

2018

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE BIOLOGIA VEGETAL

Extracting Biomedical Relations from Biomedical

Literature

Tânia Sofia Guerreiro Maldonado

Mestrado em Bioinformática e Biologia Computacional

Especialização em Bioinformática

Dissertação orientada por:

Prof. Doutor Francisco José Moreira Couto

i

Resumo

A ciência, e em especial o ramo biomédico, testemunham hoje um crescimento de conhecimento

a uma taxa que clínicos, cientistas e investigadores têm dificuldade em acompanhar. Factos

científicos espalhados por diferentes tipos de publicações, a riqueza de menções etiológicas,

mecanismos moleculares, pontos anatómicos e outras terminologias biomédicas que não se

encontram uniformes ao longo das várias publicações, para além de outros constrangimentos,

encorajaram a aplicação de métodos de text mining ao processo de revisão sistemática.

Este trabalho pretende testar o impacto positivo que as ferramentas de text mining juntamente

com vocabulários controlados (enquanto forma de organização de conhecimento, para auxílio

num posterior momento de recolha de informação) têm no processo de revisão sistemática,

através de um sistema capaz de criar um modelo de classificação cujo treino é baseado num

vocabulário controlado (MeSH), que pode ser aplicado a uma panóplia de literatura biomédica.

Para esse propósito, este projeto divide-se em duas tarefas distintas: a criação de um sistema,

constituído por uma ferramenta que pesquisa a base de dados PubMed por artigos científicos e

os grava de acordo com etiquetas pré-definidas, e outra ferramenta que classifica um conjunto

de artigos; e a análise dos resultados obtidos pelo sistema criado, quando aplicado a dois casos

práticos diferentes.

O sistema foi avaliado através de uma série de testes, com recurso a datasets cuja classificação

era conhecida, permitindo a confirmação dos resultados obtidos. Posteriormente, o sistema foi

testado com recurso a dois datasets independentes, manualmente curados por investigadores

cuja área de investigação se relaciona com os dados. Esta forma de avaliação atingiu, por

exemplo, resultados de precisão cujos valores oscilam entre os 68% e os 81%.

Os resultados obtidos dão ênfase ao uso das tecnologias e ferramentas de text mining em

conjunto com vocabulários controlados, como é o caso do MeSH, como forma de criação de

pesquisas mais complexas e dinâmicas que permitam melhorar os resultados de problemas de

classificação, como são aqueles que este trabalho retrata.

Palavras-chave: prospeção de texto, vocabulários controlados, literatura biomédica, MeSH,

classificação binária

ii

Abstract

Science, and the biomedical field especially, is witnessing a growth in knowledge at a rate at

which clinicians and researchers struggle to keep up with. Scientific evidence spread across

multiple types of scientific publications, the richness of mentions of etiology, molecular

mechanisms, anatomical sites, as well as other biomedical terminology that is not uniform across

different writings, among other constraints, have encouraged the application of text mining

methods in the systematic reviewing process.

This work aims to test the positive impact that text mining tools together with controlled

vocabularies (as a way of organizing knowledge to aid, at a later time, to collect information) have

on the systematic reviewing process, through a system capable of creating a classification model

which training is based on a controlled vocabulary (MeSH) that can be applied to a variety of

biomedical literature.

For that purpose, this project was divided into two distinct tasks: the creation a system, consisting

of a tool that searches the PubMed search engine for scientific articles and saves them according

to pre-defined labels, and another tool that classifies a set of articles; and the analysis of the

results obtained by the created system when applied to two different practical cases.

The system was evaluated through a series of tests, using datasets whose classification results

were previously known, allowing the confirmation of the obtained results. Afterwards, the system

was tested by using two independently-created datasets which were manually curated by

researchers working in the field of study. This last form of evaluation achieved, for example,

precision scores as low as 68%, and as high as 81%.

The results obtained emphasize the use of text mining tools, along with controlled vocabularies,

such as MeSH, as a way to create more complex and comprehensive queries to improve the

performance scores of classification problems, with which the theme of this work relates.

Keywords: text mining, systematic review, controlled vocabularies, biomedical literature, MeSH,

binary classification

iii

Acknowledgments

To Prof. Dr. Francisco Couto, my advisor, for the guidance and wise words along this path.

To FCT and LASIGE, for support through funding of the Programa Estratégico da Unidade de

I&D LASIGE – Laboratório de Sistemas Informáticos de Grande-Escala project, with ref.

UID/CEC/00408/2013.

To André Lamúrias, whose help was fundamental when anything else seemed to fail.

To Melinda Noronha, Jenni Moore, and Jan Nordvik, for the kindly provided data and the different

perspectives provided to the project.

Last but not least, to my family. For all the support along these years, through rough times and

moments of joy, and for making me who I am today.

iv

“Para ser grande, sê inteiro: nada

 Teu exagera ou exclui.

Sê todo em cada coisa. Põe quanto és

 No mínimo que fazes.”

Ricardo Reis, in "Odes"

Heteronym of Fernando Pessoa

v

vi

Index

List of Figures ... ix

List of Tables .. x

List of Acronyms .. xi

Section 1 Introduction ... 1

Problem .. 1

Objectives ... 2

Results .. 3

Contributions ... 3

Document Structure .. 3

Section 2 Concepts and Related Work ... 4

2.1. Systematic Reviews .. 4

2.2. Text Mining .. 5

2.2.1. Information Retrieval ... 5

2.2.1.1. Natural Language Processing Techniques .. 6

Sentence Splitting .. 6

Tokenization .. 6

Stemming & Lemmatization .. 7

Machine Learning.. 7

2.2.1.2. Performance Assessment .. 12

2.2.1.3. Cross-Validation .. 14

2.3. Controlled Vocabularies .. 15

2.3.1. Medical Subject Headings (MeSH) .. 16

2.3.1.1. MeSH Structure ... 16

2.3.1.2. Online Retrieval with MeSH ... 17

2.3.1.3. Example .. 18

2.4. Text Mining within Systematic Reviews ... 18

2.5. Related Tools .. 19

2.6. Resources ... 21

2.6.1. Biopython .. 21

2.6.2. NLTK ... 22

2.6.3. Scikit-learn ... 22

2.6.3.1. Vectorization .. 23

2.6.3.2. Cross-Validation .. 23

2.6.3.3. Classification ... 24

vii

Multinomial Naïve Bayes ... 24

K-Nearest Neighbors ... 24

Decision Tree .. 24

Random Forest ... 24

Logistic Regression ... 25

Multi-Class Classification .. 25

Grid Search ... 25

2.6.3.4. Performance Analysis .. 26

2.6.3.5. Model Evaluation ... 27

Learning Curve ... 27

ROC Curve ... 27

PR Curve .. 28

Section 3 Developed Work.. 29

3.1. Methodology .. 29

3.2. Overview ... 29

3.3. Script Development ... 30

3.3.1. PubMed Search & Save .. 30

3.3.2. Classifier.. 31

3.3.2.1. Model Evaluation ... 33

3.4. Datasets .. 33

3.4.1. Mindfulness/Fatigue .. 34

3.4.2. Humanin .. 35

3.4. Practical Applications .. 35

3.5.1. Mindfulness/Fatigue Dataset ... 35

3.5.2. Humanin Dataset ... 37

Section 4 Results & Discussion .. 40

4.1. Results .. 40

4.1.1. Mindfulness/Fatigue Dataset ... 40

4.1.1.1. Model Evaluation ... 41

4.1.2. Humanin Dataset ... 43

4.1.2.1. Model Evaluation ... 45

4.2. Discussion ... 47

Section 5 Conclusions & Future Work ... 51

5.1. Summary ... 51

5.1.1. Limitations ... 51

5.1.2. Final Remarks ... 52

viii

Bibliography .. 54

Annex ... 59

A. ROC Curve Example ... 59

B. MeSH Browser Search Example ... 59

C. Model Evaluation – Bag of Words ... 60

D. Model Evaluation – Confusion Matrix .. 60

E. Humanin Article List .. 61

F. Practical Applications – Mindfulness Dataset Classification Reports 64

G. Practical Applications – Humanin Dataset Classification Reports 66

ix

List of Figures

Figure 2.1 - Decision tree presenting response to direct mailing (adapted from [30]) 10

Figure 2.2 - Diagram for comprehension of precision and recall concepts 13

Figure 2.3 - MeSH hierarchy tree for "brain" term ... 18

Figure 2.4 - Classification report output example .. 26

Figure 2.5 - Example of learning curve using Naïve Bayes classifier ... 27

Figure 2.6 - Example of ROC curve .. 28

Figure 2.7 - Example of precision-recall curve with average precision of 0.91 28

Figure 3.1 - Proposed methodology…………………………………………………………………..30

Figure 3.2 - Proposed pipeline………………………………………………………………………...30

Figure 3.3 - “PubMed Search and Save” example run ... 31

Figure 3.4 - "Classifier" script example run ... 32

Figure 3.5 - Search process and study selection flowchart (adapted from [71]) 34

Figure 3.6 - Humanin MeSH hierarchy tree .. 38

Figure 4.1 - Learning curves for the "train" training set and logistic regression classification

algorithm ... 42

Figure 4.2 - ROC curve for the "train" training set and logistic regression classification algorithm

 .. 42

Figure 4.3 – Precision-recall curve for the "train" training set and logistic regression classification

algorithm ... 43

Figure 4.4 - Learning curves for the "train 4" training set and logistic regression classification

algorithm ... 46

Figure 4.5 - ROC curve for the "train 4" training set and logistic regression classification algorithm

 .. 46

Figure 4.6 - Precision/recall curve for the "train 4" training set and logistic regression classification

algorithm ... 47

Figure 1 - Example and explanation of a ROC curve (adapted from

[72])……………………………………………….………………………………………………..59

Figure 2 - MeSH browser example, using the search term "brain"…………………………………60

Figure 3 - Bag of words and TF-IDF score for each word and label……………………………….60

Figure 4 - Confusion matrix for evaluation of the classifier …………………………………………60

file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458094
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458095
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458096
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458097
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458098
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458099
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458100
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458102
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458103
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458104
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458105
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458106
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458106
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458107
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458107
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458108
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458108
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458109
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458109
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458110
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458110
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458111
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458111
file://///Users/taniamaldonado/Google%20Drive/Tese/Dissertação/corpo%20tese%20-%20revisão%20Julho.docx%23_Toc520458113

x

List of Tables

Table 2.1 - Confusion matrix with evaluation measures……………………………………………..13

Table 3.1 - Queries for the mindfulness training set article retrieval………….……………………36

Table 3.2 - Queries for the Humanin training set article retrieval……………………………………38

Table 4.1 - Average score of all classification trials with the mindfulness dataset……………….40

Table 4.2 - Classification reports for "train" and "train 1", using the Random Forest algorithm….40

Table 4.3 - Classification report for "train 3", using the Random Forest algorithm………………...41

Table 4.4 - Average score of all classification trials with the humanin dataset…………………….44

Table 4.5 - Classification reports for "train 4" and "train 5”, using the Logistic Regression

algorithm…………………………………………………………………………………………...44

Table 4.6 - Classification report for "train 2", using the K-Neighbors algorithm……………………45

Table 4.7 - Queries for the "SRincluded" class from the Mindfulness/fatigue dataset……….…..48

Table 4.8 - MeSH terms for the "train 3" PubMed queries………………………………………….48

Table 4.9 - Queries for the "relevant" class from the Humanin dataset……………………………..49

Table 1 - Humanin article list and corresponding classification…………………………………….61

Table 2 - Classification report for the mindfulness dataset, for each training set and algorithm..64

Table 3 - Classification report for the humanin dataset, for each training set and algorithm……66

xi

List of Acronyms

API Application Programming Interface

AUROC Area Under the Receiver Operator Characteristic

CS Citation Screening

CV Cross Validation

EL Entity Linking

FDA Food and Drug Administration

FN False Negative

FP False Positive

FPR False Positive Rate

IDF Inverse Document Frequency

IM Index Medicus

IR Information Retrieval

k-NN k-Nearest Neighbors

MAP Maximum A Posteriori

MeSH Medical Subject Headings

ML Machine Learning

NCBI National Center for Biotechnology Information

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Toolkit

PICOS Participants, Interventions, Comparators, Outcomes and Study design

PR Precision-Recall

RE Relation Extraction

ROC Receiver Operator Characteristic

SCR Supplementary Chemical Records

SR Systematic Review

SVC Support Vector Classification

SVM Support Vector Machines

TBS Token Boundary Symbol

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

TM Text Mining

TN True Negative

TP True Positive

TPR True Positive Rate

1

Section 1

Introduction

Science is currently witnessing the fast pace at which knowledge grows, especially in the

biomedical field.

One of the first organizations to index medical literature was the US National Library of Medicine

(NLM), in 1879: the Index Medicus (IM) was a comprehensive bibliographic index of life science

and biomedical science information, that would in 1996 become the MEDLINE database.

The US Food and Drug Administration (FDA) introduced in 1962 a regulatory framework that

required proof of the efficiency of new drugs [1], and other countries followed the practice. This

led to an inevitable rise in the number of randomized controlled trials (i.e., a study in which the

participants are assigned by chance to separate groups, according to the National Cancer

Institute), and at the same time, the overall rise in the number of scientific articles, many providing

evidence base for these trials. In 1966, the NLM had indexed 165,255 articles for Index Medicus;

in 1985, the number of articles was 73% higher, with a total of 286,469 articles indexed [2]. By

2006, the index had grown to nearly 10 million references [3] that would cover areas such as

medicine, nursing, pharmacy, dentistry, veterinary medicine, and healthcare. As of 2017, PubMed

(a search engine that primarily accesses the MEDLINE database) contains more than 27 million

citations for biomedical literature.

As the number of clinical trials raised, so did the science of reviewing trials, which aim to make

sense of multiple studies. According to Bastian [3], there are now 75 new trials and 11 new

systematic reviews (SR) of trials per day, haven’t yet reached a plateau in growth.

Clinicians and researchers are required to keep up with published scientific studies and use them

in their field of work. However, with the massive amount of data that the all-new high-throughput

molecular biology techniques and studies now produce, as well as the increasingly widespread

adoption of health information systems that store clinical data, evidence-based science is

increasingly becoming a more laborious task.

Problem

Finding the best scientific evidence that applies to a given problem is becoming exceedingly

difficult due to the exponential growth of biomedical publications, which considers several types

of publications such as:

(i) scientific publications,

(ii) patents,

(iii) grey literature (conference reports, abstracts, dissertations, and preprints), and

2

(iv) a plethora of regulatory, market, financial, and patent intelligence tools.

Scientific journals, the type of publication most widely used, tend to share a general arrangement

(Title, Abstract, Introduction, Materials and Methods, Experiments, Results, Discussion, and

Summary and Conclusion sections) although with considerable variability across publishers and

themes.

Another obstacle lies in the fact that biomedical literature is plentiful in mentions of etiology,

molecular mechanisms, clinical conditions, anatomical sites, medications, and procedures. Even

though the language used for scientific discussion is formal, the names of the biomedical entities

may not be uniform across different writings.

This plenitude of different terminologies motivates the application of text mining (TM) methods to

enable efficient indexing and determination of similarities between the search terms in a given

search engine and the retrieved document. Nonetheless, TM has been applied successfully to

biomedical documents, for example, to identify protein-protein interactions [4] and associations

between drugs [5].

More than recognizing entities within a given set of documents, it is crucial to recognize the search

terms as a biomedical term (or set of terms) during the SR process, providing researchers with

better tools to systematic review the existing literature. A common strategy involves linking text to

a controlled vocabulary.

Objectives

The main objective of this work is to test the hypothesis that TM tools and controlled vocabularies

have a positive impact on the systematic reviewing process, either from an aspect of time

reduction or regarding performance (i.e., if a given article is relevant to the study or not).

For the accomplishment of this objective, it will be developed a system capable of creating a

classification model which training is based on a controlled vocabulary (Medical Subject Headings

– MeSH) that can be applied on a variety of biomedical literature.

This will optimistically provide researchers with a semi-automated systematic reviewing tool that

aids them in keeping up with scientific studies, regarding the amount of time saved in research,

as well as providing better support for decision-making.

The work described in this dissertation comprises two distinct tasks:

(i) the creation of a system consisting of a tool that searches the PubMed search engine

for scientific articles and saves them according to pre-defined labels, and another tool

that classifies a set of articles;

3

(ii) the analysis of the results obtained by the created system when applied to two

different practical cases.

Results

The system was evaluated initially through a series of tests, using datasets whose classification

results were previously known, allowing the confirmation of the obtained results. Afterwards, the

system was tested by using two independently-created datasets which were manually curated by

researchers working in the field of study. This last form of evaluation achieved, for example,

precision scores as low as 68%, and as high as 81% (average score between two classes, on the

Humanin dataset), depending on the controlled vocabulary terms used to train the system.

Contributions

The main contribution of this work is a system capable of creating a classification model in which

training is based on a controlled vocabulary (MeSH) that can be applied to a variety of biomedical

literature1.

Document Structure

The following sections are organized as follows:

 Section 2 focuses on all the work done by third-party entities, i.e., it explains the main

concepts applied in this research, presents an overview of the state-of-the-art tools in the

area, and showcases the resources that will be further applied;

 Section 3 presents all the work developed for this thesis, including the system developed,

the methodology followed and the datasets used;

 Section 4 demonstrates the results achieved in each study case, and ends with a

discussion of all the results obtained;

 Section 5 presents the conclusions achieved by this work, its limitations, some

suggestions for future work, and finishes with some final remarks.

1 Available at https://github.com/tanmald/MeSH_ifier.git

4

Section 2

Concepts and Related Work

This section is dedicated to describing some concepts necessary to contextualize this project,

namely a description of systematic reviews, text mining, and controlled vocabularies, as well as

presenting some related work.

2.1. Systematic Reviews

Systematic reviews were invented as a means to enable clinicians to use evidence-based

medicine, to support clinical decisions [6]. SR identify, assess, synthesize, and interpret multiple

published and unpublished studies in a given topic, improving decision-making for a variety of

stakeholders [7], while also allow identifying research challenges to develop new research ideas.

The systematic reviewing process is conducted through a robust but slow and human-intensive

process. According to Jonnalagadda et al. [8], a SR process includes seven steps:

1. Definition of the review question and development of criteria for including studies;

2. Search for studies addressing the review question;

3. Selection of studies that meet the criteria for inclusion in the review – citation screening

(CS);

4. Extraction of data from included studies;

5. Assessment of the risk of bias in the included studies, by appraising them critically;

6. Where appropriate, an analysis of the included data by undertaking meta-analyses

should be made;

7. Address reporting biases.

For reviews to be systematic, the search task has to ensure relevant literature is retrieved as

much as possible, even at the cost of retrieving up to tens of thousands of irrelevant documents.

It also involves searching multiple databases. Therefore, reviewers require specific knowledge of

dozens of literary and non-literary databases, each with its own search engine, metadata, and

vocabulary [6].

Given the amount of time it takes to filter out the immense quantity of research that will not be

covered, a SR can take a considerable amount of time to complete. This is often a problem, since

decision-making needs to happen quite fast, and there is not always the opportunity for a review

to be concluded, even if it leads to a better decision.

There are several possible ways to reduce screening workload. As suggested by O'Mara-Eves et

al. [9], these may be summed as follows:

 reducing the number of items that need to be screened manually;

 reducing the number of experts needed to screen the items;

5

 increasing the rate (or speed) of screening;

 improving the workflow.

To reduce the workload, there are ongoing efforts to automate part or all of the stages of the SR

process. One approach is the application of Machine Learning (ML) techniques using TM to

automate the CS (also called study selection) stage. Since the ML prediction performance is

generally on the same level as the human prediction performance, using a ML-based system will

lead to significant workload reduction for the human experts involved in the systematic review

process [9].

2.2. Text Mining

Tan [10] described TM as “the process of extracting interesting and non-trivial patterns or

knowledge from unstructured text documents.” According to Hotho [11], TM is a multi-disciplinary

field in computer science that relies on information retrieval, machine learning, statistics,

computational language, and data mining.

Research in this area is still in a state of significant flux, indicated by the sometimes confusing

use of terms. Hotho et al. [11], for instance, presented different TM definitions, driven by the

specific perspective of the area. The first approach considered that TM essentially corresponds

to information retrieval (IR); a second strategy referred to TM as the application of algorithms and

methods from machine learning and statistics to texts, aiming to find useful patterns.

Regarding biomedical TM, to name a few of the most typical tasks, one can point out:

 Information Retrieval (IR): to rank or classify articles for topics of relevance,

 Named Entity Recognition (NER): detect a variety of different types of bioentity mentions,

 Entity Linking (EL): index or link documents to terms from controlled vocabularies or bio-

ontologies, and

 Relations Extraction (RE): extract binary relationships between bioentities, in particular,

protein or gene relations, like protein−protein interactions.

Despite the differences in focus and scope of the several biomedical branches, end users have

mutual information demands: from finding papers of relevance (IR) to the assignment of

predefined classes to text documents (formally known as classification).

The tasks of TM on which this work mainly focuses on are IR and classification, and therefore

those will be described in the next sub-sections. A small description of other tasks, not addressed

in this work but also relevant to the biomedical domain, will also be presented.

2.2.1. Information Retrieval

The practical pursuit of computerized information retrieval began in the late 1940s; the term

6

information retrieval was later used for the first time by Calvin Mooers, in 1950 [12].

As defined by Manning et al. [12] “IR is finding material (usually documents) of an unstructured

nature (usually text) that satisfies an information need from within large collections (usually stored

on computers).” The term “unstructured” mentions data that does not have clear, semantically

explicit structure, that is easy for a computer to understand. It is the opposite of structured data,

which the better example is a relational database.

In other words, IR is a task of TM that deals with automatically finding relevant texts from large

datasets of unstructured text, where manual methods would typically be infeasible [13].

2.2.1.1. Natural Language Processing Techniques

In most of the cases, the information demand concerns human language texts. Natural language

processing (NLP) deals with the interactions between computers and human (natural) languages,

particularly, with parsing the input text into a machine-readable form.

The following NLP techniques are some of the most commonly used in text mining systems, and

they are also broadly applied in the biomedical domain:

Sentence Splitting

A low-level text processing step that consists of separating written text into individual sentences

[14]. Follows simple heuristic rules, for example, a space followed by a capital letter should be

separated [15]. Some exceptions could be “Dr. Xxx” or “e.g., YYY.”

Tokenization

Given a character sequence and a defined document unit, tokenization is the task of cutting it into

smaller pieces, called tokens [12]. It is usually the first step in a text processing system, and if

wrongly implemented, can lead to a poor-performing system [16].

Although these tokens are usually related to single words, they may also consist of numbers,

symbols or even phrases. It has been observed that in biomedical documents, symbols that

usually correspond to token boundary symbols (TBS), such as “+,” “/” and “%,” do not always

denote correct boundary elements.

A tokenization parser is used to retrieve these tokens from the text, splitting the input based on a

set of predefined rules. The output of various tokenizers can be significantly different, for instance,

depending on how characters such as hyphens are handled [14], [17]. Two examples of systems

7

developed specially for text written in the English language are the Stanford Tokenizer2 and

Banner3.

Stemming & Lemmatization

The tokens are usually normalized before being added to a given term list; that is, a linguistic pre-

processing step is carried out to generate a modified token representing the canonical form of the

corresponding term [14]. Typically, this step refers to either stemming or lemmatization. Both aim

to reduce words to their common base form: for instance, “am,” “are” and “is” would become “be”;

“car,” “cars,” “car’s” and “cars” would become “car.”

The difference between both techniques is that stemming usually refers to a heuristic process

that slices the ends of words, hoping to achieve this goal correctly most of the time.

Lemmatization, on the other hand, attempts to perform a vocabulary correctly and morphological

analysis of words, typically aiming to remove inflectional endings only and to return the dictionary

form of a word (known as the lemma). However, to achieve this, the word form must be known,

i.e., the part of speech of every word in the text document has to be assigned. Since this tagging

process is usually very time-consuming and error-prone, stemming methods are applied

alternatively [11].

Porter’s stemming algorithm4 has been shown to be empirically very effective [12]. It is a process

for removing the commoner morphological and inflexional endings from words in English [18].

The BioLemmatizer5 is a domain-specific lemmatization tool for the morphological analysis of

biomedical literature, achieving very high-performance scores when evaluated against a gold

standard of manually labeled biomedical full-text articles [14], [19].

Machine Learning

One approach that has increasingly become the method of choice for many text classification

tasks is Machine Learning. ML is a field of computer science which applies statistical techniques

so that computer systems can "learn" (i.e., progressively improving its performance on a specific

task) with data, without being explicitly programmed for it [20].

Regarding the classification problem, and given a set of classes, the user seeks to determine

which class(es) a given document belongs to. More formally, the classification problem is defined

2 https://nlp.stanford.edu/software/tokenizer.shtml

3 https://github.com/oaqa/banner/blob/master/src/main/java/banner/tokenization/Tokenizer.java

4 https://tartarus.org/martin/PorterStemmer/index.html

5 http://biolemmatizer.sourceforge.net

8

as follows: having a training set 𝐷⟨𝑑𝑖⟩, 𝑖 = 1,2, … , 𝑛 of documents, such that each document 𝑑𝑖 is

labeled with a label 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑗}, the task is to find a classification model (a classifier) 𝑓

where

𝑓: 𝐷 → 𝐶𝑓(𝑑) = 𝑐

(2.1)

Which can assign the correct class label to a new document 𝑑 (test instance) [21].

There are two main ML categories: supervised, and unsupervised learning. For supervised ML

techniques to work well, manually annotated corpora are required as a training set. A statistical

model/learning algorithm is “fed” with the training set to learn from it, and subsequently applied to

assign labels to previously unseen data. Regarding unsupervised learning, no labels are given to

the learning algorithm, and these are typically based on clustering algorithms.

Commonly used annotated corpora in the biomedical domain are the GENIA6 and the PennBioIE7

corpora, achieving very high-performance scores [14].

Regarding unsupervised learning, there are several learning algorithms worth emphasising.

i. Multinomial Naïve Bayes

Naïve Bayes methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the “naïve” assumption of independence between every pair of features.

The Bayes classifier is a hybrid parameter probability model, that states the following relationship:

𝑃(𝑐𝑗|𝐷) =
𝑃(𝑐𝑗)𝑃(𝐷|𝑐𝑗)

𝑃(𝐷)
(2.2)

Where 𝑃(𝑐𝑗) is prior information of the appearing probability of class 𝑐𝑗, 𝑃(𝐷) is the information

from observations (which is the knowledge from the text itself to be classified), and 𝑃(𝐷|𝑐𝑗) is the

distribution probability of document 𝐷 in classes space [22].

Regarding text classification, the goal is to find the best class for the document (Manning et al.,

2009). The best class in Naïve Bayes classification is the most likely, or maximum a posteriori

(MAP), class 𝑐𝑚𝑎𝑝:

𝑐𝑚𝑎𝑝 = 𝑎𝑟𝑔𝑗𝑚𝑎𝑥𝑃(𝑐𝑗|𝐷) = 𝑎𝑟𝑔𝑗𝑚𝑎𝑥𝑃(𝑐𝑗)∏𝑃(𝐷𝑖|𝑐𝑗)

𝑖

(2.3)

Naïve Bayes classifiers work quite well in many real-world situations, namely document

6 http://www.nactem.ac.uk/aNT/genia.html

7 https://catalog.ldc.upenn.edu/LDC2008T21

9

classification and spam filtering [24], although they require a small amount of training data to

estimate the necessary parameters.

The different naïve Bayes classifiers differ mainly by the assumptions they make regarding the

distribution of 𝑃(𝑐𝑗|𝐷). Until this point, nothing was said about the distribution of each feature.

One disadvantage of the Naive Bayes is that it makes a very strong assumption on the shape of

the data distribution, i.e. that any two features are independent given the output class. As for the

multinomial naïve Bayes, it acknowledges that each 𝑃(𝑐𝑗|𝐷) is a multinomial distribution, rather

than any other distribution, and is one of the two classic naïve Bayes variants used in text

classification [25].

ii. K-Nearest Neighbors

Neighbors-based classification is a type of instance-based or non-generalizing learning, which

does not attempt to construct a general internal model, but solely stores instances of the training

data [26].

One of the neighbors-based classifiers is the k-nearest neighbors (k-NN). It is a non-parametric

(i.e., not based solely on parameterized8 families of probability distributions) method used for

classification and regression. In any case, the input consists of the 𝑘 closest training examples in

the feature space. Within the case of classification, the output is a class association. The principle

behind k-NN is that an object is classified by a majority vote of its neighbours, with the object

being assigned to the class most common among its 𝑘 nearest neighbors.

In ML, the training examples are vectors in a multidimensional feature space, each containing a

class label. During its training phase, the algorithm stores the feature vectors and class labels of

the training samples. In the classification phase, 𝑘 is a typically small, positive user-defined

constant, and an unlabelled vector (either a query or test point) is classified by assigning the label

which is most frequent among the 𝑘 training samples nearest to that point. If 𝑘 = 1, then the object

is simply assigned to the class of that single nearest neighbour [27]. In binary (two class)

classification problems, it is helpful to choose 𝑘 to be an odd number, as this avoids tied votes.

By default, k-NN employs the Euclidean distance, which can be calculated with the following

equation:

𝐷(𝑝, 𝑞) = √(𝑝1 − 𝑞1)
2 + (𝑝2 − 𝑞2)

2 +⋯+ (𝑝𝑛 − 𝑞𝑛)
2

(2.4)

where 𝑝 and 𝑞 are subjects to be compared with 𝑛 characteristics [28].

8 Common examples of parameters are the mean and variance.

10

iii. Decision Trees

Tree models can be employed to solve almost any machine learning task, including classification,

ranking, and probability estimation, regression and clustering [29]. In supervised learning,

classification trees (common name for when a decision tree is used for classification tasks) are

used to classify an instance into a predefined set of classes based on their attribute values, i.e.,

by learning simple decision rules inferred from the data [30].

Decision trees consist of nodes that form a Rooted Tree, i.e., a tree with a node called a “root”

that has no incoming edges. All the remaining nodes have exactly one incoming edge. A node

with outgoing edges is referred to as an “internal” or a “test” node. All other nodes are called

“leaves.”

Each internal node of the tree divides the instance space into two or more sub-spaces, according

to a particular discrete function of the input attributes values. The simplest and most frequent case

is the one where each considers a single attribute, i.e., the instance space is partitioned according

to the value of the attribute. For numeric attributes, a range is considered. Thus, each leaf is

assigned to one class representing the most appropriate target value [30].

Figure 2.1 presents an example of a decision tree that predicts whether or not a potential customer

will answer to a direct mailing. Rounded triangles represent the internal nodes (with blue

background), whereas rectangles denote the leaves. Each internal node may grow two or more

branches. Each node corresponds to a particular characteristic, and the branches correspond

with a range of values, which must be mutually exclusive and complete. These two properties of

disjointness and completeness are essential to ensure that each data instance is mapped to one

instance.

Figure 2.1 - Decision tree presenting response to direct mailing (adapted from [30])

11

iv. Random Forest

Random forests (also known as random decision forests) are an ensemble learning method (i.e.,

that use multiple learning algorithms to obtain a better predictive performance than a learning

algorithm would alone) for classification, regression, and other ML tasks [31].

This method works by constructing several decision trees (hence the “forest” denomination) at

training time. Each tree in the ensemble is built by taking a sample drawn, with replacement, from

the training set. In addition, when splitting a node during the construction of the tree, the chosen

split is the best among a random subset of the features, instead of the best among all features.

The random forest method is different from linear classifiers9 since the ensemble has a decision

boundary that can’t be learned by a single base classifier. Therefore, the random forest can be

classified as an algorithm that implements an alternative training algorithm for tree models. The

practical result is that the bias10 of the forest typically slightly increases (concerning the bias of a

single non-random tree). Nevertheless, due to averaging, its variance11 also decreases, which

usually more than compensates for the increase in bias, hence yielding an overall better model

[26], [29].

v. Logistic Regression

Logistic regression is a linear classifier whose probability estimates have been logistically

calibrated12, i.e., calibration is an integral part of the training algorithm, rather than a post-

processing step.

The output of this algorithm is a binary variable, where a unit change in the input multiplies the

odds of the two possible outputs by a constant factor. The two possible output values are often

labelled as "0" and "1", which represent outcomes such as correct/incorrect, for example. The

logistic model generalises easily to multiple inputs, where the log-odds are linear in all the inputs

(with one parameter per input). With some modification, this algorithm can also be applied to

categorical outputs with more than two values, modelled by multinomial logistic regressions, or

by ordinal logistic regression if the multiple categories are ordered [32], [33].

Logistic regression models the decision boundary directly. That is, if the classes are overlapping,

then the algorithm will tend to locate the decision boundary in an area where classes are

9 A linear classifier makes a classification decision based on the value of a linear combination of the

object’s characteristics.

10 The bias of an estimator is its average error for different training sets.

11 The variance of an estimator indicates how sensitive it is to varying training sets.

12 Calibration is a procedure in statistics to determine class membership probabilities which assess

the uncertainty of a given new observation belonging to each of the already established classes.

12

maximally overlapping, regardless of the ‘shapes’ of the samples of each class. This results in

decision boundaries that are noticeably different from those learned by other probabilistic models,

like Naïve Bayes [29].

vi. Support Vector Machines

Linearly separable data admits infinitely many decision boundaries that separate the

classes, some of which are better than others. For a given training set and decision boundary, the

training examples nearest to the decision boundary (on both sides of it) are called support vectors.

Thus, the decision boundary of a support vector machine (SVM) is defined as a linear combination

of the support vectors [29]. In supervised learning, an SVM algorithm will build a model that

assigns new examples to one category (out of two), making it a non-probabilistic binary linear

classifier.

Support vector classification (SVC) and NuSVC are algorithms capable of performing multi-class

classification on a given dataset. They both are extensions of the SVM algorithm. These are

similar methods but accept slightly different sets of parameters and have different mathematical

formulations. Both methods implement the “one-vs-one” approach for multi-class classification

[34]. If 𝑛𝑐𝑙𝑎𝑠𝑠 is the number of classes, then 𝑛𝑐𝑙𝑎𝑠𝑠 ∗ (𝑛𝑐𝑙𝑎𝑠𝑠 − 1) 2⁄ classifiers are constructed and

each one trains data from two classes.

2.2.1.2. Performance Assessment

To evaluate the effectiveness of an IR system (the quality of its results), we can apply two popular

evaluation metrics:

 Precision (𝑝, or positive predictive value) is the percentage of correctly labeled positive

results over all results, i.e., how many of the selected items are correct;

 Recall (𝑟, also sometimes named coverage, sensitivity, true positive rate, or hit rate)

refers to the percentage of correctly labelled positive results over all positive labelled

cases, i.e., how many of the correct items were selected.

A system with high recall but low precision returns many results, most of which are incorrect when

compared to the training labels. The contrary case is a system with high precision but low recall,

which returns very few results, but most of its predicted labels are correct when compared to the

training ones. An ideal system is the one that returns many results, all of which labelled correctly,

achieving high precision and recall values.

Precision and recall can be described as a class match problem where the notion of true positive,

true negative, false positive and false negative is required.

For a better understanding, table 2.1 shows a confusion matrix that relates each of these

measures. The concepts presented are a result of the relation between the predicted class (the

13

one assigned in the process) and the golden class (the correct class/assignment).

Table 2.1 - Confusion matrix with evaluation measures

Predicted class
Golden class

Positive Negative

Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)

The stated concepts can be described as follows:

 True Positive: If the identified class is correctly labelled, i.e., is present in the golden

class.

 True Negative: If the class is not present in the golden file, and the system, correctly, did

not identify it.

 False Positive: cases wrongly misclassified as positive (type I errors, incorrect cases),

i.e., the identified class is not present in the golden file;

 False Negative: cases missed or incorrectly rejected by the system (type II errors).

The figure 2.2, presented below, may help the comprehension of these concepts.

Based on these concepts, one can see the measures previously described as follows:

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.5)

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.6)

Precision and recall are often combined into a single measure, the F-score (𝑓, also F1-score or

F-measure), which is the harmonic mean of precision and recall [35]. F-score reaches its best

value at 1 (perfect precision and recall) and worst at 0, and can be represented as follows:

Figure 2.2 - Diagram for comprehension of precision and recall concepts

14

𝑓 =
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟

(2.7)

There are other metrics to consider. Accuracy (𝑎), for instance, is the fraction of correctly labelled

(positive and negative) results over all results. Research in ML has put aside exhibiting accuracy

results when performing an empirical validation of new algorithms. The reason for this is that

accuracy assumes equal misclassification costs for false positive and false negative errors. This

assumption is problematic, because for most real-world problems one type of classification error

is much more expensive than another. For example, in fraud detection, the cost of missing a case

of fraud is quite different from the cost of a false alarm [36].

Accuracy can be written following the same line of thoughts as precision and recall:

𝑎 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(2.8)

One recommended metric when evaluating binary decision problems is Receiver Operator

Characteristic (ROC) curves, which show how the number of correctly classified positive

examples varies with the number of incorrectly classified negative examples [37]. An example of

a ROC curve and how it should be interpreted is presented in the annex A, figure 1.

However, ROC curves can present an overly optimistic view of an algorithm’s performance if there

is a significant skew in the class distribution. This can be addressed using Precision-Recall (PR)

curves. An example of a PR curve can be seen in subsection 2.6.3.5.

A precision-recall curve shows the trade-off between precision and recall for different thresholds.

A high area under the curve denotes both high recall and high precision, where high precision

represents a low false positive rate, and high recall a low false negative rate. High scores for both

measures show that the classifier is retrieving accurate results (i.e., high precision), as well as a

majority of all positive results (i.e., high recall).

The main difference between ROC space and PR space is the visual representation of the

curves. In ROC space, the False Positive Rate (FPR) is plotted on the x-axis and the True Positive

Rate (TPR) on the y-axis. In the PR space, the x-axis plots Recall, and the y-axis plots

Precision. The goal in ROC space is to be in the upper left-hand corner; in PR space, the goal is

to be in the upper-right-hand corner [38].

2.2.1.3. Cross-Validation

Cross-validation (CV) [39] is a widely used method by the machine learning community since it

15

provides a simple and effective method for both model selection and performance evaluation.

Ideally, there would be three different approaches to CV [40]:

1. In the simplest scenario, the user would collect one dataset and train the model via cross-

validation to create the best model possible. Then, it would collect another utterly

independent dataset and test it in the previously created model. However, this scenario

is the most infrequent (given time, cost or most frequently dataset limitations).

2. If the user has a sufficiently large dataset, it would want to split the data and leave part of

it to the side (i.e., completely untouched during the model training process). This is to

simulate it as if it was a completely independent dataset, since a model that would repeat

the labels of the samples that it has just seen would have a perfect score but would fail

to predict anything useful on data not yet seen [26]. This event is called overfitting. To

prevent it, the user would then build the model on the remaining training samples and test

the model on the left-out samples.

3. Lastly, if the user is limited to a smaller dataset, it may not be able to ignore part of the

data for model building simply. As such, the data is split into k folds, validation is

performed on every fold (thus, the name k-fold cross-validation) and the validation metric

would be aggregated across each iteration.

Since datasets are frequently small, k-fold cross-validation is the most used cross-validation

method. Under it, the data is randomly divided to form k separated subsets of approximately equal

size. In the ith fold of the cross-validation procedure, the ith subset is used to estimate the

generalised performance of a model trained on the remaining k−1 subsets. The average of the

generalised performance observed over all k folds provides an estimate of the generalised

performance of a model trained on the entire sample [41].

2.3. Controlled Vocabularies

In several fields of study, controlled vocabularies exist as a way to organise knowledge for

subsequent retrieval of information. An example of knowledge classification is taxonomy13. The

end-user will most likely focus on one or more topic areas that can be summarised by a network

of concepts and associations between them. These typically correspond to domain concepts

which are found in thesauri and ontologies [42].

An ontology can be defined as “an explicit specification of a conceptualization” [43], thereby

including representation, formal naming and/or definition of the categories, properties, and

relations of the concepts, data, and entities that it covers. More formally, in information science,

the word ontology is applied to a set of logical axioms that model a portion of reality [44].

13 The practice and science of classification.

16

The main strength in applying ontologies to data from different fields is the ease with which

researchers can share information and process data using computers. As such, ontologies

describe knowledge in a way that can be understood by humans and machines alike.

Because modelling ontologies are highly resource-consuming (given that are developed and

described in logic-based languages like OWL), there is a preference to reuse existing models,

like thesauri, as ontologies instead of developing ontologies from scratch. However, as Kless [45]

stated, thesauri cannot be considered a less expressive type of ontology. Instead, thesauri and

ontologies must be seen as two kinds of models with superficially similar structures. A qualitatively

good ontology may not be a good thesaurus, the same way a qualitatively good thesaurus may

not be a suitable ontology.

A thesaurus seeks to dictate semantic manifestations of metadata14 in the indexing of content

objects15 [46]. In other words, it assists the assignment of preferred terms to convey semantic

metadata associated with the content object, guiding both an indexer and a searcher in the

selection of the same ideal term/combination of terms to represent a given subject.

The aim in using thesauri is to minimise semantic ambiguity by ensuring uniformity and

consistency in the storage and retrieval of any manifestations of content objects.

2.3.1. Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary for the purpose of

indexing, cataloguing and searching journal articles and books related to the life sciences [47].

It was first introduced by Frank Rogers, director of the NLM, in 1960 [48], with the NLM's own

index catalogue and the subject headings of the Quarterly Cumulative Index Medicus (1940

edition) as precursors. Initially, it was intended to be a dynamic list, with procedures for

recommending and examining the need for new headings [49]. Today it is used by

MEDLINE/PubMed database and by NLM's catalogue of book holdings.

Many synonyms and closely related concepts are included as entry terms to help users find the

most relevant MeSH descriptor for the concept they seek. In NLM's online databases, many

search terms are automatically mapped to MeSH descriptors to ease the retrieval of relevant

information.

2.3.1.1. MeSH Structure

MeSH possesses three types of records [50]:

14 Data/information that provides information about other data.

15 Any item that is to be described.

17

i. Descriptors

Unit of indexing and retrieval. The MeSH descriptors are organised in 16 categories, from

anatomic terms, organisms, diseases, and so on. Each category is further divided into

subcategories. Within each subcategory, descriptors are arrayed hierarchically from most general

to most specific in up to thirteen hierarchical levels. Because of the branching structure of the

hierarchies, these are sometimes referred to as "trees" [51].

Each descriptor is followed by the number that indicates its tree location. For example, “C16.131”

stands for “Congenital Abnormalities.”

ii. Qualifiers

Qualifiers offer a convenient means of grouping together citations which are concerned with a

particular aspect of a subject. For example, “liver/drug effects” indicates that the article or book is

not about the liver in general, but about the effect of drugs on the liver.

There are 81 topical Qualifiers (also known as Subheadings) used for indexing and cataloguing

in conjunction with Descriptors.

iii. Supplementary Concept Records (SCRs)

Supplementary Chemical Records (SCRs), also called Supplementary Records, are used to index

chemicals, drugs, and other concepts such as rare diseases for MEDLINE.

SCRs are not organised in a tree hierarchy; instead, each SCR is linked to one or more

Descriptors by the Heading. They also include an Indexing Information (II) field that is used to

refer to other descriptors from related topics. There are more than 230,000 SCR records, with

over 505,000 SCR terms.

2.3.1.2. Online Retrieval with MeSH

The MeSH Browser16, as an interactive Web application for searching and browsing MeSH data,

is the primary way of access to MeSH. However, as the MeSH browser only returns terms, these

are to be used in databases such as PubMed.

The main method of using MeSH with PubMed is by providing the search engine with terms in

MeSH records. To ensure a Pubmed search uses a MeSH term, the query should have the [mh]

tag, for example, “Asthma [mh].” This query17 would retrieve every citation indexed with this

Descriptor since PubMed automatically searches on narrower Descriptors indented under the

main Descriptor in the MeSH Tree Structures.

16 https://meshb.nlm.nih.gov/search

17 A query is a request for information from a database.

18

If the user has no idea what MeSH term or terms have been used in indexing relevant literature,

a text word search may be performed first. For example, if a user is interested in "scalp diseases"

- a term not in MeSH, they can search this term in PubMed (title and/or abstract). After seeing

particularly relevant citations, the user can look at the citation record (MEDLINE format), and find

the MH term “Scalp Dermatoses,” that will be the basis of a new query [52].

2.3.1.3. Example

A quick search through the MeSH Browser allows the user to acquaint itself with the functioning

of the database.

Taking “brain” as a search term, for instance. After the insertion of the term in the search box, a

full report is displayed, as presented in figure 2 (in the annex B).

The first tab, “Details,” immediately shows the MeSH Heading and its tree number(s) in the first

two lines, in this case, “brain” and “A08.186.211” respectively. The following lines present the

related annotations, scope notes, entry terms, and other notes. The “Qualifiers” tab shows the

related entry combination (for example, “chemistry:Brain Chemistry”) and allowable qualifiers (for

example, “anatomy & histology (AH)”). The “MeSH Tree Structures” tab shows the location of the

term, as well as the parent and child nodes (if available). For the referred term, the hierarchy tree

is presented in figure 2.3.

The last tab, “Concepts,” shows the concepts related to the term in question, is this case the only

concept is “Brain Preferred.”

2.4. Text Mining within Systematic Reviews

Several authors have widely studied the availability and utility of text-mining tools to support

systematic reviews over time.

Figure 2.3 - MeSH hierarchy tree for "brain" term

19

The application of TM techniques to support the citation screening stage of SRs is an emerging

research field in computer science, with the first reported publication on the subject in 2005 by

Aphinyanaphongs et al. [53]. Their research showed that using machine learning methods it was

possible to automatically construct models for retrieving high-quality, content-specific articles in a

given time period in internal medicine, that performed better than the 1994 PubMed clinical query

filters.

A SR of 26 studies, performed by Pluye et al. [54], reiterates the statement that information-

retrieval technology produces a positive impact on physicians regarding decision enhancement,

learning, recall, reassurance, and confirmation of a given hypothesis.

In 2015, another SR of 44 papers by O’Mara-Eves et al. [9] pulled together the evidence base for

the use of TM for CS. Whilst the authors found that it is difficult to establish any overall conclusions

about the best approaches, they also suggested that the (semi)-automation of screening could

result in a saving in workload of between 30% and 70%, though sometimes that saving is

accompanied by a 95% recall (i.e., the loss of 5% of relevant studies).

Jonnalagadda et al. [8] later referred on their study that the data extraction step is one of the most

time-absorbing of the SR process, and that TM techniques, more specifically NLP, may be an

essential strategy to reduce the time implicated. Nonetheless, the authors point out that even

though most NLP research has focused on reducing the workload for the CS step, biomedical

NLP techniques have not been fully exploited to entirely or partially automate the SR process.

A challenge that was pointed by Paynter et al. [55] was that the creation of training datasets, given

the comprehensive nature of the TM algorithm, given the comprehensive nature of the research

performed, tends to include much more irrelevant than relevant citations, leading to “imbalanced

datasets.” Olorisade et al. [56] also highlight that the lack of information about the datasets and

machine learning algorithms limits the reproducibility of a high amount of published studies.

Even though TM tools are currently being used within several SR organizations for a variety of

review processes (e.g., searching, screening abstracts), and the published evidence-base is

growing fairly rapidly in extent and levels of evidence, Paynter et al. [57] acknowledge that text

mining tools will be increasingly used to support the conduct of systematic reviews, rather than

substituting current literature retrieval and information extraction tools. Some significant limitations

presented by the authors are that many TM tools rely on corpora from PubMed/MEDLINE to train

the learning algorithm, which does not represent the entire population of literature relevant for

healthcare-related systematic reviews.

2.5. Related Tools

In 2005, Aphinyanaphongs et al. [53] conducted a research where ML methods were used

20

together with articles cited by the ACP Journal Club as a gold standard for the training of the

algorithm. The authors chose this specific gold standard because of its focused quality review,

that is highly regarded and uses stable explicit quality criteria.

In most of the studied categories, the data-induced models showed better or comparable

precision, recall, and specificity than the pre-existing query filters. These results proved that,

following this approach, it is possible to automatically build models for retrieving high-quality,

content-specific articles in a given time period that performed better than the 1994 PubMed clinical

query filters.

Rathbone et al. [58] evaluated the performance of Abstrackr, a semi-automated online tool for

predictive title and abstract screening. The authors used four different SR to train a classifier, and

then predict and classify the remaining unscreened citations as relevant or irrelevant. The results

showed that the proportion of citations predicted as relevant by Abstrackr was affected by the

complexity of the reviews and that the workload saving achieved varied depending on the

complexity and size of the reviews. Still, the authors concluded that the tool had the potential to

save time and reduce research waste.

Paynter et al. [55] conducted a research which goal was to provide an overview of the use of TM

tools as an emerging methodology within some SR processes. This project culminated in a

descriptive list of text-mining tools to support SR methods and their evaluation. The authors found

two major TM approaches:

1. The first approach assessed word frequency in citations as presented by stand-alone

applications, which generate frequency tables from the results set outlining the number

of records by text word, controlled vocabulary heading, year, substances, among others.

While this approach was used by Balan et al. [59], Kok et al. [60] and Hausner et al. [61]

in their studies and applications, other authors used EndNote (a citation management

application) to generate word frequency lists.

2. The second approach is automated term extraction. This approach also generates word

frequency tables, but many were limited to single word occurrences. Tools such as

AntConc18, Concordance19, and TerMine20 extract phrases and combination terms; other

applications such as MetaMap21 and Leximancer22 add a semantic layer to the process

by using tools provided through the NLM’s Unified Medical Language System.

18 http://www.laurenceanthony.net/software/antconc/

19 http://www.concordancesoftware.co.uk

20 http://www.nactem.ac.uk/software/termine/

21 https://metamap.nlm.nih.gov

22 https://info.leximancer.com

21

Even though the tools apply different algorithms, the overall approaches were similar. They start

by creating a training set. In addition to that, another corpus representing the general literature

(usually created by randomly sampling citations from PubMed) may be presented to the algorithm.

Only “overrepresented” words and phrases in the training set are considered for inclusion in the

search strategy. Nonetheless, as noted by Petrova et al. [62] and O’Mara-Eves et al. [63], this

approach has inherent problems: not only the reported frequencies for text words do not

necessarily reflect the number of abstracts in which a word appears, but the term extraction

algorithm also depends on the content of the documents supplied to it by the user/reviewer.

Most of the tools and studies examined by Paynter et al. [55] found benefit in automating term

selection for SR, especially those comprising large unfocused topics. For example, in their study,

Balan et al [59] concluded that “the benefits of TM are increased speed, quality, and reproducibility

of text process, boosted by rapid updates of the results”; Petrova et al. [62] highlights the

importance of word frequency analysis, since it “has shown promising results and huge potential

in the development of search strategies for identifying publications on health-related values”.

2.6. Resources

This project is built on a wide range of Python packages, namely Biopython, NLTK, and Scikit-

learn. The following subsections will describe each of them, relating them to their future role on

this work.

2.6.1. Biopython

The Biopython Project [64] is an international association of developers of freely available Python

tools for computational molecular biology. Python is an object-oriented, high-level programming

language with a simple and easy to learn syntax, which is why it is becoming increasingly popular

for scientific computing. Thus, Biopython provides an online resource for modules, scripts, and

web links for developers of Python-based software for bioinformatics use and research.

One of Biopython’s functionalities is the access to NCBI’s Entrez databases. Entrez23 is a data

retrieval system that provides users access to NCBI’s databases such as PubMed, GenBank,

GEO, among others. Entrez can be accessed from a web browser to enter queries manually, or

one can use Biopython’s Bio.Entrez module for programmatic access to Entrez, which allows

searching PubMed from within a Python script.

After using Bio.Entrez to query PubMed, the result will be a Python list containing all of the

PubMed IDs of articles related to the given query. If one wishes to get the corresponding Medline

records and extract the information from them, it will be necessary to download the Medline

23 http://www.ncbi.nlm.nih.gov/Entrez

22

records in the Medline flat-file format and use the Bio.Medline module to parse them into Python

utilisable data structures.

2.6.2. NLTK

The Natural Language Toolkit, also known as NLTK [65], is an open source library, which includes

extensive software, data, and documentation, that can be used to build natural language

processing programs in Python. It provides basic classes for representing data relevant to natural

language processing, standard interfaces for performing tasks such as syntactic parsing and text

classification, and standard implementations for each task that can be combined to solve complex

problems.

One of NLTK’s functionalities is the processing of raw text. For that, it requires a corpus. The

nltk.corpus Python package defines a collection of corpus reader classes, which can be used to

access the contents of a diverse set of corpora. An example of this is the

CategorizedPlaintextCorpusReader. It is used to access corpora that contain documents which

have been categorised for topic, label, etc. In addition to the standard corpus interface, these

corpora provide access to the list of categories and the mapping between the documents and

their categories.

After accessing the corpus, it is necessary to normalise it. NLTK provides tools to normalize text,

from tokenization, the removing of punctuation, or converting text to lowercase, so that the

distinction between “The” and “the,” for example, is ignored. Another resource NLTK provides is

a set of stopwords, that is, high-frequency words like “the,” “to” and “also” that one sometimes

wants to filter out of a document before further processing. Stopwords usually have little lexical

content, and their presence in a text fails to distinguish it from other texts. Often it is still necessary

to go further than this, so NLTK offers a way to Stemm and/or Lemmatize the raw text.

2.6.3. Scikit-learn

Scikit-learn [26] is a free machine learning library for Python. It features various classification,

regression and clustering algorithms including support vector machines, random forests, k-means

and many others.

The Scikit-learn Application Programming Interface (API) is an object-oriented interface centered

around the concept of an estimator — broadly any object that can learn from data, be it a

classification, regression or clustering algorithm. Each estimator in Scikit-learn has a fit() and a

predict() method:

 The fit() method sets the state of the estimator based on the training data. Usually, the

data is comprised of a two-dimensional array X of shape “(nr. samples, nr. predictors)”

that holds the feature matrix, and a one-dimensional array y that holds the labels;

 The predict() method generates predictions: predicted regression values in the case of

23

regression, or the corresponding class labels in the case of classification [66].

The main steps of a classification task will be described below, as well as their implementation

according to Scikit-learn.

2.6.3.1. Vectorization

To run machine learning algorithms in a corpus or any text document, it is necessary to convert

the text into numerical feature vectors. The bag-of-words model [67] (also known as the vector

space model) is frequently used in methods of document classification where the (frequency of)

occurrence of each word is used as a feature for training a classifier.

The problem of just counting the number of words in each document is that it will give more weight

to longer documents than shorter documents. To avoid this, term frequency-inverse document

frequency (TF-IDF) [68] can be used. TF-IDF is a numerical statistic that is intended to reflect how

important a word is to a document in a collection or corpus. It is the product of two statistics, term

frequency (TF) and inverse document frequency (IDF). TF of a word is the frequency of a word

(i.e., the number of times it appears) in a document. IDF, on the contrary, reduces the weight of

terms that occur very frequently in the document set and, at the same time, increases the weight

of terms that occur rarely.

Scikit-learn provides methods to vectorize the data (both the bag-of-words and TF-IDF

approaches) through sklearn.feature_extraction.text, namely TfidfVectorizer. After it has been

initialized, the vectorizer works with two methods: fit_transform(), and transform(). These methods

work as follows: to center the data (i.e., make it have zero mean and unit standard error), it is

necessary to subtract the mean of the population (μ) and then divide the result by the standard

deviation (σ):

𝑥′ =
𝑥 − 𝜇

𝜎
(2.9)

This procedure is done on the training set of the data. After it, the same transformation has to be

applied to test set (e.g., in cross-validation) or to newly obtained examples before forecast. The

same two parameters μ and σ that were used to center the training set have to be used. Hence,

every sklearn's fit() method calculates the parameters (μ and σ) and saves them as an internal

object state. Afterward, the transform() method is called to apply the transformation to a particular

set of examples. The fit_transform() method joins these two steps in one and is used for the initial

fitting of parameters on the training set 𝑥, but it also returns a transformed 𝑥′. Internally, it just

calls first fit() and then transform() on the same data.

2.6.3.2. Cross-Validation

Scikit-learn offers several methods to deal with cross-validation through class

24

sklearn.model_selection, namely cross_val_predict. This method works with both the data and

the estimator (see 2.6.3.3 for examples of estimators). After splitting the data (both samples and

labels) into training and testing sets, it will use the samples and labels of the training set to fit the

estimator. Later, this estimator will predict the labels on the test set samples (without using test

set labels). This process will be repeated for N times (N is a number defined by the user), each

time using different data for training and different data for testing.

2.6.3.3. Classification

Scikit-learn features various classification algorithms based on machine learning. The theory

behind these algorithms is explained in 2.2.1.1. Every algorithm has a fit() and a predict() method,

as explained in 2.6.3.

The following classification algorithms take as input two arrays: an array 𝑋, sparse or dense, of

size [𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠] holding the training samples, and an array 𝑦 of integer values, size

[𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠], holding the class labels for the training samples.

Multinomial Naïve Bayes

MultinomialNB() method, from class sklearn.naive_bayes, implements the naïve Bayes algorithm

for multinomially distributed data. The multinomial distribution typically requires integer feature

(i.e., word vector) counts, however, practically, fractional counts (such as TF-IDF) also work.

K-Nearest Neighbors

From class sklearn. Neighbors, the KNeighborsClassifier() method implements the k-nearest

neighbor's classifier.

Decision Tree

The DecisionTreeClassifier() method from class sklearn.tree is capable of performing both binary

(with labels from range [-1, 1]) and multiclass (with labels from range [0, …, K-1]) classification on

a given dataset.

This algorithm can be used to predict the class of the samples after being fitted or, alternatively,

the probability of each class (that is, the fraction of training samples of the same class in a leaf).

Random Forest

The RandomForestClassifier() method implements the random forest algorithm and can be

imported from the sklearn.ensemble module.

25

Logistic Regression

The implementation of logistic regression in Scikit-learn can be accessed from

LogisticRegression(), imported from sklearn.linear_model. This implementation can fit binary,

One-vs-Rest, or multinomial logistic regression with optional L2 or L1 regularisation24.

There are some parameters to this method worth emphasising, namely:

 “C”: a positive float with a default value of “1.0”. It represents the inverse of regularisation

strength, where smaller values specify stronger regularisation;

 “penalty”: a string of choice ‘l1’ or ‘l2’, with ‘l2’ as the default value. Used to specify the

norm used in the regularisation.

To choose the best parameters for the estimator, an exhaustive search over specified parameter

values can be performed using GridSearchCV. This method is detailed in vii, below.

Multi-Class Classification

The sklearn.multiclass module implements meta-estimators to solve both multiclass and

multilabel classification problems, by decomposing them into binary classification problems.

SVC and NuSVC, individually, are handled by Scikit-learn as a One-vs-One strategy, which

constructs one classifier per pair of classes. At prediction time, the class which received the most

votes is selected. If a tie occurs, (among two classes with an equal number of votes), it selects

the class with the highest aggregate classification confidence, by summing over the pair-wise

classification confidence levels computed by the underlying binary classifiers.

The SVC() and NuSVC() methods can be imported from the sklearn.svm class.

Grid Search

Estimators may contain parameters that are not directly learned within estimators, also known as

hyper-parameters. In Scikit-learn, these are passed as arguments to the constructor of the

estimator.

Any parameter provided when constructing an estimator may be optimised by an exhaustive grid

search. The grid search provided by GridSearchCV(), from class sklearn.model_selection,

exhaustively generates candidates from a grid of parameter values specified.

GridSearchCV() implements a fit() and a score() method. It also implements other methods, if

they are implemented in the estimator used. The parameters of the estimator used to apply these

methods are optimised by cross-validated grid-search over the previously specified parameter

24 Regularisation is the application of a penalty to reduce overfitting the data.

26

grid. In the end, GridSearchCV() returns a list with the estimated best parameter value(s) to

choose.

2.6.3.4. Performance Analysis

Class sklearn.metrics provides several ways to access the performance of the estimator in Scikit-

learn.

If the user wishes to know the accuracy score, the method accuracy_score() will return its value.

There are two parameters obligatory to fill in this method: y_true stands for a label indicator array,

containing the correct labels for the test set; y_pred is a label indicator array with the predicted

labels, as returned by a classifier.

Another way to evaluate the accuracy of a classification is to compute a confusion matrix. By

definition [26], a confusion matrix 𝐶 is such that 𝐶𝑖,𝑗 is equal to the number of observations known

to be in group 𝑖, but predicted to be in group 𝑗. Therefore, in binary classification, the count of true

negatives is 𝐶0,0, false negatives is 𝐶1,0, true positives is 𝐶1,1 and false positives is 𝐶0,1.

In Scikit-learn, a confusion matrix can be obtained with the confusion_matrix() method. As with

accuracy_score(), it also receives the parameters y_true and y_pred.

For a more detailed performance analysis of the results, a classification_report() method is

available. This method builds a text report showing the main classification metrics: precision,

recall, f1-score, and support (the number of objects in each class), as well as an average value

for all the classes.

Classification_report() takes as input three main parameters: y_true and y_pred (like

accuracy_score()), and target_names, that may receive either a list of strings, where each is a

different class label, or a pointer to a variable containing the class labels (in list of strings format

as well). An example of a classification report, as outputted by a Python interpreter, is shown in

figure 2.4.

Figure 2.4 - Classification report output example

27

2.6.3.5. Model Evaluation

Scikit-learn possesses several ways to evaluate the employed models. All text labels must be

converted to integers, with LabelEncoder() from class sklearn.preprocessing, before applying any

other function.

Learning Curve

A learning curve presents the user with the validation and training score of an estimator for a set

of training samples. It is a way to figure out if and how much a user will benefit from adding more

training data and whether the estimator suffers more from a variance or a bias error. If both the

validation score and the training score merge into a value that is too low with increasing size of

the training set, the user will not benefit much from more training data.

Figure 2.5 shows an example of a learning curve of a naive Bayes classifier, for Scikit-learn “digits”

dataset. The training and cross-validation score are both not very good at the end. However, the

shape of the curve is representative of more complex datasets [26]: the training score is very high

at the beginning and decreases with the increase of training examples, as for the cross-validation

score, starts as very low and increases with the increase of training examples. An ideal learning

curve would have both scores around the maximum value.

From class sklearn.model_selection, the function learning_curve() generates the values that are

required to plot a learning curve (number of samples used, average scores on training sets and

average scores on validation sets).

ROC Curve

The ROC curve can be computed in Scikit-learn by the roc_curve() function. This function requires

the true binary value and the target scores, which can either be probability estimates of the

Figure 2.5 - Example of learning curve using Naïve Bayes classifier

28

positive class, confidence values, or binary decisions. It is not sensitive to whether the dataset is

balanced or imbalanced. An example of a ROC curve is shown in figure 2.6.

The roc_auc_score() function computes the area under the ROC curve, also denoted by AUC or

AUROC. AUC can be interpreted as the probability that the classifier will assign a higher score to

a randomly chosen positive example, rather than to a randomly chosen negative example [69].

PR Curve

To compute precision-recall pairs for different probability thresholds within the binary classification

task, Scikit-learn provides the function precision_recall_curve() from module sklearn.metrics.

The PR curve is very sensitive to whether the dataset is balanced or imbalanced. An example of

a PR curve is shown in figure 2.7.

Figure 2.6 - Example of ROC curve

Figure 2.7 - Example of precision-recall curve with average precision of 0.91

29

Section 3

Developed Work

This section describes all the work developed in order to accomplish the proposed objectives.

One of the main goals is the development of a semi-automatic tool for classification of scientific

articles, relying on the use of MeSH terms for the enhancement of the performance of the

classifier.

First, the methodology followed in this work is presented. An overview of the tool is presented

next, where its architecture from a higher level of abstraction its described. Then, a detailed

description of its respective components is described, along with the datasets further used by

them.

3.1. Methodology

The scheme presented in figure 3.1 represents the overall flow of this work, with research

questions and a summary of the employed methodologies for each for the tasks.

Figure 3.1 - Proposed methodology

3.2. Overview

The system is composed of two major modules: the PubMed search and save, and the classifier

modules. Although these modules are responsible for addressing each task independently, they

Task 1:

Create the system, i.e., a tool that searches PubMed for scientific articles and saves
them according to pre-defined labels, and another tool that classifies a set of

articles

Task 2:

Analysis of the results obtained by the created system when applied to two different
practical cases

Objective:

Develop a system capable of creating a classification model which training is based
on a controlled vocabulary (MeSH) and Machine Learning algorithms

Hypothesis:

Do TM tools and controlled vocabularies have a positive impact on the SR process?

30

are part of the same pipeline, presented in figure 3.2.

Figure 3.2 - Proposed pipeline

Figure 3.2 represents a higher level of abstraction of the system execution. The system starts

with a user-presented query into the PubMed Search & Save script, which outputs a labelled

corpus. Two different corpora will be inputted to the Classifier script, which will produce a

classification report for the user to analyse.

If there is no need to download a new corpus from PubMed, i.e., if the user already has a set of

“.txt” format files containing the title and abstract for a given article, the first two steps of the

pipeline may be skipped. For that set of articles to be used as a corpus, they should all be inserted

in the same folder and follow the filename scheme of “𝑙𝑎𝑏𝑒𝑙𝑁 . 𝑡𝑥𝑡”, where “label” is the class label

the user desires, “N” is a number (all files must have different numbers) and “.txt” is the file format.

3.3. Script Development

To accomplish the tasks proposed, two scripts were developed: one for searching and saving

articles from PubMed according to a given query, and a second one for the classification of a

given corpus. The following sub-sections will describe the implementation of each.

3.3.1. PubMed Search & Save

The “PubMed Search and Save” python script was built with the intent of facilitating both the article

retrieval and the future usage of the retrieved articles into the classifier script. It is built under

BioPython modules, and should be run on Terminal, by accessing the directory where the script

is located and then using the command “python pubmed_search_and_save.py.”

The script is built in a user-friendly way: after successfully initiating the script, the user only needs

to provide the script with a few information for it to run. An example run is showed in figure 3.3,

below.

The email is a mandatory field since to make use of NCBI's25 E-utilities, NCBI requires an email

address with each request. The reason for this is because, in case of excessive usage of the E-

utilities, NCBI will attempt to contact a user at the email address provided before blocking access

to the E-utilities.

25 The National Center for Biotechnology Information (NCBI) is part of the NLM.

31

The following question regards the desired query. This field should be answered just like a regular

PubMed search.

The “desired label” question is a way of identifying the retrieved articles, not only for the user itself

but especially for usage with the classifier script (as it needs that each document from the corpus

to have a label). The label should have no spaces – if necessary; the user should instead use the

“_” symbol.

The minimum date field is optional – the user may or may not wish to limit the search by a given

date. In any case, a date should be provided in the YYYY/MM/DD format, even if it is “0000/01/01”.

The latter question is related to the number of articles desired. The script will try to fetch as many

articles as inputted by the user, and the final number of articles retrieved is shown below. If there

is any problem with an article, the script will pass to the next one and show a “Saving information

for X out of Y articles” information.

All articles are saved to the same directory where the script is located.

3.3.2. Classifier

The “Classifier” python script was built in consideration with the research questions and benefiting

from Scikit-learn’s state-of-the-art implementations of many well-known ML algorithms, among

other Python modules. It is projected to run on Terminal, by accessing the directory where the

script is located and then using the command “python classifier.py.”

The script is built in a user-friendly way: after successfully initiating the script, the user only needs

to provide the script with a few information for it to run. An example run is showed in figure 3.4.

For a correct usage of the script, the user is requested to enter the location of both training and

test data. It is required that both corpora are located in different paths, to ensure better results.

After specifying the location of the corpora, the user is requested to choose a classification

algorithm from the provided list. For it, it should simply enter a number corresponding to the

desired algorithm.

Figure 3.3 - “PubMed Search and Save” example run

32

Following the selection of the algorithm, the user is asked whether desires to see the plot for

learning curves, precision/recall, ROC or confusion matrix, on which it should reply with Y/y for

“yes,” and N/n for “no.” If the answer is “yes” for any option, a graphic will be computed following

the examples presented in section 2.6.3.5.

After the initial setup of the classifier, a few measures are printed, as well as the full classification

report.

The “validation set document classification accuracy” is a percentage, related to the ten-fold

cross-validation performed with the training data, and consequent label prediction. It is followed

by a “test set document classification accuracy” that uses percentage as well, as an indicator of

the accuracy of the classification algorithm predictions.

A more accurate and in-depth classification report is provided in the following lines. It should be

read as a table, where the first line contains the column names, i.e., the measures in study

(“precision,” “recall,” “f1-score”) and the number of articles in evaluation (“support”). The first and

second rows represent each of the data labels (the ones chosen by PubMed Search and Save

“desired label” parameter), and the last row is an average measure for each of the classification

results and the total number of articles, in the “support” column. Each measure (for precision,

recall, and f1-score) is shown as a number from 0 to 1.

The last line provides a simple confusion matrix, where the first line is related to the first label (in

Figure 3.4 - "Classifier" script example run

33

the example, “nonrelevant”) and the latter line to the second label (in the example, “relevant”). For

this specific example, the reading would be “for the ‘nonrelevant’ label, there were 11 articles

correctly classified and 14 incorrectly classified; for the ‘relevant’ label, there were seven articles

incorrectly classified and 53 correctly classified.”

3.3.2.1. Model Evaluation

Before applying the classifier to the datasets in study, a few tests were conducted in order to verify

its correct functioning.

A first corpus of 43 articles was generated, with 23 articles belonging to a category with label

“breast_cancer” and the remaining 20 to a category with “hd” (from Huntington’s disease) label.

The “hd” articles were obtained using the “PubMed Search and Save” script, using the following

query: "(huntington disease[MeSH Terms]) NOT breast cancer[MeSH Terms]" and a minimum

date parameter of '2015/01/01'; the “breast_cancer” articles were obtained using the following

query: "(breast cancer[MeSH Terms]) NOT huntington disease[MeSH Terms]", with a minimum

date parameter of ‘2016/01/01’.

The intent with using such different subjects was to ensure that each group of articles had a

different bag of words. This can be attested by the figure 3 (in the annex C), showing each bag’s

set of words.

After verifying that each corpus had different bags of words, a bigger corpus (with the same

queries) with approximately 2000 articles was generated. With this new corpus, a set of tests was

made to fine tune the classifier algorithm, aiming to achieve a precision of 80% and F-score of

85%.

With the successful achievement of these target values, a final test was performed: the classifier

was trained using the same corpus, but a different test set containing “fake” “hd” label articles

(i.e., cancer articles whose label was intentionally replaced to “hd”) was fed to the classifier. The

result was a “correct misclassification” of these articles, i.e., the classifier correctly classified the

“hd” articles as belonging to the “cancer” category. A confusion matrix that attests these results

can be seen in figure 4 (in the annex D).

3.4. Datasets

The application of TM and NLP techniques requires annotated datasets in order to develop and/or

evaluate new approaches. These datasets are made up of a corpus of documents, relevant to a

specific domain, and its annotations. Since most times these are manually curated by domain

experts, they can serve as a gold standard to train, for instance, a ML classifier and evaluate its

performance. The downside of manually curated annotations is that they require a defined set of

annotation guidelines and availability to annotate the texts [12], [70].

34

For the development of this work, two different and independently curated datasets have been

created and used.

3.4.1. Mindfulness/Fatigue

Ulrichsen et al. [71] developed a systematic review to study the efficiency of mindfulness-based

interventions for fatigue across neurological conditions and acquired brain injuries.

Systematic literature searches were conducted in PubMed, Medline, Web of Science, and

PsycINFO, using “fatigue” and “mindfulness” as query keywords. A total of four studies (out of

372) were retained for meta-analysis. Figure 3.5 summarises the search and study selection

processes.

The full dataset was requested to the authors, who returned a file containing references for 364

articles, instead of 372. From those 364 articles, and given that the article retrieval script

(“PubMed Search and Save.py”) uses the PubMed search engine only, all the non-PubMed

retrieved articles were taken out from the corpus. Four duplicated articles were also taken from

the article list. This left the final corpus, i.e., the golden standard, with 119 articles divided into two

classes: the four included in the SR, and the remaining 115 PubMed articles.

Figure 3.5 - Search process and study selection flowchart (adapted from [71])

35

3.4.2. Humanin

Following the request of a researcher for help in their study regarding the Humanin protein, a

dataset related to this problem was created from scratch.

To create the golden standard, a set of articles were retrieved from PubMed using the “humanin”

keyword and a minimum publication date of 01/01/2012, using the PubMed Search and Save

script explained in 3.3.1.

The resulting 85 articles were sent to the researcher for manual classification, i.e., the researcher

was asked to classify from 1 to 5 how relevant each article was, by reading its title and abstract.

With a numerical classification of 4 or 5, 60 articles were classified as “relevant,” and the

remaining 25 articles (with numerical classifications from 1 to 3) as “non-relevant.” These were

considered as the golden standard for classification purposes.

The full article list is available in table 1, in the annex E.

3.4. Practical Applications

This subsection presents two different practical applications for the classification script.

3.5.1. Mindfulness/Fatigue Dataset

The intent with Ulrichsen et al.’s [71] dataset was not to find articles belonging to one category or

another, but instead finding a smaller amount of articles inside a bigger category, i.e., the SR-

included articles inside the universe of PubMed retrieved articles of non-SR-included articles.

For this purpose, and since the goal was to study whether MeSH terms can be helpful in IR and

article classification, the gold standard of 119 articles previously described in 3.4.1 was

established as the test set. The reason for this is that since the labels for the 119 articles were

known, a classification prediction could be validated as correct or incorrect. Two labels were

created for the dataset: “SRincluded” for the SR-included articles, and “mindf_fatigue” for the

remaining articles.

Several training sets were created following the guidelines from Ulrichsen et al.’s [71] SR, i.e.:

1. The inclusion criteria into the review seek to include “randomized (…) controlled trials

aiming to measure the effect of different interventions on fatigue associated with

neurological conditions and acquired brain injuries” and studies “primarily targeting

fatigue” or including “fatigue as a secondary outcome measure.”

2. The exclusion criteria eliminated studies concerning fatigue “as a potential side effect of

treatment, or as a contraindication for treatment (…), or studies targeting parallel, but

different conditions to fatigue, such as sleepiness, reduced vigilance, anxiety, and

36

depression”.

For the “SRincluded” articles, the exclusion criteria were approached using the “NOT” logical

operator to exclude the undesired keywords. The usage of the “AND” logical operator ensured

the retrieval of articles with both the desired keyword and a second set of keywords. The “OR”

logical operator allows the user to retrieve several sets of keywords at once.

The queries given to the PubMed Search and Save script for the retrieval of the training sets were

as presented by table 3.1. A maximum number of 500 articles per category was set for retrieval.

No minimum date was set (i.e., “0000/01/01”).

Table 3.1 - Queries for the mindfulness training set article retrieval

Trial Query Label

“Train”

(((randomized controlled trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT

((adverse effects[MeSH Terms]) OR contraindications[MeSH Terms])
“SRincluded”

(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms] OR

mindfulness[MeSH Terms]
“mindf_fatigue”

“Train 1”

((((fatigue[MeSH Terms]) OR mindfulness[MeSH Terms])) AND ((randomized controlled

trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT ((((adverse effects[MeSH

Terms]) OR contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR

depression[MeSH Terms])

“SRincluded”

(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms] OR

mindfulness[MeSH Terms]
“mindf_fatigue”

“Train 2”

((((fatigue[MeSH Terms]) OR mindfulness[MeSH Terms])) AND ((randomized controlled

trial[MeSH Terms]) OR brain injuries[MeSH Terms])) NOT ((((adverse effects[MeSH

Terms]) OR contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR

depression[MeSH Terms])

“SRincluded”

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR fatigue[MeSH Terms])

OR mindfulness[MeSH Terms])) AND ((adverse effects[MeSH Subheading]) AND

fatigue[MeSH Terms])) NOT randomized controlled trial[MeSH Terms]

“mindf_fatigue”

“Train 3”

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR ((randomized

controlled trial[MeSH Terms]) OR brain injuries[MeSH Terms]))) NOT ((((adverse

effects[MeSH Subheading]) OR contraindications[MeSH Terms]) OR anxiety[MeSH

Terms]) OR depression[MeSH Terms]))) OR ((((((fatigue[MeSH Terms]) AND

mindfulness[MeSH Terms])) AND ((randomized controlled trial[MeSH Terms]) OR brain

injuries[MeSH Terms]))) NOT ((((adverse effects[MeSH Subheading]) OR

contraindications[MeSH Terms]) OR anxiety[MeSH Terms]) OR depression[MeSH

Terms]))

“SRincluded”

(((((((fatigue[MeSH Terms]) AND mindfulness[MeSH Terms])) OR fatigue[MeSH Terms])

OR mindfulness[MeSH Terms])) AND ((adverse effects[MeSH Subheading]) AND

fatigue[MeSH Terms])) NOT randomized controlled trial[MeSH Terms]

“mindf_fatigue”

For each corpus, that is, a training set (therefrom referred to according to their “trial” in table 3.1),

and the golden standard as test set, several classification runs were performed with resource to

the Classifier script, i.e., one for each classification algorithm.

37

3.5.2. Humanin Dataset

The problem which led to the creation of the Humanin dataset can be seen as a binary

classification problem, that is, the categories to which a given article may belong are mutually

exclusive.

For this purpose, and following the objective to study whether MeSH terms can be helpful in IR

and article classification, the gold standard of 95 articles referred in 3.4.2 was established as the

test set. Again, the reason for this is that since the labels for the 95 articles were known, a

classification prediction could be validated as correct or incorrect. Two labels were created for the

dataset: “relevant” for the Humanin-related articles, and “nonrelevant” for the remaining articles.

Unlike the mindfulness dataset, there were no previously dictated guidelines for the construction

of the PubMed retrieval queries. The query-building strategy consisted of the combination of two

approaches:

1. Starting with a set of keywords provided by the researcher (“activation”, “binding”,

“Abeta”, “humanin”, “importin”, “brain”, “IGFBP3”, “TRIM11”, “BAX”, “BAK”, “bile acid”,

“SHLP”, “MOTS-c”, “isoform”, “oligomerization”, “retrograde”, “humanin receptor”,

“mitochondria”, “clinical”, “mutation”, “ubiquitin”, “microRNA”, “mtDNA”, “anaerobic”,

“microbiome”, “apoptosis”, “cell survival”, “Alzheimer disease”), a small MeSH search

was made to see which terms were available as descriptors.

From the initial list, the terms available as descriptors in MeSH were the following:

“humanin”, “mitochondria”, “mRNA”, “mtDNA”, “metabolism”, “peptides”, “apoptosis”,

“cell survival”, “Alzheimer disease”, “brain”, “importin”, “mutation”, “ubiquitin”. These were

saved as reference for future queries.

2. Starting with the main research term, “humanin,” a MeSH search was made with the

intent of searching its hierarchy, i.e., the “parent” nodes, and using them as queries to

generate training sets and evaluate the consequent performance.

The referred MeSH search returned the tree represented in figure 3.6. The lettering in

blue below each descriptor represents the number that indicates its tree location.

Humanin itself does not have a tree location, as it is a supplementary concept rather than

a descriptor.

Combining the knowledge gained from these two strategies, a set of queries was drawn. For the

“non-relevant” to humanin articles, all humanin-related articles were excluded from the search

using the “NOT humanin” logical operator. The inverse was made regarding the humanin

“relevant” articles, i.e., the usage of the “AND humanin” logical operator to ensure the retrieval of

articles with both the desired keyword and the humanin keyword itself. The “OR” logical operator

38

allows the user to retrieve several sets of keywords at once.

As such, the queries given to the PubMed Search and Save script for the retrieval of the training

sets were as presented by below according to table 3.2. A maximum number of 100 articles per

category was set for retrieval. A minimum date of “2015/01/01” was set.

Table 3.2 - Queries for the Humanin training set article retrieval

Trial Query Label

“Train 1”
mitochondria[MeSH Terms] AND mtdna[MeSH Terms] AND peptides[MeSH Terms] “nonrelevant”

mitochondria[MeSH Terms] AND humanin “relevant”

“Train 2”
mitochondria[MeSH Terms] AND mtdna[MeSH Terms] AND peptides[MeSH Terms] “nonrelevant”

(humanin) AND alzheimer disease[MeSH Terms] “relevant”

“Train 3”

(importin[MeSH Terms] NOT humanin) OR (peptides[MeSH Terms] NOT humanin) OR

(alzheimer's disease[MeSH Terms] NOT humanin) OR (brain[MeSH Terms] NOT

humanin) OR (mutation[MeSH Terms] NOT humanin) OR (microrna[MeSH Terms] NOT

humanin) OR (aging[MeSH Terms] NOT humanin) OR (cell survival[MeSH Terms] NOT

humanin) OR (apoptosis[MeSH Terms] NOT humanin)

“nonrelevant”

(humanin AND apoptosis[MeSH Terms) OR (humanin AND peptides[MeSH Terms]) OR

(humanin AND cell survival[MeSH Terms]) OR (humanin AND aging[MeSH Terms]) OR

(humanin AND microrna[MeSH Terms]) OR (humanin AND mutation[MeSH Terms]) OR

(humanin AND brain[MeSH Terms]) OR (humanin AND alzheimer's disease[MeSH

Terms]) OR (humanin AND mitochondria[MeSH Terms]) OR (humanin AND

importin[MeSH Terms])

“relevant”

“Train 4”

((chemicals and drugs category[MeSH Terms])) NOT humanin “nonrelevant”

(humanin AND apoptosis[MeSH Terms) OR (humanin AND peptides[MeSH Terms]) OR

(humanin AND cell survival[MeSH Terms]) OR (humanin AND aging[MeSH Terms]) OR

(humanin AND microrna[MeSH Terms]) OR (humanin AND mutation[MeSH Terms]) OR

“relevant”

Figure 3.6 - Humanin MeSH hierarchy tree

39

(humanin AND brain[MeSH Terms]) OR (humanin AND alzheimer's disease[MeSH

Terms]) OR (humanin AND mitochondria[MeSH Terms]) OR (humanin AND

importin[MeSH Terms])

“Train 5”
((chemicals and drugs category[MeSH Terms])) NOT humanin “nonrelevant”

((chemicals and drugs category[MeSH Terms])) AND humanin “relevant”

“Train 6”
(amino acids, peptides, and proteins[MeSH Terms]) NOT humanin “nonrelevant”

(amino acids, peptides, and proteins[MeSH Terms]) AND humanin “relevant”

“Train 7”
((peptides[MeSH Terms] AND proteins[MeSH Terms])) NOT humanin “nonrelevant”

((peptides[MeSH Terms] AND proteins[MeSH Terms])) AND humanin “relevant”

“Train 8”
((intracellular signaling peptides and proteins[MeSH Terms])) NOT humanin “nonrelevant”

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant”

“Train 9”
((peptides[MeSH Terms] AND proteins[MeSH Terms])) NOT humanin “nonrelevant”

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant”

“Train

10”

(((anatomy category[MeSH Terms]) AND organisms category[MeSH Terms]) AND

diseases category[MeSH Terms]) AND ((chemicals and drugs category[MeSH Terms])

NOT humanin) ((intracellular signaling peptides and proteins[MeSH Terms])) AND

humanin

“nonrelevant”

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant”

“Train

11”

((anatomy category[MeSH Terms] OR organisms category[MeSH Terms] OR diseases

category[MeSH Terms] OR chemicals and drugs category[MeSH Terms]) NOT humanin)
“nonrelevant”

((intracellular signaling peptides and proteins[MeSH Terms])) AND humanin “relevant”

For each corpus, that is, a training set (therefrom referred to according to their “trial” in table 3.2),

and the golden standard as test set, several classification runs were performed with resource to

the Classifier script, i.e., one for each classification algorithm.

40

Section 4

Results & Discussion

This section covers the results of the classification tasks, the model evaluations and the

discussion of the different experiments.

4.1. Results

4.1.1. Mindfulness/Fatigue Dataset

Due to its extent, the classification reports for each corpus and classification algorithm can be

consulted in Table 2, in the annex F. The average score of all classification trials ran with this

dataset, that is, the average of both labels in each run, can be seen on table 4.1.

Table 4.1 - Average score of all classification trials with the mindfulness dataset

Algorithm
Average

Precision Recall F1-Score

Multinomial NB 66% 64% 56%

K Neighbors 67% 65% 55%

Random Forest 66% 63% 58%

Decision Trees 67% 69% 62%

Logistic Regression 67% 68% 61%

The classification algorithms that consistently achieved the best performance amongst all trials

were Decision Trees (with an F1-score26 of 62%) and Logistic Regression (with and F1-score of

61%). Nonetheless, when observing the individual label score values in table 2 (in the annex F),

it can be noted that the “SRincluded” articles consistently achieve low scores.

A few examples are presented below, given their representation of the results of the classification

trials. The first example, taking the Random Forest classification algorithm as reference, and trials

“train” and “train 1”, is presented in table 4.2.

Table 4.2 - Classification reports for "train" and "train 1", using the Random Forest algorithm

Trial Label Precision Recall F1-Score Conf. Matrix

Train

SRincluded 0% 0% 0%

[0 4]

 [9 106]
mindf_fatigue 96% 92% 94%

avg / total 93% 89% 91%

26 As referred in 2.2.1.2, the harmonic mean of precision and recall, hence its usage as indicator of

better/worse performance.

41

Train 1

SRincluded 5% 50% 9%

[2 2]

 [40 75]
mindf_fatigue 97% 65% 78%

avg / total 94% 65% 76%

The two training sets in question were chosen for comparison since their “mindf_fatigue” MeSH

query is the same, i.e., the difference in both datasets resides in the “SRincluded” articles.

In the “train” trial, class “SRincluded” has no correctly classified articles; nonetheless, nine articles

from the “mindf_fatigue” class were misclassified as “SRincluded.” “Mindf_fatigue” class

achieved, as such, very high-performance scores in all analysed parameters. This is reflected in

the average scores, as the number of articles corresponding to the “mindf_fatigue” is multiple

times bigger than the number of “SRincluded” articles.

As for the “train 1” trial, it is seen that for the “SRincluded” articles there are now two correctly

classified articles, that is, a recall of 50%. However, as 40 “mindf_fatigue” articles were

misclassified as “SRincluded,” this resulted in a “SRincluded” precision score of only 5%. As for

the “mindf_fatigue,” the main difference between the two trials resides in the recall and F-score

scores, lowered by the misclassification of the 40 articles into the “SRincluded” class.

Again, as the number of articles corresponding to the “mindf_fatigue” is multiple times bigger than

the number of “SRincluded” articles, the average scores reflect mostly the good performance of

the first label.

Table 4.3 - Classification report for "train 3", using the Random Forest algorithm

Label Precision Recall F1-Score Conf. Matrix

SRincluded 13% 75% 22%
[3 1]

 [20 95]
mindf_fatigue 99% 83% 90%

avg / total 96% 82% 88%

Taking “train 3” individually as another example (chosen since it achieved the better classification

for the “SRincluded” articles, across all other trials) classified using the Random Forest algorithm,

it is seen that this time three out of four articles from the “SRincluded” class are correctly classified,

with 20 articles from the “mindf_fatigue” class were misclassified as “SRincluded” as well - hence

the high recall (75%) and low precision (13%) for this class.

4.1.1.1. Model Evaluation

For the evaluation of this model, the “train” training set is considered, together with the logistic

regression classification algorithm (as presented in the first example in 4.1.1). All plots were

generated by the Classifier script, together with the dataset classification.

42

The first evaluation measure to consider is the learning curve, presented below in figure 4.1. It

can be seen that both the training and cross-validation scores increase, as the number of training

examples increase as well, i.e., both scores are approximately 0.75 with a number of training

scores below 100, and converge to a score value of approximately 0.9 when more than 600

training examples are available.

The next evaluation measure to consider is the ROC curve, to see how the number of correctly

classified positive examples varies with the number of incorrectly classified negative examples,

and is presented below in figure 4.2.

The generated plot shows a ROC curve beginning in a True Positive rate (i.e., the recall) slightly

Figure 4.1 - Learning curves for the "train" training set and logistic regression
classification algorithm

Figure 4.2 - ROC curve for the "train" training set and logistic regression
classification algorithm

43

below 0.2 and a False Positive rate of 0, and growing in “ladder”-type of increase, i.e., the growth

of correctly classified examples is proportional to the growth of incorrectly classified negative

examples.

The AUROC is 0.51, showing the probability of the classifier to assign a higher score to a

randomly chosen positive example, rather than to a randomly chosen negative example.

The last model evaluation plot shows the precision-recall curve and is presented in figure 4.3.

The precision-recall curve shows the trade-off between precision and recall for different

thresholds. In this case, the average precision is 0.97. It can be seen that there is a high area

under the curve, denoting both high recall and high precision, i.e., a low false positive rate, as well

as a low false negative rate. High scores for both measures indicate that the classifier is retrieving

accurate results (i.e., high precision), as well as a majority of all positive results (i.e., high recall).

The results achieved in the PR curve presented above may be explained by the highly imbalanced

dataset, on which one of the two classes being classified as consistently a high precision.

4.1.2. Humanin Dataset

Due to its extent, the classification reports for each corpus and classification algorithm can be

consulted in Table 3, in the annex G. The average score of all classification trials ran with this

dataset, that is, the average of both labels in each run, can be seen on table 4.4.

Figure 4.3 – Precision-recall curve for the "train" training set and logistic regression
classification algorithm

44

Table 4.4 - Average score of all classification trials with the humanin dataset

Algorithm
Average

Precision Recall F1-Score

Multinomial NB 70% 68% 68%

K Neighbors 70% 68% 68%

Random Forest 66% 62% 59%

Decision Trees 66% 62% 59%

Logistic Regression 76% 72% 73%

The classification algorithm that consistently achieved the best performance amongst all trials

was Logistic Regression, with and F1-score of 73%. Again, as with the mindfulness dataset case,

when observing the individual label score values in table 3 (in the annex G), it can be seen that

there is a gap in the performance scores of both labels – the “nonrelevant” class consistently

achieves low performance scores, and the “relevant” class consistently achieves good scores.

A few examples are presented below, given their representation of the overall results of the

classification trials. The first example, taking the Logistic Regression classification algorithm as

reference, and trials “train 4” and “train 5”, is presented in table 4.5.

Table 4.5 - Classification reports for "train 4" and "train 5”, using the Logistic Regression algorithm

Trial Label Precision Recall F1-Score Conf. Matrix

Train 4

nonrelevant 80% 48% 60%

[12 13]

 [3 57]
relevant 81% 95% 88%

avg / total 81% 81% 80%

Train 5

nonrelevant 77% 40% 53%

[10 15]

 [3 57]
relevant 79% 95% 86%

avg / total 79% 79% 76%

The two training sets in question were chosen for comparison since their “nonrelevant” MeSH

query is the same, i.e., the difference in both datasets resides in the “relevant” articles.

In the “train 4” trial, and looking at the confusion matrix, it is seen that approximately half of the

“nonrelevant” articles (12 out of 25) were correctly classified, hence the recall value of 48%.

Nonetheless, since three articles from the “relevant” class were misclassified as “nonrelevant,”

the precision of the latter class achieves a value of 80%. As for the “relevant” labelled articles, 57

articles were correctly classified, and 13 were misclassified as “nonrelevant,” hence the 81%

precision value. The 95% recall score is due to three out of 60 articles for this class being

incorrectly classified.

45

As the number of articles corresponding to the “nonrelevant” class is significantly different from

the number of “relevant” class articles, i.e., 25 versus 60 articles, the average scores reflect mostly

the performance of the “relevant” class, hence the average 80% F1-score.

Regarding the “train 5” trial, the difference in the performance scores is given to the lowering of

the precision score for the “nonrelevant” class, from 80% in “trial 4” to 77% in “trial 5”, that is, a

difference of two incorrectly classified articles. This difference slightly affects all the remaining

performance scores negatively.

The second example, presented in the table 4.6, is representative of the majority of the trials ran

with other training sets and classification algorithms.

Table 4.6 - Classification report for "train 2", using the K-Neighbors algorithm

Label Precision Recall F1-Score Conf. Matrix

nonrelevant 55% 64% 59%
[16 9]

 [13 47]
relevant 84% 78% 81%

avg / total 75% 74% 75%

Looking at the confusion matrix, it can be seen that there is a slightly greater number of

“nonrelevant” articles correctly classified (16 out of 25) when compared to the examples

presented by table 4.5. At the same time, there is also a greater number of misclassifications in

the “relevant” class articles, that is, 13 from the 60 articles belonging to this class were incorrectly

classified as “nonrelevant.” Thus, the resulting scores: a precision of 55% for the “nonrelevant”

class, given its correct classification of 16 articles as “nonrelevant” and incorrect classification of

another 13 articles as “nonrelevant”, and a 64% recall score for the same label, given the 16

correctly classified articles classified as “nonrelevant” and 9 misclassified as “relevant”.

As for the “relevant” label, with 47 out of 60 articles correctly classified, the precision score

achieved a value of 84%, and the recall score of 78% is explained by the nine articles from the

“nonrelevant” class incorrectly classified as “relevant.”

Again, given the difference of number of articles from both labels, the average scores reflect

mostly the performance of the “relevant” class, hence the average 75% F1-score.

4.1.2.1. Model Evaluation

For the evaluation of this model, the “train 4” training set is considered, together with the logistic

regression classification algorithm (as presented in the table 4.5). All plots are generated by the

Classifier script, together with the dataset classification.

The first evaluation measure to consider is the learning curve, presented below in figure 4.4. It

46

can be seen that both training and cross-validation scores increase, as the number of training

examples increase as well, i.e., CV score starts at a 0.7 score with 50 training examples and

training score is slightly above 0.75 for the same number of training, and both measures converge

to a score value of approximately 0.95 when more than 400 training examples are available.

The next evaluation measure to consider is the ROC curve, to see how the number of correctly

classified positive examples varies with the number of incorrectly classified negative examples,

and is presented below in figure 4.5.

The generated plot shows a ROC curve beginning in a True Positive rate (i.e., the recall) slightly

below 0.2 and a False Positive rate of 0, growing consistently in the upper-left side of the plot until

Figure 4.4 - Learning curves for the "train 4" training set and logistic regression
classification algorithm

Figure 4.5 - ROC curve for the "train 4" training set and logistic regression
classification algorithm

47

it starts to stagnate at a False Positive rate of 0.5, near the True Positive rate value of 1. The

AUROC is 0.81, showing the probability of the classifier to assign a higher score to a randomly

chosen positive example, rather than to a randomly chosen negative example.

The last model evaluation plot shows the precision-recall curve and is presented in figure 4.6.

The precision-recall curve shows the trade-off between precision and recall for different

thresholds. In this case, the average precision is 0.91. It can be seen that there is a high area

under the curve, even though the curve as a negative slope, i.e., overall, the precision value

decreases as the recall value increases. This indicates that as the number of positive results (i.e.,

the recall) increases, the classifier may retrieve less accurate results.

4.2. Discussion

The analysed datasets presented different challenges for the proposed task, which may help

explain the obtained results.

The mindfulness/fatigue dataset, as explained in 3.4.1, was based in the SR by Ulrichsen et al.

[71]. Given that one of the classes enclosed only four articles (the ones included in the SR), the

final dataset turned out to be highly imbalanced.

As such, the majority of the classification trials achieve low-performance scores for the

“SRincluded” class, and when it does not, this is achieved at the expense of a greater number of

misclassifications in the other class articles.

This can be verified by the results shown by table 4.2. As referred in 4.1.1, the two training sets

Figure 4.6 - Precision/recall curve for the "train 4" training set and logistic regression
classification algorithm

48

were chosen for comparison since the MeSH terms chosen for the “mindf_fatigue” PubMed query

is the same (“(fatigue[MeSH Terms] AND mindfulness[MeSH Terms]) OR fatigue[MeSH Terms]

OR mindfulness[MeSH Terms]”, i.e., the difference in both datasets resides in the “SRincluded”

articles. The table 4.7 presents the different queries for both trials.

Table 4.7 - Queries for the "SRincluded" class from the Mindfulness/fatigue dataset

Trial Query

Train

(((randomized controlled trial[MeSH Terms])

OR brain injuries[MeSH Terms])) NOT

((adverse effects[MeSH Terms]) OR

contraindications[MeSH Terms])

Train 1

((((fatigue[MeSH Terms]) OR

mindfulness[MeSH Terms])) AND

((randomized controlled trial[MeSH Terms])

OR brain injuries[MeSH Terms])) NOT

((((adverse effects[MeSH Terms]) OR

contraindications[MeSH Terms]) OR

anxiety[MeSH Terms]) OR depression[MeSH

Terms])

As seen, “train 1” query shows an extension of the “train” query, as it adds specificity for the

articles retrieved through the addition of the “(fatigue[MeSH Terms]) OR mindfulness[MeSH

Terms])” and “OR anxiety[MeSH Terms]) OR depression[MeSH Terms]” to the query. Raising the

specificity of the “SRincluded” label resulted in the correct classification of two out of the four

articles for that class, but at the same time, it also raised the recall score from 0 to 50%.

However, “train 3”, as presented by table 4.3, achieved much better performance scores. The

reason is behind the MeSH terms chosen for the PubMed queries, which can be seen in table

4.8.

Table 4.8 - MeSH terms for the "train 3" PubMed queries

Class Query

“SRincluded”

(((((((fatigue[MeSH Terms]) AND

mindfulness[MeSH Terms])) OR

((randomized controlled trial[MeSH Terms])

OR brain injuries[MeSH Terms]))) NOT

((((adverse effects[MeSH Subheading]) OR

contraindications[MeSH Terms]) OR

anxiety[MeSH Terms]) OR depression[MeSH

Terms]))) OR ((((((fatigue[MeSH Terms])

49

AND mindfulness[MeSH Terms])) AND

((randomized controlled trial[MeSH Terms])

OR brain injuries[MeSH Terms]))) NOT

((((adverse effects[MeSH Subheading]) OR

contraindications[MeSH Terms]) OR

anxiety[MeSH Terms]) OR depression[MeSH

Terms]))

“Mindf_fatigue”

(((((((fatigue[MeSH Terms]) AND

mindfulness[MeSH Terms])) OR

fatigue[MeSH Terms]) OR

mindfulness[MeSH Terms])) AND ((adverse

effects[MeSH Subheading]) AND

fatigue[MeSH Terms])) NOT randomized

controlled trial[MeSH Terms]

As it can be seen, the usage of more MeSH terms, aided by the usage of the “AND/OR/NOT”

logical operators, to create more complex and comprehensive queries may help improve the

performance scores of this kind of classification problems. This statement is corroborated by the

results achieved by the humanin dataset.

Looking at the “train 4” e “train 5”, presented by table 4.5, it can be seen that the “train 4” trial

achieved a better classification performance. When looking at the MeSH terms used to build the

PubMed queries, it can be seen why: the “relevant” class for the “train 4” had a much more

complex query than the same class for the “train 5”, as presented by table 4.9.

Table 4.9 - Queries for the "relevant" class from the Humanin dataset

Trial Query

Train 4

(humanin AND apoptosis[MeSH Terms) OR

(humanin AND peptides[MeSH Terms]) OR

(humanin AND cell survival[MeSH Terms])

OR (humanin AND aging[MeSH Terms]) OR

(humanin AND microrna[MeSH Terms]) OR

(humanin AND mutation[MeSH Terms]) OR

(humanin AND brain[MeSH Terms]) OR

(humanin AND alzheimer's disease[MeSH

Terms]) OR (humanin AND

mitochondria[MeSH Terms]) OR (humanin

AND importin[MeSH Terms])

Train 5
((chemicals and drugs category[MeSH

Terms])) AND humanin

50

It shall be remembered that, as referred in 3.5.2, one of the query-building strategies involved

starting with the main research term, “humanin,” and then using the “parent” nodes to generate

new queries in order to evaluate the consequent performance.

With the results obtained, and as referred before, one can state that the usage of more MeSH

terms to create more complex and comprehensive queries may help improve the performance

scores of this kind of classification problems.

51

Section 5

Conclusions & Future Work

This section summarises the conclusions of this work, discusses some limitations and future work

ideas, and presents the final remarks.

5.1. Summary

The main objective of this work was to test the hypothesis that TM tools and controlled

vocabularies have a positive impact on the systematic reviewing, either from an aspect of time

reduction or regarding performance (i.e., if a given article is relevant to the study or not).

For the accomplishment of this objective, a system capable of creating a classification model

which training is based on a controlled vocabulary (MeSH) that can be applied to a variety of

biomedical literature was developed. The aim was not to (re-)create any existing algorithms, but

to study whether this approach would have an impact on the SR process.

As stated by several authors ([9], [42], [53], [55], [58], among others), the strength of automatizing

the systematic reviewing process resides mostly in a significant reduction of time spent describing

studies (versus a manual verification), but also enabling studies to be described according to an

external framework.

The usage of two different datasets, with two completely different origins, allowed to see the

behavior of this approach in two different scenarios and evaluate the usage of TM tools aligned

with controlled vocabularies (as is MeSH).

Though the findings may have been limited by the datasets used, the limitations found may as

well be the starting point for further studies.

5.1.1. Limitations

The task on which this work focuses brings up several challenges. One of the most challenging

limitations found is the application of exclusion/inclusion (eligibility) criteria, which was the case

with the mindfulness dataset results. A suggestion for further improvement may reside either in

the refinement of stopwords or, in a long stretch, the creation of a controlled vocabulary for the

PICOS (Participants, Interventions, Comparators, Outcomes and Study design) inclusion criteria,

as this is the most applied methodology.

As another limitation example, consider a search for a conceptually broad review, necessarily

wide in scope. The usage of the MeSH terms (or any controlled vocabulary) for the creation of the

52

search query and consequent training data will probably have no influence on the result, as the

system will retrieve a large number of irrelevant articles, in comparison to the number of correct

hits.

There is also the detail that the chosen vocabulary may not include the concepts needed in order

to retrieve all the desired articles. On the other hand, using controlled vocabularies to narrow

down the retrieved articles may be a powerful way of finding documents quickly, but it is possible

that the method will miss potentially relevant studies that, if manually observed, wouldn’t be

missed.

Another flaw is that when using third-party software, as is Scikit-learn, the user is limited to what

it offers. In this case, the confusion matrices used to show how many articles are

correctly/incorrectly classified are created in a way that the matrix does not store each article’s

name. This results in the loss of some information about each article and its classification,

retrieving only the number of correctly/incorrectly classified articles.

5.1.2. Final Remarks

Systematic reviews are considered today a widely accepted research method. However, as

medical knowledge increases (and, with it, the amount of literature published every day), it is

increasingly difficult to conduct them to fit with policy and practice timescales. This is especially

true in areas of study which databases are non-comprehensive and inconsistently-indexed.

Given that the ultimate desire in the area is that studies may be included or excluded without the

need to ever being seen by a human, a few questions arise: should TM tools reach perfect

precision scores so that they can be used in systematic reviews? Moreover, even if a given tool

has shown to be 100% precise in for a given study/SR, how can the final user be sure that the

score achieved in that review will apply to any other study?

One may argue that TM tools, which are ever-changing and improving, may not need to claim

perfect performance scores if they can demonstrate success in solving some of the problems

reviewers currently face. More specifically, if this results in reducing the length of time that it takes

to identify the studies that will ultimately be included in the review. However, this may raise a

conceptual challenge to reviewers: assuming that there is a big difference between not having

retrieved a study (as it is nearly impossible to search everything) and having retrieved it but

excluding it inaccurately as the result of an automatic process, will stakeholders accept a method

that clearly declares that, for example, 5% of studies retrieved are incorrectly excluded?

A good strategy for reviewers may be the application of a ‘multi-layered’ way of finding relevant

research. That is, if one considers with each layer (database searching, hand searching, looking

for citations, contacting authors, among other tasks) intended to make up for deficiencies in other

53

layers. Following this line of thinking, the benefits that both TM tools and controlled vocabularies

offer may more than outweigh any associated or perceived deficiencies.

As TM tools and controlled vocabularies are now being employed in different areas, extra efforts

towards methodological and evaluative work may be required to develop methods and an

evidence base for their use. This work was developed hoping it would leave its contribution to this

path.

With all this being said, and as a final note, it is believed that researchers and scientists would

deeply benefit from training, both to manage expectations and to ensure that systematic reviewers

understand the benefits but also the limitations of TM tools, whenever their scope is. The correct

adoption of TM within SR is believed to depend greatly on cooperation between systematic

reviewers and computer scientists, so that customised and optimised solutions may thrive.

54

Bibliography

[1] B. A. Barron and S. C. Bukantz, “The evaluation of new drugs: Current food and drug

administration regulations and statistical aspects of clinical trials,” Arch. Intern. Med., vol.

119, no. 6, pp. 547–556, Jun. 1967.

[2] B. L. Humphreys and D. E. McCutcheon, “Growth patterns in the National Library of

Medicine’s serials collection and in Index Medicus journals, 1966-1985.,” Bull. Med. Libr.

Assoc., vol. 82, no. 1, pp. 18–24, Jan. 1994.

[3] H. Bastian, P. Glasziou, and I. Chalmers, “Seventy-five trials and eleven systematic

reviews a day: How will we ever keep up?,” PLoS Med., vol. 7, no. 9, 2010.

[4] S. Jaeger, S. Gaudan, U. Leser, and D. Rebholz-Schuhmann, “Integrating protein-protein

interactions and text mining for protein function prediction,” BMC Bioinformatics, vol. 9, no.

8, p. S2, Jul. 2008.

[5] N. Papanikolaou, G. A. Pavlopoulos, T. Theodosiou, I. S. Vizirianakis, and I. Iliopoulos,

“DrugQuest - a text mining workflow for drug association discovery,” BMC Bioinformatics,

vol. 17, no. S5, p. 182, 2016.

[6] G. Tsafnat, P. Glasziou, M. K. Choong, A. Dunn, F. Galgani, and E. Coiera, “Systematic

review automation technologies,” Syst. Rev., vol. 3, no. 1, p. 74, 2014.

[7] J. Higgins and S. Green, “Cochrane Handbook for Systematic Reviews of Interventions,”

in The Cochrane Collaboration, 2011.

[8] S. R. Jonnalagadda, P. Goyal, and M. D. Huffman, “Automating data extraction in

systematic reviews: a systematic review,” Syst. Rev., vol. 4, no. 1, p. 78, 2015.

[9] A. O’Mara-Eves, J. Thomas, J. McNaught, M. Miwa, and S. Ananiadou, “Using text mining

for study identification in systematic reviews: a systematic review of current approaches,”

Syst. Rev., vol. 4, no. 1, p. 5, 2015.

[10] A.-H. Tan, “Text Mining: The state of the art and the challenges,” Proc. PAKDD 1999 Work.

Knowl. Discov. from Adv. Databases, vol. 8, pp. 65–70, 1999.

[11] A. Hotho, A. Nürnberger, and G. Paaß, “A Brief Survey of Text Mining,” LDV Forum - Gld.

J. Comput. Linguist. Lang. Technol., vol. 20, pp. 19–62, 2005.

[12] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval, vol.

35, no. 2. 2008.

[13] A. Lamurias, L. A. Clarke, and F. M. Couto, “Extracting microRNA-gene relations from

biomedical literature using distant supervision,” PLoS One, vol. 12, no. 3, 2017.

[14] M. Krallinger, O. Rabal, A. Lourenço, J. Oyarzabal, and A. Valencia, “Information retrieval

and text mining technologies for chemistry,” Chem. Rev., vol. 117, no. 12, pp. 7673–7761,

2017.

[15] S. Ananiadou, “Text Mining for Biomedicine,” Information retrieval in biomedicine: natural

…, vol. 10, no. 6. Artech House, Boston/London, pp. 1–11, 2009.

[16] J. J. Webster and C. Kit, “Tokenization as the initial phase in NLP,” in Proceedings of the

14th conference on Computational linguistics -, 1992, vol. 4, p. 1106.

[17] A. Leal, “Recognition and Normalization of Biomedical Entities Within Clinical Notes,” p.

55

123, 2015.

[18] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137, 1980.

[19] H. Liu, T. Christiansen, W. A. Baumgartner, and K. Verspoor, “BioLemmatizer: a

lemmatization tool for morphological processing of biomedical text,” J. Biomed. Semantics,

vol. 3, p. 3, Apr. 2012.

[20] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM J.

Res. Dev., vol. 3, no. 3, pp. 210–229, 1959.

[21] M. Allahyari et al., “A Brief Survey of Text Mining: Classification, Clustering and Extraction

Techniques,” 2017.

[22] W. Zhang and F. Gao, “An improvement to naive bayes for text classification,” Procedia

Eng., vol. 15, pp. 2160–2164, 2011.

[23] C. D. Manning, P. Ragahvan, and H. Schutze, “An Introduction to Information Retrieval,”

Inf. Retr. Boston., no. c, pp. 1–18, 2009.

[24] H. Zhang, “The Optimality of Naive Bayes,” Proc. Seventeenth Int. Florida Artif. Intell. Res.

Soc. Conf. FLAIRS 2004, vol. 1, no. 2, pp. 1–6, 2004.

[25] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 2010.

[26] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol.

12, pp. 2825–2830, 2011.

[27] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,”

Am. Stat., vol. 46, no. 3, pp. 175–185, 1992.

[28] Z. Zhang, “Introduction to machine learning: k-nearest neighbors,” Ann. Transl. Med., vol.

4, no. 11, pp. 218–218, 2016.

[29] P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data.

2012.

[30] L. Rokach and O. Maimon, Data Mining With Decision Trees - Theory and Applications,

2nd ed. World Scientific Publishing Co. Pte. Ltd., 2015.

[31] T. K. Ho, “Random decision forests,” Proc. 3rd Int. Conf. Doc. Anal. Recognit., vol. 1, pp.

278–282, 1995.

[32] S. H. Walker and D. B. Duncan, “Estimation of the Probability of an Event as a Function

of Several Independent Variables,” Biometrika, vol. 54, no. 1/2, p. 167, 1967.

[33] D. A. Freedman, “Statistical Models: Theory and Practice,” Cambridge Univ. Press, p. 442,

2009.

[34] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a stepwise

procedure for building and training a neural network,” in Neurocomputing, 1990, pp. 41–

50.

[35] A. M. Cohen and W. R. Hersh, “A survey of current work in biomedical text mining,” Br.

Bioinform, vol. 6, no. 1, pp. 57–71, 2005.

[36] F. Provost, T. Fawcett, and R. Kohavi, “The Case Against Accuracy Estimation for

Comparing Induction Algorithms,” Proc. Fifteenth Int. Conf. Mach. Learn., pp. 445–453,

1997.

56

[37] Z. E. Rasjid and R. Setiawan, “Performance Comparison and Optimization of Text

Document Classification using k-NN and Naïve Bayes Classification Techniques,”

Procedia Comput. Sci., vol. 116, pp. 107–112, 2017.

[38] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,”

Proc. 23rd Int. Conf. Mach. Learn. - ICML ’06, pp. 233–240, 2006.

[39] M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,” J. R. Stat.

Soc., vol. 36, no. 2, pp. 111–147, 1974.

[40] C. Determan Jr., “Cross validation with test data set,” Cross Validated, 2017. [Online].

Available: https://stats.stackexchange.com/a/148698. [Accessed: 17-Oct-2017].

[41] G. C. Cawley and N. L. C. Talbot, “On Over-fitting in Model Selection and Subsequent

Selection Bias in Performance Evaluation,” J. Mach. Learn. Res., vol. 11, p. 2079−2107,

2010.

[42] J. Thomas, J. McNaught, and S. Ananiadou, “Applications of text mining within systematic

reviews,” Res. Synth. Methods, vol. 2, no. 1, pp. 1–14, 2011.

[43] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl. Acquis.,

vol. 5, no. 2, pp. 199–220, 1993.

[44] N. Guarino, “Formal Ontology and Information Systems,” Proc. first Int. Conf., no. June,

pp. 3–15, 1998.

[45] D. Kless, “The differences and similarities in thesaurus and ontology structure: with a

method for reengineering thesauri into qualitatively good ontologies,” 2014.

[46] National Information Standards Organization, “ANSI/NISO Z39.19-2005: Guidelines for

the Construction , Format , and Management of Monolingual Controlled Vocabularies,”

2005.

[47] NLM, “MeSH Preface,” 2016. [Online]. Available:

https://www.nlm.nih.gov/mesh/intro_preface.html#pref_hist. [Accessed: 11-Jun-2018].

[48] F. B. Rogers, “Medical subject headings.,” Bull. Med. Libr. Assoc., vol. 51, no. January,

pp. 114–116, 1963.

[49] I. Dhammi and S. Kumar, “Medical subject headings (MeSH) terms,” Indian J. Orthop., vol.

48, no. 5, p. 443, 2014.

[50] NLM, “MeSH Record Types,” 2017. [Online]. Available:

https://www.nlm.nih.gov/mesh/intro_record_types.html. [Accessed: 11-Jun-2018].

[51] NLM, “MeSH Tree Structures,” 2016. [Online]. Available:

https://www.nlm.nih.gov/mesh/intro_trees.html. [Accessed: 12-Jun-2018].

[52] NLM, “Use of MeSH in Online Retrieval,” 2014. [Online]. Available:

https://www.nlm.nih.gov/mesh/intro_retrieval.html. [Accessed: 12-Jun-2018].

[53] Y. Aphinyanaphongs, I. Tsamardinos, A. Statnikov, D. Hardin, and C. F. Aliferis, “Text

categorization models for high-quality article retrieval in internal medicine,” J. Am. Med.

Informatics Assoc., vol. 12, no. 2, pp. 207–216, Mar. 2005.

[54] P. Pluye, R. M. Grad, L. G. Dunikowski, and R. Stephenson, “Impact of clinical information-

retrieval technology on physicians: A literature review of quantitative, qualitative and mixed

57

methods studies,” Int. J. Med. Inform., vol. 74, no. 9, pp. 745–768, 2005.

[55] R. Paynter et al., “EPC Methods: An Exploration of the Use of Text-Mining Software in

Systematic Reviews,” p. 70, 2016.

[56] B. K. Olorisade, P. Brereton, and P. Andras, “Reproducibility of studies on text mining for

citation screening in systematic reviews: Evaluation and checklist,” J. Biomed. Inform., vol.

73, pp. 1–13, 2017.

[57] R. Paynter, L. L. Bañez, E. Erinoff, J. Lege-Matsuura, and S. Potter, “Commentary on EPC

methods: an exploration of the use of text-mining software in systematic reviews,” J. Clin.

Epidemiol., vol. 84, pp. 33–36, 2017.

[58] J. Rathbone, T. Hoffmann, and P. Glasziou, “Faster title and abstract screening?

Evaluating Abstrackr, a semi-automated online screening program for systematic

reviewers,” Syst. Rev., vol. 4, no. 1, p. 80, 2015.

[59] P. F. Balan, A. Gerits, and W. Vanduffel, “A practical application of text mining to literature

on cognitive rehabilitation and enhancement through neurostimulation,” Front. Syst.

Neurosci., 2014.

[60] R. Kok, J. A. H. M. Verbeek, B. Faber, F. J. H. Van Dijk, and J. L. Hoving, “A search

strategy to identify studies on the prognosis of work disability: A diagnostic test

framework,” BMJ Open, 2015.

[61] E. Hausner, S. Waffenschmidt, T. Kaiser, and M. Simon, “Routine development of

objectively derived search strategies,” Syst. Rev., 2012.

[62] M. Petrova, P. Sutcliffe, K. W. M. Fulford, and J. Dale, “Search terms and a validated brief

search filter to retrieve publications on health-related values in Medline: A word frequency

analysis study,” J. Am. Med. Informatics Assoc., 2012.

[63] A. O’Mara-Eves, G. Brunton, D. Mcdaid, J. Kavanagh, S. Oliver, and J. Thomas,

“Techniques for identifying cross-disciplinary and ‘hard-to-detect’ evidence for systematic

review,” Res. Synth. Methods, 2014.

[64] P. J. A. Cock et al., “Biopython: Freely available Python tools for computational molecular

biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009.

[65] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, vol. 43. 2009.

[66] R. Bilbro, “An Introduction To Machine Learning With Python.” [Online]. Available:

https://www.districtdatalabs.com/an-introduction-to-machine-learning-with-python.

[67] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2–3, pp. 146–162, 1954.

[68] J. Shaikh, “Machine Learning, NLP: Text Classification using scikit-learn, python and

NLTK,” 2017. [Online]. Available: https://towardsdatascience.com/machine-learning-nlp-

text-classification-using-scikit-learn-python-and-nltk-c52b92a7c73a.

[69] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., 2006.

[70] L. F. Campos, A. Lamurias, and F. M. Couto, “Can the Wisdom of the Crowd Be Used to

Improve the Creation of Gold-standard for Text Mining applications?,” To Appear

proceddings 9th INForum - Simpósio Informática (INForum 2017)., 2017.

[71] K. M. Ulrichsen et al., “Clinical utility of mindfulness training in the treatment of fatigue after

58

stroke, traumatic brain injury and multiple sclerosis: A systematic literature review and

meta-analysis,” Front. Psychol., vol. 7, no. JUN, pp. 1–11, 2016.

[72] D. Parkes, “The ROC Curve,” 2018. [Online]. Available:

https://deparkes.co.uk/2018/02/16/the-roc-curve/. [Accessed: 29-Aug-2018].

59

Annex

A. ROC Curve Example

B. MeSH Browser Search Example

Figure 2 - MeSH browser example, using the search term "brain"

Figure 1 - Example and explanation of a ROC curve (adapted from [72])

60

C. Model Evaluation – Bag of Words

Figure 3 - Bag of words and Tf-Idf score for each word and label

D. Model Evaluation – Confusion Matrix

Figure 4 - Confusion matrix for evaluation of the classifier

61

E. Humanin Article List

Table 1 - Humanin article list and corresponding classification

Article Title Classification

Humanin decreases mitochondrial membrane permeability by inhibiting the
membrane association and oligomerization of Bax and Bid proteins.

relevant

Humanin is an endogenous activator of chaperone-mediated autophagy. relevant

A Small Molecule Mimetic of the Humanin Peptide as a Candidate for
Modulating NMDA-Induced Neurotoxicity.

relevant

Humanin affects object recognition and gliosis in short-term cuprizone-treated
mice.

relevant

S14G-humanin alleviates insulin resistance and increases autophagy in
neurons of APP/PS1 transgenic mouse.

relevant

Humanin analogue, S14G-humanin, has neuroprotective effects against
oxygen glucose deprivation/reoxygenation by reactivating Jak2/Stat3 signaling

through the PI3K/AKT pathway.
relevant

Pseudogenization of the Humanin gene is common in the mitochondrial DNA
of many vertebrates.

relevant

Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in
Oxidative and Endoplasmic Reticulum Stress in RPE Cells.

relevant

The Mitochondrial-Derived Peptides, HumaninS14G and Small Humanin-like
Peptide 2, Exhibit Chaperone-like Activity.

relevant

Humanin Specifically Interacts with Amyloid-beta Oligomers and Counteracts
Their in vivo Toxicity.

relevant

Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the
mitochondrial peptide humanin.

relevant

Serum humanin concentrations in women with pre-eclampsia compared to
women with uncomplicated pregnancies.

relevant

Whole-transcriptome brain expression and exon-usage profiling in major
depression and suicide: evidence for altered glial, endothelial and ATPase

activity.
relevant

The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and
STAT3 signaling pathways and has age-dependent signaling differences in the

hippocampus.
relevant

Humanin: Functional Interfaces with IGF-I. relevant

Central effects of humanin on hepatic triglyceride secretion. relevant

The effects of humanin and its analogues on male germ cell apoptosis induced
by chemotherapeutic drugs.

relevant

Humanin and age-related diseases: a new link? relevant

Protection effect of [Gly14]-Humanin from apoptosis induced by high glucose in
human umbilical vein endothelial cells.

relevant

Humanin attenuates Alzheimer-like cognitive deficits and pathological changes
induced by amyloid beta-peptide in rats.

relevant

Protective effects of humanin on okadaic Acid-induced neurotoxicities in
cultured cortical neurons.

relevant

Apollon/Bruce is upregulated by Humanin. relevant

IGF-I regulates the age-dependent signaling peptide humanin. relevant

Protective effects of Humanin and calmodulin-like skin protein in Alzheimer's
disease and broad range of abnormalities.

relevant

62

Genome expression analysis by suppression subtractive hybridization
identified overexpression of Humanin, a target gene in gastric cancer

chemoresistance.
relevant

SH3-binding protein 5 mediates the neuroprotective effect of the secreted
bioactive peptide humanin by inhibiting c-Jun NH2-terminal kinase.

relevant

Humanin Exerts Neuroprotection During Cardiac Ischemia-Reperfusion Injury. relevant

Baculovirus-based gene silencing of Humanin for the treatment of pituitary
tumors.

relevant

Calmodulin-like skin protein protects against spatial learning impairment in a
mouse model of Alzheimer disease.

relevant

Humanin directly protects cardiac mitochondria against dysfunction initiated by
oxidative stress by decreasing complex I activity.

relevant

Colivelin Ameliorates Impairments in Cognitive Behaviors and Synaptic
Plasticity in APP/PS1 Transgenic Mice.

relevant

Humanin G (HNG) protects age-related macular degeneration (AMD)
transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage.

relevant

Breaking the ritual metabolic cycle in order to save acetyl CoA: A potential role
for mitochondrial humanin in T2 bladder cancer aggressiveness.

relevant

Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity
through the alleviation of mitochondrial dysfunction.

relevant

Humanin inhibits apoptosis in pituitary tumor cells through several signaling
pathways including NF-kappaB activation.

relevant

Effects of humanin on experimental colitis induced by 2,4,6-trinitrobenzene
sulphonic acid in rats.

relevant

Humanin skeletal muscle protein levels increase after resistance training in
men with impaired glucose metabolism.

relevant

Humanin ameliorates diazepam-induced memory deficit in mice. relevant

Humanin Protects RPE Cells from Endoplasmic Reticulum Stress-Induced
Apoptosis by Upregulation of Mitochondrial Glutathione.

relevant

Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl
peptide receptor 2 in mice followed by the successive activation of DP1, A2A,

and GABAA receptors.
relevant

Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury
through attenuation of mitochondrial dysfunction.

relevant

Solution NMR structure and inhibitory effect against amyloid-beta fibrillation of
Humanin containing a d-isomerized serine residue.

relevant

Naturally occurring mitochondrial-derived peptides are age-dependent
regulators of apoptosis, insulin sensitivity, and inflammatory markers.

relevant

Protective Effects of Colivelin Against Alzheimer's Disease in a PDAPP Mouse
Model.

relevant

Potential Roles of Humanin on Apoptosis in the Heart. relevant

The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes
While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases

in Male Mice.
relevant

Humanin Peptide Binds to Insulin-Like Growth Factor-Binding Protein 3
(IGFBP3) and Regulates Its Interaction with Importin-beta.

relevant

63

Humanin Derivatives Inhibit Necrotic Cell Death in Neurons. relevant

The human mitochondrial genome may code for more than 13 proteins. relevant

New labeled derivatives of the neuroprotective peptide colivelin: synthesis,
characterization, and first in vitro and in vivo applications.

relevant

Colivelin ameliorates amyloid beta peptide-induced impairments in spatial
memory, synaptic plasticity, and calcium homeostasis in rats.

relevant

S14G-humanin restored cellular homeostasis disturbed by amyloid-beta
protein.

relevant

Increased oligodendrogenesis by humanin promotes axonal remyelination and
neurological recovery in hypoxic/ischemic brains.

relevant

Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity not
by NMDA receptor.

relevant

Potent humanin analog increases glucose-stimulated insulin secretion through
enhanced metabolism in the beta cell.

relevant

A humanin analog decreases oxidative stress and preserves mitochondrial
integrity in cardiac myoblasts.

relevant

Pharmacokinetics and tissue distribution of humanin and its analogues in male
rodents.

relevant

Secreted calmodulin-like skin protein ameliorates scopolamine-induced
memory impairment.

relevant

The cytoprotective peptide humanin is induced and neutralizes Bax after pro-
apoptotic stress in the rat testis.

relevant

[Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-
3beta inhibition in a mouse model of intracerebral hemorrhage.

relevant

Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel
biomarker for prostate cancer risk.

non relevant

Subcellular Fractionation for ERK Activation Upon Mitochondrial-derived
Peptide Treatment.

non relevant

High-dose Humanin analogue applied during ischemia exerts cardioprotection
against ischemia/reperfusion injury by reducing mitochondrial dysfunction.

non relevant

Neuroprotective effect of G(14)-humanin on global cerebral
ischemia/reperfusion by activation of SOCS3 - STAT3 - MCL-1 signal

transduction pathway in rats.
non relevant

Calmodulin-like skin protein is downregulated in human cerebrospinal fluids of
Alzheimer's disease patients with apolipoprotein E4; a pilot study using

postmortem samples.
non relevant

Mitochondrially derived peptides as novel regulators of metabolism. non relevant

Apoptotic neuron-secreted HN12 inhibits cell apoptosis in Hirschsprung's
disease.

non relevant

Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in
macrophage-derived foam cells.

non relevant

The Role of MicroRNAs and Their Targets in Osteoarthritis. non relevant

Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting
glucose-related oxidative stress.

non relevant

64

Exposure to sixty minutes of hyperoxia upregulates myocardial humanins in
patients with coronary artery disease - a pilot study.

non relevant

A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics. non relevant

Altered intestinal functions and increased local inflammation in insulin-resistant
obese subjects: a gene-expression profile analysis.

non relevant

The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity? non relevant

Rat Humanin is encoded and translated in mitochondria and is localized to the
mitochondrial compartment where it regulates ROS production.

non relevant

The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis
and reduces obesity and insulin resistance.

non relevant

MTRNR2L12: A Candidate Blood Marker of Early Alzheimer's Disease-Like
Dementia in Adults with Down Syndrome.

non relevant

Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected
Lymphoma Cells.

non relevant

The effect of sex on humanin levels in healthy adults and patients with
uncomplicated type 1 diabetes mellitus.

non relevant

Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells
and protects them from TNF-alpha-induced apoptosis.

non relevant

Potential peptides in atherosclerosis therapy. non relevant

The neuroprotection of Rattin against amyloid beta peptide in spatial memory
and synaptic plasticity of rats.

non relevant

Humanin: a novel functional molecule for the green synthesis of graphene. non relevant

Distinct signaling cascades elicited by different formyl peptide receptor 2
(FPR2) agonists.

non relevant

Aeromedical solutions for aerospace safety. non relevant

F. Practical Applications – Mindfulness Dataset

Classification Reports

Table 2 - Classification report for the mindfulness dataset, for each training set and algorithm

Trial Algorithm Label Precision Recall
F1-

Score
Support Accuracy*

Conf.

Matrix

Train

Multinomial NB

SRincluded 0% 0% 0% 4

90,75%
[0 4]

 [7 108]
mindf_fatigue 96% 94% 95% 115

avg / total 93% 91% 92% 119

K Neighbors

SRincluded 7% 25% 11% 4

85,71%
[1 3]

 [14 101]
mindf_fatigue 97% 88% 92% 115

avg / total 94% 86% 89% 119

Random Forest SRincluded 0% 0% 0% 4 89,08% [0 4]

65

mindf_fatigue 96% 92% 94% 115 [9 106]

avg / total 93% 89% 91% 119

Decision Trees

SRincluded 8% 25% 12% 4

88,24%
[1 3]

 [11 104]
mindf_fatigue 97% 90% 94% 115

avg / total 94% 88% 91% 119

Logistic

Regression

SRincluded 12% 25% 17% 4

91,60%
[1 3]

 [7 108]
mindf_fatigue 97% 94% 96% 115

avg / total 94% 92% 93% 119

Train

1

Multinomial NB

SRincluded 9% 50% 15% 4

80,67%
[2 2]

 [21 94]
mindf_fatigue 98% 82% 89% 115

avg / total 95% 81% 87% 119

K Neighbors

SRincluded 11% 50% 17% 4

84,03%
[2 2]

 [17 98]
mindf_fatigue 98% 85% 91% 115

avg / total 95% 84% 89% 119

Random Forest

SRincluded 5% 50% 9% 4

69,70%
[2 2]

 [40 75]
mindf_fatigue 97% 65% 78% 115

avg / total 94% 65% 76% 119

Decision Trees

SRincluded 10% 75% 18% 4

76,47%
[3 1]

 [27 88]
mindf_fatigue 99% 77% 86% 115

avg / total 96% 76% 84% 119

Logistic

Regression

SRincluded 9% 50% 15% 4

80,67%
[2 2]

 [21 94]
mindf_fatigue 98% 82% 89% 115

avg / total 95% 81% 87% 119

Train

2

Multinomial NB

SRincluded 5% 100% 10% 4

36,97%
[4 0]

 [75 40]
mindf_fatigue 100% 35% 52% 115

avg / total 97% 37% 50% 119

K Neighbors

SRincluded 5% 100% 10% 4

39,50%
[4 0]

 [72 43]
mindf_fatigue 100% 37% 54% 115

avg / total 97% 39% 53% 119

Random Forest

SRincluded 4% 50% 7% 4

52,94%
[2 2]

 [54 61]
mindf_fatigue 97% 53% 69% 115

avg / total 94% 53% 66% 119

Decision Trees

SRincluded 6% 75% 11% 4

57,14%
[3 1]

 [50 65]
mindf_fatigue 98% 57% 72% 115

avg / total 95% 57% 70% 119

Logistic

Regression

SRincluded 5% 75% 10% 4

53,78%
[3 1]

 [54 61]
mindf_fatigue 98% 53% 69% 115

avg / total 95% 54% 67% 119

Train

3
Multinomial NB

SRincluded 6% 50% 11% 4
72,27%

[2 2]

 [31 84] mindf_fatigue 98% 73% 84% 115

66

avg / total 95% 72% 81% 119

K Neighbors

SRincluded 6% 75% 11% 4

57,98%
[3 1]

 [49 66]
mindf_fatigue 99% 57% 73% 115

avg / total 95% 58% 70% 119

Random Forest

SRincluded 13% 75% 22% 4

82,35%
[3 1]

 [20 95]
mindf_fatigue 99% 83% 90% 115

avg / total 96% 82% 88% 119

Decision Trees

SRincluded 12% 25% 17% 4

91,60%
[1 3]

 [7 108]
mindf_fatigue 97% 94% 96% 115

avg / total 94% 92% 93% 119

Logistic

Regression

SRincluded 9% 50% 15% 4

80,67%
[2 2]

 [21 94]
mindf_fatigue 98% 82% 89% 115

avg / total 95% 81% 87% 119

G. Practical Applications – Humanin Dataset Classification

Reports

Table 3 - Classification report for the humanin dataset, for each training set and algorithm

Trial Algorithm Label Precision Recall
F1-

Score
Support Accuracy

Conf.

Matrix

Train 1

Multinomial NB

nonrelevant 44% 56% 49% 25

65,88%
[14 11]

 [18 42]
relevant 79% 70% 74% 60

avg / total 69% 66% 67% 85

K Neighbors

nonrelevant 48% 48% 48% 25

69,41%
[12 13]

 [13 47]
relevant 78% 78% 78% 60

avg / total 69% 69% 69% 85

Random Forest

nonrelevant 48% 48% 48% 25

69,41%
[12 13]

 [13 47]
relevant 78% 78% 78% 60

avg / total 69% 69% 69% 85

Decision Trees

nonrelevant 47% 28% 35% 25

69,41%
[7 18]

 [8 52]
relevant 74% 87% 80% 60

avg / total 66% 69% 67% 85

Logistic

Regression

nonrelevant 53% 68% 60% 25

72,94%
[17 8]

 [15 45]
relevant 85% 75% 80% 60

avg / total 76% 73% 74% 85

Train 2

Multinomial NB

nonrelevant 54% 60% 57% 25

72,94%
[15 10]

 [13 47]
relevant 82% 78% 80% 60

avg / total 74% 73% 73% 85

K Neighbors
nonrelevant 54% 60% 57% 25

72,94%
[15 10]

 [13 47] relevant 82% 78% 80% 60

67

avg / total 74% 73% 73% 85

Random Forest

nonrelevant 46% 84% 59% 25

65,88%
[21 4]

 [25 35]
relevant 90% 58% 71% 60

avg / total 77% 66% 67% 85

Decision Trees

nonrelevant 32% 32% 32% 25

60%
[8 17]

 [17 43]
relevant 72% 72% 72% 60

avg / total 60% 60% 60% 85

Logistic

Regression

nonrelevant 58% 60% 59% 25

75,29%
[15 10]

 [11 49]
relevant 83% 82% 82% 60

avg / total 76% 75% 75% 85

Train 3

Multinomial NB

nonrelevant 52% 48% 50% 25

71,76%
[12 13]

 [11 49]
relevant 79% 82% 80% 60

avg / total 71% 72% 71% 85

K Neighbors

nonrelevant 55% 44% 49% 25

72,94%
[11 14]

 [9 51]
relevant 78% 85% 82% 60

avg / total 72% 73% 72% 85

Random Forest

nonrelevant 71% 20% 31% 25

74,12%
[5 20]

 [2 58]
relevant 74% 97% 84% 60

avg / total 73% 74% 69% 85

Decision Trees

nonrelevant 25% 4% 7% 25

68,24%
[1 24]

 [3 57]
relevant 70% 95% 81% 60

avg / total 57% 68% 59% 85

Logistic

Regression

nonrelevant 75% 48% 59% 25

80%
[12 13]

 [4 56]
relevant 81% 93% 87% 60

avg / total 79% 80% 79% 85

Train 4

Multinomial NB

nonrelevant 61% 44% 51% 25

75,29%
[11 14]

 [7 53]
relevant 79% 88% 83% 60

avg / total 74% 75% 74% 85

K Neighbors

nonrelevant 47% 32% 38% 25

69,41%
[8 17]

 [9 51]
relevant 75% 85% 80% 60

avg / total 67% 69% 67% 85

Random Forest

nonrelevant 60% 12% 20% 25

71,76%
[3 22]

 [2 58]
relevant 72% 97% 83% 60

avg / total 69% 72% 64% 85

Decision Trees

nonrelevant 33% 4% 7% 25

69,41%
[1 24]

 [2 58]
relevant 71% 97% 82% 60

avg / total 60% 69% 60% 85

Logistic

Regression

nonrelevant 80% 48% 60% 25

81,17%
[12 13]

 [3 57]
relevant 81% 95% 88% 60

avg / total 81% 81% 80% 85

68

Train 5

Multinomial NB

nonrelevant 61% 44% 51% 25

75,29%
[11 14]

 [7 53]
relevant 79% 88% 83% 60

avg / total 74% 75% 74% 85

K Neighbors

nonrelevant 47% 32% 38% 25

69,41%
[8 17]

 [9 51]
relevant 75% 85% 80% 60

avg / total 67% 69% 67% 85

Random Forest

nonrelevant 40% 8% 13% 25

69,41%
[2 23]

 [3 57]
relevant 71% 95% 81% 60

avg / total 62% 69% 61% 85

Decision Trees

nonrelevant 33% 4% 7% 25

69,41%
[1 24]

 [2 58]
relevant 71% 97% 82% 60

avg / total 60% 69% 60% 85

Logistic

Regression

nonrelevant 77% 40% 53% 25

78,82%
[10 15]

 [3 57]
relevant 79% 95% 86% 60

avg / total 79% 79% 76% 85

Train 6

Multinomial NB

nonrelevant 55% 44% 49% 25

72,94%
[11 14]

 [9 51]
relevant 78% 85% 82% 60

avg / total 72% 73% 72% 85

K Neighbors

nonrelevant 53% 40% 45% 25

71,76%
[10 15]

 [9 51]
relevant 77% 85% 81% 60

avg / total 70% 72% 71% 85

Random Forest

nonrelevant 60% 12% 20% 25

71,76%
[3 22]

 [2 58]
relevant 72% 97% 83% 60

avg / total 69% 72% 64% 85

Decision Trees

nonrelevant 33% 4% 7% 25

69,41%
[1 24]

 [2 58]
relevant 71% 97% 82% 60

avg / total 60% 69% 60% 85

Logistic

Regression

nonrelevant 73% 44% 55% 25

78,82%
[11 14]

 [4 56]
relevant 80% 93% 86% 60

avg / total 78% 79% 77% 85

Train 7

Multinomial NB

nonrelevant 54% 52% 53% 25

72,94%
[13 12]

 [11 49]
relevant 80% 82% 81% 60

avg / total 73% 73% 73% 85

K Neighbors

nonrelevant 60% 48% 53% 25

75,29%
[12 13]

 [8 52]
relevant 80% 87% 83% 60

avg / total 74% 75% 74% 85

Random Forest

nonrelevant 60% 24% 34% 25

72,94%
[6 19]

 [4 56]
relevant 75% 93% 83% 60

avg / total 70% 73% 69% 85

Decision Trees nonrelevant 43% 12% 19% 25 69,41% [3 22]

69

relevant 72% 93% 81% 60 [4 56]

avg / total 63% 69% 63% 85

Logistic

Regression

nonrelevant 75% 48% 59% 25

80%
[12 13]

 [4 56]
relevant 81% 93% 87% 60

avg / total 79% 80% 79% 85

Train 8

Multinomial NB

nonrelevant 53% 40% 45% 25

71,76%
[10 15]

 [9 51]
relevant 77% 85% 81% 60

avg / total 70% 72% 71% 85

K Neighbors

nonrelevant 52% 44% 48% 25

71,76%
[11 14]

 [10 50]
relevant 78% 83% 81% 60

avg / total 71% 72% 71% 85

Random Forest

nonrelevant 50% 16% 24% 25

70,59%
[4 21]

 [4 56]
relevant 73% 93% 82% 60

avg / total 66% 71% 65% 85

Decision Trees

nonrelevant 62% 20% 30% 25

72,94%
[5 20]

 [3 57]
relevant 74% 95% 83% 60

avg / total 71% 73% 68% 85

Logistic

Regression

nonrelevant 65% 44% 52% 25

76,47%
[11 14]

 [6 54]
relevant 79% 90% 84% 60

avg / total 75% 76% 75% 85

Train 9

Multinomial NB

nonrelevant 54% 52% 53% 25

72,94%
[13 12]

 [11 49]
relevant 80% 82% 81% 60

avg / total 73% 73% 73% 85

K Neighbors

nonrelevant 57% 52% 54% 25

74,11%
[13 12]

 [10 50]
relevant 81% 83% 82% 60

avg / total 74% 74% 74% 85

Random Forest

nonrelevant 50% 20% 29% 25

70,59%
[5 20]

 [5 55]
relevant 73% 92% 81% 60

avg / total 66% 71% 66% 85

Decision Trees

nonrelevant 50% 16% 24% 25

70,59%
[4 21]

 [4 56]
relevant 73% 93% 82% 60

avg / total 66% 71% 65% 85

Logistic

Regression

nonrelevant 75% 48% 59% 25

80,00%
[12 13]

 [4 56]
relevant 81% 93% 87% 60

avg / total 79% 80% 79% 85

Train

10

Multinomial NB

nonrelevant 52% 44% 48% 25

71,76%
[11 14]

 [10 50]
relevant 78% 83% 81% 60

avg / total 71% 72% 71% 85

K Neighbors
nonrelevant 55% 48% 51% 25

72,94%
[12 13]

 [10 50] relevant 79% 83% 81% 60

70

avg / total 72% 73% 72% 85

Random Forest

nonrelevant 55% 24% 33% 25

71,76%
[6 19]

 [5 55]
relevant 74% 92% 82% 60

avg / total 69% 72% 68% 85

Decision Trees

nonrelevant 62% 20% 30% 25

72,94%
[5 20]

 [3 57]
relevant 74% 95% 83% 60

avg / total 71% 73% 68% 85

Logistic

Regression

nonrelevant 61% 44% 51% 25

75,29%
[11 14]

 [7 53]
relevant 79% 88% 83% 60

avg / total 74% 75% 74% 85

Train

11

Multinomial NB

nonrelevant 100% 32% 48% 25

80,00%
[8 17]

 [0 60]
relevant 78% 100% 88% 60

avg / total 84% 80% 76% 85

K Neighbors

nonrelevant 56% 20% 29% 25

71,76%
[5 20]

 [4 56]
relevant 74% 93% 82% 60

avg / total 68% 72% 67% 85

Random Forest

nonrelevant 56% 20% 29% 25

71,76%
[5 20]

 [4 56]
relevant 74% 93% 82% 60

avg / total 68% 72% 67% 85

Decision Trees

nonrelevant 67% 8% 14% 25

71,76%
[2 23]

 [1 59]
relevant 72% 98% 83% 60

avg / total 70% 72% 63% 85

Logistic

Regression

nonrelevant 79% 44% 56% 25

80,00%
[11 14]

 [3 57]
relevant 80% 95% 87% 60

avg / total 80% 80% 78% 85

