell 2013), 3 bins (Ryan et al. 2014), or 4 bins (Schork et al. 2013)). We sought 

to systematically identify an optimal spacing TSS distance bins. To do this we first 

determined the distribution of TSS distance for lead eQTL SNPs (Figure 2a), using for each 

SNP the distance to the nearest of the top 3 FANTOM TSSes for the respective eQTL gene. 
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Figure 2: (a) TSS distance of lead eQTL SNPs to the gene they regulate. (b) Cross-validation data 

log-likelihood when SNPs are divided into distance bins with different granularity. (c) Distance bins 

used in a 12-bin model which has nearly maximal cross-validation likelihood. Each SNP is assigned to 

one bin based on its TSS distance. 

 

We created a set of distance annotations with differing numbers of bins, with bin boundaries 

chosen from the quantiles of the lead SNP TSS distance distribution to contain an 

approximately equal number of SNPs. When these annotations were used with our eQTL 

training dataset, the cross-validation likelihood peaked with 25 distance bins (Figure 2b), 

indicating that distance models more fine-grained than this might be overfit. A model with 

only 12 distance bins was nearly equivalent and is much faster to fit with fgwas; thus, we 

chose to use 12 bins going forward. The bin definitions are shown in Figure 2c. 

3.2.3 Quantitative annotations improve prediction performance 

3.2.3.1 Quantitative annotation model 

A standard workflow for using data from a ChIP-seq or DNase-seq experiment begins by 

calling peaks - that is, genomic regions with read counts that rise above the background 

observed genome-wide. The boundaries of called peaks can depend on the particular peak 

calling software used and on the parameters provided. Subsequently, a significance cutoff is 

used to retain only high-quality peak calls, typically at a specified false discovery rate. A 
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number of previous works have evaluated the enrichment of genomic annotations for causal 

eQTL or GWAS variants (Kindt et al. 2013; Gagliano et al. 2014; Schork et al. 2013; Gaffney 

et al. 2012), while others have incorporated multiple annotations for fine-mapping GWAS loci 

(Lu et al. 2016; Ryan et al. 2014; J. Pickrell 2013; Kichaev et al. 2014). All of these methods 

have relied assigning SNPs a binary 1 or 0 for an annotation depending on whether or not 

they are located within a called peak. Yet, peak calling parameters are often arbitrary, and 

this includes the threshold below which peaks are considered low quality and are discarded. 

It is unknown to what extent the quantitative information in the ChIP-seq or DNase-seq 

signal, such as the height of the peak or the signal value outside of peaks, is useful for 

identifying causal variants. 

 

To use the quantitative signal value of annotations, we implemented an extension to fgwas 

(called qfgwas, available at https://github.com/js29/qfgwas) that models enrichment as a 

logistic function of the annotation’s quantitative value at a SNP. The logistic function has two 

desirable features in this context: first, outliers in the distribution of annotation values will not 

substantially skew the model fit; second, the function can be most sensitive to input values 

over a specific range. This second property could be useful, for example, for chromatin 

accessibility data, where above a certain value the DNA is “open” and larger values 

contribute no more information. Figure 3 depicts how the two parameters of the logistic 

function relate the input value to an output. 

 

 
 
Figure 3: A standard logistic function enables controlling the slope parameter β1 (a) which determines 

how quickly an annotation becomes informative, as well as the translation parameter β0 (b) which 

determines at what absolute value the annotation begins to be informative. 
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In the hierarchical model implemented in fgwas (see Appendix A), the prior probability of a 

given SNP to be associated, πik, is allowed to depend on individual annotation enrichments, 

λl, according the following equations: 

 

 

(Equation 2) 

 

 

 

 

(Equation 3) 

 

 

where i and k denote the ith SNP in the kth
 locus, Sk is the set of SNPs in locus k, L2 is the 

number of annotations in the model, λl is the effect of SNP annotation l, and Iil is 1 if the 

SNP falls in annotation l or 0 otherwise. The annotation contribution to the prior probability 

for a given SNP is thus either λ or zero, depending on whether the SNP falls in the 

annotation or not. We can interpret λ as the log odds ratio for a causal SNP to appear in the 

annotation versus outside the annotation. The model is optimized by maximizing the 

likelihood of the data across all loci, with SNP annotation enrichments shared across loci. 

The combined enrichment for a given SNP across annotations, xi, is the quantity that we 

refer to as a “PRF score”, since it reflects the log of the probability for this SNP to be 

causally associated with gene expression, relative to other SNPs considered. 

 

To exploit quantitative annotations we add to equation 3, replacing the indicator Iil with the 

logistic function that depends on the annotation value, z: 

 

 

(Equation 4) 

 

 

Each quantitative annotation thus contributes three parameters to the model, λ, β0 and β1. 

Since Iil  takes on values from 0 to 1 depending on the annotation’s quantitative value, a 

SNP’s enrichment relating to a particular annotation, λlIil , varies between zero and λl. The 
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enrichment parameter, λl, then has largely the same interpretation as previously - it reflects 

the enrichment of causal SNPs in sites with the highest quantitative value, relative to the 

lowest value. β0 controls the value at which the annotation has half-maximal enrichment, 

while β1 influences the slope of the transition from uninformative to informative based on the 

annotation’s quantitative value.  

 

3.2.3.2 Model comparison 

We selected three annotations from Roadmap Epigenomics LCLs to use in assessing the 

usefulness of quantitative annotation values: DNase hypersensitivity, histone H3K27ac 

ChIP-seq, and histone H3K4me3 ChIP-seq. As input we used imputed annotation values 

(Ernst and Kellis 2015) and applied a quantile normal transform. For each annotation we 

compared the cross-validation likelihood of four models (Figure 4): 

1. standard fgwas + binary annotation (peak calls) 

2. standard fgwas + 3 binary annotation levels (top/mid/bot third of values within peaks 

only) 

3. standard fgwas + 3 binary annotation levels (top/mid/bot third of all annotation values) 

4. quantitative fgwas + quantitative annotation 

 

 
Figure 4: Cross-validation likelihood of quantitative and binary annotation models applied to three 

different annotations. 12-bin distance annotations were included in all models. 
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Models 2-4 each have three parameters, whereas model 1 has a single parameter. Model 2 

is most similar to model 1 as it assigns an enrichment to SNPs within peaks only; however,  

SNPs in the top, middle, or bottom tertile of annotation values within peaks can receive 

different enrichments. Model 3 assigns an enrichment to every SNP based on its presence in 

the top, middle, or bottom tertile of all annotation values, regardless of peak calls. Thus, 

model 3 can indicate whether annotation values outside of peaks are informative. The 

logistic function in model 4 can be seen as a smoothed intermediate between models 2 and 

3. By comparing model 4 with the other three-parameter models, we can assess whether its 

performance justifies the added complexity. 

 

For all annotations tested, the quantitative model (4) was superior. Interestingly, for the two 

ChIP-seq annotations, the global 3-level binary annotation model (3) was better than the 

peaks-only 3-level model (2); however, for DNase hypersensitivity, the peaks-only model 

was better than the global model. By examining the parameters of the quantitative model we 

can get a hint as to why this might be. 

 

 
Figure 5: Parameters of the quantitative annotation model for 3 annotations. The x axis represents 

the normal quantile Z score across all SNPs; e.g. 95% of SNPs have annotation values between of +/- 

1.96. The y axis represents the enrichment of SNPs with the highest scores relative to the lowest. 

 

For DNase hypersensitivity, half-maximal enrichment is seen at a Z score of 1.636, which 

corresponds to the 95th percentile of all DNase values (Figure 5). In contrast, the half-

maximal enrichments for H3K4me3 and H3K27ac occur at Z scores of 1.048 and 0.896, 

respectively, corresponding to the 85th and 82nd percentiles. In other words, only a small 

fraction of the top SNPs by DNase value are substantially enriched for causal eQTL variants, 

whereas enrichment of causal SNPs in H3K4me3 and H3K27ac annotations is distributed 

somewhat more broadly across the range of quantitative annotation values. A relevant factor 
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may be that DNase peaks are narrower and more numerous than both H3K27ac and 

H3K4me3 histone peaks. This also relates to the fraction of signal within peaks for these 

three annotations: whereas only 31% of DNase signal occurs within called peaks, the 

fraction is larger for H3K27ac (55%) and for H3K4me3 (61%). Since the global 3-level binary 

annotations were split into top/middle/bottom tertiles, for DNase this effectively allocated two 

enrichment parameters to values outside of peaks, and a single enrichment parameter within 

peaks (the top tertile). In contrast, for the histone modifications the split was closer to two 

parameters for values within peaks, and one parameter for values outside of peaks. 

 

It is also worth noting that the 3-level within-peak annotations for H3K4me3 and H3K27ac 

were no better than a single binary peak annotation in terms of cross-validation model 

likelihood. Yet, the 3-level global annotations for the same ChIP-seq marks were 

considerably better. This indicates that substantial information about the location of causal 

variants is present in the level of these quantitative annotations outside of peak calls. 

3.2.4 Imputed Roadmap data is more predictive for eQTLs than 
measured data 

Two types of annotation data are provided in Roadmap Epigenomics: signal tracks from 

experimental assays, such as ChIP-seq and DNase-seq, and imputed signal tracks. An 

imputed signal track does not use any experimental data for the given tissue and assay, but 

instead predicts the signal based on (a) other assays in the same tissue, and (b) the same 

assay in different tissues. This prediction thus leverages correlations between assays in a 

given tissue, and between tissues for a given assay (Ernst and Kellis 2015). 

 

LCLs were one of the cell types extensively profiled, i.e. with experimental assays and not 

only imputed assays. Since our eQTL training data was from LCLs, this enabled us to 

compare the performance of imputed and measured annotations for many assays. In most 

cases the imputed quantitative annotation achieved a higher model likelihood than the 

measured annotation for the same assay (Figure 6a), indicating that it was more informative 

for identifying likely causal eQTL variants. These improved likelihoods were accompanied by 

generally higher enrichments for the imputed annotations (Figure 6b). For the DNase 

hypersensitivity annotation, imputed and measured data performed similarly, while for the 

repressive histone marks H3K27me3 and H3K9me3, measured data performed slightly 

better than imputed data. This could indicate that whereas there is some redundancy in 

“activating” marks that can be used for imputation, repressive marks are imputed less 

effectively. 
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Figure 6: Imputed quantitative annotations from Roadmap Epigenomics outperform measured 

annotations. (a) Model log likelihoods, and (b) logistic curves defined by the optimal parameters for 

the same models; enrichments for imputed annotations are in red, measured annotations in blue. In 

all cases a 12-bin distance annotation was included. Results were similar when no distance 

annotation was used. 

 

 

 



92 

Based on these findings we chose to exclusively use imputed annotations, even though they 

may not be superior in every case. An important benefit is that imputed data are available for 

every annotation in every cell type profiled by Roadmap Epigenomics, which enabled us to 

extend our model to each of these cell types. 

3.2.5 Interactions between annotations and gene distance 

In the model implemented by fgwas, log-enrichments for SNPs are a linear combination of 

the enrichments for each individual annotation in which a SNP appears. We questioned 

whether an improvement could be made to this assumption for multi-annotation models. We 

might expect that certain histone marks are not equally informative at all distances from the 

gene TSS. For example, the histone mark H3K4me3 is enriched at active gene promoters, 

and is enriched for causal eQTL variants. However, when considering a given gene’s 

expression, a high level of H3K4me3 at a distant gene is less likely to causally influence this 

gene than H3K4me3 at its own promoter. This represents an interaction between the histone 

mark annotation and a TSS distance annotation. 

 

We hypothesized that annotation interactions with TSS distance might be widespread. We 

therefore created new annotations to model this interaction by splitting binary histone mark 

annotations into 3 distance bins: near (0 - 6,420 bp), medium (6,421 - 33,040 bp), and far 

(33,041 - 1 Mbp), corresponding with the first four, middle four, and last four bins of the 12-

bin distance model. For example, for the “near-TSS” H3K4me3 annotation, a SNP would be 

assigned 1 if it is both near the TSS and in an H3K4me3 peak, and 0 otherwise. We first 

tested models that included both standard distance bins and these distance-interacting 

annotations for Roadmap binary segmentation annotations. In almost all cases, models with 

the distance-interacting annotations were slightly superior by cross-validation LLK to models 

with the binary annotation but no distance interaction (Figure 7a). The enrichment values 

also differed across the annotation/TSS distance interaction bins, indicating that the 

annotations have different levels of informativeness when they occur at different distances 

from a gene (Figure 7b). 
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Figure 7: Modeling the interaction between binary annotations and distance to gene TSS slightly 

improved model performance in cross-validation. Shown are (a) model LLKs, and (b) the annotation 

enrichment in near/medium/far distance bins. A distance model is also included, so that the 

annotation*distance interaction does not reflect the general enrichment of causal SNPs near to the 

gene TSS. 

 

We then included these distance-interacting annotations in the same model as quantitative 

annotations for the same histone marks. The results were highly similar to what was 

observed when only binary annotations were used, i.e. distance interaction annotations 

enable a small but notable improvement to model performance in cross-validation (Figure 

8a). 

 



94 

 
Figure 8: (a) For quantitative annotations, modeling the interaction between annotations and distance 

to gene TSS also slightly improves model performance in cross-validation. (b) Enrichments for causal 

SNPs in peaks for the quantitative annotations in (a), but split into three different distance bins 

(near/mid/far). A 12-bin distance model is also included.  

 

The annotation enrichments across distance bins show some interesting patterns (Figure 

7b). A group of the genome segmentation annotations show highest enrichment at medium 

distances (TssA, PromU, PromD1, Tx3’, TxReg). In contrast, the enhancer segmentations 

(except for EnhAF) show highest enrichment when far from the TSS. Note that because a 

generic distance model was included, these are the enrichments observed over and above 

the general enrichment of eQTL SNPs near the gene TSS. Considering the quantitative 

annotations, H3K9me3 is the only assay that is not improved by considering a distance 

interaction. The greatest improvement is for H3K36me3 (Figure 8b), where we also see 

strong enrichment at medium distances, but no enrichment or mild depletion both near and 

far from the TSS. Since H3K36me3 reflects transcribed genomic regions, this may suggest 
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that causal SNPs for a focal gene’s expression are slightly depleted in the transcribed 

regions of distal genes, and that causal SNPs are no more enriched in nearby transcribed 

regions than would be expected based on distance alone. For many of the other 

annotations, we also see a pattern of little to no enrichment in the farthest distance bin. 

 

3.2.6 Building a multi-annotation model 

3.2.6.1 Model building process 

We used forward stepwise selection of annotations as outlined by (J. Pickrell 2013) to build a 

model containing multiple annotations, as illustrated in Figure 9. The procedure was as 

follows: 

1. Begin with a model having 12 binary annotations for binned distance to gene. 

2. Use fgwas to determine the likelihood of a with each annotation added individually. 

3. Add to the model the single annotation the most improved upon the previous model’s 

likelihood. 

4. Repeat 2-4 until the model likelihood does not improve further. 

 

At this point the model may be overfit, and so we switch to cross-validation: 

5. Individually drop each annotation present in the model and determine the cross-

validation likelihood. 

6. Remove from the model the annotation that most improves the cross-validation 

likelihood when dropped (if any do). 

7. Repeat 5-6 until the cross-validation likelihood does not improve further. 
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Figure 9: Schematic of model building process: forward stepwise selection to add annotations, 

followed by removal of annotations using cross-validation. 

 

This model-building process is computationally intensive, as it evaluates hundreds models at 

each iteration, each one across thousands of genes, with up to a few thousand SNPs in the 

2 Mb cis-window of each gene. To improve efficiency, we used code profiling to identify 

areas for optimisation in the fgwas code, and we added an additional stopping criterion that 

detects when the model fit is no longer improving (see Methods). These two improvements 

together reduced the average run-time to one third of what it was prior. Below, we describe  

additional design choices, involving selecting annotations and limiting the set of SNPs used 

in model training, that were essential to complete model-building in a reasonable time frame. 
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3.2.6.2 Selecting annotations 

Because forward stepwise selection was used, the amount of computation needed scaled 

approximately linearly with the number of annotations. We therefore chose as input only 

annotations we deemed likely to be informative. 

 

First, we used Roadmap quantitative annotations for which physical assays were performed 

in at least 30 samples (Table 2). Although imputed annotations are available for many more 

assays, including a number of histone modifications measured in just a handful of samples, 

we thought these less likely to generalise well across tissue types. Next, we selected specific 

binary annotations to split into TSS distance-interaction bins. We only split those annotations 

where an initial fgwas run with the single annotation showed an improved cross-validation 

likelihood when the annotation was split vs. unsplit. We used the suffixes t1/t2/t3 to indicate 

distance bins for annotations that are near/medium/far from the TSS (Table 3). 

 

A group of annotations not yet described is the “centisnp” annotations, developed by the 

Pique-Regi group (Moyerbrailean et al. 2016), which predict the impact of genetic variants 

on transcription factor (TF) binding. These annotations are the only ones in our training set 

with resolution below that of a nucleosome (~200 nt). They are not cell type-specific, and 

apply only to variants present in the 1000 genomes project. However, this set of variants 

includes the majority of GWAS-associated variants. Centisnp refers to SNPs predicted to 

change a TF from bound to unbound as “switch SNPs”; those predicted to have a 

quantitative effect on binding are “effect SNPs”; and those within TF footprints but not 

predicted to affect binding are “footprint SNPs”. 

 

To calculate the TSS distance annotation for a given variant and gene, we determined the 

minimum distance of the variant to FANTOM TSSes of the gene with an expression level of 

at least 2.0 transcripts per million (TPM). Some genes did not have any expressed FANTOM 

TSS, yet had nonzero expression in the Geuvadis LCLs. In this case we used the minimum 

distance to any Gencode TSS. The FANTOM consortium also reported that bidirectional 

transcription is a hallmark of active enhancers, and they produced a compendium of such 

enhancers in the same tissue types as their TSS definitions (Andersson et al. 2014). These 

enhancers include quantitative information on the level of transcription, and we used them as 

a quantitative annotation in our model. 

 

We also included gene annotations from Gencode (Harrow et al. 2012), and evolutionary 

conservation values from GERP (Davydov et al. 2010). To maximize the informativeness of 
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gene annotations (UTR, coding, intron), we split these annotations depending on whether 

they are for the gene under consideration for a given eQTL or not, leading to annotations 

labeled e.g. “intron.samegene” and “intron.diffgene”. The full set of annotations used in 

model training is provided in Tables 1, 2, and 3. 

 

Table 1: Distance annotations used in model training 

TSSDist 0-285 
TSSDist 286-1410 
TSSDist 1411-3690 
TSSDist 3691-6420 
TSSDist 6421-10338 
TSSDist 10339-15106 
TSSDist 15107-21855 
TSSDist 21856-33040 
TSSDist 33041-49943 
TSSDist 49944-85174 
TSSDist 85175-164469 
 

Table 2: Quantitative annotations used in model training 

DNase H3K27ac effect-snp-num_motifs 
H3K4me1 H3K27me3 footprint-snp-num_motifs 
H3K4me3 H3K36me3 switch-snp-num_motifs 
H3K9ac DNAMethylSBS-fraction Fantom enhancer TPM 
H3K9me3 GerpRS-noncoding only  
 

Table 3: Binary annotations used in model training 

Annotations beginning “Seg” are the 25-state Roadmap segmentation states. 

Annotations ending t1/t2/t3 indicate that the annotation is only positive in the given distance bin from the TSS. 

Gencode-antisense Seg-6.Tx.t2 Seg-15.EnhAF.t2 effect-snp.t3 
Gencode-coding.diffgene Seg-6.Tx.t3 Seg-15.EnhAF.t3 footprint-snp 
Gencode-coding.samegene Seg-7.Tx3 Seg-16.EnhW1 switch-snp 
Gencode-intron.diffgene Seg-7.Tx3.t1 Seg-16.EnhW1.t1 DNase.t1 
Gencode-intron.samegene Seg-7.Tx3.t2 Seg-16.EnhW1.t2 DNase.t2 
Gencode-lincRNA Seg-7.Tx3.t3 Seg-16.EnhW1.t3 DNase.t3 
Gencode-miRNA Seg-8.TxWk Seg-17.EnhW2 H3K27ac.t1 
Gencode-rRNA Seg-8.TxWk.t1 Seg-17.EnhW2.t1 H3K27ac.t2 
Gencode-sense_intronic Seg-8.TxWk.t2 Seg-17.EnhW2.t2 H3K27ac.t3 
Gencode-sense_overlapping Seg-8.TxWk.t3 Seg-17.EnhW2.t3 H3K27me3.t1 
Gencode-snoRNA Seg-9.TxReg Seg-18.EnhAc H3K27me3.t2 
Gencode-snRNA Seg-9.TxReg.t1 Seg-19.DNase H3K27me3.t3 
Gencode-UTR3.diffgene Seg-9.TxReg.t2 Seg-2.PromU H3K36me3.t1 
Gencode-UTR3.samegene Seg-9.TxReg.t3 Seg-2.PromU.t1 H3K36me3.t2 
Gencode-UTR5.diffgene Seg-10.TxEnh5 Seg-2.PromU.t2 H3K36me3.t3 
Gencode-UTR5.samegene Seg-11.TxEnh3 Seg-2.PromU.t3 H3K4me1.t1 
Seg-1.TssA Seg-12.TxEnhW Seg-20.ZNF_Rpts H3K4me1.t2 
Seg-1.TssA.t1 Seg-13.EnhA1 Seg-21.Het H3K4me1.t3 
Seg-1.TssA.t2 Seg-13.EnhA1.t1 Seg-22.PromP H3K4me3.t1 
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Seg-1.TssA.t3 Seg-13.EnhA1.t2 Seg-23.PromBiv H3K4me3.t2 
Seg-3.PromD1 Seg-13.EnhA1.t3 Seg-24.ReprPC H3K4me3.t3 
Seg-3.PromD1.t1 Seg-14.EnhA2 Seg-25.Quies H3K9ac.t1 
Seg-3.PromD1.t2 Seg-14.EnhA2.t1 Seg-25.Quies.t1 H3K9ac.t2 
Seg-3.PromD1.t3 Seg-14.EnhA2.t2 Seg-25.Quies.t2 H3K9ac.t3 
Seg-4.PromD2 Seg-14.EnhA2.t3 Seg-25.Quies.t3 H3K9me3.t1 
Seg-5.Tx5 Seg-15.EnhAF effect-snp.t1 H3K9me3.t2 
Seg-6.Tx Seg-15.EnhAF.t1 effect-snp.t2 H3K9me3.t3 
Seg-6.Tx.t1    
 

3.2.6.3 Limiting training data to improve speed 

For each of the 6,340 protein-coding genes used in model training, all SNPs in a 2 Mb 

window were tested for association with the gene’s expression, a total of 39,566,693 tests. 

Even with the optimisations described above, running the model-building process with fgwas 

would take months to compute. While we could train the model on a small subset of genes, 

the results would depend more strongly on the particular genes selected. Moreover this 

would to a certain extent defeat the purpose of using eQTL data, where we have a large 

number of associations. We instead explored training the model using all genes, but with a 

subset of SNPs for which the association statistic was above a certain threshold. Because 

most SNPs are not associated with expression, this could improve the runtime dramatically. 

 

To assess whether filtering variants based on association statistic would change model-

building results, we selected 1,000 genes with a lead variant having p < 1x10-12. We then 

determined the approximate Bayes factors (BFs) for variants, and created filtered datasets 

having only variants with BF > 10, or with a BF > 100. For a p value of 1x10-12, the 

equivalent BF is ~4.7x109, and so the variants filtered out are unlikely to be causal. Whereas 

the full 1,000-gene dataset had 6,362,813 variant tests, there were just 582,975 variants with 

BF > 10, and 383,442 variants with BF > 100. We applied the model-building process 

described previously, separately for the full and filtered datasets, stopping after 10 iterations. 

The annotations that were added to these three models are shown in Table 4.  
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 Full dataset Filtered dataset BF > 10 Filtered dataset BF > 100 
  

annotations added 
 
annotations added 

Order in 
full data 

 
annotations added 

Order in 
full data 

1 DNase DNase 1 DNase 1 
2 H3K36me3 H3K36me3 2 State.25.Quies 5 
3 intron.diffgene intron.diffgene 3 UTR3.samegene 6 
4 H3K9me3 H3K9me3 4 coding.samegene 10 
5 State.25.Quies Enh.Fantom 7 intron.diffgene 3 
6 UTR3.samegene UTR3.samegene 6 UTR5.diffgene - 
7 Enh.Fantom H3K27ac - H3K27ac - 
8 effect-snp.nmotifs coding.samegene 10 H3K27me3 - 
9 H3K9ac.t3 UTR5.diffgene - State.1.TssA.t3 - 
10 coding.samegene effect-snp.nmotifs 8 Enh.Fantom 7 
 
Table 4: The order in which annotations are added when model-building with three different training 

datasets. For annotations in the filtered datasets, we show the order in which the same annotation 

was added in the full 1,000-gene dataset. 

 

Although the annotations added during model-building were similar, they were not identical. 

In addition, in the filtered datasets the enrichments reported are lower across all annotations 

than in the full dataset.  We evaluated the performance of the three models shown in Table 4 

using cross-validation, applied to either the same 1,000 genes or to a separate set of 1,000 

genes. In these validation comparisons no variants were filtered out, and the only difference 

between models was which annotations were included. The models built using filtered data 

did not perform as well in cross-validation on the 1,000 genes they were trained on as did 

the model trained with all SNPs. However, for the independent set of genes, the model 

trained on the BF > 10 filtered dataset actually performed better in cross-validation than the 

model trained using all SNPs (Figure 10). Based on this, we believe that performing model-

building with low-BF SNPs filtered out is an effective optimisation that is likely to result in a 

similar-performing model in external validation. We proceeded with building a full model on 

the 6,340 eQTL genes, using only variants with BF > 10. 
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Figure 10: Cross-validation LLK of models shown in Table 4, for either (a) the set of 1,000 genes 

used in training, or (b) a separate 1,000 genes. 

 

3.2.6.4 A final model with 38 annotations 

Applying the model-building process described previously, we added annotations 

sequentially to the model for 40 iterations, after which the model likelihood no longer 

increased. Model LLKs plateaued once the 38th annotation was added (Figure 11). 

 



102 

 
Figure 11: Model LLK with each annotation that was added over 40 iterations. Each model includes 

12 distance bins, as well as all the annotations added prior to it. 

 

We selected the first 38 annotations, and switched to using cross-validation, testing models 

with each annotation individually dropped. Surprisingly, none of the annotations could be 

removed without worsening the cross-validation likelihood, as shown in Figure 12. We also 

observed that when considering annotations to drop, the importance by cross-validation 

likelihood was not the same as the order in which they were added. This reflects the fact that 

annotations are correlated, and one annotation could be substituted by a combination of 

other annotations, which may have been added later on in the model-building process. 
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Figure 12: Model cross-validation LLK when each annotation is individually dropped. The full model 

with no annotations dropped is on the left, and no annotation can be dropped without reducing the 

LLK. For the x-axis labels, the number preceding each annotation name is the order in which it was 

added to the model. 

 

Since no annotations could be dropped, the full set of 38 annotations and their associated 

enrichments is our most predictive model. Annotation enrichments are illustrated in Figure 

13, and full details are reported in Appendix B. For some annotations, the confidence interval 

for their enrichment overlaps zero. While this argues for dropping them from the model, 

cross-validation supported keeping them in. We note that in a combined model with many 

annotations, the enrichment for each individual annotation is compensated by adjustments to 

other annotation enrichments. 
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Figure 13: Enrichments for (a) TSS distance annotations, and (b) the 38 other annotations included in 

the final model. Confidence intervals were determined by individually adjusting annotation 

enrichments until the model LLK is decreased by 2 units. Fgwas failed when computing confidence 

intervals for some of the TSS distance annotations. In (b), four annotations are shown separately at 

right with a different scale, due to large confidence intervals. 

 

Given enrichments for our 38 annotations, we can compute the PRF score for any variant in 

any of 119 Roadmap epigenomes. We next look at how PRF scores are defined based on 

the model parameters, and how they vary across the genome. 
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3.2.7 Distribution of PRF scores 

The PRF score for a variant is the sum of enrichments for the variant’s annotations. This is 

the value xi in the equations below, repeated here for convenience. 

 

 

(Equation 2) 

 

 

 

 

(Equation 3) 

 

 

 

The prior probability for a variant to be causally associated with gene expression, πik, 
involves xi in the exponent, and thus the PRF score is proportional to the logarithm of the 

probability that the variant is associated. A variant’s prior can only be computed relative to a 

defined set of SNPs, Sk, in a region around a gene of interest. This prior probability depends 

on the assumption that the causal variant is within the set of variants considered, and 

moreover it will change if the set of variants considered changes. The same is not true for 

the PRF score itself: although the PRF score for a variant depends on the gene being 

considered, it does not depend on the other variants considered. 

 

We demonstrate some of important features of this approach in Figure 14, which shows the 

distribution of PRF scores in the vicinity of SMAD3. PRF scores tend to peak near the TSS 

of genes, and are higher in annotation-dense regions such as enhancers. PRF scores also 

tend to be higher within the body of the gene they are proposed to regulate. While SMAD3 

has many alternative annotated TSSes, these were not expressed in FANTOM LCLs, and so 

PRF scores are not elevated near these TSSes. This kind of information would be difficult to 

glean by manually exploring annotations in a genome browser. Zooming in to a 5 kb region 

upstream of SMAD3, shown in Figure 15, fine-grained variation in PRF scores is seen. The 

scores vary according to quantitative differences in histone modification levels, even at low 

values that might not be within called peaks. 
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Figure 14: PRF scores for positions in a 400 kb window around SMAD3. Scores for two genes are 

shown, but multiple other genes within 1 Mb also have scores in the region. PRF scores peak towards 

the TSS of genes. Here, only two TSSes are used, which are visible in the FANTOM5 CAGE reads 

track. 
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Figure 15: PRF scores in a 5 kb region upstream of SMAD3. 

 

Each variant has a different PRF score for each gene within 1 Mb. This makes PRF scores 

well-suited to fine-mapping likely causal eQTL variants, but complicates the application to 

GWAS, where the relevant gene is not known at most associated loci. In the remainder of 

this chapter we discuss applying PRF scores to eQTL studies, and in Chapter 4 we apply 

PRF scores to GWAS. 

 

 



108 

3.3 Validation with eQTL data 

3.3.1 Comparing score distributions 

We wanted to show that PRF scores can be used to predict which genetic variants causally 

influence gene expression and, ideally, by extension influence complex traits. We refer to 

two types of PRF scores — “gene PRF” scores, in which the PRF score specific to a given 

gene is assigned to a variant, and “max PRF” scores, in which we assign to a variant the 

maximum PRF score for any gene in its 1 Mb window. GenePRF scores are useful when the 

relevant gene is known, but when it is unknown then maxPRF scores must be used. 
 

We first compared the distribution of PRF scores for cis-eQTL variants with those of CADD 

and GWAVA, two leading methods providing genome-wide scores for non-coding variants. 

Since the PRF score model was trained on Geuvadis data, we used eQTL data from the 

GTEx project, beginning with subcutaneous adipose tissue. We selected the 2,493 adipose 

eGenes where the best variant had association p < 1x10-12. For each eGene, we determined 

the posterior probability of association (PPA) for all tested variants, using the method of 

fgwas with statistical information only (i.e. no annotations). We used the adipose nuclei 

epigenome (Roadmap E063) to compute genePRF and maxPRF scores, and examined 

these scores for variants in different bins of posterior probability (Figure 16). PRF scores 

were higher on average for variants with higher PPA (p < 1x10-300, Kruskal-Wallis test). This 

was also true for CADD and GWAVA, although the distributions of each score differed. 
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Figure 16: Scores for variants tested for association with gene expression in GTEx subcutaneous 

adipose tissue, stratified by posterior probability of association, for 4 different scoring methods: 

genePRF, maxPRF, CADD, and GWAVA.U. PRF scores were calculated using the E063 adipose 

nuclei epigenome. The numbers of variants in each PPA category are N=11,297,373 (PPA<0.001), 

N=41,574 (PPA 0.001-0.1), N=3,063 (PPA 0.1-0.5), and N=565 (PPA>0.5). 

 

We next used more formal metrics to assess PRF score prediction performance. A brief 

introduction to these methods is provided in Appendix C. 

3.3.2 Classifying lead variants 

The PRF score can be treated as a binary classifier, with variants above some threshold 

score predicted as causal (“positive class”), and those below this score predicted as non-

causal (“negative class”). Ideally, to define true positive cases we would use an external set 

of known expression-altering variants. However, there is no gold-standard set of genetic 

variants known to causally influence gene expression in specific cell types. In its absence, 

we must settle for a positive set that is enriched for causal variants. We therefore use lead 
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eQTL variants as a proxy for causal variants, and ask how well PRF scores discriminate lead 

variants from other variants. Many lead variants will not in fact be causal, and as a result we 

will likely underestimate PRF score prediction performance. In taking lead variants as 

causal, we also implicitly assume that there is a single causal variant per gene. Stepwise 

conditional regression has revealed that at current sample sizes, a significant minority of 

human genes are detectably regulated by multiple variants (Lappalainen et al. 2013). In such 

a case, even if the lead variant is causal, the presence of additional causal variants not in 

the positive ground truth set will lead to underestimation of prediction performance. 

 

We compared genePRF and maxPRF scores with CADD and GWAVA using receiver-

operating characteristic (ROC) curves; here, an area under the curve (AUC) above 0.5 

indicates prediction performance better than chance. GWAVA defined scores for three 

classifiers, namely, GWAVA.TSS for a model that matched SNPs based on TSS distance, 

GWAVA.U which did not match on TSS distance, and GWAVA.R which matched on TSS 

distance and genomic region. For each of the scores we considered performance in 

identifying lead variants for GTEx subcutaneous adipose eGenes (with p < 1x10-12) from 

among all variants within 1 Mb (Figure 17a). GenePRF scores (AUC=0.951) far 

outperformed other scores in prioritising lead variants (AUC 0.565 - 0.765). Achieving an 

AUC above 0.9 indicates very good classification performance, which may be surprising 

given that we expect only a modest fraction of lead variants to be causal. There is a simple 

explanation -- because PRF scores were trained using eQTLs, they heavily upweight 

variants near the TSS of genes, and lead eGene variants also cluster near the genes they 

regulate. Therefore, the problem of distinguishing lead variants is made easier because most 

distal variants can be discounted. Consistent with this, GWAVA.U scores, which weight TSS 

distance more heavily, performed better than the other GWAVA scores (Figure 17a).  

 

An alternative performance measure considers precision (the fraction of cases predicted 

positive which are true positives) as a function of recall (the fraction of all true positives 

identified as such, also known as the true positive rate). Even with a high ROC AUC, the 

precision-recall curve for genePRF scores showed a precision of only 1% at a PRF score 

threshold where 25% of lead variants are identified (Figure 17b). The other scores similarly 

had very poor precision in their predictions. We are thus a long way from being able to 

precisely pinpoint causal variants from annotation data alone when considering a large 

number of candidate SNPs in a window around a gene. 
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Figure 17: (a) ROC curves, and (b) precision-recall curves for identifying lead variants (with p < 10-12) 

for eGenes in GTEx subcutaneous adipose tissue from among all variants within 1 Mb. 

 

Rather than considering all variants in a large window, a more relevant measure of 

performance may be how well PRF scores discriminate lead variants from among candidate 

causal variants for the association. To assess this, we considered eGenes with a “confident 

causal” variant, defined as a single variant with PPA > 0.5 when using fgwas with no 

annotations. We plotted ROC and precision-recall curves for distinguishing the lead variant 

from the top 20 variants by statistical association for each eGene (Figure 18). Note that 

although we could use a threshold on PPA rather than fixing the number of variants at 20, 

we avoid this because the performance would be harder to interpret: some genes have 

dozens of variants with PPA > 0.01, whereas others have a single variant. 

 

In this “fine-mapping” scenario, the ROC AUC for PRF scores (0.678) was dramatically 

worse than when all variants within 1 Mb are considered. The drop in performance is 

unsurprising, since TSS distance is less likely to distinguish among variants at a single 

association peak. Still, both gene-aware and gene-agnostic PRF scores performed slightly 

better than competing methods CADD and GWAVA. Interestingly, in this scenario PRF score 

precision improved to 17% when 25% of the lead variants were identified. This is because 

the positive and negative classes were less imbalanced in this scenario -- 1 in 20 variants 

was positive, compared with 1 in ~5000 when all variants in the 1 Mb cis-window of a gene 

were considered. 
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Figure 18: (a) ROC curves, and (b) precision-recall curves for identifying lead variants in GTEx 

subcutaneous adipose tissue for “confident eGenes” where the lead variant has a statistical PPA > 

0.5. To represent a fine-mapping scenario, only the top 20 variants by statistical association are 

considered for each eGene. 

 

A final metric that we considered was lift, which indicates how enriched the variants at a 

given prediction threshold are for true positives, relative to the same number of randomly 

chosen variants. When considering all cis-window variants for GTEx subcutaneous adipose 

eGenes, those in the top 1% of genePRF scores were 42-fold more likely than chance to be 

lead variants, while variants in the top 10% were 9-fold more likely (Figure 19a). Both 

genePRF and maxPRF scores considerably outperformed CADD (top 1% having lift 1.9) and 

GWAVA (top 1% having lift 10.4 for the best GWAVA score). When only the top 20 variants 

per gene were considered, those in the top 1% and 10% of genePRF scores were 7.3-fold 

and 3.1-fold more likely than chance to be lead variants (Figure 19b). In this scenario, 

maxPRF scores performed nearly as well as genePRF scores, since TSS distance was less 

informative as a predictor. GWAVA.U also performed well (top 1% and 10% of scores having 

lift of 5.0 and 2.7), but CADD performed poorly (top 1% and 10% of scores having lift of 2.5 

and 2.0). 
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Figure 19: Lift curves for identifying lead eQTL variants in GTEx subcutaneous adipose from among 

(a) all variants in the 1 Mb cis-window or (b) the top 20 statistically associated variants. In panel (a) 

the lift values are plotted on a logged axis because they vary over orders of magnitude. 

 

 

 
 
Figure 20: (a) ROC curves, and (b) precision-recall curves for genePRF scores in identifying lead 

variants in GTEx tissues from among all variants within 1 Mb. PRF scores were computed for each 

GTEx tissue using the most relevant epigenome. Performance on different GTEx tissues is indicated 

by color. 
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Although we used GTEx subcutaneous adipose tissue for these comparisons, the pattern 

was very similar for four other GTEx tissues which we investigated (Figure 20). These 

investigations show that PRF scores provide a genome-wide summary of regulatory 

information in specific cell types, which can be useful in predicting the locations of gene 

regulatory variants. 

3.3.3 Fine-mapping: reducing credible set size 

A measure of the utility of PRF scores is their ability to assist in fine-mapping causal 

variants. A common way to describe how finely an association signal has been localised is to 

consider the size of the credible set - the set of variants expected to contain the causal 

variant with a specified probability. The variants in the set can be determined by computing 

the PPA for each variant in the region, and then adding variants to the set (beginning with 

the most associated) until in sum they reach a specified probability of containing the causal 

variant, commonly either 95% or 99%. The credible set at a locus can be defined using 

statistical information alone, or with the inclusion of annotation information. When an 

annotation is informative we expect that statistical and annotation evidence should coincide, 

and thus incorporating annotations, summarised by PRF scores, should lead to smaller 

credible sets. 

 

The PRF score for a variant is related to the log odds of a variant with those annotations 

causally influencing gene expression. As such, PRF scores for a set of eQTL variants can be 

directly used in a Bayesian framework to determine posterior probabilities of association for 

each variant (Equation 5). 

 

 

(Equation 5) 

 

 

This is identical to Equation 18 in Pickrell et al. (J. Pickrell 2013), except that here the PRF 

score is used directly to compute πi, the prior probability of association for each SNP i, using 

Eq. 2 defined earlier. In conjunction with the eQTL summary statistics, this naturally 

integrates the statistical and annotation information to give posterior probabilities of 

association. This could also be done directly for a given eQTL study by using fgwas with 

individual annotations and the summary statistics. In developing PRF scores, we have 

summarised the complicated process of annotation selection, normalisation, and model 

optimisation. 
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We used summary statistics from GTEx subcutaneous adipose tissue to determine the 95% 

credible set of variants for each of the 2,493 eGenes with lead variant p < 10-12. We also 

used genePRF scores to compute Bayesian priors for variants, and determined PRF score-

adjusted 95% credible sets. For the majority of eGenes (67%), the size of the credible set 

was reduced when using PRF scores (Figure 21). For example, the number of variants in the 

median eGene credible set was 9 when using statistical information only, and 6 when 

incorporating PRF scores (Figure 21, top right panel). 

 

 

 
 
Figure 21: Sizes of 95% credible sets determined using either statistical information only, or 

combining statistical information with PRF scores. Each of the plots presents a different view showing 

that credible set sizes are reduced on average when PRF scores are incorporated. 

 

3.4 Discussion 
The human genome contains millions of common variants where alleles differ between 

individuals. An unknown fraction of these influence human phenotypes. While GWAS studies 

have identified thousands of associations linking variants with phenotypes, the subsequent 



116 

step of identifying the causal variants and mechanisms for these associations has proven 

extremely challenging. Methods that predict variant functionality using functional genomic 

data can be highly informative for fine-mapping (Spain and Barrett 2015), for burden tests 

with rare variants (S. Lee et al. 2014), and for identifying phenotype-relevant cell types 

(Finucane et al. 2015; Trynka et al. 2013). 

 

PRF scores are the first genome-wide scores of regulatory potential based on eQTL data, 

which include thousands of associations where the regulated gene is known. Previous 

methods scoring variant functionality have been trained on either simulated data or 

Mendelian mutations, where the causal variants are known. To use eQTLs, we employed a 

Bayesian model that accounts for uncertainty in the location of the causal variant. Our PRF 

score model addresses a number of drawbacks of previous methods. First, whereas 

functional genomic data have quantitative values, to our knowledge all previous methods for 

prioritizing variants have exclusively used presence/absence annotations. By developing 

qfgwas, an extension to the fgwas software, we found that quantitative annotation values 

substantially improve model likelihoods for eQTL data, indicating that they provide improved 

performance over binary annotations for localising causal eQTLs. Second, we found that 

imputed data provided by the Roadmap Epigenomics project had greater predictive 

performance for eQTLs than the measured data. This finding may benefit others basing their 

work on Roadmap annotations, since the imputed data are available across all cell type 

epigenomes, whereas measured data are more sparse. However, since we only examined 

annotations assayed across more than 30 tissues, this result may not hold for annotations 

with very sparse sampling. Third, many tools require the user to collect and validate the 

utility of cell type-specific functional annotations. As a result, a relatively small set of 

annotations is usually used. With PRF scores, we have used a rigorous framework to 

integrate a wide range of annotations, producing cell type-specific scores of regulatory 

function for a large set of human tissues. 

 

PRF scores showed better performance in identifying lead eQTL variants than the widely 

used methods CADD and GWAVA. However, all methods still showed relatively poor 

performance in discriminating likely causal eQTL variants from those with weaker statistical 

associations at the same loci. These evaluations are limited by the fact that we do not have 

a set of known “true causal” gene regulatory variants, and so we instead used variants 

where the statistical information alone provided good evidence of causality. Yet, even with 

this diluted set of true positives, far better prediction performance should be possible. This 

indicates that we still have a long way to go in deconstructing the grammar of gene 

regulation. 
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A number of factors may limit the prediction performance of PRF scores. Some of these are 

intrinsic to the method. The PRF score for a variant is a sum of log-odds annotation 

enrichments that were determined globally during model training. However, there may be 

many cases where a non-linear model would better capture the complexity of gene 

regulation. For example, TSS distance may not be as informative for a variant in a 3’ UTR as 

for an intergenic variant; DNase hypersensitivity may not be as informative for a splice site 

variant as for an enhancer variant. As additional genomic data is collected and used for 

prediction, the need to model non-linear combinations of annotations may grow in 

importance. In addition, since our model was trained using fgwas, we implicitly assumed that 

each eQTL was due to a single causal variant. Although in principle this should not bias the 

estimate of enrichments, it is unknown to what extent modelling multiple causal variants per 

eGene could improve our enrichment estimates. 

 

Another factor that may limit PRF score performance is the lack of nucleotide-resolution 

features in our annotation data; most of the annotations used, such as histone modifications 

and genome segmentations, are limited to 200 nucleotides in resolution. In contrast, there 

are a growing number of examples of single nucleotide sequence changes that influence 

transcription factor binding, gene expression, and complex traits. Based on this lack of 

relevant input features, PRF scores are not allele-specific. This may pose a particular 

problem for variants that introduce new transcription factor binding sites, thereby altering 

chromatin accessibility and other epigenomic features. If such a variant is not present in the 

individuals for whom the reference data was gathered, then no reference epigenomic 

annotations will overlap the locus, leading to a low PRF score. 

 

The PRF score model was trained on the Geuvadis eQTLs, and so it is possible that the 

annotation enrichments are to a certain extent overfit on this dataset. The GTEx project now 

has reasonably large sample sizes for many tissues, and so it would be worthwhile to 

evaluate how well a model trained based on one tissue extends to the other tissues. It would 

also be possible to use eQTLs from multiple tissues in model training, which could improve 

the precision of parameter estimates while also focusing on those annotations that translate 

well across tissues and datasets. 

 

In principle, many additional features could be included in the PRF score model, which could 

improve its predictive utility. For example, methods that predict changes to open chromatin, 

such as Basset and deltaSVM, could used to produce inputs with nucleotide-level resolution 

for PRF score model training. In addition, although the large volume of existing transcription 
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factor ChIP-seq data is unevenly distributed across cell types, this is a rich data source that 

can be integrated with binding motifs to provide more precise predictions of variant effects. 

By using the centisnp annotation as input we have incorporated some measure of variant 

effects on TFBS. However, this was available only for 1000 genomes SNPs, and was not 

applied in a cell type-specific manner. Finally, as genome-wide datasets of chromosome 

conformation capture (e.g. Hi-C) become available across more cell types, these may help to 

identify distal regulatory regions. Linking regulatory regions with specific gene promoters 

could also improve the ability of PRF scores to distinguish the relevant genes for a given 

variant. Since distance to TSS is the primary annotation linking variants to genes in our PRF 

score model, we are unable to identify cases where the regulated gene is not the nearest 

gene. 

 

The coupling of PRF scores with the Roadmap epigenomes is both a strength and a 

weakness. Computing PRF scores is straightforward across 119 different epigenomes, 

including a number of cell lines routinely used for molecular assays. However, the 

dependence on these annotations means that the model is not easily extendable to 

additional cell types. This precludes the use of PRF scores for specific cell types that are 

thought to be relevant to some diseases, such as pancreatic islets for type 2 diabetes 

(Thurner et al. 2017), or regulatory T cells for autoimmune diseases (Carbone et al. 2014). 

 

In summary, our results indicate that a careful treatment of different types of annotations can 

maximize how informative they are in predicting SNP regulatory potential, and PRF scores 

integrate these annotations in a novel way across many cell types. As will be described in 

Chapter 4, PRF scores can be used both for identifying cell types relevant to complex traits, 

and fine-mapping individual associations. We believe that there remains considerable 

potential for integrating additional annotations to increase PRF score predictive 

performance. 

 

3.5 Methods 
URLs 

Roadmap peaks: 
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidatedImputed 

Roadmap signal tracks: 
http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidatedImputed 

FANTOM TSS: http://fantom.gsc.riken.jp/5/datafiles/phase1.0/extra/CAGE_peaks/ 
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FANTOM Enhancers: http://fantom.gsc.riken.jp/5/datafiles/phase2.0/extra/Enhancers/ 

Gencode: https://www.gencodegenes.org/releases/19.html 

GERP: http://hgdownload.soe.ucsc.edu/gbdb/hg19/bbi/All_hg19_RS.bw 

Centisnp: http://genome.grid.wayne.edu/centisnps/ 

CADD scores: 
http://krishna.gs.washington.edu/download/CADD/v1.0/whole_genome_SNVs.tsv.gz 

GWAVA scores: (only available for 1000 genomes SNPs) 

ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/VEP_plugin/gwava_scores.bed.gz 

EQTL and annotation data for model building 

We downloaded genotype data for GEUVADIS samples from the 1000 genomes phase 1 

release (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/) and fastq files for RNA-seq on the same 

samples from ENA (http://www.ebi.ac.uk/ena/, PRJEB3366). For the 343 samples of 

European descent, we aligned RNA-seq reads to GRCh37 and the Ensembl 69 

transcriptome using Bowtie 2 and TopHat, and used custom code to count reads which 

overlapped the union of exons across transcripts for each gene. We used RASQUAL to 

associate read counts with all SNPs (imputation INFO>0.7) within 1 Mb of the TSS for each 

protein-coding gene in Gencode v19. We selected the 6,340 protein-coding genes for which 

the lead eQTL SNP had p < 10-6, and used their association statistics (for 39,566,692 SNPs) 

as input to fgwas (J. Pickrell 2013) in fine-mapping mode (option -fine). 

 

We annotated each SNP with the distance to the nearest FANTOM TSS expressed at >= 2 

transcripts per million (TPM) in LCLs. For binary annotations we determined SNP overlap 

using bedtools, while for quantitative annotations we used bigWigAverageOverBed to extract 

the signal value at the SNP. Quantitative annotation values were transformed to normal 

quantiles based on the distribution of values across all tested SNPs. To split binary 

annotations into near/medium/far bins of TSS distance (either 0-6420, 6421-33040, or 

>33040), we created new annotations with the same values as the original annotation, but 

set to zero outside of the desired distance bin. 

 

The centisnp annotations list the number of motifs which are altered by a given SNP. We 

used the number of motifs as a quantitative annotation. 

Quantitative annotation parameter regularization 

A pitfall of using the logistic function for quantitative annotation enrichment is that the model 

is not always identifiable; that is, different combinations of the logistic’s three parameters can 

give equivalent model likelihoods because they define nearly identical curves over relevant 
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subsets of the range. A solution to this optimisation problem is to apply a penalty to the 

logistic coefficients that prevents them from becoming too large. This constrains the search 

space to what we consider reasonable parameterisations. We use an L2 penalty on the 

squared parameter value, similar to ridge regression. A penalty of 0.01 on the squared 

logistic parameter values leads to a cost of ~0.1 units of log-likelihood (LLK) for a parameter 

value of 3, but of ~1 unit LLK for a parameter value of 10. Experimentation with different 

penalty values indicated that this level of penalty had a very modest effect on the model LLK 

after optimisation, as well as on the parameter values for most quantitative annotations, but 

dramatically improved convergence speed in specific cases. 

Fgwas efficiency improvements 

We implemented two changes to improve the computational efficiency of fgwas, which are 

included in the qfgwas version available on Github. Normally fgwas stops the Nelder-Mead 

optimisation procedure after the optimisation step size has reached a sufficiently small 

(fixed) value such that further improvement to the model is unlikely, or alternatively after a 

maximum number of iterations is reached. We noticed that in many cases the step size 

never became sufficiently small to halt optimisation, and yet the model likelihood did not 

improve over thousands of iterations. We did not wish to lower the maximum number of 

iterations, as that might prematurely halt optimisation for models that could still be improved. 

We thus implemented an additional stopping criterion: when the model LLK is not improved 

by at least 0.2 units over 400 iterations. Examining many optimisation runs showed that the 

final model was never significantly changed due to early stopping, yet compute time was 

considerably reduced for many runs. 

 

To further improve the runtime efficiency of fgwas, we applied code profiling to identify areas 

for improvement. This highlighted a single function, which sums annotation enrichments for a 

given SNP at each optimisation iteration, that consumed the majority of the compute time. 

By precomputing the enrichments once for each iteration rather than for each SNP, we cut 

the runtime of fgwas for multi-annotation models by approximately 50%. These two 

improvements are revealed in the run time for models with increasing numbers of 

parameters (Figure M1). 
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Figure M1: Fgwas running time for models with different numbers of parameters after 

addition of a new stopping criterion (Optim1) or code optimisations based on profiling as well 

as the stopping criterion (Optim2). 

 

Model building 

To subset SNPs for model training, we first used the Wakefield approximation (Wakefield 

2009) to derive approximate Bayes factors from SNP Z scores and MAF, and filtered to 

retain only SNPs with BF > 10. For model building we used forward stepwise selection to 

add annotations sequentially to the model, arriving at a 38-annotation model as described in 

the main text. For cross-validation, we began by tuning the fgwas penalty parameter as 

described by Pickrell (J. Pickrell 2013); this maximized the cross-validation likelihood with a 

penalty parameter of 0.01. We then tested 38 models by cross-validation where each single 

annotation was dropped, but none of these had higher likelihood than the full model. 
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Computing PRF scores 

PRFCalc: software to compute PRF scores 
PRF scores are defined for any position in a window of +/- 1 Mb around each protein-coding 

gene’s TSS, in each cell type from the Roadmap Epigenomics project. The number of PRF 

scores that could potentially be computed is thus: 

 

2 x 106 positions/gene * ~2 x 104 genes * 119 epigenomes = 4.76 x 1012  PRF scores 

 

In addition, for a given position, we would like to be able to provide a breakdown of the PRF 

score to reveal the individual annotations contributing. With TSS distance plus 38 

annotations in the model, the number of values we need to access or compute is: 

 

39 * 4.76 x 1012 =  1.9 x 1014 values 

 

This is approximately 100 terabytes of data, an amount that is not feasible to store and 

access quickly without considerable infrastructure. We therefore provide software that 

calculates PRF scores from the required annotation data for each epigenome. This “prfcalc” 

software is available at https://github.com/Jeremy37/prfcalc. PRFCalc solves the problem of 

extending the annotation enrichments determined for LCLs to all of the Roadmap 

epigenomes. 

 

Matching FANTOM and Roadmap tissue types 
We use FANTOM TSS and enhancer definitions, yet the FANTOM consortium did not assay 

the same samples as Roadmap Epigenomics. To be able to compute PRF scores for the 

Roadmap tissues, we mapped the tissues profiled by FANTOM onto equivalent Roadmap 

epigenomes. A good match was available for all epigenomes, except for E018 to E022, 

which are from induced pluripotent stem cell (iPSC) lines and iPSC-derived cell lines. With 

no matching FANTOM cell types, PRF scores are not available for these epigenomes. When 

more than one FANTOM tissue was a good match to a Roadmap epigenome, we combined 

the FANTOM tissues by averaging the transcription levels for a given TSS or enhancer 

across samples, weighted by the FANTOM sample read depth. 

 

Cell type specificity of PRF scores is determined partly by the set of genes expressed in a 

cell type, used for TSS distance calculation, and partly by cell type-specific annotations. To 

focus on genes active in a cell type, we include only those with FANTOM expression of at 

least 2.0 TPM for TSS distance calculations. 
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Mapping annotation values to fixed normal quantiles 
When training the PRF scores model, annotation values for the set of variants used in 

training were first transformed with a quantile normal transformation. Because these were 

broadly distributed across the genome, they reflected the genome-wide distribution of 

relevant annotation values. However, when computing PRF scores, we may want the score 

for a single variant. The transformed annotation value for this variant should reflect its 

quantile among the annotation values used during model training, not its quantile among the 

variants whose PRF scores are computed at a given time. To do this we created a table, for 

each annotation, that discretizes the mapping from annotation value to normal quantile into 

20,000 bins. When computing the PRF score for a variant, we first retrieve its raw annotation 

values from Roadmap epigenome files, and transform the values by lookup in these tables. 

Determining credible sets 

To compute the 95% credible set for an eQTL, we used SNP BFs computed with the 

Wakefield method. For naive credible sets, we used a flat prior across variants to determine 

PPAs using Equation 5, i.e. with all πi set to 1, and assuming a single causal variant among 

those tested for association. For functionally fine-mapped credible sets, πi was set to the 

genePRF or maxPRF score for each variant. We sorted variants by their PPA, and defined 

the credible set as the minimal number of top variants whose PPA sums to at least 0.95. 

 

3.6 Appendix A - Fgwas equations 
We briefly describe the model likelihood computed in fgwas. We assume a standard linear 

regression between y, a vector of quantitative phenotypes (e.g. a gene’s expression), and g, 

genotypes for the same individuals. The evidence against the null hypothesis that there is no 

association between genotype and phenotype can be represented by the Bayes factor; since 

we use summary statistics here, we compute the approximate Bayes factor as described by 

Wakefield (Wakefield 2009). The model likelihood is: 

 

 

 

(Equation A1) 
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where the product is over each of K genes, and the sum is over each of Nk variants tested 

for a given gene, and θ contains all the parameters of the model, i.e. annotation 

enrichments. The implicit assumption is that each gene has one causal variant influencing its 

expression. Here, i and k denote the ith SNP tested for the the kth gene, and the SNP prior 

probability to be associated was defined in the main text as: 

 

 

(Equation 2) 

 

 

 

(Equation 3) 

 

 

 

where Sk is the set of SNPs tested for gene k, L2 is the number of annotations in the model, λl 

is the effect of SNP annotation l. For a binary annotation, Iil is 1 if the SNP falls in annotation 

l or 0 otherwise. For a quantitative annotation, Iil  depends on the annotation value z, and 

contributes parameters β0 and β1 defining a logistic function: 

 

 

(Equation 4) 

 

 

 

The likelihood in Equation A1 is maximized by a search across the parameter space using 

the Nelder-Mead algorithm. When comparing models using cross-validation, we instead 

maximize a penalized likelihood function: 
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3.7 Appendix B - model annotation enrichments 
Show below are annotations enrichments and parameters from the full 38-annotation model 

used to determine PRF scores. 

 
TSS Distance λ  

Binary annotation 
 
λ 

Quantitative 
annotation 

 
λ 

 
β0 

 
β1 

0-285 5.1363 intron.diffgene -0.5568 DNase  2.3911  2.0624  2.0614 

286-1410 4.5813 UTR3.samegene  1.8221 H3K36me3  1.1160  0.0392  2.4245 

1411-3690 4.2803 coding.samegene  1.3009 lcl.Enh.Fantom.tpm  1.7666  0.6441  0.5540 

3691-6420 3.9961 intron.samegene  0.7043 effect-snp.nmotifs  2.4137  2.7872  1.4456 

6421-10338 4.2492 UTR5.samegene  0.8240 H3K27ac  0.9785  0.4803  3.8216 

10339-15106 3.9361 State_25.Quies.t2 -0.4929 GerpRS.noncoding  1.2420  2.8310  3.2616 

15107-21855 3.6071 State_25.Quies.t1 -0.3982 H3K9me3 -1.5800 -0.5448  0.7292 

21856-33040 3.3870 H3K4me3.t3 -0.9406 H3K4me3  0.5823  0.6817  4.6988 

33041-49943 2.9527 State_7.Tx3.t2  0.5172 DNAMethylSBS.fm -2.7399  3.4404  0.7903 

49944-85174 2.5003 State_7.Tx3.t1  1.3189 H3K9ac -2.3670  3.9121  2.4937 

85175-164468 1.6573 H3K4me1.t1  0.6831 H3K4me1 -1.5025  1.6209  0.7241 

  H3K27me3.t1  0.2369 switch-snp.nmotifs -0.1794  4.3033 -2.0631 

  UTR5.diffgene -0.3979     

  State_12.TxEnhW -0.4628     

  State_13.EnhA1  0.5350     

  H3K36me3.t1 -0.0245     

  State_6.Tx.t1  1.1575     

  H3K27me3.t2 -0.2999     

  State_4.PromD2 -0.6657     

  State_18.EnhAc -1.1001     

  State_1.TssA.t3 -1.6091     

  miRNA -0.3995     

  State_5.Tx5 -0.1243     

  State_24.ReprPC -0.6603     

  H3K36me3.t2  0.4493     

  State_16.EnhW1.t2  0.4043     
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3.8 Appendix C - Classifiers 
The PRF score can be treated as a binary classifier, with variants above some threshold 

score predicted as causal (“positive class”), and those below this score predicted as non-

causal (“negative class”). A variety of metrics can be used to assess the performance of 

binary classifiers, with tradeoffs as to how informative they are in different circumstances. In 

describing these metrics, it is useful to refer to the confusion matrix, which is a 2x2 

contingency table describing the possible combinations of classifier prediction 

(positive/negative) and ground truth (positive/negative) (Table A1). 

 

  Predicted condition 

  predicted positive predicted negative 

 

Ground 

truth 

condition positive true positive 

(TP) 

false negative 

(FN) 

condition negative false positive 

(FP) 

true negative 

(TN) 

 
Table A1: Confusion matrix representing the possible classifier predictions and true conditions in 

binary classification. 

 

A simple metric is accuracy, which is the fraction of correctly classified cases, (TP + TN) / 

Total cases. A major problem with using accuracy to evaluate classifiers is that when the 

classes are unbalanced, then the accuracy can be very high even when the predictions are 

not useful. For example, if 99% of cases are true negatives, then a classifier would have an 

accuracy of 99% simply by predicting every case as a negative. However, the sensitivity of 

this classifier, also known as the true positive rate, TP / (TP + FN), would be zero. This 

scenario reflects the case with genetic variation, where only a small fraction of variants 

influence molecular or organismal phenotypes. The accuracy of a classifier is thus 

dependent on the prevalence of the two classes in the data. 

 

In classification we are concerned with how well both positive and negative cases are 

identified. A common way to relate these quantities to each other is to plot the true positive 

rate (TPR) against the false positive rate (FPR = FP / (FP + TN)) as the classifier threshold 

is varied. This is called the receiver operating characteristic (ROC) curve, examples of which 

are shown in Figure A1 (left plot). A classifier that makes predictions randomly would 
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produce a curve (line) along the diagonal and would have an area under the curve (AUC) of 

0.5. A good classifier would have a curve bending towards the upper left, with 0.5 < AUC <= 

1, indicating a higher true positive rate than false positive rate. Unlike accuracy, the TPR and 

FPR are theoretically independent of the prevalence of the two classes in the data, as their 

values depend only on the fraction of negative or positive cases correctly identified. 

 

 
 
Figure A1: Performance metrics for three classifiers based on simulated data, which are labeled as 

good (red line), mediocre (green line), or random (blue line). The random classifier has random 

prediction with respect to the true classification. Shown are (a) ROC curves, (b) precision-recall 

curves, and (c) lift curves. AUCs for the ROC curves in (a) are  0.95, 0.77, and 0.50 for the good, 

mediocre, and random classifiers. 

 

While the ROC curve informs on how much better the classifier performs than chance, it fails 

to reveal how confident we should be in the classification at a given score threshold. The 

precision, TP / (TP + FP), tells us the fraction of cases predicted as positive which are true 

positives. A high ROC curve AUC can be achieved even when the precision is low across 

most of the score range. The TPR, also known as recall, tells us the fraction of all positives 

that are identified. Precision is often plotted against recall across the range of classifier 

scores, producing a precision-recall curve (Figure A1, middle panel). A good classifier would 

produce a curve traveling through the upper right part of the plot, indicating that a large 

fraction of positive cases can be identified without sacrificing precision. 
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A final measure of classification performance is lift, which indicates how much better than 

random the classification performs at different score thresholds. For example, a lift value of 

10 at a score threshold where 5% of of the data is predicted true would indicate that among 

the top 5% of scores there are ten times as many true positives as expected by picking 

cases randomly. Plotting lift versus the fraction of the dataset above the threshold can reveal 

over what range of scores the classifier is particularly informative. Lift values always trend 

towards 1, since large fractions of the dataset can by definition not be highly enriched for 

positives. 
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4 Applying PRF scores to GWAS: identifying cell 
types and fine-mapping 

Collaboration note 
The work described in this chapter is solely my work, with advisory input from Daniel 

Gaffney. 

4.1 Introduction 
Identifying causal variants at GWAS-associated genomic loci is challenging. Purely statistical 

approaches to fine-mapping have limited resolution when there is extensive LD between 

variants. Methods that combine statistical and annotation data are available, but require 

manual selection of a set of potentially relevant functional annotations, and are limited by the 

power of the GWAS in how well annotation enrichments can be estimated. These barriers 

have limited the identification of the functional variants, genes, and cell types at GWAS loci. 

 

In Chapter 3, we developed PRF scores, which integrate a diverse set of functional 

annotations, and can be computed for a large number of cell types with extensive 

epigenomic data available. Here we apply PRF scores to two outstanding problems in post-

GWAS analysis: (i) identification of the relevant cell types of interest, for individual loci and 

genome-wide, and (ii) fine-mapping to identify plausible candidate causal variants. Because 

the same annotations underlie PRF scores in both steps, the cell types identified as enriched 

should be directly useful for subsequent fine-mapping. 

 

To achieve these aims, we solve a number of distinct challenges. First, because epigenomic 

annotations differ globally across tissues, we faced a problem of normalisation and centering 

of PRF scores. Second, because the causal variants and genes at each locus are unknown, 

we faced the related problems of summarizing PRF scores in each locus and cell type, and 

then aggregating this information genome-wide. We tested a range of  alternative solutions 

to these problems, and then apply PRF scores to identify enriched cell types and to fine-map 

causal variants for six complex traits. We highlight the results for a number of individual loci, 

including likely causal variants near IL2RA in rheumatoid arthritis and SMAD3 in 

inflammatory bowel disease. We also show examples where fine-mapping fails, highlighting 

areas for improvement. Finally, we summarise the genome-wide outcomes of PRF score 

fine-mapping on the credible sets of causal variants across loci and on the genes most 

strongly implicated. 
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4.2 Identifying cell types for complex traits 
If a cell type is relevant for a complex trait, then we expect that causal regulatory variants will 

be located in active regulatory marks in that cell type, and thus will have higher PRF scores 

than in irrelevant cell types. In principle, identifying relevant cell types is a matter of testing 

whether variants that are statistically more likely to be causal have higher PRF scores in that 

cell type. A key assumption of this approach is that there are no other confounding factors 

that could influence a given variant’s PRF score. However, preliminary analysis suggested 

that this assumption might be invalid, and that PRF scores showed some global systematic 

biases across cell types. We therefore sought to first characterise and correct for these 

differences. 

4.2.1 Average PRF scores differ across epigenomes 

We noted that mean genome-wide PRF scores differed across epigenomes (Figure 1a), with 

embryonic stem cell lines and some immune cell types having higher mean scores. In initial 

testing these cell types dominated estimates of cell type enrichment in many individual traits. 

We found that a major driver of these differences was that, even though the same 

enrichments are used for equivalent annotations across epigenomes, these annotations 

differ in their genomic coverage and average quantitative values. For example, the length of 

genomic sequence in peaks of DNase hypersensitivity varied from 37 Mb to 107 Mb, while 

the number of expressed FANTOM TSSes varied from ~13,000 to 23,000. Interestingly, 

despite strong enrichment parameters, differences in DNase hypersensitivity and number of 

FANTOM TSSes showed only weak correlations with epigenome mean PRF score (Figure 

1b). Instead, we found that a small number of quantitative annotations were highly correlated 

with mean PRF score, and with each other (Figure 1c).  

 

Because quantitative annotation enrichments are computed for every variant, small global 

differences in these values between epigenomes contributes to differences in mean PRF 

scores. These differences are observed across the full distribution of PRF scores (Figure 

2a). To make scores comparable across epigenomes, we centered each epigenome’s 

scores by subtracting the difference between the epigenome’s mean PRF score and the 

global mean score across epigenomes. Following this normalisation the distribution of PRF 

scores still showed minor differences between epigenomes (Figure 2b), but no epigenome 

dominated cell type rankings across multiple traits. Therefore, all calculations using PRF 

scores to determine cell type specificity are mean-normalised. 
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Figure 1: Global differences between epigenomes. (a) Mean PRF score for each epigenome across 

~288,000 evenly spaced genomic positions. (b) Mean TSSDist and DNase hypersensitivity 

enrichments are only weakly correlated with epigenome mean PRF scores. (c) Moderate to strong 

correlations were found between mean PRF scores and enrichments due to quantitative histone 

modification annotations H3K4me3 (Pearson r2=0.62, p<2x10-16), H3K27ac (r2=0.58, p<2x10-16), 

H3K4me1 (r2=0.25, p=3x10-9) and H3K36me3 (not shown; r2=0.41, p=4x10-15). 

 

An alternative strategy for normalizing quantitative annotations across epigenomes is 

possible. In the PRF score model described here, quantitative annotations are quantile 

normalized with respect to the annotation values present in the Geuvadis training dataset, 

such that each annotation quantile maps to a particular enrichment. It would be possible to  
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Figure 2: (a) Mean PRF scores differ among epigenomes without normalisation. Three representative 

epigenomes are shown. (b) After normalisation to make means equivalent, PRF score distributions 

are highly similar but not identical across epigenomes. 

 

instead determine quantiles for each annotation separately for each Roadmap epigenome; in 

this way, the same annotation value might receive a different enrichment in two tissues, but 

across all variants the distribution of enrichments should be identical between tissues. 

Although we have not used this normalization method, it could provide a more elegant 

solution than mean-centring the scores. 
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4.2.2 PRF score summarisation at a locus 

We sought to identify relevant cell types for disease at two levels: first, at the level of an 

individual locus, and second, genome-wide. When the causal variant at a GWAS locus acts 

by altering gene regulation, it should have greater overlap with regulatory annotations in 

highly relevant cell types than in irrelevant cell types, and will therefore have a higher PRF 

score in relevant cell types. However, in general we do not know the causal variant at a 

locus. 

 

We explored two different methods to overcome the problem of uncertainty in the location of 

causal variants, which we call the weightedPRF score and the maxPRF score. For both 

methods, we began by determining the posterior probability of each variant to be causal 

using the WTCCC fine-mapping method on GWAS summary statistics at the locus 

(Wellcome Trust Case Control Consortium et al. 2012). We next defined the credible set of 

variants that together comprised a >=95% probability of containing the causal variant, with 

the restriction that only variants with at least a 1% causal probability were included. 

 

The weightedPRF score is the sum of PRF scores for variants in the credible set, weighted 

by their causal probabilities: 

 
The maxPRF score is the maximum PRF score for any variant in the credible set: 

  
The weightedPRF score includes a contribution from every variant in the credible set. If 

GWAS association statistics were noiseless and unbiased, then the weightedPRF score 

would be optimal, as it assigns more weight to variants more likely to be causal. However, 

GWAS associations are subject to noise from multiple sources, including sampling noise, 

and genotyping and imputation inaccuracies. Because many non-causal variants may be 

included in the credible set, fluctuation in their PRF scores will contribute to noise in the 

weightedPRF score. The maxPRF score is less subject to this kind of noise since the PRF 

score from a single variant is used; however, it sacrifices the statistical information which 

distinguishes among credible set variants. 

 

To explore the utility of these scores in ranking epigenomes at individual loci, we applied 

them to summary statistics from a GWAS of the autoimmune disease rheumatoid arthritis 
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(RA) (Okada et al. 2014). Figure 3 depicts the distribution of weightedPRF and maxPRF 

scores across epigenomes for ten illustrative loci, with three immune cell types highlighted. 

Three important observations can be made from looking at these scores across loci. First, 

the epigenomes of cell types already known to be relevant to RA, such as T and B cells, are 

highly ranked at some loci but not others. Second, average PRF score across epigenomes 

differ greatly from locus to locus. Third, within many loci, epigenome scores are 

concentrated in a narrow range. WeightedPRF scores had a smaller spread on average than 

did maxPRF scores (mean within locus standard deviation of 0.47 vs. 0.70). 

 

 
Figure 3: PRF scores across epigenomes for ten loci of an RA GWAS (Okada et al. 2014). Loci are 

labelled on the x axis. All 119 epigenomes are shown as points for each locus, but three epigenomes 

are highlighted: PMA-stimulated T-helper cells, primary B cells from peripheral blood, and GM12878 

LCLs. 

 

The differences in PRF scores across loci arise because some GWAS associations occur 

near to genes in regions with strong epigenetic marks, whereas for others this is not the 

case. The narrow clustering of scores at some loci may reflect the fact that expression of 

most genes is not highly cell type-specific (GTEx Consortium 2015), and so some level of 
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regulatory activity is present across many cell types. Two loci illustrate these trends. Locus 

15q14 (Figure 3) overlaps an intronic region of the candidate autoimmune disease gene 

RASGRP1, whose expression is limited to certain tissues, and immune cell types occupy the 

top ranks by both maxPRF and weightedPRF score. In contrast, genes at the 13q14 locus 

are broadly expressed, and immune cell types are not among the top ranks. The top-ranked 

cell types at the locus do not have a clear functional grouping, and include umbilical vein 

endothelial cells, mesenchymal stem cell-derived chondrocytes, and neural progenitor cells. 

 

At many individual RA loci, various immune cell types were among the top ranks by both 

maxPRF and weightedPRF scores. Because the scores of related cell types are often very 

similar, it would be imprudent to conclude that the top-ranked cell type at a locus is 

necessarily the most biologically relevant. Noise in the individual assays underlying a 

variant’s PRF score could change the ranking of cell types at a locus. However, when there 

are many associated loci, we expect that truly relevant cell types will have higher 

weightedPRF or maxPRF scores on average.  

 

We sought to use information across all associated loci to more precisely identify disease-

relevant cell types. We explored two methods to do this: first, computing the mean maxPRF 

score across loci, and second, combining epigenome ranks across loci with robust rank 

aggregation. 

4.2.3 Ranking cell types by mean PRF score across loci 

A straightforward method to identify relevant cell types is to determine, for each epigenome, 

the mean maxPRF score across loci. Figure 4 shows this applied to summary statistics from 

six GWAS, using the WTCCC method at each locus to identify 95% credible set SNPs. For 

each GWAS, we ordered all epigenomes by the mean of their maxPRF scores across loci. 

Many of the high-scoring epigenomes reflected well-established enrichments in trait-specific 

cell types. For example, adult liver was the top epigenome for HDL cholesterol levels, 

followed by the HepG2 hepatocellular carcinoma cell line, and adipose nuclei. For RA and 

inflammatory bowel disease (IBD), the top 20 epigenomes were all immune cell types. For 

educational attainment, the top two cell types were ESC-derived neurons and fetal brain, 

suggesting a role for early neural development. These enrichments are concordant with 

those suggested based on candidate gene and expression analyses in the original GWAS 

analyses (de Lange et al. 2017; J. Z. Liu et al. 2015; Global Lipids Genetics Consortium et 

al. 2013; Okbay et al. 2016; Okada et al. 2014). 
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Figure 4: Ranking of epigenomes using the mean normalised maxPRF score across associated loci 
for six GWAS. The top six epigenomes are labeled for each GWAS, and epigenomes are ordered 
based on their mean scores. Points are coloured by epigenome tissue type. 

 

Applying the same calculation using the weightedPRF score gave highly similar, but not 

identical, enrichments to that obtained with maxPRF. Considering that epigenome maxPRF 

and weightedPRF scores were fairly well correlated across loci (Pearson r2 = 0.54 - 0.77), in 

subsequent analyses we used only the maxPRF score as a locus summarisation for 

simplicity. 
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Although examining mean PRF scores across loci is simple and clearly identifies relevant 

cell types among the top ranks, it offers no measure of statistical significance. For example, 

for schizophrenia (SCZ) the top epigenome is fetal brain, yet subsequent epigenomes ranked 

by mean score are somewhat surprising - foreskin melanocytes and adipose. Are any of these 

epigenomes enriched beyond chance levels? We next describe an alternative method of 

identifying trait-associated epigenomes that assigns statistical significance to the enrichment. 

4.2.4 Ranking cell types with robust rank aggregation 

As seen in Figure 3 above, both maxPRF and weightedPRF scores differ substantially 

between loci. Moreover, because biological mechanisms differ between loci, an epigenome 

that is globally relevant to the trait may not have a high score at every locus. Still at a subset 

of loci we expect the maxPRF score of a trait-relevant epigenome to be higher than for 

irrelevant epigenomes. A commonly used way to test for this kind of enrichment is to 

compare scores for a given set of variants against those of background sets of SNPs. 

However, there are several drawbacks to this approach. First, the background SNP sets 

need to be closely matched to to the focal SNPs on properties such as distance to gene, LD, 

and allele frequency, otherwise enrichment tests tend to show strong enrichment even 

where none is truly present (Trynka et al. 2015). Second, obtaining such background SNP 

sets is computationally intensive. Finally, it is sometimes impossible to obtain sufficient 

matched SNPs. 

 

We use an alternative approach to computing epigenome enrichments. We first rank 

epigenomes at each locus by their maxPRF scores, and then, using robust rank aggregation 

(Kolde et al. 2012), test whether some epigenomes have higher ranks across loci than 

expected by chance. Figure 5 shows the enrichment of epigenomes determined using this 

method for the six GWAS discussed previously. Notably, P values obtained from applying 

robust rank aggregation gave an ordering of epigenomes that was highly similar to that 

obtained based on the mean maxPRF score across loci for each trait. 

 

We also applied the robust rank aggregation method to GWAS of Crohn’s disease (CD) and 

ulcerative colitis (UC), which are related but distinct autoimmune diseases together 

described as inflammatory bowel disease (IBD). We found that while CD was associated 

almost exclusively with immune cell types, UC was strongly enriched for both gastrointestinal 

and immune cell types (Figure 6), an observation reported recently using stratified LD score 

regression (Finucane et al. 2015). 
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Figure 5: Enriched epigenomes identified by robust rank aggregation with maxPRF score for six 

GWAS. 

 

A caveat of our method is that we are not independently testing each epigenome for 

absolute enrichment of high scores among trait-associated variants. Rather, with robust rank 

aggregation we identify epigenomes that have higher scores relative to other epigenomes at 

associated loci. This approach has certain benefits and drawbacks. One benefit is that we 

avoid the need for background SNP sets, and the potential associated problems such as 

finding enrichment across all tests. A second benefit is interpretability: while it is possible for 

all cell types to be enriched for high PRF scores at trait-associated variants, due to the 



139 

 
Figure 6: Enriched epigenomes in GWAS of ulcerative colitis and Crohn’s disease. 

 

ubiquity of gene regulatory mechanisms, only the most relevant cell types can be enriched 

relative to others. However, a potential drawback is that by using ranks rather than absolute 

scores, we lose information at highly informative loci, and give equal weight to loci where all 

epigenomes have similar scores. Furthermore, because enrichment is computed relative to 

other epigenomes, the significance of each epigenome’s enrichment is at least somewhat 

influenced by the other epigenomes in the comparison. 

 

We compared cell types enrichments determined using PRF scores with stratified LD score 

regression (LDSC), a widely used alternative method.  Stratified LDSC determines cell types 

associated with GWAS traits by using summary statistics to estimate the fraction of 

heritability attributable to variants in specific annotations, relative to a background set of 

annotations. Cell type enrichments determined across five GWAS traits were highly 

concordant between the two methods (Figure 7, three traits shown). For HDL cholesterol, 

both methods reported liver as the cell type most enriched for associations. Similarly, for 

schizophrenia, fetal brain was the top cell type for both methods, although stratified LDSC 

highlighted primarily brain cell types as the most enriched, and PRF score enrichments were 

more diverse. Both methods also indicated that immune cell types were highly enriched for 

RA associations, but the top cell types differed: whereas PRF scores highlighted natural 

killer (NK) cells, stratified LDSC reported stimulated T-helper cells and T-regulatory cells as 

most enriched. Notably, the CD56 marker used to isolate NK cells may also include subsets 

of B and T cells, and so the PRF score result may indicate a general enrichment of multiple 

immune cell types. Since causal mechanisms and cell types have not yet been elucidated for 
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most loci associated with these traits, there is no benchmark for evaluating the performance 

of different methods. Differences between the methods may relate to the fact that stratified 

LDSC’s results are based on heritability, so will be influenced primarily by the strongest 

GWAS associations, whereas the PRF score method gives all associations equal weight. 

 

 
Figure 7: Comparison of the cell type enrichments discovered using PRF scores or stratified LD score 

regression (LDSC), across three GWAS traits: HDL cholesterol, rheumatoid arthritis, and 

schizophrenia. The log p value axes differ between traits, but are the same in each case for PRF 

scores and stratified LDSC. 
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4.3 Fine-mapping with PRF scores 
4.3.1 PRF scores are higher for trait-associated variants 

Fine-mapping causal variants is a distinct problem from identifying enriched cell types. 

Although we have shown that PRF scores at associated loci are higher in trait-relevant 

epigenomes, it could be that all variants at these loci tend to have more regulatory activity in 

these epigenomes. For PRF scores to be useful in fine-mapping, they must be higher for 

causal than for non-causal variants at the same loci. To confirm that this is the case, we 

applied Bayesian fine-mapping (Wellcome Trust Case Control Consortium et al. 2012) to 

each associated locus of five GWAS, with the assumption of a single causal variant per 

locus. For each trait, we selected a single epigenome from among those identified previously 

as enriched for that trait, and computed PRF scores using these epigenomes (Table 1). We 

excluded the GWAS for height because a wide variety of cell types are enriched at height 

loci, and because in a combined analysis the large number of height associations would 

dominate the results. 

 

GWAS Trait Selected epigenome 

Rheumatoid arthritis E041 - Primary T helper cells PMA-I stimulated 

Inflammatory bowel disease E046 - Primary natural killer cells from peripheral blood 

Schizophrenia E073 - Brain dorsolateral prefrontal cortex 

HDL cholesterol E066 - Adult liver 

Educational attainment E053 - Cortex derived primary cultured neurospheres 
 

Table 1: Selected epigenomes for fine-mapping in five GWAS. 

 

Across the five traits, PRF scores in trait-relevant epigenomes were higher for variants with 

higher statistical posterior probability of being causal (Figure 7a; p=2x10-21, linear regression, 

PRF scores higher by 2.4 for 1 unit PPA). This suggests that causal variants have higher 

PRF scores; however, such a pattern could also be observed if the loci where high-PPA 

variants are found differ systematically from other loci, such as by being closer to genes or 

having broader regulatory regions. If this were the case, then PRF scores for likely causal 

variants would be no higher than average PRF scores at the same loci. We therefore 

examined relative PRF scores obtained after subtracting the median PRF score among all 
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variants at each locus. Relative PRF scores were also significantly higher for variants with 

high PPA than for likely non-causal variants (Figure 7b; p = 6x10-33, linear regression), 

indicating that PRF scores contain information relevant to fine-mapping. 

 

  
 
Figure 7: Scatter plots with linear fits of the relationship between PRF scores and the posterior 

probability of association, across all loci of five GWAS. The shaded region represents the 95% 

confidence interval for the fit. For plotting purposes, points with PPA < 0.1 were downsampled.  

(a) PRF scores are higher for variants more likely to be causally associated with traits (linear 

regression, p = 2x10-21). (b) Relative PRF scores, computed at each locus by subtracting the median 

score, are also higher for variants more likely to be causal (p = 6x10-33). 

 

Although highly significant, the relationship between PRF score and variant PPA is very 

weak (Pearson r2=0.00023), implying that the power to discriminate likely causal variants 

from non-associated variants is poor. For eQTLs, gene-specific PRF scores could clearly 

discriminate likely causal variants from presumed non-causal variants (see Chapter 3, Figure 

17), based largely on the gene TSS distance annotation. For GWAS, we do not know the 

causal gene at a locus, and so we instead use the maximum PRF score at each variant for 

nearby genes. Fortunately, to be useful we do not need PRF scores to discriminate causal 

variants from among all variants, but only to discriminate causal variants from among 

credible set variants. 

 

The cell type-specificity of PRF scores enables identifying relevant cell types across GWAS 

loci, but it complicates fine-mapping, since for each locus we must select a relevant 

epigenome and compute the PRF scores we will use. An important question is whether this 

cell type specificity enhances fine-mapping performance, and whether any gain is sufficient 
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to justify the additional complexity. To evaluate this, we compared PRF scores for likely 

causal variants in relevant epigenomes with those in three epigenomes that seem unlikely to 

to be relevant for any of the traits considered: placenta, foreskin keratinocytes, and adipose-

derived mesenchymal stem cells. Considering only the 72 trait-associated loci with a likely 

causal variant (PPA > 0.5), and only the top 20 variants by statistical association at each 

locus, we compared the median relative PRF score for likely causal variants to the median 

relative PRF score of the remaining variants. In trait-relevant epigenomes this difference was 

much larger than in trait-irrelevant epigenomes (Figure 8), suggesting that using a more 

relevant cell type will aid fine-mapping. Importantly, by considering relative PRF scores this 

comparison addresses whether cell type-specific information is relevant for fine-mapping, 

and would not be affected if, for some loci, all variants had higher scores in trait-relevant 

epigenomes. The PRF score difference for likely causal variants in Figure 8 may be an 

underestimate of the value of using the “relevant” epigenome at a locus for two reasons: 

first, not all variants with PPA > 0.5 are causal; and second, here we have used a single 

epigenome across all loci for each trait, but we expect that different epigenomes may be 

most relevant at different loci. 

 

 
Figure 8: Bar plot of the median difference between PRF scores for variants with statistical PPA > 0.5 

and the top 20 variants by statistical association at each locus, computed across five GWAS either for 

trait-relevant epigenomes (noted in Table 1) or for 3 trait-irrelevant epigenomes. 

 

4.3.2 Fine-mapping individual loci 

The aim of integrating PRF scores with GWAS is to identify likely causal variants and genes 

at individual loci. To enable this application, we developed software and plotting tools that 
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integrate GWAS summary statistics with PRF scores, and display the results in a transparent 

manner. To illustrate how these tools can be used, and also to show the limitations of PRF 

score fine-mapping, we focus on examples of four individual loci. 

1. At the IL2RA locus association with RA, PRF scores strengthen support for the lead 

SNP, which is a likely causal variant. 

2. At the SMAD3 locus associated with IBD, PRF scores strongly support the SNP 

statistically ranked fourth; this likely causal SNP has been experimentally validated 

as altering SMAD3 expression and AP-1 binding. 

3. At the MEF2C locus associated with educational attainment, PRF scores fail to 

identify a likely causal SNP due to missing relevant genomic annotations, showing 

that manual examination of individual loci is important. 

4. At the BLK locus associated with RA, the causal SNP is missing from the set of 

variants considered, and PRF scores highlight an alternative SNP. This describes an 

underappreciated general problem of fine-mapping analyses which is general to all 

methods. 

Additional PRF score fine-mapping examples are included in the Appendix. 

 

PRF score fine-mapping for GWAS uses the same approach as we described for eQTLs to 

compute posterior association probabilities incorporating functional annotations (Chapter 3, 

Equation 5). For GWAS, this requires the assumption that the trait association is driven by a 

regulatory variant with similar genomic properties to those discovered in steady-state eQTL 

studies. Further, because we do not know the causal gene at each locus, we use the 

maxPRF score across nearby genes, rather than the gene-specific PRF score. As before, 

we assume that the association signal is driven by a single causal variant.  

 

We used PRF scores to fine-map 482 associated loci using summary statistics from five 

GWAS traits mentioned previously. At each locus we limited the set of variants considered to 

those with PPA > 0.001. Typically this included many variants not in the 95% credible set, 

and so it was possible for PRF scores to prioritise variants outside the credible set, thereby 

increasing the credible set size. 

4.3.2.1 IL2RA locus - strengthening support for the lead SNP 

We first consider an RA association near IL2RA (Figure 9), a gene with associations to 

multiple autoimmune diseases, and which is the target of the multiple sclerosis therapy 

Daclizumab (Bielekova et al. 2006).  
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Figure 9: PRF score fine-mapping plot of a rheumatoid arthritis GWAS association at the IL2RA locus 

using the epigenome E032-Primary B cells from peripheral blood. Variants with naive PPA > 0.001 

are shown; variants are numbered according to their statistical association, with number 1 being the 

most associated variant. Top panel: natural log of the approximate Bayes factor for each variant in the 

credible set. Second panel: naive PPA, determined with the WTCCC Bayesian method assuming a 

single causal variant. Third panel: PRF scores for credible set variants in the indicated epigenome. 

Last panel: functional PPA, computed by integrating association Bayes factors and PRF scores from 

the epigenome in panel three. 

 

The lead variant at the locus, rs706778, achieved a PPA of 0.45 considering statistical 

information alone, and this was increased to 0.81 when fine-mapping with PRF scores from 

the PMA-stimulated T-helper cell epigenome (Figure 9, bottom panel). This variant is located 

in a FANTOM enhancer, and its PRF score was boosted by presence in a DNase 

hypersensitivity peak, along with histone modifications H3K4me3, H3K27ac, and 

H3K36me3. In what follows, we refer to the PPA obtained from statistical information alone 

as the “naive PPA”, and to that incorporating functional priors from PRF scores as the 

“functional PPA”. It is noteworthy that the functional PPA of the lead variant was increased 

even though a number of other credible set SNPs have similarly high PRF scores. This is 

because the weaker statistical association of these SNPs (e.g. labels 8, 9, 10 in Figure 9) 

were not boosted sufficiently by their high PRF scores to give them a high functional PPA; in 

contrast, the lower PRF scores of more strongly associated variants (e.g. labels 2 - 7 in 



146 

Figure 9) reduced their functional PPA, thereby boosting confidence in the lead variant as 

being causal. 

 

A key strength of the PRF score model is that the annotation enrichments contributing to 

each variant’s score are transparent. These enrichments can be visualised in a bar plot of 

the top variants at each locus (Figure 10). Here we show a breakdown of PRF score 

enrichments for all variants among either the top six by statistical PPA or the top six by 

functional PPA. 

 

 
Figure 10: PRF score bar plot showing annotation contributions to the score for each variant in the 

epigenome E032-Primary B cells from peripheral blood. Annotation labels above zero contribute 

positively to the PRF score, whereas those below zero subtract from the PRF score. Many of these 

enrichments reflect the quantitative level of a given ChIP-seq annotation, and do not necessarily 

indicate a ChIP-seq peak overlapping the variant. 
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4.3.2.2 SMAD3 locus - a causal variant that is not the lead SNP 

 
 
Figure 11: PRF score fine-mapping of an IBD association at the SMAD3 locus using the epigenome 

E046-natural killer cells. 

 

A different pattern occurred at the SMAD3 locus in IBD (Figure 11). Here, high LD resulted in 

five SNPs having naive PPAs in the range 0.13 - 0.30. SMAD3, a strong candidate gene for 



148 

IBD, is an intracellular signal transducer and transcriptional modulator activated by TGF-β. 

Fine-mapping with PRF scores indicated that the fourth variant by statistical association, 

rs17293632, was a more plausible causal candidate than the other credible set variants, with 

a PPA of 0.80 using PRF scores from the primary natural killer cells epigenome. This variant 

is located in a FANTOM enhancer in the first intron of SMAD3, and its PRF score is boosted 

by high nucleotide conservation among mammals, as well as presence in a DNase 

hypersensitivity peak, along with histone modifications H3K4me3, H3K27ac, and 

H3K36me3. Other supporting evidence, not considered in the PRF score, is that rs17293632 

is located at a nearly invariant position of a JUND binding motif within an AP-1 ChIP-seq 

peak in K562 cells. Interestingly, although not the top SNP by statistical association in the 

IBD GWAS we used for fine-mapping (J. Z. Liu et al. 2015), this SNP was reported as the 

lead SNP in other IBD GWAS, and experimental data have shown that it is an eQTL for 

SMAD3 and has an allele-specific effect on AP-1 binding (Turner et al. 2016).  

 

PRF score fine-mapping requires us to use a specific epigenome; to understand the effect of 

this choice, we also performed fine-mapping at this locus using three other epigenomes: 

E041-PMA-stimulated Th cells, E030-neutrophils, and E029-monocytes. These gave similar 

results, although the quantitative scores differed slightly, and hence functional PPAs differed. 

For example, in all cases rs17293632 was preferred over the lead SNP, but its functional 

PPA varied from 0.45 in E041-PMA-stimulated Th cells to 0.93 in E030-neutrophils. Indeed, 

because SMAD3 is widely expressed, it is difficult to know which cell type is the most 

appropriate for fine-mapping. This example shows that PRF scores can be effective in 

prioritising likely causal variants from among a number of statistically-associated variants in 

strong LD. Also, related epigenomes give generally concordant results, but with some 

variation in the confidence assigned to different variants. 

4.3.2.3 MEF2C locus - failed fine-mapping due to a missing annotation 

The MEF2C locus associated with educational attainment illustrates how PRF scores can fail 

to highlight a likely causal variant (Figure 12). Here, the lead SNP obtained a naive PPA of 

0.975, while just seven other SNPs have PPA above 0.001. After PRF score fine-mapping, 

the credible set increased from a single SNP to 24 SNPs. At this locus, however, there are 

reasons to believe that the lead SNP is causal. 
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Figure 12: PRF score fine-mapping of an educational attainment association at the MEF2C locus 

using the epigenome E053−Cortex derived primary cultured neurospheres. 

 

The lead SNP, rs6882046, occurs at a moderately conserved position (GERP score 2.53) in 

the 5’ exon of the long noncoding RNA (lncRNA) gene LINC00461, within 50 bp of a 
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FANTOM-annotated TSS. When fine-mapping with epigenome E053−Cortex derived 

primary cultured neurospheres, this variant received a fairly low PRF score of 0.4. Despite 

modest enrichments for DNase hypersensitivity and histone marks, it received no annotation 

enrichment for TSS distance, since lncRNAs were not included in the PRF score model, and 

the nearest protein-coding TSS is 230 kb away for MEF2C. Some low-ranked SNPs at the 

locus received higher PRF scores due to being nearer to MEF2C. As a result, support for the 

lead SNP was weakened, and its functional PPA reduced to 0.62. One of the highly ranked 

SNPs, rs61104616, occurs at a highly conserved nucleotide (GERP score 4.44) in the first 

intron of MEF2C, with modest levels of DNase hypersensitivity and histone modifications. 

 

Although the alternative variants cannot be assumed to be non-causal, it is noteworthy that if 

a significant enrichment for TSS distance were given to the lead SNP, its PPA would have 

remained very high. Still, it’s not clear that lncRNAs should generally be treated as genes, 

since the fraction of lncRNAs which are functional is unknown. The GENCODE release we 

used (v19) annotates ~14,000 lncRNA genes, and other sources have estimated their 

number at more than 50,000 (Iyer et al. 2015). Whereas the majority of protein-coding genes 

show high sequence conservation and are presumed to be functional, the same is not true of 

lncRNAs (Palazzo and Lee 2015). In addition, expression-altering variants are strongly 

enriched towards the TSSes of protein-coding genes, but this has not been established for 

lncRNAs. For these reasons, we did not include lncRNAs as genes in the PRF score model. 

 

The MEF2C locus illustrates that when factors missing from the PRF score model are 

relevant at a locus, the model can reduce confidence in variants that are likely to be causal. 

Because TSS distance is a heavily weighted annotation for PRF scores, missing gene 

annotations can have an especially large effect. This also reflects a general caveat that must 

be considered with any fine-mapping method using functional genomic data - annotation 

resources are neither complete nor perfectly accurate. As annotation and model training 

datasets improve in the future, integrative models such as PRF scores can be improved to 

more often identify all relevant information at each locus. 

4.3.2.4 BLK locus - failed fine-mapping due to a missing variant 

The BLK locus illustrates what can happen with PRF score fine-mapping when the causal 

variant is not among those considered. The most recent RA GWAS (Okada et al. 2014) used 

genotypes imputed to the 1000 genomes phase 1 reference panel. Newer data from phase 3 

of the 1000 genomes project include an indel variant, rs558245864, which was absent from 
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phase 1, and which is in high LD with the reported lead SNP (European R2 > 0.95). Recent 

work from our group (Kumasaka et al. in prep) showed that rs558245864 is a chromatin 

accessibility QTL in lymphoblastoid cells, and moreover incorporating Mendelian 

randomisation to evaluate the causal relationship between variants in ATAC-seq peaks 

showed that this variant is far more likely to causally influence chromatin accessibility. 

Finally, CRISPR-Cas9 allelic replacement showed that this variant influences both chromatin 

accessibility in the region and expression of BLK. 

 

 
Figure 13: PRF score fine-mapping of a rheumatoid arthritis association at the BLK locus using the 

epigenome E041-PMA-I-stimulated T helper cells. The position of rs558245864 is outlined in red. The 

bottom panel shows functional PPAs computed when rs558245864 is included, whereas the second-

to-bottom panel shows functional PPAs computed when rs558245864 is absent. 

 

Figure 13 shows fine-mapping with PRF scores, either with or without rs558245864. When 

this variant is included and assumed to have an association Bayes Factor equal to the 

reported lead SNP, then it receives the highest PPA among associated variants (Table 2). 
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When this variant is absent, then SNP rs922483 is favoured, due to its altering a conserved 

nucleotide in the 5’ UTR of BLK, with additional enrichments from DNase hypersensitivity 

and histone modifications. Although we do not have specific evidence that rs922483 is non-

causal, and indeed there could be more than one causal variant in high LD, a more 

parsimonious explanation is that rs558245864 is the single causal variant for the 

association. 
 

Variant ID GWAS p value GWAS rank fPPA fPPA (rs558245864 incl.) 

rs558245864 4.80E-12** ** ** 0.325 

rs2736337 4.80E-12 1 0.069 0.047 

rs2736338 4.80E-12 2 0.069 0.047 

rs2736336 5.70E-12 3 0.058 0.039 

rs2061831 1.40E-11 4 0.070 0.047 

rs2618444 1.40E-11 5 0.017 0.011 

rs2409780 1.60E-11 6 0.040 0.027 

rs2736340 2.00E-11 7 0.019 0.013 

rs1478901 2.20E-11 8 0.098 0.067 

rs13277113 2.50E-11 9 0.179 0.121 

rs9693589 2.80E-11 10 0.037 0.025 

rs922483 6.90E-11 11 0.340 0.230 
 

Table 2: PPAs of top variants at the BLK locus, either when rs558245864 is included or absent. 

**rs558245864 is assumed to have a p value equivalent to the lead SNP. 

 

When applying any fine-mapping method, it should therefore be kept in mind that the causal 

variant may not be in the set considered at all. Although genotyping and imputation of SNPs 

has improved greatly in accuracy and sensitivity, the sensitivity at which indels and structural 

variants are detected is still far lower. 

4.3.3 Changes to credible sets 

Only at a minority of GWAS loci can the association signal be fine-mapped to a single likely 

causal variant. However, at many loci the size of the credible set can be reduced, as 

described for a number of fine-mapping methods (Chen et al. 2015; Y. Li and Kellis 2016; 

Kichaev et al. 2014), and this can inform the selection of variants for more detailed 

experimental investigation. 

 

To explore the effects of PRF score fine-mapping across traits and across loci, we examined 

the size of 95% credible sets before and after fine-mapping for the five traits considered 
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previously, using 317 associations with a minimum p value below 1x10-8 (Figure 14). The 

median credible set size was reduced from 18 to 15, with 214 credible sets becoming 

smaller, 50 staying the same size, and 53 becoming larger. This reduction in average 

credible set size is similar to that reported by previous methods: PAINTOR achieved an 

average reduction from 12.3 to 10.4 variants in 90% credible sets from simulated data when 

using priors based on functional annotations (Kichaev et al. 2014). 

 

 
Figure 14: Credible set sizes are reduced when applying PRF score fine-mapping. (a) Violin plot of 

95% credible set sizes across all loci either using statistical fine-mapping (“naive”) or PRF score fine-

mapping. Lines show the change in credible set size for each associated locus, with different loci 

represented by different line colours. (b) Quantiles of the distribution of credible set sizes for naive 

and PRF score fine-mapping. Only quantiles up to the 90th percentile are shown, since credible sets 

at the tail of the distribution are very large. 

 

We note that it is possible for credible set size to be decreased even when PRF scores 

support a non-causal variant. Because of LD, many non-causal variants will have some level 

of statistical association with the trait. If any one of these variants happens to have a high 

PRF score, its functional PPA may be boosted sufficiently to “crowd out” other variants from 

the credible set. For example, a case where this may be a particular problem is when a 

variant at the promoter of a gene happens to be in LD with the causal variant; because in 

general we do not know the causal gene, such a variant would usually have a high PRF 

score. To explore the extent to which this can occur, we performed the same analysis as 

above, but with PRF scores permuted at each locus among all variants with naive PPA > 

0.001. Comparing the results of fine-mapping with true versus permuted PRF scores 

revealed that credible set sizes were reduced to a similar extent with permuted scores 

(Figure 15). 
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Figure 15: (a) Density plot of credible set sizes from fine-mapping 317 trait-associated loci using 
either true PRF scores or PRF scores permuted among variants with naive PPA > 0.001 at each 
locus, compared with credible sets from naive statistical fine-mapping. Using both true scores and 
permuted scores reduced credible set sizes by a similar amount (blue and green distributions are 
shifted to the left). (b,c) Violin plot of credible set size changes when fine-mapping with PRF scores 
(b), or fine-mapping with permuted PRF scores (c). 

 

The reduction in credible set sizes with permuted PRF scores did not hold when considering 

associations with a “confident” lead variant having naive PPA > 0.5. Here, whereas true PRF 

scores slightly reduced credible sets or left them unchanged, permuted PRF scores slightly 

increased them (Figure 16). To check whether these patterns were dependent on the 

particular distribution of scores, we repeated the analysis using randomly generated PRF 

scores drawn from a normal distribution with mean and standard deviation equal to that of 

PRF scores. The results were concordant with those from the permuted data, with credible 
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set sizes slightly increased for associations with a confident lead variant, and considerably 

reduced for the remainder. These observations indicate that reduction in credible set size is 

not a good indicator of whether a fine-mapping method is accurate, either at a single locus or 

globally. 

 

 

 
Figure 16: Fine-mapping of 62 loci with a lead variant having naïve PPA > 0.5, using either true or 

permuted PRF scores. (a) Density plot of credible set sizes from fine-mapping. True PRF scores give 

a slightly higher density of small credible sets, while permuted PRF scores have a slightly higher 

density at larger credible sets. (b,c) Violin plots of credible set size changes when fine-mapping with 

true PRF scores (b), or with permuted PRF scores (c). Only loci where the credible set size changed 

are shown. Credible set sizes remained similar or were slightly reduced with true PRF scores, but 

were slightly increased with permuted PRF scores. 
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4.3.4 Changes to implicated genes 

A key goal of GWAS is to discover genes whose modulation influences risk for disease, and 

which are therefore potential therapeutic targets. One approach is to assume that the 

nearest gene to a lead variant causally influences disease risk. A handful of high-profile 

examples have demonstrated that this is not always true, and that long-distance gene 

regulatory variants can influence complex traits (Claussnitzer et al. 2015; Guenther et al. 

2014; Musunuru et al. 2010). With fine-mapping we hope to discover not only causal variants 

but also the genes they regulate. 

 

To explore the effect of PRF score fine-mapping on implicated genes, we examined the 

distribution of lead variants around genes, determined by either naive PPA or functional PPA 

(Figure 17a). Across 1,002 associations for the six GWAS traits, most naive lead variants 

were located within a gene body (552, 55%), including its introns; for functional lead variants 

this was even more often the case (663, 66%). Among lead variants not within genes, 

functional lead variants tended to be closer to the nearest gene. However, the nearest gene 

to the lead variant was changed in only 170 cases, despite the fact that for 595 of the 

associations the lead variant was changed by fine-mapping. One reason for this is that two 

thirds of the time a lead variant was changed, it was by less than 50 kb (Figure 17b). 

 

PRF scores are implicitly tied to specific genes, which is particularly useful for fine-mapping 

eQTLs, where the regulated gene is known. When fine-mapping GWAS, the PRF score used 

is the maximum score for a variant across nearby genes. This most often ends up being the 

score for the closest gene, because distance to gene TSS is the most heavily weighted 

annotation, and few other annotations specifically tie a variant to a gene. However, there are 

two ways in which PRF scores may implicate an alternative gene at a locus. First, the 

functional lead variant may be located at the promoter of an alternative gene; this gene 

would be a strong candidate to be causally implicated in the association. Second, in 

substantial minority of cases, the nearest gene is not expressed in the epigenome used to 

compute PRF scores, and so the PRF score refers to the nearest expressed gene. 
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Figure 17: How implicated genes are changed by PRF score fine-mapping for 1,002 GWAS 

associations across six traits. (a) Density plot of distance to the nearest gene for lead variants either 

pre- or post-fine-mapping. (b) Density plot of the distance from the functional lead variant to the naive 

lead variant, for 595 cases where the lead variant was changed by fine-mapping. 67% of lead variants 

were within 50 kb of each other. (c,d) Distance to nearest gene across quantiles of the distribution (c) 

or as a violin plot (d) showing the change in distance for the 595 associations with changed lead 

variants. Functional lead variants were within genes more often than naive lead variants, and the 

remainder were also closer to the nearest gene. 

 

An example of the former case occurs at an IBD-associated locus on chromosome 1. Here, 

the naive lead SNP (rs7523335) is nearly 100 kb from ERFFI1, but the functional lead SNP 

(rs17523802) is at the promoter of PARK7, in a region of dense transcription factor binding. 

Due to extensive LD in the region, rs17523802 was 18th-ranked by association statistic, yet 

its naive PPA (0.02) was only slightly lower than that of the lead SNP (0.035); after fine-

mapping, the functional PPA of rs17523802 was boosted to 0.59 (Figure 18). Additional 

evidence supporting rs17523802 as a candidate causal variant is that it is a stronger eQTL 



158 

for PARK7 in GTEx whole blood than rs7523335 is for PARK7 in any tissue. PARK7 is a 

multifunctional protein that translocates between the mitochondrion, cytoplasm and nucleus 

in response to oxidative stress. While mutations in PARK7 have long been associated with 

familial Parkinson’s disease, recent studies suggest that it has roles in inflammation and T 

cell migration (W. Liu et al. 2015; Ashley et al. 2016; Jung et al. 2014), functions with 

relevance to IBD. 

 

In 144 cases the nearest gene to the lead functional variant differed from the gene 

associated with the variant’s PRF score. In nearly all cases this occurred because the 

nearest gene was not expressed in the epigenome used to compute PRF scores. Although 

in some cases the lack of a gene’s expression may be informative, such situations need to 

be interpreted by looking at fine-mapping results using more than one epigenome. It is 

possible that the causal gene at a locus is simply not expressed in some cell types selected 

for PRF score fine-mapping. 

 

The gene-specific nature of PRF scores might be a larger benefit if more annotations that 

inform on long-range genomic interactions were included in the model. For example, a distal 

gene could potentially be prioritized if Hi-C data (or promoter-capture Hi-C) indicated that 

GWAS-associated SNPs located in an enhancer had high contact frequency with the distal 

gene’s promoter. These data were not included in the PRF score model for two reasons. 

First, an initial attempt at including data from the highest-resolution Hi-C experiment to date 

(Rao et al. 2014) did not improve PRF score predictions for the Geuvadis eQTLs, despite 

being a good match for the cell type used in Geuvadis. Potential reasons for this are that Hi-

C data may require special handling to extract relevant signal, or that the data simply were 

not yet high enough resolution. Second, Hi-C data are not yet broadly available across cell 

types. However, this may change in the future as consortia such as BLUEPRINT produce 

high-quality promoter-capture Hi-C data across multiple cell types (Javierre et al. 2016). 

 



159 

 
Figure 18: Fine-mapping an IBD association at the PARK7-ERFFI1 locus localises a candidate 

causal variant at the promoter of PARK7. 
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4.4 Discussion 
We have described a novel method applicable to two challenges in post-GWAS analysis: 

identifying associated cell types and fine-mapping causal variants at non-coding GWAS loci. 

Previous methods that identify associated cell types have primarily focused on individual 

annotations, such as H3K4me3 (EpiGWAS) (Trynka et al. 2013), H3K27ac (PICS) (Farh et 

al. 2015), or DNase hypersensitivity (FORGE) (Dunham et al. 2015). Other methods, such 

as fgwas (J. Pickrell 2013) (upon which PRF scores are based), GARFIELD (Iotchkova et al. 

2016), and stratified LD score regression (Finucane et al. 2015) allow any individual 

annotation to be used, but do not integrate these together. By using PRF scores, we 

automatically integrate a large set of cell type-specific annotations for each of 119 

epigenomes. 

 

There are advantages and disadvantages to integrating multiple annotations to determine 

cell type enrichments for a GWAS trait. An expected benefit is that cell type associations 

should be more accurate, because causal variants that appear in different cell type-specific 

annotations are incorporated into a single enrichment test. Furthermore, the integration of 

multiple annotations should reduce noise in comparison with enrichment from a single 

assay. Across five GWAS traits, we observed cell type enrichments consistent with prior 

knowledge of relevant cell types. However, a benefit of methods that test annotations 

individually is that the enrichment seen using one annotation can be “validated” if other 

annotations from the same cell type give a similar result. Because PRF scores are based 

exclusively on Roadmap Epigenomic annotations, the only comparable validation is by 

observing whether related cell types are also enriched. In addition, it is not straightforward to 

extend PRF scores beyond the Roadmap epigenomes, because the same set of annotations 

would be needed in any additional cell types. 

 

One advantage of using PRF scores to detect cell type enrichments is that no LD reference 

panel is needed. Methods that require knowledge of LD, such as EpiGWAS, PICS, 

GARFIELD, and stratified LD score regression, depend upon there being a good match 

between the reference panel and the study population. However, unlike these methods, PRF 

score cell type enrichment depends on full summary statistics from well-imputed data, since 

we assume that the causal variant is present among those associated at the locus. 

 

Our method for determining cell type enrichments integrates naturally with subsequent fine-

mapping. Enrichment of an epigenome’s PRF scores directly indicates that across multiple 

loci, there is a correspondence between high PRF scores and credible set variants. 
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Epigenomes can also be ranked at individual loci, and it is possible to select different 

epigenomes for fine-mapping different loci. A limitation of our method is that because our cell 

type enrichments are based on associated loci only, we may be missing useful genome-wide 

signal from sub-threshold associations. A potentially interesting alternative that we have not 

yet explored would be to use the genome-wide method stratified LD score regression with 

each epigenome’s PRF scores as an annotation input. 

 

Our application of PRF scores to fine-mapping is distinct from prior methods that incorporate 

functional annotations. First, most such methods estimate annotation enrichments directly 

from GWAS data (Y. Li and Kellis 2016; J. Pickrell 2013; Kichaev et al. 2014). Because the 

accuracy of enrichment estimates can be limited by the number of GWAS associations, one 

of our motivations for developing PRF scores was to leverage the much larger number of 

eQTL associations. PRF scores therefore include accurate annotation enrichments, and are 

suitable for loci where altered gene regulation is a suspected mechanisms for the 

association. Since most GWAS associations do not appear to be explained by coding 

associations, this includes most GWAS loci. 

 

PRF score fine-mapping rests on an assumption that variants influencing complex traits 

have similar genomic properties to those influencing steady-state gene expression. This 

assumption is supported by the observation that both GWAS and eQTL associations are 

enriched in open chromatin, in enhancer regions, and near genes. However, it is possible 

that these enrichments differ quantitatively. Because eQTLs are tied to specific genes, we 

have a good estimate of the distribution of causal gene regulatory variants around genes; for 

complex traits, this is not the case. For example, eQTLs are highly enriched at gene 

promoters, and it may be that complex trait variants occur more often in elements distal to 

the regulated genes. It’s also possible that the gene-regulatory effects of some complex trait 

variants occur only in response to specific stimuli or contexts, and would not be observed in 

steady-state eQTL studies such as the one PRF scores are based on. Studies are beginning 

to catalogue stimulation-specific eQTLs, and these have uncovered additional disease 

overlaps not seen in previous eQTL maps (Fairfax et al. 2014; M. N. Lee et al. 2014). 

 

A limitation of our fine-mapping approach is that we assume there is a single causal variant 

at each locus. Some other methods that integrate functional annotation, such as PAINTOR 

(Kichaev et al. 2014) and RiVIERA-MT (Y. Li and Kellis 2016), allow for multiple causal 

variants, with an ensuing increased cost in computing time. Although we have not done so 

here, we note that PRF score fine-mapping could be applied separately to the p values from 

multiple independent signals determined by conditional analyses at a locus. 
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We have discussed four examples of PRF score fine-mapping for individual loci, highlighting 

both successes and failures. Each prioritized variant’s PRF score can be broken down into 

the contribution from individual annotations. This allows investigators to evaluate the 

information provided by PRF scores in the context of prior biological knowledge, such as 

which genes are implicated at a locus, as well as variant features not included in the model, 

such as changes to coding sequence, chromosome conformation, or proximity to 

transcription factor binding sites, non-coding RNAs, or splice sites. 

 

One metric that has been frequently referenced as an indicator of fine-mapping performance 

is the average reduction in credible set size. When evaluating this metric for PRF scores we 

compared our results with permuted scores. Surprisingly, fine-mapping with permuted 

scores resulted in a similar reduction in credible set size as when true scores were used. A 

potential explanation for this is that in some cases the PRF score Bayesian priors overwhelm 

the association statistics. In our example this is unlikely because we only selected GWAS 

loci with a lead SNP p < 10-8; PRF scores tend to vary by at most 8 units of (natural) log-

likelihood, whereas the statistical association at such loci varies over at least 18 units of log-

likelihood. It should be kept in mind, however, that the weaker the statistical association, the 

greater an effect variant priors can have in general. Another plausible explanation for 

spurious credible set size reduction is that reweighted variants “crowd out” other credible set 

variants. When a locus has many variants in high LD, the credible set will be large. Applying 

any non-uniform prior will boost some variant posterior probabilities, and this will necessarily 

crowd out other variants from the credible set. The extent to which this crowding out occurs 

should depend on the distribution of priors; strongly peaked priors, even if completely 

random, will lead to individual variants being selected at the expense of others, reducing the 

credible set size. Because many fine-mapping methods integrate prior probabilities with 

statistical associations, much like we have done with PRF scores, we believe this reflects a 

general unreliability of credible set size as an indicator of fine-mapping performance. 

 

How should fine-mapping performance then be determined? Simulations can provide a set 

of “known” causal and non-causal variants to assess performance against, but this may not 

reflect performance on real data. The ideal metric would be comparison against a set of 

known causal variants already fine-mapped from GWAS data, and which have experimental 

validation. Although the number of such cases to date is small, it is growing, and progress is 

likely to accelerate with the widespread use of CRISPR-Cas9 to demonstrate molecular 

effects of alleles in human cell lines. The application of gene editing to dissect complex trait 

associations depends on there being a small set of variants to consider, particularly if allelic 

replacement is used to provide the highest-quality evidence for individual causal variants. 
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With thousands of GWAS associations whose causal mechanisms remain to be discovered, 

statistical and epigenomic fine-mapping are essential to broaden the number of loci where 

experimental follow-up is feasible. 

4.5 Methods 
R source code for identifying cell type enrichments and doing PRF score fine-mapping are 

available at https://github.com/Jeremy37/prfcalc. 

Differences in epigenome mean PRF score 

To determine global differences in epigenome mean PRF scores, we computed PRF scores 

for 288,091 positions spaced every 10 kb along the human genome in each of the 119 

epigenomes, and determined the mean of these for each epigenome. To identify factors 

driving the differences, we determined the annotation contributions for 2,881 PRF scores at 

positions spaced every 1 Mb along the human genome. For each annotation we determined 

the mean annotation contribution to PRF scores in each epigenome, and correlated these 

values with the mean PRF score across epigenomes. Five annotations showed correlation r2 

above 0.1; these were H3K4me3, H3K27ac, H3K36me3, H3K4me1, and 18.EnhAc. These 

five annotations also showed strong correlations amongst each other. 

GWAS summary statistics and locus definitions 

We downloaded summary statistics for six GWAS from the following URLs: 

 

GWAS File / URL 

RA File: RA_GWASmeta_European_v2.txt.gz 
URL: http://plaza.umin.ac.jp/~yokada/datasource/software.htm 

Height File: GIANT_HEIGHT_Wood_et_al_2014_publicrelease_HapMapCeuFreq.txt.gz 
URL: http://portals.broadinstitute.org/collaboration/giant/index.php 

IBD File:ftp.sanger.ac.uk/pub/consortia/ibdgenetics/iibdgc-trans-ancestry-filtered-
summary-stats.tgz 

HDL cholesterol File: jointGwasMc_HDL.txt.gz 
URL: http://www.sph.umich.edu/csg/abecasis/public/lipids2013/ 

Schizophrenia File: ckqny.scz2snpres.gz 
URL: http://www.med.unc.edu/pgc/results-and-downloads 

Educational 
attainment 

File: EduYears_Main.txt.gz 
URL: https://www.thessgac.org/data 
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For each GWAS we either downloaded a file listing the associated loci or extracted these 

details from supplementary tables. For consistency across GWAS, we defined the 

associated regions as a window of +/- 200 kb around the lead SNP position. Because some 

regions overlapped, and PRF scores assume a single causal variant, we removed one 

region from each pair of overlapping regions until there were no overlaps. This left the a total 

of 1,002 regions across the six GWAS. 

Correlation of weightedPRF and maxPRF scores 

To determine consistency between weightedPRF and maxPRF scores, for each GWAS we 

determined the weightedPRF and maxPRF for all epigenomes at each locus. For each 

GWAS, we then computed the correlation of maxPRF and weightedPRF scores across loci 

and epigenomes. The correlation R2 of maxPRF and weighted PRF for different GWAS 

ranged from 0.54 for IBD to 0.77 for EduYears. 

Comparing PRF scores in trait-relevant and non-relevant epigenomes 

To evaluate the utility of using PRF scores from likely trait-relevant cell types, we used the 

72 loci across the five GWAS (height excluded) where a single variant had naive PPA > 0.5. 

We arbitrarily chose three epigenomes (placenta, foreskin keratinocytes, and adipose-

derived MSCs) that seemed unlikely to be relevant to any of the GWAS traits. For each locus 

we calculated relativePRF scores by subtracting the median score at the locus, and then 

determined the median relativePRF score among the likely causal variants  (PPA > 0.5) and 

separately among the remaining variants. We plotted in Figure 8 the difference between 

these two values when a trait-relevant epigenome was used for each GWAS, or when each 

of the three less relevant epigenomes was used. 

Fine-mapping with PRF scores 

To perform fine-mapping, we first computed approximate Bayes Factors as described in 

Chapter 3, and used the method of fgwas to determine the PPA for each variant. We 

determined the 95% credible set of variants, and then removed variants with PPA < 0.001. 

We next computed functional PPAs using Ch. 3 Equation 5, where the PRF score is the xi 

value from Ch. 3 Equation 2. For plotting, we determined the set of variants representing the 

top 5 by naive PPA and the top 5 by functional PPA; these are highlighted with coloured 

points, are numbered by their statistical association rank, and have annotation bar plots 

shown. We manually examined many plots across the five GWAS to select four loci that 

represented different scenarios encountered in fine-mapping. 
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Changes to implicated genes 

For either naive lead SNPs or functional lead SNPs, we used bedtools closest to determine 

the distance of SNPs to the nearest gene, defining the gene body as the outermost positions 

of Gencode v19 annotations for coding regions or UTRs of the gene. Thereby, variants in an 

intron of a gene had a distance of zero. 

 

Comparison with stratified LDSC 

We extracted the cell type associations for stratified LDSC (Finucane et al. 2015) from their 

supplementary table 8, including log10 P value, cell type, and mark. We assigned cell types 

to epigenome groups in the same way as for PRF scores. We plotted the uncorrected log10 

P values for each method in Figure 7 for SCZ, RA, and HDL, and labeled the top 6 cell 

types. Because stratified LDSC uses individual annotations, some cell types appear multiple 

times based on different histone marks or separate assays for the same mark. 

4.6 Appendix - PRF fine-mapping at additional 
loci 

REL locus - an RA regulatory variant that is not the lead SNP 
At the REL locus associated with RA, high LD results in about ten SNPs having statistical 

PPAs in the range 0.05 - 0.17. However, PRF score fine-mapping using the epigenome 

E116-GM12878 LCLs strongly supports SNP #2 (Figure A1), boosting its PPA from 0.13 to 

0.77. The lead SNP at the locus, rs34695944, is located in an intron of the gene REL, a 

strong candidate gene for RA due to its involvement in inflammation, immunity, and 

proliferation of B lymphocytes via a complex with NFkB. This SNP has low levels of histone 

modifications H3K36me3, H3K27ac, and H3K4me3, which each contribute modestly to its 

PRF score of 6.2; however, it is not in a distinct peak for any of these marks. In contrast, 

SNP #2, rs67574266, has a PRF score of 8.3 due to its location at a conserved nucleotide in 

the 5’ UTR of REL, in peaks of DNase hypersensitivity, H3K4me3, and H3K27ac. This SNP 

is located in a CTCF peak, and alters an invariant position of the CTCF binding motif. 

Surprisingly, the SNP is not detected as an eQTL for REL in GTEx, although it is a weak 

eQTL for the nearby gene PUS10 in a handful of tissues. 
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Figure A1: PRF score fine-mapping plots at the RA-associated REL locus. 
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SH2B3 locus - a nonsynonymous SNP for RA 

A weak association for rheumatoid arthritis at 12q24 covers a large number of genes, with 

the association peak overlapping SH2B3 and ATXN2. SH2B3 is a likely gene to mediate the 

association, since it plays a critical role in hematopoiesis; in contrast, mutations of ATXN2 

are associated with spinocerebellar ataxia type 2, a neuromuscular and neurodegenerative 

disorder. The lead SNP is 10 kb upstream of SH2B3, but PRF scores strongly prioritize the 

second most-associated SNP, rs3184504, as likely causal, as it overlaps the coding portion 

of the gene with moderate levels of multiple histone modifications. Notably, this SNP is 

nonsynonymous, and therefore the change in coding sequence is more likely to be the 

cause for the association than changes to gene expression. This SNP is also the lead SNP 

for a large number of traits, including blood cell traits and other autoimmune disorders, 

further supporting it as a likely causal variant. This is one example among a number of 

others where coding variants receive a high PRF score, and are thereby prioritized as 

potentially causal. While PRF scores are not intended for use at loci with likely causal coding 

variants, they can potentially still provide useful information to investigators. 
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Figure A2: PRF score fine-mapping plots at the RA-associated SH2B3 locus. 
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SLC22A4 locus - a possible regulatory SNP for IBD 

At the SLC22A4 locus associated with IBD, a number of SNPs in high LD receive modest 

PPAs when only statistical information is used. SLC22A4 is a well-established risk gene for 

Crohn’s disease (Peltekova et al. 2004). PRF scores highlight the lead SNP, rs35260072, as 

by far the most likely to be causal, as it occurs in many epigenetic marks in the first intron of 

SLC22A4. This SNP also overlaps a region of dense TF binding upstream of an alternative 

promoter of SLC22A4, and is predicted by centisnp to alter TF binding. Notably, there is a 

nonsynonymous SNP in SLC22A4, rs1050152, which is in high LD, and which should also 

be considered a strong candidate to be causal for the association.  
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Figure A3: PRF score fine-mapping plot at the IBD-associated SLC22A4 locus. 
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5 Conclusions 
In this thesis I have taken two distinct approaches to using molecular QTLs to understand 

complex trait genetics. In Chapter 2, I generated a map of eQTLs and caQTLs in iPSC-

derived sensory neurons, and examined the overlap between these QTLs and the GWAS 

catalog. In Chapters 3 and 4, I used a large-scale public eQTL dataset to build the PRF 

scores model, which provides genome-wide scores of cell type-specific regulatory potential 

that can be used for fine-mapping at GWAS loci. These studies have focused on the goal of 

identifying causal variants and genes for complex traits, but have led to different insights into 

the challenges and opportunities for doing so. Many of my key results relate to how these 

model systems and tools can be effectively used or improved in the future. 

5.1 Mapping QTLs and causal alleles in iPSC-
derived cells 

IPSC-derived cells are useful model systems for a number of reasons: they provide a 

renewable supply of specific cell types, thereby allowing multiple molecular assays to be 

performed; they are genetically matched to a specific donor; and they can be genetically 

engineered with CRISPR-Cas9 to investigate the causal effects of individual alleles. A 

challenge to their use is that the differentiated cells often appear immature, and so may not 

fully recapitulate the in vivo cells they are meant to model. Through a detailed analysis of the 

transcriptome in iPSC-derived sensory neurons, I encountered a second challenge: a 

fraction of differentiated cells appeared to arrive at a different cell state, being clearly non-

neuronal. This heterogeneity, which varied across differentiations, presented a problem for 

QTL mapping, since it introduced additional, non-genetic variability in gene expression. More 

concerning was that variability was especially high for genes relating to neuronal 

differentiation and function. I explored both a standard linear model for QTL mapping and a 

model that incorporates allele-specific information. Because allele-specific signal is internally 

controlled, this model improved power across all genes, but especially so for highly variable 

genes. 

 

To explore potential sources of differentiation variability, I compared metadata and 

transcriptomes between iPSCs and the sensory neurons derived from them. This led to the 

interesting observation that iPSCs grown in E8 medium differentiated to neurons more 

efficiently than iPSCs grown on feeder cells. Differential gene expression between these 

iPSC lines suggested that the cell culture differences impacted expression of pathways 

involved in suppressing neuronal differentiation, such as Wnt and TGF-β signalling. To a 
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certain extent, the iPSC culture conditions can be considered as an extended part of the 

differentiation protocol for iPSC-derived cells. Because iPSCs are now available from many 

cell banks, this suggests that in future studies researchers should examine carefully how 

factors relating to the iPSC lines used may influence the results. For example, it is not 

sufficient that treatment and control iPSC lines be isogenic - they should also have identical 

culture conditions for the results in differentiated cells to be comparable.   

 

Epigenetic memory is another factor that may have contributed to heterogeneity across 

sensory neuron differentiations. The HIPSCI cell lines used were reprogrammed from 

fibroblasts derived from skin punch biopsies. Although all iPSC lines were pluripotent, as 

determined by differentiation to cell types of the three embryonic germ layers, some iPSC 

lines may have retained epigenetic marks that facilitated differentiation to a fibroblast-like cell 

fate, and the degree of epigenetic memory could differ across cell lines. Notably, the 

contaminating cells in sensory neuron cultures had characteristics of fibroblast gene 

expression, yet also had similarity with DRG expression. It is possible that, because 

differentiation timelines were kept short to use lab resources effectively, the cells simply did 

not have sufficient time to mature. Another possibility, suggested by Trapnell and 

colleagues, is that during directed differentiation, some cells fail to choose the desired 

differentiation path and thereby arrive at aberrant “dead end” cell fates (Cacchiarelli et al. 

2017). The possibility of epigenetic memory has led some to suggest that iPSCs should 

have extensive epigenomic screening before being used for genome editing or differentiation 

(Grzybek et al. 2017). However, there remains debate on whether epigenetic memory in 

iPSCs is an important or a minor factor relative to other influences (Burrows et al. 2016). 

Since all HIPSCI lines had assays of global DNA methylation, it would be possible to 

investigate whether epigenetic marks at regulators of fibroblast identity are maintained in the 

iPSCs, and whether these correlate with sensory neuron differentiation outcomes. 

 

One solution to the problem of heterogeneity in iPSC-derived cells is to improve 

differentiation protocols. This is not straightforward, because many permutations are 

possible for the growth factors and inhibitors used, as well as for the timing and duration of 

their addition. Single-cell sequencing at specific time points during differentiation is likely to 

be highly informative, as it can identify factors that appear to be responsible for decisions at 

cell fate branch points. Indeed, this has been done at single time points to identify regulators 

of differentiation to myeloid and lymphoid lineages (Papalexi and Satija 2017), and at 

multiple time points for reprogramming fibroblasts to myotubes (Cacchiarelli et al. 2017). 

Another solution to differentiation heterogeneity is to use automated marker-based sorting of 

the iPSC-derived cells to enrich for the desired cell type. However, if the contaminating cells 
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have appreciable gene expression similarity to the target cell type, as we found for some of 

the single fibroblast-like cells, this approach will at best deplete the population of 

contaminating cells, but will not eliminate them. In addition, suitable markers are only 

available for some cell types. 

 

Turning more directly to single-cell sequencing approaches could sidestep some of the 

problems of differentiation heterogeneity for detecting genetic effects. For example, cells 

from multiple donors can be pooled and differentiated together, and following scRNA-seq, 

each cell can be traced back to its donor based on the pattern of common variants in 

expressed transcripts. Pooling should greatly improve power, as it controls for variability due 

to differentiation. Because pooling also reduces the amount of cell culture work needed, it 

could also enable larger sample sizes for the same cost. Large-scale iPSC banks will be 

essential resources in such efforts. 

 

An original goal of the sensory neurons study was to identify genetic variants and genes that 

influence sensory neuron electrophysiology, and potentially chronic pain. As we discovered, 

electrophysiological profiles in iPSC-derived sensory neurons were highly variable across 

single cells, and with our relatively small sample size we did not have sufficient power to 

detect associations between gene expression and electrophysiological phenotypes. An 

alternative approach reported recently, PatchSeq, controlled for variability across neuronal 

cells by first measuring electrophysiological properties by patch clamping, followed by 

sequencing the same single cells (Bardy et al. 2016). By linking neuron functional properties 

with gene expression, the authors discovered genes that distinguish highly functional mature 

neurons from those with less mature functional states. 

 

Using the large set of sensory neuron eQTLs, sQTLs, and caQTLs that we identified, we 

used LD to detect overlaps with GWAS catalog associations. This revealed a handful of 

“positive control” overlaps, such as between an SNCA eQTL and a Parkinson’s disease 

association, as well as novel overlaps that point to specific genes for some GWAS loci. It is 

not clear that sensory neurons are the relevant cell type for these traits; however, the 

presence of certain clear overlaps, such as the TNFRSF1A association with multiple 

sclerosis, indicates that some trait-relevant gene regulatory mechanisms are shared across 

neurons, or perhaps shared more broadly across cell types. Although we detected a large 

number of sensory neuron caQTLs, we found fewer clear cases of caQTL overlap with 

GWAS traits where neurons seem likely to be relevant. A possible explanation is that 

chromatin QTLs are common, and that only a fraction actually influence gene expression 
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and complex traits. It may also be that, because we only had 31 ATAC-seq samples, we had 

low power to detect many true genetic effects on chromatin. 

 

It must be kept in mind that many of the overlaps we reported may not represent true 

colocalisation between causal variants for the molecular and GWAS traits. Because 

molecular QTLs are relatively common across the genome, many overlaps based on LD are 

expected by chance. More sophisticated statistical colocalisation methods, such as coloc 

(Giambartolomei et al. 2014), can use summary statistics to distinguish whether a given 

overlap is more consistent with shared or distinct causal variants. Applying coloc would likely 

have strengthened the evidence for overlap of some causal variants, while eliminating 

others. Another caveat is that we did not experimentally validate any of our novel QTL-

GWAS overlaps. 

 

The results from our sensory neurons study, as well as those from the NextGen consortium, 

indicate some of the future challenges in identification of causal variants for complex traits. 

Based on our ability to detect eQTLs across genes with different levels of expression 

variability, we estimated that 40 to 80 iPSC-derived cell lines would be needed to detect a 

difference between alleles for a single gene regulatory variant of moderate effect size. This 

is consistent with NextGen consortium results: Warren et al. performed 136 differentiations 

to hepatocyte-like cells across 68 cell lines from individuals recruited based on their 

genotypes, and marginally detected (p=0.04) an effect of rs12740374 on SORT1 expression 

(Warren et al. 2017). Of note, they reported a median differentiation efficiency to HLCs of 

just 10%, and their expression assays were on sorted HLC populations. When applying 

CRISPR-Cas9 in one parental cell line to generate deletions covering rs12740374, they 

used 38 differentiations to show a difference in SORT1 expression between wild-type and 

deletion cell lines. The smaller number of differentiations needed in the gene-editing 

experiment may reflect the fact that a single cell line was used, and so variability due to both 

genetic background and iPSC generation were eliminated. However, it is also possible that 

the deletion alleles had a larger effect size on average than the naturally-occurring SNP 

alleles. 

 

In sum, it is clear that determining causal alleles for human complex traits remains difficult, 

due to the modest effect sizes of the alleles, and to the variable efficiency of differentiation 

and limited maturity of derived cells. Allele-specific analyses, when possible, are one means 

of controlling for sample-to-sample expression variability. A number of new approaches 

based on single-cell RNA-seq offer even more powerful solutions. Sequencing single cells at 

time points along the differentiation course will elucidate genes that determine different cell 
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fates; pooling cells from multiple individuals will control for non-genetic variability; and 

comparing cell functional states to single-cell transcriptomes will enable linking cell 

phenotypes with gene expression. 

5.2 Towards better predictive models of gene 
regulation 

Molecular QTLs are one of the most useful types of evidence of variant functionality, since 

they directly link genetic variation with an intermediate phenotype: eQTLs link regulatory 

regions to genes, and chromatin accessibility QTLs can aid fine-mapping by providing a 

strong prior on the locations of putative causal variants. However, QTLs also have 

limitations. As with GWAS, identifying the causal variant for an association is extremely 

difficult. In addition, because gene regulation can be cell type- and context-specific, the 

absence of an observed effect for a variant could simply mean that the relevant condition 

has not been tested. Efforts are underway to produce QTL maps in additional cell types and 

conditions, but the combinatorial space to explore is vast. Lastly, QTLs can only be detected 

at genetic variants of appreciable allele frequency; yet, we may be interested in the 

regulatory effects of rare or de novo variants. For these reasons, molecular QTL maps 

provide only one piece of the puzzle to identify causal alleles for complex traits. 

 

Because the experiments necessary to demonstrate the molecular effects of a single causal 

variant are so challenging, it is important to first bring all available data to bear on the 

problem to identify strong candidate variants. Yet, so many types of genomic and 

epigenomic data have now been generated across various cell types that manual, heuristic 

approaches to identify relevant data are no longer sufficient. We developed PRF scores to 

simplify this task, bringing together a large number of annotations in a rigorous framework 

that assigns transparent, cell type-specific scores for each variant. In developing PRF 

scores, we found that the quantitative values of annotations, such as histone modifications 

and chromatin accessibility, can improve predictions of eQTL locations. We found that 

imputed data from the Roadmap Epigenomics project largely improves predictions, while 

having the advantage of being available across all of the tissues profiled. We also found that 

some annotations have different levels of informativeness based on a variant’s distance to 

the gene in question. With 38 annotations in an integrated model, PRF scores showed 

slightly better performance than CADD and GWAVA in classifying likely causal eQTL 

variants in GTEx tissues. 
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A key advantage of PRF scores is that they can be used to determine prior probabilities of 

influencing gene expression for a set of variants. We used this feature to apply PRF scores 

to fine-map associations across six GWAS. There were a number of clear examples where 

PRF scores identified a good candidate causal variant for the association. However, these 

still represented a small minority of all associations. More often, PRF scores moderately 

changed posterior probabilities across credible set variants, but even with a breakdown of 

variant scores into annotation contributions, no clear molecular mechanism was indicated. 

Although the credible set of variants was reduced in size on average with PRF score fine-

mapping, we found that this also occurred with scores randomized across variants. This 

suggests that reduction in credible set size is not a reliable indicator of fine-mapping 

performance. 

 

PRF scores model one type of variant functionality - the likelihood that a variant influences 

expression of a particular nearby gene. The fact that PRF scores are gene-specific can be 

both a strength and a weakness. A strength is that, when a variant is prioritized due to 

having a high PRF score, it implicates a specific gene as the one most likely to be 

associated. A weakness is the difficulty of handling the multitude of scores for each variant; 

as a simplification for fine-mapping, we used a variant’s maximum PRF score across genes. 

With up to tens of genes within 1 Mb of a variant, and over a hundred Roadmap 

epigenomes, computing PRF scores is also computationally intensive. 

 

In principle, the different gene-PRF scores for a variant could be used to determine the 

relative probability that the variant influences expression of each of those genes. However, 

the primary annotation in our model for distinguishing the target gene is TSS distance. As a 

result, PRF scores provide little information on potential distal regulatory interactions, and in 

most cases, PRF score fine-mapping did not change the gene most strongly implicated for 

GWAS associations. This is at odds with recent reports suggesting that most disease-

associated enhancers contact genes beyond the nearest one in the genome (Mumbach et 

al. 2017). It is not clear to what extent this represents a true discrepancy between the 

regulatory architecture of eQTLs and GWAS associations, because the target genes for 

eQTLs are known, whereas in most cases those for GWAS are not. Once a larger number of 

causal genes are identified for GWAS associations, likely in the near future, we will be better 

able to answer this question. 

 

New data sources may improve our ability to relate regulatory regions to genes. Promoter-

capture Hi-C is being used across many cell types to identify DNA regions that interact with 

gene promoters. While the presence of an interaction is weaker evidence of a causal 
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relationship than if an eQTL were present, these data are easier to acquire, are not limited 

by LD, and may be especially informative for distal interactions. Another information source 

tying regulatory regions to genes comes from exploiting correlations across cell types 

between gene expression and epigenetic activity at regulatory regions (Hait et al. 2017), with 

the assumption that correlated activity patterns indicate an interaction. A third source of 

evidence comes when both non-coding and rare coding variant associations for the same 

phenotype occur at a locus; this implies that the non-coding association likely acts through 

the same gene as the coding variants. To the extent that these data identify causal distal 

regulatory interactions, when integrated into a PRF score model, the gene-specific nature of 

the scores may become a greater benefit. 

 

There remains considerable potential for improving a PRF score model by including 

annotations with nucleotide-level resolution. A number of machine-learning methods have 

been developed to relate DNA sequence with the likelihood of influencing a particular 

molecular phenotype, usually chromatin accessibility or TF binding. Massively parallel 

reporter assays (MPRAs) with nucleotide resolution are also being developed. A recent 

method, called HiDRA, uses dense tiling of candidate sequences across regions of open 

chromatin in a reporter assay, and when combined with machine-learning across 

overlapping fragments, suggests critical nucleotides for regulatory element function (Wang et 

al. 2017). Because investigators are unlikely to apply a large range of methods to prioritize 

variants in their own datasets, these methods are excellent candidates as input to an 

integrative model. 

5.3 The future of fine-mapping 
Fine-mapping methods that rely on statistical signal only, such as FINEMAP (Benner et al. 

2016), are valuable because they can rapidly assess different potential configurations of 

multiple causal variants, and are unbiased by our imperfect knowledge of genomic 

annotations and function. However, they have two main drawbacks: they cannot resolve 

causal variants at regions of very high LD, and their results depend greatly on having a 

population LD reference panel closely matched in ancestry with the study population. They 

also provide no input on potential causal mechanisms leading to the association. 

 

Even though PRF scores show some utility for fine-mapping, I think that a model integrating 

multiple data sources can do much better. The goal of fine-mapping is not simply to identify 

the causal variant for an association, but to identify a causal mechanism. For this, we need 

allele-specific, nucleotide-resolution predictions indicating what molecular events 
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(transcription factor binding, RNA structure, splicing, etc.) are likely to be altered by a given 

variant, in which direction, and with effect on which genes. With this granularity and 

specificity of information, the predictions would be more likely to bring specific variants to the 

fore at association loci. They would also provide researchers with the information needed to 

evaluate how plausible each variant’s potential causal mechanism is for the trait in question, 

while making clear the experiments necessary to validate them. 

 

Developing such a model will be challenging for a number of reasons. The first is the 

diversity of molecular mechanisms that influence complex traits. Protein-coding variants can 

alter protein structure, post-translational modifications, interactions, catalytic sites, 

localisation, splicing, and degradation. Even in the minority of cases where a coding variant 

is present, the evidence for its causality must be weighed against potential regulatory 

variants in LD. At a greater number of loci, regulatory variants are implicated. Although 

identification of likely gene regulatory regions has greatly improved over the past decade, we 

still have a limited understanding of the “regulatory code”. Regulatory variants can influence 

phenotypes via well-established mechanisms, such as by altering TF binding sites, with 

downstream effects on promoter interactions and gene expression. However, they can also 

act in many other ways, such as by affecting transcript stability, splicing, ribosome pausing, 

expression of non-coding RNAs, DNA methylation, and by changing large chromosomal 

domains. 

 

Another challenge is that regulatory variants may affect one or more genes, and these may 

be distal. So far no single assay or information source can identify the target genes of 

regulatory regions at high resolution genome-wide. Whereas changes to protein structure 

have an effect across all cell types, changes to gene regulation are more likely to be cell 

type or context-specific. Linking regulatory regions to genes is likely to be an endeavour 

where we gradually accumulate evidence from multiple sources over time, including from 

eQTL studies, Hi-C experiments, correlations across cell types and contexts, and 

increasingly from gene editing experiments at individual loci. 

 

The next challenge for integrative regulatory predictions and fine-mapping methods is to 

incorporate supervised training with multiple datasets that cover different regulatory 

mechanisms. With PRF scores we used steady-state eQTLs as a training dataset to identify 

annotations that predict gene regulation. Other methods have similarly used single datasets 

for supervised training, such as chromatin accessibility (D. Lee et al. 2015; J. Zhou and 

Troyanskaya 2015; Kelley, Snoek, and Rinn 2016), eQTLs (Ioannidis et al. 2017; Y. Li and 

Kellis 2016), conservation and polymorphisms (Y.-F. Huang, Gulko, and Siepel 2017), or 
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GWAS summary statistics directly (J. Pickrell 2013; Kichaev et al. 2014; Y. Li and Kellis 

2016). Apart from training datasets, new methods will also need to maximize the use of 

different annotations, which in general are not uniformly available across cell types; this is 

particularly the case for TF binding. How to appropriately weight the relative importance of 

different mechanisms, as well as the quality and informativeness of datasets with different 

coverage across cell types, is a question that has barely been addressed. 

 

A final challenge in developing predictive models of gene regulation is the lack of a gold-

standard dataset of causal variants influencing complex traits. Such a dataset would enable 

accurate evaluation of the performance of different regulatory scores and fine-mapping 

methods. EQTL datasets identify associated regions but not causal variants. The human 

gene mutation database (Stenson et al. 2014) contains thousands of protein-coding variants 

and hundreds of non-coding variants associated with Mendelian phenotypes, but these are 

not representative of the common variation that influences complex traits. A growing number 

of variants, originally discovered by GWAS to have trait associations, have been 

experimentally shown to have molecular effects on plausible candidate genes. The number 

of such variants is likely to grow more rapidly with the increasing application of CRISPR-

Cas9. No database has yet been set up to collect these examples, but the time to do so is 

ripe. 

5.4 Concluding remarks 
GWAS have discovered thousands of associations with human complex traits, yet 

deciphering the causal variants and molecular mechanisms for these associations is 

challenging. The burgeoning of relevant genomic data has made it an exciting time to 

investigate the effects of non-coding genetic variants. A number of important questions have 

answers within reach, at least in part, in the next decade. How many causal variants are 

there at individual loci and genome-wide for different traits? What fraction of transcription 

factor binding sites are functional? How frequently do variants affect multiple genes rather 

than a single gene? What is the prevalence of different molecular mechanisms influencing 

complex traits? And more broadly, how can the data from large-scale sequencing and 

genomic assays be used to understand differences in traits between people, and to develop 

therapies for common diseases? I look forward to new approaches, both experimental and 

computational, that will shed light on these questions. 
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