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Abstract 

The medical field is getting flooded with high dimensional datasets, with the advent of high 

throughput technologies in the omics era. This calls for more sophisticated data analyses 

technology. Machine learning provides a generic solution to address all kinds of datasets, 

including high dimensional datasets.  

Stratified healthcare involves stratifying patients into different risk groups or ‘endotypes’, 

which helps in optimising their disease management, whereas personalised medicine 

involves tailoring the diagnosis and treatment for the patients as per the individual’s 

biological makeup or use of ‘biomarkers’ in terms of genomic, epigenetic, transcriptomic, 

proteomic, or other omics profiles. An unsupervised machine learning technique helps in 

identification of endotypes, whereas a supervised machine learning technique helps in 

identification of biomarkers. 

An unsupervised learning pipeline denoted as MulMorPip, was developed and applied to 

stratify patients with multimorbidity, in order to identify clusters based on disease diagnosis 

and interactions (Chapter 3). We have found evidence for five endotypes in patients with 

multimorbidity using this unsupervised approach. Further, two endotypes of RA were 

discovered using an unsupervised learning technique and a predictor denoted as ATRPred 

was developed for the prognosis of anti-TNF treatment response of rheumatoid arthritis 

patients using a supervised learning technique (Chapter 4). Furthermore, an algorithm 

muSignAl, was developed that can report multiple signatures with similar predictive power 

in case of high dimensionality data (Chapter 5). 

The thesis has attempted to build computational methods/tools using various machine 

learning techniques for stratified healthcare and personalised medicine approaches in 

multimorbidity. These tools can be extended to similar applications in other disease 

conditions. 
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1.1 Introduction 

Over the past 25 years the application of evidence-based medicine has been based mainly on 

averages (as generally done by a statistician) and it has frequently failed to optimally improve 

the quality of life for the patients [1]. The need for a stratified approach in this regard can be 

achieved via identifying distinct patient groups, who are homogenous in terms of their 

genotype, treatment response, phenotypic data and various other features. Stratified 

healthcare involves stratifying patients into smaller groups for better disease management, 

whereas personalised medicine is a branch of science that deals with personalising the 

diagnosis and treatment for specific individual patients. Stratified healthcare involves effects 

of medicine at a population level whereas, personalised medicine involves individualised 

unique diagnosis, treatment, drug targeting and development [2]. Since every individual is 

unique and several treatment pathways are usually available for clinicians to prescribe, 

personalised medicine offers the promise of bridging the gap between the two. Stratified 

Medicine is one of the priority research areas for Innovate UK, the Medical Research 

Council, Academy of Medical Science UK [3].  

Inflammation is a common etiology in many different diseases. This includes diabetes 

mellitus, rheumatoid arthritis, CVD, cancer, etc. Inflammation is a defense mechanism 

involving white blood cells (WBC) and substances produced by them; to protect from 

infection with micro-organisms, such as fungi, bacteria and viruses or abnormal somatic cells 

that may arise throughout the life course. However, in some diseases like arthritis, the 

immune system triggers an inappropriate inflammatory response, even when there are no 

such micro-organisms. These types of diseases are called auto-immune diseases. Most of the 

current therapies do not address the nexus between inflammation and the existence of 

multiple chronic conditions in a given patient, as most of the clinical trials exclude patients 

with multimorbidity and concentrate on single index disease conditions. Inflammation is a 

major risk factor in the development of chronic conditions such as neurodegeneration, cancer 

diabetes, cardiovascular disease (CVD), arthritis, chronic obstructive pulmonary disease 

(COPD), obesity and inflammatory bowel disease (IBD). Chronic inflammation involves 

multiple signaling pathways with potential paracrine and autocrine networks. Some of the 

pathways associated with the initiation and progression of inflammation include p38 MAPK, 

IL-6/JAK/STAT3, PI3K and Hippo pathway [4]. 
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The United Nations (UN) Sustainable Development Goal (SDG) No. 3 focuses on good 

health and well-being [5]. Better disease management ensures good health and well-being. 

Stratifying patients into smaller groups can pave the way to assess different risks better and 

thereby help in managing disease optimally. Further, medical science is developing at a faster 

rate, with many new treatments and medicines being developed. However, we also need a 

way to personalize these treatments for the patients. This will not only reduce the cost spent 

on unwanted treatments that cause harm or have no clinical benefit, but also improve the 

quality of life for patients as delayed response can worsen the patient’s conditions. Thus, 

stratified healthcare and personalised medicine aspires to address the UN SDG No. 3 in the 

most effective manner. 

Machine learning (ML) is being widely exploited across the domains of stratified healthcare 

and personalised medicine [6]. ML based algorithms provide solutions for prediction or 

classification problems using supervised or unsupervised approach, respectively. With the 

continued deployment of advanced high-throughput omics technologies (especially Next 

Generation Sequencing or NGS) in clinical practice, ML offers the promise of significant 

opportunities to assist with the analysis of the terabytes of clinical and omics data being 

generated from patients. The computational methods developed would have a potential 

translational impact by assisting clinical researchers in moving the field of personalised 

medicine further towards clinical utility. 

1.2 The need for precision medicine 

With the increasing use of technology in medical sciences, a lot of optimisations are now 

becoming possible, leading to precision medicine. Precision medicine not only helps in 

optimising performance of our healthcare (stratified healthcare) [7-9], but also tailoring 

treatment as per the patients’ biological makeup (personalised medicine) [10-12]. Some of 

the major advantages in stratified healthcare and personalised medicine is expanded below: 

1.2.1 Stratified healthcare 

Stratified healthcare involves finding the key differences at the population level, so that they 

can be grouped into molecular sub-classes (or endotypes), so that better optimisation of their 

health can be achieved. For example, GPs at primary care can identify high-risk patients and 
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speed-up their treatment in secondary care. In public healthcare, such as the National Health 

Service (NHS) in the UK, patients are experiencing higher waiting time, due to lack of 

resources. Stratified healthcare has the potential of optimising healthcare, so that most can 

be achieved, based on limited resources. A recent study [13], has shown the disparity in 

healthcare utilization based on burden of different chronic conditions. Improvising on these 

is useful in achieving universal health coverage. 

1.2.2 Personalised medicine 

Personalised medicine involves tailoring treatment as per the patient’s biological make-up. 

A lot of medicines are being developed and approved for different diseases. However, only 

a few prognostic tests are available to personalise these treatments. Success of drugs like 

warfarin, PQ and imatinib, which only works on certain genetic profile, without the side 

effect has instilled the interest, amongst the research community, to identify such factors 

[14]. Personalising these medicines, will not only help in saving cost of the drugs, but also 

saving patients from refractory condition of their diseases and slowing down their disease 

progression. 

1.3 Different datasets used in this thesis 

In this thesis, computational analysis was done on the following in-house and public datasets: 

1.3.1 PMC database (in-house dataset) 

Patients were recruited in different disease areas at the Personalised Medicine Centre (PMC) 

of Ulster University. These diseases include those that have a mostly inflammatory etiology 

– rheumatoid arthritis (RA), diabetes, cardio-vascular disease (CVD), cancer and mental 

health. Ethical approvals were obtained from Office for Research Ethics Committees 

Northern Ireland (ORECNI), Ulster University Research Ethics Committee (UREC), Belfast 

Health and Social Care Trust (BHSCT) and Western Health and Social Care Trust (WHSCT). 

Formal written informed consent was obtained from all participants enrolled in the research 

studies to permit publication of anonymised clinical data. 

The analysis reported in this thesis was done on patients recruited for RA. It is a cohort of 

144 patients (cases). Four Olink Proteomics panels (Immunology, CVD-I, CVD-II and 
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Inflammatory panels) composed of 92 proteins each (i.e., 4 X 92 features) were examined at 

baseline (T0-prior to the specific treatment) as well as at T0 + 6 months post treatment, to 

classify RA patients for response to treatment based on EULAR (European League Against 

Rheumatism) guidelines. 

1.3.2 UK Biobank (public dataset) 

UK Biobank (https://www.ukbiobank.ac.uk) is an online biomedical resource of about 

500,000 participants recruited across Great Britain (England, Scotland and Wales), UK 

during 2006-10. These participants were aged 40-69 years at the time of recruitment. The 

database contains genomic, imaging and biological assay data along with meta-data such as 

demographic details. Further, consent was taken from these participants to access their 

electronic care record (ECR) and the database is updated periodically. Access to UK Biobank 

resources was obtained through application number 48433 [15]. 

1.4 Machine Learning (ML) 

Recent advances in hardware technology have made the application of ML possible in 

practice, where large data is involved. ML could be useful for identifying complex patterns 

from gene expression, variant-calling and methylation profiles of patients for stratification 

[16-19]. ML can broadly be classified into supervised and unsupervised learning, as shown 

in Figure 1.1 [20]. 

 

Figure 1.1 Machine Learning techniques. X1 and X2 are features of dataset. The circle or 

cross represents data points in the scatter plot. A and B are data groups or labels for 

https://www.ukbiobank.ac.uk/
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unsupervised or supervised learning respectively [20]. (A) Unsupervised Learning labels the 

data into group A and B based on their Euclidean separation. (B) Supervised Learning finds 

a discriminating pattern (i.e. line) dividing two labels A and B. 

1.4.1 Unsupervised Learning 

We often see data associated with a broad class, for example a disease. Not all patients 

respond to their treatment the same way in the broad class, which makes it difficult for the 

clinicians to tailor the treatment as per their need. In such a case, one can try using 

unsupervised learning techniques to identify if there exists any molecular subclass, formally 

known as endotypes, which can be used to stratify patients and tailor a unique treatment plan 

for each endotype, eventually leading to better disease management for all the patients. 

Figure 1.1A shows an example case of unsupervised learning. We can clearly view a 

separation between two clusters of data points (patients). Thus, we can stratify the data into 

two sub-class i.e., Group A and B. In a real-world scenario of multiple features, the ML 

algorithm will try to identify the separation in multi-dimensional space. 

1.4.2 Supervised Learning 

Some of the data (e.g., biological assays, omics, etc.) in medical settings are often labelled, 

for example, diseased or healthy, responders or non-responders. Supervised learning uses 

these labels to identify patterns in the data that can be used as biomarkers for prognostic or 

diagnostic applications. This is helpful for the clinicians to make better informed decisions 

about prescription and treatment pathways. Figure 1.1B shows the dataset with feature X1 

and X2 (e.g. Expression of protein 1 and 2) and labels A and B (responder and non-responder 

to a drug). The line separating the two labels is a discriminatory pattern identified by the ML 

algorithm and used as a model to predict the labels. In a real-world scenario, there will be 

multi-dimensional data or feature sets and the ML algorithm tries to identify the best 

hyperplanes, separating the groups. 

1.5 Gaps in the field and the problem statement of this thesis 

Despite lots of advancements in the medical informatics field, a lot of questions still remain 

unanswered. With the advent of modern omics technology and its costs going down year by 
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year, a lot of data is being generated in the field [21]. This dataset opens up a lot of 

opportunities for identifying patterns that may be helpful in further stratifying the patients 

and designing tailor-made therapies for each of the strata. This calls for increasing demand 

for computational and bioinformatic techniques, especially in the omics domain. 

This thesis focuses on development of various ML based computational tools that can 

address two major open challenges: 

• Stratified healthcare challenge: Identification of molecular subclasses or endotypes 

of patients, that can help towards stratified healthcare and thereby lead to better 

patient management. 

• Personalised medicine challenge: Identification of biomarkers for personalised 

medicine, that can help in deciding the most effective treatment pathway. 

1.6 Aims of the thesis 

In this thesis I have tried to identify clusters (viz. endotypes) and features (viz. biomarkers), 

using unsupervised and supervised ML based approach, respectively. This study develops 

different computational tools that can help in stratified healthcare and personalised medicine. 

The study is extended to topological or network analysis techniques to find out complex 

patterns in the dataset. Further, Gene-Set Enrichment Analysis was undertaken to help 

understand the underlying biology. These pipelines developed can also be extended and 

applied to different disease conditions. In summary, I have focused on the following three 

aims: 

1. To identify endotypes of patients, that can lead to better patient management 

(stratified healthcare challenge). 

2. To identify biomarkers of treatment response that can help in making better informed 

decisions (personalised medicine challenge). 

3. To apply network and/or gene-set enrichment analysis to understand the underlying 

biology of endotypes and biomarkers identified in 1 and 2. 



Chapter 1: General Introduction 

9 

1.7 Thesis outline 

The remainder of this thesis is as follows: 

• Chapter 2 sets the premise and its scope with a detailed literature review on different 

ML models and methods that are being deployed in medical sciences, followed by 

their implementation for stratified healthcare and personalised medicine in practice. 

It ends with discussions on limitations and research gaps in current medical research. 

• In Chapter 3, we present our published findings wherein we have stratified UK 

Biobank multimorbid patients into five endotypes, using unsupervised ML approach. 

To further understand the differences between those endotypes, we have also 

presented disease-disease interaction networks underlying the patients with 

multimorbidity.  

• In Chapter 4, we present our published work of identifying RA endotypes, using an 

unsupervised ML approach, which were not related to anti-TNF therapy response and 

development of a prognostic test to identify responders to anti-TNF treatment in RA, 

using a supervised ML approach. 

• In Chapter 5, we present our published work of developing an algorithm that can 

identify multiple signatures in high dimensionality data. 

• Finally, we have summarised the aforesaid research, talked about our limitations and 

suggested some future developments that can be carried out, in Chapter 6. 

1.8 Posters, publications, patents and funding 

The research works carried out on the thesis are published/submitted as following: 

1.8.1 Journal publications 

• Prasad B, Bjourson AJ, Shukla P. Data-driven patient stratification of UK Biobank 

cohort suggests five endotypes of multimorbidity. Brief Bioinform. 2022 Nov 

19;23(6):bbac410. doi: 10.1093/bib/bbac410. PMID: 36209412; PMCID: 

PMC9677496. 

• Prasad B, McGeough C, Eakin A, Ahmed T, Small D, Gardiner P, Pendleton A, 

Wright G, Bjourson AJ, Gibson DS, Shukla P. ATRPred: A machine learning based 
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tool for clinical decision making of anti-TNF treatment in rheumatoid arthritis 

patients. PLoS Comput Biol. 2022 Jul 5;18(7):e1010204. doi: 

10.1371/journal.pcbi.1010204. PMID: 35788746; PMCID: PMC9321399. 

• Prasad B, Bjourson AJ, Shukla P. muSignAl: An algorithm to search for multiple 

omic signatures with similar predictive performance. Proteomics. 2023 

Jan;23(2):e2200252. doi: 10.1002/pmic.202200252. Epub 2022 Oct 3. PMID: 

36076312. 

1.8.2 Patents filed from the work done in this thesis 

• A UK wide patent filed for proteomic signature in ATRPred against application 

number 2108522.0 dated 15.06.2021. 

1.8.3 Commercialisation funding secured from the work done in this thesis 

• ATRPred, a proteomic based signature to predict response to anti-TNF therapy in 

rheumatoid arthritis patients, was selected in the top 12 projects cohort G for funding 

market research Cohort G of NxNW ICURe programme 

(https://www.nxnwpartners.org/our-programmes/icure), funded by Innovate UK. 

Bodhayan Prasad as an early career researcher (ECR) lead the project for 16 weeks 

(24 May 2021 - 9 Sep 2021). 

1.8.4 Conference posters 

• Prasad B, Gibson D, McGeough C, Eakin A, Ahmed T, Small D, Gardiner P, 

Pendleton A, Wright G, Bjourson AJ, Shukla P 2019, 'Stratifying patients with 

inflammatory diseases based on treatment response', Mathematical and statistical 

explorations in disease modelling and public health, Bengaluru, India, 1/07/19 - 

6/07/19. 

1.8.5 Other relevant peer-reviewed publications and patents that are not included in 

this thesis 

• English AR, Prasad B, McGuigan DH, Horigan G, O'Kane M, Bjourson AJ, Shukla 

P, Kelly C, McClean PL. Simvastatin is associated with superior lipid and glycaemic 

https://www.nxnwpartners.org/our-programmes/icure


Chapter 1: General Introduction 

11 

control to atorvastatin and reduced levels of incident Type 2 diabetes, in men and 

women, in the UK Biobank. Endocrinol Diabetes Metab. 2022 May;5(3):e00326. doi: 

10.1002/edm2.326. Epub 2022 Mar 4. PMID: 35243827; PMCID: PMC9094470. 

• Shukla P, Pandey P, Prasad B, Robinson T, Purohit R, D'Cruz LG, Tambuwala MM, 

Mutreja A, Harkin J, Rai TS, Murray EK, Gibson DS, Bjourson AJ. Immuno-

informatics analysis predicts B and T cell consensus epitopes for designing peptide 

vaccine against SARS-CoV-2 with 99.82% global population coverage. Brief 

Bioinform. 2022 Jan 17;23(1):bbab496. doi: 10.1093/bib/bbab496. PMID: 

34962259; PMCID: PMC8769887. 

• A UK wide patent filed for peptide-based epitope in PVPred against application 

number 2102598.6 dated 24.02.2021. 

• A peptide-based vaccine against SARS-CoV-2 using PVPred, was selected for 

funding market research under the Proof of Concept (PoC) Stage 1 

(https://www.investni.com/support-for-business/proof-of-concept), funded by Invest 

NI. Bodhayan Prasad as an early career researcher (ECR) lead the project for 3 

months (24 Oct 2021 - 24 Jan 2022). 
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2.1 Introduction 

Traditionally, medicines have been developed for broad disease classes. Many of these 

medicines don’t work on the patients and they are shifted to another treatment. Further, a lot 

of medicine are getting approved on regular basis. With the advent of precision medicine, 

clinicians can now choose a medicine, based on their patients’ genes, biochemicals and 

environments, in order to better optimise the treatments. Precision medicine tries to move 

from traditional one-size fits-all medicine, by initially stratifying the patients in smaller sub-

groups, and then finally personalising their treatment, as shown in Figure 2.1 [1].  

 

Figure 2.1 The shift of traditional medicine into precision medicine (from stratification to 

personalisation) [1]. 

Stratified healthcare involves identifying key differences at population level to stratify (or 

sub-group) patients. Whereas personalised medicine involves personalising (or tailoring) the 

treatment, as per different clinical and environmental biomarkers. Stratified healthcare 

groups patients with similar demographics and medical history and tries to predict risks of 

any disease incidence, early diagnosis and disease progression, so that clinicians can better 

manage and prioritise treatment for the high-risk group. Further, within these groups, 

personalised medicine tries to identify treatment with best outcome. 
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2.2 Premise and its scope 

In this literature review, we will start by discussing different machine learning (ML) models, 

that is popular amongst the medical research community, followed by their implementation 

and usage in practice. Finally, we will try to identify their limitations and any research gaps 

that we see, which we would like to address in upcoming chapters. 

We will be assessing each of these different ML methods in two broad contexts viz., 

unsupervised and supervised approach, that is used in stratified healthcare and personalised 

medicine respectively. Stratified healthcare tries to sub-group patients into broad groups 

using mostly demographic variables like age, sex, ethnicity, diet, etc. [2]. Therefore, it uses 

unsupervised ML or clustering methods to identify patient heterogeneity. In contrast, 

personalised medicine uses molecular profiling to tailor the right therapeutic strategy. This 

is manifested as a ‘companion test’ or clinical biomarker for assessing therapeutic response 

[3]. Therefore, personalised medicine deploys supervised ML or predictors to prognose. 

These ML manifestations in two broad contexts are briefly introduced in the following sub-

sections. 

2.2.1 Clustering approaches for stratified healthcare 

Stratified healthcare identifies different clusters of patients. This involves an unsupervised 

approach to ML. Unsupervised ML techniques try to discover patterns in the data, so that it 

can be sub-divided into smaller groups. Some of the most popular techniques include 

hierarchical clustering, k-means clustering and Gaussian mixture models. 

In the study by Mossotto et al [4], in order to check if clinical features in inflammatory 

bowel disease (IBD) segregate into two clusters of Chron’s disease (CD) and ulcerative 

colitis (UC), principal component analysis (PCA) for linear feature association as well as 

multidimensional scaling (MDS) for non-linear feature association were applied. A study 

conducted by Pen et al [5] used a consensus clustering approach on gene expression dataset 

of rheumatoid arthritis in order to have statistically robust partitions of data. Orange et al [6] 

used k-means clustering for patient stratification in juvenile-onset systemic lupus 

erythematosus (SLE). Martin-Gutierrez et al [7] stratified patients with Sjögren's syndrome 

(SS) along with SLE and using k-means clustering and clinical trajectory analysis. 
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2.2.2 Predictor developments in personalised medicine 

One of the aims in personalised medicine is to predict response to different treatments. This 

involves a supervised approach to ML. Supervised ML techniques try to investigate the 

relationship between biomarkers and the outcome variables, in order to create predictive 

models. Broadly supervised ML approaches can be divided into classification and regression. 

Classification models try to predict categorical outcome variable e.g. treatment response, 

whereas regression models are used when outcome variable is continuous e.g. disease 

activity. Some of the most popular techniques include linear, logistic, tree-based, ensemble. 

In the study conducted by Mossotto et al [4], hierarchical clustering with Hamming distance 

and average linkage was applied for visualizing the relationship between paediatric IBD 

patients and traits. In study by Pen et al [5], support vector machines (SVM) using leave-one-

out cross-validation in R were used to predict sub-types of gene expression in RA. Orange et 

al [6] assessed classification and parameter selection using a balanced random forest (BRF) 

and sparse partial least squares-discriminant analysis (sPLS-DA) in R and validated using 

10-fold cross-validation. They used logistic regression for testing the associations between 

and immune phenotype. Martin-Gutierrez et al [7] also used BRF plots and sPLS-DA in R 

for classification and parameter identification. Further, logistic regression was applied for 

association analysis. 

2.3 Popular ML models applied in the fields of stratified healthcare and 

personalised medicine 

Several ML techniques have been applied for different chronic inflammatory diseases [8]. 

We have tried to summarise different ML models used for clustering and/or predictors 

development in the following sections. A recent review [9] has highlighted a few popular 

ML methods in the medical arena, which are discussed in the following sub-sections. 

2.3.1 Linear models 

Linear models have been quite popular amongst the research community as it is the simplest 

ML model, unlike the so-called ‘blackbox’ of other more sophisticated ML models. In linear 

regression, for example, the final model is a linear combination of its features and therefore, 
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we can really understand what it is the model doing, in order to predict [10]. This model has 

been shown to work quite accurately in many medical applications, such as drug-target 

interactions [11]. Therefore, many researchers switch to more sophisticated model, only 

when linear regression accuracies are not on par. 

Unlike linear regression, logistic regression (another linear model) provides the framework 

for classification problems, wherein label/target is a categorical variable. It applies the linear 

regression, followed by an activation, that changes continuous output from the linear 

regression into categories [12]. In medical field, we often come across case-control studies, 

which comprise binary classification, wherein logistic regression comes to the rescue, and 

can provide promising results [13]. However, these linear models cannot handle clearly 

discrete or skewed continuous responses [14]. A generalised linear models (GLMs) extend 

linear modelling to include wide variety of response type. 

2.3.2 Decision Tree (DT) 

Decision tree (DT) is getting very popular amongst the research community, as the model is 

simple and similar to linear regression it is easy to visualise. Especially when the data has 

many categorical variables or skewed continuous variables (often found in medical datasets), 

DT presents a better way to manage it [15]. DT has shown to be the most flexible, intuitive 

and powerful data analytics tool for exploring complex datasets in stratified healthcare [16]. 

2.3.3 Random Forest (RF) 

Random forest (RF) falls under the umbrella of bagging methods in ML, where several DTs 

become part of the overall model and output is generated based on majority voting coming 

from these models. It is one of the powerful tree-based models and amongst the first choice 

as a general-purpose classification and regression method [17], when simple ML models, like 

linear regression/DT, do not provide adequate performance. RF has been seen quite useful in 

a number of medical applications [18]. 

2.3.4 Gradient Boosting algorithm 

In contrast to bagging ML models, gradient boosting falls under the umbrella of boosting 

algorithms, wherein, a weak ML model is improved (boosted) by sequentially adding models 
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and updating its weight [19]. These weak ML models can be any of the ML models. For 

example, with DTs as the weak learners, we get gradient boosting trees, which usually 

outperforms RF (bagging DTs) [20].  

2.3.5 Support Vector Machine (SVM) 

Support Vector Machine (SVM) learns by examples for labelling objects [21]. SVMs are 

gaining popularity amongst the medical community due to their simplicity and flexibility in 

addressing a range of classification problems [22]. Especially, it is known to be quite 

effective in image classification [23] as well as medical data mining [24]. 

2.3.6 Naïve Bayes (NB) 

Naïve Bayes (NB) harnesses then power of Bayer’s rule in order to classify. NB uses a strong 

assumption that the dataset contains independent feature-set, which is often violated in 

practice, nevertheless, it provides competitive performance [25, 26]. 

2.3.7 Neural Networks (NNs) 

Artificial neural networks (ANNs) and deep learning (DL) are both NN-based ML techniques 

that are used to analyze large amounts of data and identify patterns that can inform decision-

making. However, the main difference between ANNs and DL is the complexity of the 

models. ANNs are a type of model that is designed to mimic the structure and function of the 

human brain. They consist of layers of artificial neurons that are connected to one another, 

and each neuron is designed to perform a specific task. In contrast, DL models are more 

complex, and they are designed to learn from large amounts of data. They typically consist 

of multiple layers of artificial neurons, known as deep neural networks, and each layer is 

designed to perform a specific task [27]. Further, DL methods have the ability to learn from 

big data sets and have a better performance on complex tasks, such as image and speech 

recognition [28]. 

Deep learning (DL) algorithms provide the most powerful ML tools, especially seen in the 

field of computer vision. DL methods, such as recurrent neural networks (RNN) and 

convolutional neural networks (CNN) have been applied to medical imaging recognition for 

both stratified healthcare [29, 30] and personalised medicine [31, 32]. 
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2.4 Stratified healthcare and personalised medicine in practice 

Some of the major diseases, along with the current challenges in stratified healthcare and 

personalised medicine are described below: 

2.4.1 Diabetes Meletus (DM) 

DM involves an increase in blood sugar levels [33]. Insulin is a hormone made by our 

pancreas, which helps in maintaining blood sugar levels. When a patient develops insulin 

resistance, it leads to DM. This can be further divided into insulin dependent diabetes (Type 

1 DM) and insulin independent diabetes (Type 2 DM). However, some people with T2DM 

may still need insulin. DM is diagnosed using HbA1c or C-peptide level in blood. 

Stratified healthcare research [34] has identified 7 molecular subclass or endotype of T2DM 

patients using unsupervised machine learning approaches. Further, some diabetes patients 

are prescribed multiple different medications. This includes Metformin medication; however, 

it still has about 40% non-responders. Different GWAS studies have been undertaken to 

personalise this diabetes medicine, thus, a lot still needs to be done. Additionally, diabetes 

patients are also put on different statin treatment like simvastatin or atorvastatin, which can 

potentially be personalised to treat comorbidities. Thus, advances in stratified healthcare and 

personalised medicine of DM and comorbidities can lead to the better management and 

tailoring treatment for the patients by providing a holistic approach towards managing the 

blood sugar levels for them, however it still has a lot of improvements are possible. 

2.4.2 Cardio-vascular disease (CVD) 

CVD involves conditions of heart and blood vessels. It is a broad disease class and includes 

all types of heart and circulatory disorders like coronary heart disease (CHD) / coronary 

artery disease (CAD) / ischemic heart disease (IHD), acute coronary syndrome (ACS), 

congenital heart disease, hypertension, stroke and vascular dementia. Further, an ACS can 

be due to unstable angina (UA) or heart attack (STEMI or NSTEMI, based on electro-

cardiogram (ECG) graph). Stratified healthcare research [35] has led to risk stratify CVD 

patients into low, medium, high and very high risk, based on EuroSCORE II. 
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Major Averse Cardiac Event (MACE) involves ACS, Arrythmias, Heart failure (and LV 

impairment), stent re-stenosis, recurrent chest pain, peripheral artery disease, stroke and 

ministroke (TIA), all cause death and death from cardiac origin. It is important to predict a 

recurrent MACE event within a year or even between 1-4 years, in order to prioritise and 

personalise the treatment for CVD patients. 

2.4.3 Rheumatoid arthritis (RA) 

RA is an autoimmune disease. One third of these patients do not respond to conventional 

disease-modifying anti-rheumatic drug (cDMARD) and are prescribed biologic DMARD 

(bDMARDs), with disease response is accessed after 3-6 months post treatment [36]. This 

treatment is often costly and about one-third again do not respond [36]. There are many 

treatments including TNF inhibitors, JAK inhibitors, IL6 inhibitors, B-Cell inhibitors, etc. 

But there is currently no reliable way to personalise treatment in RA yet. A prognostic 

biomarker to identify the right treatment for a patient would be helpful in restraining disease 

progression. A review [37] advocates the need for meaningful clinical endotypes for 

personalising RA treatment. 

2.4.4 Inflammatory bowel disease (IBD) 

IBD involves damage along the lining and tissues of the digestive tract. Crohn’s disease (CD) 

and ulcerative colitis (UC) are two kinds of IBD. Anti-TNF therapy is one of the popular 

methods for treating IBD. Research [38] has tried to identify current challenges in 

effectiveness of anti-TNF treatment in UC. An effective prognostic biomarker to personalise 

this treatment would control the disease progression in patients. Recent research [39] has 

reviewed different predictors of primary response to biologic treatment, such as anti-TNF.  

2.4.5 Chronic obstructive pulmonary disease (COPD) 

COPD is a broad class of lung conditions, which causes difficulty in breathing. There is a 

need to stratify these patients into smaller sub-groups that can each then receive their own 

tailored care, personalised to their healthcare requirements or needs. Stratified healthcare 

research [40] has identified molecular subclasses or endotypes of COPD, using unsupervised 

machine learning on clinical data. Since these endotypes are clinically different, it implies 
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that they respond differently to their treatment. This classification can now be used in the 

development of personalised treatment, tailored to each endotypes. 

2.4.6 Chronic kidney disease (CKD) 

Acute Kidney Injury (AKI) often leads to CKD [41]. CKD involves progressively decreasing 

working capability of kidney compared to normal. Kidney function is measured using 

Estimated Glomerular Filtration Rate (EGFR) calculated using creatinine levels present and 

urea in blood. CKD is known to be dependent on socioeconomic factors, lifestyle, ethnicity 

etc. [42] and hence one needs to personalise the treatment based on these modifiable risk 

factors as well. 

2.4.7 Cancer 

Cancer involves uncontrolled growth of cells in specific parts of the human body, forming 

tumors. A benign tumor gradually becomes malignant during the metastasis stage, where it 

starts spreading to other parts of the body, including by a process known as epithelial-

mesenchymal transition (EMT). The four most common types of cancer are breast, lung, 

prostate and bowel cancers [43]. However, there are more than 200 types of cancer and 

personalised medicine research has been carried out to diagnose and treat each of these 

cancers in a particular way [44]. 

2.4.8 Mental health 

Major mental health conditions involve depression, anxiety, OCD, PTSD, etc. Several 

GWAS have been carried out to identify SNPs that are indicative of different mental health 

disorders [45]. However, a lot of improvement in the performance of these biomarkers is still 

required.  In addition, inflammation has been implicated in mental health disorders [46]. 

2.4.9 Role of multimorbidity 

An acute event involves rapid onset like ACE, which stays for hours/days, whereas chronic 

condition is developed slowly over months/years. A lot of acute events may also progress to 

chronic conditions, like AKI progresses to CKD. Co-occurrence of multiple chronic 

conditions (MCCs) in a patient is often referred to as multimorbidity [47]. With an increase 
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in human longevity and changing lifestyle, it is one of the most common conditions in ageing 

patients. However, most of the clinical trials are still biased towards single index disease 

conditions. Thus, there is a need for a tailored approach in stratified healthcare for patients 

with multimorbidity. 

 

Figure 2.2 Chronic inflammation as a common risk factor for patients with multimorbidity 

[48]. 

Figure 2.2 [48] shows that, in most cases, inflammatory response is found to be associated 

with patients with multimorbidity. Since all chronic conditions involve inflammation, these 

chronic conditions often interact with each other. Further, inflammation can occur due to 

multiple pathways, such as p38 MAPK, IL-6/JAK/STAT3, PI3K and Hippo pathway [49], 

making these patients biologically more complex. Unfortunately, most of these diseases are 

treated based on research and clinical trials involving patients having single index disease 

conditions. However, with the advancement of medical science, longevity has increased and 

age being a major risk factor for multimorbidity [50], it has become a norm in today’s aging 

population. Thus, we need to stratify these multimorbid patients, which can be helpful 

towards their management as well as improving their quality of life. 
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Assessing multimorbidity becomes very important when approaching stratified healthcare. 

With multimorbidity, many treatment goals exist for a clinician to consider. Different 

diseases lead to chronic inflammation in the patient. The level of this inflammation dictates 

the disease progression in patients. Assessing chronic inflammation, interaction of proteins 

involved, and interaction between diseases can help in the development of new treatment 

regimens for multimorbidity, as the drugs that are currently being approved are tested on 

patients with single disease conditions (excluding the patients with multimorbidity). Given 

that multimorbidity has become a norm, targeting the markers of chronic inflammation in 

different disease conditions could be a way forward in precision medicine for multimorbid 

patients. 

2.5 Limitations in research 

Although a lot of interest has been seen amongst the medical research community in 

exploiting the power of ML in addressing the research questions, they are still underutilised. 

Many research papers stick to statistical tests (such as the Student’s t-test) to show 

significance and do not carry on to how well these significant biomarkers are able to perform. 

Further, many weak biomarkers are often seen in medical dataset. ML could help in 

combining these weak biomarkers into a single strong biomarker, which can have a 

significant performance improvement. 

Furthermore, many ML based research papers use generalised computational tools. These 

tools may not be optimised for the dataset at hand. Most medical datasets are of similar type 

and a generally used computational tool might end up taking huge computing resources for 

the calculation and hence a computational tool developed specifically for the application can 

be more appropriate. 

Many ML models applied in medical research are linear (such as polygenic risk scores), as 

they are easy to comprehend. However, biological interactions are often complex and hence 

a more sophisticated ML model might capture the real interaction responsible for the 

phenotype, more appropriately. 
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2.6 Research gaps, open challenges and opportunities 

With a flood of datasets and availability of good computing resources, the medical field is 

becoming more and more data-driven investigation. Despite the exponential growth in the 

usage of ML applications in medical sciences, there still exists a lot to be addressed in 

stratified healthcare as well as personalised medicine. 

A lot of research is being carried out in stratified healthcare. However, most of this research 

involves either a single disease, for example cancer [51], or a disease with its comorbidity, 

for example diabetes and its complications [52]. However, with the increase in longevity, 

most of the elder populations now live with multiple chronic conditions (or multimorbidity). 

This shows a gap in multimorbidity research. A pivot in research directions for patients with 

multimorbidity has the potential to improve the quality of life for these patients [53]. 

Furthermore, a lot of multimorbidity research is being done, using simple descriptive 

analytics. This calls for a more sophisticated approach, such as ML to address 

multimorbidity, which is complex as such. 

Even though a lot of research is carried out in personalised medicine, it is still at a very early 

stage. For example, a review on personalised medicine in RA (rheumatoid arthritis) [54] 

elucidates that the interpatient heterogeneity is significant in terms of their efficacy towards 

biological therapies and hence proposes the need for robust biomarkers. Furthermore, RA 

shows heterogeneity at molecular and cellular levels [55], which can have clinical 

implications. This calls for a stratified approach towards RA patients, as well. 

A lot of computational tools are being developed in the field of bioinformatics, in order to 

tackle the flood of data in the medical field. However, traditional computational tools do not 

give optimal performance, as the given computational tools show different performances 

with different kinds of datasets. For example, in medical sciences, we often find datasets that 

are muti-dimensional. This is due to the capture of multiple feature-sets but only for a few 

patients, as recruitment is a long and tedious process. Bioinformatics tools need to be tailored 

to address the complexity of datasets as such. This poses a need to develop several robust 

pipelines that are tailored to the medical field. 
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2.7 Conclusion 

Stratified healthcare and personalised medicine involve low and high precision respectively 

and a holistic improvement in healthcare requires both. ML serves as a powerful tool for the 

analysis and has been extensively applied at both levels of precision to improve the quality 

of life for the patients. Stratified healthcare involves applying unsupervised approaches in 

ML to identify sub-classes (or clusters), which can then help in better management and 

prioritising the treatment, based on risk. Further, personalised medicine involves supervised 

approaches in ML to predict an outcome, such as treatment response, so that optimal results 

can be achieved. 

Both stratified healthcare and precision medicine research has been extensively applied in 

all the disease classes, including the role of multimorbidity. There exist different kinds of 

ML models to answer the question involving stratified healthcare and precision medicine. 

Usually, the researchers in the medical field prefer the simplest models viz. GLM and DT, 

as they are easy to comprehend. However, if the adequate performance is not met, more 

sophisticated models viz. RF and gradient boosting tree are applied. Furthermore, a wide 

range of data types like speech and image can be seen in the medical arena, where ML models 

like DL become extremely useful. 

Despite the exponential growth in the usage of ML for addressing medical research 

questions, it is still underutilised. ML presents a more powerful tool as compared to the 

traditional statistical tests, generally used by the medical research community. Further, there 

is a need for computational tools that are optimised for medical datasets. 
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3.1 Introduction 

Multimorbidity generally refers to the occurrence of more than one chronic disease [1]. 

Chronic diseases are those that are persistent and long-lasting and include arthritis, diabetes 

and high blood pressure amongst many others. These chronic conditions can be physical non-

communicable diseases of long duration such as cardiovascular disease or cancer, a mental 

health condition of long duration such as a mood disorder or dementia or an infectious disease 

of long duration such as HIV or hepatitis C [2]. For example, the study by Pieringer and 

Pitchler in 2011 [3] and the Center for Disease Control and Prevention report [4] on patients 

with arthritis has reported that 24% suffered from cardiovascular diseases, 19% respiratory 

conditions, 16% diabetes and 24% depression. 

Older population, i.e. people over the age of 40, are more likely to develop multiple chronic 

conditions (multimorbidity). Hospitals in the UK see around 40–50% older patients [5]. Total 

long-term care expenditure in 2017 was £48.2 billion (~2% UK GDP), of which 

approximately two-thirds (66%) was financed by the government and 31% by people who 

directly paid for the services and medication [6], thus making multimorbidity an economic 

challenge as well. 

With the progress of medical science, patients’ longevity has increased. Global life 

expectancy now sits around age 72 – more than double that of 100 years ago [7]. But the 

increased longevity has led to the rise of multimorbidity in patients [8]. In 1900, top three 

causes of death were infectious diseases like pneumonia and flu, tuberculosis, and 

gastrointestinal infection [9]. By 2010, these were replaced by cancer, heart disease and 

cerebrovascular disease [10]. Further, the mortality from all causes has declined by 54% from 

1900 to 2010 [11]. With the advent of modern medicine, life expectancy has been gradually 

increasing. The data for 2018–20 show that the life expectancy at birth for UK has now 

reached 79 years for males and 82.9 years for females [12]. The difference between the 

genders is also gradually decreasing as the male life expectancy is increasing at a faster rate 

than females [13]. Additionally, healthy life expectancy data show that it is 62.9 years for 

males and 63.3 years for females for 2017–19 [14]. The difference between the life 

expectancy and healthy life expectancy is years a patient spends in poor health. This 

difference is about 19.1 years (64 years in good health) for 2012–14 and was 18.1 years (62.5 

years in good health) in 2000–02 [15]. For both the sexes, years in poor health from age 65 
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has increased by 1.4 years for females and 1.5 years for males in 2012–14 as compared to 

2000–02 [15]. Hence, multimorbidity is not just a special case, but a norm in today’s world. 

There exist many metrics to measure multimorbidity and/or comorbidity beyond a simple 

disease count [16]. One of the first study in this field by Charlson et al. in 1987 [17] suggested 

Charlson Comorbidity Index (CCI) as a weighted metric for multimorbidity, giving weights 

to 17 broad disease classes based on severity that can decrease longevity. Thus, a higher CCI 

means the patient is more multimorbid and hence prone to die early. The CCI was later 

standardized using the International Classification of Diseases-10 (ICD-10) by Quan et al. in 

2005 [18]. The CCI is the most widely used multimorbidity measurement metric [16]. 

Therefore, for the current scope of our study we have used it for describing multimorbidity 

in UK Biobank cohort and have focused on the patients having at least two disease classes 

defined by the Charlson’s comorbidity classification. 

Comorbidity is often used interchangeably with multimorbidity, but there is a subtle 

difference between the two. Traditionally, a patient with multimorbidity visits specialists for 

each disease in secondary care settings. These patients are labelled with one disease as the 

major disease alias index disease or condition and the rest of the conditions are labelled as 

comorbidities. This approach makes the specialist treat and mostly consider the major 

condition. In contrast, multimorbidity is where multiple chronic conditions are studied 

together with their interactions with each other and analysed under a single umbrella, like 

how generalist practice in a primary care setting. Thus, index-comorbidity regime deals 

majorly with one index disease, whereas multimorbidity looks at multiple chronic conditions 

together along with their interactions with each other [19]. There is a need to renew the 

relationship between specialists and generalists, who have different but complimentary skills 

to personalise the treatment of patients with multimorbidity. 

At public healthcare systems, such as the National Health Service (NHS) in the UK, patients 

often enter a long waitlist [20]. There is a current need to explore more sophisticated and 

stratified or personalised treatment approach that can prioritise treatments for the high-risk 

patients, especially those with multimorbidity. This has led to stratified or personalised 

medicine becoming one of the priority research areas for Innovate UK, the Medical Research 

Council (MRC) UK and the Academy of Medical Sciences UK [21]. The need for a 

personalised medicine approach in this regard can be achieved by clustering patients using 
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unsupervised machine learning (ML) techniques and then characterizing them using various 

demographic and clinical data. Here we propose an analytical approach (MulMorPip) based 

on multiple correspondence analysis (MCA), which is a multivariate technique within 

unsupervised ML field. MulMorPip is a step towards equipping the clinicians with patient 

stratification based on multimorbidity and understanding disease–disease interactions within 

multimorbid groups, which can eventually help them in better decision-making, prioritizing 

and personalising the treatment plans for multimorbid patients. 

3.2 Material and methods 

A summary flowchart of the bioinformatics analysis pipeline, namely multimorbidity 

analysis pipeline (MulMorPip), is presented in Figure 3.1, and all the code of the pipeline 

has been made available in the following public repository 

https://github.com/ShuklaLab/MulMorPip. 

https://github.com/ShuklaLab/MulMorPip
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Figure 3.1 (A) Flowchart presentation of multimorbidity analysis pipeline (MulMorPip). 

Oval shapes represent start/stop, parallelogram boxes represent input/output, rectangular 

boxes represent computation process and cylinder represents library/database. DTC model 

has been zoomed-out and presented in the dotted circle. (B) Detailed presentation of cluster 

validation. ICD10 = International Classification of Diseases 10th Revision, 

CCC = Charlson’s comorbidity classification, DTC = decision tree classifier, 

MCA = multiple correspondence analysis. 
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3.2.1 Datasets 

UK Biobank (https://www.ukbiobank.ac.uk) has recruited about 500 000 patients from Great 

Britain (England, Scotland and Wales). These participants gave consent for access to their 

electronic care record. We obtained the UK Biobank data via Application No. 48433. We 

collected the ICD-10 disease diagnosis of the patients from the UK Biobank field id 41270 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270). Dataset belonging to 

participants who later revoked their consent was excluded. 

3.2.2 Statistical, computational and bioinformatic analyses 

All statistical and computational analyses were carried out in R v3.6.1 [22]. The t-test and 

chi-square test to check for demographic variables were performed in the ‘base’ package. 

The UK Biobank data was loaded with the help of ‘ukbtools’ package [23] and transformed 

into subsequent Charlson’s broad disease classes using the ‘icd’ package [24]. MCA was 

carried out using the ‘FactoMineR’ package [25] and plotted using the ‘factoextra’ package 

[26]. Data splitting was done using the ‘caret’ package [27]. ML model for decision tree was 

made using ‘rpart’ package [28] and plotted using ‘rpart.plot’ package [29]. Network analysis 

was performed using Cytoscape software [30]. 

3.2.3 Multiple correspondence analysis 

The ICD-10 summary diagnoses of the UK Biobank patients were grouped into Charlson’ 

broad disease classification. The patients with multimorbidity were obtained using disease 

count of greater than 1 for the Charlson’s broad disease classification. This subset of patients 

was then used for performing MCA. The MCA plot was then rotated using matrix 

multiplication M = [1 1.8; 1.8 –1] to make clusters vertical, which were then partitioned using 

the x-axis (cut-offs: 0, 0.7, 1.4 and 2.1) and labelled with cluster numbers. 

3.2.4 Cluster validation 

We divided the data into training set (80%) and test set (20%), trained a decision tree 

classifier (DTC) with the training set and used the DTC model to predict the test set. We 

compared the predictions with the original cluster values using overall accuracy and Jaccard 

similarity scores. Finally, we plotted the predictions as well as original cluster values in a 

https://www.ukbiobank.ac.uk/
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41270
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separate MCA plot of 20% test set. Random number generation seed was set to 200, prior to 

carrying out validation. 

3.2.5 Network analysis 

The prevalence of each disease was calculated for each of the identified clusters and size of 

the network disease node was then made proportional to it. Further, the co-occurrence of two 

diseases was obtained and used in defining the thickness of the network edges. Disease 

interaction networks were then plotted in circular topology. 

3.3 Results 

3.3.1 Cluster analysis and its validation 

We selected the UK Biobank participants belonging to two or more broad disease classes as 

per Charlson’s classification of multimorbidity. The count of broad disease classes in this 

multimorbid cohort (n = 77 524) varied from 2 to 13 (Supplementary Table 3.1). This 

classification was used to carry out MCA, which showed five distinct clusters (Figure 3.2A). 

Plot of variable categories (i.e. 17 broad disease classes defined by Charlson) against 

principal dimensions showed dependence of clusters on paralysis, followed by stroke and 

dementia (Figure 3.2B). In order to validate these clusters, we set aside 20% test data and 

confirmed that the basic demographic features are representative of the 80% training set 

(Supplementary Table 3.2). We then trained a DTC model on the remaining 80% data. The 

flowchart for the validation scheme is presented in Figure 3.1A (lower panel), and the 

corresponding sample sizes and results are shown in Figure 3.1B. We chose DTC because 

the disease data is categorical, and DTC is extensively used with categorical data and gives 

a simple and meaningful decision tree for decision-making. The DTC model obtained using 

the 80% training set is presented in Figure 3.1A (zoomed dotted circle). The DTC was seen 

to use the same three disease classes (i.e. paralysis, stroke and dementia) to define its 

branching. The performance of the DTC model in terms of confusion matrix is presented in 

Supplementary Table 3.3. The prediction of 20% test set using the DTC model gave an 

overall accuracy of 97% (Figure 3.1B). However, since the number of patients in each cluster 

was significantly different, we computed Jaccard similarity for each cluster and obtained an 

average Jaccard similarity score of 84% (Figure 3.1B). To visually compare the original 
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clustering results with the validation results, we further did MCA on 20% test set and 

coloured each data point (patients) using their original cluster membership as well as 

predicted cluster membership, which showed a huge overlap between the original clustering 

results with the validation results (Supplementary Figure 3.1). The overall high prediction 

accuracy of 97%, average Jaccard similarity score of 84% and MCA plot of 20% test set 

validate the existence of five multimorbid clusters in the UK biobank cohort. 

 

Figure 3.2 Multimorbid clusters: multiple component analysis (MCA) for Charlson's 

comorbidity classification of 77 524 patients with multimorbidity in UK Biobank. (A) MCA 

plot showing five different clusters. (B) Coordinates of variable categories in the two 

principal dimensions of MCA plot. Variance explained by MCA dimensions are mentioned 

under parenthesis. Variables far from x,y = 0,0 have been labelled. MI = myocardial 

infarction, CHF = congestive heart failure, PVD = peripheral vascular disease, DMcx = DM 

with chronic complications, TRUE = disease present, FALSE = disease absent. 

3.3.2 Exploratory data analysis on patients with multimorbidity 

A total of 77 524 multimorbid patients were seen in five stacked oblong clusters, when first 

two principal dimensions were plotted (Figure 3.2A). This contained 72.96% patients in 

cluster 1, 17.27% patients in cluster 2, 5.25% patients in cluster 3, 4.01% patients in cluster 

4 and 0.51% patients in cluster 5 (Figure 3.1B). Principal dimensions dictating the clustering 

of patients were seen to be dependent on existence of paralysis, stroke and dementia in 

patients (Figure 3.2B). Figure 3.3 shows basic demographic features underlying each of the 

disease clusters. A decreasing trend of the proportion of females was noted as we move from 

cluster 1 to 5 (Figure 3.3A). The life expectancy shows an increasing trend from cluster 1 to 
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5 (Figure 3.3B). Patients in cluster 2 to 5 are functionally not much active due to high number 

of stroke and paralysis. Cluster 5 has the highest life expectancy with patients having both 

paralysis and stroke and therefore might be bed-ridden leading to poor quality of life. Age is 

a major risk factor for dementia [31], and highest number of dementia cases was noted in 

cluster 5 (Figure 3.4A) which had the highest life expectancy (Figure 3.3B). An increasing 

trend towards multimorbidity signified by increase in CCI was noted as we move from cluster 

1 to cluster 5 (Figure 3.3C). Figure 3.3D shows the Index of Multiple Deprivation (IMD) as 

formalized by England for the patients in each cluster. The IMD scores for the first three 

clusters are similar, followed by an increasing trend, with the highest IMD for cluster 5. 
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Figure 3.3 Characterization of clusters based on demographic data. (A) Plot of gender 

distribution shows a decreasing proportion of females from cluster 1 to 5. Box plots of (B) 

age at death, (C) Charlson Comorbidity Index (CCI) and (D) Indices of Multiple Deprivation 

(IMD) show significant differences between clusters. IMD classification of England was 

used. 

 

Figure 3.4 (A) Prevalence of 17 broad disease classes as per Charlson’s comorbidity 

classification. (B) Heatmap showing the co-occurrence of 17 broad disease classes as per 

Charlson’s comorbidity classification. Order of disease from top to bottom and left to right 

are myocardial infarction (MI), congestive heart failure (CHF), peripheral vascular disease 

(PVD), stroke, dementia, pulmonary disease, rheumatic disease, peptic ulcer disease (PUD), 

mild liver disease (LiverMild), diabetes mellitus (DM), DM with chronic complications 

(DMcx), paralysis, renal disease, cancer, severe liver disease (LiverSevere), metastasis and 

HIV. Darker shade represents higher co-occurrence. 

Figure 3.4A shows a relatively smaller prevalence of diseases in cluster 1, which gradually 

increases in number of conditions as we move towards cluster 5. Out of all the Charlson’s 

broad disease classes, pulmonary disease has the maximum prevalence in cluster 1, as 

49.32% of patients have pulmonary disease, followed by diabetes mellitus (33.01%) and 

cancer (32.04%). Cluster 2 is majorly dominated by stroke (77.18%) followed by pulmonary 

disease (38.59%), diabetes mellitus (26.62%) and cancer (25.20%). Cluster 3 shows the 

dominance of 73.27% stroke, followed by dementia (35.55%) and paralysis (27.20%). 

Cluster 4 is dominated by paralysis (99.26%), followed by stroke (98.78%) and pulmonary 
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disease (27.76%). However, dementia in this cluster is negligible (only 2.31%). Finally, all 

the cluster 5 patients have both paralysis and stroke. Dementia is also one of the major 

diseases with 85.8% prevalence in cluster 5. Figure 3.4B shows a co-occurrence matrix for 

disease classes in each of the identified disease clusters. Cluster 4 has higher cases of patients 

having both stroke and paralysis, whereas cluster 5 showed co-occurrence of stroke, paralysis 

and dementia (Figure 3.4B). Since clusters 1 to 5 were majorly defined by paralysis, stroke 

and dementia, we went on first visually inspecting their presence in each cluster 

(Supplementary Figure 3.2). This was followed by investigation of the prevalence and co-

occurrence of their subclasses (Supplementary Figure 3.3). Hemiplegia (G81) in paralysis, 

cerebral infarction (I63), other cerebrovascular disease (I67), sequelae of cerebrovascular 

disease (I69) in stroke, vascular dementia (F01), unspecified dementia (F03) and delirium 

(F05) in dementia were found to be more prevalent (Supplementary Figure 3.3). 

3.3.3 Disease–disease interaction network 

Figure 3.5 shows a disease–disease interaction network that was obtained for each of the five 

identified disease endotypes of patients with multimorbidity. Cluster 1 clearly shows 

dominance of pulmonary disease (largest node) and its strong interaction (thick edges) with 

diabetes mellitus, cancer, renal disease, peripheral vascular disease, congestive heart failure 

and myocardial infarction. Unlike other clusters, in cluster 1 there is smaller prevalence of 

multiple diseases and general interaction (co-occurrence) between them. Cluster 2 is majorly 

containing the patients with stroke and showing strong interaction with pulmonary disease, 

diabetes mellitus and cancer. Like cluster 2, cluster 3 is also dominated by stroke, but unlike 

cluster 2 a strong interaction between stroke and dementia can be easily seen in cluster 3. In 

general, the interaction pattern of cluster 3 is very different from cluster 2 although both are 

driven by stroke. Cluster 4 and 5 show strong prevalence and interaction between paralysis 

and stroke. Finally, cluster 5 has a prominent triad of paralysis, stroke and dementia, showing 

their strong prevalence and interaction. 
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Figure 3.5 Disease–disease interaction network of 17 broad disease classes as per Charlson’s 

comorbidity classification. Node size is proportional to the disease prevalence and edge 

thickness is proportional to the disease co-occurrence. CHF = congestive heart failure, 

DM = diabetes mellitus, DMcx = DM with chronic complications, Mets = metastasis, 

MI = myocardial infarction, PUD = peptic ulcer disease, PVD = peripheral vascular disease. 

3.4 Discussion 

Research in the healthcare sector is mostly focused on individual long-term conditions in a 

structured and standardized way. The traditional approach of treating each disease 

individually puts the patients with multimorbidity under multiple treatments and often this 

brings its own issues as multiple medications (polypharmacy) can conflict and cause 

unwanted side effects. Furthermore, patients with multimorbidity are often excluded from 

clinical trials. As a result, medicines are developed and tested with a single disease focus. 

There has been recent consensus amongst clinicians and researchers that this trend may not 

be appropriate for a patient with multimorbidity. The elderly are the highest consumers of 

prescribed medications and over 50% of whom suffer from multimorbidity. This results in 

higher medication and undesirable sequelae. Further, patients have different demographics 

and diverse genetic makeup. Prescribing the same treatment to everyone adds to the burden 
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of higher medication and poor drug compliance. This is leading to an increased dissonance 

between the existing healthcare regimes and the need for the patients they serve. Healthcare 

should be more holistic and person-centred and hence there is a need to understand 

multimorbidity better and explore sophisticated, personalised diagnosis and treatments for 

the same. Otherwise, in future multimorbidity will become more challenging for clinicians, 

patients and the system. 

Multimorbidity needs to be managed more efficiently by general practitioners (GPs) or 

geriatricians in the primary care setting, as the specialists in secondary care tend to focus on 

only one index disease condition. Managing multimorbidity is tricky as there are so many 

diseases which require treatment together. The effectiveness of treating patients with 

multimorbidity should be assessed not just by disease specific indices but by indices such as 

quality of life, which includes not only symptoms and physical function but also mental 

health and longevity. National Institute for Health and Care Excellence (NICE) guidelines 

[32] have also provided suggestions for clinical assessments and management, wherein they 

are suggesting tailoring the approach to care. Further, they have also provided guidelines to 

assess the frailty of patients with multimorbidity. Although NICE guideline of tailoring care 

for multimorbid patient exists [32], there is little guidance available for managing patients 

with multimorbidity. This calls for the need to develop efficient and effective strategies for 

screening and stratifying patients with multimorbidity. Implementation of the analytical 

approach (MulMorPip) developed in our study suggests five endotypes of multimorbidity 

which can aid GPs in prioritizing treatment and better management of patients with 

multimorbidity. 

A robust individual becomes frail with age, leading to multimorbidity, which can further 

lead to disability. Although this simplification is generally true, they (frailty, multimorbidity 

and disability) may exist independently as well as have some intersections [33]. 

Multimorbidity may modify the health outcomes and lead to an increase disability or a 

decreased quality of life or frailty [34]. Cluster 1 patients do not have paralysis and very few 

have stroke, whereas all cluster 5 patients have both paralysis and stroke (Supplementary 

Figure 3.2), suggesting functional impairment to be a major cluster driving feature. An 

increasing trend in the cases of dementia (Figure 3.4A) was noted along with the increase in 

the life expectancy (Figure 3.3B). A high degree of multimorbidity in dementia patients was 
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noted in Cluster 5 (Figures 3.4B and 3.5), which was the oldest cohort. Recent research [35] 

shows the need for identifying modifiable risk factors and pathways common to 

multimorbidity that can aid in delaying the age-dependent deterioration in patients. The 

proportion of female participants in cluster 1 is highest (45%) compared to other four clusters 

where generally a decreasing trend was noted (Figure 3.3A). This is in line with the literature 

[36], which suggested that females have relatively lower risk for multimorbidity as the CCI 

increases from cluster 1 to cluster 5 (Figure 3.3C). Further the previous studies [36, 37] also 

suggest that people with low socioeconomic status are more likely to develop multimorbidity, 

which we confirmed with IMD - England (Figure 3.3D). This is because socioeconomic 

status is often related to eating habits and lifestyle [38]. 

An interesting pattern can be seen in cluster 3. Patients in this cluster majorly either have 

paralysis or both stroke and dementia (Supplementary Figure 3.2). Contrary to cluster 4 and 

5, cluster 3 patients never had stroke and paralysis together. In fact, stroke patients in cluster 

3 had dementia as the major comorbidity (Figure 3.5). While validating the clusters, the 

minimum Jaccard similarity of 60% was seen for cluster 3 (Figure 3.1B). Upon further 

investigation, we found that most of them were getting misclassified as cluster 2, probably 

due to a similar comorbidity pattern seen for cluster 2 and 3 (Figure 3.4B). However, stroke’s 

comorbidity with dementia can be seen as the major differentiating factor between the two. 

We confirmed the same by extracting all the cluster 3’s misclassified 305 patients as cluster 

2 (Supplementary Table 3.3). They all were found to have no dementia. Stroke can lead to 

dementia, specifically vascular dementia [39]. Since dementia was present in all five clusters, 

we investigated the prevalence and co-occurrence of subtypes of dementia (Supplementary 

Figure 3.3). Cluster 1 predominantly contained delirium (F05) and did not show any 

preferential comorbidity pattern with any other diseases. Cluster 2 and 3 which were 

predominated by stroke subtypes—cerebral infarction (I63) and other cerebral vascular 

disorders (I67)—showed different preferences in terms of their comorbidity pattern with 

dementia subtypes. While cluster 2 dementia subtypes did not show any preferential 

comorbidity pattern with any other diseases, cluster 3 dementia subtypes were mostly 

partnering with I63 and I67. Cluster 4 and 5 were predominated by stroke subtypes—I63, 

I67 and sequelae cerebrovascular disease (I69). However, while cluster 4 dementia subtypes 

did not show any preferential comorbidity pattern with any other diseases, cluster 5 dementia 

subtypes were mostly partnering with I63, I67 and I69. 
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Stroke most often leads to paralysis [40]. Further, the location of injury dictates the type of 

paralysis. A spinal cord stroke can lead to tetraplegia (quadriplegia) or paraplegia (ICD-10: 

G82), whereas a brain injury can lead to hemiplegia (ICD10: G81), i.e. left-side or right-side 

paralysis for right or left hemisphere injury [40]. Hemiplegia (G81) was the most prevalent 

type of paralysis in both clusters 4 and 5, and it was noted to be comorbid with both stroke 

and dementia in cluster 5, whereas in cluster 4 it was noted to be comorbid with only stroke 

(Supplementary Figure 3.3B). 

Multimorbidity involves a complex interaction between genetics, biobehavioural and 

socioenvironmental factors. Further, the absence of disease is linked to the balance of 

proinflammatory and anti-inflammatory activities that can vary across the time course [41]. 

For patients with multimorbidity, multiple chronic conditions often interact with each other. 

Thus, finding such interactions and/or associations can contribute to the integrative 

healthcare approach for patients with multimorbidity. We have characterized a disease–

disease interaction network (Figure 3.5) for each of the five subgroups or endotypes of 

patients with multimorbidity. These networks were dominated by interaction between stroke, 

paralysis and dementia. 

A recent study [42] worked on investigating the heterogeneity of diabetes and showed seven 

distinct clusters of the disease using only six variables. Such stratification of patients can 

help clinicians to better understand the disease subtypes, their progression and interaction 

with other diseases, and eventually inform a more personalised treatment pathway for each 

subtype. Our analytical approach (MulMorPip) is a step towards stratifying multimorbid 

patients into five endotypes using a very unbiased dataset of UK Biobank. We were further 

able to validate these endotypes of disease clusters using ML techniques. These endotypes 

may be considered by a specialist in secondary care, to stratify patients more efficiently for 

various treatments. For example, a paralysis specialist may want to classify their multimorbid 

patients into clusters 2 to 5 (Figure 3.4). These endotypes of patients might be at different 

stages of their disease progression and/or respond differently to different drugs as they are 

fundamentally different in terms of disease–disease interaction (Figure 3.5). Further, we also 

speculate that these endotypes might be related to risk of early onset and prognosis of certain 

diseases and thus can be helpful in stratification and prioritizing treatment for the high-risk 
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patients. In terms of future directions, further research is needed to investigate the onset of 

diseases, their progression and treatment response in these endotypes. 

Our study on multimorbidity is limited to the analysis of selected variables, namely disease 

diagnosis, gender, age and IMD. Future studies can extend on genomic, imaging, biochemical 

and other datasets present in the UK Biobank. Also, another limitation is that the UK Biobank 

cohort is heavily dominated by white ethnicity. Therefore, our results may not be 

generalisable to other ethnicities such as Asian, African or mixed, and thus would require 

independent validation studies in these cohorts. While our analytical approach (MulMorPip) 

shows a strong promise of a specific clinical application of patient stratification problem in 

the field of personalised medicine, it can be adapted and improvized for much wider 

applications in the field of bioinformatics. 
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4.1 Introduction 

Rheumatoid Arthritis (RA) is a chronic autoimmune condition characterised by relapsing 

joint pain, inflammation, and damage along with systemic effects and elevated morbidity. 

Without effective treatment, RA patients suffer greater risk of disability [1]. Initially, RA 

patients are treated with non-steroidal anti-inflammatory drugs and conventional disease 

modifying anti-rheumatic drugs (DMARDs). Patients, refractory to conventional DMARDs, 

are subsequently prescribed biologic DMARDs [2], among which anti-tumour necrosis factor 

(anti-TNF) therapies are common, which includes adalimumab, etanercept, infliximab, 

certolizumab or golimumab–a monoclonal anti-TNF antibody. However, not all patients 

respond well to anti-TNF therapy. Approximately 10–30% do not respond initially and 23–

46% lose the responsiveness over time [3]. A recent article suggests that at least 6% of RA 

patients on biologics suffer from a refractory condition of the disease [4]. This suggests the 

existence of molecular sub-classes within the broad disease class. These molecular sub-

classes are known as endotypes. Unlike phenotype which involves only observable 

characteristics, an endotype has direct relation with disease process as it involves 

inflammatory parameters and specific biological mechanisms. A recent paper from McInnes 

et al [5] advocates the need for clinically meaningful RA endotypes to stratify patients for 

therapeutics. 

Clinicians generally decide to prescribe anti-TNF therapy based on their disease severity, 

progression, and other comorbidities. Recent research suggests that the clinicians often 

switch between different treatments empirically because of a lack of suitable predictive tests 

[6]. A major downside of this approach is that for patients who remain unresponsive to 

attempted biologic treatments, inadequate suppression of ongoing disease activity elevates 

the risk of permanent joint damage and disability [7]. This argues for the need to develop a 

better prognostic model, that can predict a patient’s responsiveness towards the anti-TNF 

therapy. 

Furthermore, RA is known to affect at least 1% of the European population [8]. A recent 

epidemiological study has reviewed prevalence of RA in different countries of every 

continent and reports that the prevalence is still close to 1% in many European countries [9]. 

Additionally, biologic treatments remain relatively costly and continue to rank among the 

highest grossing drugs. Humira (adalimumab) for example, alone generated 20 billion US 
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dollars of revenue worldwide in 2018 [10]. A very recent study [11] has pointed out various 

hidden access barriers to biologic treatment in the European Union (EU). 

Thus, there is a strong clinical as well as health-economic need for more personalised 

prognostic models which can determine likelihood of response to anti-TNF therapy [12]. 

Several studies using different omics profiles have attempted to predict response to anti-TNF 

therapy [13]. Literature review shows that the researchers have identified serum proteomic 

biomarkers for response to anti-TNF therapy [14] including one based on autoantibody and 

cytokine profiles [15]. Biomarkers have also been found specific to infliximab drug response 

[16] and etanercept drug response [17]. Further differentiated responses have been noted for 

adalimumab and infliximab [18]. Also, clinical efficacy can be intensified with infliximab 

using therapeutic drug monitoring approaches [19]. Several multi-omics approaches have 

also been used to predict anti-TNF efficacy [20]. For example, an integrated multi-omics 

approach of previously known DNA, RNA, and protein biomarkers [21], and a more recent 

approach which combines transcriptomic and genomic analysis [22]. However, none of these 

studies have presented a robust scoring scheme/model for drug responsiveness that can help 

in decision making under a clinical setting; rather they relied on only p-values. 

We have strictly followed European League Against Rheumatism (EULAR) criteria for 

patient recruitment, as it is known to have good construct, criterion, and discriminatory 

validity [23]. Further, to stratify a patient’s potential response to treatment, a proteomic 

profile (which is highly variable) may better reflect current disease state than transcriptomic 

(variable) or genomic (constant) profiles. With the advent of new high-throughput 

proteomics technology such as multiplexed proximity extension assay (PEA), it is now 

possible to profile a patients’ plasma proteins with high accuracy and sensitivity [24]. This 

study was designed to identify a robust protein signature which can predict a patient’s 

response to anti-TNF therapy using a highly sensitive protein detection platform. This study 

investigates whether plausible endotypes with clinical relevance can be detected in the 

plasma proteome and if further stratification can predict future response to anti-TNF 

treatment. Machine Learning (ML) based algorithms, which have been widely exploited for 

prediction and/or classification problems in bioinformatics, were deployed to mine targeted 

proteome data. This could help clinicians to optimise treatment selection, reduce spend on 
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biologics in unresponsive patients and overall improve quality of life for non-responsive RA 

patients. 

4.2 Design and implementation 

4.2.1 Ethics statement 

Office for Research Ethics Committees Northern Ireland (ORECNI) (11/NI/0188), Ulster 

University Research Ethics Committee (UREC) (REC/11/0366), Belfast Health and Social 

Care Trust (11098AB-SS) and Western Health and Social Care Trust (WT/11/35) approvals 

were obtained for the study. All methods were performed in accordance with the relevant 

guidelines and regulations. Formal written informed consent was obtained for all participants 

in the study, allowing for publication of anonymised clinical data. 

4.2.2 Patient recruitment and selection criteria 

A total of one hundred and forty-four (N = 144) Rheumatoid arthritis (RA) patients who were 

unresponsive to conventional DMARDs and naïve to biologic DMARDs were recruited from 

rheumatology biologic clinics at Altnagelvin Hospital, Londonderry and Musgrave Park 

Hospital, Belfast, Northern Ireland. The study inclusion criteria were: i) RA patients fulfilling 

EULAR classification criteria [25,26], ii) about to receive anti-TNF treatment as part of 

routine clinical practice, iii) fulfil the BSR 2001 criteria for anti-TNF therapy [27], iv) had a 

DAS28 score of >5.1 when assessed for treatment (before baseline), and v) reached 6 months 

of follow-up. Patients who stopped anti-TNF temporarily during the first six months or 

discontinued therapy prior to the 6 months’ follow-up for reasons other than inefficacy were 

excluded. 

4.2.3 Sample collection and collation of clinical information 

The study was supported by a patient advisory group who met regularly throughout the study 

to advise on study design, recruitment literature and results dissemination. Eligible patients 

were invited by mailed patient information sheets, a minimum of 48 hours before a routine 

care appointment. Written informed consent was obtained and blood samples were collected 

prior to anti-TNF treatment. Blood samples were then processed to plasma by centrifugation, 

aliquoted and stored at -80°C until shipped to Olink Proteomics, Uppsala, Sweden for 
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proximity extension assay (PEA) analysis. Clinical and demographic information were 

collated from medical records and clinic databases. The disease activity score across 28 joints 

(DAS-28) based on erythrocyte sedimentation rate (ESR) was recorded at baseline and after 

six months of anti-TNF therapy. Patients were classified as responders and non-responders 

at six months as per British Society for Rheumatology (BSR) response criteria [28]. Further, 

a patient whose drug was changed from anti-TNF to a different class by clinicians were also 

classified as non-responders. Out of N = 144 patients recruited 55 were either lost to follow-

up or were given other biologic DMARDs (such as Tociluzimab, Ritiuximab, etc). The 

recruits lost were unable to make 6 months follow-up appointments, or complete composite 

data required to calculate DAS score were not available. 

4.2.4 Plasma protein profile 

Patients’ plasma samples were analysed by multiplexed PEA [29] provided by Olink 

Proteomics (https://www.olink.com). Following four Proseek Multiplex panels comprising 

92 proteins each were used for analyses: cardiovascular panels II and III, immune response 

panel and the inflammatory panel. Each panel was quantified by real-time PCR using the 

Fluidigm BioMark HD platform. In each panel run, 92 samples, 1 negative control and 3 

positive controls were analysed. Controls were used for determining the assay limit of 

detection (LoD) values as well as allowing normalization of measurements into ddCq (ΔΔCq: 

double delta quantification cycle in qPCR) values. The ddCq values are then log2-

transformed to promote normal distribution for subsequent analysis. Olink proteomics 

returned protein expression data in exponential scale called normalised protein expression 

(NPX), such that the real expression values are proportional to 2NPX. Each protein’s NPX 

values are relative quantification and hence they cannot be compared across different proteins 

[30]. Therefore, to obtain comparable results for all proteins [31] and as a pre-processing step 

for machine learning inputs, each of them is separately scaled into a standard normal 

distribution ~N(0, 1). A total of 352 proteins passed the initial quality control (QC) and were 

subsequently used for the statistical and machine learning based analysis. 

4.2.5 Statistical, computational and bioinformatics analyses 

All statistical and computational analyses were carried out in R v3.6.1 [32]. The t-test or chi-

square test (as appropriate) to check for statistical significance of demographic and clinical 

https://www.olink.com/
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features, and the principal component analysis (PCA) of Olink proteomics data, were 

performed in the base R package. Quality control (QC) of protein NPX datasets involved 

discarding protein values which were flagged with a QC warning (sample did not pass quality 

control for a given protein panel). Also, NPX values were removed if below the limit of 

detection (LoD) level for a given protein PEA, resulting in < 2% of missing values. Since 

missingness was very small, it was imputed using k-Nearest Neighbour (k-NN) method using 

the RANN package [33]. PCA result was validated with leave-one-out cross-validation 

(LOOCV) using sinkr package [34]. General ML pre- and post- processing methods were 

derived from caret [35] and e1071 package [36]. Further, we deployed generalised linear 

models (GLMs), using the glmnet package [37], to create an intuitive mathematical 

formulation with a linear combination of protein expression values. Receiver operator 

characteristic (ROC) curves were obtained via pROC package [38]. Finally, Youden Index 

[39] was used to choose the best point in ROC curve to calculate thresholds for model score 

to obtain sensitivity and specificity values. Box plot and beeswarm plot were drawn using 

beanplot package [40] and beeswarm package [41] respectively, and gplots package [42] and 

ggrepel package [43] were used for presenting the results. The final model selection was done 

based on Area Under the ROC Curve (AUC) metric, which is the most preferred metric for 

the classification problems. Enrichment analysis and Protein-Protein Interaction (PPI) 

network analysis was performed using STRING database [44]. The Gene Ontology (GO) 

terms were summarised using REVIGO [45] with its default parameters and the PPI networks 

were visualised using Cytoscape [46], an open-source software commonly used for network-

based analysis. The Pearson’s correlation coefficient between the protein features was 

computed using stats namespace under base R package. This was followed by hierarchical 

clustering and plotting using the heatmaply package [47]. 

4.2.6 Feature selection with machine learning 

A total of 500 simulations were run by randomly splitting the dataset into 80%:20% and a 

GLM was learned on 80% training data and tested on 20% test data. If the GLM model had 

better than random performance (i.e., AUC > 0.5), the feature selected in the model was then 

appended to a feature list. Thus, the importance of a feature reflects its frequency in the 

feature list. For example, a frequency of 0.8 for a feature represents that the feature showed 

up in 80% of the 500 simulated models. It is worth mentioning here, that multiple proteomics 
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signature, having different feature set, are possible [48]. However, getting all the signatures 

and its performance can be computationally expensive due to large number of combinations 

possible. Therefore, we went with a deterministic approach of stepwise feature selection, by 

calculating feature importance (FI) as described above, using a fixed seed value of 200 for 

500 simulations. 

4.2.7 Machine learning based model development 

Our dataset involved 89 samples; hence we chose 5-fold double alias nested cross-validation 

(CV) for the development of the predictive model [49]. This CV scheme for testing ensures 

no bias in the selection of completely independent model-blind test-set [50]. Model 

evaluation was done first by having only gender and baseline DAS and then including protein 

features one-by-one as per the frequency obtained during feature selection in decreasing 

order. Mean AUC of training and test sets were measured after fitting a GLM, which was 

optimised for lambda hyperparameter by 10-fold CV within the training set. The GLM was 

an Elastic Net with alpha of 0.9, which implements regression with 90% LASSO and 10% 

Ridge regularization. The aim was to select non-correlated protein, which is achieved by 

LASSO regularization; a popular method used for feature selection. However, 10% of Ridge 

regularization was kept to overcome LASSO’s limitation to saturate with fewer features. The 

protein feature set having the highest test set AUC, without the decrease in training set AUC, 

was selected and the model performance was noted. Finally, with these protein features along 

with gender and baseline DAS, the model was trained on the whole data and the beta or 

regression coefficients were computed. 

4.2.8 ATRPred tool development 

An R-based package was developed for implementing the above-mentioned ML model with 

the help of devtools package [51]. An input file template along with sample input files of a 

responder as well as a non-responder are also included in the examples folder present within 

the package. The R function antiTNFresponse() reads the input and normalises the same with 

the internal 89 patient data to get comparable numbers for feature sets and finally scores the 

patient for response to the anti-TNF therapy. It then calculates the patient’s probability to 

respond anti-TNF treatment and predicts if the patient will be a responder or non-responder. 
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This tool is provided as an open-source GitHub repository at 

https://github.com/ShuklaLab/ATRPred. 

4.3 Results 

The main demographic and clinical features of the patients are shown in Table 4.1. Gender 

and DAS values at both baseline and 6 months, were found to be statistically significant (p < 

0.05) between responders and non-responders. The anti-TNF response rate of 67% in our 

study is almost identical to the 68% reported in a larger study [52]. However, neither this 

study [52] nor any other study has reported any gender difference as per the author’s 

knowledge. This deference might be due to gender selective confounders like smoking 

history for which unfortunately the data was not available. 

Table 4.1. Demographic and clinical features of rheumatoid arthritis patients. Gender 

and DAS values (both at baseline and 6 months) were found to be statistically significant 

between responders and non-responders. RF = Rheumatoid Factor, ACPA = Anti-

citrullinated protein/peptide antibody, Anti-CCP = Anti-cyclic citrullinated peptides, 

DMARD = Disease-modifying antirheumatic drugs and DAS28-ESR = Disease activity 

score with 28-joint counts and erythrocyte sedimentation rate. 

Cohort Characteristics Responders 

(N = 60) 

Non-

Responders 

(N = 29) 

Combine

d (N = 89) 

P-value 

Gender, female, n (%) 51 (85.0) 17 (58.6) 68 

(76.4) 

*0.006 

Age at baseline, mean (s.d.), 

years 

60.6 (11.8) 61.1 (10.3) 60.8 

(11.3) 

0.848 

Disease duration, mean (s.d.), 

years 

8.7 (7.9) 11.1 (10.8) 9.5 

(9.0) 

0.299 

RF Seropositivity, n (N)# 38 (48) 18 (25) 56 

(73) 

0.65 

ACPA/anti-CCP Seropositivity, 

n (N)# 

34 (42) 16 (23) 50 

(65) 

0.46 

https://github.com/ShuklaLab/ATRPred
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Concurrent conventional 

DMARD at baseline, n (%) 

55 (91.6) 26 (89.7) 81 

(91.0) 

- 

Concurrent conventional 

DMARD at 6 months, n (%) 

38 (63.3) 14 (48.3) 52 

(58.4) 

- 

Adalimumab, n (%) 40 (66.7) 12 (41.4) 52 

(58.4) 

- 

Etanercept, n (%) 17 (28.3) 12 (41.4) 29 

(32.6) 

- 

Infliximab, n (%) 0 (0.0) 1 (3.4) 1 

(1.1) 

- 

Certolizumab, n (%) 2 (3.3) 2 (6.9) 4 

(4.5) 

- 

Golimumab, n (%) 1 (1.7) 2 (6.9) 3 

(3.4) 

- 

DAS28-ESR at baseline, mean 

(s.d.) 

5.7 (1.2) 4.8 (1.4) 5.4 

(1.3) 

*0.006 

ΔDAS28-ESR at 6 months, mean 

(s.d.) 

-3.0 (1.1) -0.2 (1.1) -2.1 

(1.7) 

*4.8e-14 

*significant (p < 0.05) 

#where data was available 

4.3.1 Exploratory data analysis on plasma proteins 

Principal Component Analysis (PCA) for all n = 89 patients was performed to visualise 

potential endotypes based on plasma proteome profile. The elbow plot of first 30 PCs showed 

the drop of explained variance to less than 1% at PC 20 (Supplementary Figure 3.1A). 

Therefore, we carried out LOOCV of the first 20 PCs, which gave top 20, 6, and 4 PCs with 

minimum predicted sum of squares (PRESS) for naïve, approximate, and pseudoinverse 

approaches, respectively (Supplementary Figure 3.1B). Although the naïve approach has 

limitations [53], all three LOOCV approaches suggested that at least the first 4 PCs are 

important. The first two principal components (PC1 and PC2) did not show any segregation; 

however, the third principal component (PC3) was able to subdivide patients into two distinct 

clusters i.e., endotypes (Figure 4.1). The demographic and clinical features for each cluster 

are shown in Table 4.2. A statistically significant difference (p < 0.05) in baseline DAS and 

gender was noted between the two clusters. Age, disease duration and anti-TNF biologic 
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treatment response were not significantly different between the two clusters. The association 

between baseline DAS and gender within the clusters is illustrated in Figure 4.1. The plot 

indicates a relatively higher baseline DAS and a higher proportion of females in the cluster 

positioned in the upper/positive PC3 quadrant. It appears that the two endotypes clearly 

distinguish patients based on disease activity and are gender dependent. 

 

Figure 4.1 Principal component analysis (PCA) plot of rheumatoid arthritis patients (n = 89) 

using 352 plasma protein Normalised Protein Expression (NPX) values reveals two 

molecular sub-classes or endotypes with respect to positive and negative third principal 

component (PC3) values. Endotype 1 is with PC3 values > 0 and endotype 2 is with PC3 

values < 0. Each data point represents a patient, where the size of the dot is proportional to 

the disease activity score (DAS) of the patient at baseline. 

 

Table 4.2. Demographic and clinical features of two molecular sub-class or endotypes 

presented in Figure 4.1. Gender and baseline DAS values were found to be statistically 

significant between the two endotypes. DAS28-ESR = Disease activity score with 28-joint 

counts and erythrocyte sedimentation rate. 
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Cohort Characteristics Endotype 1 

(N = 55) 

Endotype 2 

(N = 34) 

P-value 

Gender, female, n (%) 46 (83.6) 22 (64.7) *0.041 

Age at baseline, mean (s.d.), years 61.2 (11.1) 60.1 (11.8) 0.648 

Disease duration, mean (s.d.), years 10.1 (8.5) 8.5 (9.8) 0.480 

DAS28-ESR at baseline, mean (s.d.) 5.7 (1.1) 5.0 (1.4) *0.022 

ΔDAS28-ESR at 6 months, mean (s.d.) -2.3 (1.6) -1.9 (1.8) 0.248 

Responders, n (%) 38 (64.7) 22 (69.1) 0.668 

*significant (p < 0.05) 

4.3.2 Anti-TNF response feature selection and classifier 

A quick summary of the computational pipeline built for the discovery of plasma protein 

signature is presented in Figure 4.2A and the detailed ML analysis schema for model 

development is presented in Figure 4.2B; both are discussed in more detail in methods 

section. The feature set available for building the ML classifier includes demographic and 

clinical data (viz. gender, age, disease duration, baseline DAS (BLDAS) and ΔDAS at 6 

months) as well as 352 QC passed proteins’ normalised NPX values. Since gender and 

BLDAS were found to be statistically significant to response to anti-TNF therapy as per 

Table 4.1, these two features were also included in the signature formulation. 
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Figure 4.2 (A) Computational pipeline for the development of plasma protein signature. PEA 

= Protein Expression Analysis, LoD = Limit of Detection, QC = Quality Control, k-NN = k 

Nearest Neighbour, AUC = Area Under the Curve. (B) The Machine Learning (ML) schema. 

5-fold nested cross-validation (CV) followed for building the classifier for response to anti-

tumour necrosis factor (anti-TNF) treatment in rheumatoid arthritis (RA) patients. 

The Feature Importance (FI) of top 30 proteins, along with gender and BLDAS is shown in 

Figure 4.3A. The graph depicting mean AUC for training as well as test set for each stepwise 

addition of protein features up to 30 proteins is shown in Figure 4.3B. The threshold of 30 

proteins as features was decided after noting the gradual dip in the AUC values for test set 
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(Figure 4.3B). A set of 17 proteins gave the maximum mean AUC of 0.86 on test sets, without 

decreasing the training set AUC. The ROC curves for 5-fold training sets and test sets are 

shown in Figure 4.3C and 4.3D, respectively. The corresponding best point threshold on ROC 

curve gave a mean sensitivity of 0.75 and mean specificity of 0.86 on the test sets. The overall 

mean accuracy was 0.81 on the test set. Further, the mean Matthews correlation coefficient 

(MCC), popularly used and advocated to assess the quality of binary classification [54], was 

0.60, implying a good prediction for each class, viz. responders and non-responders. The 

summary of mean performance metrics is presented in Supplementary Table 4.1. The final 

model was trained on the whole dataset and mathematical formulation is presented in the 

next section. 
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Figure 4.3 (A) Feature importance of top 30 proteins along with significant demographic 

and clinical features, viz. gender and base line disease activity score (BLDAS). (B) Area 

Under the Curve (AUC) of training and test set vs. number of protein features. A set of 17 

proteins along with gender and BLDAS gave the maximum mean AUC of 0.86 on test set 

without decreasing the training set’s AUC. Receiver Operator Characteristics (ROC) for the 

5-fold cross-validation using gender, BLDAS, and 17 protein features of (C) training sets and 

corresponding (D) test sets. 

4.3.3 Plasma protein model for clinical decision making 

The final model was trained on the whole dataset and the beta coefficient of each feature 

obtained from the model was plotted against its feature importance (FI) obtained from the 

feature selection procedure and presented as Figure 4.4A. Table 5.3 summarises all the model 

features; gender, BLDAS and seventeen selected proteins along with their Uniprot and Entrez 

gene IDs, gene names, Feature Importance (FI) and Effect Sizes (ES) or regression/beta 

coefficients. Further the boxplot of calculated scores along with p-value for the patients is 

shown in Figure 4.4B. The model score (S) for each patient is given by: 

𝑆 =∑𝛽𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

 

Where, xi are model features, βi are corresponding effect sizes (or regression/beta 

coefficients) and b is the intercept (or bias). Finally, the patient’s response to anti-TNF can 

be binarised, i.e., 0 for NR and 1 for R, by choosing a threshold (t) and mapping the score to 

logistic function, which takes the output to a probability of response by patient, p ∈ [0,1] as 

per: 

𝑝 = 𝑙𝑜𝑔𝑖𝑡(𝑆 − 𝑡) =
1

1 + 𝑒−(𝑆−𝑡)
 

Where, ‘t’ is the best point threshold, which was found to be 0.7136 (Figure 4.4B). 
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Figure 4.4 (A) Effect sizes (ES) or beta coefficients of regression vs. feature importance, i.e. 

fraction of 500 models, the feature appeared. (B) Boxplot of model score of each patient. NR 

= Non-responder, R = Responder. (C) Protein-Protein Interaction (PPI) network obtained 

from STRING database for 17 featured proteins. The size of the cell depicts the degree of the 

node i.e. number of connection with the other proteins, whereas the edge thickness represents 

the STRING database’s interaction scores. ES = effect size, as presented in Table 4.3. (D) 

Pearson’s correlation coefficient plot of 17 feature proteins. The size of circle depicts the -

log10(p-value) of the correlation. 

 

Table 4.3 Plasma protein signature, along with gender and baseline DAS (BLDAS) for 

anti-TNF treatment response prediction. Feature Importance (FI) is defined as the fraction 

of models a feature appears in. Beta (β) Coefficients are the effect sizes of features obtained 

from the logistic regression analysis. DAS = Disease activity score. 
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Features Uniprot 

ID 

Entrez 

Gene 

ID 

Gene Name Olink Panel FI β 

Coeff. 

Intercept or bias, 

b 

- - - - - 3.800 

Baseline DAS 

(BLDAS) 

- - - - 0.2

1 

2.133 

Gender (M:1; 

F:0) 

- - - - 0.1

7 

0.116 

KRT19 P08727 3880 Keratin 19 IMMUNE 0.1

3 

-2.126 

HAOX1/HAO1 Q9UJM

8 

54363 Hydroxyacid 

oxidase 1 

CVD II 0.1

3 

-2.068 

CXCL1 P09341 2919 C-X-C motif 

chemokine 

ligand 1 

CVD II + 

INFLAM 

0.1

0 

0.421 

RARRES2 Q99969 5919 Retinoic acid 

receptor 

responder 2 

CVD III 0.1

0 

2.488 

FCRL6 Q6DN7

2 

343413 Fc receptor like 

6 

IMMUNE 0.1

0 

-2.595 

REN P00797 5972 Renin CVD II 0.1

0 

-0.960 

IL13 P35225 3596 Interleukin 13 INFLAM 0.0

9 

-0.651 

SPON1 Q9HCB

6 

10418 Spondin 1 CVD III 0.0

8 

2.557 

MMP-1/MMP1 P03956 4312 Matrix 

metallopeptidas

e 1 

INFLAM 0.0

8 

-0.830 

ARNT P27540 405 Aryl 

hydrocarbon 

receptor nuclear 

translocator 

IMMUNE 0.0

7 

-0.758 

TNFSF13B Q9Y275 10673 Tumor necrosis 

factor 

superfamily 

member 13b 

CVD III 0.0

7 

1.281 

PRKCQ Q04759 5588 Protein kinase C 

theta 

IMMUNE 0.0

7 

0.744 

TRAIL-

R2/TNFRSF10B 

O14763 8795 TNF receptor 

superfamily 

member 10b 

CVD II 0.0

7 

-0.421 

hOSCAR/OSCA

R 

Q8IYS5 126014 Osteoclast 

associated, 

immunoglobuli

n-like receptor 

CVD II 0.0

5 

2.661 
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MCP-2/CCL8 P80075 6355 C-C motif 

chemokine 

ligand 8 

INFLAM 0.0

5 

-0.243 

DPP10 Q8N608 57628 Dipeptidyl 

peptidase like 

10 

IMMUNE 0.0

5 

2.990 

GDNF P39905 2668 Glial cell 

derived 

neurotrophic 

factor 

INFLAM 0.0

5 

-2.574 

4.3.4 Enrichment analysis with Gene Ontology (GO) terms and KEGG pathways 

The 17 protein set, when tested for enrichment with Gene Ontology (GO) terms for 

Biological Process (BP) using STRING database, gave 72 significant (FDR < 0.05) hits as 

shown in Supplementary Table 4.2. These 72 GO BP terms along with its FDR, when 

summarised using REVIGO (Supplementary Table 4.3), were mostly involved with 

inflammatory response or its regulation (Supplementary Figure 4.2). The enrichment for GO 

terms for Molecular Function (MF) gave 8 significant (FDR < 0.05) hits (Supplementary 

Table 4.4), mostly corresponding to receptor binding. Furthermore, the enrichment for GO 

terms for Cellular Components (CC) gave 4 significant (FDR < 0.05) hits (Supplementary 

Table 4.5), mostly suggesting extracellular region as the location of proteins. Finally, the 

enrichment analysis for the KEGG pathway gave 6 significant (FDR < 0.05) hits as shown 

in Supplementary Table 4.6. These hits include, as expected, rheumatoid arthritis pathway. 

Further, it also included IL-17 signalling pathway as well as NF-kappa B signalling pathway, 

which are well known for their role in inflammatory response in case of rheumatoid arthritis 

[55,56], suggesting their pathological role in response to biologic DMARDs as well. It was 

also interesting to see Measles appearing in these hits. It was recently found through pathway 

and network analyses of Genome-Wide Association Studies (GWAS) that Measles truly 

contributes to rheumatoid arthritis [57]. 

4.3.5 Network analysis 

STRING database reports scores for Protein-Protein Interaction (PPI). These scores range 

from 0 for no evidence of interaction to 1 implying evidence of strong interaction. These 

scores are computed using different parameters such as co-expression, annotated pathways, 

neighbourhood, text mining, etc. We obtained the combined PPI scores of all combinations 
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of our feature proteins. The PPI network thus obtained, was then uploaded in Cytoscape for 

visualizing the graph in circular layout (Figure 4.4C). The size of the cell corresponds to the 

degree i.e., number of connections with the other proteins. We note that the cytokine IL13 

has the highest degree of connection in the network; connected to 10 other feature proteins 

(Figure 4.4C). This was closely followed by CXCL1 which was connected to 9 other feature 

proteins. Further, the edge thickness is proportional to the score from STRING database. 

Figure 4.4C shows thick edges connecting IL13, CXCL1, CCL8 (alias MCP-2) and MMP1, 

thus implying high interaction between them. Interestingly, all these proteins are present in 

the extracellular region (Supplementary Table 4.5) and except CCL8 all other proteins are 

involved in IL17 signalling pathway (Supplementary Table 4.6). Out of these four highly 

interactive proteins, only CXCL1 has positive effect size to response to treatment, whereas 

IL13, CCL8, and MMP1 have negative effect sizes (Table 4.3). Thus, a high expression of 

CXCL1 and low expression of IL13, CCL8, and MMP1 will lead to a better response to anti-

TNF treatment. Further, these four highly interacting proteins have smaller effect sizes 

compared to other proteins (Figure 4.4A), suggesting they are correlated due to their high 

PPI scores. We confirmed that indeed MMP1, MCP-2 (alias CCL8) and CXCL1 are 

significantly and highly correlated (Figure 4.4D). The elastic net regression distributes the 

weightage among the three proteins due to redundancy, as these variables have similar 

variations. On the contrary, less correlated features, even if they have low FI, have high effect 

sizes, since they have independent variation and can contribute more to anti-TNF treatment 

response prediction. 

4.4 Discussion 

Rheumatoid arthritis (RA) patients show different pathologies in terms of functional or 

biological mechanism, treatment response, etc. and hence can be considered as a broad 

disease class containing different disease entity or sub-class. Therefore, there is a need to 

further stratify patients based on their distinct functional or pathobiological mechanism, more 

commonly called as endotypes [58]. A recent review article [59], investigates such 

pathobiological endotypes in early RA (n = 85). They validated 2 proteins, 52 SNPs and 72 

gene expression biomarkers, that were predictive of changes in DAS28-CRP, identified from 

literature review. Out of the 72 transcript biomarkers, they independently replicated 8 

biomarkers (SORBS3, AKAP9, CYP4F12, MUSTN, CX3CR1, SLC2A3, C21orf58 and 
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TBC1D8). Further, the two protein candidates viz. sICAM1 and CXCL13 were also validated 

as predictors of anti-TNF response. They have also validated 2 SNPs (rs6028945 and 

rs73055646), that were significantly associated with anti-TNF response. Using 11 

biomarkers, this integrative approach showed an anti-TNF response predictability with an 

AUC of 0.815. 

The current study uncovered two distinct endotypes based on the expression profile of 352 

plasma proteins, which had significantly different gender proportions and baseline DAS 

(Figure 4.1 and Table 4.2). Since these endotypes were not significantly different in terms of 

their anti-TNF treatment response (Table 4.2), there is a possibility of the existence of two 

distinct RA disease endotypes, which may be important in other aspects of the disease 

management or other drug response. 

Gender is known to be significantly associated with plasma protein profile [60]. Further, 

DAS28 is also known to be correlated with plasma proteins such as IL37 [61] and CXCL10 

[62]. A significantly higher average ESR has been observed in females of age up to 75 years 

[63]. Considering the above literature, there is another possibility that the two endotypes 

uncovered in this study may be totally unrelated to RA. Hence, the clinicians may consider 

keeping a strict vigil on these endotypes, which may be helpful in better informed decision 

making. 

Anti-TNF therapy is also a part of treatment regimens followed in other inflammatory 

disorders like psoriatic arthritis and inflammatory bowel disease (IBD), which includes 

Crohn’s disease (CD) and ulcerative colitis (UC). Proteomic signature for response to anti-

TNF treatment in these disorders have also been studied. About 57 out of 107 targeted 

proteins were found to be predictive to anti-TNF treatment response with AUC of 0.76 in 

psoriatic arthritis [64]. In another study [65], 25 potential anti-TNF treatment predictive 

biomarkers based on significant differential expression between good and poor response 

were suggested out of 119 investigated proteins in psoriatic arthritis (n = 12). They further 

went on to investigate 4 out of the 25 proteins as the anti-TNF treatment predictive 

biomarkers, however, none of these 25 differentially expressed proteins have any intersection 

with our feature proteins. Another study [66] tried to stratify patients (n = 56) for prognosis 

or predicting response to anti-TNF therapy in IBD by identifying candidate proteomics 

biomarkers involved in therapeutic pathways. They suggested overall expression of defensin-
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5α and eosinophil cationic protein was related to responders (n = 25) and high expression of 

cathepsin, IL-12, IL17A and TNF was related to non-response (n = 31). Unfortunately, 

performance of anti-TNF treatment response prediction was not reported. With AUC of 0.86 

for a relatively bigger cohort (n = 89), our plasma protein signature for the prognosis of anti-

TNF therapy responsiveness in RA patients is different and its prediction performance is 

more accurate than of those described in the studies discussed above. 

A robust machine learning based bioinformatics study requires a complete independent test 

set from the cross-validation set for the evaluation of the predictive model. Conventionally, 

a single choice of independent test set is implemented, leading to possible biasness towards 

better performance of the predictive model. To mitigate this issue and being conscious of our 

limited sample size, we implemented a double or nested cross-validation based ML 

architecture (Figure 4.2B), which not only ensures an independent test set from the cross-

validation sets, but also removes the biasness from choosing the independent test set by 

averaging the performance for all possible choice of independent test sets. 

The feature importance (FI) for the proteins, obtained from the feature selection procedure, 

suggest the need for the feature to be included in the model. Further, the effect sizes or 

regression/beta coefficient, obtained from the model training, suggests the contribution of a 

particular feature protein has on the final score of the patient. However, FI and β-coefficient 

are not correlated (Figure 4.4A). This is due to the fact that some of the proteins are 

interacting with each other (Figure 4.4C) and therefore are correlated (Figure 4.4D). All the 

feature proteins having a lower β-coefficients are mostly correlated with each other and 

therefore the Elastic-Net regression analysis distributes their weightage due to redundancy. 

Proteins that can classify patients into responders and non-responders to anti-TNF drugs were 

filtered down to seventeen (Table 4.3). The model presented is a simple linear combination 

of gender, BLDAS, and plasma protein expression values that has been implemented to 

develop an R-based tool ATRPred. Further, the model was 5-fold cross-validated and the 

mean performance was reported, which although modest, is the highest till date as per the 

literature review presented and the author’s knowledge. 

In current clinical practice, RA patients who may not respond to conventional DMARDs 

are routinely administered anti-TNF therapy, without enough prior knowledge of potential 

for efficacy. Table 4.3 indicates that gender and BLDAS have the highest discriminatory 
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feature importance with respect to future response to anti-TNF therapy. These two features 

were also significantly different for treatment response to anti-TNF therapy (Table 4.1). It is 

common knowledge amongst clinicians that the response to biologics is greater when the 

ESR is higher. This knowledge is also advocated by NICE (National Institute for Health and 

Care Excellence) guidelines which recommends a cut-off of DAS28-ESR >5.1. The patients 

had all fulfilled the criteria (DAS28 >5.1) but at the time they started therapy their disease 

could have been going through a flare or a dip in disease activity. The former would clearly 

be expected to respond better, partly from the ‘regression to the mean’ trend. However, 

significance of female patients in general respond better to biologics than male patients have 

not been widely reported. Females are less likely to achieve remission with DAS28-ESR 

partly due to differences in the baseline ESR and the way the DAS28 is calculated [52]. 

Further, it is known that RA is more commonly found in women than men [67]. In line with 

this, most of the patients observed by the clinicians in our BioRA cohort were also females 

(Table 4.1). We have taken these two demographic and clinical features, viz. gender and 

BLDAS, as confounders and included in our signature summarised in Table 4.3. As per the 

model performance (Supplementary Table 4.1), we can note that the performance using just 

the gender and BLDAS has a test set 5-fold mean AUC of 0.57. A random model has an 

AUC 0.5, hence the clinical decision making using these two demographic and clinical 

features is only slightly better than random. However, inclusion of the 17 informative plasma 

proteins increased the test set 5-fold mean AUC to 0.86, resulting in about 51% increase in 

performance (Supplementary Table 4.1). Thus, our plasma protein signature may prove to be 

an advancement in the current clinical decision making and treatment regime of anti-TNF 

therapy for RA patients. 

Different genome wide association studies clearly implicate the central role of the immune 

system in RA. To further investigate the pathways defining the patients’ responsiveness and 

to understand the biological processes underlying the 17-protein signature, we went on to 

carry out enrichment analysis and network analysis. Well known rheumatoid arthritis related 

pathways such as IL-17 and NF-kappa B signalling pathway were found to be significantly 

enriched in this protein signature. Further, the clustering of significant GO BP terms for the 

17 featured protein set suggests that they mostly belong to either inflammatory response or 

its regulation (Supplementary Figure 4.2). However, our study was limited to the set of 

proteins obtained from four pre-selected Olink Proteomics’ panels; so, there is a possibility 



Chapter 4: ATRPred 

79 

of selection bias which would influence enrichment analysis. To get an unbiased pathway 

topology, we extracted a protein-protein interaction network that was built on pre-existing 

knowledge (Figure 4.4C). We identified four highly interacting proteins IL13, CXCL1, 

CCL8, and MMP1. IL13, CXCL1 and MMP1 are involved in IL-17 signalling pathway, and 

their signature in responders suggests a potential role of IL-17 signalling pathway in anti-

TNF response. Out of these proteins, only CXCL1 has positive effect size i.e., its higher 

baseline expression is indicative of future anti-TNF response. Further, CXCL1 is known to 

contribute to inflammation and present at higher levels during inflammatory flare [68]. Thus, 

a high pre-treatment CXCL1 expression may act as a sentinel of future good response 

towards anti-TNF treatment. 

We have identified two clusters (Figure 4.1 and Table 4.2) driven by plasma protein profile 

as plausible endotypes. Unfortunately, they do not correspond to anti-TNF therapy 

responsiveness, but they are still significantly different in terms of disease activity and 

gender, and thus possibly play an important role in patient management. For example, since 

these endotypes are independent of future treatment response, they may indicate pre-biologic 

treatment pathology sub-groups, which can be investigated in future studies. Further, we have 

built an ML based classifier ATRPred to predict anti-TNF treatment response of RA patients 

at earlier timepoint using seventeen proteins feature set along with gender and BLDAS. Our 

model was rigorously cross-validated and performance on model-blind test sets have been 

presented. We have provided this tool in the form of a R-based package on an open-source 

GitHub repository at https://github.com/ShuklaLab/ATRPred, which may aid clinicians in 

deciding about putting an RA patient under anti-TNF therapy. This will help in saving the 

treatment cost as well as preventing nonresponsive patients to go through refractory condition 

of the disease leading to poor quality of life. 
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5.1 Introduction 

In bioinformatics data analysis, sometimes we encounter a small sample size, for example in 

case of patient recruitment for rare diseases [1, 2]. However, the samples may frequently 

have a large number of features, such as those involving high throughput omics experiments 

[3]. Multiple features from such samples are often highly correlated, for example, due to their 

involvement in associated biological interactions, and hence multiple different combinations 

of the correlated features can perform similarly in predicting a given phenotype or outcome. 

This opens up a possibility of discovering multiple feature sets, that are equally good in 

predicting the phenotype. These multiple signatures, for example, can help in understanding 

the relationship between multiple combinations of biological features and phenotypes. They 

can also help in optimising the cost of biomarker panel development for diagnostic or 

prognostic applications, by providing more options of signatures with equally good 

predictive performance. A recent study [4, 5] reported a method to obtain unbiased features 

in such situations involving low sample size and high feature space. However, the authors 

did not explore the possibility of recursive search of all possible feature combinations as its 

complexity is of O(NN) making it exponentially computer intensive with the increase in 

features. Taking inspiration from Enroth et al. study [6], we have developed and implemented 

muSignAl algorithm in R, which recursively explores all feature combinations by 

systematically deleting the selected features one-by-one to facilitate the discovery of multiple 

signatures that exhibit similar predictive performance (Figure 5.1). 
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Figure 5.1 Flowchart presentation of the muSignAl algorithm. Oval shapes represent 

start/stop, circles represent in/out connectors, parallelogram boxes represent input/output, 

square boxes represent computation process, and rhombus box represent decision process. 

Signatures retrieved at each pass are presented in bold. The decision of whether the number 

of features is less than 2 will be taken at every input box. The feature selection box of the 

main algorithm on the left has been zoomed-out and presented on the right. k is the cut-off 

for the feature importance (FI) where FI is the proportion of models in which the feature has 

appeared. 

5.2 Algorithm development 

Initially, 80% (default value) of the data along with all the features is randomly selected and 

feature selection is performed using generalised linear models (GLMs) (Figure 5.1, right 

panel). This process is repeated 100 times (default value) and feature sets showing an area 

under the receiver operating characteristic curve (AUC) > 0.5 are selected, where > 0.5 

ensures better than a random selection. The proportion of models in which the feature has 

appeared is obtained as a measure of feature importance (FI). A threshold k = 0.9 (default 

value) is applied on the FI to select the first set of features and its predictive performance is 

calculated. In the next pass, features from this first feature set are removed one-by-one and 

the above process of feature selection is recursively repeated on the reduced feature set until 

the algorithm is left with only two features in each leaf at the bottom of the algorithm tree 

(Figure 5.1, left panel). All the feature sets along with their predictive performance are sent 

as an output of the function. Default values of all the parameters of the algorithm can be 

changed by the user. A sample evaluation case run with the final output is available in the 

example folder of the Github repository https://github.com/ShuklaLab/muSignAl, and have 

been presented and discussed later. 

We have used the least absolute shrinkage and selection operator (LASSO) for feature 

selection [7]. However, LASSO saturates with fewer features [8]. This was overcome by 

partly including Ridge regularisation, resulting in an Elastic Net model. We deployed GLMs 

to create an intuitive mathematical formulation with a linear combination of feature values. 

The GLM was an Elastic Net with alpha of 0.9, which implements regression with 90% 

LASSO and 10% Ridge regularization. The aim was to select non-correlated features, which 

https://github.com/ShuklaLab/muSignAl
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was achieved by LASSO regularization. The muSignAl algorithm is developed in an open-

source platform R version 3.6 [9]. The basic data pre-processing was done using the caret 

package [10]. The model was built using the glmnet package [8]. ROC was built using the 

pROC package [11]. The algorithm requires a dataframe of features and target variable. The 

R function muSignAl() reads the input data file along with feature space to search from and 

target variable. It then outputs multiple signatures along with their performances as a 

dataframe. The algorithm is provided as a tool on the open-source GitHub repository: 

https://github.com/ShuklaLab/muSignAl. 

5.3 Algorithm evaluation 

For the evaluation of muSignAl algorithm, we have taken the publicly available dataset from 

Brunner et al. study [12] which includes 77 patient samples and 91 protein features from 

Olink Proteomics (https://www.olink.com) CVD-II panel. Samples were grouped as a 

healthy cohort (n = 18) and an atopic dermatitis cohort (n = 59). We ran muSignAl() with a 

FI threshold of k = 0.9 on this dataset, which generated 1984 signatures as an output; out of 

which, 158 were unique. Figure 5.2 reports the AUC performance of these 158 signatures; 

out of which, 47 had greater than 0.95 AUC (Table 5.1). The AUC has been recommended 

to be used in preference to overall accuracy when evaluating machine learning (ML) 

algorithms [13, 14], which should equally apply when evaluating different multiple 

signatures. Other bioinformatics studies also report AUC as one of the major performance 

metrics when applying ML [15-17]. The above case run took 20.05 h on a PowerEdge 

R740XD server. However, since the muSignAl algorithm implements a recursive function, 

the computational run-time may vary depending on the dataset and computational resources. 

For example, if most of the feature variables present in the dataset are predictive (i.e., 

significantly associated with a phenotype), the algorithm will identify more signatures and 

hence will take longer. Similarly, if most of the feature variables present in the dataset are 

non-predictive, the algorithm will stop quickly. 

https://github.com/ShuklaLab/muSignAl
https://www.olink.com/
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Figure 5.2 AUC values of the first 158 unique signatures. The dotted line shows 0.95 cut-

off value for AUC. Forty-seven peaks above the dotted line are the 47 signatures presented 

in Table 5.1. 

Table 5.1 Selected signature proteins (feature sets) based on AUC > 0.95. 

Signature No. Signature proteins AUC 

2 IDUA, IL16, DECR1, SORT1, GT 0.98 

5 GT, IL16, PARP-1, STK4, SORT1 0.98 

6 IL16, STK4, PARP-1, SORT1 0.95 

9 STK4, GT, PARP-1, SCF, SORT1 0.98 

11 PARP-1, SORT1, STK4, GT 0.95 

14 IL16, PARP-1, GT, SORT1, GH 0.96 

15 IL16, GT, PARP-1, TIE2 0.96 

19 GT, NEMO, PARP-1, TIE2, IL-4RA, SORT1 0.96 

23 TIE2, GT, NEMO, PARP-1 0.95 

27 GT, NEMO, PARP-1, TIE2, IL-4RA 0.96 

28 IL16, PARP-1, GT, TIE2 0.96 

30 IL16, PARP-1, GT, SORT1, TIE2 0.98 

35 GT, IL16, PARP-1, SORT1, DCN 0.97 

36 IL16, PARP-1, SORT1, GT 0.95 

42 STK4, MMP-12, PARP-1, GT, SORT1 0.97 
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43 GT, PARP-1, STK4, SORT1 0.95 

44 GT, IL-4RA, NEMO, PARP-1, SORT1, TIE2 0.96 

47 MMP-12, PARP-1, GT, STK4, TIE2 0.96 

58 PARP-1, STK4, GT, MMP-12, SORT1 0.97 

59 GT, MMP-12, NEMO, PARP-1, TIE2 0.95 

61 GT, NEMO, PARP-1, TIE2 0.95 

64 GT, STK4, PARP-1, SORT1 0.95 

66 IL16, GT, PARP-1, SORT1 0.95 

70 GT, STK4, PARP-1, SCF, SORT1 0.98 

75 GT, PARP-1, SORT1, STK4 0.95 

84 DECR1, GT, IL16, PARP-1, SORT1 0.98 

85 DECR1, IL16, PARP-1, SORT1, GH 0.97 

88 DECR1, IL16, PARP-1, SORT1 0.97 

89 IL16, PARP-1, STK4, SORT1 0.95 

92 DECR1, MMP-12, PARP-1, SORT1, GT 0.96 

93 DECR1, IL16, GT, SORT1 0.98 

95 DECR1, IL16, PARP-1, GT 0.97 

108 IDUA, IL16, SORT1, GT 0.99 

115 IDUA, IL16, ADM, SORT1 0.98 

116 IDUA, IL16, SORT1, PARP-1 0.99 

118 IDUA, IL16, SORT1 0.98 

135 IDUA, IL16, ADM, DECR1, SORT1 0.98 

140 CCL17, ADM, DECR1, IL16, PARP-1 0.96 

141 CCL17, DECR1, SORT1, PARP-1 0.97 

142 DECR1, IL16, PARP-1, SORT1, GT 0.98 

143 CCL17, PARP-1, SORT1, IL16 0.96 

147 CCL17, DECR1, SORT1 0.96 

148 CCL17, IL16, SORT1, PARP-1, ADM 0.99 

150 CCL17, DECR1, ADM, PARP-1, SORT1 1.00 

151 CCL17, DECR1, PARP-1, SORT1 0.97 

155 CCL17, ADM, DECR1, SORT1 0.98 

157 CCL17, ADM, SORT1 0.97 
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Thus, muSignAl algorithm can discover multiple omic signatures with similar predictive 

performance. It will be useful in analysing multidimensional omic datasets, especially those 

with low sample sizes often encountered for example in studies of rare diseases. It will be 

applicable in various bioinformatics driven explorations, such as understanding the 

relationship between multiple combinations of biological features and phenotypes, and 

discovery and development of biomarker panels while providing the opportunity of 

optimising their development cost with the help of equally good multiple signatures. 
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6.1 The need for computational tools 

With the advent of many computational and bioinformatic tools, stratified healthcare and 

personalised medicine has been growing very rapidly [1]. However, a lot of research 

questions are yet to be addressed. In the current era of multi-omics, machine learning (ML) 

is extensively used for the analyses of data [2]. We have tried to apply various ML techniques, 

specifically tailored on patient data, to identify various endotypes or biomarkers, that can be 

helpful in terms of better patient management and/or tailoring their treatment as per their 

needs. The pipelines that we have developed can be applied to patients recruited for other 

disease conditions as well. 

In Chapter 3, we identified five endotypes of multimorbid patients, using an unsupervised 

ML approach (MulMorPip). This computational tool has a relevance in the development of 

stratified healthcare for patients with multimorbidity. Each of these endotypes can be 

different in terms of their phenotype such as response to treatment, morbidity risk, etc. 

Therefore, it can potentially help in better optimisation of these phenotypes. For example, a 

GP in the public healthcare sector could prioritise treatment if he finds these endotypes to be 

related to morbidity risk.  This would additionally necessitate the incorporation of existing 

and enhanced medication use review tools.   

In Chapter 4, we identified two endotypes of rheumatoid arthritis (RA), using an 

unsupervised ML approach, however these endotypes were not significantly different in 

terms of their response to anti-TNF treatment and hence, we went on to identify a proteomic 

based prognostic test (ATRPred) for response to anti-TNF treatment in RA patients, using a 

supervised ML approach. This computational tool has relevance in the development of 

personalised treatment for RA patients. More specifically, it can help in saving non-

responsive patients from refractory conditions and thereby improve their quality of life. In 

terms of potential clinical implementation, a consultant rheumatologist could use ATRPred 

as a prognostic test, before putting their patients into anti-TNF therapy  

Chapter 5 provides a computational tool (muSignAl) to identify multiple signatures which 

have similar predictive power for a phenotype. This tool is most effective and has a relevance 

in high dimensionality data, where we are likely to find many correlated or similar variables, 

making them redundant to one another. With the advent of high throughput technologies, we 
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see a flood of such datasets, especially in the omics field. If multiple signatures are available, 

for example, then a user can find a signature based on the variables that are being measured 

or cost effective. 

Thus, the computational tools developed within the scope of this thesis are highly relevant 

to stratified healthcare and personalised medicine and thus may have clinical utility. These 

pipelines were developed using various ML approaches, that were tailored to the patient 

dataset. These pipelines are available as GitHub open access repositories for clinical or any 

further research and development. 

6.2 Summary and key findings 

We have summarised our research chapters 3-5, along with their key findings below: 

6.2.1 Stratified healthcare in multimorbidity 

Multimorbidity generally refers to concurrent occurrence of multiple chronic conditions. 

These patients are inherently at high risk and often lead a poor quality of life due to delayed 

treatments. With the emergence of personalised medicine and stratified healthcare, there is a 

need to stratify patients right at the primary care setting. Here we developed multimorbidity 

analysis pipeline (MulMorPip), which can stratify patients into multimorbid subgroups or 

endotypes based on their lifetime disease diagnosis and characterize them based on 

demographic features and underlying disease-disease interaction networks. By implementing 

MulMorPip on UK Biobank cohort, we report five distinct molecular subclasses or endotypes 

of multimorbidity. For each patient, we calculated the existence of broad disease classes 

defined by Charlson's comorbidity classification using the International Classification of 

Diseases-10 encoding. We then applied multiple correspondence analysis in 77 524 patients 

from UK Biobank, who had multimorbidity of more than one disease, which resulted in five 

multimorbid clusters. We further validated these clusters using machine learning and were 

able to classify 20% model-blind test set patients with an accuracy of 97% and an average 

Jaccard similarity of 84%. This was followed by demographic characterization and 

development of interlinking disease network for each cluster to understand disease-disease 

interactions. Our identified five endotypes of multimorbidity draw attention to dementia, 

stroke and paralysis as important drivers of multimorbidity stratification. Inclusion of such 
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patient stratification at the primary care setting can help general practitioners to better 

observe patients' multiple chronic conditions, their risk stratification and personalization of 

treatment strategies. 

6.2.2 Personalised medicine in RA 

Rheumatoid arthritis (RA) is a chronic autoimmune condition, characterised by joint pain, 

damage and disability, which can be addressed in a high proportion of patients by timely use 

of targeted biologic treatments. However, the patients, non-responsive to the treatments often 

suffer from refractoriness of the disease, leading to poor quality of life. Additionally, the 

biologic treatments are expensive. We obtained plasma samples from N = 144 participants 

with RA, who were about to commence anti-tumour necrosis factor (anti-TNF) therapy. 

These samples were sent to Olink Proteomics, Uppsala, Sweden, where proximity extension 

assays of 4 panels, containing 92 proteins each, were performed. A total of n = 89 samples 

of patients passed the quality control of anti-TNF treatment response data. The preliminary 

analysis of plasma protein expression values suggested that the RA population could be 

divided into two distinct molecular sub-groups (endotypes). However, these broad groups 

did not predict response to anti-TNF treatment, but were significantly different in terms of 

gender and their disease activity. We then labelled these patients as responders (n = 60) and 

non-responders (n = 29) based on the change in disease activity score (DAS) after 6 months 

of anti-TNF treatment and applied machine learning (ML) with a rigorous 5-fold nested 

cross-validation scheme to filter 17 proteins that were significantly associated with the 

treatment response. We have developed an ML based classifier ATRPred (anti-TNF 

treatment response predictor), which can predict anti-TNF treatment response in RA patients 

with 81% accuracy, 75% sensitivity and 86% specificity. ATRPred may aid clinicians to 

direct anti-TNF therapy to patients most likely to receive benefit, thus saving cost as well as 

preventing non-responsive patients from refractory consequences. ATRPred is implemented 

in R. 

6.2.3 Computational tool for multiple signature detection 

Multidimensional omic datasets often have correlated features leading to the possibility of 

discovering multiple biological signatures with similar predictive performance for a 

phenotype. However, their exploration is limited by low sample size and the exponential 
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nature of the combinatorial search leading to high computational cost. To address these 

issues, we have developed an algorithm muSignAl (multiple signature algorithm) which 

selects multiple signatures with similar predictive performance while systematically 

bypassing the requirement of exploring all the combinations of features. We demonstrated 

the workflow of this algorithm with an example of proteomics dataset. muSignAl is 

applicable in various bioinformatics-driven explorations, such as understanding the 

relationship between multiple biological feature sets and phenotypes, and discovery and 

development of biomarker panels while providing the opportunity of optimising their 

development cost with the help of equally good multiple signatures. Source code of 

muSignAl is freely available at https://github.com/ShuklaLab/muSignAl. 

6.3 Reasoning and critical review of ML models applied in the thesis 

One of the critical requirements to obtain unbiased results around performance of clusters or 

predictors developed by ML models is to have a totally independent model-blind set. 

However, due to the smaller dataset, frequently seen in medical/clinical studies, some of the 

transformations are often done of whole dataset, leading to the problem of information 

leakage and resulting in slightly inflated performance for the models. Some of these 

limitations, along with the rationale of different models developed in the thesis, are described 

in detail, below: 

6.3.1 Clusters of multimorbidity (MulMorPip) 

We applied various definition of multimorbidity indices viz. Charlson’s Comorbidity 

Classification (CCC), Cumulative Illness Rating Scale (CIRS), Index of Coexistent Disease 

(ICED) and Kaplan indices, however, a pattern segregating cohort into five clusters was seen 

with CCC and hence we went on to further investigate the reasons behind the clustering. 

Further, the parametric (Student’s t-test) and non-parametric test (Mann-Whitney U Test) of 

significance of demographic dataset were highly significant across clusters, even though the 

difference didn’t look very striking. This might be due to high sample size, which makes it 

significant even for a very low difference and hence we skipped these tests for significance 

in Chapter 3. 

https://github.com/ShuklaLab/muSignAl
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CCC categorised multimorbidity data of the UK Biobank into Boolean variables of 17 broad 

disease class, stating either existence or absence of the disease class. We, therefore, chose to 

apply decision tree classifier (DTC) models during the cluster validation analysis to better 

understand what decision tree goes to each of the 5 clusters. However, we didn’t try to 

optimise the model such as hyperparameter optimisation, as we thought accuracy was enough 

to suffice the validation of cluster. However, we did see Jaccard similarity of cluster 3 was 

as low as 60%, which we discussed due to narrow difference between cluster 2 and 3 and 

maybe they both belong to the same cluster. Hence, the hyper-parameter optimisation of 

model could have been resulted in better classification of clusters 2 and 3; and should be 

considered in future studies and thereby serves as a limitation to MulMorPip algorithm. 

Further, as the clusters were defined as per the multiple correspondence analysis (MCA) on 

the whole dataset, this raises a question of information leakage from training set to test set 

during the cluster validation analysis. Even if we separately define labels in training and test 

sets, a proper folded cross-validation would be necessary to ensure real performance of the 

predictors. Hence, this is the major limitation for the machine learning model created in 

MulMorPip. 

6.3.2 Endotypes of RA 

For investigating existence of endotypes of RA, we applied linear method viz. principal 

component analysis (PCA) on protein expressions of RA cohort. We didn’t see any patterns, 

while visualising first two principal components (PC1 & PC2), however, there was a clear 

split of data in terms of the third principal component (PC3). Upon investigation and 

literature review, we did find some biological significance in terms of gender and baseline 

disease activity for the clusters seen. This suggest that the variation in terms of these variables 

viz. gender and baseline disease activity, are not the major variation seen in the data but 

present in amongst the top 3 principal components. We could have further gone to try non-

linear methods like t-SNE and/or UMAP, which could have further separated these clusters, 

but linear methods themselves looked visually significant, that we chose to go with it.  
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6.3.3 Anti-TNF treatment response predictor (ATRPred) 

ATRPred deploys a logistic regression – a linear method for classification problems. The 

rationale behind using the linear method was to produce a model that is linear combination 

of predictive biomarkers, so that models could be visually understood and gives a handy 

experience for the clinicians. Many sophisticated ML models, such as gradient boosting, 

although are better in terms of their performance, they look like a black box to the clinicians. 

Further, for the calculation of feature importance, we used alpha at 0.90 for elastic net, as we 

were aware from our previous analysis that choice of 0.90, 0.95 or 0.99 doesn’t make much 

of a difference, and it is for bypassing LASSO’s limitation by including a bit of ridge 

regression. 

Our major aim in ATRPred was to identify an exhaustive list of biomarkers from the protein 

expression set. Therefore, we started with creating feature importance of each of the proteins. 

Finally, for building up the model, these proteins were inducted one-by-one and mean 

performances for training and test set were plotted side by side. This allowed the choice of a 

model, which doesn’t overfit – which a model normally does after having a lot of feature 

space. However, this procedure again can lead to information leakage problem, leading to 

inflated performance for the model. Due to the small dataset, we normalised whole protein 

expression (training and testing set) together, however, this also possesses problem of 

information leakage. Further, in the outer 5-fold nested cross-validation scheme in ATRPred, 

sensitivities of beta coefficient of biomarkers proteins could have been analysed, especially 

when fold-1 and fold-3 are showing low performances on the test set. 

One of the major biomarkers found in ATRPred, was CXCL1, which is a small chemokine, 

known to be involved in inflammation under the immune process. We could see it to be 

majorly interacting with all the other biomarkers, especially in conjunction with a strong 

interaction with IL13, which is another small inflammatory chemokine, but with negative 

effect size. Hence, high expression of CXCL1 and thereby low expression of IL13 can 

increase responsiveness to anti-TNF in RA patients. 
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6.3.4 Multiple signature prediction algorithm (muSignAl) 

Model-creation part of muSignAl applies methods similar to ATRPred, and hence the 

problem of information leakage in ATRPred as discussed in the previous section applies to 

muSignAl as well. We chose an AUC cut-off of 0.95 to list signatures with similar predictive 

performance, as we were able to achieve this accuracy for about hundred signatures. We 

checked muSignAl pipeline to produce ATRPred signature as first output and finally choose 

to apply it on independent dataset. However, we didn’t go on to understand the biological 

signification of results obtained on the independent dataset as our aim was to develop 

computational tool. 

Finally, although we have minimised the computationally intensive problem of searching 

the entire feature space, by a recursive search, it still can be further optimised. One of such 

alteration could be maintaining a hash table for all the signatures identified to minimise and 

inform the direction for signature search.  

6.4 Challenges and limitations 

There exists a lot of challenges in terms of quality control of the datasets [3]. Further, some 

of the datasets we used were quite small, especially in terms of sample sizes, however they 

had many features, making it a high dimensional dataset. This required us to produce the ML 

models, which are not biased, while taking care of overfitting of the models [4]. Some of the 

specific limitations of the research presented in the thesis are as follows: 

• In Chapter 3, we have used Charlson’s comorbidity classification (CCC) [5] to 

classify patients’ disease diagnosis, however, there exist more sophisticated ways to 

define multimorbidity [6]. During our initial analysis, we tried to cluster UK Biobank 

participants based on other classification, but the one that showed some pattern was 

CCC scheme. Further, broad disease classes defined and used by CCC are commonly 

used by clinicians. Furthermore, Charlson Comorbidity Index (CCI) is a weighted 

sum of a patient’s diseases, with higher value representing severity of multimorbidity. 

• Further, in Chapter 3, no hyperparameter optimization for the DTC model in 

MulMorPip was carried out. This could have resulted in better classification seen in 
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terms of clusters 2 and 3, and therefore should be considered in future extension of 

the research. 

• In Chapter 4, we did not have a very good sample size (n=89). Further, although we 

used nested CV schema for ensuring a model blind validation set, we do need a larger 

completely independent cohort to validate our results. This would also require 

independent validation in larger cohorts composed of different ethnic groups. 

Variation in the genomes is known to affect drug responses [7]. Further, allele 

frequencies of these genomic variations differ across the ethnicity in the world [8]. 

Hence, a drug which works for one ethnicity might not work for another due to 

genetic variation. For example, ethnic specific SNPs associated with 

pharmacogenetic cytochrome p450 genes are associated with drug response [9]. 

• Chapter 5 describes a recursive algorithm to search multiple signatures, which is 

comparatively less computationally intensive but still can be computationally 

expensive. For example, it can still take a lot of time if a lot of signature markers are 

present in the data. Hence, the algorithm is designed to output the signature as soon 

as found, so that a user can terminate at any point of time, as per their convenience. 

But this might result in outputting the same signatures by different recursive 

branches, which can be avoided with the use of hash table to maintain the calculated 

signatures. 

6.5 Future perspectives and directions 

Some of the specific improvements in the research presented in the thesis are as follows: 

• In Chapter 3, we can further narrow down the patients to one of the major 

inflammatory conditions like rheumatoid arthritis and try to find any disease-disease 

interactions with concordant as well as non-concordant disease conditions. This will 

give further insights towards the role of multimorbidity towards various aspects of 

index disease conditions, like treatment response. Further, we have only used 

demographics and disease diagnosis for the analyses, however various other variables 

present in the UK Biobank such as genomics, imaging, etc., can also be included to 

identify more patterns, which can be relevant. 
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• In Chapter 4, we could identify multiple signatures with similar predicting 

performance, using the algorithm developed in Chapter 5. Further, we can also 

include genomic data or polygenic risk scores (PRS) to increase the performance of 

ATRPred predictor. 

• We can further use the algorithm developed in Chapter 5 to predict multiple 

signatures with similar predicting power for different publicly available datasets as 

well as in-house PMC cohort. 

6.6 Conclusions 

This thesis presented significant work in the field of stratified healthcare and personalised 

medicine in different diseases using both supervised and unsupervised approaches in ML. 

We have tried to adapt the ML techniques to fit the best practices and performances 

accordingly. Finally, these methods can be extended to similar problem statements in 

different biological problems like other diseases and their treatment regimes. Some of the 

specific conclusions are: 

• There exists five endotypes of patients in multimorbidity (Chapter 3). 

• There exist two endotypes of RA patients that are dependent on gender and baseline 

DAS, however they are not different in anti-TNF therapy response. (Chapter 4). 

• Proteomic biomarkers can be predictive of anti-TNF treatment response in RA 

patients (Chapter 4). 

• Multiple signatures with similar predictive performance are possible in high 

dimensional dataset (Chapter 5). 

• Unsupervised ML algorithms can identify endotypes for stratified healthcare 

(Chapter 3 and 4). 

• Supervised ML algorithms can identify biomarkers for personalised medicine, that 

are predictive of a phenotype (Chapter 4 and 5). 
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Appendix I Supplementary data for Chapter 3 

Supplementary Table 3.1 Distribution of number of diseases vs. number of patients with 

multimorbidity in UK Biobank. Multimorbidity implies occurrence of 2 or more diseases. 

No. of diseases No. of patients 

2 44,778 

3 18,501 

4 8047 

5 3647 

6 1596 

7 675 

8 213 

9 51 

10 15 

13 1 

Total 77,524 

 

Supplementary Table 3.2 Demographics of multimorbid patient’s cohort in UK 

Biobank. Cohort is further presented based on cluster affiliation (rows) as per Figure 3.2, 

training-test split (columns) used in cluster validation as per Figure 3.1B, and overall cohort 

characteristics (last row). P = p-value of either 2-sample proportion test or 2-sample t-test, as 

appropriate. 
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Supplementary Table 3.3 Confusion matrix for cluster validation on 20% model-blind 

test set. Each cell represents number of patients. 

Cluster No. 

Predicted 

1 2 3 4 5 

 1 11235 14 0 0 0 

 2 97 2639 4 0 0 

Actual 3 0 305 473 4 0 

 4 0 10 5 625 4 

 5 0 0 0 15 74 
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Supplementary Figure 3.1 (A) The MCA plot of 20% test set, coloured by the original 

cluster numbers. (B) The MCA plot of 20% test set, coloured by the cluster numbers obtained 

from the DTC model. MCA = multiple correspondence analysis and DTC = decision tree 

classifier. 

 

 

Supplementary Figure 3.2 Multimorbid clusters: MCA for Charlson Comorbidity disease 

class of 77,524 patients with multimorbidity in UK Biobank. MCA plot showing 5 different 

multimorbid clusters labelled for the presence or absence of dementia, stroke, and 

paralysis. MCA = multiple correspondence analysis and DTC = decision tree classifier. 
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A 

 

B 

 

Supplementary Figure 3.3 (A) Prevalence of sub-classes of paralysis, stroke, and dementia. 

(B) Heatmap showing the co-occurrence of sub-classes of paralysis, stroke, and dementia. 

Order of disease from top to bottom and left to right are: G041, G114, G80, G81, G82, G83, 

G45, G46, H34, I60, I62, I63, I64, I65, I66, I67, I68, I69, F00, F01, F02, F03, F05, G30, and 

G31. Darker shade represents higher co-occurrence.

Paralysis                                                        Stroke                                                      Dementia

G041 Tropical spastic paraplegia

G114 Hereditary spastic paraplegia

G80 Infantile cerebral palsy
G81 Hemiplegia

G82 Paraplegia and tetraplegia

G83 Other paralytic syndromes

F00 Dementia in Alzheimer's disease

F01 Vascular dementia

F02 Dementia in other diseases classified elsewhere
F03 Unspecified dementia

F05 Delirium, not induced by alcohol and other psychoactive substances

G30 Alzheimer's disease

G31 Other degenerative diseases of nervous system, not elsewhere classified

G45 Transient cerebral ischaemic attacks and related syndromes

G46 Vascular syndromes of brain in cerebrovascular diseases

H34 Retinal vascular occlusions

I60 Subarachnoid haemorrhage

I61 Intracerebral haemorrhage

I62 Other nontraumatic intracranial haemorrhage

I63 Cerebral infarction

I64 Stroke, not specified as haemorrhage or infarction

I65 Occlusion and stenosis of precerebral arteries, not resulting in cerebral infarction

I66 Occlusion and stenosis of cerebral arteries, not resulting in cerebral infarction

I67 Other cerebrovascular diseases

I68 Cerebrovascular disorders in diseases classified elsewhere

I69 Sequelae of cerebrovascular disease

Supplementary Figure 3A
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Cluster 1                                                                               Cluster 2                                                                                       Cluster 3                            Cluster 4                                                               Cluster 5
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Appendix II Supplementary data for Chapter 4 

 

Supplementary Figure 4.1 (A) Elbow plot for first 30 Principal Components (PCs). Dotted 

line represents the cut-off of 1% explained variance, crossing between PC 19 and 20. (B) 

Predicted sum of squares (PRESS) vs. number of PCs for first 20 PCs. Solid dot represents 

minimum value of PRESS. 
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Supplementary Figure 4.2 TreeMap summary view of significant Gene Ontology (GO) 

Biological Process (BP) terms for the 17 featured protein set. Size of each rectangle 

represents log10 p-value of the GO terms. 

 

Supplementary Table 4.1 The ML classifier performance with 5-fold nested cross-

validation and the inclusion of protein features one-by-one with decreasing feature 

importance along with baseline DAS and gender information. The best model performance 

with 17 protein features along with baseline DAS and gender information is highlighted in 

grey. 

No. of 

proteins in 

the feature 

set 

5-fold Mean 

AUC 

5-fold Mean 

Accuracy 

5-fold Mean 

Sensitivity 

5-fold Mean 

Specificity 

5-fold Mean 

MCC 

Train Test Train Test Train Test Train Test Train Test 

0 0.59 0.57 0.61 0.5 0.51 0.36 0.65 0.59 0.17 -0.05 

1 0.68 0.58 0.67 0.54 0.66 0.48 0.68 0.58 0.32 0.06 

2 0.73 0.73 0.71 0.66 0.68 0.67 0.73 0.71 0.4 0.32 

3 0.83 0.77 0.79 0.68 0.81 0.69 0.78 0.69 0.56 0.35 

4 0.85 0.77 0.81 0.66 0.78 0.7 0.82 0.64 0.6 0.32 

5 0.87 0.77 0.82 0.7 0.81 0.67 0.82 0.72 0.62 0.4 

6 0.88 0.79 0.84 0.68 0.79 0.65 0.86 0.72 0.64 0.39 

7 0.89 0.86 0.88 0.75 0.77 0.59 0.94 0.85 0.73 0.51 

8 0.91 0.78 0.84 0.71 0.92 0.69 0.81 0.7 0.69 0.38 

9 0.91 0.8 0.86 0.71 0.84 0.63 0.87 0.76 0.7 0.39 

10 0.84 0.74 0.79 0.69 0.79 0.61 0.8 0.71 0.57 0.33 

11 0.93 0.79 0.88 0.73 0.86 0.62 0.89 0.8 0.75 0.43 

12 0.94 0.79 0.87 0.72 0.9 0.64 0.86 0.77 0.74 0.4 

13 0.93 0.73 0.88 0.7 0.89 0.57 0.87 0.76 0.74 0.32 

14 0.95 0.72 0.9 0.77 0.93 0.69 0.88 0.81 0.79 0.47 

15 0.95 0.75 0.89 0.67 0.93 0.66 0.86 0.68 0.77 0.31 
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16 0.96 0.73 0.9 0.65 0.9 0.51 0.9 0.72 0.79 0.22 

17 0.99 0.86 0.95 0.81 0.98 0.75 0.93 0.86 0.89 0.6 

18 0.99 0.81 0.97 0.75 0.98 0.66 0.96 0.8 0.93 0.44 

19 0.98 0.79 0.95 0.73 0.97 0.72 0.94 0.74 0.89 0.43 

20 1 0.86 0.98 0.78 0.99 0.65 0.97 0.83 0.95 0.51 

21 1 0.8 0.98 0.75 0.98 0.59 0.97 0.85 0.95 0.44 

22 0.99 0.81 0.97 0.75 0.97 0.58 0.96 0.86 0.93 0.47 

23 0.99 0.79 0.96 0.75 0.99 0.59 0.95 0.84 0.92 0.43 

24 1 0.83 1 0.78 1 0.53 1 0.84 0.99 0.45 

25 1 0.78 0.99 0.72 0.97 0.58 1 0.82 0.98 0.36 

26 0.99 0.86 0.98 0.74 0.98 0.5 0.98 0.85 0.96 0.37 

27 1 0.79 0.99 0.71 0.99 0.52 1 0.8 0.99 0.34 

28 1 0.77 1 0.73 1 0.43 1 0.86 1 0.34 

29 0.99 0.73 0.98 0.67 0.97 0.47 0.99 0.77 0.96 0.23 

30 1 0.74 0.99 0.71 1 0.57 0.99 0.8 0.98 0.38 

 

Supplementary Table 4.2 Enrichment analysis of Gene Ontology terms (Biological 

Process). 
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GO:00

02684 

positive 

regulation 

of immune 

system 

process 

7 882 0.79% 0.002

7 

ENSP0000026312

5,ENSP000003049

15,ENSP00000351

407,ENSP0000036

5048,ENSP000003

78118,ENSP00000
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ARNT,CCL8,CXC

L1,IL13,PRKCQ,
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regulation 
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8 1391 0.58% 0.003
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ENSP0000026312
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15,ENSP00000322
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CCL8,CXCL1,IL1
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GO:00
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cell surface 
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signaling 
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9 2198 0.41% 0.003
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ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

55124,ENSP00000

365048,ENSP0000

0378118,ENSP000

00379110,ENSP00

000479089 

CCL8,CXCL1,IL1

3,KRT19,MMP1,

OSCAR,PRKCQ,

TNFRSF10B,TNF

SF13B 

GO:00

40011 

locomotion 7 1144 0.61% 0.003

7 

ENSP0000026312

5,ENSP000002764

31,ENSP00000322

788,ENSP0000037

8118,ENSP000003

79110,ENSP00000

409007,ENSP0000

0418009 

CCL8,CXCL1,GD

NF,MMP1,PRKC

Q,RARRES2,TNF

RSF10B 

GO:00

42127 

regulation 

of cell 

population 
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8 1594 0.50% 0.003
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ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

65048,ENSP00000

378118,ENSP0000

0379110,ENSP000

00409007 

ARNT,CCL8,CXC

L1,GDNF,IL13,P

RKCQ,TNFRSF10

B,TNFSF13B 
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GO:00

48584 

positive 

regulation 

of response 

to stimulus 

9 2054 0.44% 0.003

7 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

65048,ENSP00000

378118,ENSP0000

0379110,ENSP000

00409007,ENSP00

000418009 

ARNT,CCL8,CXC

L1,GDNF,IL13,P

RKCQ,RARRES2,

TNFRSF10B,TNF

SF13B 

GO:00

70663 

regulation 

of 

leukocyte 

proliferatio

n 

4 213 1.88% 0.003

7 

ENSP0000026312

5,ENSP000003049

15,ENSP00000365

048,ENSP0000037

8118 

CCL8,IL13,PRKC

Q,TNFSF13B 

GO:00

70887 

cellular 

response to 

chemical 

stimulus 

10 2672 0.37% 0.003

7 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

351407,ENSP0000

0365048,ENSP000

00378118,ENSP00

000379110,ENSP0

0000409007 

ARNT,CCL8,CXC

L1,GDNF,IL13,M

MP1,PRKCQ,RE

N,TNFRSF10B,T

NFSF13B 

GO:00

16477 

cell 

migration 

6 812 0.74% 0.004

2 

ENSP0000026312

5,ENSP000002764

31,ENSP00000322

788,ENSP0000037

8118,ENSP000003

79110,ENSP00000

409007 

CCL8,CXCL1,GD

NF,MMP1,PRKC

Q,TNFRSF10B 

GO:00

02376 

immune 

system 

process 

9 2370 0.38% 0.004

3 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

65048,ENSP00000

378118,ENSP0000

0379110,ENSP000

00418009,ENSP00

000479089 

CCL8,CXCL1,IL1

3,MMP1,OSCAR,

PRKCQ,RARRES

2,TNFRSF10B,TN

FSF13B 

GO:00

06935 

chemotaxis 5 491 1.02% 0.004

3 

ENSP0000026312

5,ENSP000003781

18,ENSP00000379

110,ENSP0000040

9007,ENSP000004

18009 

CCL8,CXCL1,GD

NF,PRKCQ,RAR

RES2 
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GO:00

09605 

response to 

external 

stimulus 

8 1857 0.43% 0.004

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

78118,ENSP00000

379110,ENSP0000

0409007,ENSP000

00418009 

CCL8,CXCL1,GD

NF,IL13,PRKCQ,

RARRES2,REN,T

NFRSF10B 

GO:00

48583 

regulation 

of response 

to stimulus 

11 3882 0.28% 0.004

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

51407,ENSP00000

365048,ENSP0000

0378118,ENSP000

00379110,ENSP00

000409007,ENSP0

0000418009,ENSP

00000479089 

ARNT,CCL8,CXC

L1,GDNF,IL13,O

SCAR,PRKCQ,R

ARRES2,REN,TN

FRSF10B,TNFSF

13B 

GO:00

51707 

response to 

other 

organism 

6 835 0.72% 0.004

3 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000037

8118,ENSP000003

79110,ENSP00000

418009 

CCL8,CXCL1,IL1

3,RARRES2,REN,

TNFRSF10B 

GO:00

09617 

response to 

bacterium 

5 555 0.90% 0.004

4 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000037

9110,ENSP000004

18009 

CXCL1,IL13,RAR

RES2,REN,TNFR

SF10B 

GO:00

10469 

regulation 

of 

signaling 

receptor 

activity 

5 577 0.87% 0.004

8 

ENSP0000030491

5,ENSP000003650

48,ENSP00000378

118,ENSP0000037

9110,ENSP000004

09007 

CCL8,CXCL1,GD

NF,IL13,TNFSF13

B 

GO:00

32496 

response to 

lipopolysa

ccharide 

4 298 1.34% 0.004

8 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000037

9110 

CXCL1,IL13,REN

,TNFRSF10B 
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GO:00

42221 

response to 

chemical 

11 4153 0.26% 0.005

5 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

351407,ENSP0000

0365048,ENSP000

00378118,ENSP00

000379110,ENSP0

0000409007,ENSP

00000418009 

ARNT,CCL8,CXC

L1,GDNF,IL13,M

MP1,PRKCQ,RA

RRES2,REN,TNF

RSF10B,TNFSF13

B 

GO:00

02687 

positive 

regulation 

of 

leukocyte 

migration 

3 127 2.36% 0.006

6 

ENSP0000037811

8,ENSP000003791

10,ENSP00000418

009 

CCL8,CXCL1,RA

RRES2 

GO:00

06955 

immune 

response 

7 1560 0.45% 0.006

9 

ENSP0000027643

1,ENSP000003049

15,ENSP00000365

048,ENSP0000037

8118,ENSP000003

79110,ENSP00000

418009,ENSP0000

0479089 

CCL8,CXCL1,IL1

3,OSCAR,RARRE

S2,TNFRSF10B,T

NFSF13B 

GO:00

50671 

positive 

regulation 

of 

lymphocyt

e 

proliferatio

n 

3 130 2.31% 0.006

9 

ENSP0000026312

5,ENSP000003049

15,ENSP00000365

048 

IL13,PRKCQ,TNF

SF13B 

GO:00

19730 

antimicrob

ial humoral 

response 

3 143 2.10% 0.008 ENSP0000037811

8,ENSP000003791

10,ENSP00000418

009 

CCL8,CXCL1,RA

RRES2 

GO:00

51704 

multi-

organism 

process 

8 2222 0.36% 0.008 ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

55124,ENSP00000

378118,ENSP0000

0379110,ENSP000

00418009 

CCL8,CXCL1,IL1

3,KRT19,MMP1,

RARRES2,REN,T

NFRSF10B 
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GO:00

09966 

regulation 

of signal 

transductio

n 

9 3033 0.30% 0.011

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

51407,ENSP00000

365048,ENSP0000

0378118,ENSP000

00379110,ENSP00

000409007 

ARNT,CCL8,CXC

L1,GDNF,IL13,P

RKCQ,REN,TNF

RSF10B,TNFSF13

B 

GO:00

48568 

embryonic 

organ 

developme

nt 

4 417 0.96% 0.011

5 

ENSP0000035140

7,ENSP000003551

24,ENSP00000409

007,ENSP0000041

8009 

ARNT,GDNF,KR

T19,RARRES2 

GO:00

07165 

signal 

transductio

n 

11 4738 0.23% 0.012

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

355124,ENSP0000

0365048,ENSP000

00378118,ENSP00

000379110,ENSP0

0000409007,ENSP

00000479089 

CCL8,CXCL1,GD

NF,IL13,KRT19,

MMP1,OSCAR,P

RKCQ,REN,TNF

RSF10B,TNFSF13

B 

GO:00

50896 

response to 

stimulus 

14 7824 0.18% 0.012

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

351407,ENSP0000

0355124,ENSP000

00365048,ENSP00

000368066,ENSP0

0000378118,ENSP

00000379110,ENS

P00000409007,EN

SP00000418009,E

NSP00000479089 

ARNT,CCL8,CXC

L1,GDNF,HAO1,I

L13,KRT19,MMP

1,OSCAR,PRKCQ

,RARRES2,REN,

TNFRSF10B,TNF

SF13B 

GO:00

60326 

cell 

chemotaxis 

3 183 1.64% 0.013

1 

ENSP0000026312

5,ENSP000003781

18,ENSP00000379

110 

CCL8,CXCL1,PR

KCQ 

GO:00

30890 

positive 

regulation 

of B cell 

proliferatio

n 

2 42 4.76% 0.015

8 

ENSP0000030491

5,ENSP000003650

48 

IL13,TNFSF13B 
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GO:00

71356 

cellular 

response to 

tumor 

necrosis 

factor 

3 197 1.52% 0.015

8 

ENSP0000027643

1,ENSP000003650

48,ENSP00000378

118 

CCL8,TNFRSF10

B,TNFSF13B 

GO:00

06950 

response to 

stress 

9 3267 0.28% 0.016 ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

51407,ENSP00000

368066,ENSP0000

0378118,ENSP000

00379110,ENSP00

000418009 

ARNT,CCL8,CXC

L1,HAO1,IL13,PR

KCQ,RARRES2,R

EN,TNFRSF10B 

GO:00

08284 

positive 

regulation 

of cell 

population 

proliferatio

n 

5 878 0.57% 0.016

3 

ENSP0000026312

5,ENSP000003049

15,ENSP00000351

407,ENSP0000036

5048,ENSP000004

09007 

ARNT,GDNF,IL1

3,PRKCQ,TNFSF

13B 

GO:00

71622 

regulation 

of 

granulocyt

e 

chemotaxis 

2 47 4.26% 0.016

9 

ENSP0000037911

0,ENSP000004180

09 

CXCL1,RARRES

2 

GO:00

32940 

secretion 

by cell 

5 959 0.52% 0.020

6 

ENSP0000036504

8,ENSP000003781

18,ENSP00000379

110,ENSP0000041

8009,ENSP000004

79089 

CCL8,CXCL1,OS

CAR,RARRES2,T

NFSF13B 

GO:00

42325 

regulation 

of 

phosphoryl

ation 

6 1465 0.41% 0.020

6 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

78118,ENSP00000

418009 

ARNT,CCL8,IL13

,RARRES2,REN,

TNFRSF10B 

GO:00

51179 

localizatio

n 

11 5233 0.21% 0.021

3 

ENSP0000026312

5,ENSP000002764

31,ENSP00000322

788,ENSP0000036

5048,ENSP000003

68066,ENSP00000

376855,ENSP0000

0378118,ENSP000

00379110,ENSP00

000409007,ENSP0

0000418009,ENSP

00000479089 

CCL8,CXCL1,DP

P10,GDNF,HAO1,

MMP1,OSCAR,P

RKCQ,RARRES2,

TNFRSF10B,TNF

SF13B 
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GO:00

51716 

cellular 

response to 

stimulus 

12 6212 0.19% 0.021

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

351407,ENSP0000

0355124,ENSP000

00365048,ENSP00

000378118,ENSP0

0000379110,ENSP

00000409007,ENS

P00000479089 

ARNT,CCL8,CXC

L1,GDNF,IL13,K

RT19,MMP1,OSC

AR,PRKCQ,REN,

TNFRSF10B,TNF

SF13B 

GO:00

42327 

positive 

regulation 

of 

phosphoryl

ation 

5 984 0.51% 0.021

4 

ENSP0000027643

1,ENSP000003049

15,ENSP00000351

407,ENSP0000037

8118,ENSP000004

18009 

ARNT,CCL8,IL13

,RARRES2,TNFR

SF10B 

GO:00

30858 

positive 

regulation 

of 

epithelial 

cell 

differentiat

ion 

2 59 3.39% 0.021

9 

ENSP0000030491

5,ENSP000004090

07 

GDNF,IL13 

GO:00

48518 

positive 

regulation 

of 

biological 

process 

11 5459 0.20% 0.026

4 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

51407,ENSP00000

365048,ENSP0000

0376855,ENSP000

00378118,ENSP00

000379110,ENSP0

0000409007,ENSP

00000418009 

ARNT,CCL8,CXC

L1,DPP10,GDNF,

IL13,MMP1,PRK

CQ,RARRES2,TN

FRSF10B,TNFSF

13B 

GO:00

51247 

positive 

regulation 

of protein 

metabolic 

process 

6 1587 0.38% 0.026

4 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

78118,ENSP00000

418009 

ARNT,CCL8,IL13

,PRKCQ,RARRES

2,TNFRSF10B 

GO:00

71310 

cellular 

response to 

organic 

substance 

7 2219 0.32% 0.026

4 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

65048,ENSP00000

CCL8,CXCL1,IL1

3,MMP1,REN,TN

FRSF10B,TNFSF

13B 
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378118,ENSP0000

0379110 

GO:19

00076 

regulation 

of cellular 

response to 

insulin 

stimulus 

2 72 2.78% 0.027

6 

ENSP0000026312

5,ENSP000004180

09 

PRKCQ,RARRES

2 

GO:00

50900 

leukocyte 

migration 

3 296 1.01% 0.029

4 

ENSP0000027643

1,ENSP000003227

88,ENSP00000378

118 

CCL8,MMP1,TNF

RSF10B 

GO:00

70098 

chemokine

-mediated 

signaling 

pathway 

2 75 2.67% 0.029

4 

ENSP0000037811

8,ENSP000003791

10 

CCL8,CXCL1 

GO:00

71260 

cellular 

response to 

mechanical 

stimulus 

2 78 2.56% 0.029

7 

ENSP0000027643

1,ENSP000003049

15 

IL13,TNFRSF10B 

GO:00

01701 

in utero 

embryonic 

developme

nt 

3 306 0.98% 0.030

5 

ENSP0000035140

7,ENSP000003551

24,ENSP00000418

009 

ARNT,KRT19,RA

RRES2 

GO:00

31401 

positive 

regulation 

of protein 

modificati

on process 

5 1149 0.44% 0.030

5 

ENSP0000027643

1,ENSP000003049

15,ENSP00000351

407,ENSP0000037

8118,ENSP000004

18009 

ARNT,CCL8,IL13

,RARRES2,TNFR

SF10B 

GO:00

33209 

tumor 

necrosis 

factor-

mediated 

signaling 

pathway 

2 81 2.47% 0.030

5 

ENSP0000027643

1,ENSP000003650

48 

TNFRSF10B,TNF

SF13B 

GO:00

01892 

embryonic 

placenta 

developme

nt 

2 86 2.33% 0.032

4 

ENSP0000035140

7,ENSP000003551

24 

ARNT,KRT19 
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GO:00

31399 

regulation 

of protein 

modificati

on process 

6 1747 0.34% 0.032

7 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

78118,ENSP00000

418009 

ARNT,CCL8,IL13

,RARRES2,REN,

TNFRSF10B 

GO:00

02824 

positive 

regulation 

of adaptive 

immune 

response 

based on 

somatic 

recombinat

ion of 

immune 

receptors 

built from 

immunogl

obulin 

superfamil

y domains 

2 89 2.25% 0.033

8 

ENSP0000026312

5,ENSP000003650

48 

PRKCQ,TNFSF13

B 

GO:00

31640 

killing of 

cells of 

other 

organism 

2 89 2.25% 0.033

8 

ENSP0000037811

8,ENSP000003791

10 

CCL8,CXCL1 

GO:00

01823 

mesonephr

os 

developme

nt 

2 91 2.20% 0.034

1 

ENSP0000027219

0,ENSP000004090

07 

GDNF,REN 

GO:00

02690 

positive 

regulation 

of 

leukocyte 

chemotaxis 

2 91 2.20% 0.034

1 

ENSP0000037911

0,ENSP000004180

09 

CXCL1,RARRES

2 

GO:00

42102 

positive 

regulation 

of T cell 

proliferatio

n 

2 92 2.17% 0.034

1 

ENSP0000026312

5,ENSP000003650

48 

PRKCQ,TNFSF13

B 

GO:00

44419 

interspecie

s 

interaction 

between 

organisms 

4 724 0.55% 0.034

4 

ENSP0000032278

8,ENSP000003551

24,ENSP00000378

118,ENSP0000037

9110 

CCL8,CXCL1,KR

T19,MMP1 
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GO:00

51341 

regulation 

of 

oxidoreduc

tase 

activity 

2 93 2.15% 0.034

4 

ENSP0000030491

5,ENSP000004090

07 

GDNF,IL13 

GO:00

48522 

positive 

regulation 

of cellular 

process 

10 4898 0.20% 0.034

8 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000032

2788,ENSP000003

51407,ENSP00000

365048,ENSP0000

0378118,ENSP000

00379110,ENSP00

000409007,ENSP0

0000418009 

ARNT,CCL8,CXC

L1,GDNF,IL13,M

MP1,PRKCQ,RA

RRES2,TNFRSF1

0B,TNFSF13B 

GO:00

32879 

regulation 

of 

localizatio

n 

7 2524 0.28% 0.038

9 

ENSP0000027219

0,ENSP000003049

15,ENSP00000376

855,ENSP0000037

8118,ENSP000003

79110,ENSP00000

409007,ENSP0000

0418009 

CCL8,CXCL1,DP

P10,GDNF,IL13,R

ARRES2,REN 

GO:20

01237 

negative 

regulation 

of extrinsic 

apoptotic 

signaling 

pathway 

2 104 1.92% 0.040

5 

ENSP0000027643

1,ENSP000004090

07 

GDNF,TNFRSF10

B 

GO:00

06887 

exocytosis 4 774 0.52% 0.041

6 

ENSP0000037811

8,ENSP000003791

10,ENSP00000418

009,ENSP0000047

9089 

CCL8,CXCL1,OS

CAR,RARRES2 

GO:00

51094 

positive 

regulation 

of 

developme

ntal 

process 

5 1286 0.39% 0.041

6 

ENSP0000030491

5,ENSP000003514

07,ENSP00000365

048,ENSP0000040

9007,ENSP000004

18009 

ARNT,GDNF,IL1

3,RARRES2,TNF

SF13B 

GO:00

61844 

antimicrob

ial humoral 

immune 

response 

mediated 

by 

antimicrob

ial peptide 

2 107 1.87% 0.041

6 

ENSP0000037811

8,ENSP000003791

10 

CCL8,CXCL1 
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GO:00

65009 

regulation 

of 

molecular 

function 

8 3322 0.24% 0.041

6 

ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915,ENSP0000036

5048,ENSP000003

76855,ENSP00000

378118,ENSP0000

0379110,ENSP000

00409007 

CCL8,CXCL1,DP

P10,GDNF,IL13,P

RKCQ,TNFRSF10

B,TNFSF13B 

GO:00

01819 

positive 

regulation 

of cytokine 

production 

3 390 0.77% 0.045

1 

ENSP0000026312

5,ENSP000003049

15,ENSP00000351

407 

ARNT,IL13,PRK

CQ 

GO:00

48608 

reproducti

ve 

structure 

developme

nt 

3 405 0.74% 0.048

3 

ENSP0000027219

0,ENSP000003514

07,ENSP00000355

124 

ARNT,KRT19,RE

N 

GO:00

51246 

regulation 

of protein 

metabolic 

process 

7 2668 0.26% 0.048

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

51407,ENSP00000

378118,ENSP0000

0418009 

ARNT,CCL8,IL13

,PRKCQ,RARRES

2,REN,TNFRSF10

B 

GO:00

01932 

regulation 

of protein 

phosphoryl

ation 

5 1370 0.36% 0.048

6 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000037

8118,ENSP000004

18009 

CCL8,IL13,RARR

ES2,REN,TNFRS

F10B 

GO:00

43085 

positive 

regulation 

of catalytic 

activity 

5 1381 0.36% 0.049

9 

ENSP0000026312

5,ENSP000002764

31,ENSP00000378

118,ENSP0000037

9110,ENSP000004

09007 

CCL8,CXCL1,GD

NF,PRKCQ,TNFR

SF10B 

 

Supplementary Table 4.3 REVIGO summary analysis of Gene Ontology terms (Biological 

Process). 

GO term ID Description Frequenc

y in 

database 

log10pvalu

e 

Uniquenes

s 

Dispensabilit

y 

Representativ

e 
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GO:0002376 immune 

system 

process 

0.60% -2.3665 0.972 0 immune 

system process 

GO:0002682 regulation of 

immune 

system 

process 

0.25% -2.4949 0.6 0 regulation of 

immune 

system process 

GO:0042127 regulation of 

cell 

proliferation 

0.31% -2.4318 0.654 0.225 regulation of 

immune 

system process 

GO:0048518 positive 

regulation of 

biological 

process 

1.74% -1.5784 0.714 0.281 regulation of 

immune 

system process 

GO:0043085 positive 

regulation of 

catalytic 

activity 

0.82% -1.3019 0.719 0.611 regulation of 

immune 

system process 

GO:0031640 killing of cells 

of other 

organism 

0.02% -1.4711 0.778 0.173 regulation of 

immune 

system process 

GO:0051341 regulation of 

oxidoreductas

e activity 

0.02% -1.4634 0.755 0.269 regulation of 

immune 

system process 

GO:0044419 interspecies 

interaction 

between 

organisms 

0.26% -1.4634 0.953 0.669 regulation of 

immune 

system process 

GO:0051246 regulation of 

protein 

metabolic 

process 

1.55% -1.3161 0.698 0.393 regulation of 

immune 

system process 

GO:0042325 regulation of 

phosphorylati

on 

0.47% -1.6861 0.686 0.243 regulation of 

immune 

system process 

GO:0065009 regulation of 

molecular 

function 

1.73% -1.3809 0.725 0.311 regulation of 

immune 

system process 

GO:0032879 regulation of 

localization 

0.73% -1.4101 0.702 0.295 regulation of 

immune 

system process 

GO:0006954 inflammatory 

response 

0.11% -2.6198 0.752 0 inflammatory 

response 
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GO:0070887 cellular 

response to 

chemical 

stimulus 

1.01% -2.4318 0.625 0.457 inflammatory 

response 

GO:2001237 negative 

regulation of 

extrinsic 

apoptotic 

signaling 

pathway 

0.02% -1.3925 0.562 0.638 inflammatory 

response 

GO:0051707 response to 

other 

organism 

0.30% -2.3665 0.651 0.352 inflammatory 

response 

GO:0071260 cellular 

response to 

mechanical 

stimulus 

0.01% -1.5272 0.707 0.566 inflammatory 

response 

GO:0001819 positive 

regulation of 

cytokine 

production 

0.07% -1.3458 0.568 0.629 inflammatory 

response 

GO:0009605 response to 

external 

stimulus 

1.37% -2.3665 0.702 0.42 inflammatory 

response 

GO:0010469 regulation of 

receptor 

activity 

0.03% -2.3188 0.563 0.649 inflammatory 

response 

GO:0048584 positive 

regulation of 

response to 

stimulus 

0.46% -2.4318 0.42 0.367 inflammatory 

response 

GO:0048583 regulation of 

response to 

stimulus 

1.12% -2.3665 0.561 0.402 inflammatory 

response 

GO:0006950 response to 

stress 

4.58% -1.7959 0.671 0.562 inflammatory 

response 

GO:0007166 cell surface 

receptor 

signaling 

pathway 

0.92% -2.4318 0.526 0.321 inflammatory 

response 

GO:0007165 signal 

transduction 

6.62% -1.9101 0.448 0.679 inflammatory 

response 

GO:0042221 response to 

chemical 

3.07% -2.2596 0.682 0.475 inflammatory 

response 
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GO:1900076 regulation of 

cellular 

response to 

insulin 

stimulus 

0.01% -1.5591 0.546 0.631 inflammatory 

response 

GO:0030858 positive 

regulation of 

epithelial cell 

differentiation 

0.01% -1.6596 0.592 0.549 inflammatory 

response 

GO:0019221 cytokine-

mediated 

signaling 

pathway 

0.09% -2.4685 0.499 0.583 inflammatory 

response 

GO:0016477 cell migration 0.29% -2.3768 0.781 0 cell migration 

GO:0032940 secretion by 

cell 

0.76% -1.6861 0.845 0.257 cell migration 

GO:0040011 locomotion 1.00% -2.4318 0.972 0 locomotion 

GO:0050896 response to 

stimulus 

12.21% -1.9101 0.975 0 response to 

stimulus 

GO:0051179 localization 18.50% -1.6716 0.977 0 localization 

GO:0051704 multi-

organism 

process 

0.75% -2.0969 0.972 0 multi-

organism 

process 

GO:0048568 embryonic 

organ 

development 

0.11% -1.9393 0.816 0.065 embryonic 

organ 

development 

GO:0001823 mesonephros 

development 

0.02% -1.4672 0.839 0.631 embryonic 

organ 

development 

 

Supplementary Table 4.4 Enrichment analysis of Gene Ontology terms (Molecular 

Function). 

GO 

term ID 

Term 

descriptio

n 

Observ

ed gene 

count 

Backgro

und 

gene 

count 

Percen

tage 

False 

discov

ery 

rate 

Matching 

proteins in your 

network (IDs) 

Matching proteins 

in your network 

(labels) 

GO:000

5102 

signaling 

receptor 

binding 

10 1513 0.66% 1.14E

-05 

ENSP0000027219

0,ENSP000003049

15,ENSP00000351

407,ENSP0000035

7086,ENSP000003

ARNT,CCL8,CXCL

1,FCRL6,GDNF,HA

O1,IL13,RARRES2,

REN,TNFSF13B 
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65048,ENSP00000

368066,ENSP0000

0378118,ENSP000

00379110,ENSP00

000409007,ENSP0

0000418009 

GO:000

5125 

cytokine 

activity 

4 216 1.85% 0.002 ENSP0000030491

5,ENSP000003650

48,ENSP00000378

118,ENSP0000037

9110 

CCL8,CXCL1,IL13,

TNFSF13B 

GO:000

5126 

cytokine 

receptor 

binding 

4 272 1.47% 0.002 ENSP0000030491

5,ENSP000003650

48,ENSP00000378

118,ENSP0000037

9110 

CCL8,CXCL1,IL13,

TNFSF13B 

GO:004

8018 

receptor 

ligand 

activity 

5 458 1.09% 0.002 ENSP0000030491

5,ENSP000003650

48,ENSP00000378

118,ENSP0000037

9110,ENSP000004

09007 

CCL8,CXCL1,GDN

F,IL13,TNFSF13B 

GO:000

8009 

chemokine 

activity 

2 48 4.17% 0.017

5 

ENSP0000037811

8,ENSP000003791

10 

CCL8,CXCL1 

GO:000

5515 

protein 

binding 

12 6605 0.18% 0.033

1 

ENSP0000027219

0,ENSP000002764

31,ENSP00000304

915,ENSP0000035

1407,ENSP000003

57086,ENSP00000

365048,ENSP0000

0368066,ENSP000

00376855,ENSP00

000378118,ENSP0

0000379110,ENSP

00000409007,ENS

P00000418009 

ARNT,CCL8,CXCL

1,DPP10,FCRL6,G

DNF,HAO1,IL13,R

ARRES2,REN,TNF

RSF10B,TNFSF13B 

GO:000

5488 

binding 16 11878 0.13% 0.034

3 

ENSP0000026312

5,ENSP000002721

90,ENSP00000276

431,ENSP0000030

4915,ENSP000003

22788,ENSP00000

351407,ENSP0000

0355124,ENSP000

00357086,ENSP00

000365048,ENSP0

0000368066,ENSP

00000376855,ENS

P00000378118,EN

SP00000379110,E

ARNT,CCL8,CXCL

1,DPP10,FCRL6,G

DNF,HAO1,IL13,K

RT19,MMP1,PRKC

Q,RARRES2,REN,S

PON1,TNFRSF10B,

TNFSF13B 
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NSP00000409007,

ENSP0000041800

9,ENSP000004602

36 

GO:009

8772 

molecular 

function 

regulator 

6 1793 0.33% 0.037

6 

ENSP0000030491

5,ENSP000003650

48,ENSP00000376

855,ENSP0000037

8118,ENSP000003

79110,ENSP00000

409007 

CCL8,CXCL1,DPP

10,GDNF,IL13,TNF

SF13B 

 

Supplementary Table 4.5 Enrichment analysis of Gene Ontology terms (Cellular 

Component). 

GO 

term ID 

Term 

descriptio

n 

Observe

d gene 

count 

Backgro

und 

gene 

count 

Percen

tage 

False 

discov

ery 

rate 

Matching proteins 

in your network 

(IDs) 

Matching proteins 

in your network 

(labels) 

GO:000

5576 

extracellul

ar region 

9 2505 0.36% 0.009

5 

ENSP0000027219

0,ENSP000003049

15,ENSP00000322

788,ENSP0000036

5048,ENSP000003

78118,ENSP00000

379110,ENSP0000

0409007,ENSP000

00418009,ENSP00

000479089 

CCL8,CXCL1,GD

NF,IL13,MMP1,O

SCAR,RARRES2,

REN,TNFSF13B 

GO:004

4421 

extracellul

ar region 

part 

7 1375 0.51% 0.009

5 

ENSP0000027219

0,ENSP000003049

15,ENSP00000322

788,ENSP0000036

5048,ENSP000003

78118,ENSP00000

379110,ENSP0000

0418009 

CCL8,CXCL1,IL1

3,MMP1,RARRES

2,REN,TNFSF13B 

GO:000

5615 

extracellul

ar space 

6 1134 0.53% 0.010

1 

ENSP0000027219

0,ENSP000003049

15,ENSP00000365

048,ENSP0000037

8118,ENSP000003

79110,ENSP00000

418009 

CCL8,CXCL1,IL1

3,RARRES2,REN,

TNFSF13B 

GO:190

4724 

tertiary 

granule 

lumen 

2 55 3.64% 0.030

5 

ENSP0000037911

0,ENSP000004790

89 

CXCL1,OSCAR 
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GO:003

5580 

specific 

granule 

lumen 

2 62 3.23% 0.030

8 

ENSP0000037911

0,ENSP000004790

89 

CXCL1,OSCAR 

GO:003

4774 

secretory 

granule 

lumen 

3 323 0.93% 0.048

4 

ENSP0000037911

0,ENSP000004180

09,ENSP00000479

089 

CXCL1,OSCAR,R

ARRES2 

 

Supplementary Table 4.6 Enrichment analysis of KEGG Pathways. 

GO 

term 

ID 

Term 

descripti

on 

Observ

ed 

gene 

count 

Backgr

ound 

gene 

count 

Percen

tage 

False 

discove

ry rate 

Matching proteins 

in your network 

(IDs) 

Matching proteins in 

your network (labels) 

hsa04

060 

Cytokine-

cytokine 

receptor 

interactio

n 

5 263 1.90% 0.0001

2 

ENSP0000027643

1,ENSP000003049

15,ENSP00000365

048,ENSP0000037

8118,ENSP000003

79110 

CCL8,CXCL1,IL13,TN

FRSF10B,TNFSF13B 

hsa04

657 

IL-17 

signaling 

pathway 

3 92 3.26% 0.0013 ENSP0000030491

5,ENSP000003227

88,ENSP00000379

110 

CXCL1,IL13,MMP1 

hsa05

323 

Rheumat

oid 

arthritis 

3 84 3.57% 0.0013 ENSP0000032278

8,ENSP000003650

48,ENSP00000379

110 

CXCL1,MMP1,TNFSF

13B 

hsa05

162 

Measles 3 133 2.26% 0.0024 ENSP0000026312

5,ENSP000002764

31,ENSP00000304

915 

IL13,PRKCQ,TNFRSF

10B 

hsa04

064 

NF-kappa 

B 

signaling 

pathway 

2 93 2.15% 0.0255 ENSP0000026312

5,ENSP000003650

48 

PRKCQ,TNFSF13B 

hsa04

658 

Th1 and 

Th2 cell 

differenti

ation 

2 88 2.27% 0.0255 ENSP0000026312

5,ENSP000003049

15 

IL13,PRKCQ 

 


