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Resumo 

 

A ciência, e em especial o ramo biomédico, testemunham hoje um crescimento de conhecimento 

a uma taxa que clínicos, cientistas e investigadores têm dificuldade em acompanhar. Factos 

científicos espalhados por diferentes tipos de publicações, a riqueza de menções etiológicas, 

mecanismos moleculares, pontos anatómicos e outras terminologias biomédicas que não se 

encontram uniformes ao longo das várias publicações, para além de outros constrangimentos, 

encorajaram a aplicação de métodos de text mining ao processo de revisão sistemática. 

 

Este trabalho pretende testar o impacto positivo que as ferramentas de text mining juntamente 

com vocabulários controlados (enquanto forma de organização de conhecimento, para auxílio 

num posterior momento de recolha de informação) têm no processo de revisão sistemática, 

através de um sistema capaz de criar um modelo de classificação cujo treino é baseado num 

vocabulário controlado (MeSH), que pode ser aplicado a uma panóplia de literatura biomédica. 

 

Para esse propósito, este projeto divide-se em duas tarefas distintas: a criação de um sistema, 

constituído por uma ferramenta que pesquisa a base de dados PubMed por artigos científicos e 

os grava de acordo com etiquetas pré-definidas, e outra ferramenta que classifica um conjunto 

de artigos; e a análise dos resultados obtidos pelo sistema criado, quando aplicado a dois casos 

práticos diferentes. 

 

O sistema foi avaliado através de uma série de testes, com recurso a datasets cuja classificação 

era conhecida, permitindo a confirmação dos resultados obtidos. Posteriormente, o sistema foi 

testado com recurso a dois datasets independentes, manualmente curados por investigadores 

cuja área de investigação se relaciona com os dados. Esta forma de avaliação atingiu, por 

exemplo, resultados de precisão cujos valores oscilam entre os 68% e os 81%. 

 

Os resultados obtidos dão ênfase ao uso das tecnologias e ferramentas de text mining em 

conjunto com vocabulários controlados, como é o caso do MeSH, como forma de criação de 

pesquisas mais complexas e dinâmicas que permitam melhorar os resultados de problemas de 

classificação, como são aqueles que este trabalho retrata. 

 

Palavras-chave: prospeção de texto, vocabulários controlados, literatura biomédica, MeSH, 

classificação binária 
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Abstract 

 

Science, and the biomedical field especially, is witnessing a growth in knowledge at a rate at 

which clinicians and researchers struggle to keep up with. Scientific evidence spread across 

multiple types of scientific publications, the richness of mentions of etiology, molecular 

mechanisms, anatomical sites, as well as other biomedical terminology that is not uniform across 

different writings, among other constraints, have encouraged the application of text mining 

methods in the systematic reviewing process.  

 

This work aims to test the positive impact that text mining tools together with controlled 

vocabularies (as a way of organizing knowledge to aid, at a later time, to collect information) have 

on the systematic reviewing process, through a system capable of creating a classification model 

which training is based on a controlled vocabulary (MeSH) that can be applied to a variety of 

biomedical literature.  

 

For that purpose, this project was divided into two distinct tasks: the creation a system, consisting 

of a tool that searches the PubMed search engine for scientific articles and saves them according 

to pre-defined labels, and another tool that classifies a set of articles; and the analysis of the 

results obtained by the created system when applied to two different practical cases. 

 

The system was evaluated through a series of tests, using datasets whose classification results 

were previously known, allowing the confirmation of the obtained results. Afterwards, the system 

was tested by using two independently-created datasets which were manually curated by 

researchers working in the field of study. This last form of evaluation achieved, for example, 

precision scores as low as 68%, and as high as 81%.  

 

The results obtained emphasize the use of text mining tools, along with controlled vocabularies, 

such as MeSH, as a way to create more complex and comprehensive queries to improve the 

performance scores of classification problems, with which the theme of this work relates. 

 

Keywords: text mining, systematic review, controlled vocabularies, biomedical literature, MeSH, 

binary classification  
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Section 1 

Introduction  

Science is currently witnessing the fast pace at which knowledge grows, especially in the 

biomedical field.  

 

One of the first organizations to index medical literature was the US National Library of Medicine 

(NLM), in 1879: the Index Medicus (IM) was a comprehensive bibliographic index of life science 

and biomedical science information, that would in 1996 become the MEDLINE database.  

 

The US Food and Drug Administration (FDA) introduced in 1962 a regulatory framework that 

required proof of the efficiency of new drugs [1], and other countries followed the practice. This 

led to an inevitable rise in the number of randomized controlled trials (i.e., a study in which the 

participants are assigned by chance to separate groups, according to the National Cancer 

Institute), and at the same time, the overall rise in the number of scientific articles, many providing 

evidence base for these trials. In 1966, the NLM had indexed 165,255 articles for Index Medicus; 

in 1985, the number of articles was 73% higher, with a total of 286,469 articles indexed [2]. By 

2006, the index had grown to nearly 10 million references [3] that would cover areas such as 

medicine, nursing, pharmacy, dentistry, veterinary medicine, and healthcare. As of 2017, PubMed 

(a search engine that primarily accesses the MEDLINE database) contains more than 27 million 

citations for biomedical literature. 

 

As the number of clinical trials raised, so did the science of reviewing trials, which aim to make 

sense of multiple studies. According to Bastian [3], there are now 75 new trials and 11 new 

systematic reviews (SR) of trials per day, haven’t yet reached a plateau in growth.  

 

Clinicians and researchers are required to keep up with published scientific studies and use them 

in their field of work. However, with the massive amount of data that the all-new high-throughput 

molecular biology techniques and studies now produce, as well as the increasingly widespread 

adoption of health information systems that store clinical data, evidence-based science is 

increasingly becoming a more laborious task.  

 

Problem 

Finding the best scientific evidence that applies to a given problem is becoming exceedingly 

difficult due to the exponential growth of biomedical publications, which considers several types 

of publications such as:  

(i) scientific publications,  

(ii) patents,  

(iii) grey literature (conference reports, abstracts, dissertations, and preprints), and  
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(iv) a plethora of regulatory, market, financial, and patent intelligence tools.  

 

Scientific journals, the type of publication most widely used, tend to share a general arrangement 

(Title, Abstract, Introduction, Materials and Methods, Experiments, Results, Discussion, and 

Summary and Conclusion sections) although with considerable variability across publishers and 

themes. 

 

Another obstacle lies in the fact that biomedical literature is plentiful in mentions of etiology, 

molecular mechanisms, clinical conditions, anatomical sites, medications, and procedures. Even 

though the language used for scientific discussion is formal, the names of the biomedical entities 

may not be uniform across different writings.  

 

This plenitude of different terminologies motivates the application of text mining (TM) methods to 

enable efficient indexing and determination of similarities between the search terms in a given 

search engine and the retrieved document. Nonetheless, TM has been applied successfully to 

biomedical documents, for example, to identify protein-protein interactions [4] and associations 

between drugs [5]. 

 

More than recognizing entities within a given set of documents, it is crucial to recognize the search 

terms as a biomedical term (or set of terms) during the SR process, providing researchers with 

better tools to systematic review the existing literature. A common strategy involves linking text to 

a controlled vocabulary. 

 

Objectives 

The main objective of this work is to test the hypothesis that TM tools and controlled vocabularies 

have a positive impact on the systematic reviewing process, either from an aspect of time 

reduction or regarding performance (i.e., if a given article is relevant to the study or not). 

 

For the accomplishment of this objective, it will be developed a system capable of creating a 

classification model which training is based on a controlled vocabulary (Medical Subject Headings 

– MeSH) that can be applied on a variety of biomedical literature.  

 

This will optimistically provide researchers with a semi-automated systematic reviewing tool that 

aids them in keeping up with scientific studies, regarding the amount of time saved in research, 

as well as providing better support for decision-making. 

 

The work described in this dissertation comprises two distinct tasks: 

(i) the creation of a system consisting of a tool that searches the PubMed search engine 

for scientific articles and saves them according to pre-defined labels, and another tool 

that classifies a set of articles; 
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(ii) the analysis of the results obtained by the created system when applied to two 

different practical cases. 

 

Results 

The system was evaluated initially through a series of tests, using datasets whose classification 

results were previously known, allowing the confirmation of the obtained results. Afterwards, the 

system was tested by using two independently-created datasets which were manually curated by 

researchers working in the field of study. This last form of evaluation achieved, for example, 

precision scores as low as 68%, and as high as 81% (average score between two classes, on the 

Humanin dataset), depending on the controlled vocabulary terms used to train the system. 

 

Contributions  

The main contribution of this work is a system capable of creating a classification model in which 

training is based on a controlled vocabulary (MeSH) that can be applied to a variety of biomedical 

literature1. 

 

Document Structure 

The following sections are organized as follows: 

 Section 2 focuses on all the work done by third-party entities, i.e., it explains the main 

concepts applied in this research, presents an overview of the state-of-the-art tools in the 

area, and showcases the resources that will be further applied; 

 Section 3 presents all the work developed for this thesis, including the system developed, 

the methodology followed and the datasets used; 

 Section 4 demonstrates the results achieved in each study case, and ends with a 

discussion of all the results obtained; 

 Section 5 presents the conclusions achieved by this work, its limitations, some 

suggestions for future work, and finishes with some final remarks. 

 

 

 

 

 

 

 

  

                                                      

1  Available at https://github.com/tanmald/MeSH_ifier.git  



4 
 

Section 2 

Concepts and Related Work 

This section is dedicated to describing some concepts necessary to contextualize this project, 

namely a description of systematic reviews, text mining, and controlled vocabularies, as well as 

presenting some related work. 

 

2.1. Systematic Reviews 

Systematic reviews were invented as a means to enable clinicians to use evidence-based 

medicine,  to support clinical decisions [6]. SR identify, assess, synthesize, and interpret multiple 

published and unpublished studies in a given topic, improving decision-making for a variety of 

stakeholders [7], while also allow identifying research challenges to develop new research ideas. 

 

The systematic reviewing process is conducted through a robust but slow and human-intensive 

process. According to Jonnalagadda et al. [8], a SR process includes seven steps: 

1. Definition of the review question and development of criteria for including studies; 

2. Search for studies addressing the review question; 

3. Selection of studies that meet the criteria for inclusion in the review – citation screening 

(CS); 

4. Extraction of data from included studies; 

5. Assessment of the risk of bias in the included studies, by appraising them critically; 

6. Where appropriate, an analysis of the included data by undertaking meta-analyses 

should be made; 

7. Address reporting biases. 

 

For reviews to be systematic, the search task has to ensure relevant literature is retrieved as 

much as possible, even at the cost of retrieving up to tens of thousands of irrelevant documents. 

It also involves searching multiple databases. Therefore, reviewers require specific knowledge of 

dozens of literary and non-literary databases, each with its own search engine, metadata, and 

vocabulary [6]. 

 

Given the amount of time it takes to filter out the immense quantity of research that will not be 

covered, a SR can take a considerable amount of time to complete. This is often a problem, since 

decision-making needs to happen quite fast, and there is not always the opportunity for a review 

to be concluded, even if it leads to a better decision. 

 

There are several possible ways to reduce screening workload. As suggested by O'Mara-Eves et 

al. [9], these may be summed as follows:  

 reducing the number of items that need to be screened manually;  

 reducing the number of experts needed to screen the items;  
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 increasing the rate (or speed) of screening; 

 improving the workflow. 

 

To reduce the workload, there are ongoing efforts to automate part or all of the stages of the SR 

process. One approach is the application of Machine Learning (ML) techniques using TM to 

automate the CS (also called study selection) stage. Since the ML prediction performance is 

generally on the same level as the human prediction performance, using a ML-based system will 

lead to significant workload reduction for the human experts involved in the systematic review 

process [9].  

 

2.2. Text Mining 

Tan [10] described TM as “the process of extracting interesting and non-trivial patterns or 

knowledge from unstructured text documents.” According to Hotho [11], TM is a multi-disciplinary 

field in computer science that relies on information retrieval, machine learning, statistics, 

computational language, and data mining.  

 

Research in this area is still in a state of significant flux, indicated by the sometimes confusing 

use of terms. Hotho et al. [11], for instance, presented different TM definitions, driven by the 

specific perspective of the area. The first approach considered that TM essentially corresponds 

to information retrieval (IR); a second strategy referred to TM as the application of algorithms and 

methods from machine learning and statistics to texts, aiming to find useful patterns. 

 

Regarding biomedical TM, to name a few of the most typical tasks, one can point out: 

 Information Retrieval (IR):  to rank or classify articles for topics of relevance,  

 Named Entity Recognition (NER): detect a variety of different types of bioentity mentions,  

 Entity Linking (EL): index or link documents to terms from controlled vocabularies or bio-

ontologies, and  

 Relations Extraction (RE): extract binary relationships between bioentities, in particular, 

protein or gene relations, like protein−protein interactions.  

 

Despite the differences in focus and scope of the several biomedical branches, end users have 

mutual information demands: from finding papers of relevance (IR) to the assignment of 

predefined classes to text documents (formally known as classification). 

 

The tasks of TM on which this work mainly focuses on are IR and classification, and therefore 

those will be described in the next sub-sections. A small description of other tasks, not addressed 

in this work but also relevant to the biomedical domain, will also be presented. 

 

2.2.1. Information Retrieval 

The practical pursuit of computerized information retrieval began in the late 1940s; the term 
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information retrieval was later used for the first time by Calvin Mooers, in 1950 [12].  

 

As defined by Manning et al. [12] “IR is finding material (usually documents) of an unstructured 

nature (usually text) that satisfies an information need from within large collections (usually stored 

on computers).” The term “unstructured” mentions data that does not have clear, semantically 

explicit structure, that is easy for a computer to understand. It is the opposite of structured data, 

which the better example is a relational database. 

 

In other words, IR is a task of TM that deals with automatically finding relevant texts from large 

datasets of unstructured text, where manual methods would typically be infeasible [13]. 

 

2.2.1.1. Natural Language Processing Techniques 

In most of the cases, the information demand concerns human language texts. Natural language 

processing (NLP) deals with the interactions between computers and human (natural) languages, 

particularly, with parsing the input text into a machine-readable form. 

 

The following NLP techniques are some of the most commonly used in text mining systems, and 

they are also broadly applied in the biomedical domain: 

 

Sentence Splitting  

A low-level text processing step that consists of separating written text into individual sentences 

[14]. Follows simple heuristic rules, for example, a space followed by a capital letter should be 

separated [15]. Some exceptions could be “Dr. Xxx” or “e.g., YYY.” 

 

Tokenization 

Given a character sequence and a defined document unit, tokenization is the task of cutting it into 

smaller pieces, called tokens [12]. It is usually the first step in a text processing system, and if 

wrongly implemented, can lead to a poor-performing system [16]. 

 

Although these tokens are usually related to single words, they may also consist of numbers, 

symbols or even phrases. It has been observed that in biomedical documents, symbols that 

usually correspond to token boundary symbols (TBS), such as “+,” “/” and “%,” do not always 

denote correct boundary elements. 

 

A tokenization parser is used to retrieve these tokens from the text, splitting the input based on a 

set of predefined rules. The output of various tokenizers can be significantly different, for instance, 

depending on how characters such as hyphens are handled [14], [17]. Two examples of systems 
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developed specially for text written in the English language are the Stanford Tokenizer2 and 

Banner3. 

 

Stemming & Lemmatization 

The tokens are usually normalized before being added to a given term list; that is, a linguistic pre-

processing step is carried out to generate a modified token representing the canonical form of the 

corresponding term [14]. Typically, this step refers to either stemming or lemmatization. Both aim 

to reduce words to their common base form: for instance, “am,” “are” and “is” would become “be”; 

“car,” “cars,” “car’s” and “cars” would become “car.” 

 

The difference between both techniques is that stemming usually refers to a heuristic process 

that slices the ends of words, hoping to achieve this goal correctly most of the time. 

Lemmatization, on the other hand, attempts to perform a vocabulary correctly and morphological 

analysis of words, typically aiming to remove inflectional endings only and to return the dictionary 

form of a word (known as the lemma). However, to achieve this, the word form must be known, 

i.e., the part of speech of every word in the text document has to be assigned. Since this tagging 

process is usually very time-consuming and error-prone, stemming methods are applied 

alternatively [11]. 

 

Porter’s stemming algorithm4 has been shown to be empirically very effective [12]. It is a process 

for removing the commoner morphological and inflexional endings from words in English [18].  

 

The BioLemmatizer5 is a domain-specific lemmatization tool for the morphological analysis of 

biomedical literature, achieving very high-performance scores when evaluated against a gold 

standard of manually labeled biomedical full-text articles [14], [19]. 

 

Machine Learning 

One approach that has increasingly become the method of choice for many text classification 

tasks is Machine Learning. ML is a field of computer science which applies statistical techniques 

so that computer systems can "learn" (i.e., progressively improving its performance on a specific 

task) with data, without being explicitly programmed for it [20].  

 

Regarding the classification problem, and given a set of classes, the user seeks to determine 

which class(es) a given document belongs to. More formally, the classification problem is defined 

                                                      

2  https://nlp.stanford.edu/software/tokenizer.shtml 

3  https://github.com/oaqa/banner/blob/master/src/main/java/banner/tokenization/Tokenizer.java 

4  https://tartarus.org/martin/PorterStemmer/index.html 

5  http://biolemmatizer.sourceforge.net 
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as follows: having a training set 𝐷⟨𝑑𝑖⟩, 𝑖 = 1,2, … , 𝑛 of documents, such that each document 𝑑𝑖 is 

labeled with a label 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑗}, the task is to find a classification model (a classifier) 𝑓 

where  

𝑓: 𝐷 → 𝐶𝑓(𝑑) = 𝑐

(2.1)
 

Which can assign the correct class label to a new document 𝑑 (test instance) [21].  

 

There are two main ML categories: supervised, and unsupervised learning. For supervised ML 

techniques to work well, manually annotated corpora are required as a training set. A statistical 

model/learning algorithm is “fed” with the training set to learn from it, and subsequently applied to 

assign labels to previously unseen data. Regarding unsupervised learning, no labels are given to 

the learning algorithm, and these are typically based on clustering algorithms. 

 

Commonly used annotated corpora in the biomedical domain are the GENIA6 and the PennBioIE7 

corpora, achieving very high-performance scores [14]. 

 

Regarding unsupervised learning, there are several learning algorithms worth emphasising.  

 

i. Multinomial Naïve Bayes 

Naïve Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the “naïve” assumption of independence between every pair of features.  

 

The Bayes classifier is a hybrid parameter probability model, that states the following relationship: 

𝑃(𝑐𝑗|𝐷) =
𝑃(𝑐𝑗)𝑃(𝐷|𝑐𝑗)

𝑃(𝐷)
(2.2)

 

Where 𝑃(𝑐𝑗) is prior information of the appearing probability of class 𝑐𝑗, 𝑃(𝐷) is the information 

from observations (which is the knowledge from the text itself to be classified), and 𝑃(𝐷|𝑐𝑗) is the 

distribution probability of document 𝐷 in classes space [22].  

 

Regarding text classification, the goal is to find the best class for the document (Manning et al., 

2009). The best class in Naïve Bayes classification is the most likely, or maximum a posteriori 

(MAP), class 𝑐𝑚𝑎𝑝: 

𝑐𝑚𝑎𝑝 = 𝑎𝑟𝑔𝑗𝑚𝑎𝑥𝑃(𝑐𝑗|𝐷) = 𝑎𝑟𝑔𝑗𝑚𝑎𝑥𝑃(𝑐𝑗)∏𝑃(𝐷𝑖|𝑐𝑗)

𝑖

(2.3)

 

 

Naïve Bayes classifiers work quite well in many real-world situations, namely document 

                                                      

6  http://www.nactem.ac.uk/aNT/genia.html 

7  https://catalog.ldc.upenn.edu/LDC2008T21 
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classification and spam filtering [24], although they require a small amount of training data to 

estimate the necessary parameters. 

 

The different naïve Bayes classifiers differ mainly by the assumptions they make regarding the 

distribution of 𝑃(𝑐𝑗|𝐷). Until this point, nothing was said about the distribution of each feature. 

One disadvantage of the Naive Bayes is that it makes a very strong assumption on the shape of 

the data distribution, i.e. that any two features are independent given the output class. As for the 

multinomial naïve Bayes, it acknowledges that each 𝑃(𝑐𝑗|𝐷) is a multinomial distribution, rather 

than any other distribution, and is one of the two classic naïve Bayes variants used in text 

classification [25].  

 

ii. K-Nearest Neighbors 

Neighbors-based classification is a type of instance-based or non-generalizing learning, which 

does not attempt to construct a general internal model, but solely stores instances of the training 

data [26]. 

 

One of the neighbors-based classifiers is the k-nearest neighbors (k-NN). It is a non-parametric 

(i.e., not based solely on parameterized8 families of probability distributions) method used for 

classification and regression. In any case, the input consists of the 𝑘 closest training examples in 

the feature space. Within the case of classification, the output is a class association. The principle 

behind k-NN is that an object is classified by a majority vote of its neighbours, with the object 

being assigned to the class most common among its 𝑘 nearest neighbors.  

 

In ML, the training examples are vectors in a multidimensional feature space, each containing a 

class label. During its training phase, the algorithm stores the feature vectors and class labels of 

the training samples. In the classification phase, 𝑘 is a typically small, positive user-defined 

constant, and an unlabelled vector (either a query or test point) is classified by assigning the label 

which is most frequent among the 𝑘 training samples nearest to that point. If 𝑘 = 1, then the object 

is simply assigned to the class of that single nearest neighbour [27]. In binary (two class) 

classification problems, it is helpful to choose 𝑘 to be an odd number, as this avoids tied votes. 

 

By default, k-NN employs the Euclidean distance, which can be calculated with the following 

equation: 

𝐷(𝑝, 𝑞) = √(𝑝1 − 𝑞1)
2 + (𝑝2 − 𝑞2)

2 +⋯+ (𝑝𝑛 − 𝑞𝑛)
2

(2.4)
 

where 𝑝 and 𝑞 are subjects to be compared with 𝑛 characteristics [28]. 

 

 

                                                      

8  Common examples of parameters are the mean and variance. 
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iii. Decision Trees 

Tree models can be employed to solve almost any machine learning task, including classification, 

ranking, and probability estimation, regression and clustering [29]. In supervised learning, 

classification trees (common name for when a decision tree is used for classification tasks) are 

used to classify an instance into a predefined set of classes based on their attribute values, i.e., 

by learning simple decision rules inferred from the data [30]. 

 

Decision trees consist of nodes that form a Rooted Tree, i.e., a tree with a node called a “root” 

that has no incoming edges. All the remaining nodes have exactly one incoming edge. A node 

with outgoing edges is referred to as an “internal” or a “test” node. All other nodes are called 

“leaves.”  

 

Each internal node of the tree divides the instance space into two or more sub-spaces, according 

to a particular discrete function of the input attributes values. The simplest and most frequent case 

is the one where each considers a single attribute, i.e., the instance space is partitioned according 

to the value of the attribute. For numeric attributes, a range is considered. Thus, each leaf is 

assigned to one class representing the most appropriate target value [30].  

 

Figure 2.1 presents an example of a decision tree that predicts whether or not a potential customer 

will answer to a direct mailing. Rounded triangles represent the internal nodes (with blue 

background), whereas rectangles denote the leaves. Each internal node may grow two or more 

branches. Each node corresponds to a particular characteristic, and the branches correspond 

with a range of values, which must be mutually exclusive and complete. These two properties of 

disjointness and completeness are essential to ensure that each data instance is mapped to one 

instance. 

Figure 2.1 - Decision tree presenting response to direct mailing (adapted from [30]) 
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iv. Random Forest 

Random forests (also known as random decision forests) are an ensemble learning method (i.e., 

that use multiple learning algorithms to obtain a better predictive performance than a learning 

algorithm would alone) for classification, regression, and other ML tasks [31].  

 

This method works by constructing several decision trees (hence the “forest” denomination) at 

training time. Each tree in the ensemble is built by taking a sample drawn, with replacement, from 

the training set. In addition, when splitting a node during the construction of the tree, the chosen 

split is the best among a random subset of the features, instead of the best among all features.  

 

The random forest method is different from linear classifiers9 since the ensemble has a decision 

boundary that can’t be learned by a single base classifier. Therefore, the random forest can be 

classified as an algorithm that implements an alternative training algorithm for tree models. The 

practical result is that the bias10 of the forest typically slightly increases (concerning the bias of a 

single non-random tree). Nevertheless, due to averaging, its variance11 also decreases, which 

usually more than compensates for the increase in bias, hence yielding an overall better model 

[26], [29]. 

 

v. Logistic Regression 

Logistic regression is a linear classifier whose probability estimates have been logistically 

calibrated12, i.e., calibration is an integral part of the training algorithm, rather than a post-

processing step.  

 

The output of this algorithm is a binary variable, where a unit change in the input multiplies the 

odds of the two possible outputs by a constant factor. The two possible output values are often 

labelled as "0" and "1", which represent outcomes such as correct/incorrect, for example. The 

logistic model generalises easily to multiple inputs, where the log-odds are linear in all the inputs 

(with one parameter per input). With some modification, this algorithm can also be applied to 

categorical outputs with more than two values, modelled by multinomial logistic regressions, or 

by ordinal logistic regression if the multiple categories are ordered [32], [33]. 

 

Logistic regression models the decision boundary directly. That is, if the classes are overlapping, 

then the algorithm will tend to locate the decision boundary in an area where classes are 

                                                      

9  A linear classifier makes a classification decision based on the value of a linear combination of the 

object’s characteristics. 

10  The bias of an estimator is its average error for different training sets. 

11  The variance of an estimator indicates how sensitive it is to varying training sets. 

12  Calibration is a procedure in statistics to determine class membership probabilities which assess 

the uncertainty of a given new observation belonging to each of the already established classes. 
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maximally overlapping, regardless of the ‘shapes’ of the samples of each class. This results in 

decision boundaries that are noticeably different from those learned by other probabilistic models, 

like Naïve Bayes [29]. 

 

vi. Support Vector Machines  

Linearly separable data admits infinitely many decision boundaries that separate the 

classes, some of which are better than others. For a given training set and decision boundary, the 

training examples nearest to the decision boundary (on both sides of it) are called support vectors. 

Thus, the decision boundary of a support vector machine (SVM) is defined as a linear combination 

of the support vectors [29]. In supervised learning, an SVM algorithm will build a model that 

assigns new examples to one category (out of two), making it a non-probabilistic binary linear 

classifier. 

 

Support vector classification (SVC) and NuSVC are algorithms capable of performing multi-class 

classification on a given dataset. They both are extensions of the SVM algorithm. These are 

similar methods but accept slightly different sets of parameters and have different mathematical 

formulations. Both methods implement the “one-vs-one” approach for multi-class classification 

[34]. If 𝑛𝑐𝑙𝑎𝑠𝑠 is the number of classes, then 𝑛𝑐𝑙𝑎𝑠𝑠 ∗ (𝑛𝑐𝑙𝑎𝑠𝑠 − 1) 2⁄  classifiers are constructed and 

each one trains data from two classes.  

 

2.2.1.2. Performance Assessment 

To evaluate the effectiveness of an IR system (the quality of its results), we can apply two popular 

evaluation metrics: 

 Precision (𝑝, or positive predictive value) is the percentage of correctly labeled positive 

results over all results, i.e., how many of the selected items are correct; 

 Recall (𝑟, also sometimes named coverage, sensitivity, true positive rate, or hit rate) 

refers to the percentage of correctly labelled positive results over all positive labelled 

cases, i.e., how many of the correct items were selected. 

 

A system with high recall but low precision returns many results, most of which are incorrect when 

compared to the training labels. The contrary case is a system with high precision but low recall, 

which returns very few results, but most of its predicted labels are correct when compared to the 

training ones. An ideal system is the one that returns many results, all of which labelled correctly, 

achieving high precision and recall values. 

 

Precision and recall can be described as a class match problem where the notion of true positive, 

true negative, false positive and false negative is required.  

 

For a better understanding, table 2.1 shows a confusion matrix that relates each of these 

measures. The concepts presented are a result of the relation between the predicted class (the 
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one assigned in the process) and the golden class (the correct class/assignment). 

 

Table 2.1 - Confusion matrix with evaluation measures 

Predicted class 
Golden class 

Positive Negative 

Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN) 

 

The stated concepts can be described as follows: 

 True Positive: If the identified class is correctly labelled, i.e., is present in the golden 

class.  

 True Negative: If the class is not present in the golden file, and the system, correctly, did 

not identify it. 

 False Positive: cases wrongly misclassified as positive (type I errors, incorrect cases), 

i.e., the identified class is not present in the golden file; 

 False Negative: cases missed or incorrectly rejected by the system (type II errors). 

 

The figure 2.2, presented below, may help the comprehension of these concepts. 

 

 

Based on these concepts, one can see the measures previously described as follows: 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.5)

 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.6)

 

 

Precision and recall are often combined into a single measure, the F-score (𝑓, also F1-score or 

F-measure), which is the harmonic mean of precision and recall [35]. F-score reaches its best 

value at 1 (perfect precision and recall) and worst at 0, and can be represented as follows: 

Figure 2.2 - Diagram for comprehension of precision and recall concepts 
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𝑓 =
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟

(2.7)

 

 

There are other metrics to consider. Accuracy (𝑎), for instance, is the fraction of correctly labelled 

(positive and negative) results over all results. Research in ML has put aside exhibiting accuracy 

results when performing an empirical validation of new algorithms. The reason for this is that 

accuracy assumes equal misclassification costs for false positive and false negative errors. This 

assumption is problematic, because for most real-world problems one type of classification error 

is much more expensive than another. For example, in fraud detection, the cost of missing a case 

of fraud is quite different from the cost of a false alarm [36].  

 

Accuracy can be written following the same line of thoughts as precision and recall: 

 

𝑎 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.8)

 

 

One recommended metric when evaluating binary decision problems is Receiver Operator 

Characteristic (ROC) curves, which show how the number of correctly classified positive 

examples varies with the number of incorrectly classified negative examples [37]. An example of 

a ROC curve and how it should be interpreted is presented in the annex A, figure 1. 

 

However, ROC curves can present an overly optimistic view of an algorithm’s performance if there 

is a significant skew in the class distribution. This can be addressed using Precision-Recall (PR) 

curves. An example of a PR curve can be seen in subsection 2.6.3.5.  

 

A precision-recall curve shows the trade-off between precision and recall for different thresholds. 

A high area under the curve denotes both high recall and high precision, where high precision 

represents a low false positive rate, and high recall a low false negative rate. High scores for both 

measures show that the classifier is retrieving accurate results (i.e., high precision), as well as a 

majority of all positive results (i.e., high recall). 

 

The main difference between ROC space and PR space is the visual representation of the 

curves. In ROC space, the False Positive Rate (FPR) is plotted on the x-axis and the True Positive 

Rate (TPR) on the y-axis. In the PR space, the x-axis plots Recall, and the y-axis plots 

Precision. The goal in ROC space is to be in the upper left-hand corner; in PR space, the goal is 

to be in the upper-right-hand corner [38].  

 

2.2.1.3. Cross-Validation 

Cross-validation (CV) [39] is a widely used method by the machine learning community since it 
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provides a simple and effective method for both model selection and performance evaluation. 

 

Ideally, there would be three different approaches to CV [40]: 

1. In the simplest scenario, the user would collect one dataset and train the model via cross-

validation to create the best model possible. Then, it would collect another utterly 

independent dataset and test it in the previously created model. However, this scenario 

is the most infrequent (given time, cost or most frequently dataset limitations). 

2. If the user has a sufficiently large dataset, it would want to split the data and leave part of 

it to the side (i.e., completely untouched during the model training process). This is to 

simulate it as if it was a completely independent dataset, since a model that would repeat 

the labels of the samples that it has just seen would have a perfect score but would fail 

to predict anything useful on data not yet seen [26]. This event is called overfitting. To 

prevent it, the user would then build the model on the remaining training samples and test 

the model on the left-out samples. 

3. Lastly, if the user is limited to a smaller dataset, it may not be able to ignore part of the 

data for model building simply. As such, the data is split into k folds, validation is 

performed on every fold (thus, the name k-fold cross-validation) and the validation metric 

would be aggregated across each iteration. 

 

Since datasets are frequently small, k-fold cross-validation is the most used cross-validation 

method. Under it, the data is randomly divided to form k separated subsets of approximately equal 

size. In the ith fold of the cross-validation procedure, the ith subset is used to estimate the 

generalised performance of a model trained on the remaining k−1 subsets. The average of the 

generalised performance observed over all k folds provides an estimate of the generalised 

performance of a model trained on the entire sample [41]. 

 

2.3. Controlled Vocabularies 

In several fields of study, controlled vocabularies exist as a way to organise knowledge for 

subsequent retrieval of information. An example of knowledge classification is taxonomy13.  The 

end-user will most likely focus on one or more topic areas that can be summarised by a network 

of concepts and associations between them. These typically correspond to domain concepts 

which are found in thesauri and ontologies [42].  

 

An ontology can be defined as “an explicit specification of a conceptualization” [43], thereby 

including representation, formal naming and/or definition of the categories, properties, and 

relations of the concepts, data, and entities that it covers. More formally, in information science, 

the word ontology is applied to a set of logical axioms that model a portion of reality [44].  

 

                                                      

13  The practice and science of classification. 
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The main strength in applying ontologies to data from different fields is the ease with which 

researchers can share information and process data using computers. As such, ontologies 

describe knowledge in a way that can be understood by humans and machines alike.  

 

Because modelling ontologies are highly resource-consuming (given that are developed and 

described in logic-based languages like OWL), there is a preference to reuse existing models, 

like thesauri, as ontologies instead of developing ontologies from scratch. However, as Kless [45] 

stated, thesauri cannot be considered a less expressive type of ontology. Instead, thesauri and 

ontologies must be seen as two kinds of models with superficially similar structures. A qualitatively 

good ontology may not be a good thesaurus, the same way a qualitatively good thesaurus may 

not be a suitable ontology. 

 

A thesaurus seeks to dictate semantic manifestations of metadata14 in the indexing of content 

objects15 [46]. In other words, it assists the assignment of preferred terms to convey semantic 

metadata associated with the content object, guiding both an indexer and a searcher in the 

selection of the same ideal term/combination of terms to represent a given subject.  

 

The aim in using thesauri is to minimise semantic ambiguity by ensuring uniformity and 

consistency in the storage and retrieval of any manifestations of content objects. 

 

2.3.1. Medical Subject Headings (MeSH) 

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary for the purpose of 

indexing, cataloguing and searching journal articles and books related to the life sciences [47]. 

 

It was first introduced by Frank Rogers, director of the NLM, in 1960 [48], with the NLM's own 

index catalogue and the subject headings of the Quarterly Cumulative Index Medicus (1940 

edition) as precursors. Initially, it was intended to be a dynamic list, with procedures for 

recommending and examining the need for new headings [49]. Today it is used by 

MEDLINE/PubMed database and by NLM's catalogue of book holdings. 

 

Many synonyms and closely related concepts are included as entry terms to help users find the 

most relevant MeSH descriptor for the concept they seek. In NLM's online databases, many 

search terms are automatically mapped to MeSH descriptors to ease the retrieval of relevant 

information. 

 

2.3.1.1. MeSH Structure 

MeSH possesses three types of records [50]: 

                                                      

14  Data/information that provides information about other data. 

15  Any item that is to be described. 
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i. Descriptors 

Unit of indexing and retrieval. The MeSH descriptors are organised in 16 categories, from 

anatomic terms, organisms, diseases, and so on. Each category is further divided into 

subcategories. Within each subcategory, descriptors are arrayed hierarchically from most general 

to most specific in up to thirteen hierarchical levels. Because of the branching structure of the 

hierarchies, these are sometimes referred to as "trees" [51]. 

 

Each descriptor is followed by the number that indicates its tree location. For example, “C16.131” 

stands for “Congenital Abnormalities.” 

 

ii. Qualifiers 

Qualifiers offer a convenient means of grouping together citations which are concerned with a 

particular aspect of a subject. For example, “liver/drug effects” indicates that the article or book is 

not about the liver in general, but about the effect of drugs on the liver.  

 

There are 81 topical Qualifiers (also known as Subheadings) used for indexing and cataloguing 

in conjunction with Descriptors. 

 

iii. Supplementary Concept Records (SCRs) 

Supplementary Chemical Records (SCRs), also called Supplementary Records, are used to index 

chemicals, drugs, and other concepts such as rare diseases for MEDLINE. 

 

SCRs are not organised in a tree hierarchy; instead, each SCR is linked to one or more 

Descriptors by the Heading. They also include an Indexing Information (II) field that is used to 

refer to other descriptors from related topics. There are more than 230,000 SCR records, with 

over 505,000 SCR terms.  

 

2.3.1.2. Online Retrieval with MeSH 

The MeSH Browser16, as an interactive Web application for searching and browsing MeSH data, 

is the primary way of access to MeSH. However, as the MeSH browser only returns terms, these 

are to be used in databases such as PubMed.  

 

The main method of using MeSH with PubMed is by providing the search engine with terms in 

MeSH records. To ensure a Pubmed search uses a MeSH term, the query should have the [mh] 

tag, for example, “Asthma [mh].” This query17 would retrieve every citation indexed with this 

Descriptor since PubMed automatically searches on narrower Descriptors indented under the 

main Descriptor in the MeSH Tree Structures. 

                                                      

16  https://meshb.nlm.nih.gov/search 

17  A query is a request for information from a database. 
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If the user has no idea what MeSH term or terms have been used in indexing relevant literature, 

a text word search may be performed first. For example, if a user is interested in "scalp diseases" 

- a term not in MeSH, they can search this term in PubMed (title and/or abstract). After seeing 

particularly relevant citations, the user can look at the citation record (MEDLINE format), and find 

the MH term “Scalp Dermatoses,” that will be the basis of a new query [52]. 

 

2.3.1.3. Example 

A quick search through the MeSH Browser allows the user to acquaint itself with the functioning 

of the database.  

 

Taking “brain” as a search term, for instance. After the insertion of the term in the search box, a 

full report is displayed, as presented in figure 2 (in the annex B).  

 

The first tab, “Details,” immediately shows the MeSH Heading and its tree number(s) in the first 

two lines, in this case, “brain” and “A08.186.211” respectively. The following lines present the 

related annotations, scope notes, entry terms, and other notes. The “Qualifiers” tab shows the 

related entry combination (for example, “chemistry:Brain Chemistry”) and allowable qualifiers (for 

example, “anatomy & histology (AH)”). The “MeSH Tree Structures” tab shows the location of the 

term, as well as the parent and child nodes (if available). For the referred term, the hierarchy tree 

is presented in figure 2.3. 

 

 

The last tab, “Concepts,” shows the concepts related to the term in question, is this case the only 

concept is “Brain Preferred.”  

 

2.4. Text Mining within Systematic Reviews 

Several authors have widely studied the availability and utility of text-mining tools to support 

systematic reviews over time.  

 

Figure 2.3 - MeSH hierarchy tree for "brain" term 
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The application of TM techniques to support the citation screening stage of SRs is an emerging 

research field in computer science, with the first reported publication on the subject in 2005 by 

Aphinyanaphongs et al. [53]. Their research showed that using machine learning methods it was 

possible to automatically construct models for retrieving high-quality, content-specific articles in a 

given time period in internal medicine, that performed better than the 1994 PubMed clinical query 

filters.  

 

A SR of 26 studies, performed by Pluye et al. [54], reiterates the statement that information-

retrieval technology produces a positive impact on physicians regarding decision enhancement, 

learning, recall, reassurance, and confirmation of a given hypothesis. 

 

In 2015, another SR of 44 papers by O’Mara-Eves et al. [9] pulled together the evidence base for 

the use of TM for CS. Whilst the authors found that it is difficult to establish any overall conclusions 

about the best approaches, they also suggested that the (semi)-automation of screening could 

result in a saving in workload of between 30% and 70%, though sometimes that saving is 

accompanied by a 95% recall (i.e., the loss of 5% of relevant studies).  

 

Jonnalagadda et al. [8] later referred on their study that the data extraction step is one of the most 

time-absorbing of the SR process, and that TM techniques, more specifically NLP, may be an 

essential strategy to reduce the time implicated. Nonetheless, the authors point out that even 

though most NLP research has focused on reducing the workload for the CS step, biomedical 

NLP techniques have not been fully exploited to entirely or partially automate the SR process. 

 

A challenge that was pointed by Paynter et al. [55] was that the creation of training datasets, given 

the comprehensive nature of the TM algorithm, given the comprehensive nature of the research 

performed, tends to include much more irrelevant than relevant citations, leading to “imbalanced 

datasets.” Olorisade et al. [56] also highlight that the lack of information about the datasets and 

machine learning algorithms limits the reproducibility of a high amount of published studies.  

 

Even though TM tools are currently being used within several SR organizations for a variety of 

review processes (e.g., searching, screening abstracts), and the published evidence-base is 

growing fairly rapidly in extent and levels of evidence, Paynter et al. [57] acknowledge that text 

mining tools will be increasingly used to support the conduct of systematic reviews, rather than 

substituting current literature retrieval and information extraction tools. Some significant limitations 

presented by the authors are that many TM tools rely on corpora from PubMed/MEDLINE to train 

the learning algorithm, which does not represent the entire population of literature relevant for 

healthcare-related systematic reviews.  

  

2.5. Related Tools 

In 2005, Aphinyanaphongs et al. [53] conducted a research where ML methods were used 
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together with articles cited by the ACP Journal Club as a gold standard for the training of the 

algorithm. The authors chose this specific gold standard because of its focused quality review, 

that is highly regarded and uses stable explicit quality criteria. 

 

In most of the studied categories, the data-induced models showed better or comparable 

precision, recall, and specificity than the pre-existing query filters. These results proved that, 

following this approach, it is possible to automatically build models for retrieving high-quality, 

content-specific articles in a given time period that performed better than the 1994 PubMed clinical 

query filters.   

 

Rathbone et al. [58] evaluated the performance of Abstrackr, a semi-automated online tool for 

predictive title and abstract screening. The authors used four different SR to train a classifier, and 

then predict and classify the remaining unscreened citations as relevant or irrelevant. The results 

showed that the proportion of citations predicted as relevant by Abstrackr was affected by the 

complexity of the reviews and that the workload saving achieved varied depending on the 

complexity and size of the reviews. Still, the authors concluded that the tool had the potential to 

save time and reduce research waste. 

 

Paynter et al. [55] conducted a research which goal was to provide an overview of the use of TM 

tools as an emerging methodology within some SR processes. This project culminated in a 

descriptive list of text-mining tools to support SR methods and their evaluation. The authors found 

two major TM approaches:  

1. The first approach assessed word frequency in citations as presented by stand-alone 

applications, which generate frequency tables from the results set outlining the number 

of records by text word, controlled vocabulary heading, year, substances, among others. 

While this approach was used by Balan et al. [59], Kok et al. [60] and Hausner et al. [61] 

in their studies and applications, other authors used EndNote (a citation management 

application) to generate word frequency lists. 

2. The second approach is automated term extraction. This approach also generates word 

frequency tables, but many were limited to single word occurrences. Tools such as 

AntConc18, Concordance19, and TerMine20 extract phrases and combination terms; other 

applications such as MetaMap21 and Leximancer22 add a semantic layer to the process 

by using tools provided through the NLM’s Unified Medical Language System. 

 

                                                      

18  http://www.laurenceanthony.net/software/antconc/  

19  http://www.concordancesoftware.co.uk  

20  http://www.nactem.ac.uk/software/termine/  

21  https://metamap.nlm.nih.gov  

22  https://info.leximancer.com  
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Even though the tools apply different algorithms, the overall approaches were similar. They start 

by creating a training set. In addition to that, another corpus representing the general literature 

(usually created by randomly sampling citations from PubMed) may be presented to the algorithm.  

 

Only “overrepresented” words and phrases in the training set are considered for inclusion in the 

search strategy. Nonetheless, as noted by Petrova et al. [62] and O’Mara-Eves et al. [63], this 

approach has inherent problems: not only the reported frequencies for text words do not 

necessarily reflect the number of abstracts in which a word appears, but the term extraction 

algorithm also depends on the content of the documents supplied to it by the user/reviewer. 

 

Most of the tools and studies examined by Paynter et al. [55] found benefit in automating term 

selection for SR, especially those comprising large unfocused topics. For example, in their study, 

Balan et al [59] concluded that “the benefits of TM are increased speed, quality, and reproducibility 

of text process, boosted by rapid updates of the results”; Petrova et al. [62] highlights the 

importance of word frequency analysis, since it “has shown promising results and huge potential 

in the development of search strategies for identifying publications on health-related values”.  

 

2.6. Resources 

This project is built on a wide range of Python packages, namely Biopython, NLTK, and Scikit-

learn. The following subsections will describe each of them, relating them to their future role on 

this work. 

 

2.6.1.  Biopython 

The Biopython Project [64] is an international association of developers of freely available Python 

tools for computational molecular biology. Python is an object-oriented, high-level programming 

language with a simple and easy to learn syntax, which is why it is becoming increasingly popular 

for scientific computing. Thus, Biopython provides an online resource for modules, scripts, and 

web links for developers of Python-based software for bioinformatics use and research. 

 

One of Biopython’s functionalities is the access to NCBI’s Entrez databases. Entrez23 is a data 

retrieval system that provides users access to NCBI’s databases such as PubMed, GenBank, 

GEO, among others. Entrez can be accessed from a web browser to enter queries manually, or 

one can use Biopython’s Bio.Entrez module for programmatic access to Entrez, which allows 

searching PubMed from within a Python script. 

 

After using Bio.Entrez to query PubMed, the result will be a Python list containing all of the 

PubMed IDs of articles related to the given query. If one wishes to get the corresponding Medline 

records and extract the information from them, it will be necessary to download the Medline 

                                                      

23  http://www.ncbi.nlm.nih.gov/Entrez  
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records in the Medline flat-file format and use the Bio.Medline module to parse them into Python 

utilisable data structures.  

 

2.6.2.  NLTK 

The Natural Language Toolkit, also known as NLTK [65], is an open source library, which includes 

extensive software, data, and documentation, that can be used to build natural language 

processing programs in Python. It provides basic classes for representing data relevant to natural 

language processing, standard interfaces for performing tasks such as syntactic parsing and text 

classification, and standard implementations for each task that can be combined to solve complex 

problems. 

 

One of NLTK’s functionalities is the processing of raw text. For that, it requires a corpus. The 

nltk.corpus Python package defines a collection of corpus reader classes, which can be used to 

access the contents of a diverse set of corpora. An example of this is the 

CategorizedPlaintextCorpusReader. It is used to access corpora that contain documents which 

have been categorised for topic, label, etc. In addition to the standard corpus interface, these 

corpora provide access to the list of categories and the mapping between the documents and 

their categories.  

 

After accessing the corpus, it is necessary to normalise it. NLTK provides tools to normalize text, 

from tokenization, the removing of punctuation, or converting text to lowercase, so that the 

distinction between “The” and “the,” for example, is ignored. Another resource NLTK provides is 

a set of stopwords, that is, high-frequency words like “the,” “to” and “also” that one sometimes 

wants to filter out of a document before further processing. Stopwords usually have little lexical 

content, and their presence in a text fails to distinguish it from other texts. Often it is still necessary 

to go further than this, so NLTK offers a way to Stemm and/or Lemmatize the raw text. 

 

2.6.3.  Scikit-learn 

Scikit-learn [26] is a free machine learning library for Python. It features various classification, 

regression and clustering algorithms including support vector machines, random forests, k-means 

and many others. 

 

The Scikit-learn Application Programming Interface (API) is an object-oriented interface centered 

around the concept of an estimator — broadly any object that can learn from data, be it a 

classification, regression or clustering algorithm. Each estimator in Scikit-learn has a fit() and a 

predict() method: 

 The fit() method sets the state of the estimator based on the training data. Usually, the 

data is comprised of a two-dimensional array X of shape “(nr. samples, nr. predictors)” 

that holds the feature matrix, and a one-dimensional array y that holds the labels;  

 The predict() method generates predictions: predicted regression values in the case of 
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regression, or the corresponding class labels in the case of classification [66].  

 

The main steps of a classification task will be described below, as well as their implementation 

according to Scikit-learn. 

 

2.6.3.1. Vectorization 

To run machine learning algorithms in a corpus or any text document, it is necessary to convert 

the text into numerical feature vectors. The bag-of-words model [67] (also known as the vector 

space model) is frequently used in methods of document classification where the (frequency of) 

occurrence of each word is used as a feature for training a classifier.  

 

The problem of just counting the number of words in each document is that it will give more weight 

to longer documents than shorter documents. To avoid this, term frequency-inverse document 

frequency (TF-IDF) [68] can be used. TF-IDF is a numerical statistic that is intended to reflect how 

important a word is to a document in a collection or corpus. It is the product of two statistics, term 

frequency (TF) and inverse document frequency (IDF). TF of a word is the frequency of a word 

(i.e., the number of times it appears) in a document. IDF, on the contrary, reduces the weight of 

terms that occur very frequently in the document set and, at the same time, increases the weight 

of terms that occur rarely. 

 

Scikit-learn provides methods to vectorize the data (both the bag-of-words and TF-IDF 

approaches) through sklearn.feature_extraction.text, namely TfidfVectorizer. After it has been 

initialized, the vectorizer works with two methods: fit_transform(), and transform(). These methods 

work as follows: to center the data (i.e., make it have zero mean and unit standard error), it is 

necessary to subtract the mean of the population (μ) and then divide the result by the standard 

deviation (σ): 

𝑥′ =
𝑥 − 𝜇

𝜎
(2.9)

 

 

This procedure is done on the training set of the data. After it, the same transformation has to be 

applied to test set (e.g., in cross-validation) or to newly obtained examples before forecast. The 

same two parameters μ and σ that were used to center the training set have to be used. Hence, 

every sklearn's fit() method calculates the parameters (μ and σ) and saves them as an internal 

object state. Afterward, the transform() method is called to apply the transformation to a particular 

set of examples. The fit_transform() method joins these two steps in one and is used for the initial 

fitting of parameters on the training set 𝑥, but it also returns a transformed 𝑥′. Internally, it just 

calls first fit() and then transform() on the same data. 

 

2.6.3.2. Cross-Validation 

Scikit-learn offers several methods to deal with cross-validation through class 
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sklearn.model_selection, namely cross_val_predict. This method works with both the data and 

the estimator (see 2.6.3.3 for examples of estimators). After splitting the data (both samples and 

labels) into training and testing sets, it will use the samples and labels of the training set to fit the 

estimator. Later, this estimator will predict the labels on the test set samples (without using test 

set labels). This process will be repeated for N times (N is a number defined by the user), each 

time using different data for training and different data for testing. 

 

2.6.3.3. Classification 

Scikit-learn features various classification algorithms based on machine learning. The theory 

behind these algorithms is explained in 2.2.1.1. Every algorithm has a fit() and a predict() method, 

as explained in 2.6.3. 

 

The following classification algorithms take as input two arrays: an array 𝑋, sparse or dense, of 

size [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] holding the training samples, and an array 𝑦 of integer values, size 

[𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠], holding the class labels for the training samples.  

 

Multinomial Naïve Bayes 

MultinomialNB() method, from class sklearn.naive_bayes, implements the naïve Bayes algorithm 

for multinomially distributed data. The multinomial distribution typically requires integer feature 

(i.e., word vector) counts, however, practically, fractional counts (such as TF-IDF) also work.  

 

K-Nearest Neighbors 

From class sklearn. Neighbors, the KNeighborsClassifier() method implements the k-nearest 

neighbor's classifier.  

 

Decision Tree 

The DecisionTreeClassifier() method from class sklearn.tree is capable of performing both binary 

(with labels from range [-1, 1]) and multiclass (with labels from range [0, …, K-1]) classification on 

a given dataset. 

 

This algorithm can be used to predict the class of the samples after being fitted or, alternatively, 

the probability of each class (that is, the fraction of training samples of the same class in a leaf). 

 

Random Forest 

The RandomForestClassifier() method implements the random forest algorithm and can be 

imported from the sklearn.ensemble module. 
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Logistic Regression 

The implementation of logistic regression in Scikit-learn can be accessed from 

LogisticRegression(), imported from sklearn.linear_model. This implementation can fit binary, 

One-vs-Rest, or multinomial logistic regression with optional L2 or L1 regularisation24. 

There are some parameters to this method worth emphasising, namely: 

 “C”: a positive float with a default value of “1.0”. It represents the inverse of regularisation 

strength, where smaller values specify stronger regularisation; 

 “penalty”: a string of choice ‘l1’ or ‘l2’, with ‘l2’ as the default value. Used to specify the 

norm used in the regularisation. 

 

To choose the best parameters for the estimator, an exhaustive search over specified parameter 

values can be performed using GridSearchCV. This method is detailed in vii, below. 

 

Multi-Class Classification 

The sklearn.multiclass module implements meta-estimators to solve both multiclass and 

multilabel classification problems, by decomposing them into binary classification problems. 

 

SVC and NuSVC, individually, are handled by Scikit-learn as a One-vs-One strategy, which 

constructs one classifier per pair of classes. At prediction time, the class which received the most 

votes is selected. If a tie occurs, (among two classes with an equal number of votes), it selects 

the class with the highest aggregate classification confidence, by summing over the pair-wise 

classification confidence levels computed by the underlying binary classifiers.  

 

The SVC() and NuSVC() methods can be imported from the sklearn.svm class.  

 

Grid Search 

Estimators may contain parameters that are not directly learned within estimators, also known as 

hyper-parameters. In Scikit-learn, these are passed as arguments to the constructor of the 

estimator.  

 

Any parameter provided when constructing an estimator may be optimised by an exhaustive grid 

search. The grid search provided by GridSearchCV(), from class sklearn.model_selection, 

exhaustively generates candidates from a grid of parameter values specified. 

 

GridSearchCV() implements a fit() and a score() method. It also implements other methods, if 

they are implemented in the estimator used. The parameters of the estimator used to apply these 

methods are optimised by cross-validated grid-search over the previously specified parameter 

                                                      

24  Regularisation is the application of a penalty to reduce overfitting the data. 
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grid. In the end, GridSearchCV() returns a list with the estimated best parameter value(s) to 

choose. 

 

2.6.3.4. Performance Analysis 

Class sklearn.metrics provides several ways to access the performance of the estimator in Scikit-

learn.  

 

If the user wishes to know the accuracy score, the method accuracy_score() will return its value. 

There are two parameters obligatory to fill in this method: y_true stands for a label indicator array, 

containing the correct labels for the test set; y_pred is a label indicator array with the predicted 

labels, as returned by a classifier. 

 

Another way to evaluate the accuracy of a classification is to compute a confusion matrix. By 

definition [26], a confusion matrix 𝐶 is such that 𝐶𝑖,𝑗 is equal to the number of observations known 

to be in group 𝑖, but predicted to be in group 𝑗. Therefore, in binary classification, the count of true 

negatives is 𝐶0,0, false negatives is 𝐶1,0, true positives is 𝐶1,1 and false positives is 𝐶0,1. 

 

In Scikit-learn, a confusion matrix can be obtained with the confusion_matrix() method. As with 

accuracy_score(), it also receives the parameters y_true and y_pred. 

 

For a more detailed performance analysis of the results, a classification_report() method is 

available. This method builds a text report showing the main classification metrics: precision, 

recall, f1-score, and support (the number of objects in each class), as well as an average value 

for all the classes.  

 

Classification_report() takes as input three main parameters: y_true and y_pred (like 

accuracy_score()), and target_names, that may receive either a list of strings, where each is a 

different class label, or a pointer to a variable containing the class labels (in list of strings format 

as well). An example of a classification report, as outputted by a Python interpreter, is shown in 

figure 2.4. 

 

 

 

 

Figure 2.4 - Classification report output example 
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2.6.3.5. Model Evaluation 

Scikit-learn possesses several ways to evaluate the employed models. All text labels must be 

converted to integers, with LabelEncoder() from class sklearn.preprocessing, before applying any 

other function. 

 

Learning Curve 

A learning curve presents the user with the validation and training score of an estimator for a set 

of training samples. It is a way to figure out if and how much a user will benefit from adding more 

training data and whether the estimator suffers more from a variance or a bias error. If both the 

validation score and the training score merge into a value that is too low with increasing size of 

the training set, the user will not benefit much from more training data. 

 

Figure 2.5 shows an example of a learning curve of a naive Bayes classifier, for Scikit-learn “digits” 

dataset. The training and cross-validation score are both not very good at the end. However, the 

shape of the curve is representative of more complex datasets [26]: the training score is very high 

at the beginning and decreases with the increase of training examples, as for the cross-validation 

score, starts as very low and increases with the increase of training examples. An ideal learning 

curve would have both scores around the maximum value. 

 

From class sklearn.model_selection, the function learning_curve() generates the values that are 

required to plot a learning curve (number of samples used, average scores on training sets and 

average scores on validation sets). 

 

ROC Curve 

The ROC curve can be computed in Scikit-learn by the roc_curve() function. This function requires 

the true binary value and the target scores, which can either be probability estimates of the 

Figure 2.5 - Example of learning curve using Naïve Bayes classifier 
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positive class, confidence values, or binary decisions. It is not sensitive to whether the dataset is 

balanced or imbalanced. An example of a ROC curve is shown in figure 2.6. 

 

The roc_auc_score() function computes the area under the ROC curve, also denoted by AUC or 

AUROC. AUC can be interpreted as the probability that the classifier will assign a higher score to 

a randomly chosen positive example, rather than to a randomly chosen negative example [69].  

PR Curve 

To compute precision-recall pairs for different probability thresholds within the binary classification 

task, Scikit-learn provides the function precision_recall_curve() from module sklearn.metrics.  

 

The PR curve is very sensitive to whether the dataset is balanced or imbalanced. An example of 

a PR curve is shown in figure 2.7. 

  

Figure 2.6 - Example of ROC curve 

Figure 2.7 - Example of precision-recall curve with average precision of 0.91 
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Section 3 

Developed Work 

 

This section describes all the work developed in order to accomplish the proposed objectives. 

One of the main goals is the development of a semi-automatic tool for classification of scientific 

articles, relying on the use of MeSH terms for the enhancement of the performance of the 

classifier.  

 

First, the methodology followed in this work is presented. An overview of the tool is presented 

next, where its architecture from a higher level of abstraction its described. Then, a detailed 

description of its respective components is described, along with the datasets further used by 

them.  

 

3.1.  Methodology 

The scheme presented in figure 3.1 represents the overall flow of this work, with research 

questions and a summary of the employed methodologies for each for the tasks. 

 

 

Figure 3.1 - Proposed methodology 
 

3.2. Overview 

The system is composed of two major modules: the PubMed search and save, and the classifier 

modules. Although these modules are responsible for addressing each task independently, they 

Task 1: 

Create the system, i.e., a tool that searches PubMed for scientific articles and saves 
them according to pre-defined labels, and another tool that classifies a set of 

articles

Task 2:

Analysis of the results obtained by the created system when applied to two different 
practical cases

Objective: 

Develop a system capable of creating a classification model which training is based 
on a controlled vocabulary (MeSH) and Machine Learning algorithms

Hypothesis:

Do TM tools and controlled vocabularies have a positive impact on the SR process?
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are part of the same pipeline, presented in figure 3.2. 

 

 

Figure 3.2 - Proposed pipeline 
 

Figure 3.2 represents a higher level of abstraction of the system execution. The system starts 

with a user-presented query into the PubMed Search & Save script, which outputs a labelled 

corpus. Two different corpora will be inputted to the Classifier script, which will produce a 

classification report for the user to analyse. 

 

If there is no need to download a new corpus from PubMed, i.e., if the user already has a set of 

“.txt” format files containing the title and abstract for a given article, the first two steps of the 

pipeline may be skipped. For that set of articles to be used as a corpus, they should all be inserted 

in the same folder and follow the filename scheme of “𝑙𝑎𝑏𝑒𝑙𝑁 . 𝑡𝑥𝑡”, where “label” is the class label 

the user desires, “N” is a number (all files must have different numbers) and “.txt” is the file format. 

 

3.3. Script Development 

To accomplish the tasks proposed, two scripts were developed: one for searching and saving 

articles from PubMed according to a given query, and a second one for the classification of a 

given corpus. The following sub-sections will describe the implementation of each.  

 

3.3.1.  PubMed Search & Save 

The “PubMed Search and Save” python script was built with the intent of facilitating both the article 

retrieval and the future usage of the retrieved articles into the classifier script. It is built under 

BioPython modules, and should be run on Terminal, by accessing the directory where the script 

is located and then using the command “python pubmed_search_and_save.py.” 

 

The script is built in a user-friendly way: after successfully initiating the script, the user only needs 

to provide the script with a few information for it to run. An example run is showed in figure 3.3, 

below. 

 

The email is a mandatory field since to make use of NCBI's25 E-utilities, NCBI requires an email 

address with each request. The reason for this is because, in case of excessive usage of the E-

utilities, NCBI will attempt to contact a user at the email address provided before blocking access 

to the E-utilities. 

                                                      

25  The National Center for Biotechnology Information (NCBI) is part of the NLM. 
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The following question regards the desired query. This field should be answered just like a regular 

PubMed search. 

 

 

The “desired label” question is a way of identifying the retrieved articles, not only for the user itself 

but especially for usage with the classifier script (as it needs that each document from the corpus 

to have a label). The label should have no spaces – if necessary; the user should instead use the 

“_” symbol. 

 

The minimum date field is optional – the user may or may not wish to limit the search by a given 

date. In any case, a date should be provided in the YYYY/MM/DD format, even if it is “0000/01/01”. 

 

The latter question is related to the number of articles desired. The script will try to fetch as many 

articles as inputted by the user, and the final number of articles retrieved is shown below. If there 

is any problem with an article, the script will pass to the next one and show a “Saving information 

for X out of Y articles” information.  

 

All articles are saved to the same directory where the script is located. 

 

3.3.2.  Classifier 

The “Classifier” python script was built in consideration with the research questions and benefiting 

from Scikit-learn’s state-of-the-art implementations of many well-known ML algorithms, among 

other Python modules. It is projected to run on Terminal, by accessing the directory where the 

script is located and then using the command “python classifier.py.” 

 

The script is built in a user-friendly way: after successfully initiating the script, the user only needs 

to provide the script with a few information for it to run. An example run is showed in figure 3.4. 

 

For a correct usage of the script, the user is requested to enter the location of both training and 

test data. It is required that both corpora are located in different paths, to ensure better results.  

 

After specifying the location of the corpora, the user is requested to choose a classification 

algorithm from the provided list. For it, it should simply enter a number corresponding to the 

desired algorithm. 

Figure 3.3 - “PubMed Search and Save” example run 
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Following the selection of the algorithm, the user is asked whether desires to see the plot for 

learning curves, precision/recall, ROC or confusion matrix, on which it should reply with Y/y for 

“yes,” and N/n for “no.” If the answer is “yes” for any option, a graphic will be computed following 

the examples presented in section 2.6.3.5.  

 

 

After the initial setup of the classifier, a few measures are printed, as well as the full classification 

report.  

 

The “validation set document classification accuracy” is a percentage, related to the ten-fold 

cross-validation performed with the training data, and consequent label prediction. It is followed 

by a “test set document classification accuracy” that uses percentage as well, as an indicator of 

the accuracy of the classification algorithm predictions. 

 

A more accurate and in-depth classification report is provided in the following lines. It should be 

read as a table, where the first line contains the column names, i.e., the measures in study 

(“precision,” “recall,” “f1-score”) and the number of articles in evaluation (“support”). The first and 

second rows represent each of the data labels (the ones chosen by PubMed Search and Save 

“desired label” parameter), and the last row is an average measure for each of the classification 

results and the total number of articles, in the “support” column. Each measure (for precision, 

recall, and f1-score) is shown as a number from 0 to 1. 

 

The last line provides a simple confusion matrix, where the first line is related to the first label (in 

Figure 3.4 - "Classifier" script example run 
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the example, “nonrelevant”) and the latter line to the second label (in the example, “relevant”). For 

this specific example, the reading would be “for the ‘nonrelevant’ label, there were 11 articles 

correctly classified and 14 incorrectly classified; for the ‘relevant’ label, there were seven articles 

incorrectly classified and 53 correctly classified.” 

 

3.3.2.1.  Model Evaluation 

Before applying the classifier to the datasets in study, a few tests were conducted in order to verify 

its correct functioning. 

 

A first corpus of 43 articles was generated, with 23 articles belonging to a category with label 

“breast_cancer” and the remaining 20 to a category with “hd” (from Huntington’s disease) label. 

The “hd” articles were obtained using the “PubMed Search and Save” script, using the following 

query: "(huntington disease[MeSH Terms]) NOT breast cancer[MeSH Terms]" and a minimum 

date parameter of '2015/01/01'; the “breast_cancer” articles were obtained using the following 

query: "(breast cancer[MeSH Terms]) NOT huntington disease[MeSH Terms]", with a minimum 

date parameter of ‘2016/01/01’.  

 

The intent with using such different subjects was to ensure that each group of articles had a 

different bag of words. This can be attested by the figure 3 (in the annex C), showing each bag’s 

set of words. 

 

After verifying that each corpus had different bags of words, a bigger corpus (with the same 

queries) with approximately 2000 articles was generated. With this new corpus, a set of tests was 

made to fine tune the classifier algorithm, aiming to achieve a precision of 80% and F-score of 

85%. 

 

With the successful achievement of these target values, a final test was performed: the classifier 

was trained using the same corpus, but a different test set containing “fake” “hd” label articles 

(i.e., cancer articles whose label was intentionally replaced to “hd”) was fed to the classifier. The 

result was a “correct misclassification” of these articles, i.e., the classifier correctly classified the 

“hd” articles as belonging to the “cancer” category. A confusion matrix that attests these results 

can be seen in figure 4 (in the annex D). 

 

3.4.  Datasets 

The application of TM and NLP techniques requires annotated datasets in order to develop and/or 

evaluate new approaches. These datasets are made up of a corpus of documents, relevant to a 

specific domain, and its annotations. Since most times these are manually curated by domain 

experts, they can serve as a gold standard to train, for instance, a ML classifier and evaluate its 

performance. The downside of manually curated annotations is that they require a defined set of 

annotation guidelines and availability to annotate the texts [12], [70]. 
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For the development of this work, two different and independently curated datasets have been 

created and used.  

 

3.4.1.  Mindfulness/Fatigue 

Ulrichsen et al. [71] developed a systematic review to study the efficiency of mindfulness-based 

interventions for fatigue across neurological conditions and acquired brain injuries.  

 

Systematic literature searches were conducted in PubMed, Medline, Web of Science, and 

PsycINFO, using “fatigue” and “mindfulness” as query keywords. A total of four studies (out of 

372) were retained for meta-analysis. Figure 3.5 summarises the search and study selection 

processes. 

 

 
 

The full dataset was requested to the authors, who returned a file containing references for 364 

articles, instead of 372. From those 364 articles, and given that the article retrieval script 

(“PubMed Search and Save.py”) uses the PubMed search engine only, all the non-PubMed 

retrieved articles were taken out from the corpus. Four duplicated articles were also taken from 

the article list. This left the final corpus, i.e., the golden standard, with 119 articles divided into two 

classes: the four included in the SR, and the remaining 115 PubMed articles.  

 

 

Figure 3.5 - Search process and study selection flowchart (adapted from [71]) 
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3.4.2.  Humanin 

Following the request of a researcher for help in their study regarding the Humanin protein, a 

dataset related to this problem was created from scratch.  

 

To create the golden standard, a set of articles were retrieved from PubMed using the “humanin” 

keyword and a minimum publication date of 01/01/2012, using the PubMed Search and Save 

script explained in 3.3.1. 

 

The resulting 85 articles were sent to the researcher for manual classification, i.e., the researcher 

was asked to classify from 1 to 5 how relevant each article was, by reading its title and abstract. 

With a numerical classification of 4 or 5, 60 articles were classified as “relevant,” and the 

remaining 25 articles (with numerical classifications from 1 to 3) as “non-relevant.” These were 

considered as the golden standard for classification purposes. 

 

The full article list is available in table 1, in the annex E. 

 

3.4. Practical Applications  

This subsection presents two different practical applications for the classification script. 

 

3.5.1.  Mindfulness/Fatigue Dataset 

The intent with Ulrichsen et al.’s [71] dataset was not to find articles belonging to one category or 

another, but instead finding a smaller amount of articles inside a bigger category, i.e., the SR-

included articles inside the universe of PubMed retrieved articles of non-SR-included articles. 

 

For this purpose, and since the goal was to study whether MeSH terms can be helpful in IR and 

article classification, the gold standard of 119 articles previously described in 3.4.1 was 

established as the test set. The reason for this is that since the labels for the 119 articles were 

known, a classification prediction could be validated as correct or incorrect. Two labels were 

created for the dataset: “SRincluded” for the SR-included articles, and “mindf_fatigue” for the 

remaining articles. 

 

Several training sets were created following the guidelines from Ulrichsen et al.’s [71] SR, i.e.: 

1. The inclusion criteria into the review seek to include “randomized (…) controlled trials 

aiming to measure the effect of different interventions on fatigue associated with 

neurological conditions and acquired brain injuries” and studies “primarily targeting 

fatigue” or including “fatigue as a secondary outcome measure.” 

2. The exclusion criteria eliminated studies concerning fatigue “as a potential side effect of 

treatment, or as a contraindication for treatment (…), or studies targeting parallel, but 

different conditions to fatigue, such as sleepiness, reduced vigilance, anxiety, and 
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depression”. 

 

For the “SRincluded” articles, the exclusion criteria were approached using the “NOT” logical 

operator to exclude the undesired keywords. The usage of the “AND” logical operator ensured 

the retrieval of articles with both the desired keyword and a second set of keywords. The “OR” 

logical operator allows the user to retrieve several sets of keywords at once. 

 

The queries given to the PubMed Search and Save script for the retrieval of the training sets were 

as presented by table 3.1. A maximum number of 500 articles per category was set for retrieval. 

No minimum date was set (i.e., “0000/01/01”).  

 

Table 3.1 - Queries for the mindfulness training set article retrieval 

Trial Query Label 

“Train” 

(((randomized controlled trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT 

((adverse effects[MeSH Terms]) OR contraindications[MeSH Terms]) 
“SRincluded” 

(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms] OR 

mindfulness[MeSH Terms] 
“mindf_fatigue” 

“Train 1” 

((((fatigue[MeSH Terms]) OR mindfulness[MeSH Terms])) AND ((randomized controlled 

trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT ((((adverse effects[MeSH 

Terms]) OR contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR 

depression[MeSH Terms]) 

“SRincluded” 

(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms] OR 

mindfulness[MeSH Terms] 
“mindf_fatigue” 

“Train 2” 

((((fatigue[MeSH Terms]) OR mindfulness[MeSH Terms])) AND ((randomized controlled 

trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT ((((adverse effects[MeSH 

Terms]) OR contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR 

depression[MeSH Terms]) 

“SRincluded” 

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR fatigue[MeSH Terms]) 

OR mindfulness[MeSH Terms])) AND ((adverse effects[MeSH Subheading]) AND 

fatigue[MeSH Terms])) NOT randomized controlled trial[MeSH Terms] 

“mindf_fatigue” 

“Train 3” 

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR ((randomized 

controlled trial[MeSH Terms]) OR brain injuries[MeSH Terms]))) NOT ((((adverse 

effects[MeSH Subheading]) OR contraindications[MeSH Terms]) OR anxiety[MeSH 

Terms]) OR depression[MeSH Terms]))) OR ((((((fatigue[MeSH Terms]) AND 

mindfulness[MeSH Terms])) AND ((randomized controlled trial[MeSH Terms]) OR brain 

injuries[MeSH Terms]))) NOT ((((adverse effects[MeSH Subheading]) OR 

contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR depression[MeSH 

Terms])) 

“SRincluded” 

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR fatigue[MeSH Terms]) 

OR mindfulness[MeSH Terms])) AND ((adverse effects[MeSH Subheading]) AND 

fatigue[MeSH Terms])) NOT randomized controlled trial[MeSH Terms] 

“mindf_fatigue” 

 

For each corpus, that is, a training set (therefrom referred to according to their “trial” in table 3.1), 

and the golden standard as test set, several classification runs were performed with resource to 

the Classifier script, i.e., one for each classification algorithm. 
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3.5.2.  Humanin Dataset 

The problem which led to the creation of the Humanin dataset can be seen as a binary 

classification problem, that is, the categories to which a given article may belong are mutually 

exclusive.  

 

For this purpose, and following the objective to study whether MeSH terms can be helpful in IR 

and article classification, the gold standard of 95 articles referred in 3.4.2 was established as the 

test set. Again, the reason for this is that since the labels for the 95 articles were known, a 

classification prediction could be validated as correct or incorrect. Two labels were created for the 

dataset: “relevant” for the Humanin-related articles, and “nonrelevant” for the remaining articles. 

 

Unlike the mindfulness dataset, there were no previously dictated guidelines for the construction 

of the PubMed retrieval queries. The query-building strategy consisted of the combination of two 

approaches: 

1. Starting with a set of keywords provided by the researcher (“activation”, “binding”, 

“Abeta”, “humanin”, “importin”, “brain”, “IGFBP3”, “TRIM11”, “BAX”, “BAK”, “bile acid”, 

“SHLP”, “MOTS-c”, “isoform”, “oligomerization”, “retrograde”, “humanin receptor”, 

“mitochondria”, “clinical”, “mutation”, “ubiquitin”, “microRNA”, “mtDNA”, “anaerobic”, 

“microbiome”, “apoptosis”, “cell survival”, “Alzheimer disease”), a small MeSH search 

was made to see which terms were available as descriptors.  

 

From the initial list, the terms available as descriptors in MeSH were the following: 

“humanin”, “mitochondria”, “mRNA”, “mtDNA”, “metabolism”, “peptides”, “apoptosis”, 

“cell survival”, “Alzheimer disease”, “brain”, “importin”, “mutation”, “ubiquitin”. These were 

saved as reference for future queries. 

 

2. Starting with the main research term, “humanin,” a MeSH search was made with the 

intent of searching its hierarchy, i.e., the “parent” nodes, and using them as queries to 

generate training sets and evaluate the consequent performance.  

 

The referred MeSH search returned the tree represented in figure 3.6. The lettering in 

blue below each descriptor represents the number that indicates its tree location. 

Humanin itself does not have a tree location, as it is a supplementary concept rather than 

a descriptor. 

 

Combining the knowledge gained from these two strategies, a set of queries was drawn. For the 

“non-relevant” to humanin articles, all humanin-related articles were excluded from the search 

using the “NOT humanin” logical operator. The inverse was made regarding the humanin 

“relevant” articles, i.e., the usage of the “AND humanin” logical operator to ensure the retrieval of 

articles with both the desired keyword and the humanin keyword itself. The “OR” logical operator 
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allows the user to retrieve several sets of keywords at once. 

 

 

As such, the queries given to the PubMed Search and Save script for the retrieval of the training 

sets were as presented by below according to table 3.2. A maximum number of 100 articles per 

category was set for retrieval. A minimum date of “2015/01/01” was set. 

 

Table 3.2 - Queries for the Humanin training set article retrieval 

Trial Query Label 

“Train 1” 
mitochondria[MeSH Terms] AND mtdna[MeSH Terms] AND peptides[MeSH Terms] “nonrelevant” 

mitochondria[MeSH Terms] AND humanin “relevant” 

“Train 2” 
mitochondria[MeSH Terms] AND mtdna[MeSH Terms] AND peptides[MeSH Terms] “nonrelevant” 

(humanin) AND alzheimer disease[MeSH Terms] “relevant” 

“Train 3” 

(importin[MeSH Terms] NOT humanin) OR (peptides[MeSH Terms] NOT humanin) OR 

(alzheimer's disease[MeSH Terms] NOT humanin) OR (brain[MeSH Terms] NOT 

humanin) OR (mutation[MeSH Terms] NOT humanin) OR (microrna[MeSH Terms] NOT 

humanin) OR (aging[MeSH Terms] NOT humanin) OR (cell survival[MeSH Terms] NOT 

humanin) OR (apoptosis[MeSH Terms] NOT humanin) 

“nonrelevant” 

(humanin AND apoptosis[MeSH Terms) OR (humanin AND peptides[MeSH Terms]) OR 

(humanin AND cell survival[MeSH Terms]) OR (humanin AND aging[MeSH Terms]) OR 

(humanin AND microrna[MeSH Terms]) OR (humanin AND mutation[MeSH Terms]) OR 

(humanin AND brain[MeSH Terms]) OR (humanin AND alzheimer's disease[MeSH 

Terms]) OR (humanin AND mitochondria[MeSH Terms]) OR (humanin AND 

importin[MeSH Terms]) 

“relevant” 

“Train 4” 

((chemicals and drugs category[MeSH Terms])) NOT humanin “nonrelevant” 

(humanin AND apoptosis[MeSH Terms) OR (humanin AND peptides[MeSH Terms]) OR 

(humanin AND cell survival[MeSH Terms]) OR (humanin AND aging[MeSH Terms]) OR 

(humanin AND microrna[MeSH Terms]) OR (humanin AND mutation[MeSH Terms]) OR 

“relevant” 

Figure 3.6 - Humanin MeSH hierarchy tree 
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(humanin AND brain[MeSH Terms]) OR (humanin AND alzheimer's disease[MeSH 

Terms]) OR (humanin AND mitochondria[MeSH Terms]) OR (humanin AND 

importin[MeSH Terms]) 

“Train 5” 
((chemicals and drugs category[MeSH Terms])) NOT humanin “nonrelevant” 

((chemicals and drugs category[MeSH Terms])) AND humanin “relevant” 

“Train 6” 
(amino acids, peptides, and proteins[MeSH Terms]) NOT humanin “nonrelevant” 

(amino acids, peptides, and proteins[MeSH Terms]) AND humanin “relevant” 

“Train 7” 
((peptides[MeSH Terms] AND proteins[MeSH Terms])) NOT humanin “nonrelevant” 

((peptides[MeSH Terms] AND proteins[MeSH Terms])) AND humanin “relevant” 

“Train 8” 
((intracellular signaling peptides and proteins[MeSH Terms])) NOT humanin “nonrelevant” 

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant” 

“Train 9” 
((peptides[MeSH Terms] AND proteins[MeSH Terms])) NOT humanin “nonrelevant” 

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant” 

“Train 

10” 

(((anatomy category[MeSH Terms]) AND organisms category[MeSH Terms]) AND 

diseases category[MeSH Terms]) AND ((chemicals and drugs category[MeSH Terms]) 

NOT humanin) ((intracellular signaling peptides and proteins[MeSH Terms])) AND 

humanin 

“nonrelevant” 

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant” 

“Train 

11” 

((anatomy category[MeSH Terms] OR organisms category[MeSH Terms] OR diseases 

category[MeSH Terms] OR chemicals and drugs category[MeSH Terms]) NOT humanin) 
“nonrelevant” 

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant” 

 

For each corpus, that is, a training set (therefrom referred to according to their “trial” in table 3.2), 

and the golden standard as test set, several classification runs were performed with resource to 

the Classifier script, i.e., one for each classification algorithm. 
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Section 4 

Results & Discussion 

This section covers the results of the classification tasks, the model evaluations and the 

discussion of the different experiments. 

 

4.1. Results 

4.1.1.  Mindfulness/Fatigue Dataset 

Due to its extent, the classification reports for each corpus and classification algorithm can be 

consulted in Table 2, in the annex F. The average score of all classification trials ran with this 

dataset, that is, the average of both labels in each run, can be seen on table 4.1. 

 

Table 4.1 - Average score of all classification trials with the mindfulness dataset 

Algorithm 
Average 

Precision Recall F1-Score 

Multinomial NB 66% 64% 56% 

K Neighbors 67% 65% 55% 

Random Forest 66% 63% 58% 

Decision Trees 67% 69% 62% 

Logistic Regression 67% 68% 61% 

 

The classification algorithms that consistently achieved the best performance amongst all trials 

were Decision Trees (with an F1-score26 of 62%) and Logistic Regression (with and F1-score of 

61%). Nonetheless, when observing the individual label score values in table 2 (in the annex F), 

it can be noted that the “SRincluded” articles consistently achieve low scores.  

 

A few examples are presented below, given their representation of the results of the classification 

trials. The first example, taking the Random Forest classification algorithm as reference, and trials 

“train” and “train 1”, is presented in table 4.2. 

 

Table 4.2 - Classification reports for "train" and "train 1", using the Random Forest algorithm 

Trial Label Precision Recall F1-Score Conf. Matrix 

Train 

SRincluded 0% 0% 0% 

[  0   4] 

 [  9 106] 
mindf_fatigue 96% 92% 94% 

avg / total 93% 89% 91% 

                                                      

26  As referred in 2.2.1.2, the harmonic mean of precision and recall, hence its usage as indicator of 

better/worse performance. 
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Train 1 

SRincluded 5% 50% 9% 

[ 2  2] 

 [40 75] 
mindf_fatigue 97% 65% 78% 

avg / total 94% 65% 76% 

 

The two training sets in question were chosen for comparison since their “mindf_fatigue” MeSH 

query is the same, i.e., the difference in both datasets resides in the “SRincluded” articles. 

 

In the “train” trial, class “SRincluded” has no correctly classified articles; nonetheless, nine articles 

from the “mindf_fatigue” class were misclassified as “SRincluded.” “Mindf_fatigue” class 

achieved, as such, very high-performance scores in all analysed parameters. This is reflected in 

the average scores, as the number of articles corresponding to the “mindf_fatigue” is multiple 

times bigger than the number of “SRincluded” articles. 

 

As for the “train 1” trial, it is seen that for the “SRincluded” articles there are now two correctly 

classified articles, that is, a recall of 50%. However, as 40 “mindf_fatigue” articles were 

misclassified as “SRincluded,” this resulted in a “SRincluded” precision score of only 5%. As for 

the “mindf_fatigue,” the main difference between the two trials resides in the recall and F-score 

scores, lowered by the misclassification of the 40 articles into the “SRincluded” class. 

 

Again, as the number of articles corresponding to the “mindf_fatigue” is multiple times bigger than 

the number of “SRincluded” articles, the average scores reflect mostly the good performance of 

the first label. 

 

Table 4.3 - Classification report for "train 3", using the Random Forest algorithm 

Label Precision Recall F1-Score Conf. Matrix 

SRincluded 13% 75% 22% 
[ 3  1] 

 [20 95] 
mindf_fatigue 99% 83% 90% 

avg / total 96% 82% 88% 

 

Taking “train 3” individually as another example (chosen since it achieved the better classification 

for the “SRincluded” articles, across all other trials) classified using the Random Forest algorithm, 

it is seen that this time three out of four articles from the “SRincluded” class are correctly classified, 

with 20 articles from the “mindf_fatigue” class were misclassified as “SRincluded” as well - hence 

the high recall (75%) and low precision (13%) for this class.  

 

4.1.1.1.  Model Evaluation 

For the evaluation of this model, the “train” training set is considered, together with the logistic 

regression classification algorithm (as presented in the first example in 4.1.1). All plots were 

generated by the Classifier script, together with the dataset classification. 
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The first evaluation measure to consider is the learning curve, presented below in figure 4.1. It 

can be seen that both the training and cross-validation scores increase, as the number of training 

examples increase as well, i.e., both scores are approximately 0.75 with a number of training 

scores below 100, and converge to a score value of approximately 0.9 when more than 600 

training examples are available. 

 

The next evaluation measure to consider is the ROC curve, to see how the number of correctly 

classified positive examples varies with the number of incorrectly classified negative examples, 

and is presented below in figure 4.2. 

 

The generated plot shows a ROC curve beginning in a True Positive rate (i.e., the recall) slightly 

Figure 4.1 - Learning curves for the "train" training set and logistic regression 
classification algorithm 

Figure 4.2 - ROC curve for the "train" training set and logistic regression 
classification algorithm 
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below 0.2 and a False Positive rate of 0, and growing in “ladder”-type of increase, i.e., the growth 

of correctly classified examples is proportional to the growth of incorrectly classified negative 

examples. 

 

The AUROC is 0.51, showing the probability of the classifier to assign a higher score to a 

randomly chosen positive example, rather than to a randomly chosen negative example. 

 

The last model evaluation plot shows the precision-recall curve and is presented in figure 4.3. 

 

The precision-recall curve shows the trade-off between precision and recall for different 

thresholds. In this case, the average precision is 0.97. It can be seen that there is a high area 

under the curve, denoting both high recall and high precision, i.e., a low false positive rate, as well 

as a low false negative rate. High scores for both measures indicate that the classifier is retrieving 

accurate results (i.e., high precision), as well as a majority of all positive results (i.e., high recall). 

 

The results achieved in the PR curve presented above may be explained by the highly imbalanced 

dataset, on which one of the two classes being classified as consistently a high precision. 

 

4.1.2.  Humanin Dataset 

Due to its extent, the classification reports for each corpus and classification algorithm can be 

consulted in Table 3, in the annex G. The average score of all classification trials ran with this 

dataset, that is, the average of both labels in each run, can be seen on table 4.4. 

 

 

 

Figure 4.3 – Precision-recall curve for the "train" training set and logistic regression 
classification algorithm 
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Table 4.4 - Average score of all classification trials with the humanin dataset 

Algorithm 
Average 

Precision Recall F1-Score 

Multinomial NB 70% 68% 68% 

K Neighbors 70% 68% 68% 

Random Forest 66% 62% 59% 

Decision Trees 66% 62% 59% 

Logistic Regression 76% 72% 73% 

 

The classification algorithm that consistently achieved the best performance amongst all trials 

was Logistic Regression, with and F1-score of 73%. Again, as with the mindfulness dataset case, 

when observing the individual label score values in table 3 (in the annex G), it can be seen that 

there is a gap in the performance scores of both labels – the “nonrelevant” class consistently 

achieves low performance scores, and the “relevant” class consistently achieves good scores.  

 

A few examples are presented below, given their representation of the overall results of the 

classification trials. The first example, taking the Logistic Regression classification algorithm as 

reference, and trials “train 4” and “train 5”, is presented in table 4.5. 

 

Table 4.5 - Classification reports for "train 4" and "train 5”, using the Logistic Regression algorithm 

Trial Label Precision Recall F1-Score Conf. Matrix 

Train 4 

nonrelevant 80% 48% 60% 

[12 13] 

 [ 3 57] 
relevant 81% 95% 88% 

avg / total 81% 81% 80% 

Train 5 

nonrelevant 77% 40% 53% 

[10  15] 

 [ 3 57] 
relevant 79% 95% 86% 

avg / total 79% 79% 76% 

 

The two training sets in question were chosen for comparison since their “nonrelevant” MeSH 

query is the same, i.e., the difference in both datasets resides in the “relevant” articles. 

 

In the “train 4” trial, and looking at the confusion matrix, it is seen that approximately half of the 

“nonrelevant” articles (12 out of 25) were correctly classified, hence the recall value of 48%. 

Nonetheless, since three articles from the “relevant” class were misclassified as “nonrelevant,” 

the precision of the latter class achieves a value of 80%. As for the “relevant” labelled articles, 57 

articles were correctly classified, and 13 were misclassified as “nonrelevant,” hence the 81% 

precision value. The 95% recall score is due to three out of 60 articles for this class being 

incorrectly classified.  
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As the number of articles corresponding to the “nonrelevant” class is significantly different from 

the number of “relevant” class articles, i.e., 25 versus 60 articles, the average scores reflect mostly 

the performance of the “relevant” class, hence the average 80% F1-score. 

 

Regarding the “train 5” trial, the difference in the performance scores is given to the lowering of 

the precision score for the “nonrelevant” class, from 80% in “trial 4” to 77% in “trial 5”, that is, a 

difference of two incorrectly classified articles. This difference slightly affects all the remaining 

performance scores negatively. 

 

The second example, presented in the table 4.6, is representative of the majority of the trials ran 

with other training sets and classification algorithms. 

 

Table 4.6 - Classification report for "train 2", using the K-Neighbors algorithm 

Label Precision Recall F1-Score Conf. Matrix 

nonrelevant 55% 64% 59% 
[16  9] 

 [13 47] 
relevant 84% 78% 81% 

avg / total 75% 74% 75% 

 

Looking at the confusion matrix, it can be seen that there is a slightly greater number of 

“nonrelevant” articles correctly classified (16 out of 25) when compared to the examples 

presented by table 4.5. At the same time, there is also a greater number of misclassifications in 

the “relevant” class articles, that is, 13 from the 60 articles belonging to this class were incorrectly 

classified as “nonrelevant.” Thus, the resulting scores: a precision of 55% for the “nonrelevant” 

class, given its correct classification of 16 articles as “nonrelevant” and incorrect classification of 

another 13 articles as “nonrelevant”, and a 64% recall score for the same label, given the 16 

correctly classified articles classified as “nonrelevant” and 9 misclassified as “relevant”.  

 

As for the “relevant” label, with 47 out of 60 articles correctly classified, the precision score 

achieved a value of 84%, and the recall score of 78% is explained by the nine articles from the 

“nonrelevant” class incorrectly classified as “relevant.” 

 

Again, given the difference of number of articles from both labels, the average scores reflect 

mostly the performance of the “relevant” class, hence the average 75% F1-score. 

 

4.1.2.1.  Model Evaluation 

For the evaluation of this model, the “train 4” training set is considered, together with the logistic 

regression classification algorithm (as presented in the table 4.5). All plots are generated by the 

Classifier script, together with the dataset classification. 

 

The first evaluation measure to consider is the learning curve, presented below in figure 4.4. It 
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can be seen that both training and cross-validation scores increase, as the number of training 

examples increase as well, i.e., CV score starts at a 0.7 score with 50 training examples and 

training score is slightly above 0.75 for the same number of training, and both measures converge 

to a score value of approximately 0.95 when more than 400 training examples are available. 

 

The next evaluation measure to consider is the ROC curve, to see how the number of correctly 

classified positive examples varies with the number of incorrectly classified negative examples, 

and is presented below in figure 4.5. 

 

The generated plot shows a ROC curve beginning in a True Positive rate (i.e., the recall) slightly 

below 0.2 and a False Positive rate of 0, growing consistently in the upper-left side of the plot until 

Figure 4.4 - Learning curves for the "train 4" training set and logistic regression 
classification algorithm 

Figure 4.5 - ROC curve for the "train 4" training set and logistic regression 
classification algorithm 
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it starts to stagnate at a False Positive rate of 0.5, near the True Positive rate value of 1. The 

AUROC is 0.81, showing the probability of the classifier to assign a higher score to a randomly 

chosen positive example, rather than to a randomly chosen negative example. 

 

The last model evaluation plot shows the precision-recall curve and is presented in figure 4.6.  

 

The precision-recall curve shows the trade-off between precision and recall for different 

thresholds. In this case, the average precision is 0.91. It can be seen that there is a high area 

under the curve, even though the curve as a negative slope, i.e., overall, the precision value 

decreases as the recall value increases. This indicates that as the number of positive results (i.e., 

the recall) increases, the classifier may retrieve less accurate results. 

 

4.2. Discussion 

The analysed datasets presented different challenges for the proposed task, which may help 

explain the obtained results. 

 

The mindfulness/fatigue dataset, as explained in 3.4.1, was based in the SR by Ulrichsen et al. 

[71]. Given that one of the classes enclosed only four articles (the ones included in the SR), the 

final dataset turned out to be highly imbalanced.     

 

As such, the majority of the classification trials achieve low-performance scores for the 

“SRincluded” class, and when it does not, this is achieved at the expense of a greater number of 

misclassifications in the other class articles.  

 

This can be verified by the results shown by table 4.2. As referred in 4.1.1, the two training sets 

Figure 4.6 - Precision/recall curve for the "train 4" training set and logistic regression 
classification algorithm 
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were chosen for comparison since the MeSH terms chosen for the “mindf_fatigue” PubMed query 

is the same (“(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms] 

OR mindfulness[MeSH Terms]”, i.e., the difference in both datasets resides in the “SRincluded” 

articles. The table 4.7 presents the different queries for both trials. 

 

Table 4.7 - Queries for the "SRincluded" class from the Mindfulness/fatigue dataset 

Trial Query 

Train 

(((randomized controlled trial[MeSH Terms]) 

OR brain injuries[MeSH Terms])) NOT 

((adverse effects[MeSH Terms]) OR 

contraindications[MeSH Terms]) 

Train 1 

((((fatigue[MeSH Terms]) OR 

mindfulness[MeSH Terms])) AND 

((randomized controlled trial[MeSH Terms]) 

OR brain injuries[MeSH Terms])) NOT 

((((adverse effects[MeSH Terms]) OR 

contraindications[MeSH Terms]) OR 

anxiety[MeSH Terms]) OR depression[MeSH 

Terms]) 

 

As seen, “train 1” query shows an extension of the “train” query, as it adds specificity for the 

articles retrieved through the addition of the “(fatigue[MeSH Terms]) OR mindfulness[MeSH 

Terms])” and “OR anxiety[MeSH Terms]) OR depression[MeSH Terms]” to the query. Raising the 

specificity of the “SRincluded” label resulted in the correct classification of two out of the four 

articles for that class, but at the same time, it also raised the recall score from 0 to 50%. 

 

However, “train 3”, as presented by table 4.3, achieved much better performance scores. The 

reason is behind the MeSH terms chosen for the PubMed queries, which can be seen in table 

4.8. 

 

Table 4.8 - MeSH terms for the "train 3" PubMed queries 

Class Query 

“SRincluded” 

(((((((fatigue[MeSH Terms]) AND 

mindfulness[MeSH Terms])) OR 

((randomized controlled trial[MeSH Terms]) 

OR brain injuries[MeSH Terms]))) NOT 

((((adverse effects[MeSH Subheading]) OR 

contraindications[MeSH Terms]) OR 

anxiety[MeSH Terms]) OR depression[MeSH 

Terms]))) OR ((((((fatigue[MeSH Terms]) 
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AND mindfulness[MeSH Terms])) AND 

((randomized controlled trial[MeSH Terms]) 

OR brain injuries[MeSH Terms]))) NOT 

((((adverse effects[MeSH Subheading]) OR 

contraindications[MeSH Terms]) OR 

anxiety[MeSH Terms]) OR depression[MeSH 

Terms])) 

“Mindf_fatigue” 

(((((((fatigue[MeSH Terms]) AND 

mindfulness[MeSH Terms])) OR 

fatigue[MeSH Terms]) OR 

mindfulness[MeSH Terms])) AND ((adverse 

effects[MeSH Subheading]) AND 

fatigue[MeSH Terms])) NOT randomized 

controlled trial[MeSH Terms] 

 

As it can be seen, the usage of more MeSH terms, aided by the usage of the “AND/OR/NOT” 

logical operators, to create more complex and comprehensive queries may help improve the 

performance scores of this kind of classification problems. This statement is corroborated by the 

results achieved by the humanin dataset. 

 

Looking at the “train 4” e “train 5”, presented by table 4.5, it can be seen that the “train 4” trial 

achieved a better classification performance. When looking at the MeSH terms used to build the 

PubMed queries, it can be seen why: the “relevant” class for the “train 4” had a much more 

complex query than the same class for the “train 5”, as presented by table 4.9. 

 

Table 4.9 - Queries for the "relevant" class from the Humanin dataset 

Trial Query 

Train 4 

(humanin AND apoptosis[MeSH Terms) OR 

(humanin AND peptides[MeSH Terms]) OR 

(humanin AND cell survival[MeSH Terms]) 

OR (humanin AND aging[MeSH Terms]) OR 

(humanin AND microrna[MeSH Terms]) OR 

(humanin AND mutation[MeSH Terms]) OR 

(humanin AND brain[MeSH Terms]) OR 

(humanin AND alzheimer's disease[MeSH 

Terms]) OR (humanin AND 

mitochondria[MeSH Terms]) OR (humanin 

AND importin[MeSH Terms]) 

Train 5 
((chemicals and drugs category[MeSH 

Terms])) AND humanin 
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It shall be remembered that, as referred in 3.5.2, one of the query-building strategies involved 

starting with the main research term, “humanin,” and then using the “parent” nodes to generate 

new queries in order to evaluate the consequent performance.  

 

With the results obtained, and as referred before, one can state that the usage of more MeSH 

terms to create more complex and comprehensive queries may help improve the performance 

scores of this kind of classification problems. 
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Section 5 

Conclusions & Future Work 

 

This section summarises the conclusions of this work, discusses some limitations and future work 

ideas, and presents the final remarks. 

 

5.1. Summary 

The main objective of this work was to test the hypothesis that TM tools and controlled 

vocabularies have a positive impact on the systematic reviewing, either from an aspect of time 

reduction or regarding performance (i.e., if a given article is relevant to the study or not). 

 

For the accomplishment of this objective, a system capable of creating a classification model 

which training is based on a controlled vocabulary (MeSH) that can be applied to a variety of 

biomedical literature was developed. The aim was not to (re-)create any existing algorithms, but 

to study whether this approach would have an impact on the SR process.  

  

As stated by several authors ([9], [42], [53], [55], [58], among others), the strength of automatizing 

the systematic reviewing process resides mostly in a significant reduction of time spent describing 

studies (versus a manual verification), but also enabling studies to be described according to an 

external framework. 

 

The usage of two different datasets, with two completely different origins, allowed to see the 

behavior of this approach in two different scenarios and evaluate the usage of TM tools aligned 

with controlled vocabularies (as is MeSH).        

 

Though the findings may have been limited by the datasets used, the limitations found may as 

well be the starting point for further studies.  

 

5.1.1.  Limitations 

The task on which this work focuses brings up several challenges. One of the most challenging 

limitations found is the application of exclusion/inclusion (eligibility) criteria, which was the case 

with the mindfulness dataset results. A suggestion for further improvement may reside either in 

the refinement of stopwords or, in a long stretch, the creation of a controlled vocabulary for the 

PICOS (Participants, Interventions, Comparators, Outcomes and Study design) inclusion criteria, 

as this is the most applied methodology.  

 

As another limitation example, consider a search for a conceptually broad review, necessarily 

wide in scope. The usage of the MeSH terms (or any controlled vocabulary) for the creation of the 
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search query and consequent training data will probably have no influence on the result, as the 

system will retrieve a large number of irrelevant articles, in comparison to the number of correct 

hits.  

 

There is also the detail that the chosen vocabulary may not include the concepts needed in order 

to retrieve all the desired articles. On the other hand, using controlled vocabularies to narrow 

down the retrieved articles may be a powerful way of finding documents quickly, but it is possible 

that the method will miss potentially relevant studies that, if manually observed, wouldn’t be 

missed.  

 

Another flaw is that when using third-party software, as is Scikit-learn, the user is limited to what 

it offers. In this case, the confusion matrices used to show how many articles are 

correctly/incorrectly classified are created in a way that the matrix does not store each article’s 

name. This results in the loss of some information about each article and its classification, 

retrieving only the number of correctly/incorrectly classified articles.  

 
 

5.1.2.  Final Remarks 

Systematic reviews are considered today a widely accepted research method. However, as 

medical knowledge increases (and, with it, the amount of literature published every day), it is 

increasingly difficult to conduct them to fit with policy and practice timescales. This is especially 

true in areas of study which databases are non-comprehensive and inconsistently-indexed. 

 

Given that the ultimate desire in the area is that studies may be included or excluded without the 

need to ever being seen by a human, a few questions arise: should TM tools reach perfect 

precision scores so that they can be used in systematic reviews? Moreover, even if a given tool 

has shown to be 100% precise in for a given study/SR, how can the final user be sure that the 

score achieved in that review will apply to any other study? 

 

One may argue that TM tools, which are ever-changing and improving, may not need to claim 

perfect performance scores if they can demonstrate success in solving some of the problems 

reviewers currently face. More specifically, if this results in reducing the length of time that it takes 

to identify the studies that will ultimately be included in the review. However, this may raise a 

conceptual challenge to reviewers: assuming that there is a big difference between not having 

retrieved a study (as it is nearly impossible to search everything) and having retrieved it but 

excluding it inaccurately as the result of an automatic process, will stakeholders accept a method 

that clearly declares that, for example, 5% of studies retrieved are incorrectly excluded?  

 

A good strategy for reviewers may be the application of a ‘multi-layered’ way of finding relevant 

research. That is, if one considers with each layer (database searching, hand searching, looking 

for citations, contacting authors, among other tasks) intended to make up for deficiencies in other 
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layers. Following this line of thinking, the benefits that both TM tools and controlled vocabularies 

offer may more than outweigh any associated or perceived deficiencies.  

 

As TM tools and controlled vocabularies are now being employed in different areas, extra efforts 

towards methodological and evaluative work may be required to develop methods and an 

evidence base for their use. This work was developed hoping it would leave its contribution to this 

path. 

  

With all this being said, and as a final note, it is believed that researchers and scientists would 

deeply benefit from training, both to manage expectations and to ensure that systematic reviewers 

understand the benefits but also the limitations of TM tools, whenever their scope is. The correct 

adoption of TM within SR is believed to depend greatly on cooperation between systematic 

reviewers and computer scientists, so that customised and optimised solutions may thrive.  
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Annex 

A. ROC Curve Example 

B. MeSH Browser Search Example 

 

Figure 2 - MeSH browser example, using the search term "brain" 
 
 
 
 
 
 
 

Figure 1 - Example and explanation of a ROC curve (adapted from [72]) 
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C. Model Evaluation – Bag of Words 

 

Figure 3 - Bag of words and Tf-Idf score for each word and label 
 

D. Model Evaluation – Confusion Matrix 

 

 

 

Figure 4 - Confusion matrix for evaluation of the classifier 
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E. Humanin Article List 

Table 1 - Humanin article list and corresponding classification 

Article Title Classification 

Humanin decreases mitochondrial membrane permeability by inhibiting the 
membrane association and oligomerization of Bax and Bid proteins. 

relevant 

Humanin is an endogenous activator of chaperone-mediated autophagy. relevant 

A Small Molecule Mimetic of the Humanin Peptide as a Candidate for 
Modulating NMDA-Induced Neurotoxicity. 

relevant 

Humanin affects object recognition and gliosis in short-term cuprizone-treated 
mice. 

relevant 

S14G-humanin alleviates insulin resistance and increases autophagy in 
neurons of APP/PS1 transgenic mouse. 

relevant 

Humanin analogue, S14G-humanin, has neuroprotective effects against 
oxygen glucose deprivation/reoxygenation by reactivating Jak2/Stat3 signaling 

through the PI3K/AKT pathway. 
relevant 

Pseudogenization of the Humanin gene is common in the mitochondrial DNA 
of many vertebrates. 

relevant 

Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in 
Oxidative and Endoplasmic Reticulum Stress in RPE Cells. 

relevant 

The Mitochondrial-Derived Peptides, HumaninS14G and Small Humanin-like 
Peptide 2, Exhibit Chaperone-like Activity. 

relevant 

Humanin Specifically Interacts with Amyloid-beta Oligomers and Counteracts 
Their in vivo Toxicity. 

relevant 

Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the 
mitochondrial peptide humanin. 

relevant 

Serum humanin concentrations in women with pre-eclampsia compared to 
women with uncomplicated pregnancies. 

relevant 

Whole-transcriptome brain expression and exon-usage profiling in major 
depression and suicide: evidence for altered glial, endothelial and ATPase 

activity. 
relevant 

The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and 
STAT3 signaling pathways and has age-dependent signaling differences in the 

hippocampus. 
relevant 

Humanin: Functional Interfaces with IGF-I. relevant 

Central effects of humanin on hepatic triglyceride secretion. relevant 

The effects of humanin and its analogues on male germ cell apoptosis induced 
by chemotherapeutic drugs. 

relevant 

Humanin and age-related diseases: a new link? relevant 

Protection effect of [Gly14]-Humanin from apoptosis induced by high glucose in 
human umbilical vein endothelial cells. 

relevant 

Humanin attenuates Alzheimer-like cognitive deficits and pathological changes 
induced by amyloid beta-peptide in rats. 

relevant 

Protective effects of humanin on okadaic Acid-induced neurotoxicities in 
cultured cortical neurons. 

relevant 

Apollon/Bruce is upregulated by Humanin. relevant 

IGF-I regulates the age-dependent signaling peptide humanin. relevant 

Protective effects of Humanin and calmodulin-like skin protein in Alzheimer's 
disease and broad range of abnormalities. 

relevant 
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Genome expression analysis by suppression subtractive hybridization 
identified overexpression of Humanin, a target gene in gastric cancer 

chemoresistance. 
relevant 

SH3-binding protein 5 mediates the neuroprotective effect of the secreted 
bioactive peptide humanin by inhibiting c-Jun NH2-terminal kinase. 

relevant 

Humanin Exerts Neuroprotection During Cardiac Ischemia-Reperfusion Injury. relevant 

Baculovirus-based gene silencing of Humanin for the treatment of pituitary 
tumors. 

relevant 

Calmodulin-like skin protein protects against spatial learning impairment in a 
mouse model of Alzheimer disease. 

relevant 

Humanin directly protects cardiac mitochondria against dysfunction initiated by 
oxidative stress by decreasing complex I activity. 

relevant 

Colivelin Ameliorates Impairments in Cognitive Behaviors and Synaptic 
Plasticity in APP/PS1 Transgenic Mice. 

relevant 

Humanin G (HNG) protects age-related macular degeneration (AMD) 
transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. 

relevant 

Breaking the ritual metabolic cycle in order to save acetyl CoA: A potential role 
for mitochondrial humanin in T2 bladder cancer aggressiveness. 

relevant 

Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity 
through the alleviation of mitochondrial dysfunction. 

relevant 

Humanin inhibits apoptosis in pituitary tumor cells through several signaling 
pathways including NF-kappaB activation. 

relevant 

Effects of humanin on experimental colitis induced by 2,4,6-trinitrobenzene 
sulphonic acid in rats. 

relevant 

Humanin skeletal muscle protein levels increase after resistance training in 
men with impaired glucose metabolism. 

relevant 

Humanin ameliorates diazepam-induced memory deficit in mice. relevant 

Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced 
Apoptosis by Upregulation of Mitochondrial Glutathione. 

relevant 

Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl 
peptide receptor 2 in mice followed by the successive activation of DP1, A2A, 

and GABAA receptors. 
relevant 

Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury 
through attenuation of mitochondrial dysfunction. 

relevant 

Solution NMR structure and inhibitory effect against amyloid-beta fibrillation of 
Humanin containing a d-isomerized serine residue. 

relevant 

Naturally occurring mitochondrial-derived peptides are age-dependent 
regulators of apoptosis, insulin sensitivity, and inflammatory markers. 

relevant 

Protective Effects of Colivelin Against Alzheimer's Disease in a PDAPP Mouse 
Model. 

relevant 

Potential Roles of Humanin on Apoptosis in the Heart. relevant 

The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes 
While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases 

in Male Mice. 
relevant 

Humanin Peptide Binds to Insulin-Like Growth Factor-Binding Protein 3 
(IGFBP3) and Regulates Its Interaction with Importin-beta. 

relevant 
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Humanin Derivatives Inhibit Necrotic Cell Death in Neurons. relevant 

The human mitochondrial genome may code for more than 13 proteins. relevant 

New labeled derivatives of the neuroprotective peptide colivelin: synthesis, 
characterization, and first in vitro and in vivo applications. 

relevant 

Colivelin ameliorates amyloid beta peptide-induced impairments in spatial 
memory, synaptic plasticity, and calcium homeostasis in rats. 

relevant 

S14G-humanin restored cellular homeostasis disturbed by amyloid-beta 
protein. 

relevant 

Increased oligodendrogenesis by humanin promotes axonal remyelination and 
neurological recovery in hypoxic/ischemic brains. 

relevant 

Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity not 
by NMDA receptor. 

relevant 

Potent humanin analog increases glucose-stimulated insulin secretion through 
enhanced metabolism in the beta cell. 

relevant 

A humanin analog decreases oxidative stress and preserves mitochondrial 
integrity in cardiac myoblasts. 

relevant 

Pharmacokinetics and tissue distribution of humanin and its analogues in male 
rodents. 

relevant 

Secreted calmodulin-like skin protein ameliorates scopolamine-induced 
memory impairment. 

relevant 

The cytoprotective peptide humanin is induced and neutralizes Bax after pro-
apoptotic stress in the rat testis. 

relevant 

[Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-
3beta inhibition in a mouse model of intracerebral hemorrhage. 

relevant 

Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel 
biomarker for prostate cancer risk. 

non relevant 

Subcellular Fractionation for ERK Activation Upon Mitochondrial-derived 
Peptide Treatment. 

non relevant 

High-dose Humanin analogue applied during ischemia exerts cardioprotection 
against ischemia/reperfusion injury by reducing mitochondrial dysfunction. 

non relevant 

Neuroprotective effect of G(14)-humanin on global cerebral 
ischemia/reperfusion by activation of SOCS3 - STAT3 - MCL-1 signal 

transduction pathway in rats. 
non relevant 

Calmodulin-like skin protein is downregulated in human cerebrospinal fluids of 
Alzheimer's disease patients with apolipoprotein E4; a pilot study using 

postmortem samples. 
non relevant 

Mitochondrially derived peptides as novel regulators of metabolism. non relevant 

Apoptotic neuron-secreted HN12 inhibits cell apoptosis in Hirschsprung's 
disease. 

non relevant 

Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in 
macrophage-derived foam cells. 

non relevant 

The Role of MicroRNAs and Their Targets in Osteoarthritis. non relevant 

Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting 
glucose-related oxidative stress. 

non relevant 
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Exposure to sixty minutes of hyperoxia upregulates myocardial humanins in 
patients with coronary artery disease - a pilot study. 

non relevant 

A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics. non relevant 

Altered intestinal functions and increased local inflammation in insulin-resistant 
obese subjects: a gene-expression profile analysis. 

non relevant 

The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? non relevant 

Rat Humanin is encoded and translated in mitochondria and is localized to the 
mitochondrial compartment where it regulates ROS production. 

non relevant 

The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis 
and reduces obesity and insulin resistance. 

non relevant 

MTRNR2L12: A Candidate Blood Marker of Early Alzheimer's Disease-Like 
Dementia in Adults with Down Syndrome. 

non relevant 

Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected 
Lymphoma Cells. 

non relevant 

The effect of sex on humanin levels in healthy adults and patients with 
uncomplicated type 1 diabetes mellitus. 

non relevant 

Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells 
and protects them from TNF-alpha-induced apoptosis. 

non relevant 

Potential peptides in atherosclerosis therapy. non relevant 

The neuroprotection of Rattin against amyloid beta peptide in spatial memory 
and synaptic plasticity of rats. 

non relevant 

Humanin: a novel functional molecule for the green synthesis of graphene. non relevant 

Distinct signaling cascades elicited by different formyl peptide receptor 2 
(FPR2) agonists. 

non relevant 

Aeromedical solutions for aerospace safety. non relevant 

 

 

F. Practical Applications – Mindfulness Dataset 

Classification Reports 

Table 2 - Classification report for the mindfulness dataset, for each training set and algorithm 

Trial Algorithm Label Precision Recall 
F1-

Score 
Support Accuracy* 

Conf. 

Matrix 

Train 

Multinomial NB 

SRincluded 0% 0% 0% 4 

90,75% 
[  0   4] 

 [  7 108] 
mindf_fatigue 96% 94% 95% 115 

avg / total 93% 91% 92% 119 

K Neighbors 

SRincluded 7% 25% 11% 4 

85,71% 
[  1   3] 

 [ 14 101] 
mindf_fatigue 97% 88% 92% 115 

avg / total 94% 86% 89% 119 

Random Forest SRincluded 0% 0% 0% 4 89,08% [  0   4] 
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mindf_fatigue 96% 92% 94% 115  [  9 106] 

avg / total 93% 89% 91% 119 

Decision Trees 

SRincluded 8% 25% 12% 4 

88,24% 
[  1   3] 

 [ 11 104] 
mindf_fatigue 97% 90% 94% 115 

avg / total 94% 88% 91% 119 

Logistic 

Regression 

SRincluded 12% 25% 17% 4 

91,60% 
[  1   3] 

 [  7 108] 
mindf_fatigue 97% 94% 96% 115 

avg / total 94% 92% 93% 119 

Train 

1 

Multinomial NB 

SRincluded 9% 50% 15% 4 

80,67% 
[ 2  2] 

 [21 94] 
mindf_fatigue 98% 82% 89% 115 

avg / total 95% 81% 87% 119 

K Neighbors 

SRincluded 11% 50% 17% 4 

84,03% 
[ 2  2] 

 [17 98] 
mindf_fatigue 98% 85% 91% 115 

avg / total 95% 84% 89% 119 

Random Forest 

SRincluded 5% 50% 9% 4 

69,70% 
[ 2  2] 

 [40 75] 
mindf_fatigue 97% 65% 78% 115 

avg / total 94% 65% 76% 119 

Decision Trees 

SRincluded 10% 75% 18% 4 

76,47% 
[ 3  1] 

 [27 88] 
mindf_fatigue 99% 77% 86% 115 

avg / total 96% 76% 84% 119 

Logistic 

Regression 

SRincluded 9% 50% 15% 4 

80,67% 
[ 2  2] 

 [21 94] 
mindf_fatigue 98% 82% 89% 115 

avg / total 95% 81% 87% 119 

Train 

2 

Multinomial NB 

SRincluded 5% 100% 10% 4 

36,97% 
[ 4  0] 

 [75 40] 
mindf_fatigue 100% 35% 52% 115 

avg / total 97% 37% 50% 119 

K Neighbors 

SRincluded 5% 100% 10% 4 

39,50% 
[ 4  0] 

 [72 43] 
mindf_fatigue 100% 37% 54% 115 

avg / total 97% 39% 53% 119 

Random Forest 

SRincluded 4% 50% 7% 4 

52,94% 
[ 2  2] 

 [54 61] 
mindf_fatigue 97% 53% 69% 115 

avg / total 94% 53% 66% 119 

Decision Trees 

SRincluded 6% 75% 11% 4 

57,14% 
[ 3  1] 

 [50 65] 
mindf_fatigue 98% 57% 72% 115 

avg / total 95% 57% 70% 119 

Logistic 

Regression 

SRincluded 5% 75% 10% 4 

53,78% 
[ 3  1] 

 [54 61] 
mindf_fatigue 98% 53% 69% 115 

avg / total 95% 54% 67% 119 

Train 

3 
Multinomial NB 

SRincluded 6% 50% 11% 4 
72,27% 

[ 2  2] 

 [31 84] mindf_fatigue 98% 73% 84% 115 
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avg / total 95% 72% 81% 119 

K Neighbors 

SRincluded 6% 75% 11% 4 

57,98% 
[ 3  1] 

 [49 66] 
mindf_fatigue 99% 57% 73% 115 

avg / total 95% 58% 70% 119 

Random Forest 

SRincluded 13% 75% 22% 4 

82,35% 
[ 3  1] 

 [20 95] 
mindf_fatigue 99% 83% 90% 115 

avg / total 96% 82% 88% 119 

Decision Trees 

SRincluded 12% 25% 17% 4 

91,60% 
[  1   3] 

 [  7 108] 
mindf_fatigue 97% 94% 96% 115 

avg / total 94% 92% 93% 119 

Logistic 

Regression 

SRincluded 9% 50% 15% 4 

80,67% 
[ 2  2] 

 [21 94] 
mindf_fatigue 98% 82% 89% 115 

avg / total 95% 81% 87% 119 

 

G. Practical Applications – Humanin Dataset Classification 

Reports 

Table 3 - Classification report for the humanin dataset, for each training set and algorithm 

Trial Algorithm Label Precision Recall 
F1-

Score 
Support Accuracy 

Conf. 

Matrix 

Train 1 

Multinomial NB 

nonrelevant 44% 56% 49% 25 

65,88% 
[14 11] 

 [18 42] 
relevant 79% 70% 74% 60 

avg / total 69% 66% 67% 85 

K Neighbors 

nonrelevant 48% 48% 48% 25 

69,41% 
[12 13] 

 [13 47] 
relevant 78% 78% 78% 60 

avg / total 69% 69% 69% 85 

Random Forest 

nonrelevant 48% 48% 48% 25 

69,41% 
[12 13] 

 [13 47] 
relevant 78% 78% 78% 60 

avg / total 69% 69% 69% 85 

Decision Trees 

nonrelevant 47% 28% 35% 25 

69,41% 
[ 7 18] 

 [ 8 52] 
relevant 74% 87% 80% 60 

avg / total 66% 69% 67% 85 

Logistic 

Regression 

nonrelevant 53% 68% 60% 25 

72,94% 
[17  8] 

 [15 45] 
relevant 85% 75% 80% 60 

avg / total 76% 73% 74% 85 

Train 2 

Multinomial NB 

nonrelevant 54% 60% 57% 25 

72,94% 
[15 10] 

 [13 47] 
relevant 82% 78% 80% 60 

avg / total 74% 73% 73% 85 

K Neighbors 
nonrelevant 54% 60% 57% 25 

72,94% 
[15 10] 

 [13 47] relevant 82% 78% 80% 60 
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avg / total 74% 73% 73% 85 

Random Forest 

nonrelevant 46% 84% 59% 25 

65,88% 
[21  4] 

 [25 35] 
relevant 90% 58% 71% 60 

avg / total 77% 66% 67% 85 

Decision Trees 

nonrelevant 32% 32% 32% 25 

60% 
[ 8 17] 

 [17 43] 
relevant 72% 72% 72% 60 

avg / total 60% 60% 60% 85 

Logistic 

Regression 

nonrelevant 58% 60% 59% 25 

75,29% 
[15 10] 

 [11 49] 
relevant 83% 82% 82% 60 

avg / total 76% 75% 75% 85 

Train 3 

Multinomial NB 

nonrelevant 52% 48% 50% 25 

71,76% 
[12 13] 

 [11 49] 
relevant 79% 82% 80% 60 

avg / total 71% 72% 71% 85 

K Neighbors 

nonrelevant 55% 44% 49% 25 

72,94% 
[11 14] 

 [ 9 51] 
relevant 78% 85% 82% 60 

avg / total 72% 73% 72% 85 

Random Forest 

nonrelevant 71% 20% 31% 25 

74,12% 
[ 5 20] 

 [ 2 58] 
relevant 74% 97% 84% 60 

avg / total 73% 74% 69% 85 

Decision Trees 

nonrelevant 25% 4% 7% 25 

68,24% 
[ 1 24] 

 [ 3 57] 
relevant 70% 95% 81% 60 

avg / total 57% 68% 59% 85 

Logistic 

Regression 

nonrelevant 75% 48% 59% 25 

80% 
[12 13] 

 [ 4 56] 
relevant 81% 93% 87% 60 

avg / total 79% 80% 79% 85 

Train 4 

Multinomial NB 

nonrelevant 61% 44% 51% 25 

75,29% 
[11 14] 

 [ 7 53] 
relevant 79% 88% 83% 60 

avg / total 74% 75% 74% 85 

K Neighbors 

nonrelevant 47% 32% 38% 25 

69,41% 
[ 8 17] 

 [ 9 51] 
relevant 75% 85% 80% 60 

avg / total 67% 69% 67% 85 

Random Forest 

nonrelevant 60% 12% 20% 25 

71,76% 
[ 3 22] 

 [ 2 58] 
relevant 72% 97% 83% 60 

avg / total 69% 72% 64% 85 

Decision Trees 

nonrelevant 33% 4% 7% 25 

69,41% 
[ 1 24] 

 [ 2 58] 
relevant 71% 97% 82% 60 

avg / total 60% 69% 60% 85 

Logistic 

Regression 

nonrelevant 80% 48% 60% 25 

81,17% 
[12 13] 

 [ 3 57] 
relevant 81% 95% 88% 60 

avg / total 81% 81% 80% 85 
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Train 5 

Multinomial NB 

nonrelevant 61% 44% 51% 25 

75,29% 
[11 14] 

 [ 7 53] 
relevant 79% 88% 83% 60 

avg / total 74% 75% 74% 85 

K Neighbors 

nonrelevant 47% 32% 38% 25 

69,41% 
[ 8 17] 

 [ 9 51] 
relevant 75% 85% 80% 60 

avg / total 67% 69% 67% 85 

Random Forest 

nonrelevant 40% 8% 13% 25 

69,41% 
[ 2 23] 

 [ 3 57] 
relevant 71% 95% 81% 60 

avg / total 62% 69% 61% 85 

Decision Trees 

nonrelevant 33% 4% 7% 25 

69,41% 
[ 1 24] 

 [ 2 58] 
relevant 71% 97% 82% 60 

avg / total 60% 69% 60% 85 

Logistic 

Regression 

nonrelevant 77% 40% 53% 25 

78,82% 
[10 15] 

 [ 3 57] 
relevant 79% 95% 86% 60 

avg / total 79% 79% 76% 85 

Train 6 

Multinomial NB 

nonrelevant 55% 44% 49% 25 

72,94% 
[11 14] 

 [ 9 51] 
relevant 78% 85% 82% 60 

avg / total 72% 73% 72% 85 

K Neighbors 

nonrelevant 53% 40% 45% 25 

71,76% 
[10 15] 

 [ 9 51] 
relevant 77% 85% 81% 60 

avg / total 70% 72% 71% 85 

Random Forest 

nonrelevant 60% 12% 20% 25 

71,76% 
[ 3 22] 

 [ 2 58] 
relevant 72% 97% 83% 60 

avg / total 69% 72% 64% 85 

Decision Trees 

nonrelevant 33% 4% 7% 25 

69,41% 
[ 1 24] 

 [ 2 58] 
relevant 71% 97% 82% 60 

avg / total 60% 69% 60% 85 

Logistic 

Regression 

nonrelevant 73% 44% 55% 25 

78,82% 
[11 14] 

 [ 4 56] 
relevant 80% 93% 86% 60 

avg / total 78% 79% 77% 85 

Train 7 

Multinomial NB 

nonrelevant 54% 52% 53% 25 

72,94% 
[13 12] 

 [11 49] 
relevant 80% 82% 81% 60 

avg / total 73% 73% 73% 85 

K Neighbors 

nonrelevant 60% 48% 53% 25 

75,29% 
[12 13] 

 [ 8 52] 
relevant 80% 87% 83% 60 

avg / total 74% 75% 74% 85 

Random Forest 

nonrelevant 60% 24% 34% 25 

72,94% 
[ 6 19] 

 [ 4 56] 
relevant 75% 93% 83% 60 

avg / total 70% 73% 69% 85 

Decision Trees nonrelevant 43% 12% 19% 25 69,41% [ 3 22] 
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relevant 72% 93% 81% 60  [ 4 56] 

avg / total 63% 69% 63% 85 

Logistic 

Regression 

nonrelevant 75% 48% 59% 25 

80% 
[12 13] 

 [ 4 56] 
relevant 81% 93% 87% 60 

avg / total 79% 80% 79% 85 

Train 8 

Multinomial NB 

nonrelevant 53% 40% 45% 25 

71,76% 
[10 15] 

 [ 9 51] 
relevant 77% 85% 81% 60 

avg / total 70% 72% 71% 85 

K Neighbors 

nonrelevant 52% 44% 48% 25 

71,76% 
[11 14] 

 [10 50] 
relevant 78% 83% 81% 60 

avg / total 71% 72% 71% 85 

Random Forest 

nonrelevant 50% 16% 24% 25 

70,59% 
[ 4 21] 

 [ 4 56] 
relevant 73% 93% 82% 60 

avg / total 66% 71% 65% 85 

Decision Trees 

nonrelevant 62% 20% 30% 25 

72,94% 
[ 5 20] 

 [ 3 57] 
relevant 74% 95% 83% 60 

avg / total 71% 73% 68% 85 

Logistic 

Regression 

nonrelevant 65% 44% 52% 25 

76,47% 
[11 14] 

 [ 6 54] 
relevant 79% 90% 84% 60 

avg / total 75% 76% 75% 85 

Train 9 

Multinomial NB 

nonrelevant 54% 52% 53% 25 

72,94% 
[13 12] 

 [11 49] 
relevant 80% 82% 81% 60 

avg / total 73% 73% 73% 85 

K Neighbors 

nonrelevant 57% 52% 54% 25 

74,11% 
[13 12] 

 [10 50] 
relevant 81% 83% 82% 60 

avg / total 74% 74% 74% 85 

Random Forest 

nonrelevant 50% 20% 29% 25 

70,59% 
[ 5 20] 

 [ 5 55] 
relevant 73% 92% 81% 60 

avg / total 66% 71% 66% 85 

Decision Trees 

nonrelevant 50% 16% 24% 25 

70,59% 
[ 4 21] 

 [ 4 56] 
relevant 73% 93% 82% 60 

avg / total 66% 71% 65% 85 

Logistic 

Regression 

nonrelevant 75% 48% 59% 25 

80,00% 
[12 13] 

 [ 4 56] 
relevant 81% 93% 87% 60 

avg / total 79% 80% 79% 85 

Train 

10 

Multinomial NB 

nonrelevant 52% 44% 48% 25 

71,76% 
[11 14] 

 [10 50] 
relevant 78% 83% 81% 60 

avg / total 71% 72% 71% 85 

K Neighbors 
nonrelevant 55% 48% 51% 25 

72,94% 
[12 13] 

 [10 50] relevant 79% 83% 81% 60 
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avg / total 72% 73% 72% 85 

Random Forest 

nonrelevant 55% 24% 33% 25 

71,76% 
[ 6 19] 

 [ 5 55] 
relevant 74% 92% 82% 60 

avg / total 69% 72% 68% 85 

Decision Trees 

nonrelevant 62% 20% 30% 25 

72,94% 
[ 5 20] 

 [ 3 57] 
relevant 74% 95% 83% 60 

avg / total 71% 73% 68% 85 

Logistic 

Regression 

nonrelevant 61% 44% 51% 25 

75,29% 
[11 14] 

 [ 7 53] 
relevant 79% 88% 83% 60 

avg / total 74% 75% 74% 85 

Train 

11 

Multinomial NB 

nonrelevant 100% 32% 48% 25 

80,00% 
[ 8 17] 

 [ 0 60] 
relevant 78% 100% 88% 60 

avg / total 84% 80% 76% 85 

K Neighbors 

nonrelevant 56% 20% 29% 25 

71,76% 
[ 5 20] 

 [ 4 56] 
relevant 74% 93% 82% 60 

avg / total 68% 72% 67% 85 

Random Forest 

nonrelevant 56% 20% 29% 25 

71,76% 
[ 5 20] 

 [ 4 56] 
relevant 74% 93% 82% 60 

avg / total 68% 72% 67% 85 

Decision Trees 

nonrelevant 67% 8% 14% 25 

71,76% 
[ 2 23] 

 [ 1 59] 
relevant 72% 98% 83% 60 

avg / total 70% 72% 63% 85 

Logistic 

Regression 

nonrelevant 79% 44% 56% 25 

80,00% 
[11 14] 

 [ 3 57] 
relevant 80% 95% 87% 60 

avg / total 80% 80% 78% 85 

 


