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Abstract 

Converging empirical evidence portrays epistasis (i.e., gene-gene interaction) as a 
ubiquitous property of genetic architectures and protagonist in complex trait variability. 
While researchers employ sophisticated technologies to detect epistasis, the scarcity of 
robust instances of detection in human populations is striking. To evaluate the empirical 
issues pertaining to epistatic detection, we analytically characterize the statistical 
detection problem and elucidate two candidate explanations. The first examines whether 
population-level manifestations of epistasis arising in nature are small; consequently, for 
sample-sizes employed in research, the power delivered by detectors may be 
disadvantageously small. The second considers whether gene-environmental association 
generates bias in estimates of genotypic values diminishing the power of detection. By 
simulation study, we adjudicate the merits of both explanations and the power to detect 
epistasis under four digenic architectures.  In agreement with both explanations, our 
findings implicate small epistatic effect-sizes and gene-environmental association as 
mechanisms that obscure the detection of epistasis.   

Keywords:  epistasis; gene-environment association; detection theory; omnibus F-test 
of interaction; quantitative genetics; simulation study 
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Glossary 

Additive Models Additive model: 𝑍!"= 𝑎! + 𝛽" (Cordell, 2002). Specified on 
either the penetrance scale 𝑝!" = 𝑎! + 𝛽" or a log-odds 

scale 𝑙𝑜𝑔 K #!"
$%#!"

L=𝑎! + 𝛽" (Cordell, 2002). SNP coding: 
AA=0, Aa=1, aa=2. 

Admixture and Migration Admixture and migration refer to gene flow between 
populations 

Attributes Attributes are typically genomic variants of interest to the 
researcher (typically SNPs). 

Batch Effects Batch effects refer to a difference between samples based 
on processing and measurement differences unrelated to 
biological variation during the experiment (e.g., 
laboratory conditions, the instruments used, and time of 
day). 

Bayes Factors Bayes Factors (BF) initially suggested by Laplace (1774; 
reprinted in 1986) are a criterion to compare a discrete set 
of models by the ratio of their respective marginal 
likelihood, reporting the probability of the data under 
each hypothesis, averaged over the uncertainty in the 
parameters. 
 

Bayes Theorem Bayes Theorem (Bayes and Price, 1763) is used to 
calculate conditional posterior probabilities based on 
both prior distributions of parameters and the observed 
data (Wei, Hemani, & Haley, 2014). In particular, the 
conditional posterior probability is the product of the 
likelihood function and prior probability of an event A, 
divided by the marginal likelihood of event B: 𝑃(𝐴|𝐵) =
&((|*)&(*)

&(()
 (Kaplan & Depoli, 2013). 

Bayesian Network Bayesian Networks are a directed acyclic graph, the 
structure of which represents the joint probability 
distribution and conditional independence of a set of 
random variables (Han et al., 2012). For epistatic 
detection, SNP markers are nodes with their probability 
distribution. A Markov property is encoded by the 
network based on the independence or conditional 
dependence of a node to its parent nodes.  Dependencies 
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between each node are graphically depicted as an edge or 
interaction. Herein, edges between nodes determine the 
structure of the graph. 

Bayesian Model 
Averaging  

Bayesian Model Averaging improves average predictive 
abilities by way of conditioning all probability 
distributions and derived probabilities on the average of 
all models (Madigan & Raftery,1994, as cited by Hoeting, 
Madigan, Raferty, & Volinsky, 1999). 

Cross-Validation 

 

Cross-validation is a method to evaluate model 
performance by partitioning a dataset into subsamples. 
The first subset is used to perform the analysis, and the 
second to test how well the analysis worked. Multiple 
rounds of cross-validation are employed with different 
partitions of the data. However, cross-validation may 
lead to issues in a model overfitting the current dataset. 
In such a case, the model may no longer be generalizable 
to future data sets (Cordell, 2009). 

Complex Traits Complex traits are thought to result from a small to a 
moderate number of common variants based on the 
assumption of the common disease common variant 
hypothesis (CDCV) (Zeigler, Konig, Thompson, 2008). 

Common Disease 
Common Variant 
Hypothesis (CDCV) 

The CDCV hypothesis suggests that common sequence 
differences (SNPs) may confer at least some of the genetic 
risk for common diseases, with multiple common genetic 
variants influencing multi-locus traits each with low 
penetrance or effect size (Bush & Moore, 2012). 

Curse of Dimensionality Characteristics of data sparsity. Herein the requirement 
for a large sample size n grows exponentially with test 
dimensionality. 

Direct Association 

 

Direct association in the context of GWAS occurs when 
the genetic marker is the casual locus of the phenotype. 
Indirect association occurs when the genetic marker is in 
linkage disequilibrium (LD) (i.e., associated) with the 
causal locus, and thus also has a degree of association 
with the disease. GWAS typically employs indirect 
association, assuming LD between variants of interest and 
the casual locus. 

Differential Bias Differential bias refers to variability in the process of 
assigning genotypes to subjects: 1) variations in the 
preparation of DNA samples across different laboratories 
or differences in well-plates before genotyping; 2) 
degeneration of arrays over time; and 3) subject-level 
variability due to differences in DNA concentration 
differences, variations during the hybridization process 
and probe affinities (see Zeigler, Konig, & Thompson 
(2008). 
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Dominance Disease 
Model 

In dominance disease models the dominant allele must be 
present at both loci (Zeigler et al., 2012). Consequently, 
only genotypes containing dominant alleles A and B are 
at risk (Neuman, Rice, 1992). Binary SNP coding of 
dominant models are as follows: AA=1, Aa + aa =0. 

Dirichlet Prior Dirichlet priors are a family of multivariate probability 

distributions, pdf:𝑓(𝑥$, … , 𝑥,; 𝛼$, … , 𝛼,) =
$

((𝜶)
∏
!.$

,
𝑥!
/!%$. In 

which 𝑎 is a concentration parameter vector of all real 
numbers. Dirichlet priors are commonly used as 
conjugate priors to Bernoulli and multinomial 
parameters, as they yield a Dirichlet posterior 
distribution. 

EM Algorithm The Expectation-Maximization (EM) algorithm is a two-
step algorithm designed to estimate maximum a-posterior 
point estimates (MAPs). The EM algorithm is an iterative 
method which consists of two steps: 1) E (e.g., creates a 
function for the expectation of the log-likelihood 
evaluated based on the current estimate of parameters); 
2) and M (e.g., maximization step which computes the 
parameters which maximize the expected log-likelihood).  
Herein, each step is repeated until convergence and the 
algorithm derives maximum a posteriori point estimates 
of the posterior mode, model coefficients, standard error, 
p-values, and AICs (Yi, Kaklamani, and Pasche, 2012). EM 
algorithms are used in hybrid methods to compare model fit 
(Yi, Kaklamani, and Pasche, 2012). 

Exhaustive Search 
Algorithms 

Exhaustive Search is optimization algorithms that aim to 
generate and check all candidate solutions (e.g., brute 
force and branch- bound algorithms, which respectively 
employ an exponential search tree, and node sorting and 
pruning). Generation of candidate solutions includes 
looping nearest-neighbor pairs, candidate packing, and 
permutations. Typically, the selection process is based upon 
the satisfaction of a particular statement. Algorithm issues 
include scalability for both storage, memory, and 
performance. 

Evolutionary Algorithms Evolutionary algorithms are optimization algorithms that 
build models designed to predict class membership (e.g., 
disease status) by generating a population of solutions 
evaluated by a fitness function. Model selection is based on 
those with the highest fitness (McKinney et al., 2006). 

Feature Selection The aims of feature selection or variable selection is to 
identify a subset of features relevant to 
predictor/outcome variables (conducted before 
modeling), to reduce over-fitting, improve accuracy, and 
reduce training time.  Feature selection methods include: 
1) wrapper algorithms which use a predictive model to 
score feature subsets and are used for model training and 
evaluation (e.g., stepwise regression, which is a greedy 
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algorithm that adds the best feature each iteration); 2) 
filter algorithms which score a feature subset on a proxy 
measure (e.g., PPMC, intra-class distance, pointwise 
mutual information); 3) embedded algorithms as a part of 
the model construction process (e.g., LASSO- where any 
non-zero regression coefficients following L1 penalty 
shrinking are ‘selected’). 

Fine Fitting Mapping Fine fitting mapping refers to the sequencing of all 
variants in an associated region. 

Gene Conversion Gene conversion occurs during meiosis when a short 
stretch of the copied chromosome is transferred to the 
other yielding two very closely spaced recombination 
events.  

Genetic Drift Genetic drift describes the generational change in 
gene and haplotype frequencies in a population of a 
finite number of offspring due to random sampling 
of gametes. Herein frequency changes are 
accentuated in small populations and the increased 
drift of small stable populations tends to increase LD 
as haplotypes are lost from the population (Ardlie, 
Kruglyak, & Seielstad, 2002).  

Genetic Marker Genetic markers include tag variants such as single-
nucleotide polymorphisms (SNPs).   

Genome Sequencing Genome sequencing for ~3 million nucleotide markers 
and other potential sources of genomic variation is 
conducted using high-throughput microarrays. 
Sequencing is the process in which the order of 
nucleotide sequence for a given DNA fragment is 
determined based upon thousands of unique nucleotide 
probe sequences designed to hybridize with a target 
nucleic acid molecule (Zeigler, Zonig, & Thompson, 
2008). The intensity of hybridization between a probe and 
the target in the sample is measured. The hybridization 
intensity is a function of DNA quality and affinity of 
hybridization (LaFramboise, Harrington, & Wier, 2006). 

Genetic Variant 

 

Genetic variants refer to changes in the nucleotide 
sequence due to mutations such as single nucleotide base 
pair change (bp) to rearrangement of large sections on a 
chromosome, loss of heterozygosity (LOH), and genomic 
copy number variants (CNV). CNVs refer to changes in 
‘expression levels’ of a particular protein associated with 
deletions and duplications of the segment of DNA~20 
kilo-bases in length.  
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Gini importance Gini importance or mean decrease impurity (MDI) is the 
average of a variables total decrease in node impurity 
(weighted by the probability of reaching a particular 
node), averaged over all trees in the ensemble (i.e., the 
higher the MDI, the higher the variable importance). Gini 
impurity is a metric regarding the probability of incorrect 
classification at a given node in a decision tree based on 
training data. 

  
Haplotype Haplotype refers to a combination of alleles (i.e., a 

sequence of nucleotides on a single homolog). A pair of 
haplotypes is a diplotype (i.e., one variant of all possible 
combinations of the haplotypes that exist in the 
population). 

Heuristic Search 
Algorithms 

Heuristic search algorithms are used in state-space search 
problems to find a single path or conditional structure 
like an acyclic graph (e.g., to map states a sequence of 
actions to optimize the solution quality) (Hasen & 
Zilberstein, 2001).  

Implicit Tests of 
Interaction 

According to Cordell (2009) there exist various 
association tests to detect epistasis: 1) tests of association - 
epistasis is defined as the positive association between 
two linkage signals (Li & Reich, 1999); 2) association with 
the potential for interaction (Cordell, 2009) – testing a 
saturated versus reduced model or the joint association; 
3) clustering, association rules, linear models, and tree-based 
classifiers to detect dependencies between attributes that 
improve model prediction (Cordell, 2009). 

Imputation Imputation methods used to account for missing variants 
include k-nearest neighbor, nonlinear iterative partial 
least-squares, Bayesian, and Least-squares methods to 
increase statistical power for detection and narrow down 
the distance between causal variants and candidate 
markers (see Rao, Sheperd, Bruno, Liu, and 
Miecznikowski, 2013; Wei, Hemani, & Haley, 2014). 

Iterative Search 
Algorithm (Greedy 
Search) 

The iterative improvement search technique is a greedy 
search algorithm that selects SNP combinations with 
maximum interactive effects. However, given SNPs are 
initially selected using a univariate test, these methods 
will not detect SNP interactions when the marginal 
effects of SNPs are weak or absent (Yoshida & Koike, 
2011).  

Linkage Analysis  A small number of variants are measured across several 
generations of a family to discern the associated patterns 
of inheritance. 



xviii 

Minor Allele Frequency 
(MAF) 

Markov-Chain Monte-
Carlo (MCMC) 

 

MAF is the occurrence of the minor allele across a 
population. Common SNPs have a MAF in at least 5% of 
a given population while rare SNPs have a MAF< 5% in a 
given population. 
MCMC is a sampler that traverses all potential models 
and parameter values. To do so, MCMC employs a 
Markov chain to sample from a targeted distribution of 
interest and Monte Carlo integration to approximate the 
expectation.  Recall that a Markov chain is a sequence of 
random variables 𝜃, 𝜃$, 𝜃0… such that 𝜃1 depends on 
𝜃1%$, and the general form of Monte Carlo integration for 
the expectation of the chain is as 
follows,∫ 𝑔(2 𝜃)𝑝(𝜃)𝑑(𝜃) ≅ $

3
∑ 𝑔(𝜃1)4
1.$ . Wherein 𝜃1 are 

samples from the prior distribution 𝑝(𝜃)	and 
approximates the expected value of the afore noted 
functions. Here, MCMC generates samples from a 
posterior density yielding approximate expectations for 
several quantities of interest. As such, MCMC sampling 
generates a large representative sample of credible 
parameter values from the conditional posterior 
distribution. The sample size or chain length is distinct 
from the sample of empirical data (Krushchke, 2013). As 
such, a longer MCMC chain indicates a higher resolution 
of the posterior distribution and its parameter values 
given the observable data. 

Markov Blanket Markov blanket of a variable T, (MB(T)), is as a minimal 
set for which (X ⊥ 𝑇|𝑀𝐵(𝑇), for all X ∈V −{T}− MB(T) 
where V is the variable set (Han, Park, & Chen, 2010). 

Naïve Bayes Classifiers Naive Bayes Classifiers are a family of classification 
algorithms that assumes the independence of each 
feature from the others given a class variable. As such, 
Naive Bayes is a function that assigns a class label, based 
on Bayes’s theorem and a decision rule. If one uses an 
event model there are several distributions used 
depending on the type of features (e.g., for discrete data - 
multi-nominal or binomial distribution. For continuous 
data - Gaussian distribution). 

Network Learning Based on information theory and probability theory, the 
mutual information (MI) between two random variables 
is a measure of mutual dependence, and MI is used as an 
association measure for feature selection algorithms (see 
Sun et al., 2017). 

Permutation Tests Permutation tests refer to the generation of the empirical 
distribution of a test-statistic by permuting the sample 
multiple times and re-calculating the value of the test 
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statistic in each dataset. Each permuted sample is 
considered to be a sample of the population under the 
null hypothesis (Cordell, 2009) 

Pleiotropy Pleiotropy is the phenomenon in which a genetic factor 
influences more than one phenotype. 

Recessive Genetic Models Quantitative trait variation of this sort is proposed to be 
due to the presence of two recessive alleles. SNP coding 
for recessive: AA+Aa=0, aa=1. 

Stochastic Search 
Algorithms 

Stochastic search algorithms employ randomized 
initialization search steps controlled by noise parameters 
and are typically more efficient than systematic search for 
combinatorial problems. 

Statistical Ranking 
Procedures 

Statistical ranking procedures are based on statistically 
significant single-marker tests. Common metrics for 
statistical significance used for single-locus tests include 
p-values, power for replication, false positives report 
probability (FPRP), and minimum p-value across test-
statistics for additive, recessive, and dominant genetic 
models (Zeigler, König, & Pahlke, 2010). 

Single Nucleotide 
Polymorphism (SNP) 

A single-nucleotide polymorphism (SNP) is a point 
mutation: 1) one base-pair (bp) for a particular locus 
differs across a population; 2) the variation is stable 
across generations; 3) correlated with nearby genomic 
variants; 4) occurring on average ~ 1 in every 300 bps. 
~90% of human variation is proposed to be due to 
missense single point mutations in the nucleic acid 
structure of a gene (which include short tandem repeats, 
substitutions, or additions of motifs, typically around 2-5 
bases). ~> 3 million SNPs within a genome. These 
permeant changes in the DNA sequence may occur 
spontaneously due to cell division or environmental 
agents (e.g., ionizing radiation, chemicals) within 
germline and somatic cells. Main mutation categories are: 
1) substitutions (exchange of base pairs); 2) insertions 
(extra base pair is added); 3) deletions (base pair is 
removed); 4) and frameshift (incorrect codon). Wherein 
the amino acid structure required for protein synthesis 
will be either: 1) changed but functionally different 
(missense); 2) functional (nonsense); 3) or unchanged and 
functional (silent). 

Single Association Tests Single association tests are partitioned based on trait-type 
and SNP coding:  1) disease traits: Cochrane Armitage 
trend test, logistic regression, odds-ratio, Fishers Exact 
tests; 2) quantitative traits: ANOVA, linear regression, t-
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test; 3) survival data - Cox proportional hazard 
regression (Zeigler, König, & Pahlke, 2010; Zeng et al., 
2015). 

Simpsons paradox The phenomena in which a spurious association or sign 
reversal occurs in the presence of a third variable.  

Supervised Learning 
Algorithm 

In supervised learning, the learning process is based 
upon the output variable, wherein the algorithm predicts 
the output variable given some input variables 
(McKinney et al., 2006). 

Unsupervised Learning 
Algorithm 

In unsupervised learning the output variable is 
unknown, and the goal of the algorithm is in pattern 
detection (McKinney et al., 2006) 

Quality Control (QC) Quality control techniques are measures used in genome-
wide data analyses to identify and ameliorate sources of 
experimental error: 1) genotype calling and signal 
intensity plots; 2) cross-platform and cross-technology 
comparisons to ensure the reproducibility of genotypes 
(e.g., same platform concordance of 99% and cross-
platform concordance at 95%); 3) SNP quality control 
metrics (e.g., identification and filtering outlying call 
rates, departures from HWE  testing each SNP using the 
asymptomatic chi-squared test or Fisher’s exact test. 
SNPs with p-values less than 10-5 or 10- 6 removed from 
further analysis), non-random missing SNPs, and low 
minor allele frequency (1-2% MAF filter applied)); 4) 
utility of a control group; 5) subject-level quality control 
(e.g., identification and filtering of individuals with 
discordant sex information, outlying call rate, departures 
from homozygosity, cryptic relatedness in population 
case and control data); 6) Genomic control for population 
structure, sex checks, and population stratification. For 
further details please see the works of Zeigler, Konig, and 
Thompson (2008), and Zheng, Van Hulle, and Rathouz 
(2015). 
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Chapter 1. Introduction 

 Background 

Considerable attention has been afforded to the task of delineating the relative 

contributions of genetics (𝐺) and environment (𝐸) to the engenderment of complex 

phenotypes (𝑍), or, in other words, elucidating the function f –the phenotypic architecture 

– which relates the values 𝑍! of individuals, to their genotype 𝐺!, and their 

environmental exposures 𝐸!, 

𝑍! = 𝑓(𝐺! , 𝐸!).          (1.1) 

One possible choice for 𝑓 which has been foundational for much work in 
quantitative genetics goes by the name, Standard Biometric Model (SBM). The SBM 
portrays the dependency of the phenotype upon environment and genetics in terms of a 
linear equation in four latent variables and set of moment restrictions (see, e.g., 
Holzinger, 1929; Jinks & Fulker, 1970; Schonemann, 1997; Rijsdijk & Sham, 2002; 
Vitzhum, 2003). It is expressed as 

        (1.2) 

wherein 𝐴,𝐷, 𝐶, and 𝐸 are, respectively, additive (𝐴)1 and dominance (𝐷) latent genetic 

variables, a latent environmental impact variable (𝐶)2, and measurement error (𝐸)3. The 
moment restrictions assert that all latent variables have expectations of zero and are 
pairwise uncorrelated. However, a growing body of literature suggests that the SBM 
severely misportrays, via an oversimplification, the joint impact of genetics and 
environment (see Schönemann, 1979; Falconer, 1989; Kempthrone 1997; Schönemann, 
1997; Vizthum, 2003; Shalizi, 2007). Among the flaws thought to be inherent in the SBM 
are the omission of intrauterine, maternal effects, developmental noise, cultural 

 
1 Within twin designs, these are genetic factors (additive and dominance) for which MZ twins share 
(100%) and DZ share (50%).   
2 Within twin designs, shared environmental factors contribute equally to the similarity for MZ 
and DZ twins. 
3 Within twin designs, unique environmental factors and measurement error contribute to 
differences between twins. 

A D C E= + + +Z
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transmission, and shared familial/community-based environmental impacts, suggesting 
unaccounted dependencies between genetic and environmental effects (Kempthrone 
1997; Shalizi, 2007). Recently, the fact that the SBM makes no mention of epistasis has 
received considerable attention (Vizthum, 2003; Zuk, Hechter, Sunyaev, & Lander, 2012; 
Wei, Hemani, & Haley, 2014).  

 Epistasis refers to the interaction between two or more genes at different loci. 
Although there exists debate, nowadays, over its definition4, the term was coined by 
William Bateson (1909) to designate the circumstance where an allele5 at one locus masks, 
modifies, or interacts with the phenotypic expression of another (i.e., ‘allomorphic pair’)6; 
the latter circumstance, proposed as an explanation for the novel and absent classes of 
traits observed in dihybrid crosses7. In contemporary literature, converging evidence 
suggests a ubiquitous role for epistasis within both prokaryotic and eukaryotic8 

 
4 The empirical literature on epistasis suggests several working definitions which vary across fields 
(see Cordell 2002; Phillips, 2008): 1) functional, physiological, compositional, and statistical epistasis are 
described based on the effects of two or more alleles at separate gene loci (see Wei, Hemani, & 
Haley, 2014; Phillips, 2008). Herein functional or physiological epistasis is feature of a particular 
genetic architecture, which occurs when differences in genotypic values at one locus vary 
depending on the genotype present at the second locus (Cheverud and Routman, 1994). 
Compositional epistasis as the the blocking of allelic effects by combinatorially substituting one allele 
against a standard background, and more generally, the composition of a particular genotype and 
the impact genetic background has on the effects of a set of alleles (Phillips, 2008). Statistical 
epistasis as its population-level effect. The differences being that 
functional/physiological/compositional do not take into account a populations allele frequencies while 
statistical epistasis does (Cheverud & Routman, 1994); 2) unidimensional (i.e., directional epistasis) 
and multidimensional epistasis describe the interaction of mutations with genetic background (see 
de Visser, Cooper, & Elena, 2011).  Unidimensional epistasis is defined as negative or positive 
deviations from mean log fitness on a multiplicity scale and the number of alleles affecting fitness 
(de Visser, Cooper, & Elena, 2011). Wherein negative epistasis is described as antagonistic 
(amongst deleterious mutations), and positive epistasis is described as synergistic (amongst 
beneficial mutations). Multidimensional epistasis is defined as the individual interactions among 
a set of alleles and describes the interactions within a fitness landscape (de Visser, Cooper, & Elena, 
2011). 
5 An allele is a version of a gene found at a particular locus (i.e., location along a chromosome). In 
diploid species, a dominant (A1) and/or recessive (A2) allele is inherited from each parent. 
Dominance (A1) and recessive (A2) alleles form three possible genotypes: homozygous dominant 
(A1A1), heterozygous (A1A2), and homozygous recessive (A2 A2).  
6 Refers to all the genes in the genome and their ability to modify or influence the effects of novel 
mutations. 
7 In this experimental procedure for bi-allelic species heterozygous parental lines (F1) with 
alternative alleles at two unlinked loci are respectively crossed and fixed, yielding the segregation 
of nine genotypes, four gametes per parent and sixteen combinations of alleles in the F2 generation. 
Herein, epistasis is defined upon the generation of phenotypic ratios which depart from 9:3:3:1. 
8 Select eukaryotic species – the majority of well-replicated research on epistasis has been 
conducted on model organisms (i.e., plants, yeast, drosophila, mice). As the study of model 
organisms provides researchers dominion over genetics and environment (afforded by inbred – 
isogenic - chromosome substitution lines, artificial selection, and di-allelic crosses),  researchers are 
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multilocus genetic architecture9 (Wright 1931; Wright 1961; Wolf, Broodie & Wade, 
2000), and the evolving understanding of mapping genotype to phenotype (i.e., 
Genotype-Phenotype (GP) maps)10 (Lewontin, 1974; Alberch, 1991; Wagner & Altenberg, 
1996; Hansen, 2006; Wagner, Pavlicev, & Cheverud, 2007; Phillips 2008; Pigliucci, 2010; 
Sailor & Harms, 2017). To this end, a wealth of empirical literature demonstrating the 
importance of epistasis as a scientific phenomenon is roughly classifiable into two 
categories of scientific import, relating to both ultimate11 and proximate12 causation.  

Concerning the former, literature in the field of evolutionary biology focuses on 
the role of epistasis as a metaphorical actor in the unfolding evolutionary history of 
diverse populations of organisms: 1) in the evolution of sexual reproduction and 
recombination13 (Wright 1932 ; Kondrashov, 1998; De Visser & Elena, 2007; Otto & 
Gerstein 2006; Gandon & Otto, 2007; MacCarthy & Bergman, 2007); 2) de-canalization14 

 
able to experimentally evaluate with high resolution both the particular interactions between gene 
loci within an individual, induce novel mutations, and evaluate the impact of epistasis over 
generations. In contrast, the study of epistasis within human populations is limited to 
observational or association studies (e.g., familial studies, genome-wide association studies) which 
are both riddled with practical and quantitative limitations.  
9 Defined as the complete description of genetic factors influencing trait variation (Wei, Hemani & 
Haley, 2014). 
10 GP maps are based on the works of Lewontin (1974) and Alberch (1991) in which, the authors 
suggest a functional relationship that maps from genotype space to phenotype space (ie., G→
𝑍)	(see, e.g., Pigliucci, 2010).  
11 Ultimate causation - originally based on the works of Mayr (1961), Tinbergen (1963) describes 
the kinds of questions which evaluate both phylogeny (i.e., traits evolutionary history), and 
adaptive significance (i.e., how does trait variation impact a species fitness). 
12 Proximate causation - originally based on the works of Mayr (1961), Tinbergen (1963) describing 
the traits composition (i.e., what is the structure of the trait) or ontogeny (i.e., species-specific trait 
development).   
13 There exists several hypotheses for the evolution of sex and recombination. One hypothesis 
suggests that negative epistasis acts as a form of selection and generates negative associations 
between alleles (i.e., negative linkage disequilibrium). As such, sex and recombination yields a 
higher combination of alleles (either favourable or deleterious) on the same chromosome, 
increasing fitness variance and the response to selection. In such a scenario, it is the case favourable 
alleles rise in frequency within a population while deleterious alleles are more efficiently removed 
(Otto & Gertein, 2006). According to this particular hypothesis, epistasis needs to be weak and 
negative. However, single model simulations also suggest the evolution of recombination is 
governed by fluctuations in epistasis (i.e., temporal, speed, and shape) and linkage disequilibrium 
(Gandon & Otto, 2007). 
14 Canalization is the reduced sensitivity or variability of a phenotype to perturbations in the 
underlying genetic and environmental factors, which determine its expression (Flatt, 2005). As 
such, canalized genotypes (i.e., wild types) may accumulate mutations and maintain alleles that 
are not phenotypically expressed. This mutation accumulation yields a de-canalizing event, 
which is thought to be due to epistasis. As mutation accumulation is expected to lead to an 
accelerating increase of additive genetic variance (Hansen &Wagner, 2001; as cited by Flatt, 2005). 
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(Waddington 1942; Wade, 2002; Burch & Chao, 2004; Flatt 2005); 3) speciation15 (Wade, 
Winther, Agrawal, & Goodnight, 2001; Pesgravses, 2007); 4) evolution of pleiotrophy 
(Guillaume & Otto, 2012; Rueffler, Hermission, & Wagner, 2012; Pavlicev & Wagner, 
2012). Narrowing the scope slightly, literature in the field of structural-molecular 
evolution proposes epistasis as one mechanism by which, over generations, mutations 
(ie., deleterious, permissive) interact with genetic-background16 to impact the adaptive 
significance of a traits fitness and function (Phillips, 2008; Elena, Solé, & Sardanyés, 2010; 
Starr & Thornton, 2016; De Visser, & Hoekstra, 1998)17. Empirical illustrations of this 
sort: 1) leaf area and plant height in maize (Iqal, Khan, Rahman, & Sher, 2010); 2) 
photoperiod sensitivity in rice (Lin, Yamamoto, Saski, & Yano, 2000); 3) earworm 
resistance in corn (Pang et al., 2012); 4) length of flowering (Visser, & Hoekstra, 1998); 5) 
disease resistance in the vesicular stomatitis virus  (Sanjuan, Moya, & Elena, 2004); 6) 
functional specificity of the mineralocorticoid and glucocorticoid receptor18 (Orlund, 
Bridgham, Redinbo & Thornton, 2007); and 7) drug resistance of the human 
immunodeficiency virus following monotherapy19 (Molla et al.,1996).  

Concerning the latter, in the fields of systems and developmental biology, 
epistasis is viewed as a proximate mechanism responsible for the orchestration of gene-
networks, metabolic pathways in manifold biological contexts, among which: 1) human 
pathology (e.g., multiple sclerosis (Ramagopalan & Ebers, 2009; Gregersen et al., 2006); 
type I and II Diabetes (Yu et al., 2014; Wiltshire et al., 2006); Alzheimer’s disease (Rhinn 
et al., 2013; Lehmann et al., 2012; Kolsch et al., 2012; Heun et al., 2012); ankylosing 

 
15 Speciation refers to the phenomena where under reproductive isolation, genes that function well 
in con-specific genetic backgrounds (i.e., same species), function poorly when combined in 
interspecific hybrids (ie., between different species) (Wade, Winther, Agrawal, Goodnight, 2001).  
16 Genetic background – refers to all genes within the genome, wherein the particular constellation 
of genes within a species genome may influence or modify the effects of mutations.  
17 In this particular context, epistasis is defined as the difference in phenotype of a double mutant 
which cannot be predicted by the sum of single mutants (Mackay, 2014). Moreover, in the case the 
phenotype of a double mutant is more severe than predicted by the additive effects of single 
mutants, epistatic effects are categorized as "synergistic, enhancing, aggravating and negative", 
whereas if the phenotype of the double mutant is less severe than predicted by the additive effects 
of single mutants, epistasis is said to be "antagonistic, suppressing, alleviating, and positive" 
(Mackay, 2014). 
18 In the former, epistatic interactions between new deleterious mutations and pre-existing 
permissive mutations permit conformational re-modeling of receptor-ligand and intra-protein 
contact structure yielding the receptor differences seen today (Orlund, Bridgham, Redinbo & 
Thornton, 2007). 
19 Select strains of HIV-1 showed drug resistance to monotherapy as a result of the epistatic 
sequential stepwise function between 9 codon substitutions (Molla et al.,1996). 
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spondylitis20 (see Evans et al., 2011; Brown, Kenna, & Wordsworth, 2015; Cortes et al., 
2015); Bechet’s disease21 (Kirino et al., 2013);  breast cancer (Ritchie et al., 2001); psoriasis 
(see Bergboer, Zeeuwen, & Schalkwijk, 2012; Strange et al., 2010); schizophrenia 
(Burdick et al., 2008; Lin, Lei, Zhang, Dai, & Lu, 2015; Weinberger, 2014); autism 
spectrum disorder (Coutinho et al., 2007; Mitra et al., 2017); and Hirschsprung’s disease22 
(de Pontual et al., 2009)); 2) a species unfolding ontogeny23 (e.g., mammalian coat colour 
variation in mice and labrador retriever dogs (Bennett & Lamoreux, 2003; Hoekstra, 
2006; Everts, Routhuizen, & Oost, 2000);  body-weight in chickens (Le Rouzic, Álvarez-
Castro, & Carlborg, 2008); and sensitivity of mutagen methyl-methanesulfonate (MMS) 
in yeast (Ong et al., 2007)); and 3) scale-independent higher-order epistasis (Sailor & 
Harms, 2017) (e.g., scattered genomic mutations implicated in Escherichia coli fitness 
(Khan, Dinh, Schneider, Lenksi, Cooper, 2011); chromosomes in asexual fungi for 
Aspergillus niger fitness (de Visser, Park, & Pope, 2009); biosynthetic networks for 
Saccharomyces cerevisiae haploid and diploid growth rate (Hall, Agan, & Hope, 2010); 
point-mutations and bacterial fitness (Weinreich, Delaney, DePristo, Hartl, 2006); and 
point-mutations in DNA protein binding affinity (Anderson, McKeown, & 
Thornton,2015)). 

As such, the omission of epistasis from depictions of phenotypic- genetic 
architecture is problematic for manifold reasons, each classifiable as either broadly 
scientific or practical. Of the former, the most obvious is, that if epistasis is indeed an 
important scientific phenomenon, to omit it from scientific accounts is to misportray. Of 
the latter, perhaps the most striking relates to the mis-estimation24 of narrow-sense (h2)25 
and broad-sense heritability (H2) 26 (see Fisher, 1951; Kempthrone, 1997; Shalizi, 2007; 
Vizthum, 2004; Hemani, Knott, & Haley, 2013), which serves as a potential explanation 

 
20 Ankylosing spondylitis is an inflammatory arthritis predominantly affecting the spine and pelvis 
that occurs in approximately 5 out of 1,000 adults of European descent. 
21 Inflammatory disease. 
22 Congenital disease impacting the large intestine (absence of particular nerve cells) and bowel 
movements. 
23 Species-specific development 
24 Missing heritability – the observation that genetic effects uncovered by GWAS are not equal to 
estimates of narrow heritability (Wei, Hemani, & Haley, 2012).   
25 Narrow-sense heritability is defined as the maximum proportion of phenotypic variance 
accounted for by a linear function of allele counts.  
26 Broad-sense heritability is defined as the proportion of phenotypic variance associated with all 
genetic effects. 
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of the phenomenon of phantom heritability27 observed in contemporary genome-wide 
association studies (GWAS) (see Zuk, Hechter, Sunyaev, Lander, 2012); and inflated 
additive variance (see Cheverud, Routman, 1995; Templeton, 2000; Hemani, Knott, & 
Haley, 2013).  

 In light of the aforementioned role of epistasis in multi-locus genetic 
architectures of model organisms, it is not surprising that a great deal of effort has gone 
into its detection. Within human populations, epistatic detectors utilize both data-
generation and data-processing methods designed to mitigate the large computational 
and statistical burden of high dimensional genomic data structure (Cordell 2009; Wei, 
Hemani, & Haley, 2012). However, despite their sophistication and the ostensive 
ubiquity of epistasis, it is striking, the dearth of robust28 instances of detection uncovered 
for human populations.  It would appear that, for reasons currently unknown, epistasis 
manifests in ways that render its detection particularly challenging. Though there would 
appear to be no shortage of candidate explanations for this phenomenon, there are two 
which are notably compelling. The first relates to the possibility the population-level 
manifestations of epistasis, are by their nature, small.  Consequently, for the sorts of 
sample sizes employed in research, the power delivered by epistatic tools of detection 
may be disadvantageously small. The second relates to whether the presence of gene-
environmental association generates bias in estimates of genotypic values29 and, in so 
doing, systematically diminishes the power of epistatic detectors.  

 Thesis Aims 

Broadly speaking the aims of the thesis are, by means of analysis and simulation 
study, to shed light on the empirical issue of why epistasis is difficult to detect. 

 
27 Phantom heritability was proposed by Zuk and colleagues (2012) as a reason for the phenomena 
of ‘missing heritability’, due to an overestimation of the total heritability based on unaccounted 
genetic interactions. This missing heritability is proposed to account for the deviation between 
heritability estimates and empirical observations under genome-wide sequencing designs. 
28 Robust examples of epistasis are those which demonstrate scale-invariant interaction effects 
between the same genetic loci, replicated independently. These include HLAC and ERAP1 in 
Psoriasis (Strange et al., 2010); ERAP1 and HLAB27 in ankylosing spondylitis (Brown, Kenna, & 
Wordsworth, 2015; Cortes et al., 2015); and RYN and RNF219, which are implicated in decreasing 
the risk of Alzheimer's disease in APOE4 non-carriers (Rhinn et al., 2013; Lehmann et al., 2012; 
Kolsch et al., 2012; Heun et al., 2012). 
29 Genotypic values are taken, variously, to be either theoretical values or E(Z|𝒈) (see Chapter 2 
for further detail). 
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Specifically, we will: 1) provide a careful characterization of epistasis founded on an 
elucidation of the distinctions between the frequently conflated elements of the 
following pairs: i) individual level engendering architecture and population-level variance 
components; ii) Fisherian decomposition of phenotypic values and models of phenotypic-
genetic architecture; 2) survey and analytically consider methods of epistasis detection 
available to the researcher; 3) analytically characterize the statistical detection problem 
and elucidate two candidate explanations for the apparent difficulty inherent to 
detecting epistasis; 4) finally, via simulation studies, we will adjudicate the merits of 
both candidate explanations and evaluate the power to detect epistasis under a series of 
four biologically plausible digenic epistatic architectures. 

 Thesis Outline 

The thesis is composed of nine chapters. Chapters 2 through 5 provide 
background information and present the quantitative foundations on which the thesis 
rests. Specifically, in Chapter 2, we provide the reader with an introduction to 
quantitative genetics and its core definitions. In Chapter 3, we provide a technical 
survey of methods, heretofore invented for employment in detecting epistasis, and 
explore a series of pitfalls implicate to the empirical setting of epistatic detection. In 
Chapter 4, we provide the technical foundations of the property of epistasis and its 
engendering architecture, the notion of genotype-specific epistatic effects, and epistatic 
detection in the empirical setting. In Chapter 5, we provide a review of factors that bear 
on the probability of detection and present two candidate explanations for the difficulty 
inherent in detecting epistasis. In Chapter 6, we lay forth the technical elements in the 
construction of all four epistatic architectures, the general aims of simulation studies I 
and II, their focal quantities, and the set of criteria employed to adjudicate the merits of 
both candidate explanations. In Chapters 7 and 8, we present the results of the first and 
second simulation study. Finally, in Chapter 9, we conclude the thesis with a 
recapitulation of the findings as they bear on the two candidate explanations.  
Discussed, also, are corollary relationships, limitations, and areas for further exploration. 
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Chapter 2. Basics of Quantitative Genetics 

Introduction  

The issue of why the phenomenon of epistasis might be difficult to detect is a 
problem drawing from theory located within manifold domains, notably those of 
quantitative detection theory and genetics. Its roots lie most particularly, however, 
within the rich soil of quantitative genetics. Accordingly, in this chapter, we review 
elements of quantitative genetics relevant to the work undertaken.  Sections are devoted 
to each of: 1) the quantitative elements of single and multi-locus engendering 
phenotypic-genetic (ApAg) architectures; 2) the Fisherian decomposition and 

population-level genetic variance components; 3) the quantities ℎ0,	𝐻0,	and 𝜎50; and 4) a 
preliminary definition of epistasis. 

 Engendering Phenotypic-Genetic (ApAg) Architecture  

Let it be the case that: i) 𝑍 is a quantitative or disease trait30; ii) each individual 𝑖 

belonging to a population 𝑃 of humans has a score on 𝑍; iii) for all 𝑖, 𝑍! 	depends 
genetically on s biallelic loci.  In bi-allelic species, such as humans, each gene locus has 

two alleles.  Let the alleles at locus 1 be {𝐴$,	𝐴0}, at locus 2, {𝐵$,	𝐵0}, etc.  It follows then 
that, at each of the s loci, three locus-specific genotypes are defined (eg., at locus 1, {A1A1, 

A1A2,A2A2}, at locus 2={B1B1, B1B2, B2B2}, etc.), these yielding 36	genotypes with respect to 

𝑍31. Define 𝑔", 𝑗 = 1. . 𝑠, as the gene content of locus j, or, the number of copies of the 

second allele (𝐴0, 𝐵0,…) present in a locus j-specific genotype. For the locus 1 specific 

genotypes 𝐴$𝐴$,	𝐴$𝐴0, and 𝐴0𝐴0, for example, 𝑔$ is equal to 0, 1, and 2, respectively. 

Clearly, each of the 36 genotypes is uniquely associated with a value of the s-vector 𝒈 

the	𝑗	17	element of which is 𝑔". We define the genetic architecture to be the scalar function 

Ψ’(𝒈) which maps each of the 36 genotypes (equivalently, 36	distinct values 𝒈∗  of 𝒈) into 

a genotypic value; i.e., Ψ’(𝒈∗): 𝒈∗  𝑹4   →	𝑹 (Lynch & Walsh, 1998). A genetic architecture 

 
30 If Z is a disease trait, then it is an [0,1] dichotomous variable that is taken to have arisen on the 
basis of a dichotomization, by unknown parameter τ, of an underlying quantitative trait, or 
“liability” Z*, as follows:  if Z*≥ τ, then Z=1; else, Z=0 (Zuk et. al., 2012). 
31 E.g., in the case 𝑠 = 2, the nine genotypes are: {A1A1B1B1, A1A1B1B2, A1A1B2B2, A1A2B1B1, A1A2B1B2, 
A1A2B2B2, A2A2B1B1, A2A2B1B2, A2A2B2B2}. 

Ì
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is said to be single locus if 𝑠 = 1, and multi-locus, otherwise32. The phenotypic value is the 
(individual level) scalar function   

𝑍!  = Ψ’(𝒈𝒊) + γ(𝐸)!,       (2.1) 

wherein, γ(𝐸)! = 𝑍!  - Ψ’(𝒈!) is a residual representing the aggregate impact on Z of all 
effects – both main and interaction- involving environment33. Because each i P has a set 

of values {𝒈i, γ(E)i}, the induced distribution of Z in P is determined by the joint 

distribution of {𝒈, γ(E)}. 

 Fisherian Decomposition and Population Genetic 
Variance Components  

In the case of a single locus architecture, the Fisherian decomposition of Ψ’(𝑔!) is 

 Ψ’(𝑔!) = Ψ’(𝑔!)Lin + δ(𝑔!),       (2.2) 

in which Ψ’(𝑔$)Lin is the linear predictor of genotypic value on the basis of gene content, 

and is called the additive component, and δ(𝑔$) is the residual, or quadratic fit, to the three 
genotypic values, and is called the dominance component.  The additive and dominance 
components can be expressed as 

 Ψ’(𝑔$)Lin = [𝛼 + 𝛽𝑔$],        (2.3) 

and 

 δ(𝑔$) = Ψ’(𝑔$) - Ψ’(𝑔$)Lin,       (2.4) 

respectively, in which 𝛽 =
:#$(&'),&'

:&'
*  and 𝛼 = 	𝜇;<(&') − 𝛽𝜇(=').	 

Given that Ψ’(𝑔$)Lin and δ(𝑔$) are orthogonal by construction (2.2) implies that 

the population genetic variance can be decomposed as follows 

 V(Ψ’(𝑔$) = V(Ψ’(𝑔$)Lin) + V(δ(𝑔$)) =	𝜎*0+ 𝜎>0,     (2.5) 

 
32 In the multi-locus case when s=2 an architecture is said to be digenic, and when s>2, polygenic. 
33 As afore noted, genotypic values are taken, variously, to be either theoretical values or E(Z|𝒈) 
(see Lynch & Walsh, 1998).  In the latter case, the function Ψ’(.) is, then, simply the conditional 
mean function, in which case E𝛾(𝐸) = 0. 

Î
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wherein 𝜎*0 is called the additive variance component, and 𝜎>0, the dominance variance 

component. Symbolize P(𝐴0) - the proportion of alleles in P of type 𝐴0- as 𝜑, and let it be 
the case that the probability of occurrence of each of the three genotypes is governed by 
the Hardy-Weinberg principle and Linkage Equilibrium34 (see Lynch & Walsh, 1998), in 

which case P(𝐴$𝐴$) =(1-	𝜑)2 , P(𝐴$𝐴0) = 2	𝜑 (1-	𝜑), and P(𝐴0𝐴0) = 𝜑 2.  It can be proven, 
then, that  

 𝜎*0 = 𝛽0𝜎='
0 = 

:#$(&'),&'
*

:&'
*  = 

:#$(&'),&'
*

0?($%?)
,      (2.6) 

and 

 𝜎>0= V(Ψ’(𝑔$)) – 𝜎*0.        (2.7) 

 It is useful to parameterize the genotypic values as follows: Ψ’(𝑔$=0) = 0, 

Ψ’(𝑔$=1) = (k+1)a, and Ψ’(𝑔$=2)= 2a. Parameter 𝑎 controls the linear rate of change of 

Ψ’(𝑔$), conditional on 𝑔$, and parameter 𝑘, the degree of non-linearity. Specifically, if 

𝑘 = 0,	then Ψ’(𝑔$) is a linear function of gene content (𝑔$); else, it is a quadratic function, 

in which the genotypic value for 𝐴$𝐴0	(𝑔$=1) lies non-equidistant between those for 

𝐴$𝐴$(𝑔$ = 0) and 𝐴0𝐴0 (𝑔$=2) (see Lynch & Walsh, 1998).  

Under the {𝑎𝑘} parameterization (Lynch & Walsh, 1998),  

 𝜎*0= 2 (1- )[	𝑎(1+𝑘(2 -1))]2,      (2.8) 

and 

𝜎>0= (2 (1- )	𝑎𝑘)2.        (2.9) 

In the multi-locus case, the Fisherian decomposition of Ψ’(𝒈) is  

 Ψ’(𝒈) = 𝜇;<(=) +	∑ 𝐵(=")
6
".$ +	∑ 𝛿(=")

6
".$  + ∑ 𝐼(=+)

@
A.$ ,   (2.10) 

in which: 𝐵(=") = Ψ’(𝒈)Linj - 𝜇;<(=); Ψ’(𝒈)Linj = 𝑎" +𝛽"𝑔"  is the linear predictor of Ψ’(𝒈) on 

the basis of 𝑔"; δ(𝑔") = Ψ’(𝒈) - Ψ’(𝒈) Linj; and the 𝐼(=+) are m=∑ t6Bu
6
B.0 =(26-s-1) locus-locus 

interactions, there being t6Bu interactions of the rth order, r = 2 ...s. As the latter three 

components are orthogonal by construction, (2.10) implies that 

 
34 In the case s>1, unlinked loci are assumed such that P(𝒈 =	𝒈∗) = ∏ 𝑃(#

$%! 𝑔$ = 𝒈$∗). 

φ φ φ

φ φ
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 V(Ψ’(𝒈)) = 𝜎*0 + 𝜎>0 + 𝜎C&0 ,       (2.11) 

wherein 𝜎C&0  is the variance component due to epistasis.  

 The Quantities 𝒉𝟐, 𝑯𝟐, and 𝝈𝒛𝟐 

  By definition, narrow- and broad-sense heritability are, respectively, 

 ℎ0	=	:,
*

:-
*            (2.12) 

and 

 𝐻0 = D(;’(𝒈))	
:-
* .           (2.13) 

Because, from (2.1),  Z = Ψ’(𝒈) + 𝛾(𝐸), it follows that 

𝑍|𝒈 ~ (Ψ’(𝒈) + 𝜀(𝒈), 	𝜎H|𝒈0 ),        (2.14) 

wherein 	𝜀(𝒈) = 𝐸(𝛾(𝐸)|𝒈) and 𝜎C|𝒈0 = 𝑉(𝛾(𝐸)|𝒈). Conditional on 𝒈, Ψ’(𝒈),	the genotypic 

value is a constant, and, unless 𝜀(𝒈) = 0, it will not be equal to E(Z|𝒈).  From (2.14), it 
can be deduced that the unconditional distribution of Z is 

Z ~  (𝜇I + 𝜇H, 𝑉(𝐸(𝑍|𝒈))	+	𝐸(V(𝑍|𝒈))) 

(𝜇I + 𝜇H, 𝑉(𝛹’(𝒈) + 𝜀(𝒈)) 	+ 𝐸(𝜎C|𝒈0 )) 

(𝜇I + 𝜇H, 𝑉(Ψ’(𝒈)) + V(ε(𝒈)) 	+ 	2𝜌;’(𝒈),K(𝒈)𝜎K(𝒈)𝜎;’(𝒈) + 𝜎L0) 

(𝜇I + 𝜇H, [𝜎*0 + 𝜎>0 + 𝜎C&0 ] 	+ 	2𝜌;’(𝒈),K(𝒈)𝜎K(𝒈)𝜎;’(𝒈) + [𝜎K(𝒈)
0 + 𝜎L0]) 

(𝜇I + 𝜇H, [𝜎*0 + 𝜎>0 + 𝜎C&0 ] + 	2𝜌;’(𝒈),K(𝒈)𝜎K(𝒈)𝜎;’(𝒈) +	𝜎C0),  (2.15) 

in which: 𝜇I = 𝐸(Ψ’(𝒈)); 	𝜇H = 	𝐸(𝜀(𝒈));	𝜎L0 = 𝐸(𝜎C|𝒈0 ); 𝜎K(𝒈)
0 = 𝑉(𝐸tγ(	E)|𝒈)u; and 𝜎C0 = 

𝜎L0 + 𝜎K(𝒈)
0 .  Observe that E(γ(E)|𝒈) =	𝜀(𝒈) is the mean environmental impact conditional 

on genotype, from which it follows that there does not exist a genetic-environment 

association if and only if 𝜀(𝒈) = 𝑐.  It follows then, that 𝜎K(𝒈)
0  is the variance in Z due to 

genetic-environment association.  Another way of thinking about this is that 𝜎K(𝒈)
0  is the 
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variance in Z associated with environment that is inseparable from genetics, and 𝜎L0 is 
the variance in Z that is.  We observe, also, that, because 

𝜌;’(𝒈),C		.		𝜌;’(𝒈),M(𝒈).	
H[C(O(H)|𝒈)%;’(𝒈)]%Q.Q/

:#’(𝒈):2(𝒈)
 = E[ε(𝒈) ∗ 	Ψ’(𝒈)] − 𝜇I𝜇H, (2.16) 

it follows that, under condition that ε(𝒈) = 𝑐,  

 𝜌;’(𝒈),H	 = 	𝐸[c ∗ 𝐸(Ψ’(𝒈)]-	𝜇I ∗ c = c ∗ 𝜇I-	𝜇I ∗ c = 0.   (2.17) 

In other words, in order that 𝜌;’(=),H	 ≠ 0, it must be the case that 𝜎K(&)
0 > 0. 

All told, then, from (2.1), it follows that 

 𝜎50	= 𝜎;’(𝒈)
0 + 𝜎O(H)

0 +2𝜎;’(𝒈),O(H).       (2.18) 

Symbolizing Var(γ(E)) = 𝜎O(H)
0  as 𝜎C0, (2.5) and (2.18) jointly imply that, in the 

single locus case,  

 𝜎50= 𝜎*0+𝜎>0+𝜎C (𝜎C+ 2𝜌;(&')3!4 ,O(H)
𝜎* + 2𝜌R(&'),O(H)𝜎>).     (2.19) 

For the multi-locus case,(2.11) and (2.18) imply that  

 𝜎50= 𝜎*0+𝜎>0+𝜎C&0 +𝜎C(𝜎C + 2𝜌∑ T(&"),O(H)
5
"6'

𝜎* + 2𝜌∑ R(&"),O(H)
5
"6'

𝜎>+2𝜌∑ U(&)+,O(H)
7
+6'

𝜎C&). 

           (2.20) 

The rho parameters- 𝜌;(&')3!4 ,O(H)
, 𝜌R(&'),O(H),	𝜌∑ T(&"),O(H)

5
"6'

,	𝜌∑ R(&"),O(H)
5
"6'

, and 

𝜌∑ U(&)+,O(H)
7
+6'

- are, of course, gene-environment correlations.  

 Definition of Epistasis 

 Let Ψ’(𝒈∗)Main stand for the main effect fitted values of Ψ’(𝒈∗), on the basis of gene 

content; i.e., 𝜇;<(𝒈) +	∑ 𝐵(="∗)
6
".$ +	∑ 𝛿(="∗)

6
".$ .  An architecture has the property of 

epistasis, under the condition that a) s >1 and b) for at least 2 of the 36 genotypes 𝒈∗, 

   Ψ'(𝒈∗) −Ψ’(𝒈∗)Main ≠ 0.       (2.23) 
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A number of prominent authors draw a distinction between functional and statistical 
epistasis, wherein, by the former, they mean a property of a genetic architecture, and, by 

the latter, a non-zero value of the population variance component 𝜎C&0 .		It is our view that 
the latter – ie., the magnitude of the chunk of phenotypic variance engendered by 
epistasis – should not be labelled epistasis. It is, rather, a (population level) effect of 
epistasis. Accordingly, we deny the legitimacy of the functional- and statistical epistasis 
distinction. 
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Chapter 3. Epistasis and its Detection  

Introduction  

Herein we aim to survey and analytically consider contemporary methods of 
epistatic detection available to the researcher. To this end, we will review: 1) genome-
wide association studies (GWAS), the primary experimental design to wit contemporary 
human epistasis detection relies35; 2) a selection of epistatic detectors based on 
regression, data-mining/machine learning, and Bayesian model selection technologies; 
and 3) finally explore a series of pitfalls implicate to epistatic detection.   

 Genome Wide Association Studies 

Genome-wide association studies (GWAS) are non-experimental designs36 built 
to estimate trait outcomes and delineate the biological mechanisms implicate in trait 
variation. To do so, GWAS indirectly associate complex traits to genetic variants, by 
selecting a subset of genetic markers37, which serve as proxies to causal variants vis-a-vis 
linkage disequilibrium (LD)38 (see Hirschhorn & Daly, 2005; Wang, Barratt, Clayton, & 
Todd, 2005; Lander, 1996; Bush & Moore, 2012). To this end, high-throughput 

 
35 While previous study designs for human populations such as linkage analysis assess a small 
number of variants measured across several generations of a family to discern patterns of 
inheritance associated with the subset of variants, GWAS is the first to evaluate the genetic factors 
which influence trait variation on a genome-wide scale. 
36 GWAS designs are observational in nature and implement either between-subject (i.e., case-
control, case-family) or within-subject (i.e., case-only, and population cohort) test procedures, 
where each individual is genotyped and classified based on group-membership. 
37 While ideally, one wishes to identify genetic variants whose linear or non-linear effects are causal 
in trait-outcomes, GWAS are designed to capture genome-wide variation across individuals, vis-
à-vis, selecting a subset of genetic variants or genetic markers a priori.  Genomic markers typically 
used in GWAS designs are tag single-nucleotide polymorphisms (SNPs). SNPs are a point mutation or 
the change of one base-pair (bp) at a particular locus, which differs across a population. SNPs are 
stable across generations, correlated with nearby genomic variants, and occur on average ~ 1 in 
every 300 bps. There are ~ > 3 million SNPs within a genome, accounting for ~90% of human 
variation. 
38 Linkage Disequilibrium (LD) describes the degree of co-inheritance of two alleles at different loci 
within a particular population. As such, LD is defined technically as the degree of statistical 
dependence between loci, D = P(AB) – P(A)P(B). Typically values of D ≥ 0.8 between a tag SNP ( 
genetic marker) and a causal SNP (casual variant) are required for "good" coverage of the genome. 
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microarray technologies39 extract and sequence ~500,000 to ≥	1-million genetic markers 
per individual, yielding an [n x k] data matrix G40, of observations, to wit, traditional 
GWAS designs conduct a series of single-locus tests under the assumptions of additive, 
dominance, or recessive models of genetic architecture (Zeigler, Konig, & Thompson, 2008; 
Zeigler, König, & Pahlke, 2010).  

However, in light of the phenomena of ‘missing heritability’ and its phantom 
counterpart (Lander, 2011; see Zuk et al., 2012), contemporary interest has recently 
turned to the detection of architectures with the property of epistasis, a task which on a 
genome-wide scale remains an ongoing challenge. Owing perhaps to the high-
dimensional structure of genome-wide data, the detection of epistasis demands both 
high computational41 and model42 complexities, which beget the curse of dimensionality 
and indurate the requirement of a sound test procedure43 to balance both the P(Type I) 
and P(Type II) errors44. As such, it is clear, epistatic detection on a genome-wide scale 

 
39 Two common microarray sequencing platforms used in GWAS are Illumina and Affymetrix 
platforms. Differences between each platform include the selection process of tag SNPs (i.e., the 
1M BeadChip Illumina selects 950000 tag SNPs from the HapMap project and 100000 non HapMap 
SNPs, while Affymetrix uses an "unbiased selection of 482 000 SNPs from the SNP Array 5.0" for 
the SNP Array 6.0, and does not follow the tag SNP approach) (Zeigler, Konig, & Thompson, 2008). 
The number of genetic markers sequenced is referred to as a tests 'density of coverage' - such that 
the higher the sequencing density, the greater chance the causal variant is included within the 
'associated region'.  
40 G n x k are typical of the order [103 x 106] - herein, variations between GWAS design matrices are 

due to test design and the utility of genotype dosage or dummy coding SNPs X=1
0,			𝐴!𝐴!
1,			𝐴!𝐴&
2,			𝐴&𝐴&

5. Dosage 

coding treats SNP genotypes as ordered-categorical data (the minor allele increases effect size) 
(Goudey, 2016). Whereas dummy coding treats SNP genotypes as multiple binary variables 
without ordinal effects (Goudey, 2016).    
41 As test complexity is linear with n and exponential as the order of interaction increases, an 
exhaustive test for epistatic effects requires ~5x1011 tests for 2-way interactions, 1.7x1017 tests for 3-
way interactions, 4.2x1022  tests for 4-way interactions, and 8.3x1027 tests for 5-way interactions 
(Ritchie, 2015) 
42 As the number of dimensions and categories per dimension increases so too does model 
complexity. As high parametric complexity is based on the number of orthogonal regression terms 
required to describe 2-way and m-way interactions. In consideration of 20 SNPs, modeling two 
dummy variables per bi-allelic locus, 40 parameters are required to model main-effects, 1,560 
parameters to model the two-way interactions, 79,040 parameters to model the three-way 
interactions, and 1,462,240 parameters to model the four-way interactions (Moore, & Hahn, 2002). 
43 See Chapter 4, section 4.3.  
44 While the academic community employs a range of procedures and thresholds for family-wise 
error control (FWER), it is clear that selection of stringent P(Type I error) control, carries in tow the 
natural consequence of plummeting P(1-Type II error).  For a family of single-locus tests (i.e., 
Bonferroni a= 0.05: k = 106 tests, a’=5x10-8) and 2-way interactions (i.e., Bonferroni a= 0.05, m=2, for 
k= 106, 5x1011 pairwise tests, a’=10-12 ) 
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comes at both a high computational and statistical cost, a task which contemporary 
detectors must carefully consider and rectify.  

 Epistatic Detectors  

Contemporary epistatic detectors are computer algorithms designed to combat 
the high statistical and computational burden of multiple comparisons by combining the 
procedures of data generation and data processing.  Broadly, data generation 
procedures tailored for the detection of epistatic effects are categorized by their 
implementation of either exhaustive or candidate search techniques.  

In the case of the former, exhaustive search algorithms store GWAS data using 
bitwise data storage45, parallel processing, multi-CPU cores, cluster super computers, or 
graphic processing units (GPUs) permit the scalable46 and sequential testing of the entire 
parameter search space (Rk) for all potential interactions (Culverhouse, Suarez, Lin, & 
Reich, 2002; Cordell, 2009; Wei, Hemani, & Haley, 2014; Goudey et al., 2015). While the 
latter reduces the dimension of the parameter search space and tests for the effects of 
epistasis on a subset of parameters only. Subset selection is based on several techniques, 
including those guided by previously associated biological pathways and protein-gene-

networks47; statistical ranking procedures; or stochastic− heuristic− greedy	− search 
algorithms (Wei, Hemani, & Haley, 2014). While candidate selection procedures boast 
improvements in processing speed and statistical power, they remain at the whim of 
publication biases, user-specified significance thresholds, and regrettably omit 
investigation of genetic loci without statistically significant single-locus effects (Ritchie, 
2011; Cordell, 2009; Wei, Hemani, & Haley, 2012).  

Coupled with data generation procedures, epistatic detection technologies 
employ a range of data processors classifiable as parametric regression, data mining 
machine-learning, and Bayesian model selection, each designed to test for statistical 
interaction, uncover dependencies between variants, and evaluate model fit all under 
the guise of ‘epistasis detection’. To this end, we will analytically consider a range of 
contemporary detection technologies available to the empirical scientist, and briefly 

 
45 Each SNP is depicted by three rows for genotype status (0,1,2) and two columns for the grouping 
variables cases or controls.  
46 Issues in the scalability of exhaustive search algorithms includes the computational costs of 
storage and efficiency for a large number of candidate solutions. 
47Typically conducted using queries from public databases for previously reported protein-protein 
interactions such as IntAct, BioGRID, chEMBL (Niel, Sinoquet, Dina, & Rocheleau, 2015).  
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explore the technical variations in how epistasis is defined and detected, a topic several 
reviews are dedicated (see Cordell 2002; Phillips, 2008; Cordell 2009; Wei, Hemani, & 
Haley, 2014). 

3.2.1. Parametric Regression 

In consideration of the relationship between a quantitative (Zq) or disease (Zd ) 

trait, and a fixed set of s48 genetic variants (�⃗�= {X1, X2…Xs}) parametric regression models 
relevant to our aims, respectively envisage E(Z) as a linear or logistic composite of 

parameter values  and �⃗�,	 denoted as A . Where A= [1�⃗ 3, 𝑿]	is a design matrix, 

X is a sub-matrix (n x (s + m)) whose columns s and m respectively contains a set of 
scores for the s-genetic variants, and their m- interaction terms (e.g. xi3xi2)49 for n 

observations; and   is a (1(s+ m)) model parameter vector. Herein each 

parametric regression model is specified by three elements: 1) the distribution of Z, 
whose observations are independent and identically distributed (iid) along a probability 

mass or probability density function; 2) the  linear predictor 𝜂 =	A  relating model 

parameters E(𝑍!) to �⃗�;  and 3) a link function , relating E(Z) to �⃗�, such that  [ )] = 

A . As the aforementioned portrayals envisioned by the linear or logistic regression 

depict one of a family of probability distributions {Δ𝜃VV⃗ : 𝜃 ∈ Θ}50 on Z (a family of possible 

states of nature) (Silvey, 1975), it follows that there exist numerous manifestations to 

which the shape ( ) = A ) and strength (V(Z|�⃗�))51 of the relationship may respectively 
assume.  

Accordingly, as regression technologies aim to simply derive an optimal linear or 

logistic composite A  to predict Z by way of estimating the elements of  from the 
observed data, the empirical scientist will construct a test procedure and specify a 
criterion to make a binary decision regarding the true state of nature extant at the time of 

 
48 Where s is typically a subset of the k loci genotyped at the time of the procedure, s = 1… k.  
49 m=∑ 7#*8

#
*%& =(2#-s-1) locus-locus interactions, there being 7#*8 interactions of the rth order, r = 2 ...s. 

50 Θ denotes the model parameter space. 
51 The strength of the relationship is contingent on the shape which is decomposed into two parts: 
1) primary sense - dispersion around E(Z) and; 2) secondary sense - the sensitivity of Z to changes 
in �⃗�. 

→
θ = (α

→
β )  →θ

→
θ = (α

→
β )

 →θ

ι−1 ι−1 E(Z

 →θ

E(Z  →θ

 →θ  →θ
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the procedure (Silvey, 1975). While the desired outcome of such a decision is one 
consonant with nature, the truth remains at all times unknown to the researcher.  

As such, linear regression technologies assert the parametric framework: 1)  �⃗�q~ 

Nn(A𝜃
→
, 𝜎0𝐼)52	; 2) 𝜂 = A = 𝛽

→
<�⃗�+𝑎1�⃗ , wherein A is an (n x (s+m+1)) design matrix;  = 

 a parameter vector, 𝛼 denotes the intercept and 𝛽
→
	the s + m slopes or partial 

regression coefficients; and 3) the identity link function:  (�⃗�YZ) = �⃗�YZ , wherein 

t𝐸(𝑍)u = 𝛽
→
<�⃗�+𝑎1�⃗ 53.	 Following the usual procedure, the empirical scientist estimates 𝜃�54 

from the observed data, and tests the binary hypothesis: [𝐻[: 𝛽
→

= 0 vs  𝐻$: 𝛽
→
≠0], based on 

the criterion: if 𝐻[: 𝛽
→
=0, and parametric assumptions are reasonable, then \29:&

\29:5!;<=+
 

~Fs,(n-s-1). In the event, 𝐻[	is rejected, the researcher may estimate the strength of the 

relationship based on either 𝑅�xZ
2= 229:&
22>?>=+

, or its adjusted counterpart 𝑅�]5^_"0  = 1-(1-

𝑅]⃗5
0 )[ (4%$)

4%6%$
)], wherein E(𝑅]⃗5

0  )= 6
(4%$)6

> 0	(see Pedhazur, 1997).  

Logistic regression technologies assert the parametric framework: 1) 

𝑃(𝑍_!|𝑋
→
!=𝑥!) ~ ∏ 𝑝!(𝑥

→
)5!4

".$ (1 − 𝑝!((𝑥))$%5! , wherein p is the probability of disease 

status 0 ≤ 𝑝!(𝑥!
→
) ≤ 1; 𝐸(𝑍!|𝑋

→
! =𝑥!)= 𝑝!(𝑥

→
); 𝑉(𝑍!|𝑋! =𝑥!)= 𝑝!(𝑥

→
)1 − 𝑝!((𝑥));	 2) 𝜂 = 

ln[
&`]

→
a

b$%&`]
→
ac

]) A𝜃
→
= d]#	(e

→
$]
→
f^$VV⃗ )

$fghi	(e
→
$]
→
f^$VV⃗ )
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52 Equivalently expressed as Zq= A  + , and 𝜀

→
~𝑁#(0>⃗ , 𝜎&𝐼). Asserting multivariate normality, 

linearity (A =𝛽
→
.X+𝑎1>⃗ ); homoscedasticity (𝜎&𝐼);	and independence.  

53 𝑎1>⃗  denotes the mean vector of 𝑍, when all model predictors = 0. 
54 See Searle (1971); and Agresti (2015) for details on Least Squares estimation for full rank and 
non-full rank models, respectively.  
55 See Searle (1971) for details on Maximum likelihood estimates (MLE) of a and 𝛽.  
56 Rank(A) = s, no evidence of influential points or outliers. 
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Neyman-Person lemma, the likelihood ratio test-statistic, 2ln(jAB
jA'

)A ~ 𝜒0𝑛𝐻$ − 𝑛𝐻[. In 

the event, 𝐻[	is rejected estimates of the strength of the relationship include its' primary 

(1	 − C(k(5|l)
:-
*

� ), and secondary ( 
_/(CD|FGGG⃗ D6IGG⃗ D)	m

_FJGGG⃗
 ) senses. 

Consonant with the definition of epistasis as the departure from the additive 
combination of loci in their effects on trait variation (Fisher, 1918), the interpretation of 
regression models of epistasis are bespoke to the scale of Z, with the recovery of epistatic 
effects dependent on invariance upon transformation (see Cordell 2002; Sverdlov, & 
Thompson, 2018).  
To this end, both linear and logistic regression permits explicit tests for epistatic effects, 
vis-a-vis, testing model interaction coefficient(s), a family of pairwise contrasts, or 
comparing model fit between saturated versus reduced linear or log-odd models 
respectively using the F-ratio or likelihood ratio test statistics (see Goudley, 2015; 
Agresti, 2015; Searle, 1971; Cordell, 2002; Dunteman & Ho, 2006; Chapman & Clayton, 
2007; Cordell, 2009; Wei, Hemani, & Haley, 2014). 
 
Epistatic Detectors - Regression Algorithms    

To explore regression-based detection algorithms available to the empirical 
scientist, we briefly summarize five detectors: 1) Fast Epistasis; 2) GPU-based linear 
regression for detection of epistasis (GLIDE); 3) Multiple Functional Regression Model 
(MFRG); 4) GPU implementation of BOOST (GBOOST); 5) Penalized regression - Least 
Absolute Shrinkage and Selection Operator (LASSO), and Smoothly Clipped Absolute 
Deviation (SCAD). 

Fast Epistasis conducts an exhaustive search employing parallel processing to 
accommodate up to 500,000 dummy coded SNPs, and a multi-CPU environment to 
permit QR decomposition to derive least-square estimates, model interaction 
coefficients, and standard error (see Schüpbach, Xenarios, Bergmann, & Kapur, 2010).   

GPU-based linear regression for detection of epistasis (GLIDE) conducts an 

exhaustive search for all 2-way interactions, accommodating 2.4x10n interaction 
tests/second conducting a least-squares multiple regression model and t-tests with n-4 
(df) (see Kam-Thong et al., 2012).  

Multiple Functional Regression Model (MFRG) conducts a candidate search for 2-
way interactions associated with several quantitative phenotypes denoted as the 
circumstance of pleiotropy. To do so, MFRG selects a subset of SNPs based on genomic 
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position and functional principal component analysis (fPCA), the output of which is 
used as model predictors in a classical multivariate regression by eigenfunction 
expansions (see Zhang, Xie, Liang, & Xiong, 2016).  

GPU implementation of BOOST (GBOOST) is an epistatic detection algorithm 
based on pairing Boolean Operation-based screening and testing (BOOST) algorithm 
with graphic processing units. The original algorithm BOOST stores genotypic input in 
bitwise operations to construct 2 x 3 (group x variant) contingency tables for space and 
computational efficiency (see Wan, Yang, Yang, Xue, Fan, Tang, & Yu, 2010). Next, 
BOOST conducts a two-step procedure, which begins by approximating the likelihood 
ratio test-statistic57 for each SNP pair and then applies an upper-bound threshold to 
'prune statistically insignificant interactions' (Wang, Lui, Feng, & Wong, 2012). The 
second stage is the test phase. Herein, BOOST conducts 2-way interaction tests using the 
classical likelihood-ratio to test for statistically significant interactions (Yung et al., 2011; 
Chen & Gou, 2013; Niel, Sinoquet, Dina, & Rocheleau, 2015).   

Penalized regression methods include Least Absolute Shrinkage and Selection 
Operator (LASSO) (Tibshirani, 1996) and Smoothly Clipped Absolute Deviation (SCAD) (Fan 
& Li, 2001). Both LASSO and SCAD employ convex optimization to minimize the 

penalized residual sum of squares by constraining the size of regression coefficients (𝛽) 

via a tuning parameter (𝜆). In doing so, by adding a regularization term to be 

minimized, 𝜆 ∑ 𝛽oo  the solution reduces the variance between estimates and their true 
value (Agresti, 2015). As such, penalized regression methods produce a sequence of 

models that vary in complexity based on the selection of 𝜆. For model selection, scoring 
validation, cross-validation, or optimization fit criteria are employed to estimate the 
lowest prediction error. However, on their own, LASSO and SCAD are not scalable and 
are reported to inflate false discovery rates with high susceptibility to noise (Niel, 
Sinoquet, Dina, & Rocheleau, 2015). To ameliorate these effects, stability selection 
methods are applied to LASSO (sLASSO) and SCAD (sSCAD) algorithms, removing the 
requirement of cross-validation, and instead bootstrap to randomly sample without 
replacement from the original data set (Gou et al., 2014). 

 
57 Tests the deviance between the full versus reduced logistic regression model, and is respectively 
analogous to the log-linear saturated association and log-linear homogenous association models 
(Agresti, 2002; as cited by Wang et al., 2012).   
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3.2.2. Data Mining and Machine Learning Algorithms 

In general, data mining and machine learning data processors are a family of 
computer algorithms designed to extract patterns, anomalies, and dependencies from 
large data structures, by the respective means of automatic/semi-automatic 
procedures58, and learning algorithms59. 

Data mining and machine learning processors step through the space of all 
potential models in a computationally efficient manner. Technical variations between 
detectors rest on the types of algorithms employed for attribute identification and 
classification (i.e., feature-selection, optimization algorithms), parameter tuning, model 
prediction, and fit ( i.e., cross-validation, permutation, hybrid-methods) (see McKinney, 
Reif, Ritchie, & Moore, 2006; Cordell, 2009). As we will see, data processors of this class 
implicitly test of epistatic effects by identifying dependencies between attributes which 
improve model prediction: 1) tree-based classifiers (Jiang, Tang, Wu, & Fu, 2009; 
Yoshida & Koike, 2011; Wei & Lu, 2014; Basu, Kumbier, Brown, Yu, 2018); 2) clustering 
algorithms (Zhang, Huang, Zou, & Wang, 2010); 3)  linear models (Gao et al., 2014; Park 
& Hastie, 2008; Wu et al., 2009); and 4) association rules (Wan et al., 2009; Wan et al., 
2010).  
 
Epistatic Detectors - Data Mining and Machine Learning  

To explore data mining and machine learning detection algorithms available to 
the empirical scientist, we briefly summarize six detectors: 1) Tree-based epistasis 
association mapping (TEAM); 2) Cellular automata (CA); 3) Random Forests (RF); 4) Multi-
Factor Dimension Reduction (MDRD); 5) ReliefF; 6) Ant-colony optimization (ACO).  

Tree-based epistasis association mapping (TEAM) is a data-mining algorithm, which 
conducts an exhaustive search for pairwise interactions between SNPs and a disease 
trait (Zhang et al., 2010). The algorithm inputs a vector of all SNPs and phenotype 
permutations and approximates a set of double looped minimum spanning trees (MST), 
where single SNPs (nodes) and weighted SNP pairs60 (undirected edges) are modelled to 

 
58 (I.e., cluster analysis, association rules, and sequential pattern mining). 
59 In which a program modifies its execution from experience in a supervised or unsupervised fashion. 
60 The weights for each edge represented by the number of individuals having different genotypes. 
For an individual genotype differences from two SNPs can be one of six combinations. 0 →1 
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maximize the computation of contingency tables (Wang et al., 2011). TEAM 
incrementally updates the observed frequencies in the contingency tables and uses 
permutation tests to derive a cut-off p-value threshold (Zhang et al., 2010; 2011). TEAM 
supports both homozygous and heterozygous data and applies to all statistical tests 

which employ contingency tables (I.e., 𝜒0, Exact likelihood ratio tests) (McKinney et al., 
2006). 

Cellular automata (CA) is a discrete dynamic state machine learning algorithm 
employed to simulate and classify real-world dynamic systems (see for e.g., von 
Neumann, 1951; Wolfram, 2002). CA employs a spatial structure (i.e., an array or grid of 
cells of any finite dimension), in which the local interaction of a single cell (atoms) and 
its local neighborhood is modelled by a finite number of states61 (Wolfram, 2002). A state 
change occurs in parallel at discrete time steps, either as a change of location or state of 
the cell in accordance to the rule table, the current state of the cell, and the state of its 
local neighbourhood (see Wolfram, 1983; Moore & Hahn, 2002). The algorithm uses 
pattern recognition to build a model that classifies and predicts disease status based on 
an array of input genotypes (Moore & Hahn, 2002). As an epistatic detector, Moore and 
Hahn (2002) employed CA along with the parallel Genetic Algorithm (GA)62 for both 
parameter selection and optimization63. CA predictive model aims to identify 
combinations of SNPs, which interact to influence the global state of disease risk 
through nearest-neighbour interactions. These predictive models are generated based on 
cross-validation. Once a predictive model is selected, the null hypothesis of no 
association is tested using permutations (Moore & Hahn, 2002; McKinney et al., 2009). 
The benefits of CA include that it is non-parametric and does not require specifications 
of the disease mode of inheritance. CA also minimizes false positives due to multiple-
testing and has the potential to analyze high-dimensional non-linear interactions 
between SNP markers (see Moore & Hahn, 2002).  

 
(indicating the genotype for each locus),1→ 0, 0→ 2, 2 →0, 1→ 2, 2 →1. Such that the genotype 
differences connecting two SNPs in the minimum spanning tree (see Zhang et al., 2010).  
61 The state of a cell is a set of discrete characteristics (i.e., gender, political affiliation, location) 
(Wolfram, 2002). 
62 Genetic Algorithm employs parallel or beam search to generate at random solutions to a 
particular problem. These solutions are evaluated based on their ability to solve the problem 
(fitness). The models with the highest fitness undergo exchanges of random model pieces 
generating variability in the solutions and another phase of model evaluation.  The afore noted 
cycle is re-iterated until the identification of an optimal solution (Moore & Hahn, 2002).  
63 This includes: 1) initiation of CA cell states with the correct combination of genetic variation; 2) 
an appropriate rule table which specifies the information processing; 3) the number of iterations. 
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Random Forests (RF) is a machine learning, model-free algorithm for classifying 
attributes based on aggregative voting of decision-trees64 (Cordell, 2009). Within the 
context of GWAS data, RF algorithms use categorical genotypic data as classifiers to 
discriminate between case and controls and to obtain SNP marker importance. As such, 
a collection of decision tree classifiers is trained (number specified by user) based on 
drawing equal-sized bootstrap samples from the original dataset; each sample produces 
an unpruned classification tree, with a random subset of predictor variables (McKinney 
et al., 2006; Cordell, 2009). Each tree is constructed using recursive partitioning and is a 
graphical structure, mapping possible values of the predictor variable to its outcome 
(conducted using a combination of values taken by the predictor variable to reach the 
binary disease state) (Cordell, 2009).  However, RF conditions on main-effects and does 
not permit a pure test of interaction,  testing instead, for the association between SNPs 
and allows for a potential interaction (Cordell, 2009)65. RF has strong predictive 
performance when composed of individually strong and uncorrelated classifier trees 
(McKinney et al., 2006). Based on the predictions of an array of classification trees, 
predictor variables are ranked and used in a regression-based search (Cordell, 2009). 
Estimation of prediction errors, and variable importance66 are conducted by comparing 
training data and permutation (Cordell, 2009). Examples of random forest detection 
algorithms to select marker and tests for interaction include EpiForest (Jiang, Tang, Wu, 
& Fu, 2009), SNPInterforest (Yoshida & Koike, 2011), GWGGI (Wei & Lu, 2014), and 
Iterative Random Forests (Basu, Kumbier, Brown, Yu, 2018).  

EpiForest (Jiang, Tang, Wu, & Fu, 2009), employ an RF algorithm, sliding 
windows, and sequential forward-selection algorithm to select a subset of SNPs that 
minimize classification error. Interactions enumerated between the sub-set of SNP 
markers are conducted, followed by a test for statistical significance for 2-3-way 

 
64 Decision trees classifies samples based on a path of decision points (determining based on a rule, 
which branch to take, based on one of the features of the sample). The path typically ends at the 
end or a branch or a leaf, which has a class label (Denisko & Hoffman, 2018). 
65 The test of association while allowing for interaction is analogous to comparing the fit of a linear 
model with main and interaction effects of both loci, with a model in which all terms involving the 
second are removed (Cordell, 2009).  To this end, the joint test of the association is 'less powerful' 
than a single locus association test if epistasis is not present (see Cordell, 2009).     
66 Gini importance or mean decrease impurity (MDI) is the average of a variables total decrease in 
node impurity (weighted by the probability of reaching a particular node), averaged over all trees 
in the ensemble. Higher the MDI, the higher the variable importance. Gini impurity is a metric 
regarding the probability of incorrect classification at a given node in a decision tree based on 
training data.  
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interactions using a B statistic67 (see Zhang & Liu, 2007). SNPInferforest accommodates 
SNPs with both large and small marginal effects and identifies possible interactions as a 
branch68 on the decision tree. SNPInterforest quantifies interaction strength as a score 
based on the frequency of SNP combinations in a forest normed by a baseline level69 
(Yoshida & Koike, 2011). As such, a detection threshold of the normalized scores is 
empirically determined above 25 standard deviations (Yoshida & Koike, 2011). 
Conversely, GWGGI replaces the standard variable selection with a feature-selection 
forward algorithm to detect joint and higher-order association of SNP markers with the 
disease. Selected SNP markers are tested for interaction using a likelihood ratio and 
Mann-Whitney statistic (Wei & Lu, 2014; Niel, Sinoquet, Dina, & Rocheleau, 2015). 
Finally, Iterative Random Forests (Basu, Kumbier, Brown, Yu, 2018), tests for p-way 
interactions through iteratively refining a weighted random-forest, employing bootstrap 
selection, and a random-intersection tree algorithm to find subsets of SNPs. The co-
occurrence of particular subsets over each iteration signifies a potential interaction that 
is assessed with a stability score70 (Denisko & Hoffman, 2018).  

Multi-Factor Dimension Reduction (MDRD) is an exhaustive search data-mining 
algorithm, designed to identify combinations of genetic variants associated with 
increased risk of a multi-factorial common complex disease (see Ritchie et al., 2001; 
McKinney et al., 2006). Designed to consider every possible combination, MDRD pools 

𝑁-genetic factors into cells within 𝑁-dimensional space, each labeled high risk or low risk 
based on a threshold71 or the ratio of case vs controls within each cell (McKinney et al., 
2006; Cordell, 2009). By reducing genetic factors from an N-dimensional contingency 
table to one dimension, each constructed attribute is a combination of factors (or genetic 

 
67 For L one-way tests, the B statistic tests every candidate SNP and reports all SNPs whose p-
values are less than α following Bonferroni corrections. Two-way interaction tests use the B or a 
conditional B statistic and Bonferroni correction for L(L-1)/2 tests. This depends on the: 1) absence 
(e.g., no marginal effects = B statistic); 2) presence (e.g., both have marginal effects = no test for 
interaction); 3) or partial presence (e.g., only one SNP of the pair has a marginal effect = 
conditional B statistic)). Similarly, in the three-way tests, a B or conditional B statistic is applied to 
all three-way interactions with Bonferroni corrections for L(L-1) (L-2)/6 tests. 
68 A branch is a path from the root node (comprises of 1-2 SNP markers) to a leaf node and indicates 
a possible interaction amongst SNPs on that branch.   
69 The baseline level is the expected number of simultaneous appearances under the null 
hypothesis (of no SNP interactions).  
70 The stability score is based on averaging over all bootstrapped selections and describes the 
fraction of times an interaction occurs. Scores equal to or greater than 0.5 are considered indicative 
of stable interactions. 
71 T=1.0, high risk > T, low risk <T. 
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variants) (McKinney et al., 2006; Cordell, 2009; Zeigler, König, & Pahlke, 2010; Evans et 
al., 2011). Model evaluation and accuracy are respectively conducted using a naive Bayes 
classifier, the prediction of group status (case or control), and cross-validation (McKinney 
et al., 2006; Cordell, 2009). cuGWAM, is one algorithm that applies MDRD using a GPU 
environment, which scales well with sample size and the number of markers. 

ReliefF is a scalable feature-selection filtering algorithm, which detects 
dependencies between SNP markers (Cordell, 2009). Herein, the nearest-neighbor 
algorithm selects two attributes and calculates the proximity based on the Manhattan 
distance. Each neighboring attribute is scored positively or negatively based on their 
classification as either being in the same or different phenotypic class, and a weight is 
assigned accordingly. Herein, when the class value differs between pairs, the SNP 
feature score increases. Whereas, when the class value is the same, the SNP feature score 
decreases. As such, the SNP score serves as a quality estimate indicating whether or not 
the marker is involved in the interaction (Cordell, 2009; McKinney et al., 2006). 
Derivatives of ReliefF include: i) Regression ReliefF (RReliefF) – which conducts attribute 
estimation using regression models (Robnik-Šikonja, & Kononenko, 1997); ii) Tuned 
ReliefF (TuRF) - which utilizes recursive elimination of features and an iterative 
application of ReliefF to ameliorate noise in large search spaces (Moore & White, 2007; 
Niel, Sinoquet, Dina, & Rocheleau, 2015); iii) and methods generalizable to multi-class 
(Kononenko, 1994), and continuous data (Robnik-Šikonja, & Kononenko, 1997).  

Ant-colony optimization (ACO) is a machine learning algorithm, which employs a 
heuristic-search method for disease traits. In this algorithm, an "ant" is a set of SNPs, 
drawn according to a probability density function. The probability of selecting an SNP is 
due to its "pheromone concentration"72. Following set selection, the algorithm employs a 

test of joint association between the SNP and the trait using a 𝜒2. If the test has a 𝜒0 > 𝜏, 

where 𝜏  is a particular threshold, the PDF will be updated, and the process restarts. 
Examples of ACO algorithms include AntEpiSeeker (Wang, Robbins, & Rekaya, 2010)), 
epiACO (Sun, Shang, Liu, Li, Zeng, 2017), and AntMiner (Shang, Zhang, Lei, Zheng, 
Chen, 2012). AntEpiSeeker (Wang et al., 2010) is a candidate search design, which 
conducts a parallel search for multiple groups of SNPs associated with a disease trait. 
The algorithm requires specifications such as the number of iterations, order of 

 
72 Pheromone concentration depends on the significance level of previous interactions between 
both the selected set of SNPs and expert knowledge. 
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interactions, number of SNP in each set, and evaporation rate of pheromones (Niel, 
Sinoquet, Dina, & Rocheleau, 2015). epiACO tests for ‘interactions’ between SNP 

combinations and a phenotype based on an 𝑆-value or fitness function73. Here, sets of 

SNPs are selected using probabilistic and stochastic path-selection while retaining and 
comparing solutions from previous iterations in the generation of new candidate SNPs 
(Sun, Shang, Liu, Li, Zeng, 2017). Finally, AntMiner (Shang et al., 2012) is a generalized 
version of AntEpiSeeker, by utilizing ant-decision rules and heuristic search to detect 
epistatic interactions. 

3.2.3. Bayesian Model Selection  

Broadly, Bayesian model selection technologies are a range of data processing 
algorithms (i.e., general linear models (GLM), network learning, and graph theory) 
employed under the framework of Bayesian inference. Herein, the Bayesian inferential 
approach rests on the assumption that the empirical scientist can describe their degree of 
belief apriori regarding possible parameter values and update this belief following a set 
of empirical observations (see Silvey, 1975; Kruscheke, 2011; Morey & Rouder, 2011; 
Kaplan & Depaoli, 2013). In particular, in the empirical setting, one specifies the 
probability model of all model parameters, and upon stationarity and convergence of 
the simulated conditional posterior distribution, tests model sensitivity and fit (see 
Gelman, Carlin, Stern & Rubin, 2014). While summary statistics, posterior intervals, and 
probabilities from the posterior distribution supplement model interpretation. In the 
context of hypothesis testing, one may generate and report the posterior probabilities for 
each hypothesis (rather than employing a criterion set forth to make a binary decision) 
(Silvey, 1975); or construct a Bayes Factor (BF) to summarize the evidence in favour of 
one statistical model over another (see Kass & Raftery, 1995; Morey & Rouder, 2011). In 
the context of epistasis detection, as we will see, Bayesian model selection detectors employ 
both implicit and explicit tests for epistastic effects.  

Epistatic Detection - Bayesian Model Selection Algorithms  

To explore further the nature of Bayesian epistatic detectors, we review four 
epistatic detection algorithms: 1) Bayesian Epistasis Association Mapping (BEAM) (Zhang 

 
73 Based on information theory and probability theory, the mutual information (MI) between two 
random variables is a measure of mutual dependence and is typically used in feature selection 
algorithms (see Sun et al., 2017). 
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& Liu, 2007); 2) Epistatic Interaction Detection using Bayesian Network (EpiBN) (Han, Chen, 
Talebizaeh, & Xu, 2012); 3) Detection of Associations, vis-a-vis, Markov Blanket (Dasso-MB) 
(Han, Park, & Chen, 2010); 4) Hybrid Bayesian Model Selection (Yi, Yandell, Churchill, 
Allison, Eisen, & Pomp, 2005; Yi, Kaklamani, and Pasche, 2012 ).  

Bayesian Epistasis Association Mapping (BEAM) (Zhang and Liu, 2007) identifies 
single and pairwise associations between genetic loci for quantitative and disease traits 
in case-control studies. The algorithm tests for 'interaction' based on the between-group 
difference between inter-locus genotype frequency distributions (Wei, Hemani, & 
Haley,2012). Sets of SNPs are discretely categorized based on their relationship with the 
trait:  SNPs un-associated to the trait = 0; SNPs with a main effect = 1; and SNPs with 
pair-wise association = 2. The assignment of SNP markers to each distribution is based 
on a sampling from the posterior distribution using Markov Chain Monte Carlo 
(MCMC) sampler and the specification of Dirichlet priors for each group. Computational 
speed is contingent on both MCMC iteration and sample size, ~ 2-8 minutes for 250,000-
100,000 MCMC iterations (Zhang & Liu, 2007). BEAM is a hybrid algorithm conducting 
a classical statistical significance test for associations between a marker(s) and the 
disease phenotype by implementing a B-test statistic74 (Zhang & Liu, 2007).  

Epistatic Interaction Detection using Bayesian Network (EpiBN) (Han et al., 2012) is a 
model selection algorithm, which employs both MCMC and a Bayesian score-and-search 
algorithm to select candidate SNPs and epistatic effects. EpiBN algorithm assumes SNPs 
are causal genetic variants and graphically depicts the main or interaction effects of 
SNPs to a trait using the branch-and-bound iterative score and search procedure.  Each 
iteration adds, reverses, or deletes an edge (i.e., interaction) to produce a network 
structure, which best fits the observed data. The network structure is scored, such that 
the highest score (EpiScore)75 is considered the best fit between the network structure and 
the observable data (Han et al., 2012).   

 
74 𝐵/ = 𝑙𝑛 0!(2",	5")

0#(2",	5")
; where 𝐷/ and 𝑈/denote the genotype data for M in cases and controls, and 

the numerator and denominator are the Bayes Factor, or marginal probabilities of the data for 
each hypothesis (Zhang & Liu, 2007). Under the null hypothesis, the B test statistic has an 
asymptotic 𝜒&distribution.  
75 See Han and colleagues (2012) for further details. The epistatic scoring function proposed by the 
authors is essentially the AIC scoring function, with the substitution of the variance of the G2 
distribution with the true variance of G2 from the data (where G2 refers to the test of independence 
or conditional independence of two variates for discrete variables).  
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Detection of Associations using Markov Blanket (Dasso-MB) (Han, Park, & Chen, 
2010) employs a Markov-blanket variable selection algorithm to detect epistasis.  The 
variable selection algorithm generates, for some variable, a set of variates with the 
minimal number of either 'direct' or 'conditional effects' to the trait. Forward and 
backward phases iteratively build a candidate Markov blanket by respectively adding 
new SNPs under the condition they pass a user-defined threshold of dependency76 and 
removing false positives from the model using conditional independence tests77.  

Hybrid Bayesian Model Selection is a detection framework that implements both 
Bayesian inference and GLM to the task of detecting epistatic effects. Naturally, 
specification of prior distributions, simulation methods (i.e., MCMC), posterior 
inference/analysis (i.e., EM algorithm (Yi, Kaklamani, and Pasche, 2012), Bayesian model 
averaging and Bayes factors (Yi, Yandell, Churchill, Allison, Eisen, & Pomp, 2005)) 
effectuate variability in model execution; however, pairing Bayesian inference with GLM 
permits explicit tests for interaction, considers marginal effects, covariates, and gene-
environment interactions while boasting improvements in test power and scalability (see 
Hoeting, Madigan, Raferty, & Volinsky, 1999; Wei, Hemani, & Haley, 2014). 

 Epistasis Detector Pitfalls 

While the number of sophisticated epistatic detection technologies has 
proliferated over the course of several years, there exists, however, a growing disparity 
between the observed and expected rate78 in the detection of robust79 epistatic effects in 
complex traits for human populations. As such, our aim in this section is to consider a 
series of limitations in the technical treatment of epistatic detection, categorized as those: 
1) general to epistatic detection80; 2) bespoke to each data-processing category; and 3) 
broadly of the quantitative, theoretical and biological sort.  

 
76 Here the dependency threshold is an observed value of a G2 statistic (log-likelihood test statistic 
for a multi-nominal model). 
77 SNPs are removed if they are independent of the phenotype given other SNPs within the set 
(Han, Park, & Chen, 2010). 
78 Given its ubiquitous role for model organisms.  
79 Recall from Chapter 2, robust epistasis refers to scale-invariant interaction effects between the 
same genetic loci, replicated independently. 
80 See the Introduction and Cordell (2009) for further details.  
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Regarding the former, there are several areas of confusion in the technical 
treatment of epistatic detection, originating perhaps in the various working definitions 
propagated between several academic fields - natural extensions of this sort are manifest 
in several incongruencies: 1) the definition(s) of epistasis; 2) implementation of explicit 
and implicit tests for its’ effects; and 3) the notable absence of a standardized effect size 
metric across detection technologies, which in aggregate, regrettably leaves both 
parametric detectors and their non-parametric associates lost in translation.  

Of the second, there are numerous technical limitations bespoke to each data-
processing methodology the empirical scientist must navigate. In the case of parametric 
regression, while linear and logarithmic regression technologies generate and evaluate 

an optimal composite of 𝑋	���⃗ to predict Z, incongruences exist between the inferential goals 
of epistatic detection and its' technical realities. One such incongruence is the inability 
for linear regression technologies to identify important predictors and a subset of 
predictors whose population-level effects are purely epistatic81.  Owing to the orthogonal 

decomposition of Z into two vector-subspaces model and null82 − one cannot ascertain 

variant importance vis-à-vis partitioning 𝑅5l0  into the sum of s + m orthogonal subspaces 

or compare the magnitudes of the partial 𝛽	coefficient weights, as their transformed83 
and conditional nature84 relays very little information regarding the real-world 
importance of a particular variant on trait variation (Pedhauz,1997). Similarly, while one 
may compare saturated (epistatic) versus reduced (additive) linear models, the proportion 

of variance explained by the �𝑠𝑟�	conditional impacts (should an epistatic model be 

consonant with nature) remains unknown. Reasonably, it is the case one could test a 
series of pairwise contrasts to aid in the resolution of whether there exists a linear or 
non-linear function between a set of predictors 'important' to trait variation.  However, 

 
81 Models of epistasis in the absence of main or marginal effects.  
82 Z is decomposed into a model space: C(A) = {𝜂:	𝜃, such that 𝜂 = 𝑨𝜃},	spanned by the columns of 
the model matrix A; and its orthogonal complement C(𝑨)7 the null space of AT, denoted as N(A): 
which contains the differences between possible data vectors and model-fitted values. Of course, 
Dim[C(A)]+Dim[N(𝑨)] = 𝑠.  
83 The residual of the predictor after it is projected into the span of the remaining predictors. 
84 Non-orthogonal by design the weights of a partial coefficient (the average number of standard 
deviations change in Z associated with a 1-standard deviation increase in a predictor while holding 
the remaining predictors constant) are both transformed and conditional on the other predictors in 
the model. As such, comparing predictor weights relays very little information regarding the real-
world importance of a particular variant on trait variation. For example, a predictor may be 
strongly related to Z but have a small 𝛽	coefficient weight.  
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given this test scenario effectuates several companions (i.e., the requirement for FWER 
control, data sparsity, and high model complexity), which regrettably inflate P(Type I 

error)85, plummet statistical power P(1-Type II error), and bias 𝑅8⃗:& 	(see Agresti, 1990; 
Evans, 2011; Wei, Hemani, & Haley, 2012; Cordell, 2009; Zeigler, König, & Pahlke, 2010). 
Furthermore, departures of the empirical data-structure from the parametric 
assumptions86 required for the majority of parametric test procedures opens the 
metaphorical door to several non-parametric alternatives including data mining and 
machine-learning detection algorithms. 

While both data mining and machine learning algorithms are capable of 
implicitly testing for the presence of all m-way 'interactions' within high-dimensional 
data structures, they too remain sensitive to collinearity amongst predictors, incomplete 
and unbalanced datasets (McKinney et al., 2006; Cordell, 2009). Furthermore, the 
aforesaid algorithms often lack generalizability and interpretability as both are stymied 
by unavoidable computational challenges in test-scalability87, reliance on user-specified 
thresholds as evidence of model significance, and the potential for over-fitting requiring 
further independent replication. In the absence of a universal framework to determine 
the model significance or quantify the magnitude of an epistatic effect, data mining and 
machine learning algorithms remain without sound comparability between both 
frequentist and Bayesian detectors. 

While Bayesian model selection methods provide novelty and flexibility to 
epistatic detection, they remain at the whim of several technical issues: 1) user-
specifications in the selection of its probability model and prior distributions; 2) user-

 
85 Specifically, under consideration of pairwise association, the 𝜒&	test-statistic has a poor 
approximation of 𝑡ℎ𝑒	𝜒&distribution when selected SNP markers have a high single-locus 
association to the trait of interest (Agresti, 1990). There is an increase in P(Type I error) when 
testing model fit between the regression of reduced versus saturated models due to test 
dependencies (Wei, Hemani, & Haley, 2012). As such, potential dependencies between each 
independence-test, coupled with the risk of inflated or artificially induced pairwise association 
due to limits of the asymptotic approximation of the 𝜒&, are potential sources of error (Wei, 
Hemani, & Haley, 2012; Gouley, 2005).  
86 Presence of multivariate normality; linear independence such that A=full rank and (A’A)-1 is 
identifiable; absence of outliers and influential points; homoscedasticity.  
87 RF algorithms computational challenges emerge to ensure that two SNPs jointly selected are 
present in a sufficient number of trees (Zeigler, Zonig, & Thompson, 2008). Authors report that for 
a single detection of a 2-way interaction, the same two SNPs must occur in the same tree 2x106, so 
at least 500,000 trees (700 SNPs per tree) must be grown to ensure interaction representation. 
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directed diagnostics88 for model evaluation, sensitivity, and fit; 3) high computational 
costs required to generate posterior simulations and BF for complex hypothesis tests; 
and 4) the unfortunate fact BF remain without a consensus on the threshold indicative of 
model significance (Kass & Raftery, 1995; Zeigler, Zonig, & Thompson, 2008). To this 
end, it is clear that the vast majority of epistatic detectors reduce un-problematically to 
an exercise of model-fitting, suggesting the field remains without a theoretical basis for 
epistatic detection.  

Lastly, there exist several pitfalls of the quantitative, theoretical, and biological 
sort an empirical scientist will inevitably confront when undertaking the task of epistatic 
detection.  First, an obscure relationship exists between epistasis and its population-level 
effect, as there does not exist a predictable relationship between the fact of a particular 
extant genetic architecture having the property of epistasis and the magnitude of 

𝜎C&0 .	This is not surprising, as the quantity 𝜎C&0 	is governed in part by the 𝜑j, j=1..n (i.e., 
the proportion of alleles of the second type at each locus), and captures the sum of all 
interaction effects.  

Second, there exist several sources of noise common to the process of genomic 
data-extraction, its’ experimental execution, and the nature of genetic architecture, each 
of which has the potential to obscure and mimic a true epistatic signal, should an 
architecture with the property of epistasis exist. Of the former, tests for epistatic effects 
are sensitive to genotyping errors due to batch-effects, the differential bias in genotype 
calling, low sequencing density, and genomic data extraction process, which impact the 
quality of genomic sequencing data (Lui et al., 2001; Zeigler, Konig, & Thompson, 2008; 
Lee et al., 2010). Furthermore, GWAS are riddled with examples of either loosely applied 
overarching hypotheses that ‘a particular trait or pathology has a genetic etiology’, or a 
series of a-posteriori hypotheses postulated from groups independent of those who 
designed the study and implemented genomic data extraction (Lambert, 2012). To this 
end, while the former may be ameliorated with improvements in sequencing depth, 
sample extraction, and post-processing methods (i.e.,. quality control and imputation), 
deviations in the processing of genomic data and experimental execution across 

 
88 Diagnostic tests include:1) chain mixing, convergence, and stationarity; 2) serial dependencies 
and evidence of an adequate burn-in period for posterior simulations. As such, typical diagnostics 
include Gelman-Rubin Diagnostics, Geweke, Heidelberger-Welch stationarity, and half-width test, 
as well as visual inspection of autocorrelation and trace plots (see Gelman, Carlin, Stern, & Rubin, 
2004)  
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empirical studies may obscure the sound detection and replication of epistatic effects, 
independent of the actual test performance of epistatic detectors (see Lambert, 2012).  

Of the latter, there are several sources of structural dependencies between loci, 
independent of epistasis, engendered by features of genetic architecture such as linkage 
disequilibrium (LD), haplotype effects, and population stratification.  LD refers to the co-
inheritance of alleles at distinct genetic loci at a higher rate than expected under 

independent segregation in a population −	its etiology is proposed to stem from 
population and demographic dynamics, such as population structure and growth89, 
genetic drift90, admixture or migration91, natural selection92, variable rates of 
recombination93 ,mutation94, gene conversion95, and pleiotropy96 (see Ardlie, Kruglyak, & 
Seielstad, 2002). Accordingly, following a novel mutation, over each generation 
recombination changes the sequence of alleles (and thus the spatial proximity of 
haplotypes neighboring a variant). To this end, while the effect of LD is typically due to 

 
89 Rapid population growth decreases LD and reduces genetic drift (Ardlie, Kruglyak, & Seielstad, 
2002).  
90 Genetic drift refers to generational changes in gene and haplotype frequencies in a population 
of a finite number of offspring due to the random sampling of gametes. As frequency changes are 
accentuated in small populations, genetic drift of small stable populations tends to increase LD as 
haplotypes are lost from the population (Ardlie, Kruglyak, & Seielstad, 2002).  
91 Admixture and migration refer to gene flow between populations, which produces spurious 
LD. In this situation, LD is proportional to the differences in allele frequency between 
populations and remains unrelated to the distance between markers. However, following 
subsequent generations, spurious LD, which is generated between unlinked markers quickly 
disappears, while LD between nearby markers is slowly broken down by recombination events 
(Ardlie, Kruglyak, & Seielstad, 2002).  
92  The phenomenon of natural selection affects the extent of disequilibrium based on either: 1) 
hitchhiking effect – an entire haplotype which flanks a favored variant is rapidly swept to high 
frequency or fixation. Or selection against deleterious variants inflate LD, as the deleterious 
haplotypes are removed from the population; 2) epistatic selection – the combinations of alleles at 
two or more loci on the same chromosome leads to the association of particular alleles at different 
loci (studied in drosophila, but not yet been shown to alter LD in humans)(Ardlie, Kruglyak, & 
Seielstad, 2002). 
93 As recombination events break down LD and are variable across the genome, the extent of LD 
is expected to inversely vary with local recombination rates. To this end, LD may be strong across 
the non-recombining regions and break down at particular hot spots (Ardlie, Kruglyak, & 
Seielstad, 2002).  
94 Single-nucleotide polymorphisms characterized by CpG dinucleotides are thought to have high 
mutation rates with little or no LD to markers, even in the absence of historical recombination 
(Ardlie, Kruglyak, & Seielstad, 2002). 
95  Gene conversion refers to the phenomena during meiosis wherein a short stretch of the copied 
chromosome transfers to the other copy- yielding an effect of two very closely spaced 
recombination events, which can break down LD like recombination or recurrent mutation. 
Recently, the rates of gene conversion in humans are reportedly high and important in LD 
between very tightly linked markers (Ardlie, Kruglyak, & Seielstad, 2002). 
96 Pleiotropy is the phenomenon in which a genetic factor influence more then one phenotypic 
trait outcome.  
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spatial proximity of two loci, LD may also occur between loci on different chromosomes 
due to selection or population stratification (Zeigler, Zonig, & Thompson, 2008). While 
the structure of LD is characterized within model organisms; however, less is known 
about LD structure in humans, perhaps owing to the variability in the rate of LD decay97, 
pattern and proportion of LD between ethnic groups, and regional variability98 between 
both local and distal polymorphisms (see Ardlie, Kruglyak, & Seielstad, 2002). While 

high LD (r2=.8)99 and a low rate of decay100 are required in GWAS designs between a 

casual variant and a tag SNP marker to capture common variation in the genome, several 
corollary relationships exist. Firstly, the proportion of variance explained by a tag SNP is 
smaller than the variance explained by a true causal variant.  As such, the rate of decay in 
LD between a genetic effect and a observed marker is linear (r2) for the detection of 
additive effects;  r4 for dominance effects; r4 for additive x additive; r6 for additive x 

 
97 LD decay is a function of the number of generations of random mating (t), and recombination 
distance (r) of the loci: Dt = D0(1 − r)t. Here Dt is the amount of remaining LD between two loci 
after t generations of random mating, and Do is the original LD (Zhu, Gore, Buckler, & Yu, 2004). 
Genome-wide LD is presented graphically as a decay plot of estimated D' or r2 over distance or 
physical linear arrangement of LD between polymorphic sites within a gene or loci along a 
chromosome.  
98 Regional variability in LD due to gene conversion or differences in allele frequency also present 
issues in quantifying or comparing populations based on an average level of LD. As even a region 
with high LD, may have some pairs of loci will not show levels of LD (Ardlie, Kruglyak, & 
Seielstad, 2002). 
99 Quantified as the dependence of two genetic loci (metrics of LD include D (Lewontin, 1964), 
normalized D’ (Lewontin, 1964), and r2 (Hill and Robertson, 1968)). D quantifies the difference 
between observed haplotype frequencies and expected allele frequencies under random 
segregation (Ardlie,2002). Here the expected haplotype frequency = allele frequency of both alleles 
(PAPB) – as such normalized D' is often used for interpretability and is rescaled to take into account 

cell count. 𝐷′;< = U
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While values of D’<1 suggest disrupted ancestral LD, the relative magnitude of values of D’ has no 
clear interpretation (Ardlie, 2002).  r2= 2&
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; (N is the population size, and c is the recombination rate) 
(Hill and Robertson, 1987; as cited by Zhu, Gore, Buckler, & Yu, 2004). D=1, suggests “complete 
LD”; and r2= 1 suggests perfect LD. Wherein the former refers to the circumstance where three out 
of the four possible haplotypes in the population, two loci are not separated by recombination. The 
latter refers to a state where two of the four possible haplotypes have the same allele frequencies. 
100 High LD decay suggests a shorter distance of LD, which provides higher mapping resolution, 
and requires a large number of markers (Zhu, Gore, Buckler, & Yu, 2004). Additionally, LD decay 
(r2=0.1, 0.2) has an impact on the mapping resolution and marker density in which higher LD 
decay results in lower mapping resolution and requires increased marker density; while lower 
LD decay permits increased mapping resolution and requires lower marker density (Ardlie, 
Kruglyak, & Seielstad, 2002). 
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dominance; and r8 for dominance x dominance epistatic effects101 (Wei, Hemani, & Haley, 
2014). Secondly, the presence of unknown structural dependencies between tag SNP 
markers or a pair of SNP markers with an unknown or unlinked causal variant serves as 
potential sources of spurious associations. Akin to LD structure, the impact of haplotype 
effects due to the co-inheritance of a group of genes, combination of alleles, or cluster of 
SNPs from a single parent has the potential to yield structural dependencies, which 
inflate test-statistics in a pairwise scan (Wei, Hemani, & Haley, 2014; Zeigler, Konig, & 
Thompson, 2004). Comparably, owing perhaps to Simpson's paradox, another source of 
structural dependency which mimics the effect of epistasis and inflates P(Type I error) is 
population stratification or population substructure (Zeigler, Konig, & Thompson, 2004). 
Here shared ancestry between cases (rather than genes associated with disease) accounts 
for systemic differences in allele frequencies between cases and controls, requiring its' 
effects deemed negligible or statistically adjusted for102 before the investigation of single 
locus or epistatic effects (Pearl, 2013; Zeigler, Konig, & Thompson, 2004). While the 
implementation of higher sequencing density and modeling covariates using 
permutation, GLM, or fine-fit mapping techniques103 to identify and ameliorate sources 
of spurious association (Wei, Hemani, & Haley, 2014). It is clear that the deconvolution 
of empirical and biological artifacts from epistatic signal if an architecture with the 
property of epistasis is indeed present, remains an ongoing challenge. As such, in light 
of the aforenamed pitfalls, it is apparent that the adjudication of epistatic detectors based 
on empirical data alone remains problematic at best, as the true engendering 
architecture (and its constituent parts) extant in nature remain at all times unknown to 
the researcher.  

 

 
101 As such, the coverage of the genome is greater when searching for additive effects versus 
interaction effects (Wei, Hemani, & Haley, 2014). 
102 When geological information is available stratified analysis are typically employed. However, 
in its’ absence, procedures such as genomic control (GC, Devlin and Roeder, 1999), structured 
association (Pritchard et al., 2000), and eigenstrat (Price et al., 2006) are typically used (see Zeigler, 
Konig, & Thompson, 2008). 
103 Fine-fit mapping refers to the sequencing of all variants in an associated region or dense 
coverage. Naturally, the ideal test scenario is one in which the two SNPs are not in LD with each 
other or with a third unobserved variant. Wei and colleagues (2014) suggest fitting fine-mapped 
additive SNPs as covariates with the interacting SNPs to evaluate SNP independence, in addition 
to ensuring that interacting SNPs have an LD r2 < 0.1 between the causal variant and the observed 
SNP, and a normalized disequilibrium be Dʹ < 0.1 to reduce the possibility of haplotypes effects.   
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Chapter 4. Epistasis and its Detection: Technical 
Foundations 

Introduction  

As demonstrated in Chapter 3, whatever sophistications are inherent to their 
technical details, in a broad stroke, an epistasis detector is simply a tool of detection and, 
accordingly, must answer to the logic of detection theory. It follows, then, that its 
success as a detector of epistasis will rest on a) the extent to which the class of objects the 
elements of which are its targets of detection is consonant with the normative definition 
of the concept epistasis and b) the inferential soundness of the detector itself. Our aim in 
this chapter is to lay forth in broad terms: 1) a technical definition of the property 
of epistasis and its engendering architecture; 2) the notion of genotype-specific epistatic 
effects; 3) and the technical foundations of the epistatic detection problem.  

 Definition of Epistasis Revisited  

For s >1, recall that an architecture has the property of epistasis when, for at least 

2 of the 3S genotypes, 𝒈*,	 

Ψ’(𝒈*)	≠ Ψ’(𝒈*)Main.        (4.1) 

In Chapter 2, Ψ’(𝒈*)Main was defined as: [𝜇;<(𝒈) + ∑𝛽(𝒈"∗) + ∑𝛿(𝒈𝒋∗)]. In preparation for 

the simulation studies to be undertaken, we now elucidate in a bit more detail, the 

nature of Ψ’(𝒈*)Main, and, in consequence, so too epistasis. To do so, we begin by 

defining: 𝒈q to be the x 3S element vector of genotypic values (Ψ’(𝒈*)); D, the 3Sx 3S 

diagonal matrix, the elements of which are the probabilities P(𝒈*), in the same 

lexicographic order as 𝒈q; A to be the 3Sx[1+3S] design matrix; and 𝐈𝟑 the [3x3] identity 
matrix. Examples of A include: 

for s = 2,   

A = [1�⃑ s⨂1�⃑ s:	𝐈𝟑⨂1�⃑ s:	1�⃑ s⨂𝐈𝟑]      (4.2) 

    = [1�⃑ t ∶ A1 : A2]; 
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and for s = 3,           (4.3) 

 A = [1�⃑ s⨂1�⃑ s⨂1�⃑ s: 1�⃑ s⨂1�⃑ s⨂	𝐈s: 𝐈s⨂1�⃑ s⨂	1�⃑ s: 1�⃑ s⨂	𝐈s⨂	1�⃑ s] 

     = [1�⃑ 0u : A1 : A2 : A3]. 

Let A* be the reduced design matrix, with first column identical to A, but in which the 

final column of each AJ is discarded [AJ→ 𝐀v∗]: i.e., A* = [A [ ,1], 𝐀$∗ , 𝐀0∗ , ...].  Then, the [1x 

3S] vector of main effects fitted values is, 

  Ψ’(𝒈v)Main = A*         (4.4) 

in which,  

=	(𝐀∗<𝑫𝐀∗)%$𝐀∗<𝑫𝒈q.       (4.5) 

Evidently,  

 𝜎C&0  = (𝒈v - A* )’ 𝑫(𝒈v– A* ) 

 𝜎C&0   = 𝒈v ’D	𝒈v – 𝒈v’DA*(A*’DA*)-1A*’D	𝒈v.      (4.6) 

Letting i signify gene content at locus 1, j at locus 2, etc., it can be shown that the 

element of Ψ’(𝒈v)Main corresponding to any 𝒈*, is equal to:  

for s = 2,  

 Ψ’(𝒈*)Main= [ �̂�!" =	𝜇!. + 𝜇." − 𝜇;<(=)];      (4.7) 

for s = 3,  

 Ψ’(𝒈*)Main= [	�̂�!"o	=		𝜇!.. + 𝜇.". + 𝜇..o − 2𝜇;<(=)];     (4.8) 

and, finally, for the general case of s loci:   

 Ψ’(𝒈*)Main= �̂�!"oA..= [	𝜇!.. + 𝜇.". + 𝜇..o +⋯− (𝑘 − 1)𝜇;$(=)].    (4.9) 

In other words, the main effect fitted values contained in A*(A*’DA*)-1A*’D𝒈v is equivalent 

to those yielded by a regular s-way ANOVA on Ψ’(𝒈*). We will find it convenient to 

 →θ

 →θ

 →θ  →θ
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employ this last expression, Ψ’(𝒈*)Main , hereafter, and define epistasis as that property of 
an architecture wherein for at least 2 of the 3S genotypes, 

Ψ’(𝒈) ≠ Ψ’(𝒈*)Main,        (4.10) 

or equivalently, the circumstance in which	𝜎C&0  ≠ 0. 

 Genotype-Specific Epistatic Effects 

For a particular genotype 𝒈*,	the genotype-specific epistatic effect is defined as 

  𝜏(𝒈*) = Ψ’(𝒈*) –	Ψ’(𝒈*)Main.104
       (4.11) 

Naturally, there are 3S of these effects, and it can be proven that 

E(𝜏(𝒈)) = 0105 and V(𝜏(𝒈)) =	𝜎C&0 .        (4.12) 

In the case in which 𝑠 = 2, for example, 

E(𝜏(𝒈)) = E(Ψ’(𝒈*) –	Ψ’(𝒈*)Main)      (4.13) 

= E(Ψ’(𝒈)) –	E(𝜇!. + 𝜇." − 𝜇;<(=)) 

=	𝜇;<(𝒈) −  𝜇;$(𝒈) + 𝜇;$(𝒈) − 𝜇;$(𝒈)¡ = 0, 

and 

V(𝜏(𝒈)) = 𝐸[𝜏(𝒈) − E(𝜏(𝒈))]2       (4.14) 

= ¢∑ ∑ 𝑃(𝑔!")s
".$ �τt𝑔!"u�

0s
!.$ ¤  

= 	𝜎C&0 .   

 
104 Please see the works of Cockerham & Kempthorne (1954); Falconer & Mackay, (1996); Lynch 
& Walsh (1998); Templeton (2000) for further details and definitions on epistatic genic effects or 
interaction deviations.  

105 𝐸(𝜏(𝒈) − 𝐸(𝜏(𝒈))	= 𝐸(𝜏(𝒈) − 𝐸(𝐸(𝜏(𝒈)))	=	𝐸(𝜏(𝒈)) − 𝐸(𝜏(𝒈))	= 0.  
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 Technical Foundations of Detection  

An architecture with the property of epistasis is one yielding a non-zero epistatic 
variance component.  As such, the detection problem as related to epistasis reduces to 

that of making a binary decision vis-a-vis the hypothesis pair: [𝐻[: 𝜎C&0 =0, or 𝐻$: 𝜎C&0 ≠0]. 
Broadly, let there be a statistical procedure P designed to yield a binary decision 

respecting this pair. P features a test statistic T, the distribution of which is Δ[n, 𝜙<∗], 

wherein n is the sample size; 	𝜙<∗ the effect size measure (a quantity which captures the 

degree of departure from 𝐻[, or equivalently, how far from zero is the parameter (𝜎C&0 )). 

Recall that under the condition 𝐻[ is true, the distribution of T is Δ[n, 𝜙<∗= 0], called the 

null distribution, and, under the condition that 𝐻[ is false, by 𝜙<∗> 0, it’s distribution is 

𝛥[𝑛, 𝜙<∗ > 0], called an alternative distribution106. Partition the real line into two disjoint 

regions R (the rejection region), and A (the acceptance region), such that R	∪	A = ℝ. The 
decision rule of P has, then, the following form: 

 If T A, decide in favour of 𝐻[,  

 If T R, decide in favour of 𝐻$. 

Region A is selected such that P(T A|𝜙<∗= 0) = P(Type I error) is equal to an 

antecedent selected, typically low, value, 𝛼. To this end, the probability of detecting 

epistasis is simply the probability of deciding in favour of 𝐻$, when 𝜎C&0 ≠	0. Formally, 

this probability is P(T R	|𝜙<∗>0) = ∫ 𝛥[𝑛, 𝜙<∗ > 0]L , and is recognizable as the power 

function of procedure P. A procedure P is sound vis-a-vis its role as a detector of epistasis 

only if 𝛼 is set acceptably low, and, for values of 𝜙<∗ > 0 likely to be encountered in 

those empirical contexts, P(T R	|𝜙<∗>0) is large107. While the researcher may select a 
detection technology with the inferential aim of rendering decisions in regards to the 

pair [H0: 𝜎C&0 = 0 and H1:	𝜎C&0 ≠0] unless the detection technology is sound, the inferences 

 
106 As such, there exist innumerable realizations of 𝛥[𝑛, 𝜙.∗ > 0], each one coded to a particular 
standardized departure from 𝜎K0& =0. Of course, only one will be extant at the time of the test 
procedure.  
107 All told, a sound test procedure is one that delivers correct decisions with high probability (i.e., 
signaling in favor of 𝐻L when 𝜎K0& = 0 and in favor of 𝐻! when  𝜎K0& ≠	0). 

Ì
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it yields are likely to misportray the empirical state of affairs, and, in so doing, subvert 
the scientific progress. 
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Chapter 5. Issues Affecting the Probability of 
Detection 

Introduction  

 As witnessed in Chapter 4, the detection of epistasis reduces un-problematically 
to a technical issue bearing on the soundness of a statistical procedure employed in the 

service of yielding decisions about the hypothesis pair [H0: 𝜎C&0 =0, or H1: 𝜎C&0 ≠0]. In 

particular, the empirical scientist requires a test procedure P, wherein both 𝛼 is set low 

and, for values of 𝜙<∗ > 0 likely to be yielded by extant architectures, P(T 	R	|𝜙<∗) is 
large. Given that researchers have had little success in detecting epistasis even though 
theory points strongly to its existence, it would seem reasonable to entertain the 
possibility that the procedures heretofore employed have not been sound; in particular, 

that for the 𝜙<∗ > 0 occurring in nature, P(T 	R	|𝜙<∗) frequently turns out to be too 
small. Because the preeminent aim of the thesis is to investigate why it is that epistasis 
appears to be difficult to detect, it will be fruitful to elucidate in more detail some of the 

factors determining the numerical value of P(T 	R	|𝜙<∗), a task to which, in this chapter, 
we turn. 

 The parameters of P(T 	𝐑	|𝝓%∗ > 𝟎)  

Let there be, as in Chapter 4, a procedure P, the purpose of which is to yield 

decisions about the hypothesis pair [H0: 𝜎C&0 =0, or H1: 𝜎C&0 ≠0], and let T be its test 
statistic.  In the general case wherein a particular architecture has the property of 

epistasis (i.e., 𝜎C&0 ≠	0), it follows that H0 is false by some particular amount 𝜙<∗, 𝜙<∗> 0, 

unknown to the researcher, and the distribution of T is 𝛥[𝑛, 𝜙<∗]. Under this state of 
nature, the adjudication of the performance of P as a detector of epistasis is in terms of 

the power P(T∁	R	|𝜙<∗ > 	0) it delivers. In general, the probability P(T∁	R	|𝜙<∗ > 	0) is a 

function of three parameters, 𝛼, 𝜙<∗, and	𝑛.		Let us review these parameters. 

The first parameter 𝛼	stands for the probability P(T 	R	|𝜙<∗ = 0) = P(Type I 
error), i.e., the Type I error rate, the antecedent selection of which sets the critical values 
demarcating the acceptance and rejection regions which form the test-statistic T’s 

decision rule. The second parameter 𝜙<, called the effect size measure, quantifies the 

Ì

Ì

Ì

Ì

Ì
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degree of departure from H0. Power will be an increasing function of 𝜙<. In the 
conceptions of detection theory, all things being equal, the smaller the object to be 
detected, the smaller will be the probability of detection. Naturally, as with any tool of 
detection, it will not, in general, be possible to design P to ensure that it performs at a 

high level for all possible values of 𝜙’.  A given detector of epistasis will, under standard 

circumstances, deliver adequate sensitivity only within a certain range of 𝜙’.  What this 
implies is that, in sculpting a procedure for optimal employment in a given research 

context, the researcher must specify one or more candidate values of 𝜙<, say 𝜙<∗108,  
which are deemed integral to the scientific aims of the test-procedure.  Once selected, the 
aim turns to muster the resources, typically sufficient sample size necessary to achieve 

for the particular focal 𝜙<∗ under consideration, a level of power deemed sufficiently 
high (e.g., greater than or equal to .90).  As previously implied, the final parameter n 
represents the resources applied to a given problem of epistatic detection.  Naturally, the 
optimal choice of n is intimately related to the design of the instrument of detection, and, 

accordingly, depends upon several factors: 1) the values of 𝛼 and P(T 	R	|𝜙<∗ > 0) 

deemed acceptable by the researcher; 2) [corollary to the former point] the candidate 𝜙<∗, 

or the range of 𝜙< of scientific interest, likely to be extant when P is employed;  3) other 
technical details bearing on the optimal performance of P, an example being, the 
desirability of equal n over the 3s genotypes, when T is the F-test statistic, yielded by 
ANOVA based approaches to epistatic detection 109. 

All told, a test procedure P designed for detecting epistasis is sound, if before its 

employment a has been set to a reasonably low value and is n specified such that P(T

	R	|𝜙<∗ > 0) is satisfactory for the set of candidate departures from H0 ( 𝜙<∗). Evidently, as 

P(T 	R	|𝜙<∗ > 0) is tied intimately to 𝜙<∗, so too is any judgment of soundness.  Of 
course, it is open to question precisely how accurate extant scientific knowledge is in its 

speculations about the sorts of 𝜙<∗ engendered by architectures arising in empirical 
contexts.  To this end, it is plausible a potential catalyst behind the lacunae of support 

for epistasis is that values of 𝜎C&0 ≠	0 are smaller than generally appreciated. Naturally, 
such a scenario suggests that unbeknownst to the researchers, the test procedures 

employed for epistatic detection are uniformly unsound (concerning the values of 𝜙<∗).  If 

 
108 should any of these be extant when the procedure is employed. 
109 Equal n ensuring orthogonality of the 2s-1 effects defined under such approaches (Iversen & 
Norpoth, 1987).  

Ì
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this were the case, the proper remedy would be to increase the resources- i.e., sample 
size- brought to bear on the epistatic detection problem. 

 Assumptions Inherent to T  

The optimal performance of many statistical procedures depends upon the 
satisfaction of a set of assumptions.  The assumptions attendant to a particular 
procedure P, are a set of riders or side-conditions, the satisfaction of which is necessary 

so that the distribution of T accord with its theoretical distribution, 𝛥[𝑛, 𝜙<∗].  If, in a 
particular domain of application, T’s assumptions are violated, those probabilities 

employed to characterize P’s performance - notably, the nominal Type I error rate, 𝛼, 

and the power function P(T 	R	|𝜙<∗) - will be, to some extent, in error.  It is a possibility 
that procedures employed in the service of detecting epistasis rest on assumptions, the 
satisfaction of which is made unlikely by the empirical phenomenon itself.  Consider, for 
example, the employment of the standard F-test of interaction, featuring MSEP and 

MSU|EP, in the testing of the hypothesis pair [H0: 𝜎C&0 =0, or H1: 𝜎C&0 ≠0].  As is well 
known, the assumptions on which the standard F-test rests are normality of each of the 
3s populations of phenotypic values (one for each genotype) and homogeneity of 
variance.  However, the very nature of epistasis may well induce of violation of these 
assumptions.  To this end, let a given architecture have the properties of Hardy 
Weinberg Equilibrium (HWE)110, 

P(Ψ’(𝑔$=0)) = (1-	𝜑)2 , P(Ψ’(𝑔$=1)) = 2𝜑(1-	𝜑), and P(Ψ’(𝑔$=2)) = 𝜑 2, (5.1) 

and Linkage Equilibrium (LE), 

 P(𝒈 =	𝒈∗) = ∏ 𝑃(6
".$ 𝑔" = 𝒈"∗).111      (5.2) 

 
110  From Chapter 2, recall that the proportion of alleles in P of type 𝐴& are - 𝜑. For any number of 
alleles, one can calculate the frequency proportions in a randomly mating infinite sized 
populations, vis-à-vis the multiplicative expansion of (𝛿+𝜑)2. In the scenario of HWE, allele counts 
are sufficient statistics, and the probabilities of the genotype counts conditional on the allele counts 
permit computation of parameter values for the phenotypic distribution (Lynch & Walsh, 1998). 
However, the properties of HWE vary for sex-linked genes. Give males are the heterogametic sex, 
for each mating pair, there are three X-chromosomes, and the frequency 1-	𝜑 = [ 1 − 𝜑	𝑀(0) + 2(1 −
𝜑𝐹(0))]/3	(Lynch & Walsh, 2008). 
111 See Searle, 1971 pg. 270; Iversen & Norpoth, 1987; Lynch & Walsh, 1998. 

Ì



 

 43 

All told when an architecture is in keeping with both properties the 3s distributions of 
phenotypic values are characterized by allele and genotype frequencies with 
generational stability112 (5.1), and statistical independence (5.2)113, permitting the sound 

orthogonal decomposition of 𝜎50	(2.18) into its constituent parts in both the single locus 
(2.19) and multi-locus (2.20) case (Lynch & Walsh, 1998; Templeton, 2000).  

 A Hidden Factor: Genetic-Environment Association 

In the case in which an architecture has the properties of epistasis (𝜎C&0 ≠ 0)	and 
gene-environmental association, it follows that, 

 E(Z|𝒈) =	Ψ’(𝒈)+ 𝜀(𝒈),  

and,  

V(E(Z|𝒈)) =	𝜎*0 + 𝜎>0 + 𝜎C&0  + 2𝜎;’(𝒈),K(𝒈) + 𝜎K(𝒈)
0 . 

 Evidently, in the empirical setting, the researcher will not have access to the 

genotypic values Ψ’(𝒈), but, rather, estimates of the conditional means, E(Z|𝒈). As the 

presence of 𝜀(𝒈) effectuates 3s departures between E(Z|𝒈) and Ψ’(𝒈)	in a magnitude 
and direction unknown, a bias of this sort evinces departures between the Fisherian 
decomposition of both respective quantities. The implication is that estimates of the 

variance components [ 𝜎*(x)
0 , 𝜎>(x)

0 , 𝜎C&(x)
0 ] recovered by decomposition of E(Z|𝒈) in the 

empirical setting will be ‘contaminated’ by gene-environmental association. All told, at 

the population level, unless 𝜎K(𝒈)0  = 	0: 1) the epistatic variance yielded under a 

decomposition of E(Z|𝒈) is not the target quantity 𝜎C&0 , but rather, its contaminated 

 
112 Violations of HWE introduce a non-probabilistic sampling of a population's allele frequencies 
(typically a function of the forces of selection and mutation on heterozygosity).  
113 Violations of linkage equilibrium (LE), referred to as Linkage disequilibrium (LD) or 
dependencies between loci obstructs the orthogonal decomposition of genetic variance 
components. The effects of LD quantified as the covariance of the frequency of ‘non-alleles’ of the same 
gamete, are either positive (coupling-over representation) or negative (repulsion-
underrepresentation) in direction (Lynch & Walsh, 1998). In particular, if genetic loci with a 
positive influence on Z are associated with each other on a chromosome, the observed genetic 
variation is inflated relative to is an expectation under random assortment. Naturally, the observed 
genetic variation deflates relatively to its expectation under random assortment when loci of 
positive and negative impact on Z are associated with one another on a chromosome (Lynch & 
Walsh, 1998). To this end, LD structure may also obscure the observed epistatic genetic variance 
from its expected value.  See the works of Gallais (1974), Weir & Cockerham (1977). 
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counterpart, 𝜎C&(x)
0 ; and  2)  𝜎C&(x)

0  will differ from 𝜎C&0  to a degree - and in a direction - 

unknown. 

In light of (2.1), (2.2), and the previous observations, it is apparent that, in a given 
empirical context, a standard F-test featuring MSEP and MSU|EP is not a test purely of the 

focal hypothesis pair [𝐻[: 𝜎C&0 =0, or 𝐻$: 𝜎C&0 ≠0] 114, but, rather, a test of its contaminated 

counterpart [𝐻[: 𝜎C&(x)
0 =0, or 𝐻$: 𝜎C&(x)

0 ≠0] 115. There is, of course, no reason to suppose 

that a procedure performing optimally vis a vis the contaminated pair [𝐻[: 𝜎C&(x)
0 =0, or 

𝐻$: 𝜎C&(x)
0 ≠0], will do so, also, vis-a-vis the pair of scientific import.  To this end, we 

conclude by observing that it is a possibility the difficulties in detecting epistasis derive 
from collateral effects of contamination by gene-environmental association upon 
epistatic tools of detection, such as the F-test.  

 

 

 
114 F(n, n-1(ab)) ~ /P'(

/P)/'(
;	E(MSEP) = [𝜎Q& +	h

R(BC)
(B@!)(C@!)

i 𝜎K0& ], and E(MSU|EP ) =	𝜎Q&. 

115 𝜎K0(S)&  =∑(𝜏(𝑔(𝑐)))2; F(n, n-1(ab)) ~ /P'(
/P)/'(

;	E(MSEP) = [𝜎Q& +	h
R(BC)

(B@!)(C@!)
i 𝜎K0(J)& ], and E(MSU|EP ) =	𝜎Q&. 
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Chapter 6. General Overview of Simulation Studies I  
and II 

Introduction  

In the remainder of the thesis we investigate two explanations for the difficulties 

encountered in detecting epistasis. The first relates to the possibility that the 𝜎C&0  (or 

equivalently the 𝜙<∗) produced by epistatic architectures are simply small; the 
consequence being that, for the sorts of sample sizes employed in research, the power 
delivered by commonly employed detection tools is disadvantageously small.  The 
second relates to the possibility that the presence of gene-environment association 
generates bias in the estimation of genotypic values, and, in so doing, alters in 
unfavourable ways the performance of tools of detection. In adjudicating the merit of 
each of these candidate explanations, the problem, of course, is that the architectures for 
which these difficulties ostensibly hold, are precisely those for which epistasis is not 
detectable. Accordingly, there would appear to be no empirical means of verifying 
whether these possibilities occur empirically. We attempt to overcome this obstacle 
through the undertaking of two simulation studies, hereafter referred to as simulation 
studies I and II.  

The two simulation studies rest on four constructed di-genic epistatic 
architectures, engendered by crossing two genotypic functions with two levels of gene-
environment association (absent/present). By sampling over its parameter space, under 
each architecture, we generate the empirical distribution of a variety of focal quantities.  

In simulation I, the empirical distributions of 𝜎C&0 , 𝜙<∗, and	𝜔C&0  are approximated, and 
for architectures featuring gene-environment association, the contaminated 

counterparts, 𝜎C&(x)0 , 𝜙(x)<∗ , and 𝜔C&(x)0 , and the associated biases (𝜙(x)<∗ − 𝜙<∗) and (𝜔C&(x)0 −

𝜔C&0 ). The general aim in undertaking this first simulation study is to provide a glimpse 

of the expected empirical range of 𝜎C&0 (𝜙<), and, for those architectures featuring gene-

environment association, how far off the mark the recovered epistatic effect sizes, 𝜙(x)<  are 

from their true counterparts 𝜙<. In the second study, we evaluate the detection 
performance of a paradigm-case detector of epistasis - the classical F-test of omnibus 
interaction -, by assembling the empirical distribution of power values corresponding to 

the distribution of 𝜙< and	𝜙(x)<  generated in study I. Nuance is brought to the picture 
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painted by the distribution of power values, through reporting: 1) the median power 

profile; 2) proportion of architectures which yield satisfactory power (say ≥ .90); and 3) the 
magnitude and direction of bias engendered by the former two criteria. 

In the remainder of the chapter, we will: 1) elucidate in detail the method of 
construction of the four architectures; 2) describe the approach taken to sampling the 
parameter space; 3) provide two fully worked examples illustrative of the construction 
methodology described in (1), along with the computational basis for the resulting 
population-level variance components; 4) elucidate, in full, the set of focal quantities and 
criteria that will stand as the output of the two simulation studies; and, finally, 5) 
delineate the software and packages employed for data  simulation.  

  Construction of the Four Architectures 

 At the core of each of the four constructed architectures is the crossing of 

genotypic function, Ψ’(𝒈), and level of gene-environmental association. The two 

genotypic functions employed herein are: 1) the max function, Ψ’(𝒈)	= max{Ψ’(𝒈𝒋)}".$,𝑵 , 

previously used in the works of  Zuk and colleagues (2010)116, and symbolized herein as 

Ψ’(𝒈)Max ; and 2) the min function, Ψ’(𝒈)	= min{Ψ’(𝒈𝒋)}".$		𝑵 , symbolized as Ψ’(𝒈)Min . 

Once again, the level of gene-environment association is either absent (𝛆 =	[0]) or 

present	(𝛆 ≠ [0]).	 The situation can be depicted with reference to the fourfold table of 
Figure 6.1.  

 
116  According to Zuk et. al. (2010), max{Ψ’(𝒈𝒋)}$%!		𝑵 is a desirable choice as a generator of epistasis, 
in consequence of the fact that it captures various gateway processes known to be operative in animal 
biology, and so possesses of a certain degree of ecological validity.	
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Figure 6.1 Four Architectures – Crossing of Genotypic Function and Gene-
environmental Association 

Ψ’(𝒈)Max Ψ’(𝒈)Min 

Ψ’(𝒈)Max 

[s=2, Ψ’(𝒈)Max, 𝜃, 𝛆 = 	 [𝟎], 𝐻K] 

Ψ’(𝒈)Min 

[s=2, Ψ’(𝒈)Min,	𝜃, 𝛆 =	[0],	𝐻K] 

𝛆 =	[0] 

Ψ’(𝒈)Max,GE 

[s=2, Ψ’(𝒈)Max, �⃗�, 𝛆 ≠ [𝟎], 𝐻K] 

Ψ’(𝒈)Min,GE 

[s=2, Ψ’(𝒈)Min, �⃗�, 𝛆 ≠ [𝟎], 𝐻K] 

𝛆 ≠ [𝟎] 

 

 Hence forth we will tie our results and discussion to the designations of the four 
architectures as manifest in the table.  Thus, for example, architectures featuring 

Ψ’(𝒈)Max and gene-environment association (𝛆 ≠ [𝟎]) will be designated as Ψ’(𝒈)Max,GE.  

Each complete, numerically instantiated, architecture, yielding of population-level 
variance components, is built up from the level of locus-specific genotypic values 
expressed in terms of ak parameterization (see Chapter 2), and features the properties of 
HWE (5.1) and LE (5.2). The basic idea may be elucidated for the general polygenic case 
for s > 1 loci, as follows: 

1. Specify s and Ψ’(𝒈). 

2. Specify the genetic parameter vector	�⃗�, which contains the parameters [a1, a2, ..., as, k1, 

k2, ..., ks, 𝜑1, 𝜑2, ..., 𝜑s] (see chapter 2)117, and which, in conjunction with Ψ’(𝒈), yields 

the 3s genotypic values and the population genetic variance components, 𝜎*0, 𝜎>0, and 

𝜎C&0 . 

3. Specify a 3s element vector 𝜺	containing gene-environment association parameters, 

under which E(Z|𝑔) = Ψ’(𝒈) +	𝜺(𝒈), and which yields the quantities 𝜎K(𝒈)
0  

and	2𝜎;’(𝒈),K(𝒈): 

 
117 for s=3, {aj, kj, 𝑑j} where j=1...3; etc. 
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3.1. for architectures in which gene-environmental association is absent, specify 𝜺 to 

be the null vector,	𝜺 = [𝟎]; 

3.2. for architectures in which gene-environmental association is present, specify the 

non-null value of 𝜺	 ≠ [𝟎]. 

4. Construct 𝜎L0: 

4.1.1.  for architectures in which 𝜺 = [𝟎], from (2.15), 𝜎L0 = 𝜎C0. Because 

𝐻0=	:,
*f:L

*f:MN
*

:-
*  , it follows that specifying 𝐻0 determines 𝜎L0 in accordance 

with the formula,  

𝜎L0	=	𝜎50 − [𝜎*0 + 𝜎>0 + 𝜎C&0 ] = [	 $
z*

 -1] [𝜎*0 + 𝜎>0 + 𝜎C&0 ];   (6.1) 

4.1.2. 		for architectures in which,	𝜺	 ≠ [𝟎];  from (2.15), 𝜎C0= 𝜎K(=)0 + 𝜎L0, specifying  

𝐻0	determines 𝜎L0	in accordance with the formula,  

    𝜎L0= [ $
z*
	− 1][𝜎*0 + 𝜎>0 + 𝜎C&0 ] − 2𝜎;’(=),K(=) − 𝜎K(=)

0 .    (6.2) 

 A complete architecture can be represented as a 5-tuple [s, Ψ’(𝒈), �⃗�, 𝛆, 𝐻0], for 

which any particular realization, [𝑠∗, Ψ’(𝒈)*, �⃗�∗, 𝛆∗, 𝐻0∗] yields a set of population 

variance components118. Accordingly, by sampling over the parameter space of [𝜃,𝐻0] 
and generating the empirical distributions of key focal quantities, one is afforded 
opportunity to gain insight, “in vacuo,” into both the empirical range of an architectures 
focal quantities, and establish associations between the values assumed by these 
quantities and the numerical realizations that yielded them.  Under such an approach, 
the candidate explanations can be evaluated, free from the noise imparted by the 
empirical setting of epistatic detection (described at length in Chapter 3, section 3.3).  

 
118 For architectures in which, 𝛆 =	[0]: [ 𝜎;&, 𝜎2&, 𝜎K0& , 𝜎K&], and for architectures in which,	𝛆 ≠ [𝟎] : 
[𝜎;&, 𝜎2&, 𝜎K0& , 𝜎X(Y)& , 𝜎Q&]. 
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   Sampling over the parameter space  

In this section, we present the theoretical basis for the selection of parameter 
values, in terms of numerical realizations of the architectures are produced.  

6.2.1. Sampling of the 𝒂 parameter 

 For all four architectures and each of the two loci, the same three values of a were 

sampled. As will be recalled, parameter 𝑎 is the linear rate of change in Ψ’(𝒈"), and, as 

such, is equal to	(Q-|&'6*%Q-|&'6B)
0

		(Lynch and Walsh, 1998). Low, medium, and high 

values of a were selected by means of the formulas  {
s
, 2 {

s
, 3 {

s
	– j, respectively, wherein, j 

and b were sampled from a random uniform distribution.  All told, the three sampled 
values were 16, 32, and 44. 

6.2.2. Sampling of the k parameter 

 For all four architectures and each of the two loci, five unique values of k were 

sampled. As it will be recalled, parameter k controls the non-linearity inherent to Ψ’(𝒈𝒋). 

It is commonly said that: 1)  k = 0 signifies complete additive gene action; 2) k = 1, 

complete dominance of the A1 allele; 3) k = - 1, complete dominance of the A2 allele; 4) k 

> 1,	over-dominance, such that the phenotypic expression of the heterozygote (A1A2 ) 
which exceeds both homozygotes (A1A1; A2A2); 5) and k > - 1, under-dominance where 
the phenotypic expression of the heterozygote is lower than both homozygotes. The two 
elements corresponding to the circumstance in which k > 1, k > - 1, were randomly 
selected from two uniform distributions. All told, the sample values for locus 1 were 0, 1, 
-1, 2, -6, and for locus 2, 0,1 -1,5,-7.  

6.2.3. Sampling of 𝝋 and 𝑯𝟐	parameters 

 For all four architectures and each of the two loci, the same three values of 𝜑	and 

𝐻0 were sampled. Recall, of course, that 𝜑	and 𝐻0,	respectively, refer to locus-specific 
recessive allele frequency and broad-sense heritability. As both parameters are bounded 
between 0 and 1, element selection was fixed to examine the impact of small, medium, 
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and large magnitudes. All told the sample values for 𝜑,	and 𝐻0	were respectively, 0.1, 
0.5, 0.9, and 0.2, 0.5, 0.8.   

6.2.4. Sampling of 𝛆𝟑𝐱𝟑 

For architectures in which,	𝛆 ≠ [0],	we specified two unique matrices, 𝜺s]s, and 

randomly sampled, for each, 9 gene-environmental parameters 𝜀(𝒈) elements from a 

normal distribution N(3S, SD = 1). As it will be recalled, 𝜀(𝒈) quantifies the mean 
environmental impact conditional on genotype. All told, the two matrices for 

architectures Ψ’(𝒈)Max,GE  and Ψ’(𝒈)Min,GE were respectively: 

𝜺Z8Z = o
−0.360 −0.202 −0.029
0.090 0.740 −0.389
0.096 0.123 0.511

v,      (6.3) 

and, 

𝜺Z8Z = o
−0.502 0.886 −0.581
				0.131 0.116 			0.714
−0.078 0.318 −0.825

v.       (6.4) 

6.2.5. Legitimate Architectures 

Crossing the 3, 3, 5, 5, 3, 3, and 3, values selected for the parameters a1, a2, k1, k2, 

𝜑$, 𝜑0,	and 𝐻0, respectively, generates a total of 6075 unique architectures, and for each, 
potentially, a set of focal quantities. However, for admissibility of a given architecture 

into the first simulation study, it must the case that 𝜎L0 ≥ 0119. For admissibility into the 
second simulation study, a given architecture must additionally have the property of 

epistasis; i.e., 𝜎𝐸𝑃2 > 0120. All told, for Ψ’(𝒈)Max and Ψ’(𝒈)Min there were 6075 architectures 

 
119 As the environmental variance is set in the units of broad-sense heritability 𝐻&, bespoke to 
architectures in which, 𝛆 ≠ [0], the numerical realization of 𝜎Q& may assume either positive or 
negative values (see formula 6.1).  In light of this, we set forth the restriction that, for any legitimate 
architecture 𝜎Q& ≥ 0; else, the architecture is illegitimate and excluded from analysis in simulation 
study I.  
120 Following the definitions presented in (4.1), and (4.10) it is clear, while a particular architecture 
may be ostensibly epistatic (based on construction), an architecture has the property of epistasis only 
under the condition it yields a non-zero 𝜎K0& . As our aims in the second simulation study are to 
adjudicate the performance of detection of a tool of detection over the empirical distribution of 
epistatic effect sizes, we set forth the second restriction, that only architectures which engender the 
property of epistasis, are admissible to simulation study II.   
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admitted into both simulation studies I and II. A total of 5832 architectures of type 

Ψ’(𝒈)Max,GE were admitted into simulation study I, and 5075 of type Ψ’(𝒈)Min,GE. A total of 
5238 of the former type, and 4482 of the latter, were admitted into simulation study II. 

 Architectures in which	𝛆 = [𝟎]: detailed description for 
the case of Ψ’(𝒈)Max   

Following the general survey of architecture construction and sampling of its 
parameter space, our aims in the following section are to provide a detailed description 

of a single Ψ’(𝒈)Max architecture of the quantitative form: [𝑠 = 2,Ψ’(𝒈) =	Ψ’(𝒈)Max, �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎!∗
𝑎&∗
𝑘!∗
𝑘&∗
𝜑!∗
𝜑&∗⎦
⎥
⎥
⎥
⎥
⎤

	𝜺∗Z8Z = [0]	, 𝐻&∗]121. A complete architecture of this sort is built up from 6 locus-

specific genotypic values expressed in terms of ak parameterization and the properties of 

HWE (5.1) and LE (5.2). Following section 6.1, it is the case, Ψ’(𝒈)Max, and  𝜃∗, specifies 
its joint distribution, genotypic frequencies, and population-level genetic variance 
components.  

 
121 Recall, 𝜑 = P(allele2), 𝛿 = P(allele1).  
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Figure 6.2 Digenic Architecture Ψ’(𝒈)Max Construction 

 

 

 

 

 

 

 

 

And so, the Fisherian decomposition of Ψ’(𝒈)122 yields the following genetic variance 
components.  

 𝜎;’(𝒈)
0∗ = +𝜎*0 + 𝜎>0+𝜎C&0 . 

 𝜎*0∗=	𝜎*'
0 + 𝜎**

0 ; 

  𝜎*'
0∗=2	𝜑$𝛿$[𝑎$[1+𝑘$(2𝜑$ − 1)]]2; 

  𝜎**
0∗=2	𝜑0𝛿0[𝑎0[1+𝑘0(2𝜑0 − 1)]]2; 

 𝜎>0∗ = 𝜎>'
0 +𝜎>*

0 ; 

 𝜎>'
0∗ = 𝜎j'

0 -𝜎*'
0 = 2𝜑$𝛿$ 𝑎$ 𝑘$]2;  

 𝜎>*
0∗= [2𝜑0𝛿0 𝑎0 𝑘0]2 ; 

 
122 Wherein, 𝜇\’(𝒈)	=𝜑!&	𝜇#& + 2(𝜑!𝛿!)(𝜇#&+(𝑘! + 1)a1) + 𝛿!&	(𝜇#& + 2𝑎!)=	𝜇#&+𝜇#!.  
𝜇\’(Y%)=2(1-𝜑!) =2𝛿!; 𝜎\’(Y%)

& = 2𝜑!(1 − 𝜑!), and 𝜇.%= !
`&
𝜑!&[𝛿&

&.0+2(𝜑&𝛿&)(𝑘& + 1)a2+ 𝛿&&. 2𝑎&] =𝜇#& 
;	𝜇.& 	=𝜇#&+(𝑘! + 1)a1; 𝜇.+=	𝜇#& + 2𝑎!, and 𝜎a%

& =	2𝛿!𝑎!&[2𝛿!(1 − 𝑘!𝜑!+1)2]	+𝜑!(𝑘! + 1)2.  
𝜇\’(Y&)=2δ&;	𝜎\’(Y&)

& = 2𝜑&(1 − 𝜑!);	
	
𝜇!.=𝜇#!;		𝜇&.=𝜇#!+(𝑘! + 1)a2;  𝜇Z.= 𝜇#! + 2𝑎&; and 𝜎a&

& =	
2δ&𝑎&&[2δ&(1 − 𝑘&𝜑&+1)2]	+𝜑&(𝑘& + 1)2.  

A1A1 
Ψ’(	𝑔 1=0) = 0 
P(𝑔 1=0) =𝛿!" 

0 

A1A2 
Ψ’(𝑔 1=1) =(k1+1)a1 
P(𝑔 1=1) = 2(𝜑1𝛿1) 

1 

A2A2 
Ψ’(𝑔 1=2) = 2a1 
P(𝑔 1=2) =𝜑!" 

2 

 
Max(Ψ’(𝑔0,0)) 

 
𝑃(0,0) = 𝜑!"𝜑"" 

 
Max(Ψ’(𝑔 0,1)) 

 
𝑃(0,1) = 2(𝜑1𝛿1) 𝜑"" 

 
Max(Ψ’(	𝑔0,2)) 

 
𝑃(0,2) = (𝛿!"𝜑"") 

B1B1 
Ψ’(𝑔 2=0) =0 
P(𝑔 2=0) =𝛿"" 

 
0 

 
Max(Ψ’(𝑔1,0)) 

 
𝑃(0,1) = 𝜑!"(2(𝜑2𝛿2)) 

 
Max(Ψ’(𝑔1,1)) 

 
𝑃(1,1) = 2(𝜑1𝛿1)2(𝜑2𝛿2) 

 
Max(Ψ’(𝑔1,2)) 

 
𝑃(1,2) = 𝛿!"(2(𝜑2𝛿2)) 

B1B2 
Ψ’(𝑔 2=1) = (k1+1)a2 
P(𝑔 2=1) = 2(𝜑2𝛿2) 

 
1 

 
Max(Ψ’(𝑔2,0)) 

 

𝑃(0,2) = 𝜑!"𝛿"" 

 
Max(Ψ(𝑔2,1)) 

 

𝑃(1,2) = (2(𝜑1𝛿1)𝛿"
") 

 
Max(Ψ’(𝑔2,2)) 

 

𝑃(2,2) = 𝛿!"𝛿"" 

B2B2 
Ψ’(𝑔 2=2) = 2a2 
P(𝑔 2=2) = 𝜑"" 

 
2  
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𝜎C&0∗ = 𝜎;’(𝒈)0∗ −𝜎*0∗ − 𝜎>0∗.       (6.5) 

  

 Architectures in which 𝛆 ≠ [𝟎]: detailed description for 
the case of Ψ’(𝒈)Max  

 Next, we provide a detailed description of a single digenic Ψ’(𝒈)Max,GE 

architecture of the quantitative form: [𝑠 = 2,Ψ’(𝒈) = Ψ’(𝒈)Max,, 𝜺𝟑𝒙𝟑∗ = o
𝜀LL 𝜀!L 𝜀&L
𝜀L! 𝜀!! 𝜀&!
𝜀L& 𝜀!& 𝜀&&

v , 𝜃∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑎!∗
𝑎&∗
𝑘!∗
𝑘&∗
𝜑!∗
𝜑&∗⎦
⎥
⎥
⎥
⎥
⎤

, 𝐻&∗]. A complete architecture of this sort is built up from 6 locus-specific genotypic 

values expressed in terms of ak parameterization and the properties of HWE (5.1) and 

LE (5.2). Following section 6.1, it is the case, Ψ’(𝒈)Max, �⃗�∗, and  𝜺𝟑𝒙𝟑∗  specifies its joint 
distribution, genotypic frequencies, and population-level genetic variance components.  
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Figure 6.3 Digenic Architecture Ψ’(𝒈)MaxGE Construction 

 

 

 

 

 

 

 

 

Following Chapter 5, the Fisherian decomposition of E(Z|𝒈)123 yields the following 
genetic variance components: 

𝜎;’(𝒈)(x)0∗ = +𝜎*(x)0∗ + 𝜎>(x)0∗ +𝜎C&(x)0∗ ; 

 

𝜎*(x)	
0∗ =	𝜎*'(P)

0∗ + 𝜎**(P)
0∗ ;  

 

𝜎*'(P)
0∗ =

:/(C|&),&'
*

0?'($%?')
;   

 

𝜎**(P)
0∗ =

:/(C|&),&*
*

0?*($%?*)
; 

 

𝜎>(x)0∗ = 𝜎>'
0∗+𝜎>*

0∗;  

 

 
123 Wherein 𝜇d(e|𝒈)	= 𝜑!&	𝜇#& + 2(𝜑!𝛿!)(𝜇#&+(𝑘! + 1)a1) + 𝛿!&	(𝜇#& + 2𝑎!)	=	𝜇#&+𝜇#!.  
𝜇d(e|𝒈%Y%)=2(1-𝜑!) =2𝛿!; 𝜎g-(/|𝒈23%)

& = 2𝜑!(1 − 𝜑!), and 𝜇.%= !
`&
𝜑!&[𝛿&

&.0+2(𝜑&𝛿&)(𝑘& + 1)a2+ 𝛿&&. 2𝑎&] 
=𝜇#& ;	𝜇.& 	=𝜇#&+(𝑘! + 1)a1; 𝜇.+=	𝜇#& + 2𝑎!. 𝜎a%

& =	2𝛿!𝑎!&[2𝛿!(1 − 𝑘!𝜑!+1)2]	+𝜑!(𝑘! + 1)2.  
𝜇d(e|𝒈%Y&)=2δ&;		𝜎d(e|𝒈%Y&)

& = 2𝜑&(1 − 𝜑!);	
	
𝜇!.=𝜇#!;		𝜇&.=𝜇#!+(𝑘! + 1)a2;  𝜇Z.= 𝜇#! + 2𝑎&; and 𝜎a&

& =	
2δ&𝑎&&[2δ&(1 − 𝑘&𝜑&+1)2]	+𝜑&(𝑘& + 1)2. 

A1A1 
Ψ’(𝑔!=0) =0 
P(𝑔!=0) =𝛿!" 

0 

A1A2 
Ψ’(𝑔!=1) =(k1+1)a1 
P(𝑔!=1) = 2(𝜑1𝛿1) 

1 

A2A2 
Ψ’(𝑔!=2) = 2a1 
P(𝑔!=2) =𝜑!" 

2 

 
E(Z|	𝒈 = 𝑔#,#) 

 
Max(Ψ’(𝑔0,0))+𝜀#,# 
𝑃(0,0) = 𝜑!"𝜑"" 

 
𝐸(𝑍|𝒈 = 𝑔#,!) 

 
Max(Ψ’(𝑔0,1))+𝜀#,% 
𝑃(0,1) = 2(𝜑1𝛿1) 𝜑"" 

 
𝐸(𝑍|𝒈 = 𝑔#,") 

 
Max(Ψ’(𝑔0,2))+𝜀#,& 
𝑃(0,2) = (𝛿!"𝜑"") 

B1B1 
Ψ’(𝑔"=0) =0 
P(𝑔"=0) =𝛿"" 

 
0 

 
𝐸(𝑍|𝒈 = 𝑔!,#) 

 
Max(Ψ’(𝑔1,0)))+𝜀%,# 
𝑃(1,0) = 𝜑!"(2(𝜑2𝛿2)) 

	
		𝐸(𝑍|𝒈 = 𝑔1,1) 

 
Max(Ψ’(𝑔1,1))+𝜀%,% 

𝑃(1,1) = 2(𝜑1𝛿1)2(𝜑2𝛿2) 

 
𝐸(𝑍|𝒈 = 𝑔!,") 

 
Max(Ψ’(𝑔1,2))+𝜀%,& 
𝑃(1,2) = 𝛿!"(2(𝜑2𝛿2)) 

B1B2 
Ψ’(𝑔"  =1) = (k1+1)a2 
P(𝑔"  =1) = 2(𝜑2𝛿2) 

 
1 

 
𝐸(𝑍|𝒈 = 𝑔",#) 

 
Max(Ψ’(𝑔2,0))+𝜀2,0 
𝑃(2,0) = 𝜑!"𝛿"" 

 
𝐸(𝑍|𝒈 = 𝑔",!) 

 
Max(Ψ’(𝑔2,1))+𝜀&,% 
𝑃(2,1) = (2(𝜑1𝛿1)𝛿"

")  

 
𝐸(𝑍|𝒈 = 𝑔",") 

 
Max(Ψ’(𝑔2,2))+𝜀2,2 
𝑃(2,2) = 𝛿!"𝛿"" 

B2B2 
Ψ’(𝑔"=2) = 2a2 
P(𝑔"  =2) = 𝜑"" 

 
2 
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𝜎>'(P)
0∗ = 𝜎j'(Q)

0∗ − 𝜎*'(P)
0∗ ; 

 

 𝜎>*(P)
0∗ = 𝜎j*(Q)

0∗ − 𝜎**(P);
0∗  

 

𝜎C&(x)0∗ = 𝜎;’(𝒈)(x)0∗ −𝜎*(x)0∗ − 𝜎>(x)0∗ .      (6.6) 

  

Please see Appendices A and B for numerical examples of a single architecture 
generated in R.  

 Focal Quantities and Criteria 

Following the detailed descriptions of the four constructed architectures, we now 
lay forth the general aims of simulation studies I and II, their focal quantities, and the set 
of criteria employed to adjudicate the merits of both candidate explanations.  

6.5.1. Simulation Study I: General Aims  

 To evaluate the tenability of both candidate explanations, the first simulation 
study was curated to adjudicate in quantitative terms: 1) the degree to which epistasis is 

manifest for architectures in which, ε = [𝟎]; 2) and how far off the mark the recovered 

epistatic effect sizes, are from their true value for architectures in which, ε ≠ [𝟎]. In 
doing so, we will approximate a set of empirical distributions engendered by sampling 
over the parameter spaces of: 

 Ψ’(𝒈)Max: [s=2, Ψ’(𝒈)Max, 𝜃, 𝜺3𝑥3 = [0], 𝐻0];     (6.7) 

 Ψ’(𝒈)Min : [s=2, Ψ’(𝒈)Min,	�⃗�, 𝜺3𝑥3 =	[0],	𝐻0];     (6.8) 

 Ψ’(𝒈)Max,GE: [s=2, Ψ’(𝒈)Max, �⃗�, 𝜺3𝑥3 = ¶
−0.360 −0.202 −0.029
0.090 0.740 −0.389
0.096 0.123 0.511

· , 𝐻0];  (6.9) 

 Ψ’(𝒈)Min,GE : [s=2, Ψ’(𝒈)Min, �⃗�, 𝜺3𝑥3 = ¶
−0.502 0.886 −0.581
				0.131 0.116 			0.714
−0.078 0.318 −0.825

· ,𝐻0].  (6.10) 
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Simulation Study I: Focal Quantities  

Following the general aims of simulation study I, it is the case for each of the four 
legitimate architectures under consideration, we will approximate several empirical 

distributions of the derived population-level variance components (Λ:*), standardized 

effects (Λ�*), and associated biases (Λ�(P)$ %�$). To this end, in the care of the 6075 

legitimate architectures in which, ε = [𝟎], the focal quantities of interest include, the 
epistatic population-level variance component, 

 𝜎C&0  = 𝐸(Ψ’(𝒈) −	Ψ’(𝒈)Main)2;      (6.11) 

its standardized effect, 

𝜔C&0 	=  :MN
*

:-
* ;        (6.12) 

and effect size, 

𝜙<∗= ¹:MN
*

:R
*  .         (6.13) 

Naturally, concomitant to the population-level effects of epistasis, we will also 

derive the population level genetic-variance components: 𝜎�0, 	𝜎�0	and report the 

empirical distributions of their standardized effects, 𝜔*0 =
:,
*

:-
*, 𝜔>0 =

:L
*

:-
*.  

Next, for all legitimate architectures in which, ε ≠ [𝟎], the focal quantities include 
both the true and contaminated epistatic population level variance components124, 

 𝜎C&0  = 𝐸(Ψ’(𝒈) −	Ψ’(𝒈)Main)2; 

𝜎C&(x)
0 = 	𝐸(𝐸(𝑍|𝒈) − 𝐸(𝑍|𝒈)\^!4)2;     (6.14) 

standardized effects, 

 𝜔C&0 	=  :MN
*

:-
* ;  

 
124 For the sake of brevity, only the contaminated effects will be reported, as true effects are listed 
(6.10, 6.11, 6.12).  
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𝜔C&(x)0 = 
:MN(P)
*

:-
* ;        (6.15)  

effect sizes,  

 𝜙<∗= ¹:MN
*

:R
* ; 

 𝜙(x)<∗ = º
:MN(Q)
*

:R
*  ;        (6.16)  

and associated biases, 

𝜙(x)<∗ − 𝜙<∗;        (6.17) 

|𝜙(x)<∗ − 𝜙<∗|;        (6.18) 

𝜔C&(x)0 −𝜔C&.0         (6.19) 

       

Naturally, for architectures of this sort, we will also derive the quantities: 

	𝜎�(�)0 , 𝜎�(�)0 , 𝜎L0, 𝜎K(=)0 , and report the empirical distributions of their standardized 

effects,	𝜔*(x)0 =
:,(P)
*

:-(P)
* , 𝜔>0 =

:L(P)
*

:-(P)
* , 𝜔K(=)0 = 

:S(&)
*

:-
* , 𝜔L0= :R

*

:-
*, 𝜌;’(=),�(H)125.  

Simulation Study I: Adjudication of Candidate Explanations 

To adjudicate the degree to which epistasis is manifest over the 6075 legitimate 

architectures of Ψ’(𝒈)Max (6.7) and Ψ’(𝒈)Min (6.8) construction, first, we will report 
numerical summaries126 for the approximated empirical distributions, and the 
proportion of epistatic effect sizes classified under Cohens’ guidelines (1988)127. In doing 

so, our aims are to address whether, on aggregate, epistatic effect sizes	𝜙<∗arising under 

 
125 𝜌\’(Y),d	refers to the degree of variability of the impact of environment on 𝑍, conditional on 
subpopulations of individuals with the same genotype. Classified under Cohens guidelines (1988), 
as small (𝜌 = 0.10;	𝑅& = 0.01), medium (𝜌 = 0.3, ; 	𝑅& = 0.9)	,		or large (𝜌 =0.5, 𝑅& = 0.25). 
126 For each empirical distribution we report the mean, standard deviation, minimum, maximum, 
and every 10ij percentile point. 
127  i.e., small (𝜙.∗ = 0.10; 	𝜔& = 0.01, ), medium (𝜙.∗ = 0.25, ; 	𝜔& = 0.058)	,		and large (𝜙.∗ = 0.4, 𝜔& =
0.137).  
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architectures of epistatic construction are generally small. Second, to delineate the 

relationship between the empirical distribution of epistatic effects (Λ�$) and its 

engendering architectures, we will analytically consider: 1) which architectures (and 
derived focal quantities) are associated with small, medium, and large epistatic effects, 

by sub-setting the empirical distribution Λ�$ into its	161 , 24_ ,	and 3B_quantiles and 

reporting the partitioned empirical distributions of each focal quantity; 2) the kinds of 

architectures which engender the three largest nominal values of 𝜙<∗, by reporting the 

parametric construction [�⃗�∗, 𝐻0]	of the three architectures and its associated population 

variance components;  3) the role of genetic parameters in the variability of Λ�$ ,	by 

conducting a full-factorial ANOVA decomposition of Λ�$ in terms of 127 estimable 

effects, which include pooled genetic main effects and interaction effects128.  

 For the 5832 and 5076 legitimate architectures of Ψ’(𝒈)Max,GE (6.9) and Ψ’(𝒈)Min,GE 
(6.10) construction an additional aim is to evaluate how far off the mark the recovered 

epistatic effect sizes, are from their true value (𝜙(x)<∗ -𝜙<∗). First, we will report both 

graphical and numerical summaries of their approximate empirical distributions for 
each focal quantity. Second, to delineate the relationship between the parametric 
construction of the engendering architectures and the manifest distribution of bias 

(Λ	�(Q)$ %	�$) we will analytically consider: 1) which architectures (and derived focal 

quantities) are associated with small, medium, and large bias	by sub-setting Λ	�(T)$ %	�$  

into its 1��, 2��, and 3�� quantiles and reporting the partitioned empirical distributions 
of each focal quantity; 2) the kinds of architectures which engender the three largest 

nominal values of |ϕ(�)
<∗ - ϕ<∗|, by reporting the parametric construction [�⃗�∗, 𝐻0]	of the 

three architectures and its associated population variance components;  3) the role of 

genetic parameters in the variability of Λ	�(U)$ %	�$ by performing a full-factorial ANOVA 

decomposition of Λ	�(U)$ %	�$ ,	in terms of the 127 estimable genetic effects.  

 
128 3 pooled genetic main-effects and 𝐻2,	 �72�) = 21, 2-way interaction effects, with all others 

interaction effects collapsed into the category ‘higher order effects’ (i.e., the (�73�)= 35, 3-way 

interaction effects, (�74�)= 35, 4-way interaction effects, (�75�)= 21, 5-way interaction effects, (�76�)=7, 

6-way interaction effects, and (�77�)=1, 7 way interaction effects).  
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6.5.2. Simulation Study II - General Aims 

 To adjudicate the tenability of both candidate explanations the second simulation 

study was curated to settle in quantitative terms: 1) 	the performance of detection129 of a test 

procedure, over the empirical range of Λ�$�[ for all admissible architectures in which, 

𝛆 = [𝟎]; 2) the performance of detection of the test procedure(s) over the empirical range of 

Λ�$�[and Λ�(U)$ �[, and the magnitude/direction of its departure, for all admissible 

architectures in which, 𝛆 ≠ [𝟎].	 As the performance of detection is a function of 𝜙<∗, n, 𝑎, for 
each architecture, we will approximate a set of unique distributions of power each coded 

to  Λ�$�[(Λ�(U)$ �[) and the values selected for both n and a. To this end, we now 

introduce the following components of simulation study II: 1) the tool of detection; 2) the 

special parameters n and 𝒂; 3) the focal quantities; 4) and criteria of detection.  

Tool of Detection 

 As we saw in Chapter 3, there exist manifold ways to test for the presence of 

epistasis, or equivalently, the circumstances in which 𝜎C&0 	> 0. Naturally, to adjudicate a 
test procedure curated to render a sound decision regarding the hypothesis pair: 

[𝐻[:	𝜎C&0 = 0;	or	𝐻$: 𝜎C&0 ≠ 0], an ideal scenario is one unabridged by reductions in power 
effectuated by family-wise corrections (concomitant to the sound testing of a family of 
component hypotheses) (Ramsey, 1978; Einot & Gabriel, 1975; Shaffer, 1995; Lehman & 
Romano, 2005). To this end, we selected the omnibus F-test statistic of interaction, 
constructed as follows:	 

𝐹 =
(5⃗%𝑨∗𝜃V⃗�)’	(5⃗%	`𝑨∗𝜃V⃗�a%`5⃗%𝑨𝜃V⃗�𝐹a’`5⃗%𝑨𝜃V⃗�𝐹a/	_�V4>

`5⃗%𝑨𝜃V⃗�𝐹a’`5⃗%𝑨𝜃V⃗�𝐹a/	_�R:5!;
130.     (6.20) 

 
129 Recall for a tool of detection, its performance of detection is, in fact, the power function, (1 − 𝛽(𝜙.∗, 
𝑛, 𝑎) =P(T⊂ 𝑅|𝜙.∗ > 0)). Recall, of course, the power function takes as input a single realization of 
𝜙.∗, sample size (n), and Type I error rate (a) (see Chapter 5). As the selection of a delineates both 
the A and R on Δ[𝑛, 𝜙.∗ > 0],	and the selection of n, a test procedures degrees of freedom, it follows, 
that for a particular test its power of detection is a function of all three parameters [𝜙.∗, n, a]. 
130 Recall from (4.2) and (4.3), A is the 3Sx[1+3S] design matrix of the full model, and 𝑨∗ its reduced 
counterpart, while A𝜃 and 𝑨∗�⃗� denote the respective model fitted values. As before, s denotes the 
number of loci, and 𝑍, the [1x3s] vector of cell-means. As such, one may respectively derive the 
residual Sum of Squares (SS) and degrees of freedom (df) for both the full and reduced models: 1) 
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It is known that, if 𝜎C&0 = 0, the distribution of the test-statistic is,  

 𝐹~[26,	3S(n-1)],         (6.21) 

else,  

 𝑛𝑐𝐹~[26,	3S(n-1), 𝛿]131.        (6.22) 

Special Parameters n and a 

The parameter values for both sample-size per genotype (n) and Type I error (𝑎) 
were selected to encompass a range of empirically reasonable values to evaluate the 

functional relationship between power, n, and 𝑎. To this end, the two selected parameter 
vectors were: 

 𝒏=	[10, 20, 50, 100, 500, 1000],      (6.23) 

 𝒂= [	0.01, 0.05, 0.10, 0.20, 0.30, 0.40].      (6.24) 

 Simulation Study II: Focal Quantities 

Following the general aims of simulation study II, to adjudicate on aggregate the 
omnibus F-test of interactions performance of detection for each of the four admissible 
architectures under consideration, we will approximate 36 empirical distributions of 
power, the particulars of wit, we now elucidate in further detail. It is the case, for 

architectures in which, 𝛆 = [𝟎], each of the 6075 admissible Ψ’(𝒈)Max  and Ψ’(𝒈)Min 
architectures generate a unique power function,  

1 − 𝛽(𝜙.∗, 𝑛, 𝑎) =P(T⊂ 𝑅Ä𝜙′∗ > 0u	       (6.25) 

coded to a particular nominal realization of 𝜙.∗ (drawn from Λ�$�[) and a unique [n,a] 

pair. Accordingly, by sampling overall empirical realizations of Λ�$�[, we are afforded 

an approximation of its empirical distribution,  

 
𝑆𝑆Qm#nop= (𝑍 − 𝑨∗�⃗�)’	(�⃗� − (𝑨∗�⃗�);	𝑑𝑓qRi	=h

𝑠
2i . 4 + h

𝑠
3i . 8 +⋯) ; 2) 𝑆𝑆Qm#noQ	= (𝑍 − 𝑨p∗ �⃗�p)’(�⃗� − 𝑨p∗𝜃p); 

𝑑𝑓residl = ([3sn]-1)-2s-	𝑑𝑓qRi).  
131 𝛿 =	3S n𝜙.∗&. 
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Λ	$%e(�$,4,^)	.         (6.26) 

To this end, we generate 36 distributions of power each coded to the empirical 

range of Λ�$�[	and n and a. Next, to evaluate the performance of detection on aggregate, 

we will derive and report two focal quantities: its median value, 

ΛÅ	$%e(�$,4,^);         (6.27) 

and the proportion of architectures wherein the performance of detection is deemed satisfactory 

(say ≥ .90),	 

Λ��$%e��$,4,^��.t[�.         (6.28) 

Now, for architectures in which, 𝛆 ≠ [𝟎], for each of the 5238 and 4482 admissible 

Ψ’(𝒈)MaxGE, and Ψ’(𝒈)Min,GE architectures, we generate two unique power functions,  

1 − 𝛽(𝜙.∗, 𝑛, 𝑎) = P(T⊂ 𝑅Ä𝜙′∗ > 0u, 

1 − 𝛽(𝜙(J).∗ , 𝑛, 𝑎) = P(T⊂ 𝑅 Æ𝜙(𝑐)
′∗ > 0�.      (6.29) 

As before, each respective power function is coined to a nominal realization of 𝜙<∗( 𝜙(x)
<∗ ) 

and the unique [n, a] pair. By sampling overall empirical realizations of Λ�$�[, and  

Λ�(U)$ �[, for each architecture, we are afforded an approximation of its true and 

contaminated empirical distributions of power,     

 Λ	$%e(�$,4,^);	 

Λ	$%e(�(P)$ ,4,^);	         (6.30) 

and from the 36 distributions coded to the crossings of n and a, we derive the focal 
quantities,  

 ΛÅ	$%e(�$,4,^),         

ΛÅ	$%e(�(P)$ ,4,^);	         (6.31) 

and 
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Λ��$%e��$,4,^��.t[�, 

Λ&($%e(�(P)$ ,4,^)�.t[).         (6.32) 

Naturally, bespoke to architectures of this sort, we will also quantify their magnitude 
and degree of departure, in its general sense, 

 [𝛬$%e(�(P)$ ,4,^) − 𝛬$%e(�$,4,^)]	= [1-	𝛽(𝜙(J).∗ , 𝑛, 𝑎) −1-𝛽(𝜙.∗, 𝑛, 𝑎)].  (6.33) 

in terms of its median bias, 

[ΛÅ	$%e(�(P)$ ,4,^)	 − ΛÅ	$%e(�$,4,^)	].       (6.34) 

and finally, the bias engendered between the proportion of architectures with satisfactory 
power,  

[Λ&($%e(�(P)$ ,4,^)�.t[) − Λ��$%e��$,4,^��.t[�].     (6.35) 

Detection Performance Criteria 

All told, to adjudicate on aggregate the performance of detection of the omnibus 
F- test-statistic of interaction, we employ three criteria of detection: 1) the median power 

profile	�ΛÅ$%	e�𝜙′∗,4,^��, to assess what one can expect of the power of a particular test over 

the 36 unique combinations of 𝒏, and a; 2) the proportion of architectures which yield power 

>0.90, (P(Λ$%e�𝜙′∗,4,^� ≥ 0.90), as indices of how common one may encounter an 

architecture where detection of epistasis is deemed satisfactory; and 3) finally bespoke to 

architectures in which, 𝜺 ≠ [0], we evaluate further, the magnitude and direction of bias 

engendered by the former two criteria ([ΛÅ	$%e(�(P)$ ,4,^)	 − ΛÅ	$%e(�$,4,^)	]; 

	[Λ&($%e(�(P)$ ,4,^)�.t[) − Λ��$%e��$,4,^��.t[�]). Naturally, possession of the latter criteria 

permits us the quantitative tools to quantify the kinds of departures present if 
architectures with the properties of epistasis and gene-environmental association do 
indeed alter in some unfavourable way the performance of the omnibus F test-statistic of 
interaction to detect epistasis.  
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 Data Simulation 

 Both simulation study I and II were conducted and analyzed using R (R Core 
Team, 2016) and the following packages:  

1) Dplyr ; Hadley Wickham, Romain François, Lionel Henry and Kirill Müller 
(2020). dplyr: A Grammar of Data Manipulation. R package version 0.8.5.  
https://CRAN.R-project.org/package=dplyr. 

2) Knitr; Xie Y (2020). knitr: A General-Purpose Package for Dynamic Report 
Generation in R. R package version 1.28, https://yihui.org/knitr/. 

3)  Xtable; David B. Dahl, David Scott, Charles Roosen, Arni Magnusson and 
Jonathan Swinton (2019). xtable: Export Tables to LaTeX or HTML. R package 
version 1.8-4. https://CRAN.R-project.org/package=xtable. 

4) Plotly; C. Sievert. Interactive Web-Based Data Visualization with R, plotly, 
and shiny.Chapman and Hall/CRC Florida, 2020. 

5) Sjstats; Lüdecke D (2020). _sjstats: Statistical Functions for Regression Models 
(Version0.17.9)_. doi: 10.5281/zenodo.1284472 (URL: 
https://doi.org/10.5281/zenodo.1284472),<URL: https://CRAN.R-
project.org/package=sjstats>. 

6) Fmsb; Minato Nakazawa (2019). fmsb: Functions for Medical Statistics Book 
with some Demographic Data. R package version 0.7.0. https://CRAN.R-
project.org/package=fmsb. 

R-code for both simulations are included in the Appendices D-I.  
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Chapter 7. Results - Simulation Study I  

Introduction 

Recall, of course, our aims herein are to gain insight into the empirical range of 

Λ�$ and Λ	�(Q)$ %	�$ to respectively resolve: 1) the degree to which epistasis is manifest for 

architectures in which, ε = [𝟎]; and 2) how far off the mark the recovered epistatic effect 

sizes, are from their true value for architectures in which, ε ≠ [𝟎]. To this end, the results 
of the first simulation study are organized into four sections, in accordance with both 
architecture nomenclature and the terms of adjudication outlined in Chapter 6. 

 Ψ’(𝒈)Max Architectures 

7.1.1. Empirical Distributions  

Table 7.1, and Table 7.2 respectively present the summary statistics and every 
10th percentile points of the empirical distributions of standardized genetic effects. In 
Figure 7.1, the empirical distribution of epistatic effect sizes faceted by small, medium, 
and large departures, according to Cohen’s guidelines (1988). 

Table 7.1 Summary Statistics of Standardized Effects 

  
 

Table 7.2 Empirical Distributions of Standardized Effects 

 
 

Mean Median SD Min Max
Additive 0.305 0.244 0.221 2.48e-05 0.799
Dominance 0.149 0.078 0.172 9.53e-07 0.798
Epistasis 0.046 0.012 0.089 4.27e-06 0.784
E↵ect Size 0.272 0.173 0.298 0.002 1.980

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.040 0.111 0.142 0.173 0.244 0.344 0.437 0.517 0.656
Dominance 0.009 0.022 0.037 0.055 0.078 0.129 0.163 0.246 0.407
Epistasis 0.001 0.002 0.004 0.007 0.012 0.022 0.037 0.062 0.128
E↵ect Size 0.037 0.058 0.096 0.124 0.173 0.213 0.300 0.424 0.654
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Figure 7.1 Empirical Distribution of Ψ’(𝒈)Max Effect Size 

 
 

Do Ψ’(𝒈)Max architectures generate on aggregate small epistatic effect sizes (𝜙\^]< )?  

Based upon an examination of Table 7.1, Table 7.2, and Figure 7.1, there is 
preliminary support for the first candidate hypothesis. While all 6075 architectures of 

Ψ’(𝒈)Max construction, have the property of epistasis (𝜎C&0 > 0), upon further inspection, 

it is clear the average magnitude of Λ�W=I$  is small [median = 0.17, SD=0.30, min=0.002, 

max=1.98] according to Cohen’s (1988) guidelines. Furthermore, it appears the majority 

of Λ�W=I$  are classifiable as small [6017 percentile	=	0.21], while the minority of Λ�W=I$  are 

classifiable as medium [70th to 80th percentiles= 0.300-0.42] to large [90th to 100th 
percentiles=0.654-1.980]. 

7.1.2. Which Architectures go with which Effect Size  

To evaluate which architectures and derived focal quantities are associated with 

different magnitudes of 𝜙\^]< 	,	we partitioned the empirical distribution of Λ�W=I$ , into its 

1st, 2nd, and 3rd quantiles, respectively denoted as small, medium, and large132, and 

summarize the magnitudes of Λ′�#’(&)	* . 

 
132 Recall this particular distinction deviates from Cohen’s guidelines and is based on the quantiles 
of the empirical distribution of 𝜙<∗(small = 25th; medium = 50th; and large = 75th).  
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Architectures with Small Effect Sizes 

 Table 7.3 and Table 7.4 respectively present the summary statistics and every 10th 
percentile points for the empirical distributions of standardized genetic effects 
associated with the 1st quantile of the empirical distribution of epistatic effects.  

Table 7.3 Summary Statistics of Standardized Effects – Small  

  

Table 7.4 Empirical Distributions of Standardized Effects – Small  

 
 

Architectures with Medium Effect Sizes 

Table 7.5 and Table 7.6 respectively present the summary statistics and every 10th 
percentile points for the empirical distributions of standardized genetic effects 
associated with the 2nd quantile of the empirical distribution of epistatic effects. 

Table 7.5 Summary Statistics of Standardized Effects – Medium  

 

Table 7.6  Empirical Distributions of Standardized Effects – Medium  

 
 

Small E↵ect Size Mean Median SD Min Max
Additive 0.218 0.168 0.174 2.48e-05 0.799
Dominance 0.129 0.069 0.148 9.53e-07 0.792
Epistasis 0.001 0.001 0.001 4.27e-06 0.005
E↵ect Size 0.043 0.045 0.019 0.002 0.076

Small E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0362 0.0904 0.1317 0.1456 0.1683 0.1872 0.1990 0.3618 0.4909
Dominance 0.0067 0.0196 0.0346 0.0607 0.0688 0.1235 0.1626 0.1853 0.3330
Epistasis 0.0001 0.0004 0.0006 0.0009 0.0011 0.0015 0.0019 0.0020 0.0026
E↵ect Size 0.0169 0.0249 0.0325 0.0366 0.0454 0.0493 0.0504 0.0583 0.0709

Medium E↵ect Size Mean Median SD Min Max
Additive 0.314 0.302 0.222 9.926e-05 0.798
Dominance 0.151 0.080 0.181 8.729e-05 0.798
Epistasis 0.018 0.012 0.016 0.001 0.095
E↵ect Size 0.181 0.172 0.075 0.076 0.360

Medium E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.019 0.061 0.128 0.145 0.186 0.344 0.433 0.517 0.642
Dominance 0.007 0.015 0.038 0.055 0.096 0.136 0.172 0.265 0.488
Epistasis 0.003 0.005 0.007 0.008 0.010 0.020 0.030 0.047 0.069
E↵ect Size 0.083 0.100 0.114 0.161 0.197 0.211 0.240 0.274 0.393
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Architectures with Large Epistatic Effect Sizes 

Table 7.7 and Table 7.8 respectively present the summary statistics and every 10th 
percentile points for the empirical distributions of standardized genetic effects 
associated with the 3rd quantile of the empirical distribution of epistatic effects. 

Table 7.7 Summary Statistics of Standardized Effects – Large  

  

Table 7.8 Empirical Distributions of Standardized Effects – Large  

   
 

7.1.3. The Architectures yielding the Three Largest Epistatic Effect sizes 

The three largest nominal values of 𝜙\^]<∗  were all equal to 1.98 and were 

generated by three distinct architectures of Ψ’(𝒈)Max construction: 

𝜙\^]$<∗ =	1.98; �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼$ = 44
𝛼0 = 44
𝑘$ = 1
𝑘0 = 1
𝜑$ = 0.1
𝜑0 = 0.1⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻0 = 0.8;	𝜔;<(&)
0∗ = Ð

𝜔*0∗ 	= 0.002
𝜔>0∗ = 	0.013
𝜔C&0∗ = 0.780

Ñ𝜔C0∗ = 	0.20; 

𝜙\^]0<∗ = 	1.98;	�⃗�∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼$ = 16
𝛼0 = 16
𝑘$ = 1
𝑘0 = 1
𝜑$ = 0.1
𝜑0 = 0.1⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻0 = 0.8; 𝜔;<(&)
0∗ = Ð

𝜔*0∗ 	= 0.002
𝜔>0∗ = 	0.013
𝜔C&0∗ = 0.780

Ñ𝜔C0∗ = 	0.20; 

Large E↵ect Size Mean Median SD Min Max
Additive 0.372 0.377 0.232 0.0007 0.770
Dominance 0.162 0.0924 0.1749 0.0003 0.759
Epistasis 0.147 0.1097 0.1308 0.026 0.78
E↵ect Size 0.682 0.568 0.325 0.360 1.98

Large E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.060 0.119 0.199 0.286 0.377 0.480 0.545 0.611 0.692
Dominance 0.012 0.027 0.039 0.053 0.092 0.139 0.211 0.258 0.464
Epistasis 0.036 0.056 0.074 0.089 0.110 0.129 0.151 0.195 0.319
E↵ect Size 0.398 0.424 0.459 0.506 0.569 0.654 0.789 0.872 1.090
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𝜙\^]s<∗ =	1.98; �⃗�∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼$ = 32
𝛼0 = 32
𝑘$ = 1
𝑘0 = 1
𝜑$ = 0.1
𝜑0 = 0.1⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻0 = 0.8;𝜔;<(&)
0∗ = Ð

𝜔*0∗ 	= 0.002
𝜔>0∗ = 	0.013
𝜔C&0∗ = 0.780

Ñ𝜔C0∗ = 	0.20.  

           (7.1) 

From (7.1), all three architectures which engendered the largest 𝜙\^]<∗ 	are 

characterized by: 1) equal additive effects between loci (𝛼$ = [44, 16, 32], 𝛼$ =

[44, 16, 32]); 2) complete dominance of the first allele133 (𝑘$ = 1, 𝑘0 = 1); 3) small recessive 

allele frequencies (𝜑$ = 0.1, 𝜑0 = 0.1); and 4) large broad-sense heritability (𝐻0 = 0.8). 

7.1.4. The Role of Genetic Parameters in Determining the Distribution 
of Epistatic Effect sizes 

To quantitatively evaluate the dependency of Λ�YZ[$  on the set of genetic 

parameters θ�⃗  and 𝐻0	we employ a full-factorial 7-way ANOVA decomposition of 

Λ�W=I$ in in terms of the 127 estimable effects134. It turned out that 38.2% of the variability 

in Λ�W=I$   was attributable to the pooled genetic main effects; 27.6% to 2-way 

interactions; and 33.1% to higher order interactions. The top five effects yield 48.7% of 

the variability in Λ�W=I$  , and include: 1) the main effect H0 = 0.23; 2) pooled-main effect 

𝜑.= 0.076; 3) pooled main effect 𝑘.= 0.062; 4) 2-way interactions of 𝛼$: 𝛼0 = 0.059; and 5) 2-

way interactions 𝑘$: 𝑘0 = 0.051.  

 Ψ’(𝒈)Min Architectures 

7.2.1. Empirical Distributions  

Table 7.9 and Table 7.10 respectively present the summary statistics and every 
10th percentile points of the empirical distributions of standardized genetic effects. In 

 
133 or equivalently, complete dominance of the homozygous genotype. 
134 27-1 estimable genetic effects.  
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Figure 7.2, the empirical distribution of epistatic effect size is faceted by small, medium, 
and large departures, according to Cohen's guidelines (1988). 

Table 7.9 Summary Statistics of Standardized Effects  

 

Table 7.10 Empirical Distributions of Standardized Effects 

 

Figure 7.2  Empirical Distribution of Ψ’(𝒈)Min  Effect Sizes 

 
 

Do Ψ’(𝒈)Min architectures generate small epistatic effect sizes, 𝜙\!4< ? 

 Based upon an examination of Tables 7.9, Table 7.10, and Figure 7.2 there is 
preliminary support for the first candidate hypothesis. While all 6075 architectures of 

Ψ’(𝒈)Min epistatic construction, have the property of epistasis, upon further inspection, it 

is clear the average magnitude of Λ�W!4$  is small [median = 0.21, SD = 0.38, min = 0.0016, 

max= 1.98], according to Cohen’s (1988) guidelines. Furthermore, it appears the majority 

Mean Median SD Min Max
Additive 0.2739 0.1833 0.2212 1.467e-06 0.7906
Dominance 0.1535 0.0867 0.1872 0.0004 0.7999
Epistasis 0.0725 0.0104 0.1290 1.944e-06 0.7842
E↵ect Size 0.3253 0.1971 0.3849 0.0016 1.9801

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0110 0.0602 0.1317 0.1514 0.1833 0.3292 0.3936 0.4941 0.6164
Dominance 0.0088 0.0230 0.0382 0.0522 0.0867 0.1282 0.1644 0.2090 0.4741
Epistasis 0.0003 0.0016 0.0034 0.0068 0.0104 0.0299 0.0605 0.1247 0.1906
E↵ect Size 0.0257 0.0499 0.0825 0.1140 0.1971 0.2402 0.3881 0.4867 0.8628
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of Λ�W!4$   are classifiable as small [6017 percentile=	0.24], while the minority of Λ�W!4$ 		are 

classifiable as medium [70th percentile =0.39] to large [80th to 90th percentiles, 0.49-0.86].  

7.2.2. Which Architectures go with which Effect sizes 

To evaluate which architectures and derived focal quantities are associated with 

different magnitudes of 𝜙\!4< 	,	we partitioned the empirical distribution of 𝛬�W!4$ , into its 

1��, 2��, and 3�� quantiles 𝛬′�W!4$ , respectively denoted as small, medium and large, and 

summarize the magnitudes of 𝛬′�\’(&)	* . 

Architectures with Small Effect Sizes 

 Table 7.11 and Table 7.12 respectively present the summary statistics and every 
10th percentile points for the empirical distributions of standardized genetic effects 
associated with the 1st quantile of the empirical distribution of epistatic effects. 

Table 7.11 Summary Statistics of Standardized Effects – Small 

 

Table 7.12 Empirical Distributions of Standardized Effects – Small 

 
 

Architectures with Medium Effect Sizes 

 Table 7.13 and 7.14 respectively present the summary statistics and every 10th percentile 
points for the empirical distributions of focal quantities associated with the 2nd quantile 
of the empirical distribution of epistatic effects. 

Small E↵ect Size Mean Median SD Min Max
Additive 0.212 0.158 0.185 1.467e-06 0.668
Dominance 0.148 0.111 0.164 0.0004 0.799
Epistasis 0.0009 0.0005 0.0008 1.944e-06 0.003
E↵ect Size 0.033 0.034 0.017 0.0016 0.060

Small E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0032 0.0309 0.1317 0.1514 0.1582 0.1804 0.3456 0.3830 0.5529
Dominance 0.0192 0.0398 0.0486 0.0663 0.1112 0.1363 0.1628 0.1956 0.2470
Epistasis 5.207e-05 0.0001 0.0002 0.0003 0.0005 0.0008 0.0016 0.0019 0.0020
E↵ect Size 0.0093 0.0145 0.0202 0.0259 0.0344 0.0430 0.0490 0.0499 0.0540
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Table 7.13 Summary Statistics of Standardized Effects – Medium  

  

Table 7.14 Empirical Distributions of Standardized Effects – Medium  

 
 

Architectures with Large Effect Sizes 

Table 7.15 and Table 7.16 respectively present the summary statistics and every 
10th percentile points for the empirical distributions of standardized genetic effects 
associated with the 3rd quantile of the empirical distribution of epistatic effects. 

Table 7.15 Summary Statistics of Standardized Effects – Large 

 

Table 7.16 Empirical Distributions of Standardized Effects – Large  

 

7.2.3. The Architectures Yielding the Three Largest Epistatic Effect Sizes 

The three largest nominal values of 	𝜙\!4<∗ 	were all equal to 1.98 and were 

generated by three distinct architectures of Ψ’(𝒈)Min construction: 

𝜙/nR!.∗ =	1.98; 𝜃∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 16
𝑘! = −1
𝑘& = −1
𝜑! = 0.9
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.8;	𝜔\.(3)
& = �

𝜔;& 	= 0.003
𝜔2& = 	0.013
𝜔K0& = 0.784

�; 𝜔K& = 	0.20 

Medium E↵ect Size Mean Median SD Min Max
Additive 0.292 0.185 0.234 6.364e-05 0.790
Dominance 0.169 0.095 0.209 0.0004 0.799
Epistasis 0.026 0.010 0.032 0.0007 0.137
E↵ect Size 0.200 0.197 0.104 0.060 0.430

Medium E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0190 0.0611 0.1276 0.1447 0.1857 0.3439 0.4334 0.5169 0.6418
Dominance 0.0072 0.0148 0.0375 0.0545 0.0955 0.1364 0.1721 0.2653 0.4877
Epistasis 0.0034 0.0050 0.0068 0.0080 0.0104 0.0198 0.0301 0.0472 0.0690
E↵ect Size 0.0834 0.0999 0.1140 0.1614 0.1971 0.2114 0.2402 0.2739 0.3935

Large E↵ect Size Mean Median SD Min Max
Additive 0.298 0.250 0.217 0.001 0.744
Dominance 0.127 0.049 0.155 0.002 0.740
Epistasis 0.237 0.164 0.168 0.037 0.784
E↵ect Size 0.871 0.825 0.398 0.430 1.980

Large E↵ect Size .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.021 0.069 0.144 0.221 0.250 0.354 0.439 0.550 0.596
Dominance 0.009 0.016 0.030 0.038 0.049 0.089 0.130 0.206 0.336
Epistasis 0.095 0.115 0.125 0.146 0.164 0.192 0.266 0.372 0.545
E↵ect Size 0.456 0.487 0.556 0.756 0.825 0.863 0.972 1.017 1.650
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𝜙/nR&.∗ = 	1.98;	�⃗�∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 32
𝑘! = −1
𝑘& = −1
𝜑! = 0.9
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.8; 𝜔\.(3)
& = �

𝜔;& 	= 0.003
𝜔2& = 	0.013
𝜔K0& = 0.784

�;	𝜔K& = 	0.20 

𝜙/nRZ.∗ =	1.98; 𝜃∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 44
𝑘! = −1
𝑘& = −1
𝜑! = 0.9
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.8;	𝜔\.(3)
& = �

𝜔;& 	= 0.003
𝜔2& = 	0.013
𝜔K0& = 0.784

�𝜔K& = 	0.20  (7.2) 

From (7.2), the three architectures which engender the largest 𝜙\!4<∗ 	are 

characterized by: 1) equal additive effects for the first locus (𝛼$ = [16,16,16]), while 

additive effects vary over a for the second (𝛼0 = [16,32,44]); 2) complete dominance of the 

second allele135 for both loci (𝑘$ = −1, 𝑘0 = −1); 3) large recessive allele frequencies for 

both loci (𝜑$ = 0.9, 𝜑0 = 0.9); and 4) large broad-sense heritability (𝐻0 = 0.8). 

7.2.4. The Role of Genetic Parameters in Determining the Distribution 
of Epistatic Effect Sizes 

 To quantitatively evaluate the variability of Λ�Y]^$ 	on the set of genetic 

parameters θ�⃗  and 𝐻0	we employ a full-factorial 7-way ANOVA decomposition of 

Λs"789 	in terms of the 127 estimable effects. It turned out that, 54% of the variability in 

Λs"789 	is attributed to pooled genetic main effects; 32% 2-way interactions, and 14% to 

higher-order interactions. The top five effects yield 65.5% of the variability in Λs"789 are: 1) 

main effect 𝐻&= 0.20; 2) pooled main-effect 𝑘. = 0.17; 3) pooled main effect 𝜑. = 0.16; 4) 2-

way interaction 𝑘!: 𝑘&= 0.077; and 5) 2-way interaction	𝑘1: 𝜑1= 0.036.  

 
135 Or equivalently, complete dominance of the homozygous genotype. 
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 Ψ’(𝒈)Max,GE Architectures 

7.3.1. Empirical Distributions  

Empirical Distributions of Bias  

Table 7.17 and Table 7.18 respectively present the summary statistics and every 
10th percentiles point of the empirical distributions of bias. 

Table 7.17 Empirical Distribution of Bias 

 

Table 7.18 Summary Statistics of Absolute Bias 

 
 

How far off the mark are the recovered 𝜙\^]�C(x)
<  from	𝜙\^]�C< ? 

  Based on examination of Tables 7. 17 and Table 7.18, it appears the departure 

between contaminated and true 𝜙<	are minimal on aggregate for Λ|�W=I_M(P)$ %	�W=I_M|
$  

[median=0.007, SD=0.12, min=0.0004, max=1.76], and the circumstances in which 

𝜙\^]�C(x)
< >	𝜙\^]�C<  and 𝜙\^]�C(x)

< <	𝜙\^]�C<  are relatively equal in proportion over 

Λ�W=I_M(P)$ %	�W=I_M
$ .  

Empirical Distributions of Standardized Effects 

Table 7.19, Table 7.20, Table 7.21, and Table 7.22 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias. In Figure 7.3 and Figure 7.4, the empirical 
distributions of true and contaminated epistatic effect sizes were faceted by small, 
medium, and large departures. And finally, in Figure 7.5, the empirical distributions of 
bias associated with each standardized genetic effect. 

.10 .20 .30 .40 .50 .60 .70 .80 .90
-0.0105 -0.0053 -0.0028 -0.0011 0.0023 0.0047 0.0082 0.0149 0.0345

Mean Median SD Min Max
0.034 0.007 0.126 0.000306 1.761
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Table 7.19 Summary Statistics -Standardized Effects 

  

Table 7.20 Empirical Distributions- Standardized Effects 

 

Table 7.21 Summary Statistic - Genetic Bias   

 

Table 7.22 Empirical Distribution - Genetic Bias  

 
  

Mean Median SD Min Max
Additive 0.242 0.156 0.225 0.000e+00 0.726
Dominance 0.227 0.165 0.221 0.009 0.800
Epistasis 0.026 1.018e-05 0.064 0.000e+00 0.555
E↵ect Size 0.156 0.003 0.263 0.000e+00 1.637
Additive.C 0.238 0.157 0.224 3.357e-06 0.671
Dominance.C 0.230 0.167 0.222 0.006 0.841
Epistasis.C 0.032 0.001 0.081 1.266e-07 0.776
E↵ect Size.C 0.179 0.038 0.310 0.000 2.444
G.E Association 0.013 4.954e-05 0.061 3.254e-07 0.672
Residual 0.500 0.499 0.246 0.044 0.886
G.E Correlation 0.109 0.255 0.440 -0.889 0.867
E↵ect Size Bias 0.023 0.002 0.128 -0.301 1.761

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0001 0.0015 0.0477 0.1475 0.1561 0.2821 0.3869 0.4084 0.6188
Dominance 0.0426 0.0468 0.1053 0.1132 0.1646 0.1756 0.1996 0.4192 0.5644
Epistasis 0.000e+00 1.174e-33 3.854e-33 1.590e-32 1.018e-05 0.0047 0.0137 0.0317 0.0782
E↵ect Size 0.000e+00 5.733e-17 1.089e-16 1.920e-16 0.0025 0.0923 0.1680 0.2728 0.4778
Additive.C 0.0002 0.0016 0.0334 0.1453 0.1569 0.2523 0.3853 0.4047 0.6178
Dominance.C 0.0428 0.0473 0.1049 0.1138 0.1667 0.1791 0.2000 0.4309 0.5800
Epistasis.C 4.808e-06 1.643e-05 3.697e-05 0.0001 0.0007 0.0055 0.0154 0.0339 0.0819
E↵ect Size.C 0.0031 0.0059 0.0097 0.0170 0.0383 0.0932 0.1728 0.2893 0.5268
G.E Association 4.647e-06 9.850e-06 1.889e-05 3.109e-05 4.954e-05 7.702e-05 0.0001 0.0003 0.0012
Residual 0.1936 0.1990 0.2135 0.4940 0.4985 0.5037 0.7950 0.7990 0.8002
G.E Correlation -0.6150 -0.2743 -0.1263 0.0481 0.2551 0.3128 0.3987 0.4966 0.5859
E↵ect Size Bias -0.0105 -0.0053 -0.0028 -0.0011 0.0023 0.0047 0.0082 0.0149 0.0345

Mean Median SD Min Max
Additive Bias -0.0117 -0.1100 0.3768 -0.6839 0.8405
Dominance Bias 0.0028 0.0006 0.0293 -0.2367 0.3191
Epistatic Bias 0.0059 2.922e-06 0.0430 -0.1082 0.5424
E↵ect Size Bias 0.0229 0.0023 0.1280 -0.3014 1.7612

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.4396 -0.2962 -0.2732 -0.1435 -0.1100 -0.0640 0.1815 0.3641 0.5185
Dominance Bias -0.0021 -0.0004 6.513e-05 0.0003 0.0006 0.0010 0.0018 0.0034 0.0077
Epistatic Bias -0.0026 -0.0011 -0.0004 -8.037e-05 2.922e-06 1.111e-05 3.046e-05 7.573e-05 0.0003
E↵ect Size Bias -0.0105 -0.0053 -0.0028 -0.0011 0.0023 0.0047 0.0082 0.0149 0.0345
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Figure 7.3 Empirical Distribution of  Ψ’(𝒈)Max,GE True Effect Sizes 

 

Figure 7.4 Empirical Distributions of Ψ'(𝒈)Max,GE Contaminated Effect Sizes 
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Figure 7.5 Empirical Distribution of Genetic Bias 

 
How far off the mark are the recovered values, 𝜔;’(𝒈)(𝒄)0  from their true counterpart 𝜔;’(𝒈)0  ?  

 Based on the examination of Table 7.19, Table 7.20, Table 7.21, Table 7.22, and 
Figure 7.5 the departure between contaminated and true standardized genetic effects136 
are unique in both magnitude and direction across the 5382 empirical distributions. 

Upon further inspection, it is evident for  Λ�`(P)	* %�`	
*  the departure between 

contaminated and true additive standardized effects are large on aggregate [median=-

0.11, SD=0.37, min=-0.68, max=0.84], and the majority of bias in Λ�`(P)	* %�`	
*  occurs in the 

circumstance 𝜔�(x)	0 < 𝜔�	0 .	Whereas for Λ�a(P)	* %�a	
*  the departure between contaminated 

and true standardized dominance effects are minimal on aggregate [median=0.0006, 
SD=0.02, min=-0.24, max=0.31], and the majority of cases occur in the 

circumstance	𝜔�(x)	0 > 𝜔�	0 . Finally, for Λ�/b(P)	* %�/b	
*  the departure between contaminated 

and true epistatic standardized effects are small on aggregate [median=2.9x10-6, SD=0.04, 

min= -0.11, max=0.54], and the circumstances in which 𝜔H�(x)	0 < 𝜔H�	0 , and 𝜔H�(x)	0 > 𝜔H�	0  

occur are relatively equally over Λ�/b(P)	* %�/b	
* .  Furthermore, in contrast to architectures 

in which, 𝛆 =	[0], from Figures 6 and 7, there are 594 Ψ’(𝒈)Max,GE architectures, which do 

 
136 Recall that 𝜔X(Y)&  is the proportion of variance in Z attributed to the dependency (or association) 
between the environmental effects and genotypic-values; 𝜔Q&  −	the proportion of variance in Z 
attributed to environment, independent of genetics; and 𝜌\.(𝒈),K −	the sensitivity or strength of the 
dependencies between environment and the genotypic-values (in a linear sense). As such, afore 
noted quantities will be respectively referred to (in the Tables and figures hereafter) as 'G.E 
Association,' 'Residual,' and 'G.E.Correlation.' 
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not engender a true population-level effect of epistasis. To this end, only 5238 
architectures have the property of epistasis and will be admitted into simulation study 
II. 

7.3.2. Which Architectures go with which Magnitude of Bias  

To gain insight into the sorts of architectures associated with particular 

magnitudes of Λ�W=I_M(P)$ %	�W=I_M
$ ,	we partition the empirical distribution 

Λ�W=I_M(P)$ %	�W=I_M
$ 	into its 1st, 2nd, and 3rd quantiles (respectively denoted as small, 

medium, and large), and summarize the partitioned empirical distributions of both the 
standardized genetic effects and associated biases. 

Architectures with Small Bias 

Table 7.23, Table 7.24, Table 7.25, and Table 7.26 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias associated with the 1st quantile of the 
distribution of bias. 
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Table 7.23 Summary Statistics – Small Bias 

 

Table 7.24 Empirical Distributions of Standardized Effects – Small Bias 

 

Table 7.25 Genetic Bias Summary Statistics – Small Bias 

 

Table 7.26 Genetic Bias Empirical Distribution – Small Bias 

 
 

Architectures with Medium Bias 

Table 7.27, Table 7.28, Table 7.29, and Table 7.30 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias associated with the 2nd quantile of the 
distribution of bias. 

Small Bias Mean Median SD Min Max

Additive 0.2555 0.2019 0.2231 0.000e+00 0.6783
Dominance 0.2716 0.1737 0.2199 0.0094 0.7972
Epistasis 0.0719 0.0343 0.0986 0.0001 0.5544
E↵ect Size 0.4059 0.3152 0.3115 0.0266 1.6371
Additive.C 0.2501 0.1990 0.2205 1.186e-05 0.6419
Dominance.C 0.2741 0.1741 0.2214 0.0063 0.8017
Epistasis.C 0.0657 0.0300 0.0957 9.577e-05 0.5516
E↵ect Size.C 0.3859 0.2934 0.3102 0.0220 1.6272
G.E Association 0.0077 7.203e-05 0.0370 3.713e-06 0.3540
Residual 0.4102 0.4900 0.2237 0.1619 0.8861
G.E Correlation -0.1050 -0.1471 0.4651 -0.8894 0.8672
E↵ect Size Bias -0.0200 -0.0087 0.0407 -0.3014 -0.0039

Small Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0007 0.0208 0.0595 0.1294 0.2019 0.3357 0.3780 0.5598 0.6021
Dominance 0.0514 0.1030 0.1285 0.1628 0.1737 0.2056 0.3527 0.4748 0.6739
Epistasis 0.0064 0.0128 0.0179 0.0274 0.0343 0.0495 0.0710 0.0912 0.1886
E↵ect Size 0.1225 0.1633 0.2020 0.2637 0.3152 0.3849 0.4828 0.5994 0.7875
Additive.C 0.0009 0.0218 0.0606 0.1156 0.1990 0.3184 0.3734 0.5401 0.6009
Dominance.C 0.0538 0.1034 0.1375 0.1634 0.1741 0.2152 0.3583 0.4743 0.6779
Epistasis.C 0.0053 0.0100 0.0154 0.0231 0.0300 0.0447 0.0602 0.0802 0.1831
E↵ect Size.C 0.1011 0.1445 0.1861 0.2494 0.2934 0.3615 0.4454 0.5827 0.7706
G.E Association 1.942e-05 3.053e-05 3.883e-05 5.247e-05 7.203e-05 9.323e-05 0.0001 0.0002 0.0005
Residual 0.1931 0.1979 0.2027 0.2101 0.4900 0.4982 0.5035 0.5122 0.8005
G.E Correlation -0.7693 -0.5559 -0.4610 -0.2705 -0.1471 0.0344 0.2562 0.3370 0.5464
E↵ect Size Bias -0.0290 -0.0174 -0.0128 -0.0105 -0.0087 -0.0071 -0.0062 -0.0053 -0.0045

Small Bias Mean Median SD Min Max

Additive Bias 0.0186 -0.0800 0.3865 -0.6532 0.8012
Dominance Bias 0.0025 0.0005 0.0294 -0.1283 0.3113
Epistatic Bias -0.0062 -0.0020 0.0153 -0.1082 -4.426e-05
E↵ect Size Bias -0.0200 -0.0087 0.0407 -0.3014 -0.0039

Small Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.4290 -0.3933 -0.2606 -0.1668 -0.0800 0.0064 0.2185 0.4523 0.6425
Dominance Bias -0.0041 -0.0014 -0.0007 -9.976e-05 0.0005 0.0012 0.0020 0.0041 0.0082
Epistatic Bias -0.0095 -0.0050 -0.0036 -0.0026 -0.0020 -0.0015 -0.0012 -0.0009 -0.0006
E↵ect Size Bias -0.0290 -0.0174 -0.0128 -0.0105 -0.0087 -0.0071 -0.0062 -0.0053 -0.0045
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Table 7.27 Summary Statistics – Medium Bias 

 

Table 7.28 Empirical Distributions of Standardized Effects – Medium Bias 

 

Table 7.29 Genetic Bias Summary Statistics – Medium Bias 

 

Table 7.30 Genetic Bias Empirical Distribution – Medium Bias  

 
 
Architectures with Large Bias 

Table 7.31, Table 7.32, Table 7.33, and Table 7.34 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias associated with the 3rd quantile of the 
distribution of bias. 

Medium Bias Mean Median SD Min Max
Additive 0.2009 0.1547 0.1985 0.000e+00 0.6419
Dominance 0.1826 0.1125 0.1923 0.0114 0.8000
Epistasis 0.0082 1.493e-32 0.0300 0.000e+00 0.5546
E↵ect Size 0.0569 1.750e-16 0.1163 0.000e+00 1.6359
Additive.C 0.2019 0.1548 0.1995 3.357e-06 0.6540
Dominance.C 0.1834 0.1130 0.1931 0.0110 0.8115
Epistasis.C 0.0081 2.628e-05 0.0297 1.266e-07 0.5521
E↵ect Size.C 0.0592 0.0076 0.1140 0.0004 1.6322
G.E Association 3.361e-05 1.594e-05 4.930e-05 3.254e-07 0.0004
Residual 0.6066 0.7938 0.2220 0.1807 0.8080
G.E Correlation 0.2402 0.3609 0.4008 -0.8894 0.8672
E↵ect Size Bias 0.0023 0.0023 0.0041 -0.0039 0.0112

Medium Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0001 0.0007 0.0131 0.1500 0.1547 0.1571 0.3710 0.3902 0.5689
Dominance 0.0423 0.0439 0.0468 0.1053 0.1125 0.1668 0.1864 0.1999 0.4995
Epistasis 0.000e+00 7.067e-34 1.921e-33 5.627e-33 1.493e-32 4.194e-32 0.0016 0.0068 0.0179
E↵ect Size 0.000e+00 3.270e-17 6.296e-17 9.220e-17 1.750e-16 3.651e-16 0.0488 0.0984 0.1815
Additive.C 0.0002 0.0007 0.0135 0.1495 0.1548 0.1587 0.3741 0.3917 0.5716
Dominance.C 0.0424 0.0445 0.0472 0.1055 0.1130 0.1670 0.1876 0.2014 0.5001
Epistasis.C 2.062e-06 4.808e-06 8.772e-06 1.643e-05 2.628e-05 5.564e-05 0.0015 0.0065 0.0175
E↵ect Size.C 0.0020 0.0031 0.0043 0.0059 0.0076 0.0097 0.0470 0.0957 0.1789
G.E Association 2.461e-06 4.669e-06 7.654e-06 1.038e-05 1.594e-05 2.178e-05 3.161e-05 5.054e-05 8.358e-05
Residual 0.1986 0.4944 0.4978 0.4996 0.7938 0.7979 0.7991 0.7997 0.8006
G.E Correlation -0.4232 -0.0954 0.1149 0.2714 0.3609 0.3987 0.4863 0.5529 0.6297
E↵ect Size Bias -0.0028 -0.0020 -0.0011 0.0011 0.0023 0.0033 0.0048 0.0064 0.0082

Medium Bias Mean Median SD Min Max
Additive Bias -0.0175 -0.1098 0.3220 -0.4838 0.8115
Dominance Bias 0.0008 0.0004 0.0018 -0.0058 0.0115
Epistatic Bias -0.0001 2.922e-06 0.0003 -0.0025 9.908e-05
E↵ect Size Bias 0.0023 0.0023 0.0041 -0.0039 0.0112

Medium Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.3531 -0.2789 -0.2554 -0.1138 -0.1098 -0.1036 0.1698 0.2009 0.4997
Dominance Bias -0.0004 2.143e-05 9.392e-05 0.0002 0.0004 0.0006 0.0009 0.0014 0.0025
Epistatic Bias -0.0005 -0.0002 -8.206e-05 7.877e-07 2.922e-06 6.188e-06 1.122e-05 1.840e-05 3.445e-05
E↵ect Size Bias -0.0028 -0.0020 -0.0011 0.0011 0.0023 0.0033 0.0048 0.0064 0.0082
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Table 7.31 Summary Statistics – Large Bias 

 

Table 7.32 Empirical Distributions of Standardized Effects – Large Bias  

 

Table 7.33 Genetic Bias Summary Statistics – Large Bias 

 

Table 7.34 Genetic Bias Empirical Distribution – Large Bias 

 
  

Large E↵ect Mean Median SD Min Max
Additive 0.3103 0.3830 0.2578 0.000e+00 0.7256
Dominance 0.2728 0.1756 0.2543 0.0086 0.8000
Epistasis 0.0165 1.203e-32 0.0475 0.000e+00 0.3189
E↵ect Size 0.1034 1.745e-16 0.2589 0.000e+00 1.5669
Additive.C 0.2967 0.3257 0.2587 1.343e-05 0.6710
Dominance.C 0.2800 0.1779 0.2564 0.0104 0.8405
Epistasis.C 0.0465 0.0002 0.1147 2.475e-05 0.7760
E↵ect Size.C 0.2104 0.0270 0.4350 0.0112 2.4443
G.E Association 0.0429 0.0004 0.1116 3.024e-05 0.6718
Residual 0.3768 0.2318 0.2200 0.0440 0.8860
G.E Correlation 0.0607 0.1142 0.3926 -0.7240 0.8396
E↵ect Size Bias 0.1070 0.0270 0.2328 0.0112 1.7612

Large Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 1.775e-33 0.0010 0.0602 0.1550 0.3830 0.3902 0.6041 0.6244 0.6244
Dominance 0.0439 0.1098 0.1170 0.1650 0.1756 0.1796 0.2000 0.5000 0.7996
Epistasis 0.000e+00 5.547e-34 1.777e-33 3.662e-33 1.203e-32 2.455e-32 1.018e-31 0.0050 0.0499
E↵ect Size 0.000e+00 3.261e-17 6.699e-17 1.269e-16 1.745e-16 2.770e-16 7.099e-16 0.1114 0.4264
Additive.C 0.0002 0.0013 0.0134 0.1431 0.3257 0.3919 0.5211 0.6197 0.6351
Dominance.C 0.0463 0.1051 0.1141 0.1683 0.1779 0.1826 0.2101 0.5066 0.8007
Epistasis.C 3.926e-05 7.111e-05 0.0001 0.0001 0.0002 0.0003 0.0009 0.0588 0.1722
E↵ect Size.C 0.0131 0.0149 0.0169 0.0194 0.0270 0.0345 0.0632 0.2854 0.6530
G.E Association 8.102e-05 0.0001 0.0002 0.0003 0.0004 0.0007 0.0017 0.0414 0.1362
Residual 0.1796 0.1916 0.1966 0.2047 0.2318 0.4844 0.4971 0.5136 0.7704
G.E Correlation -0.4506 -0.2568 -0.1609 -0.0833 0.1142 0.2551 0.3532 0.3988 0.5378
E↵ect Size Bias 0.0131 0.0149 0.0169 0.0194 0.0270 0.0345 0.0586 0.1083 0.2528

Large Bias Mean Median SD Min Max
Additive Bias -0.0303 -0.2626 0.4585 -0.6839 0.8405
Dominance Bias 0.0072 0.0023 0.0504 -0.2367 0.3191
Epistatic Bias 0.0300 0.0002 0.0799 2.475e-05 0.5424
E↵ect Size Bias 0.1070 0.0270 0.2328 0.0112 1.7612

Large Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.4487 -0.4419 -0.4202 -0.2802 -0.2626 -0.0970 0.1282 0.5066 0.8005
Dominance Bias -0.0083 -0.0020 0.0004 0.0014 0.0023 0.0039 0.0070 0.0125 0.0389
Epistatic Bias 3.926e-05 7.111e-05 0.0001 0.0001 0.0002 0.0003 0.0009 0.0369 0.0865
E↵ect Size Bias 0.0131 0.0149 0.0169 0.0194 0.0270 0.0345 0.0586 0.1083 0.2528
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7.3.3. Architectures yielding the Three Largest Values of Absolute Bias	

The three largest nominal values of |𝜙\^]�C(x)
< −	𝜙\^]�C< | were all equal to 1.76, 

and were generated by three distinct architectures of Ψ’(𝒈)Max,GE epistatic construction, 
characterized by the following quantitative expressions and standardized genetic effects: 

|𝜙/B8tK(J).∗ −	𝜙/B8tK.∗ | 	=	1.76,  𝜃 ∗=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 16
𝑘! = −6
𝑘& = −1
𝜑! = 0.1
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.8;	𝜔\9
(3)

& = �
𝜔;& 	= 0.144
𝜔2& = 	0.648
𝜔K0& = 0.079

�;  

𝜔\9
(3):

& = �
𝜔;J& 	= 0.018
𝜔2S& = 	0.727
𝜔K0S& = 0.210

� ; �
𝜔X(Y)& = 0.34
	𝜔Q& = 	0.044

�; 𝜌\’(Y),u(d)= -0.177. 

|𝜙/B8tK(J).∗ −	𝜙/B8tK.∗ |	1.76, �⃗� ∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 32
𝑘! = −6
𝑘& = −1
𝜑! = 0.1
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⎥
⎥
⎥
⎥
⎤

;  𝐻& = 0.8;	𝜔\9
(3)

& = �
𝜔;& 	= 0.144
𝜔2& = 	0.648
𝜔K0& = 0.079

�;  

𝜔\9
(3):

& = �
𝜔;J& 	= 0.018
𝜔2S& = 	0.727
𝜔K0S& = 0.210

� ; �
𝜔X(Y)& = 0.34
	𝜔Q& = 	0.044

�; 𝜌\’(Y),u(d)= -0.177. 

|𝜙/B8tK(J).∗ −	𝜙/B8tK.∗ | 	= 1.76, �⃗� ∗	=

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 44
𝑘! = −6
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𝜑& = 0.9⎦
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⎥
⎥
⎤

; 𝐻& = 0.8;	𝜔\9
(3)

& = �
𝜔;& 	= 0.144
𝜔2& = 	0.648
𝜔K0& = 0.079

�;  

𝜔\9
(3):

& = �
𝜔;J& 	= 0.018
𝜔2S& = 	0.727
𝜔K0S& = 0.210

� ; �
𝜔X(Y)& = 0.34
	𝜔Q& = 	0.044

�; 𝜌\’(Y),u(d)= -0.177.   (7.3) 

From (7.3), the three architectures which engender the largest bias	are 
characterized by: 1) equal additive effects for the first locus, while additive effects vary 

over a for the second (𝛼$ = [16,16,16], 𝛼0 = [16,32,44]); 2) under dominance for the first 

locus, and complete dominance of the second allele for the second (𝑘$ = −6, 𝑘0 = −1); 3) 
small recessive allele frequencies for the first locus, and large recessive allele frequencies 
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for the second (𝜑$ = 0.1, 𝜑0 = 0.9); 4) large broad-sense heritability (𝐻0 = 0.8); and 5) 

small gene-environmental correlation (𝜌;’(=),�(H)=  -0.117). Notably, the departure of 1.76 

for all three architectures was engendered by the deviation between the contaminated 

epistatic effect 𝜙\!4�C(�)<∗ =2.19, and its true counterpart 	𝜙\!4�C<∗ =0.426. 

7.3.4. Role of Genetic Parameters in Determining the Distribution of 
Bias	

To quantitatively evaluate the dependency of Λ�W=I_M(P)$ %	�W=I_M
$ , on the set of 

genetic parameters 𝜃 and 𝐻0, we employ a full-factorial 7-way ANOVA decomposition 

of  Λ�W=I_M(P)$ %	�W=I_M
$ 	in terms of the 127 estimable effects. It turned out that 12.2 % of the 

total variability in Λ�W=I_M(P)$ %	�W=I_M
$ 	 is accounted for by pooled-genetic main effects 

37.5% by 2-way interactions, and 50.3% by higher-order interactions. Of the 127 effects 
the top five effects sum to account for 65.1% of the total variability, and are as follows: 1) 

2-way interaction 𝑘$:	𝑘0 = 24.6%; 2) 3-way interaction 3-way interaction 𝑘$:	𝜑$: 𝑘0= 

19.4%; 3) 3-way interaction 𝑘$:	𝑘0: 𝐻0 = 8.5%; 4) pooled main-effect 𝑘 =11.2%; and 5) 3-

way interaction	𝑘$: 𝜑$: 𝑘0= 6.3%. 

 Ψ’(𝒈)Min,GE Architectures 

7.4.1. Empirical Distributions	 

Empirical Distributions of Bias 

Table 7.35 and 7.36 respectively present the summary statistics and every 10th 
percentile points of the empirical distributions of bias. 

Table 7.35 Summary Statistics of Absolute Bias 

 

Table 7.36 Empirical Distribution of Bias	  

 
  

Mean Median SD Min Max
0.0660 0.0117 0.1506 0.0002 0.9914

.10 .20 .30 .40 .50 .60 .70 .80 .90
-0.0514 -0.0269 -0.0164 -0.0072 0.0006 0.0023 0.0044 0.0082 0.1853
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How far off the mark are the recovered 𝜙\!4�C(x)
<∗  from	𝜙\!4�C<∗ ?  

 
 Based on an examination of Table 7.35 and Table 7.36 it appears the departure 

between contaminated and true 𝜙<	are minimal on aggregate. Furthermore, over 

Λ|�W!4_M(P)$ %	�W!4_M|
$  [median=0.011, SD=0.15, min=0.0002, max=0.99] it appears the 

circumstances in which  𝜙\!4�C(x)
< >	𝜙\!4�C<  and 𝜙\!4�C(x)

< <	𝜙\!4�C<  are relatively equal 

in proportion. 

Empirical Distributions of Standardized Effects  

Table 7.37, Table 7.38, Table 7.39, and Table 7.40 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias. In Figure 7.6 and Figure 7.7, respectively, 
the empirical distributions of true and contaminated effect sizes faceted by small, 
medium, and large departures according to Cohen's guidelines (1988). And finally, in 
Figure 7.8, the empirical distributions of bias associated with each standardized genetic 
effects. 
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Table 7.37 Summary Statistics of Standardized Effects 

 

Table 7.38 Empirical Distributions of Standardized Effects  

 

Table 7.39 Genetic Bias Summary Statistics 

 

Table 7.40 Genetic Bias Empirical Distribution 

 
  

Mean Median SD Min Max
Additive 0.2086 0.1584 0.1899 0.000e+00 0.7579
Dominance 0.1615 0.1018 0.1871 0.0034 0.7991
Epistasis 0.1070 0.0020 0.1521 0.000e+00 0.5559
E↵ect 0.3820 0.0596 0.5235 0.000e+00 2.9348
Additive.C 0.2258 0.1676 0.1972 4.432e-06 0.8507
Dominance.C 0.1812 0.1155 0.1877 0.0135 0.8957
Epistasis.C 0.1037 0.0365 0.1378 1.597e-07 0.5449
E↵ect.C 0.4088 0.2702 0.4863 0.0004 2.5776
G.E Association 0.0189 0.0003 0.0633 5.229e-07 0.6510
Residual 0.4894 0.5006 0.2444 0.0256 0.8070
G.E Correlation -0.1392 -0.0207 0.4010 -0.9789 0.7334
E↵ect Size Bias 0.0268 0.0006 0.1617 -0.6970 0.9888

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0015 0.0364 0.0743 0.1333 0.1584 0.1895 0.2768 0.3810 0.5677
Dominance 0.0263 0.0396 0.0473 0.0667 0.1018 0.1357 0.1636 0.1977 0.4939
Epistasis 0.000e+00 2.218e-33 1.407e-32 1.226e-08 0.0020 0.0778 0.1385 0.2251 0.3465
E↵ect Size 0.000e+00 6.624e-17 1.965e-16 0.0001 0.0596 0.3254 0.4732 0.7500 1.3081
Additive.C 0.0015 0.0465 0.0808 0.1499 0.1676 0.2220 0.3101 0.3922 0.5831
Dominance.C 0.0383 0.0461 0.0587 0.1004 0.1155 0.1499 0.1851 0.2352 0.4906
Epistasis.C 3.674e-06 9.496e-06 2.541e-05 0.0067 0.0365 0.0762 0.1270 0.2122 0.3183
E↵ect Size.C 0.0025 0.0049 0.0092 0.1066 0.2702 0.3265 0.5515 0.7772 1.2539
G.E Association 8.860e-06 2.092e-05 4.284e-05 0.0001 0.0003 0.0008 0.0022 0.0063 0.0624
Residual 0.1914 0.2025 0.2156 0.4869 0.5006 0.5047 0.7630 0.7981 0.8009
G.E Correlation -0.7450 -0.5620 -0.4115 -0.2033 -0.0207 0.0822 0.1169 0.1691 0.2829
E↵ect Size Bias -0.0514 -0.0269 -0.0164 -0.0072 0.0006 0.0023 0.0044 0.0082 0.1853

Mean Median SD Min Max
Additive Bias 0.0172 0.0002 0.0557 -0.1122 0.6946
Dominance Bias 0.0197 0.0034 0.0470 -0.0229 0.3344
Epistatic Bias -0.0034 6.325e-07 0.0326 -0.1334 0.2628
E↵ect Size Bias 0.0268 0.0006 0.1617 -0.6970 0.9888

.10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.0051 -0.0019 -0.0005 -1.455e-05 0.0002 0.0029 0.0083 0.0222 0.0580
Dominance Bias -0.0026 -0.0012 -0.0005 -0.0002 0.0034 0.0070 0.0122 0.0233 0.0482
Epistatic Bias -0.0292 -0.0157 -0.0090 -0.0037 6.325e-07 3.736e-06 9.496e-06 2.608e-05 0.0139
E↵ect Size Bias -0.0514 -0.0269 -0.0164 -0.0072 0.0006 0.0023 0.0044 0.0082 0.1853
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Figure 7.6 Empirical Distribution of True Ψ’(𝒈)Min,GE Effect Sizes 
 

 

Figure 7.7 Empirical Distribution of Contaminated Ψ’(𝒈)Min,GE Effect Sizes 
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Figure 7.8 Empirical Distribution of Genetic Bias 

 

 
How far off the mark are the recovered values of 𝜔;’(=(�))

0 	from their true counterpart 𝜔;’(=)0 ? 

  Based on the examination of Table 7.37, Table 7.38, Table 7.39, Table 7.40, and 
Figure 7.8, it appears the departure between contaminated and true standardized 
genetic effects are unique in magnitude and direction across the 5072 empirical 

distributions. Upon further inspection, it is evident for Λ�`(P)* %�`	
*  the departure between 

contaminated and true additive standardized effects are minimal on aggregate 

[median=0.0002, SD=0.05, min=-0.11, max=0.70], and the manifest bias Λ�`(P)* %�`	
*  occurs 

relatively equal in proportion for the circumstances in which, 𝜔�(x)
0 < 𝜔�	0 	and 𝜔�(x)

0 >

𝜔�	0 . Similarly, for Λ�a(P)* %�a	
*  the departure between contaminated and true standardized 

dominance effects are minimal on aggregate [median=0.03, SD=0.04, min=-0.02, 

max=0.33], and the proportion of Λ�a(P)* %�a	
* ,	in which,	𝜔�(x)

0 < 𝜔�	0 	and 𝜔�(x)
0 > 𝜔�	0 are 

relatively equal. Finally, for Λ�/b(P)* %�/b	
*  the departure between contaminated and true 

epistatic standardized effects is considerably small on aggregate [median=6.3x10-7, 
SD=0.03, min=-0.13, max=0.26]. However, it appears for the majority of 

Λ�/b(P)* %�/b	
* , 𝜔H�(x)

0 = 𝜔H�	0 . Finally, from Figures 9 and 10, it is clear, there are 594 

Ψ’(𝒈)Min,GE  architectures without the true population-level effect of epistasis, and thus 
only 4482 architectures were admitted into the second simulation study. 
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7.4.2. Which Focal Quantities go with which Magnitudes of Bias  

We now turn to report the recovery of the focal values under various magnitudes 

of Λ�W!4_M(P)$ %	�W!4_M
$ . As such, we partition the empirical distribution 

Λ�W!4_M(P)$ %	�W!4_M
$ 	into its 1��, 2��, and 3�� quantiles respectively denoted as small, 

medium, and large, and summarize the magnitude of the empirical distributions of 
standardized effects and genetic biases. 

Architectures with Small Bias	 

Table 7.41, Table 7.42, Table 7.43, and Table 7.44 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias associated with the 1st quantile of the 
distribution of bias. 

Table 7.41 Summary Statistics - Small 𝐁𝐢𝐚𝐬 

 

Table 7.42 Empirical Distributions - Small Bias 

 
 

Small Bias Mean Median SD Min Max
Additive 0.1839 0.1905 0.1094 0.000e+00 0.5893
Dominance 0.1319 0.0934 0.1358 0.0034 0.7454
Epistasis 0.2927 0.2967 0.1449 0.0098 0.5559
E↵ect 1.0432 1.0234 0.5050 0.1129 2.9348
Additive.C 0.2207 0.2193 0.1337 1.773e-05 0.7551
Dominance.C 0.1549 0.1128 0.1424 0.0159 0.8957
Epistasis.C 0.2602 0.2655 0.1375 0.0056 0.5409
E↵ect.C 0.9747 0.9328 0.4877 0.0852 2.5776
G.E Association 0.0116 0.0031 0.0503 0.0002 0.5571
Residual 0.3643 0.2017 0.2183 0.0256 0.8005
G.E Correlation 0.1286 0.1102 0.1395 -0.0537 0.6924
E↵ect Size Bias -0.0685 -0.0448 0.0806 -0.6970 -0.0213

Small Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0156 0.0739 0.1217 0.1653 0.1905 0.1997 0.2433 0.2847 0.3125
Dominance 0.0296 0.0389 0.0507 0.0623 0.0934 0.1087 0.1527 0.1595 0.3345
Epistasis 0.1162 0.1528 0.2106 0.2434 0.2967 0.3401 0.3470 0.3604 0.5529
E↵ect Size 0.3946 0.5805 0.6709 0.8170 1.0234 1.2607 1.3380 1.5001 1.7309
Additive.C 0.0186 0.0954 0.1602 0.1934 0.2193 0.2503 0.2875 0.3141 0.3471
Dominance.C 0.0403 0.0553 0.0660 0.0856 0.1128 0.1437 0.1722 0.2038 0.3532
Epistasis.C 0.0786 0.1283 0.1793 0.2079 0.2655 0.3005 0.3189 0.3406 0.4771
E↵ect Size.C 0.3419 0.5270 0.6170 0.7608 0.9328 1.1935 1.2760 1.4133 1.6708
G.E Association 0.0008 0.0012 0.0020 0.0025 0.0031 0.0041 0.0061 0.0094 0.0164
Residual 0.1633 0.1823 0.1907 0.1953 0.2017 0.4725 0.4880 0.4976 0.7832
G.E Correlation -0.0338 0.0052 0.0787 0.1078 0.1102 0.1251 0.1489 0.2078 0.3275
E↵ect Size Bias -0.1140 -0.0816 -0.0716 -0.0514 -0.0448 -0.0379 -0.0349 -0.0269 -0.0238
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Table 7.43 Genetic Bias Summary Statistics- Small Bias 

 

Table 7.44 Genetic Bias Empirical Distributions- Small Bias 

 
 

Architectures with Medium Bias 

Table 7.45, Table 7.46, Table 7.47, and Table 7.48 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and genetic bias associated with the 2nd quantile of the 
distribution of bias. 

Table 7.45 Summary Statistics- Medium Bias 

 

Table 7.46 Empirical Distributions - Medium Bias 

 
  

Small Bias Mean Median SD Min Max
Additive Bias 0.0367 0.0193 0.0685 -0.0019 0.6946
Dominance Bias 0.0230 0.0164 0.0216 0.0041 0.1557
Epistatic Bias -0.0326 -0.0243 0.0235 -0.1334 -0.0037
E↵ect Size Bias -0.0685 -0.0448 0.0806 -0.6970 -0.0213

Small Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias 0.0009 0.0029 0.0068 0.0130 0.0193 0.0266 0.0359 0.0521 0.0834
Dominance Bias 0.0074 0.0097 0.0115 0.0137 0.0164 0.0203 0.0231 0.0298 0.0460
Epistatic Bias -0.0647 -0.0438 -0.0362 -0.0292 -0.0243 -0.0218 -0.0184 -0.0157 -0.0137
E↵ect Size Bias -0.1140 -0.0816 -0.0716 -0.0514 -0.0448 -0.0379 -0.0349 -0.0269 -0.0238

Medium Bias Mean Median SD Min Max
Additive 0.1751 0.1483 0.1801 0.000e+00 0.7489
Dominance 0.1496 0.1018 0.1722 0.0101 0.7991
Epistasis 0.0671 1.298e-05 0.1063 0.000e+00 0.5559
E↵ect 0.2362 0.0054 0.3331 0.000e+00 1.6859
Additive.C 0.1767 0.1468 0.1799 4.432e-06 0.8377
Dominance.C 0.1508 0.1016 0.1703 0.0135 0.7972
Epistasis.C 0.0645 2.905e-05 0.1033 1.597e-07 0.5449
E↵ect.C 0.2329 0.0088 0.3273 0.0004 1.6691
G.E Association 0.0005 3.372e-05 0.0030 5.229e-07 0.0412
Residual 0.6080 0.7882 0.2180 0.0619 0.8070
G.E Correlation -0.3041 -0.2937 0.3854 -0.9789 0.5322
E↵ect Size Bias -0.0033 0.0006 0.0077 -0.0209 0.0057

Medium Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0007 0.0026 0.0546 0.0760 0.1483 0.1583 0.1840 0.3815 0.3982
Dominance 0.0314 0.0396 0.0433 0.0516 0.1018 0.1160 0.1588 0.1976 0.4945
Epistasis 4.236e-34 5.188e-33 1.869e-32 2.497e-07 1.298e-05 0.0437 0.0847 0.1311 0.2160
E↵ect Size 2.299e-17 9.656e-17 1.925e-16 0.0006 0.0054 0.2793 0.3292 0.4170 0.6615
Additive.C 0.0007 0.0025 0.0621 0.0794 0.1468 0.1577 0.1892 0.3770 0.3961
Dominance.C 0.0357 0.0412 0.0461 0.0548 0.1016 0.1158 0.1608 0.1963 0.4899
Epistasis.C 2.025e-06 3.674e-06 5.972e-06 1.152e-05 2.905e-05 0.0406 0.0790 0.1261 0.2071
E↵ect Size.C 0.0017 0.0025 0.0035 0.0049 0.0088 0.2702 0.3176 0.4042 0.6509
G.E Association 4.640e-06 8.860e-06 1.367e-05 2.142e-05 3.372e-05 6.302e-05 0.0001 0.0003 0.0007
Residual 0.2055 0.4958 0.5013 0.5041 0.7882 0.7980 0.8002 0.8008 0.8019
G.E Correlation -0.8459 -0.7270 -0.5930 -0.4391 -0.2937 -0.0581 0.0350 0.1142 0.1511
E↵ect Size Bias -0.0164 -0.0113 -0.0072 -0.0035 0.0006 0.0015 0.0023 0.0031 0.0044
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Table 7.47 Genetic Bias Summary Statistics- Medium Bias 

 

Table 7.48 Genetic Bias Empirical Distribution- Medium Bias 

 
 

Architectures with Large Bias 

Table 7.49, Table 7.50, Table 7.51, and Table 7.52 respectively present the 
summary statistics and every 10th percentile points of the empirical distributions of 
standardized genetic effects and their genetic bias associated with the 3rd quantile of the 
distribution of bias. 

Medium Bias Mean Median SD Min Max
Additive Bias 0.0016 -1.206e-05 0.0078 -0.0190 0.0888
Dominance Bias 0.0012 -0.0003 0.0052 -0.0191 0.0493
Epistatic Bias -0.0027 6.325e-07 0.0039 -0.0157 6.322e-05
E↵ect Size Bias -0.0033 0.0006 0.0077 -0.0209 0.0057

Medium Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.0034 -0.0016 -0.0008 -0.0002 -1.206e-05 3.161e-05 0.0009 0.0035 0.0083
Dominance Bias -0.0024 -0.0014 -0.0009 -0.0005 -0.0003 -0.0001 0.0025 0.0041 0.0066
Epistatic Bias -0.0092 -0.0062 -0.0037 -0.0010 6.325e-07 2.115e-06 3.733e-06 5.927e-06 1.152e-05
E↵ect Size Bias -0.0164 -0.0113 -0.0072 -0.0035 0.0006 0.0015 0.0023 0.0031 0.0044



 

 90 

Table 7.49 Summary Statistics - Large Bias 

 

Table 7.50 Empirical Distributions - Large Bias 

 
 

Table 7.51 Genetic Bias Summary Statistics- Large Bias 

 

Table 7.52 Genetic Bias Empirical Distribution- Large Bias 

 
 

7.4.3. Architectures yielding the Largest Values of Absolute Bias	

The three largest nominal values of |𝜙\!4�C(x)
< −	𝜙\!4�C< | were all equal to 0.99, 

and were generated by three distinct architectures of Ψ’(𝒈)Min,GE characterized by the 
following quantitative expressions and standardized genetic effects: 

Large Bias Mean Median SD Min Max
Additive 0.3002 0.1895 0.2371 0.0012 0.7579
Dominance 0.2149 0.1628 0.2416 0.0105 0.7988
Epistasis 0.0012 2.465e-33 0.0076 0.000e+00 0.0714
E↵ect 0.0122 7.843e-17 0.0569 0.000e+00 0.4787
Additive.C 0.3290 0.3191 0.2397 0.0012 0.8507
Dominance.C 0.2682 0.1837 0.2293 0.0205 0.7971
Epistasis.C 0.0256 0.0027 0.0456 7.000e-06 0.2628
E↵ect.C 0.1945 0.0591 0.2565 0.0058 0.9888
G.E Association 0.0629 0.0102 0.1039 1.131e-05 0.6510
Residual 0.3773 0.3118 0.1998 0.0567 0.8016
G.E Correlation -0.0773 -0.0016 0.4439 -0.8576 0.7334
E↵ect Size Bias 0.1823 0.0230 0.2508 0.0057 0.9888

Large Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive 0.0065 0.0364 0.1333 0.1895 0.1895 0.3708 0.4737 0.5976 0.6337
Dominance 0.0105 0.0421 0.0667 0.1278 0.1628 0.1667 0.1869 0.2667 0.7896
Epistasis 0.000e+00 0.000e+00 0.000e+00 1.109e-34 2.465e-33 9.861e-33 2.990e-32 1.727e-31 8.651e-06
E↵ect Size 0.000e+00 0.000e+00 0.000e+00 1.895e-17 7.843e-17 1.968e-16 3.899e-16 5.814e-16 0.0065
Additive.C 0.0066 0.0591 0.1364 0.2383 0.3191 0.4184 0.4883 0.6033 0.6338
Dominance.C 0.0512 0.1078 0.1249 0.1500 0.1837 0.2040 0.2921 0.4340 0.7799
Epistasis.C 1.186e-05 2.353e-05 4.640e-05 7.425e-05 0.0027 0.0206 0.0320 0.0414 0.0555
E↵ect Size.C 0.0069 0.0093 0.0112 0.0183 0.0591 0.1942 0.2544 0.2800 0.6189
G.E Association 3.895e-05 6.617e-05 0.0001 0.0002 0.0102 0.0561 0.0703 0.1260 0.1559
Residual 0.2006 0.2035 0.2074 0.2180 0.3118 0.4652 0.5098 0.5421 0.6769
G.E Correlation -0.7428 -0.5423 -0.4115 -0.2034 -0.0016 0.0257 0.2719 0.2831 0.5137
E↵ect Size Bias 0.0069 0.0082 0.0100 0.0148 0.0230 0.1853 0.2428 0.2751 0.6189

Large Bias Mean Median SD Min Max
Additive Bias 0.0288 -0.0004 0.0812 -0.1122 0.2988
Dominance Bias 0.0533 0.0100 0.0806 -0.0229 0.3344
Epistatic Bias 0.0244 0.0027 0.0453 0.000007 0.2628
E↵ect Size Bias 0.1823 0.0230 0.2508 0.0057 0.9888

Large Bias .10 .20 .30 .40 .50 .60 .70 .80 .90
Additive Bias -0.0237 -0.0100 -0.0059 -0.0030 -0.0004 0.0001 0.0232 0.0657 0.0928
Dominance Bias -0.0057 -0.0028 -0.0016 -0.0007 0.0100 0.0398 0.0570 0.1046 0.1828
Epistatic Bias 1.186e-05 2.353e-05 4.362e-05 6.979e-05 0.0027 0.0139 0.0301 0.0414 0.0555
E↵ect Size Bias 0.0069 0.0082 0.0100 0.0148 0.0230 0.1853 0.2428 0.2751 0.6189
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|𝜙/nRtK(S).∗ −	𝜙/nRtK.∗ | 	=	0.99; �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 16
𝑘! = 0.0
𝑘& = −1
𝜑! = 0.5
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.2;		𝜔\9
(3)

& = �
𝜔;& 	= 0.036
𝜔2& = 	0.163
𝜔K0& = 0.00

�;  

𝜔\9
(3):

& = �
𝜔;(S)& 	= 0.059
𝜔2(S)& = 	0.410
𝜔K0(S)& = 0.262

� ; 𝜔K& = �
𝜔X(Y)& = 0.533
𝜔Q& = 	0.267

� ; 𝜌\’(Y),u(d) = −0.001. 

|𝜙/nRtK(S).∗ −	𝜙/nRtK.∗ | 	=	0.99; �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 16
𝑘! = 0.0
𝑘& = −1
𝜑! = 0.5
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.2;		𝜔\9
(3)

& = �
𝜔;& 	= 0.036
𝜔2& = 	0.163
𝜔K0& = 0.00

�;  

𝜔\9
(3):

& = �
𝜔;(S)& 	= 0.059
𝜔2(S)& = 	0.410
𝜔K0(S)& = 0.262

� ; 𝜔K& = �
𝜔X(Y)& = 0.533
𝜔Q& = 	0.267

� ; 𝜌\’(Y),u(d) = −0.001.  

|𝜙/nRtK(S).∗ −	𝜙/nRtK.∗ | 0.99; �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼! = 16
𝛼& = 16
𝑘! = 0.0
𝑘& = −1
𝜑! = 0.5
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

; 𝐻& = 0.2;		𝜔\9
(3)

& = �
𝜔;& 	= 0.036
𝜔2& = 	0.163
𝜔K0& = 0.00

�;  

 𝜔\9
(3):

& = �
𝜔;(S)& 	= 0.059
𝜔2(S)& = 	0.410
𝜔K0(S)& = 0.262

� ; 𝜔K& = �
𝜔X(Y)& = 0.533
𝜔Q& = 	0.267

� ; 𝜌\’(Y),u(d) = −0.001. (7.4) 

From (7.4), the three architectures which engender the largest bias	are 
characterized by: 1) constant additive effects for the first locus, while additive effects vary 

over a for the second (𝛼$ = [16,16,16], 𝛼0 = [16,32,44]); 2) no dominance for the first 

locus, and complete dominance of the second allele for the second (𝑘$ = 0.0, 𝑘0 = −1)); 3) 
moderate recessive allele frequencies for the first locus, and large recessive allele 

frequencies for the second (𝜑$ = 0.5, 𝜑0 = 0.9); 4) small broad-sense heritability (𝐻0 =

0.2); and 5) a small gene-environmental correlation (𝜌;’(=),�(H) =	−0.001). Notably, the 

departure of 0.99 for all three architectures was engendered by the deviation between 

the contaminated epistatic effect 𝜙\!4�C(�)<∗ =0.99, and its true counterpart 	𝜙\!4�C<∗ =0.00. 
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7.4.4. Role of Genetic Parameters in Determining the Distribution of 
Bias	

To quantitatively evaluate the dependency of Λ�W!4_M(Q)$ %	�W!4_M
$ 	on the set of 

genetic parameters 𝜃 and 𝐻0, we employ a full-factorial 7-way ANOVA decomposition 

of	Λ�W!4_M(Q)$ %	�W!4_M
$ 	 in terms of the 127 estimable effects. It turned out that, 25.5% of the 

variability in bias is attributed to pooled-genetic main effects, 51.1 % to pairwise- 
interactions, and 23.3% to higher-order interactions. The top 5 effects yield 72.3% of the 

variability in Λ�W!4_M(Q)$ %	�W!4_M
$ 	. Presented in order of magnitude, they include: 1) 2-way 

interaction 𝑘$: 𝑘0 = 35%; 2) main effect 𝑘.= 21.3% ; 3) 3-way interaction between 

𝑘$:	𝑘0:	𝐻0	= 6.6% 4) 3-way interaction between 𝑘$:	𝜑$:	𝑘0 = 5.4% ; and 5) 2-way 

interaction 𝑘0:	𝜑0 = 4.0%. 
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Chapter 8. Results Simulation Study II 

Introduction 

Recall, of course, our aims herein are to adjudicate the omnibus F-test statistic of 
interaction’s performance of detection for all admissible architectures. To this end, 
consonant with the first simulation study, simulation study two is organized into four 
sections, in accordance with both architecture nomenclature and the criteria of detection 
outlined in Chapter 6.   

 Ψ’(𝒈)Max Architectures 

8.1.1. Median Power Profile for Ψ’(𝒈)Max 

 In Table 8.1, the median power profile Λ&	#$%('v,),*)	generated over the empirical 

distribution  Λ�$�[	and 36 combinations of n and 𝒂. 

Table 8.1 Median Power Ψ’(𝒈)Max 

  
 
What one can expect of a particular tests power over unique combinations of 𝑛 and 𝑎? 
 
  Based on the examination of Table 8.1,  the median power profiles generated 

over various pairings of [n,𝒂] are unsatisfactory for the majority of the 36  Λ$%e(𝜙𝑀𝑎𝑥′∗ ,𝑛∗,𝑎∗). 

Upon closer inspection, for the majority of  Λ$%e(𝜙𝑀𝑎𝑥′∗ ,𝑛∗,𝑎∗),	each coded to a unique 

pairings of [n,𝒂] (N=25, min: [n=10, 𝑎=0.01]; max: [n=500, 𝑎=0.01]), the omnibus F-test-

statistic yields unsatisfactory power of detection, ranging from [0.14 ≤ (1 −

𝛽(𝜙\^]< , 𝑛, 𝑎) ≥ 0.90) ≥ 0.70], in the case of ~50% of the engendering architectures. 

Whereas, for the minority of Λ$%e(𝜙𝑀𝑎𝑥′∗ ,𝑛∗,𝑎∗), each coded to a unique pairings of [n,𝒂] 

(N=11, min: [n=500, a=0.05]; max: [n=1000, 𝑎=0.40]), the test statistic yields satisfactory 

.01 .05 .10 .20 .30 .40
10 0.014 0.064 0.122 0.232 0.337 0.438
20 0.020 0.081 0.147 0.266 0.374 0.476
50 0.041 0.136 0.224 0.363 0.477 0.577
100 0.092 0.241 0.355 0.510 0.622 0.709
500 0.732 0.889 0.937 0.972 0.985 0.992
1000 0.984 0.997 0.999 1.000 1.000 1.000
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power profile ranging from, [0.90≤ (1 − 𝛽(𝜙\^]< , 𝑛, 𝑎) ≥ 0.90) ≥ 1.00] in the case of ~50% 
of the engendering architectures. As such, the empirical scientist, on test day, can expect 
to have satisfactory power to detect epistasis in the case of ~50% of the engendering 

architectures under consideration for test-procedures coded to either [n= 500, 𝑎= 0.05 to 
0.40] or any pairing of n=1000, with any reasonable Type I error rate.  

8.1.2. Proportion of Ψ’(𝒈)Max with Power ≥ 𝟎.90 

In Table 8.2, the proportion of Ψ’(𝒈)Max architectures with satisfactory power (≥  
0.90).   

Table 8.2 Proportion of Ψ’(𝒈)Max Architectures ≥  0.90 

 
 

How common may one encounter an Ψ’(𝒈)Max where detection of epistasis is deemed 
‘satisfactory’? 
 
 Based on examination of Table 8.2, it appears that an acceptable power of 
detection is generally uncommon for all omnibus F-test-procedures considered. Upon 

closer inspection, for 20 Λ$%e(�W=I$ ,4,^)	(min: [n=10, 𝑎 =0.01]; max: [n=100, 𝑎 =0.05]), the 

proportion of Ψ’(𝒈)Max architectures with satisfactory nominal power are below the 25th 

percentile, and range from [0.013 ≤ P(1 − 𝛽(𝜙\^]< , 𝑛, 𝑎) ≥ 0.90) ≥ 0.232].  For 6 

Λ$%e(�W=I$ ,4,^) (min [n=100, a=0.10], max: [n=500, a=0.05]), the proportion of Ψ’(𝒈)Max 

architectures with satisfactory nominal power are between the 25th and 50th percentile, and 

range from [0.251 ≤ P(1 − 𝛽(𝜙\^]< , 𝑛, 𝑎) ≥ 0.90) ≥ 0.49]. Finally, for the remaining 10 

Λ$%e(𝜙𝑀𝑎𝑥′ ,𝑛,𝑎)(min: [n=500, 𝑎 =0.10], max: [n=1000, 𝑎 =0.40]), the proportion of Ψ’(𝒈)Max 

architectures with satisfactory nominal power are between 50th and 75th percentile, and 

range from [0.52 ≤ P(1 − 𝛽(𝜙\^]< , 𝑛, 𝑎) ≥ 0.90) ≥ 0.75]. All told, it appears that on 
average, satisfactory power to detect epistasis is relatively uncommon, and unsurprisingly 
improves for test procedures in the care of relatively high per-genotype sample size, and 
relaxed Type I error rate. 

.01 .05 .10 .20 .30 .40
10 0.013 0.015 0.017 0.030 0.046 0.057
20 0.029 0.050 0.067 0.085 0.101 0.118
50 0.101 0.127 0.148 0.183 0.212 0.243
100 0.178 0.232 0.251 0.282 0.310 0.341
500 0.415 0.494 0.525 0.567 0.593 0.610
1000 0.564 0.600 0.620 0.654 0.713 0.736
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 Ψ’(𝒈)Min Architectures 

8.2.1. Median Power Profile for Ψ’(𝒈)Min 

 In Table 8.3, the median power profile Λ&	#$%('v,),*)	generated over the empirical 

distributions of  Λ�$�[	and 36 combinations of n and 𝒂. 

Table 8.3 Median Power Ψ’(𝒈)Min 

 
 

What one can expect of a particular tests power over unique combinations of 𝑛 and 𝑎? 
 

 Based on the examination of Table 8.3, it appears that for the majority of [n,	𝒂] 

pairing, Λ$%e(�W!4$ ,4,^)	yields, on average, unsatisfactory power to detect epistasis. Upon 

closer inspection, for the majority of Λ$%e(�W!4$ ,4,^) , each coded to a unique pairing of [n, 

𝒂] (N=25,min: [n=10, 𝑎 =0.01]; max: [n=500, a=0.01]), the omnibus F-test-statistic will 

yield unsatisfactory power of detection, ranging from  [0.016 ≤ (1 − 𝛽(𝜙\!4< , 𝑛, 𝑎) ≥

0.90) ≥ 0.87], in the case of ~50% of the engendering architectures. In contrast, for the 

minority of Λ$%e(�W!4$ ,4,^) , each coded to a unique pairing of [n, a] (N=11 ,min: [n=500, 

a=0.05]; max: [n=1000, 𝑎=0.40]), the test-statistic will yield satisfactory power, ranging 

from [0.96 ≤ (1 − 𝛽(𝜙\!4< , 𝑛, 𝑎) ≥ 0.90) ≥ 1.00] in the case of ~50% of the engendering 
architectures. As such, the empirical scientist, on test day, may expect to have satisfactory 
power to detect epistasis in the case of ~50% of the engendering architectures, if for 
example, they have selected a sample size per-genotype of n= 500, and any reasonable 
Type I error rate. If, however, n=100, Type I error rate would need to be around 0.4 for 
the test statistic to yield roughly the same power of detection performance. 
  

.01 .05 .10 .20 .30 .40
10 0.016 0.069 0.129 0.242 0.348 0.450
20 0.023 0.091 0.162 0.285 0.396 0.497
50 0.054 0.166 0.263 0.409 0.524 0.621
100 0.132 0.310 0.433 0.588 0.693 0.771
500 0.872 0.959 0.980 0.992 0.996 0.998
1000 0.998 1.000 1.000 1.000 1.000 1.000
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8.2.2. Proportion of Ψ’(𝒈)Min with Power ≥.90 

In Table 8.4, the proportion of Ψ’(𝒈)Min architectures with satisfactory power (≥  

0.90). 

Table 8.4 Proportion of Ψ’(𝒈)Min Architectures over 0.90 

 
 
How common may one encounter an Ψ’(𝒈)Min where detection of epistasis is deemed 
‘satisfactory’? 
 
 From Table 8.4, it appears that the satisfactory power of detection is generally 

uncommon. Upon closer inspection, for 16  Λ1−𝛽(𝜙𝑀𝑖𝑛′ ,𝑛,𝑎) (min: [n=10, 𝑎=0.01]; max: [n=50, 

𝑎=0.20]), the proportion of Ψ’(𝒈)Min architectures with satisfactory nominal power are 

below the 25th percentile, and range from [0.037  ≤ P(1-𝛽(𝜙\!4<∗ , 𝑛, 𝑎) ≥0.90 ) ≥0.229]. For 

9 Λ1−𝛽(𝜙𝑀𝑖𝑛′ ,𝑛,𝑎) (min: [n=50, 𝑎=0.30], max: [n=500, 𝑎=0.01]), the proportion of Ψ’(𝒈)Min 

architectures with satisfactory nominal power are between the 25th and 50th percentile, and 

range from [0.298 ≤ P(1-𝛽(𝜙\!4<∗ , 𝑛, 𝑎) ≥0.90 ) ≥0.461]. Finally, for the 11 remaining  

Λ1−𝛽(𝜙𝑀𝑖𝑛′ ,𝑛,𝑎) (min: [n=500, 𝑎=0.05], max: [n=1000, 𝑎=0.40]), the proportion of Ψ’(𝒈)Min 

architectures with satisfactory nominal power are between the 50th and 75th percentile, and 

range from [0.534  ≤ P(1-𝛽(𝜙\!4<∗ , 𝑛, 𝑎) ≥0.90 ) ≥0.70]. All told, it appears that on average, 
the satisfactory power to detect epistasis is relatively uncommon, naturally improving in 
circumstances of relatively high per-genotype sample size and relaxed Type I error rate. 

.01 .05 .10 .20 .30 .40
10 0.037 0.037 0.037 0.050 0.085 0.113
20 0.049 0.095 0.133 0.154 0.162 0.166
50 0.162 0.171 0.183 0.229 0.282 0.310
100 0.222 0.298 0.314 0.329 0.334 0.354
500 0.461 0.534 0.549 0.558 0.579 0.591
1000 0.557 0.583 0.606 0.628 0.689 0.700
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 Ψ’(𝒈)Max,GE Architectures 

8.3.1. Median Power Ψ’(𝒈)Max,GE 

 In Table 8.5 and Table 8.6 is presented, respectively the median power for the 36 

empirical distributions of true  ΛÅ	$%e(�W=I_M$ ,4,^)		and contaminated 

ΛÅ	$%e(�W=I_M(P)$ ,4,^)		epistatic effects. 

Table 8.5 Median Power Ψ’(𝒈)Max,GE  

 

Table 8.6 Median Power Ψ’(𝒈)Max,GE - Contaminated 

 
 
What one may expect of true and contaminated statistical power with different combinations of n 

and 𝑎? 
  Based on examination of Tables 8.6 and 8.6, the median power profiles generated 

over various pairing of [n, 𝒂] yields an unsatisfactory power profile, in the case of ~50% of 

the engendering architectures for both the 36		Λ$%e(�W=I_M$∗ ,4∗,^∗), and 36 

Λ$%e(�W=I_M(P)$∗ ,4∗,^∗). As Tables 1.1.57, and 1.1.58 suggest, the aforementioned empirical 

distributions of power respectively range between [0.015 ≤(1 − 𝛽(𝜙\^]�C< , 𝑛, 𝑎))≥		0.755] 

and [0.015 ≤(1 − 𝛽(𝜙\^]�C(�)< , 𝑛, 𝑎)) ≥ 0.784],  for ~50% of all engendering architectures.  

.01 .05 .10 .20 .30 .40
10 0.015 0.068 0.127 0.239 0.343 0.444
20 0.023 0.088 0.154 0.272 0.380 0.481
50 0.052 0.144 0.220 0.339 0.449 0.547
100 0.105 0.204 0.281 0.406 0.513 0.603
500 0.309 0.387 0.473 0.579 0.663 0.735
1000 0.393 0.480 0.530 0.616 0.690 0.755

.01 .05 .10 .20 .30 .40
10 0.015 0.068 0.129 0.243 0.350 0.451
20 0.023 0.099 0.176 0.283 0.383 0.483
50 0.075 0.134 0.198 0.332 0.444 0.541
100 0.094 0.203 0.309 0.450 0.550 0.637
500 0.272 0.467 0.517 0.617 0.691 0.750
1000 0.427 0.476 0.529 0.623 0.718 0.784
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8.3.2. Proportion of Ψ’(𝒈)Max,GE with Power ≥0.90 

  Table 8.7 and Table 8.8  respectively present the proportion of  Ψ’(𝒈)Max,GE with 

satisfactory power of detection for both  ΛP(1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸′ ,𝑛,𝑎)≥0.90) and 

ΛP(1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸(𝑐)′ ,𝑛,𝑎)≥0.90). 

Table 8.7 Proportion of Ψ’(𝒈)Max,GE Architectures ≥ 0.90 

 
 

Table 8.8 Proportion of Contaminated Ψ’(𝒈)Max,GE Architecture ≥ 0.90 

 
 
How common it is that one may encounter an Ψ’(𝒈)Max,GE architecture where the detection of 
epistasis is deemed satisfactory?  

 Overall, it appears the proportion of Ψ’(𝒈)Max,GE architectures which yield 
satisfactory power are generally uncommon for both true and contaminated epistatic 

effects.  Based on examination of Table 8.7,it appears for all 36 Λ1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸′ ,𝑛,𝑎) (min: 

[n=10, 𝑎 =0.01] and max: [n=1000, 𝑎=0.40]), the proportion of Ψ’(𝒈)Max,GE architectures 
which yield satisfactory nominal power are below the 50th percentile, ranging from 

[0.008≤ 𝑃(1 − 𝛽(𝜙\^]�C<∗ , 𝑛, 𝑎) ≥ 0.90) ≥ 0.465]. Upon further inspection, it appears for 24 

Λ1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸(𝑐)′ ,𝑛,𝑎)(min: [n=10, a=0.01] and max: [n=100, 𝑎=0.40]), the proportion of 

Ψ’(𝒈)Max,GE architectures with satisfactory nominal power are below the 25th percentile, 

ranging from [0.015≤ (1 − 𝛽(𝜙\^]�C(x)<∗ , 𝑛, 𝑎) ≥ 0.90) ≥ 0.234 ]. While for 12 

Λ$%e(�W=I_M(P)$ ,4,^)(min: [n=500, 𝑎=0.01] and max: [n=1000, 𝑎=0.40]), the proportion of 

.01 .05 .10 .20 .30 .40
10 0.008 0.012 0.020 0.023 0.026 0.032
20 0.022 0.028 0.036 0.048 0.060 0.078
50 0.060 0.085 0.102 0.119 0.135 0.165
100 0.116 0.145 0.173 0.193 0.215 0.234
500 0.279 0.323 0.339 0.363 0.386 0.412
1000 0.360 0.399 0.415 0.422 0.450 0.465

.01 .05 .10 .20 .30 .40
10 0.015 0.018 0.025 0.034 0.035 0.042
20 0.034 0.035 0.044 0.057 0.073 0.092
50 0.073 0.101 0.119 0.133 0.145 0.167
100 0.131 0.149 0.176 0.202 0.223 0.252
500 0.293 0.331 0.345 0.371 0.393 0.420
1000 0.369 0.406 0.424 0.434 0.452 0.472
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Ψ’(𝒈)Max,GE architectures producing satisfactory nominal power are between 25th and 50th 

percentile, ranging from [0.279≤ 𝑃(1 − 𝛽(𝜙\^]�C(x)<∗ , 𝑛, 𝑎) ≥ 0.90) ≥ 0.465].  

 Similarly, based on examination of Table 8.8, it appears for all 36 

Λ1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸(𝑐)′ ,𝑛,𝑎) the proportion of Ψ’(𝒈)Max,GE architectures which yield satisfactory 

nominal power are below the 50th percentile, ranging from [0.015≤ (1-𝛽(𝜙\^]�C(x)<∗ , 𝑛, 𝑎) 

≥ 0.90) ≥0.472]. Upon further inspection, it appears for 23 Λ1−𝛽(𝜙𝑀𝑎𝑥𝐺𝐸(𝑐)′ ,𝑛,𝑎)(min: [n=10, 

𝑎=0.01] and max: [n=100, 𝑎 =0.30]), the proportion of Ψ’(𝒈)Max,GE architectures with 

satisfactory nominal power are below the 25th percentile, ranging from [0.015≤ (1 −

𝛽(𝜙\^]�C(x)<∗ , 𝑛, 𝑎) ≥ 0.90) ≥ 0.223 ]. While for 13 Λ$%e(�W=I_M(P)$ ,4,^)(min: [n=100, 𝑎=0.40] 

and max: [n=1000, 𝑎=0.40]), the proportion of Ψ’(𝒈)Max,GE architectures with satisfactory 

nominal power are between 25th and 50th percentile, ranging from [0.252≤ 𝑃(1 −

𝛽(𝜙\^]�C(x)<∗ , 𝑛, 𝑎) ≥ 0.90) ≥ 0.472].  

8.3.3. Associated Biases Ψ’(𝒈)Max,GE 

 Table 8.9 and Table 8.10  respectively present the departures in median power 

between contaminated and true distributions [ΛÅ	$%e(�W=I_M(P)$ ,4,^)	 − ΛÅ	$%e(�W=I_M$ ,4,^)	] and 

the proportion of Ψ’(𝒈)Max,GE architectures with satisfactory power 

[Λ&($%e(�W=I_M(P)$ ,4,^)�.t[) − Λ��$%e��W=I_M$ ,4,^��.t[�].  
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Table 8.9 Bias Median Power - Ψ’(𝒈)Max,GE 

 

Table 8.10 Bias Proportion Power - Ψ’(𝒈)Max,GE 

 
 

Is it the case the property of gene-environmental association alters in some unfavourable 
way the performance of the test procedure to detect epistasis? 

Based on an examination of Table 8.9 and Table 8.10, there is evidence that the 
property of gene-environmental association engenders bias for both criteria of detection. 
Upon closer inspection of Table 8.9, it appears the departures in median power between 

contaminated and true distributions [ΛÅ	$%e(�W=I_M(P)$ ,4,^)	 − ΛÅ	$%e(�W=I_M$ ,4,^)	] are minimal 

in absolute magnitude [min: 2.18x10-5, max: 0.079], and variable in direction. Upon closer 

review, for the majority of ΛÅ	$%e(�W=I_M(P)$ ,4,^)	 − ΛÅ	$%e(�W=I_M$ ,4,^)	(N=25) the departures 

are positive in direction, suggesting inflation in median power for empirical distributions 
of contaminated epistatic effects, in comparison to their true counterparts. Conversely, for 

the minority of ΛÅ	$%e(�W=I_M(P)$ ,4,^)	 − ΛÅ	$%e(�W=I_M$ ,4,^)	(N=11) the departures are negative 

in direction, suggesting deflation in median power for empirical distributions of 
contaminated epistatic effects, in comparison to their true counterparts. However, it is 

clear overall 36 ΛÅ	$%e(�W=I_M(P)$ ,4,^)	 − ΛÅ	$%e(�W=I_M$ ,4,^)	the magnitude and direction of such 

departures are without a discernable pattern between sample-size per genotype and 
Type I error. Similarly, an inspection of Table 8.10 suggests the departures between the 

proportion of Ψ’(𝒈)Max,GE architectures with satisfactory power [Λ&($%e(�W=I_M(P)$ ,4,^)�.t[) −

Λ��$%e��W=I_M$ ,4,^��.t[�] are minimal in absolute magnitude [min: 0.002, max: 0.018] and 

positive in direction for all 36 departures, suggesting inflation in the proportion of 

.01 .05 .10 .20 .30 .40
10 -2.189e-05 0.0007 0.0019 0.0047 0.0067 0.0065
20 0.0003 0.0118 0.0214 0.0109 0.0033 0.0024
50 0.0229 -0.0103 -0.0212 -0.0075 -0.0049 -0.0063
100 -0.0116 -0.0012 0.0278 0.0445 0.0374 0.0341
500 -0.0369 0.0795 0.0434 0.0374 0.0281 0.0146
1000 0.0342 -0.0043 -0.0011 0.0072 0.0281 0.0289

.01 .05 .10 .20 .30 .40
10 0.007 0.006 0.005 0.011 0.009 0.010
20 0.012 0.007 0.008 0.009 0.013 0.014
50 0.013 0.017 0.018 0.014 0.010 0.002
100 0.015 0.004 0.002 0.010 0.008 0.018
500 0.014 0.007 0.006 0.008 0.007 0.008
1000 0.008 0.008 0.009 0.012 0.003 0.007
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Ψ’(𝒈)Max,GE  architectures with a satisfactory power for empirical distributions of 
contaminated epistatic effects, in comparison to their true counterparts. As before, it 
appears there is no discernable pattern between the magnitude of departure and the 
magnitude of sample-size per genotype and Type I error rate.  

 Ψ’(𝒈)Min,GE Architectures 

8.4.1. Median Power for Ψ’(𝒈)Min,GE 

 Table 8.11 and Table 8.12 respectively present the median power for the 36 

empirical distributions of true  𝛬Ü	$%e(�W!4_M$ ,4,^)		and contaminated 

𝛬Ü	$%e(�W!4_M(P)$ ,4,^)		epistatic effects. 

Table 8.11 Median Power Ψ’(𝒈)Min,GE 

 

Table 8.12 Median Power Ψ’(𝒈)Min,GE - Contaminated 

 
 
What one may expect of true and contaminated statistical power with different combinations of n 

and 𝑎? 
 Based on examination of Table 8.11 and Table 8.12, it appears that for all 36 

	Λ$%e(�W!4_M$ ,4,^)	and Λ#$%('}~���(�)v the omnibus F-test-statistic yields unacceptable power 

to detect true epistatic effects in ~50% of the architectures, even in the care of high 
sample size per genotype and  Type I error control. As Tables 8.11 and 8.12 suggest, the 
aforementioned empirical distributions of power respectively range between [0.112 

.01 .05 .10 .20 .30 .40
10 0.112 0.209 0.290 0.409 0.507 0.599
20 0.209 0.303 0.393 0.507 0.593 0.652
50 0.343 0.390 0.468 0.579 0.636 0.695
100 0.412 0.512 0.564 0.624 0.664 0.732
500 0.605 0.625 0.625 0.665 0.673 0.735
1000 0.617 0.625 0.625 0.659 0.687 0.737

.01 .05 .10 .20 .30 .40
10 0.121 0.206 0.301 0.422 0.522 0.618
20 0.221 0.294 0.402 0.533 0.619 0.654
50 0.343 0.389 0.500 0.600 0.645 0.733
100 0.454 0.549 0.599 0.646 0.667 0.734
500 0.667 0.674 0.685 0.703 0.745 0.760
1000 0.691 0.706 0.709 0.718 0.747 0.778



 

 102 

≤(1 − 𝛽(𝜙\!4�C< , 𝑛, 𝑎))≥		0.737] and [0.121 ≤(1 − 𝛽(𝜙\!4�C(�)< , 𝑛, 𝑎)) ≥ 0.778],  for ~50% of 

all engendering architectures. 

8.4.2. Proportion of Ψ’(𝒈)Min,GE architectures with Power ≥.90 

 Table 8.13 and Table 8.14 respectively present the proportion of  Ψ’(𝒈)Min,GE 
architectures with a satisfactory power for ΛP(1−𝛽(𝜙𝑀𝑖𝑛𝐺𝐸′ ,𝑛,𝑎)≥0.90) and  

ΛP(1−𝛽(𝜙𝑀𝑖𝑛𝐺𝐸(𝑐)′ ,𝑛,𝑎)≥0.90). 

Table 8.13 Proportion of Ψ’(𝒈)Min,GE Architectures ≥ 0.90 

 

Table 8.14 Proportion of Contaminated Ψ’(𝒈)Min,GE Architectures ≥ 0.90  

 
 

How common it is that one may encounter an Ψ’(𝒈)Min,GE where the detection of epistasis is 
deemed satisfactory?  
 Overall it appears an acceptable power of detection is uncommon for both 

Λ$%e(�W!4_M(P)$ ,4,^)	, and Λ$%e(�W!4_M(P)$ ,4,^)	. Firstly, according to Table 8.13, we can see that 

for all of the 36 Λ$%e(�W!4_M(P)$ ,4,^), the proportion of Ψ’(𝒈)Min,GE architectures which yield 

satisfactory nominal power are well below the 75th percentile, ranging between [0.065 ≤ 

P(1-𝛽(𝜙\!4,�C(x)< ,n,a) )≥0.90)≥ 0.558]. Secondly, according to Table 8.14, it is apparent 

that for all 36 Λ$%e(�W!4,_M(P)$ ,4,^)	the proportion of Ψ’(𝒈)Min,GE architectures which yield 

satisfactory nominal power are also, well below the 75th percentile, ranging from [0.062≤ 

P(1-𝛽(𝜙\!4�C(x)< ,n, a) ≥0.90)≥ 0.632]. All told, it appears that the acceptable power to detect 

.01 .05 .10 .20 .30 .40
10 0.065 0.127 0.141 0.161 0.164 0.190
20 0.160 0.164 0.204 0.233 0.277 0.305
50 0.277 0.319 0.335 0.340 0.378 0.401
100 0.340 0.392 0.409 0.462 0.494 0.517
500 0.532 0.536 0.539 0.544 0.546 0.547
1000 0.542 0.546 0.549 0.557 0.558 0.558

.01 .05 .10 .20 .30 .40
10 0.062 0.099 0.134 0.155 0.162 0.170
20 0.153 0.162 0.186 0.232 0.251 0.302
50 0.251 0.311 0.336 0.345 0.361 0.405
100 0.345 0.386 0.414 0.445 0.497 0.539
500 0.585 0.596 0.599 0.603 0.614 0.621
1000 0.602 0.620 0.622 0.629 0.631 0.632
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epistasis is uncommon for Ψ’(𝒈)Min,GE architectures with the properties of epistasis, even in 
the care of relatively high per-genotype sample size, and relaxed Type I error rate.  

8.4.3. Associated Bias Ψ’(𝒈)Min,GE 

 Table 8.15 and Table 8.16 respectively present the departures in median power 

between contaminated and true distributions [ΛÅ	$%e(�W!4_M(P)$ ,4,^)	 − ΛÅ	$%e(�W!4_M$ ,4,^)	] and 

the proportion of Ψ’(𝒈)Min,GE architectures with satisfactory power 

[Λ&($%e(�W!4_M(P)$ ,4,^)�.t[) − Λ��$%e��W!4_M$ ,4,^��.t[�].  

Table 8.15 Bias Median Power - Ψ’(𝒈)Min,GE 

 

Table 8.16 Bias Proportion Power - Ψ’(𝒈)Min,GE 

 
 

Is it the case an engendering Ψ’(𝒈)Min,GE architecture with the properties of epistasis and 
gene-environmental association alters in some unfavourable way the performance of the test 
procedure to detect epistasis? 

 Based on an examination of Table 8.15 and Table 8.16, there is evidence that the 
property of gene-environmental association engenders bias for both criteria of detection. 
Upon closer inspection of Table 8.15 it appears the departures in median power between 

the 36  contaminated and true distributions [ΛÅ	$%e(�W!4_M(P)$ ,4,^)	 − ΛÅ	$%e(�W!4_M$ ,4,^)	] are 

minimal in absolute magnitude [min: 9.97x10-6, max: 0.084], and variable in direction. For 

all but 3	ΛÅ 	$%e(�W!4_M(P)$ ,4,^)	 − ΛÅ	$%e(�W!4_M$ ,4,^)	(n= [10,20,50], 𝑎=0.05) the median power of 

true epistatic effects are inflated in comparison to their contaminated counterparts, while 

.01 .05 .10 .20 .30 .40
10 0.0095 -0.0036 0.0114 0.0136 0.0151 0.0195
20 0.0125 -0.0093 0.0089 0.0260 0.0259 0.0015
50 9.967e-06 -0.0016 0.0314 0.0210 0.0090 0.0386
100 0.0428 0.0370 0.0352 0.0214 0.0028 0.0022
500 0.0614 0.0485 0.0599 0.0375 0.0720 0.0249
1000 0.0736 0.0811 0.0845 0.0596 0.0604 0.0405

.01 .05 .10 .20 .30 .40
10 -0.003 -0.028 -0.007 -0.005 -0.002 -0.020
20 -0.007 -0.002 -0.018 -0.000 -0.026 -0.003
50 -0.026 -0.008 0.001 0.005 -0.017 0.004
100 0.005 -0.006 0.005 -0.017 0.003 0.023
500 0.054 0.060 0.060 0.060 0.068 0.074
1000 0.060 0.074 0.072 0.072 0.073 0.074
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there is no discernable pattern between the magnitude or direction of median biases 
with sample-size per genotype and type I error control.  Similarly, an inspection of Table 

8.16, suggests the departures between the proportion of Ψ'(𝒈)Min,GE architectures with 

satisfactory power [Λ&($%e(�W!4_M(P)$ ,4,^)�.t[) − Λ��$%e��W!4_M$ ,4,^��.t[�] are also minimal in 

absolute magnitude [min: 0.002, max: 0.074] and variable in direction. Upon closer 

review, for all but 17 Λ&($%e(�W!4_M(P)$ ,4,^)�.t[) − Λ��$%e��W!4_M$ ,4,^��.t[� (N=19) the 

departures are positive in direction, suggesting the empirical distributions of contaminated 
epistatic effects are inflated in comparison to their true counterparts. Once more, no 
discernable pattern exists between the magnitude or direction of biases in the proportion 
of architectures with satisfactory power with sample-size per genotype and Type I error 
rate. 
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Chapter 9. Discussion  

Introduction 

For the empirical scientist interested in unpacking the relative contributions of 
genetics (G) and environment (E) on quantitative trait (Z) variation, of scientific import, 

of course, is the extant form of the architecture and its constituent parts: s, Ψ’(𝒈),	and f. 
Indeed, scientific details regarding the extant nature of s – the number of causal loci-, 

Ψ’(𝒈)	- the genotypic scalar function-, and f - the function that maps Ψ’(𝒈)	and γ(𝐸)! 
into Z – remain a central focus of scientific debate. While historic accounts respectively 

envisage Ψ’(𝒈)	and f as a linear function of s loci with the property of additive 
separability, ushering empirical and inferential focus onto additive, dominance, or 
recessive models of genetic architecture137, departures from this narrative are seemingly 
ubiquitous for complex traits across the extant literature evaluating model organisms. 
While the phenomenon of epistasis and the joint impact of genetics and environment 
onto Z138 are now a centrepiece of the contemporary story, translation of the afore noted 
findings in model organisms onto human populations suffers on both empirical and 
inferential fronts. While the genome-wide study of human populations remains within 
its infancy, a great deal of effort has gone into the detection of epistasis. However, 
despite the sophistication of technologies and the putative ubiquity of epistatic 
architectures, the successful detection of epistasis within human populations remains a 
rarity. To this end, the goals of the thesis were to elucidate the quantitative issues 
involved in the inferential aims of epistatic detection. To do so, we adjudicated the 
merits of two candidate explanations. 

The first relates to the possibility the population-level manifestations of epistasis, 

notably, 𝜎C&0  (𝜙<∗), are by their nature, small. As such, if the inferential tools employed to 

adjudicate the pair [𝐻[:	𝜎C&0 = 0; or		𝐻$: 𝜎C&0 ≠ 0] have machinations with 
disadvantageously small sample sizes, the consequence, of course, is that the power 
delivered is also disadvantageously small. Naturally, detector insensitivity of this sort is 
ameliorated by increasing sample size. The second relates to whether the presence of a 

 
137 A notion based upon Mendelian inheritance and diseases. 
138 Also, notably the way in which the field viewed genes, from that of a 'blueprint' to a 'dynamic 
system' (Lewontin, 1974; Alberch, 1991; Pigliucci, 2010; Svedolv & Thompson, 2018). 
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gene-environmental association generates a bias in estimates of genotypic values and, in 
so doing, systematically diminishes the detection power of the inferential tools 

employed to adjudicate the pair [𝐻[:	𝜎C&0 = 0; or		𝐻$: 𝜎C&0 ≠ 0]. To evaluate the merits of 
each candidate explanation two simulation studies were conducted, resting upon the 
construction of four digenic epistatic architectures. The architectures were created by 

crossing two genotypic functions Ψ’(𝒈)Max and Ψ’(𝒈)Min, with the two-levels of gene-

environment association,	𝛆 = [0],	 and 𝛆 ≠ [0]. By sampling over their parameter space, 

we generated 6075 unique architectures of Ψ’(𝒈)Max, Ψ’(𝒈)Min, Ψ’(𝒈)MaxGE, and Ψ’(𝒈)MinGE 
construction. Notably, only admissible architectures were included in both simulation 
studies I and II (see Chapter 6).  

	In simulation study I, we aimed to assess: 1) whether epistatic effect 

sizes	𝜙<∗	arising under architectures in which 𝛆 = [0],	 were generally small; and 2) to 
gain insight into how far off the mark the recovered contaminated epistatic effect sizes 

were from their true counterparts, for architectures in which 𝛆 ≠ [0]. To this end, for all 
admissible architecture of each nomenclature, we evaluated the empirical range of 

Λ�$,	Λ�(P)$  and Λ�(P)$ %	�$; 2) reported the parametric construction of the three 

architecture(s) yielding the highest three nominal 𝜙<∗	and  |𝜙(x)
< −	𝜙<|;  and 3) the role of 

genetic parameters in the variance of Λ�$ 	�Λ�(P)$ %	�$�, by decomposing its variability into 

27-1 estimable effects.  In simulation study II, we aimed to assess what one may expect of 

statistical power under different combinations of sample size per genotype (𝒏)	and Type 

I error rate (𝒂). To adjudicate the omnibus F-test statistic of interactions139 performance 

of detection over the empirical range of Λ�$, we generated  36 unique empirical power 

coded to the combinations of n and 𝒂, and employed two criteria of detection: 1) the 

median power over all architectures to detect: σH�0 	> 0; and 2) the proportion of all 

architectures wherein the P(detection σH�0 > 0) is greater or equal to 0.90.  Additionally, 

for all admissible architectures in which	𝛆 ≠ [0], we evaluated whether the presence of 
gene-environmental association altered in some un-favorable way the performance of 

 
139 Of note –there are numerous methodologies utilized to test the presence of epistasis (Chapter 
3). As the omnibus F-test statistic of interaction is equivalent to testing for all interactions it is one 
that consolidates statistical power and works to reconcile issues such as FWER. However, the topic 
of whether this is the best method to deal with FWER is one we do not explore here (as it is a vast 
area and not the focus of this thesis). Rather, the motivation is to get a sense of what power is like 
for one sensible approach under various plausible architectures.  
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the test procedure to detect epistasis, vis-a-vis, the magnitude and direction of the 
departures between both afore noted criteria. 

 Main and Corollary Findings  

All told, results from both simulation studies I and II provided preliminary 
support for both candidate explanations. In line with the first explanation, the empirical 

range of  Λ�$ suggests that on aggregate, the epistatic effect sizes	𝜙<∗arising under 

architectures of Ψ’(𝒈)Max and Ψ’(𝒈)Min construction were generally small according to 

Cohen’s guidelines (1988). Indeed, all 6075 architectures of Ψ’(𝒈)Max and Ψ’(𝒈)Min 
construction had the property of epistasis and engendered a non-zero population-level 
effect; and, in keeping with expectations, the omnibus F-test statistic yielded satisfactory 
power in the case of ~50% of the engendering architectures for test procedures coded to 

[n,𝒂] pairing of large magnitude140. However, the proportion of architectures with 
satisfactory power to detect epistasis remained small, irrespective of sample size per 
genotype or Type I error rate. In line with the second candidate explanation, the 

empirical range of Λ�(P)$ %	�$ 	under the admissible architectures of Ψ’(𝒈)Max,GE and 

Ψ’(𝒈)Min,GE construction were also relatively small on aggregate141. In keeping with 
expectations, the property of the gene-environmental association obscured the 
performance of the omnibus F-test statistic of interaction to detect a true epistatic 
population-level effect in a magnitude and direction idiomatic to architecture 
nomenclature, the criteria employed, and without a discernable relationship to the 

crossings of n and 𝒂. 

Supplementary to the main findings, an inspection of simulation study I yielded 
several corollary relationships between an architecture's parametric construction and 

Λ�$	(Λ�Q$%�$	), conditional on architecture nomenclature. First, there was a non-injective 

relationship between the genetic parameter vectors and the focal quantities of interest. 

That is to say, of the 6075 unique architectures in which, 𝛆 = [0], Ψ’(𝒈)Max and Ψ’(𝒈)Min 
architectures with the property of epistasis, respectively generated only 2568 and 1933 

 
140 From sections 8.4.1, and 8.4.2, the minority of Λ!@�(s";<9∗ ,R∗,B∗), each coded to a unique pairing of 
[n, a] (N=11, min: [n=500, a=0.05]; max: [n=1000, a=0.40]), and the minority of Λ!@�(s"789 ,R,B), each 
coded to a unique pairing of [n, a] (N=11 ,min: [n=500, a=0.05]; max: [n=1000, a=0.40]), respectively.  
141 Although there were no formal criteria as a metric of the size of bias. 
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unique epistatic effect sizes.  Additionally, of the 5238 and 4482 legitimate Ψ’(𝒈)Max,GE 

and Ψ’(𝒈)Min,GE architectures with the property of epistasis only 2764 (2862) and 1312 
(1359) unique true(contaminated) epistatic effect sizes were respectively generated. 

Second, there were 594 Ψ’(𝒈)Max,GE and Ψ’(𝒈)Min,GE architectures without the property of 
epistasis142. Third, bespoke to architecture nomenclature there was a unique combination 

of parameters k, 𝜑, 𝐻0 associated to the empirical distributions of Λ�$	(Λ�Q$%�$	), in 

particular: 1) the three largest nominal values of	𝜙<∗(|𝜙(�)
<∗ − 𝜙<∗|); 2) the largest 

proportion of variance in Λ�$	(Λ�Q$%�$	); 3) and the parametric construction of 

architectures which yield small, medium, and large magnitudes of 𝜙<∗ and 𝜙(�)
<∗ (see 

Appendix C for details). 

 Concerning the former, for architectures in which, 𝛆 = [0],	the three largest 

nominal epistatic effect sizes were engendered by both Ψ’(𝒈)Max and Ψ’(𝒈)Min 

architectures under slightly different parameterizations143. Herein the three Ψ’(𝒈)Max 
architectures were characterized by complete dominance of the homozygous recessive 
alleles for both loci, equally rare recessive allele frequencies, and large broad-sense 

heritability. In contrast, the three Ψ’(𝒈)Min architectures were characterized by complete 
dominance of the homozygous dominant allele, equally large recessive allele 
frequencies, and large broad-sense heritability. Notably, based upon the utility of the 

max and min Ψ’(𝒈), the construction of these particular architectures mirror (to a certain 
extent) categories of epistasis (e.g., duplicate dominant and duplicate recessive epistasis) 
encountered in the study of diallelic crosses144. While the disparities between the 

 
142 Naturally, architectures without the property of epistasis also yield a population level epistatic 
variance component of zero. While decomposition of the kinds of architectures that engender a zero 
epistatic variance component is beyond the scope of this particular thesis, this is a topic for further 
consideration at a later time.  
143 Notably, while additive genetic parameters (𝛼!,𝛼&) were equal between loci for Ψ’(𝒈)Max143(𝛼! =
[44, 16, 32], 𝛼& = [44, 16, 32])and variable for Ψ’(𝒈)Min architectures (𝛼! = [16,16,16]), (𝛼& =
[16,32,44]) .  
144 While the consensus of classifying epistasis according to the divergence of digenic phenotypic 
ratios from (9:3:31) remains a remnant of the past (Bateson 1908; Cordell, 2002; Miko, 2008) its 
prominence in the characterization of model organisms provides a unique point of reference. 
Notably, all six classifications of digenic epistasis rest upon the circumstance both causal loci have 
complete dominance and implicates interaction, masking, and modification of phenotypic expression 
due to the interaction of the alleles of two or more loci (Miko, 2008). The six classifications are as 
follows: 1) recessive epistasis – a recessive allele masks both the dominant and recessive alleles at a 
second locus (9:3:4). An empirical example is the grain colour of maize; 2) duplicate recessive epistasis 
- a recessive allele at either of the two loci, masks the expression of the dominant alleles at both loci 
(9:7). An empirical example is the colour of the pea flower. Also referred to as complementary gene 
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definition of epistasis as departures from the phenotypic ratio of 9:3:31, and deviations 
from additive gene-effects on a quantitative phenotype remains a well-documented 
topic (see e.g., Cheverud & Routman, 1995; Cordell 2002; Templeton, 2000; Mackay, 
2004; Phillips, 2008; Wei, Hemani, & Haley, 2014), it is interesting to note that epistatic 
gene-action of this sort, is echoed within our simulation and arises in the circumstance 

when both Ψ’(𝒈)Max and Ψ’(𝒈)Min architectures have the property of epistasis and the 
magnitude of its population-level effect is maximal. 
 

 In contrast, for architectures in which	𝛆 ≠ [0] the three highest values of absolute 

bias constructed by Ψ’(𝒈)Max,GE and Ψ’(𝒈)Min,GE architectures had unique locus-specific 

effects. For Ψ’(𝒈)Max,GE architectures the three largest absolute bias was characterized by 
large broad-sense heritability, and for the first locus, under-dominance and rare 
recessive allele frequency in the population.  For the second, complete dominance of the 
homozygous dominant allele, and large recessive allele frequency in the population. For 

all three Ψ’(𝒈)Min,GE architectures were characterized by large broad-sense heritability. 
The first locus was characterized by complete additivity and intermediate frequency for 
the recessive allele in the population. In contrast, the second locus was characterized by 
under dominance and large allele frequency of the recessive allele in the population. 
 
 Regarding the second, upon investigating the role of genetic parameters in the 

variability of both Λ�$	(Λ�Q$%�$	), it is the case, the same genetic parameters (i.e., k, 𝜑, 𝐻0) 

accounted for the largest proportion of variance across architecture nomenclature. For 

architectures in which, 𝛆 = [0]  it is the case main effect 𝐻0 accounted for the majority of 

the variability in Λ�$; followed by pooled-main effects 𝜑. and k. for architectures 

Ψ’(𝒈)Max and Ψ’(𝒈)Min, respectively; and finally, pooled main effects k. for Ψ’(𝒈)Max and 

𝜑. for Ψ’(𝒈)Min architectures. For architectures in which, 𝛆 ≠ [0], it is the case, 2-way 

 
action as both genes are required for phenotypic expression; 3) dominant epistasis – a dominant 
allele at one locus masks the phenotypic effect of the dominant and recessive alleles at a second 
(12:3:1). Empirical examples include skin color in mice, seed coat colour in barley, and the colour 
of summer squash; 4) duplicate dominant epistasis - a dominant allele at either locus masks the 
recessive alleles at either locus (15:1). Empirical examples include awn in rice and nodulation in 
peanuts; 5) dominant and recessive epistasis - the dominant allele at either locus masks the effect of 
the other (13:3); and 6) polymeric gene-action - when the individual action of dominant alleles 
produce a similar phenotypic effect, but the presence of both alleles produces an enhanced 
phenotype (9:6:1). Empirical examples are the shape of summer squash and awn length (Miko, 
2008). While a full examination of all simulated architectures is beyond the scope of the thesis, these 
observations provide an interesting point of reference. 
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interactions 2-way interactions 𝑘$:	𝑘0 accounted for the majority of the variability in 

Λ�Q$%�$	
145; followed by a 3-way interaction (𝑘$:	𝜑$: 𝑘0) for Ψ’(𝒈)Max.GE architectures, and 

pooled main effect k. for Ψ’(𝒈)Min.GE architectures146; and finally, a 3-way interactions for 

both Ψ’(𝒈)Max.GE (𝑘$:	𝑘0: 𝐻0	), and Ψ’(𝒈)Min.GE architectures (𝑘$:	𝜑$:	𝑘0)147. 

Concerning the latter, the production of the small, medium, and large 

magnitudes of 𝜙<∗ (𝜙(�)
<∗ )	appeared to vary over the unique combinations of joint 

parameter values faceted by the levels of  𝐻0	148. For the 6075 Ψ’(𝒈)Max
 architectures with 

the property of epistasis, upon visual inspection of Figures C.1 to C.7149 (Appendix C) 

the distributions of Λ�cdZee
$ , Λ�Yfg]hd$ , and Λ�iZjkf$  varied relatively equally over the joint 

combinations of 𝑎, φ, and k. However, while distributions of Λ�cdZee
$ , and Λ�Yfg]hd$  were 

present across all levels 𝐻0, the distribution Λ�iZjkf$  increased in variability and 

magnitude as the magnitude of 𝐻0 increased (with several notable outliers).  

 Next, upon visual inspection of Figures C.8 to C.14 (Appendix C) for the 6075 

Ψ’(𝒈)Min architectures150 with the property of epistasis, the distributions of 

Λ�cdZee
$ Λ�Yfg]hd$ , and Λ�iZjkf$ varied relatively equally over the joint combinations of 𝑎, 

φ;	and analogous to the afore noted Ψ’(𝒈)Max architectures, Λ�iZjkf$  increased in 

variability and magnitude as the magnitude of 𝐻0 increased. However, the three 

distributions of 𝜙< varied considerably over the joint combinations of k. Herein, any 
pairwise parameter combinations which included under dominance (k < 0) produced 

Λ�cdZee
$  across all levels 𝐻0. Finally, for the 5238 and 4482 

 
145 Ψ’(𝒈)Max.GE (𝑘!:	𝑘& =0.246), and Ψ’(𝒈)Min.GE architectures (𝑘!: 𝑘& =0.35). 
146 Ψ’(𝒈)Max.GE (𝑘!:	𝜑!: 𝑘&= 0.194), and Ψ’(𝒈)Min.GE architectures (𝑘.= 0.213%). 
147 Ψ’(𝒈)Max.GE (𝑘!:	𝑘&: 𝐻&	= 0.085), and Ψ’(𝒈)Min.GE architectures (𝑘!:	𝜑!:	𝑘& = 0.054). 
148 We evaluated the nine joint combinations: 1) rare (0.1), intermediate (0.5), and large (0.9) allele 
frequencies (𝜑!, 𝜑& ) of the recessive allele (A2) for two causal loci in a population; 2) the linear 
contribution of both loci to trait variation (𝛼!, 𝛼&); and 3) of course, the twenty-five combinations 
of the joint combination of the non-linear contribution of both loci to trait variation (k1, k2). For each 
of the analyses, all other parameters were held constant.  
149 Notably, all Figures herein present the crossing of the joint parameters, and the distributions of 
𝜙.∗, 𝜙(S).∗ , and 𝜙(S).∗ − 𝜙.∗, faceted by H2. 
150 [Small 𝜙.: n=3839; Medium 𝜙.: n=478; Large 𝜙.: n=1758]. 
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architectures of Ψ’(𝒈)Max,GE
151

 and Ψ’(𝒈)Min.GE
152

 construction with the property of 
epistasis, visual inspection of Figures C.15 to C.32 (Appendix C) suggested slight 

divergences between Λ�(P)$ 	and Λ�$	 over the joint parameter combinations of a,	φ, and 

moderate too large for k, particularly so for parameter combinations (k1=-6 k2 =-1) and 
(k1=-1 k2 =0; k1=-1 k2 =1; k1=-1 k2 =5). 

 Reconciling Results with Extant Literature 

As converging empirical evidence portrays epistasis as a ubiquitous property of 
genetic architectures and a protagonist in complex trait variability, it is no wonder the 
study of epistasis at its most rudimentary form is of interest (s=2). Naturally, 
consideration of architectures of this sort in an experimental setting is typically 
conducted with model organisms (i.e., chickens, plants, drosophila), as its experimental 
design affords control over genetic architecture153, breeding structure, and 
environmental conditions154. However, as experimental designs for human populations 
remain without dominion over both genetic and environmental factors, epistatic 
detection often relies upon population-level estimates; accordingly, the empirical 
scientists often turn to simulation studies to unpack and adjudicate the functional roles 
of genetics and environment on complex trait variability.  

While our simulation study is not the first to consider simulating digenic 
architectures with the property of epistasis, contemporary accounts in the literature 
focus on several scenarios: 1) disease traits (see Li & Reich, 2000155; Evans, Marchini, 

 
151 [Small 𝜙.: n=3963; Medium 𝜙.: n=762; Large 𝜙.: n=3839]. 
152 [Small 𝜙.: n=3839; Medium 𝜙.: n=478; Large 𝜙.: n=1758]. 
153 Genetically tractable studies which permit empirical researchers to the study of epistasis vis-à-
vis: 1) natural and induced mutations on both homozygous genetic background and for 
segregating variants; 2) inbred lines and outbred populations; 3) chromosome substitution, 
introgression, near-isogenic lines. (Mackay, 2014). 
154 Naturally, experimental designs on model organisms partial out covariation between genetics 
and environment – a notable feature which often remains absent in procedures involving human 
populations.  
155 The authors characterize the space of all nonredundant two-locus penetrance models, which 
restrict disease probabilities to 0 and 1, and a series of classifications which supplement or expand 
upon disease models such as multiplicative, heterogeneity, threshold, and interference. 
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Morris, & Cardon, 2006156; Hallgrímsdóttir &Yuster, 2008157; Moore, Hahn, Ritchie, 
Thornton, & White, 2004158); 2) complex traits with linkage structure and allele-frequency 
distributions which vary from the assumptions of HWE and LE (Kao & Zeng, 2002; Hill, 
Goddard, & Visscher, 2008); and 3) the simulation of genome-wide data159 to adjudicate 
novel tools of epistatic detection according to algorithm scalability, FWER160, and 
statistical power (Purcell, 2007; Zhang, Huang, Zou, Wang, 2010161; Wang et al., 2011; 
Zhang, Xie, Liang, & Xiong, 2016; Tuo, Zhang, Yuan, He, Liu, Liu, 2017). All told, it 

appears our study is one of the first to analytically consider the range of 𝜙< produced by 
four unique architectures with the properties of epistasis and gene-environmental 
association, and the performance of detection of the omnibus F test of interaction over a 

pre-selected range of n and 𝑎. To this end, while the ability to contextualize our findings 
within the extant literature remains somewhat limited, we are afforded the unique 
opportunity to explore the extent to which our findings map onto theoretical 
expectations of epistasis. 

As afore noted, several prominent authors distinguish functional and statistical 
epistasis, suggesting both: 1) inconsonance between the strength of architectures 
underlying gene-action and the magnitude of its population-level effects162; and 2) the 

 
156 The authors evaluated 50 di-genic epistatic models for disease traits (after removing redundant 
models generated from 29 = 512 possibilities yielded by binary genotypic means (0,1)) and 
calculating both single locus and interaction variance components.  
157Authors derive a series of two-locus models for continuous penetrance values and evaluate the 
triangulation of the nine genotypic values. Their work suggests there are sixty-nine symmetry 
classes for the shape of a two-locus model. 
158 Authors construct a series of 106 penetrance models with nine penetrance values to simulate a 
series of disease models (i.e., autosomal recessive pathologies such as cystic fibrosis).  
159 Simulated data which mimics the structure of genome-wide association or quantitative trait-
loci analyses (i.e., implementation of algorithms such as Hapsample (Wright et al., 2007)).  
160 Authors herein vary in how they define Type I error rate and the types of family-wise error 
control used. Wang et al., 2011 define Type I error rate of a detection tool as the proportion of data-
sets false discovery of epistasis. See Becker, Herold, Meesters, Mattheisen, Baur (2011) for a 
discussion on significance levels in GWAS interaction analyses. 
161 Herein, the authors tested the algorithm TEAM using simulated human GWAS data (112036 
SNPs, 250 cases, 250 controls) and employed the false discovery rate (FDR) threshold of 0.005. 
162 Several prominent authors suggest that small magnitudes of 𝜎K0& (𝜙.)	are not incompatible with 
substantial epistatic gene-action, as epistatic genotypic effects contribute to additive, dominant and 
epistatic gene-effects and their  population-level genetic variance components (Cheverud, 
Routman, 1994; Lynch & Walsh, 1998; Templeton, 2000; Mackay, 2014). To this end, authors 
propose epistatic effects have the potential to bias 𝜎;&	and 𝜎2&,	referring to a distinction between real 
and apparent genetic variance. (e.g., real additive genetic variance is due to additive gene action 
between causal loci, whereas apparent additive genetic variance is due to non-zero main effects that 
arise from epistatic gene-action across causal loci (Mackay, 2014)). Recall, of course, when s=2, 
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expectation that the population-level effect of epistasis is maximal when recessive allele-
frequencies in a population are intermediate (0.5)163 (Cheverud & Routman, 1994; Falconer 
& Mackay, 1996; Lynch & Walsh, 1998; Templeton, 2000; Mackay, 2014; Huang & 
Mackay, 2016). Indeed, within our own simulation, architectures of epistatic 
construction engendered distributions of population-level effects which ranged from 
complete absence, to small, medium, and large departures (in accordance to Cohen's 
guidelines (1988)); however, our findings diverged from contemporary expectations to 

suggest, rather, a unique combination of parameters (i.e., k 𝜑, 𝐻0) were not only 

implicated in the largest nominal values 𝜙′	(|𝜙(�)< − 𝜙<|), but also the largest proportion of 

variance in Λ�$	(Λ�Q$%�$	), and the manifest distributions of small, medium or large 

magnitudes of  𝜙′	(|𝜙(�)< − 𝜙<|)164. While the role of genetics and environment on 

phenotypic expression is a well-documented phenomenon (Lewontin, 1974; Alberch, 
1991; Pigliucci, 2010; Svedolv & Thompson, 2018), we were unable to find contemporary 
expectations regarding the impact of the gene-environmental association on the 
detection of epistasis (and the magnitude/direction of its distortion). To this end, it is 
with due circumspection our simulations present a preliminary account of one potential 
way gene-environmental association may impact the empirical detection of epistasis.  

 
epistatic effects can be characterized by the following categories: 1) additive x additive; 2) additive 
x dominance; 3) dominance x additive; 4) dominance x dominance interactions (see Lynch & Walsh, 
1998; Templeton 2000). To this end, when minor allele-frequencies in a population depart from 0.5, 
epistatic effects are proposed to contribute to both additive and dominance variance components 
(Templeton, 2002). While it is the case the obscure relationship between functional and statistical 
epistasis remains a well-documented topic in both theoretical and empirical literature, a full review 
and analysis of this sort is beyond the scope of the thesis. Please see the works of Cheverud & 
Routman, (1994); Lynch & Walsh, (1998); Templeton, (2000); Cordell (2002); Miko (2008); Hill, 
Goddard, & Visscher, (2008); Phillips (2008); Moore & Williams, (2009); Mackay, (2014); Wei, 
Hemani, & Haley, (2014) for further detail. 
163 While only a sample of the allele frequency spectrum was considered in our simulation, it was 
the case, both Ψ’(𝒈)Max and Ψ’(𝒈)Min architectures yielded the largest three magnitudes of 𝜙.∗ in the 
circumstance the proportion of phenotypic variance attributable to genetics was large (H2=0.8)163 
and both allele frequencies were extreme (0.1, 0.9), rather than intermediate (0.5). As our corollary 
results suggest the magnitude of 𝜙. varies over the levels of H2, our findings are in line with the 
theoretical expectations that genetic variance attributed to epistasis will increase or decrease 
concomitant to the magnitude of total genetic variability (i.e., whether the trait is rare or common 
within a population). As Zuk and colleagues (2012) suggest, when a trait is rare versus common in 
a population the genetic variability is lower, and so too, the population effect of epistasis. 
164 Herein the unique impact of the sampled parameters k, 𝜑, 𝐻& on Λs9	were not overtly 
unsurprising given: 1) all genetic effects are population specific and specified by parameters a, k, 
and	𝜑 (Lynch & Walsh, 1994);	2) the definition and magntidue of population-level genetic effects 
are a function weighted by 𝜑 and k (see Lynch & Walsh, 1998); and 3) the proportion of phenotypic 
variability attributed to environmental variance was set to the units of broad-sense heritability.  
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 Limitations and Future Directions 

In consideration of the thesis, there are several natural limitations inherent to 
both the general construction of any simulation study and those bespoke to our aims. Of 
the former, it is clear the realism of such a simulation is conditional upon the presence of 
all elements genetic and environmental, which impact trait variation. To this end, while 
it is reasonable there are omitted elements that inform trait variation in natural 
populations, we aimed to generate four rudimentary digenic architectures, which in its 
simplest form permit us the opportunity to consider the empirical range of its 
population-level effects without the impact of both biological and experimental noise. 
As the study of epistatic architectures in natural populations remains in its infancy, it is 
with due circumspection we contextualize our results, given both the scale of the design 
and upon reflection that there exist potentially innumerable functional forms 
architectures of epistatic construction may manifest.   

In light of the afore noted limitations, we now present several natural extensions 
of our work and potential areas of further exploration: 1) the relationships between the 
architecture of epistatic construction and the population-level effect of epistasis across 
architecture nomenclature. In particular, a full characterization of the parametric 

structure of the 594 Ψ’(𝒈)Max,GE and Ψ’(𝒈)Min,GE architectures wherein σH�0 =0; 2) 
investigation into the relationship between the magnitude and direction of mean 
environmental impacts conditional on genotype on the distribution of bias engendered 

for architectures in which,	𝛆 ≠ [0]; 3) investigation into the orthogonal decomposition of 

σH�0 	(i.e., σ�h�0 , σ�h�0 , σ�h�0 , σ�h�0 	)	and assess the purposed contribution of epistatic 

genotypic-effects to both σ�0  and σ�0 	over varying allele distributions and the entire 

allele-spectrum165; 4) whether our current findings are generalizable to other polygenic 

architectures of complex traits, s≤3; and 5) whether the presence of gene-environmental 
interaction (e.g., epigenetics) plays an independent or associated role to epistasis in 
quantitative trait variation, and if its presence obscures in some manner the performance 
of epistatic detection. 

 
165 Based on the definitions laid forth by Cheverud & Routman, (1994).  
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9.4 Conclusion  

All told, by way of analysis and simulation study, our aims to shed light on the 
quantitative issues of why epistasis is so hard to detect led us to characterize the 
statistical detection problem, elucidate two candidate explanations, and formally assess the 
performance of detection for the omnibus F-test statistic of interaction. In so doing, it is the 
case simulation studies I and II afford to us in concert, the unique vantage to evaluate 
the merits of both candidate explanations, unabridged by the restrictions effectuated in 
the empirical setting of epistatic detection. To this end, not only do our findings support 
both candidate explanations, but they also provide preliminary insight into the range of 
epistatic effect sizes and the parametric construction of architectures which yield the 
property of epistasis. Naturally, it is with due circumspection that our findings are 
offered into the unfolding narrative around the relationship between a digenic 
architecture of epistatic construction and its role in the functional mapping from 
genotype to phenotype.  
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Appendix A Numerical Example of Architectures in 
which	𝛆 = [𝟎]: detailed description for the case of 
Ψ’(𝒈)Max   

Herein we provide a detailed description of a single digenic Ψ’(𝒈)Max architecture of the 

quantitative form: [𝑠 = 2,Ψ’(𝒈) = Ψ’(𝒈)Max, 𝜺𝟑𝒙𝟑∗ = [0], �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼1 = 16
𝛼2 = 16
𝑘1 = 1
𝑘2 = 1
𝜑1 = 0.1
𝜑2 = 0.1⎦

⎥
⎥
⎥
⎥
⎤

, 𝑯𝟐 =. 𝟖]. A complete 

architecture of this sort is built up from 6 locus-specific genotypic values expressed in 
terms of ak parameterization and the properties of HWE (5.1) and LE (5.2). Following 

section 6.1, it is the case, Ψ’(𝒈)Max and �⃗�∗specifies its joint distribution, genotypic 
frequencies, and population-level genetic variance components. In Figure A.1, we 
present the joint distribution, genotypic frequencies, and nine genotypic values which 
arise from the afore noted parameter values.  

Figure A.1 Two Locus Max Epistatic Architecture 
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From Figure A.1, we may derive the following quantities: 

1. Ψ’(𝒈)Main =  o
31.3632		 31.6832 31.6832
31.6832 32.0032 32.0032
31.6832 32.0032 32.0032

v; 

2. 𝜏(𝒈) = o
−0.00313632		 0.00057024 0.00256608
0.00057024 −0.00010368 −0.00046656
0.00256608 −0.00046656 −0.00209952

v; 

 

3. 𝜎*0= 0.0003; 

4. 𝜔*0= 0.002; 

5. 𝜎>0= 0.0016; 

6. 𝜔>0= 0.012; 

7. 𝜎C&0 =0.100, 𝜙<∗ = 1.98 

8. 𝜔C&0 = 0.784.  
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Appendix B Numerical Example of Architectures in 
which 𝛆 ≠ [𝟎]: detailed description for the case of 
Ψ’(𝒈)Max,GE 

Herein we provide a detailed description of a single digenic Ψ’(𝒈)Max,GE architecture of 

the quantitative form: [𝑠 = 2,Ψ’(𝒈) = Ψ’(𝒈)Max, 𝜺𝟑𝒙𝟑∗ = §
−0.360 −0.202 −0.029
0.090 0.740 −0.389
0.096 0.123 0.511

¯ , �⃗�∗ =

⎣
⎢
⎢
⎢
⎢
⎡
𝛼% = 16
𝛼& = 16
𝑘% = −6
𝑘& = −1
𝜑% = 0.1
𝜑& = 0.9⎦

⎥
⎥
⎥
⎥
⎤

, 𝑯𝟐 =

. 𝟖]. A complete architecture of this sort is built up from 6 locus-specific genotypic values 
expressed in terms of ak parameterization and the properties of HWE (5.1) and LE (5.2). 

Following section 6.1, it is the case, Ψ’(𝒈)Max, and �⃗�∗ specifies its joint distribution, 
genotypic frequencies, genotypic values, and population-level genetic variance 

components. However, given 𝜺𝟑𝒙𝟑∗ = §
−0.360 −0.202 −0.029
0.090 0.740 −0.389
0.096 0.123 0.511

¯, it is the case, the true genetic 

architecture is distorted by the elements of 𝜺𝟑𝒙𝟑∗ ,	yielding nine E(Z|𝒈) and a set of 
contaminated population-level genetic variance components. To this end, in Figure B.1, 

we present the joint distribution, genotypic frequencies, and E(Z|𝒈), which arise from 
the afore noted parameter values.  

Figure B.1 Digenic Architecture Ψ’(𝒈)MaxGE Construction 
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From Figure B.1, we may derive the following quantities: 

9. Ψ’(𝒈)Main =  o
0.0198		 0.0198 −1.9602
−0.0002 −0.0002 −1.9802
−0.0002 −0.0002 −1.9802

v; 

10. 𝜏(𝒈) = o
−0.00016038 −3.564e − 05 0.00019602
0.00002916 6.480e − 06 −0.00003564
0.00013122 2.916e − 05 −0.00016038

v; 

 

11. Ψ’(𝒈)Main(c) = o
−0.3362634	 −0.1958134 −2.063023
	0.1741966 0.3146466	 	−1.552563
0.0769966 0.2174466 −1.649763

v; 

 

12. 𝜏(𝒈)(S) = o
0.00016038 −3.564e − 05	 0.00019602
0.00002916	 6.480e − 06 −0.00003564
0.00013122 2.916e − 05 −0.00016038

v; 

13. 𝜎*0= 0.007; 

14. 𝜔*0= 0.144; 

15. 𝜎>0= 0.031; 

16. 𝜔>0= 0.64; 

17. 𝜎C&0 =0.000392; 

18. 𝜔C&0 = 0.0079; 

19. 𝜎*(x)0 = 0.00089; 

20. 𝜔*(x)0 = 0.018; 

21. 𝜎>(x)0 = 0.0356; 

22. 𝜔>(x)0 = 0.727; 

23. 𝜎C&(x)0 = 0.0103; 

24. 𝜔C&(x)0 = 0.210; 

25. 𝜎K(𝒈)
0∗ = 0.016; 

26. 𝜔K(𝒈)
0∗ = 0.34; 

27. 𝜎;’(𝒈),K(𝒈)*= -0.0045; 

28. 𝜌;’(𝒈),K(𝒈)=-0.177; 

29. 𝜎L0∗ = 0.0021; 

30. 𝜔L0∗=0.044. 
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Appendix C Joint Parameter combinations and the 
Magnitude of 𝝓)∗and 𝝓(𝑪)

)∗ .  

Herein, we present the distributions of 𝜙<∗, 𝜙(�)
<∗  faceted by H2. For each, we 

present the joint combinations of each parameter, while holding all others constant. To 

begin, for the 6075 Ψ’(𝒈)Max
 architectures, we present Figures C.1 to C.7.  

Figure C.1 Joint Allele Frequencies, Effect Size, and Broadsense Heritability 

 
 

Figure C.2 Joint Dominance Parameters Locus A=1, Effect Size and Broad-sense 
Heritability 
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Figure C.3 Joint Dominance Parameters Locus A=-1, Effect Size and Broad-sense 
Heritability 

 
 

Figure C.4 Joint Dominance Parameters Locus A=0, Effect Size and Broad-sense 
Heritability 
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Figure C.5 Joint Dominance Parameters Locus A=2, Effect Size and Broad-sense 
Heritability 

 

Figure C.6 Joint Dominance Parameters Locus A=-6, Effect Size and Broad-sense 
Heritability 
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Figure C.7 Joint Additive Parameters, Effect Size and Broadsense Heritability 

 
Next, for the 6075 Ψ’(𝒈)Min

 architectures we present Figures C.8 to C.14 

Figure C.8 Joint Allele Frequencies, Effect Size, and Broadsense Heritability 
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FigureC.9 Joint Dominance Parameters Locus A=1, Effect Size and Broadsense 
Heritability 

 

Figure C.10 Joint Dominance Parameters Locus A=-1, Effect Size and Broadsense 
Heritability 
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Figure C.11 Joint Dominance Parameters Locus A=0, Effect Size and Broadsense 
Heritability 

 
 

Figure C.12 Joint Dominance Parameters Locus A=2, Effect Size and Broadsense 
Heritability 
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Figure C.13 Joint Dominance Parameters Locus A=-6, Effect Size and Broadsense 
Heritability 

 

 
 

Figure C.14 Joint Additive Parameters, Effect Size and Broadsense Heritability 
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For the 5238 Ψ’(𝒈)MaxGE architectures, we now present Figures C.15 to C.23.  

Figure C.15 Joint Allele Frequencies, True Effect Size, and Broadsense Heritability 

 

Figure C.16 Joint Allele Frequencies, Contaminated Effect Size, and Broad-sense 
Heritability 
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Figure C.17 Joint dominance parameters Locus A=1, Effect Size and Broad-sense 
Heritability 

 
 

 

Figure C.18 Joint dominance parameters Locus A=-1, Effect Size and Broad-sense 
Heritability 
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Figure C.19 Joint dominance parameters Locus A=0, Effect Size and Broad-sense 
Heritability 

 

Figure C.20 Joint dominance parameters Locus A=2, Effect Size and Broad-sense 
Heritability 
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Figure C.21 Joint dominance parameters Locus A=-6, Effect Size and Broad-sense 
Heritability 

 
 

Figure C.22 Joint Additive parameters,True Effect Size and Broad-sense 
Heritability 
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Figure C.23 Joint Additive Parameters, Contaminated Effect Size and Broadsense 
Heritability 

 
Finally, for the 4482 Ψ’(𝒈)Min,GE architectures we present Figures C.24 to C.32.  

Figure C.24 Joint Allele Frequencies, True Effect Size and Broadsense Heritability 
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Figure C.25 Joint Allele Frequencies, Contaminated Effect Size and Broadsense 
Heritability 

 

Figure C.26 Joint Dominance Parameters Locus A =1,  Effect Sizes and Broadsense 
Heritability 
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Figure C.27 Joint Dominance Parameters Locus A =-1,  Effect Sizes and Broadsense 
Heritability 

 

Figure C.28 Joint Dominance Parameters Locus A =0,  Effect Sizes and Broadsense 
Heritability 
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Figure C.29 Joint Dominance Parameters Locus A =2,  Effect Sizes and Broadsense 
Heritability 

 

Figure C.30 Joint Dominance Parameters Locus A =-6,  Effect Sizes and Broadsense 
Heritability 
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Figure C.31 Joint Additive Parameters, True Effect Size and Broadsense Heritability 

 

Figure C.32 Joint Additive Parameters, Contaminated Effect Size and Broadsense 
Heritability 
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Appendix D R Code Ψ’(𝒈)Max Architectures 

Genetic Seed Values:  
 

a1<-c(16,32,44) 
d1<-c(0.1,0.5,0.9) 
k1<-c(0,1,-1,2,-6) 
a2<-c(16,32,44) 
d2<-c(0.1,0.5,0.9) 
k2<-c(0,1,-1,5,-7) 
H2<-c(0.2,0.5,0.8) 
 

Ψ’(𝒈)Max Architecture:  
 

Max.Architecture(a1,d1,k1,a2,d2,k2,H2) { 
  t<-0 
  STOREADD<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREDOM<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREEP<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREENV<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREPHEN<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREEFF<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  Architecture<-
c(1:(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2))) 
  MaxSTOREAVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREKVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREDVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREAVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREKVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREDVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  MaxSTOREH2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
 
set.seed(100) 
for (i in seq_along(a1)){ 
  for (j in seq_along(k1)) { 
      for (k in seq_along(d1)) { 
        for (l in seq_along(a2)) { 
          for (m in seq_along(k2)) { 
            for (o in seq_along(d2)) { 
               for ( p in seq_along(H2)) { 
                  
                 AVL1<-a1[i] 
                 KVL1<-k1[j] 
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                 DVL1<-d1[k] 
                 AVL2<-a2[l] 
                 KVL2<-k2[m] 
                 DVL2<-d2[o] 
                 H2a<-H2[p] 
                  
                 GVL1<-c(0,(1+k1[j])*a1[i],2*a1[i])  
                 GVL2<-c(0,(1+k2[m])*a2[l],2*a2[l])  
                 PR1<-c(1-d1[k]^2,2*d1[k]*(1-d1[k]),(d1[k])^2)  
                 PR2<-c(1-d2[o]^2,2*d2[o]*(1-d2[o]),(d2[o])^2)  
                 JDIST<-matrix(0, nrow=length(PR1), ncol=length(PR2)) 
                 JDIST<-PR1%*%t(PR2) 
                 GVALS<-matrix(0,nrow=length(GVL1), ncol=length(GVL2)) 
                 for (q in seq_along(GVL1)) { 
                   for (r in seq_along(GVL2)) { 
                     GVALS[q,r] <-pmax(GVL1[q], GVL2[r]) 
                   } 
                 } 
                GRANDMEAN<-sum(JDIST*GVALS) 
                TOTGENVAR<-sum(JDIST*(GVALS-GRANDMEAN)^2) 
                u<- rep(1,3) 
                CML1<-(solve(diag(PR1)) %*% (JDIST*GVALS)) %*% u  
                CML2<-(solve(diag(PR2)) %*% (t(JDIST)*t(GVALS))) %*%u 
                CV<-c(sum(PR1*CML1^2)-GRANDMEAN^2,sum(PR2*CML2^2)- 
          GRANDMEAN^2 
                CONTMEANS<-c(2*(1-d1[k]), 2*(1-d2[o]))  
                CONTVARS<-c(2*d1[k]*(1-d1[k]), 2*d2[o]*(1-d2[o])) 
                GCONT<-c(0,1,2) 

         COV<-c(sum(PR1*(CML1-GRANDMEAN)*GCONT), sum(PR2*(CML2-                  
 GRANDMEAN)*GCONT)) 

                AVAR<-(COV[1]^2/CONTVARS[1])+(COV[2]^2/CONTVARS[2]) 
                DOMVAR<-CV[1]+CV[2]-AVAR  
                GMAIN<-matrix(nrow=length(GVL1), ncol=length(GVL2)) 
                 for (q in seq_along(GVL1)) { 
                   for (r in seq_along(GVL2)) { 
                     GMAIN[q,r]<-CML1[q]+CML2[r]-GRANDMEAN 
                   } 
                 } 
                EPVAR<-sum(JDIST*(GVALS-GMAIN)^2) 
                ENVAR<-((1/H2[p]-1))*TOTGENVAR 
                PHENVAR<-TOTGENVAR+ENVAR 
                EFFECT<-sqrt(EPVAR/ENVAR) 
                  
                t<-t+1 
                STOREADD[t]<-AVAR 
                STOREDOM[t]<-DOMVAR 
                STOREEP[t]<-EPVAR 
                STOREENV[t]<-ENVAR 
                STOREPHEN[t]<-PHENVAR 
                STOREEFF[t]<-EFFECT 
                MaxSTOREAVL1[t]<-AVL1 
                MaxSTOREKVL1[t]<-KVL1 
                MaxSTOREDVL1[t]<-DVL1 
                MaxSTOREAVL2[t]<-AVL2 
                MaxSTOREKVL2[t]<-KVL2 
                MaxSTOREDVL2[t]<-DVL2 
                MaxSTOREH2[t]<-H2a 
                 



 

150 

                Oadd<-STOREADD/STOREPHEN 
                Odom<-STOREDOM/STOREPHEN 
                Oepi<-STOREEP/STOREPHEN 
                Oenv<-STOREENV/STOREPHEN 
                Oeff<-STOREEFF 
                Ophen<-STOREPHEN 
                 
                Max<<-cbind("Add L1"= MaxSTOREAVL1, 
                            "Dom L1"= MaxSTOREKVL1, 
                            "Allele-F L1" = MaxSTOREDVL1, 
                            "Add L2"  = MaxSTOREAVL2, 
                            "Dom L2"= MaxSTOREKVL2, 
                            "Allele-F L2" = MaxSTOREDVL2, 
                            "H2"= MaxSTOREH2, 
                            "Add Omega"=Oadd, 
                             "Dom Omega"=Odom, 
                            "Ep Omega"=Oepi, 
                             "Env Omega"=Oenv, 
                             "Effect.S"=Oeff, 
                            "Phen Omega"=Ophen) 
                 
               } 
            } 
          } 
        } 
      } 
  } 
} 
x<<-Max 
} 
 

Ψ’(𝒈)Max Architecture  - Numerical Example: 
  

Max.Arch.2<-function(a1,k1,d1,a2,k2,d2,H2) { 
for (i in seq_along(a1)){ 
  for (j in seq_along(k1)) { 
      for (k in seq_along(d1)) { 
        for (l in seq_along(a2)) { 
          for (m in seq_along(k2)) { 
            for (o in seq_along(d2)) { 
               for ( p in seq_along(H2)) { 
                  
                 AVL1<-a1[i] 
                 KVL1<-k1[j] 
                 DVL1<-d1[k] 
                 AVL2<-a2[l] 
                 KVL2<-k2[m] 
                 DVL2<-d2[o] 
                 H2a<-H2[p] 
                  
                 GVL1<-c(0,(1+k1[j])*a1[i],2*a1[i])  
                 GVL2<-c(0,(1+k2[m])*a2[l],2*a2[l])  
                 PR1<-c(1-d1[k]^2,2*d1[k]*(1-d1[k]),(d1[k])^2)  
                 PR2<-c(1-d2[o]^2,2*d2[o]*(1-d2[o]),(d2[o])^2)  
                 JDIST<-matrix(0, nrow=length(PR1), ncol=length(PR2)) 
                 JDIST<-PR1%*%t(PR2) 
                 GVALS<-matrix(0,nrow=length(GVL1), ncol=length(GVL2)) 
                 for (q in seq_along(GVL1)) { 
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                   for (r in seq_along(GVL2)) { 
                     GVALS[q,r] <-pmax(GVL1[q], GVL2[r]) 
                   } 
                 } 
                GRANDMEAN<-sum(JDIST*GVALS) 
                TOTGENVAR<-sum(JDIST*(GVALS-GRANDMEAN)^2) 
                u<- rep(1,3) 
                CML1<-(solve(diag(PR1)) %*% (JDIST*GVALS)) %*% u  
                CML2<-(solve(diag(PR2)) %*% (t(JDIST)*t(GVALS))) %*%u 
                CV<-c(sum(PR1*CML1^2)-GRANDMEAN^2,sum(PR2*CML2^2)-
 GRANDMEAN^2) 
                CONTMEANS<-c(2*(1-d1[k]), 2*(1-d2[o]))  
                CONTVARS<-c(2*d1[k]*(1-d1[k]), 2*d2[o]*(1-d2[o])) 
                GCONT<-c(0,1,2) 
                COV<-c(sum(PR1*(CML1-GRANDMEAN)*GCONT), sum(PR2*(CML2-
 GRANDMEAN)*GCONT)) 
                AVAR<-(COV[1]^2/CONTVARS[1])+(COV[2]^2/CONTVARS[2]) 
                DOMVAR<-CV[1]+CV[2]-AVAR  
                GMAIN<-matrix(nrow=length(GVL1), ncol=length(GVL2)) 
                 for (q in seq_along(GVL1)) { 
                   for (r in seq_along(GVL2)) { 
                     GMAIN[q,r]<-CML1[q]+CML2[r]-GRANDMEAN 
                   } 
                 } 
                EPEFF<-JDIST*(GVALS-GMAIN)  
                EPVAR<-sum(JDIST*(GVALS-GMAIN)^2) 
                ENVAR<-((1/H2[p]-1))*TOTGENVAR 
                PHENVAR<-TOTGENVAR+ENVAR 
                EFFECT<-sqrt(EPVAR/ENVAR)  
             
               } 
            } 
          } 
        } 
      } 
  } 
} 
 
f.3<<-list(Gvl1=GVL1, Pr1=PR1, Pr2=PR2,Gvl2=GVL2, Jdist=JDIST,Gvals=GVALS, 
Gmain=GMAIN, Epdeviations=EPEFF, 
Avar=AVAR,Domvar=DOMVAR,Epvar=EPVAR, Effect=EFFECT,phenotypicvariance 
=PHENVAR, OmegaAdd=AVAR/PHENVAR, OmegaDom=DOMVAR/PHENVAR, 
OmegaEp=EPVAR/PHENVAR, TotalGenVar=TOTGENVAR) 
                                                                                           
return(f.3)  
} 
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Appendix E R Code Ψ’(𝒈)Min Architectures 

Genetic Seed Values:  
 
a1<-c(16,32,44) 
d1<-c(0.1,0.5,0.9) 
k1<-c(0,1,-1,2,-6) 
a2<-c(16,32,44) 
d2<-c(0.1,0.5,0.9) 
k2<-c(0,1,-1,5,-7) 
H2<-c(0.2,0.5,0.8) 

 
Ψ’(𝒈)Min Architecture:  

 
Min.Genetic.Architecture<-function(a1,d1,k1,a2,d2,k2,H2){ 
t<-0 
STOREADDmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREDOMmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREEPmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREENVmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREPHENmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREEFFmin<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREAVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREKVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREDVL1<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREAVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREKVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREDVL2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
MinSTOREH2<-
rep(0,length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
 
set.seed(100) 
for (i in seq_along(a1)){ 
  for (j in seq_along(k1)) { 
      for (k in seq_along(d1)) { 
        for (l in seq_along(a2)) { 
          for (m in seq_along(k2)) { 
            for (o in seq_along(d2)) { 
               for ( p in seq_along(H2)) { 
                  
                 minAVL1<-a1[i] 
                 minKVL1<-k1[j] 
                 minDVL1<-d1[k] 
                 minAVL2<-a2[l] 
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                 minKVL2<-k2[m] 
                 minDVL2<-d2[o] 
                 minH2a<-H2[p] 
                 locus1 specific genotypic value  
                 GVL2min<-c(0,(1+k2[m])*a2[l],2*a2[l]) value  
                 PR1min<-c(1-d1[k]^2,2*d1[k]*(1-d1[k]),(d1[k])^2)  
                 PR2min<-c(1-d2[o]^2,2*d2[o]*(1-d2[o]),(d2[o])^2)  
                 JDISTmin<-matrix(0, nrow=length(PR1min), ncol=length(PR2min)) 
                 JDISTmin<-PR1min%*%t(PR2min) 
                 GVALSmin<-matrix(0,nrow=length(GVL1min),  
 ncol=length(GVL2min)) 
                 for (q in seq_along(GVL1min)) { 
                   for (r in seq_along(GVL2min)) { 
                     GVALSmin[q,r] <-pmin(GVL1min[q], GVL2min[r]) 
                   } 
                 } 
                GRANDMEANmin<-sum(JDISTmin*GVALSmin) 
                TOTGENVARmin<-sum(JDISTmin*(GVALSmin- GRANDMEANmin)^2) 
                u<- rep(1,3) 
                CML1min<-(solve(diag(PR1min)) %*% (JDISTmin*GVALSmin)) %*% u  
                CML2min<-(solve(diag(PR2min)) %*% (t(JDISTmin)*t(GVALSmin)))  
 %*%u 

CVmin<-c(sum(PR1min*CML1min^2)-
GRANDMEANmin^2,sum(PR2min*CML2min^2)-GRANDMEANmin^2 

                CONTMEANSmin<-c(2*(1-d1[k]), 2*(1-d2[o]))  
                CONTVARSmin<-c(2*d1[k]*(1-d1[k]), 2*d2[o]*(1-d2[o])) 
                GCONT<-c(0,1,2) 

 COVmin<-c(sum(PR1min*(CML1min-GRANDMEANmin)*GCONT), 
sum(PR2min*(CML2min-GRANDMEANmin)*GCONT)) 

                AVARmin<-     
 (COVmin[1]^2/CONTVARSmin[1])+(COVmin[2]^2/CONTVARSmin[2]) 
                DOMVARmin<-CVmin[1]+CVmin[2]-AVARmin  
                GMAINmin<-matrix(nrow=length(GVL1min), ncol=length(GVL2min)) 
                 for (q in seq_along(GVL1min)) { 
                   for (r in seq_along(GVL2min)) { 
                     GMAINmin[q,r]<-CML1min[q]+CML2min[r]-GRANDMEANmin 
                   } 
                 } 
                EPVARmin<-sum(JDISTmin*(GVALSmin-GMAINmin)^2) 
                ENVARmin<-((1/H2[p]-1))*TOTGENVARmin 
                PHENVARmin<-TOTGENVARmin+ENVARmin 
                EFFECTmin<-sqrt(EPVARmin/ENVARmin)  
                  
                t<-t+1 
                STOREADDmin[t]<-AVARmin 
                STOREDOMmin[t]<-DOMVARmin 
                STOREEPmin[t]<-EPVARmin 
                STOREENVmin[t]<-ENVARmin 
                STOREPHENmin[t]<-PHENVARmin 
                STOREEFFmin[t]<-EFFECTmin 
                 
                MinSTOREAVL1[t]<-minAVL1 
                MinSTOREKVL1[t]<-minKVL1 
                MinSTOREDVL1[t]<-minDVL1 
                MinSTOREAVL2[t]<-minAVL2 
                MinSTOREKVL2[t]<-minKVL2 
                MinSTOREDVL2[t]<-minDVL2 
                MinSTOREH2[t]<-minH2a 
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                Oaddmin<-STOREADDmin/STOREPHENmin 
                Odommin<-STOREDOMmin/STOREPHENmin 
                Oepimin<-STOREEPmin/STOREPHENmin 
                Oenvmin<-STOREENVmin/STOREPHENmin 
                Oeffmin<-STOREEFFmin 
                Ophenmin<-STOREPHENmin 
          
                 
                Min<<-cbind("Add L1"= MinSTOREAVL1, 
                            "Dom L1"= MinSTOREKVL1, 
                            "Allele-F L1" = MinSTOREDVL1, 
                            "Add L2"  = MinSTOREAVL2, 
                            "Dom L2"= MinSTOREKVL2, 
                            "Allele-F L2" = MinSTOREDVL2, 
                            "H2"= MinSTOREH2, 
                            "Add Omega"=Oaddmin, 
                             "Dom Omega"=Odommin, 
                            "Ep Omega"=Oepimin, 
                             "Env Omega"=Oenvmin, 
                             "Effect.S"=Oeffmin, 
                            "Phen Omega"=Ophenmin) 
               } 
            } 
          } 
        } 
      } 
  } 
} 
return(Min) 
} 
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Appendix F R Code Ψ’(𝒈)MaxGE Architectures 

Genetic Seed Values:  
 

a1<-c(16,32,44) 
d1<-c(0.1,0.5,0.9) 
k1<-c(0,1,-1,2,-6) 
a2<-c(16,32,44) 
d2<-c(0.1,0.5,0.9) 
k2<-c(0,1,-1,5,-7) 
H2<-c(0.2,0.5,0.8) 
 

Ψ’(𝒈)MaxGe Architecture:  
 
t<-0 
StoreENV<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StorePHEN<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StorePHENA<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2))  
StoreINT<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreCOV<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreCORR<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreADD<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreDOM<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreEP<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreEFFECT<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreIADD<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreIDOM<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreIEP<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
StoreIEFFECT<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREAVL1Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREKVL1Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREDVL1Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREAVL2Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREKVL2Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
STOREDVL2Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
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STOREH2Bias<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
 
#Imatep.max.1<<-matrix(c(rnorm(9,sd=1)),nrow=3)  
Imatep.max<-matrix(c(-0.360,0.090,0.096, -0.202, 0.740,0.123, -0.029, -0.389, 
0.511),nrow=3) 

 
Bias.Arch.Max<-function(a1,k1,d1,a2,k2,d2,H2) { 
 for (i in seq_along(a1)){ 
    for (j in seq_along(k1)) { 
      for (k in seq_along(d1)) { 
        for(l in seq_along(a2)) { 
          for (m in seq_along(k2)) { 
            for (o in seq_along(d2)) { 
              for (p in seq_along(H2)) { 
                 
                AVL1bias<-a1[i] 
                KVL1bias<-k1[j] 
                DVL1bias<-d1[k] 
                AVL2bias<-a2[l] 
                KVL2bias<-k2[m] 
                DVL2bias<-d2[o] 
                H2abias<-H2[p] 
                 
                Gvl1<-c(0,(1+k1[j])*a1[i],2*k1[j]) 
                Gvl2<-c(0,(1+k2[m])*a2[l],2*k2[m]) 
                Pr1<-c(1-d1[k]^2,2*d1[k]*(1-d1[k]),(d1[k])^2) 
                Pr2<-c(1-d2[o]^2,2*d2[o]*(1-d2[o]),(d2[o])^2)             
                Jdist<-matrix(0, nrow=length(Pr1), ncol=length(Pr2)) 
                Jdist<-Pr1%*%t(Pr2) 
                Gvals<-matrix(0,nrow = length(Gvl1), ncol= length(Gvl2)) #genotypic values 
                for (q in seq_along(Gvl1)) { 
                  for (r in seq_along(Gvl2)) { 
                    Gvals[q,r]<-pmax(Gvl1[q],Gvl2[r]) 
                  } 
                } 
                 
                MuG<-sum(Jdist*Gvals)  
                TotalGenVar<-sum(Jdist*(Gvals-MuG)^2)  
                u<-rep(1,3)  
                CmL1<-(solve(diag(Pr1))%*%(Jdist*Gvals))%*%u 
                CmL2<-(solve(diag(Pr2))%*%(t(Jdist)*t(Gvals)))%*%u  
                Cvar<-c(sum(Pr1*CmL1^2)-MuG^2,sum(Pr2*CmL2^2)-MuG^2)  
                ContMeans<-c(2*(1-d1[k]), 2*(1-d2[o]))  
                Contvars<-c(2*d1[k]*(1-d1[k]), 2*d2[o]*(1-d2[o])) 
                Gcont<-c(0,1,2) 
                Cov<-c(sum(Pr1*(CmL1-MuG)*Gcont),sum(Pr2*(CmL2-MuG)*Gcont))  
                #gene content and genotypic value covaraince 
                #Matrix of main effect fitted values 
                Gmain<-matrix(nrow=length(Gvl1),ncol=length(Gvl2)) 
                for (q in seq_along(Gvl1)){ 
                  for (r in seq_along(Gvl2)) { 
                    Gmain[q,r]<-CmL1[q]+CmL2[r]-MuG  
                  }           
                } 
                #Variances 
                Avar<-(Cov[1]^2/Contvars[1])+(Cov[2]^2/Contvars[2]) 
                Domvar<-Cvar[1]+Cvar[2]-Avar  
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                EpVar<-sum(Jdist*(Gvals-Gmain)^2)  
             
                Iccm<-Gvals+Imatep.max  
                MuE<-sum(Jdist*Imatep.max)  
                MuZ<-MuG+MuE  
                Icml1<-(solve(diag(Pr1))%*%(Jdist*Iccm))%*%u  
                Icml2<-(solve(diag(Pr2))%*%(t(Jdist)*t(Iccm)))%*%u  

  Icvar<-c(sum(Pr1*Icml1^2)-MuZ^2, sum(Pr2*Icml2^2)-MuZ^2)  
                Icov<-c(sum(Pr1*(Icml1-MuZ)*Gcont), sum(Pr2*(Icml2-MuZ)*Gcont)) 
                Iavar<-(Icov[1]^2/Contvars[1])+(Icov[2]^2/Contvars[2]) 
                Idomvar<-(Icvar[1]+Icvar[2])-Iavar  
                Igxevar<-sum(Jdist*(Imatep.max-MuE)^2) 
                covGE<-sum(Jdist*Imatep.max*Gvals)-MuG*MuE 
                corrGE<-covGE/sqrt(Igxevar*TotalGenVar) 
                IGmain<-matrix(nrow=length(Gvl1),ncol=length(Gvl2)) 
                for (q in seq_along(Gvl1)) { 
                  for (r in seq_along(Gvl2)){ 
                    IGmain[q,r]<-Icml1[q]+Icml2[r]-MuZ 
                  } 
                } 
                 
                Iepvar<-sum(Jdist*(Iccm-IGmain)^2) 
                VarER<-((1/H2[p])-1)*TotalGenVar-2*covGE-Igxevar 
                Phenvar<-sum(Jdist*(Iccm-MuZ)^2)+VarER 
                Phenvarch<-TotalGenVar+2*covGE+Igxevar+VarER 
                if (VarER > 0) {Effect<-sqrt(EpVar/VarER); Ieffect<-sqrt(Iepvar/VarER)} 
                else {Effect<--10;Ieffect<- -10}  
                t<-t+1 
                StoreENV[t]<-VarER 
                StorePHEN[t]<-Phenvar 
                StorePHENA[t]<-Phenvarch 
                StoreINT[t]<-Igxevar 
                StoreCOV[t]<-covGE 
                StoreCORR[t]<-corrGE 
                StoreADD[t]<-Avar 
                StoreDOM[t]<-Domvar 
                StoreEP[t]<-EpVar 
                StoreEFFECT[t]<-Effect 
                StoreIADD[t]<-Iavar 
                StoreIDOM[t]<-Idomvar 
                StoreIEP[t]<-Iepvar 
                StoreIEFFECT[t]<-Ieffect 
                 
                STOREAVL1Bias[t]<-AVL1bias 
                STOREKVL1Bias[t]<-KVL1bias 
                STOREDVL1Bias[t]<-DVL1bias 
                STOREAVL2Bias[t]<-AVL2bias 
                STOREKVL2Bias[t]<-KVL2bias 
                STOREDVL2Bias[t]<-DVL2bias 
                STOREH2Bias[t]<-H2abias 
              } 
            } 
          } 
        } 
      } 
    } 
  }  
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e<<-cbind("ADD L1" = STOREAVL1Bias[StoreEFFECT!=-10], 
          "DOM L1" = STOREKVL1Bias[StoreEFFECT!=-10], 
          "AF- L1" = STOREDVL1Bias[StoreEFFECT!=-10], 
          "ADD L2" = STOREAVL2Bias[StoreEFFECT!=-10], 
          "DOM L2" = STOREKVL2Bias[StoreEFFECT!=-10], 
          "AF-L2" =  STOREDVL2Bias[StoreEFFECT!=-10], 
          "H2" = STOREH2Bias[StoreEFFECT!=-10], 
          "Resid.Env.Var"= StoreENV[StoreEFFECT!=-10], 
          "Phenotypic.Var"= StorePHEN[StoreEFFECT!=-10], 
          "Interaction.Var" = StoreINT[StoreEFFECT!=-10], 
          "Covariance" = StoreCOV[StoreEFFECT!=-10], 
         "Correlation" = StoreCORR[StoreEFFECT!=-10], 
          "Additive Var" = StoreADD[StoreEFFECT!=-10], 
          "Dominance Var" = StoreDOM[StoreEFFECT!=-10], 
          "Epistatic Var" = StoreEP[StoreEFFECT!=-10], 
          "Additive Var.Cont" = StoreIADD[StoreEFFECT!=-10], 
          "Dominance Var.Cont" = StoreIDOM[StoreEFFECT!=-10], 
          "Epistatic Var.Cont" = StoreIEP[StoreEFFECT!=-10], 
          "Effect.Cont" = StoreIEFFECT[StoreEFFECT!=-10], 
          "OmegaAdd"=StoreADD[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
          "OmegaDom"=StoreDOM[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
          "OmegaEp"=StoreEP[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
          "OmegaAdd.C"=StoreIADD[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
          "OmegaDom.C"=StoreIDOM[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
           "OmegaEp.C"=StoreIEP[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
            "OmegaEnv"=StoreENV[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
            "OmegaAssociation"=StoreINT[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!= 
 10], 
            "OmegaResidual"=StoreENV[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10], 
            "Effect.C" =StoreIEFFECT[StoreEFFECT!=-10], 
            "Effect" = StoreEFFECT[StoreEFFECT!=-10], 
            "Phen"= StorePHEN[StoreEFFECT!=-10], 
            "Bias"=StoreIEFFECT[StoreEFFECT!=-10]-StoreEFFECT[StoreEFFECT!=-10], 
            "Bias.Add"=(StoreIDOM[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10])-
(StoreADD[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10]), 
            "Bias.Dom"=(StoreIDOM[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10])-
(StoreDOM[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10]), 
         "Bias.Ep"=(StoreIEP[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10])-
(StoreEP[StoreEFFECT!=-10]/StorePHEN[StoreEFFECT!=-10])) 
                                                                                           
return(head(e))  
} 
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Appendix G R Code Ψ’(𝒈)MinGE Architectures 

Genetic Seed Values:  
 

a1<-c(16,32,44) 
d1<-c(0.1,0.5,0.9) 
k1<-c(0,1,-1,2,-6) 
a2<-c(16,32,44) 
d2<-c(0.1,0.5,0.9) 
k2<-c(0,1,-1,5,-7) 
H2<-c(0.2,0.5,0.8) 
 

Ψ’(𝒈)MinGe Architecture:  
 

t<-0 
  StoreENV.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StorePHEN.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StorePHENA.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2))  
  StoreINT.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreCOV.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreCORR.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreADD.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreDOM.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreEP.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreEFFECT.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreIADD.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreIDOM.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreIEP.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  StoreIEFFECT.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREAVL1Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREKVL1Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREDVL1Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREAVL2Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREKVL2Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  STOREDVL2Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
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  STOREH2Bias.min<-
numeric(length(a1)*length(a2)*length(k1)*length(k2)*length(d1)*length(d2)*length(H2)) 
  #Imatep.min1<<-matrix(c(rnorm(9,sd=1)),nrow=3)  
  Imatep.min<<-matrix(c(-0.502,0.131,-0.078, 0.886,0.116,0.318, -0.581, 0.714, -
0.825),nrow=3) 
 
Bias.Arch.Min<-function(a1,k1,d1,a2,k2,d2,H2) { 

for (i in seq_along(a1)){ 
    for (j in seq_along(k1)) { 
      for (k in seq_along(d1)) { 
        for(l in seq_along(a2)) { 
          for (m in seq_along(k2)) { 
            for (o in seq_along(d2)) { 
              for (p in seq_along(H2)){ 
                 
                AVL1bias.min<-a1[i] 
                KVL1bias.min<-k1[j] 
                DVL1bias.min<-d1[k] 
                AVL2bias.min<-a2[l] 
                KVL2bias.min<-k2[m] 
                DVL2bias.min<-d2[o] 
                H2abias.min<-H2[p] 
                 
                Gvl1.min<-c(0,(1+k1[j])*a1[i],2*k1[j]) 
                Gvl2.min<-c(0,(1+k2[m])*a2[l],2*k2[m]) 
                Pr1.min<-c(1-d1[k]^2,2*d1[k]*(1-d1[k]),(d1[k])^2) 
                Pr2.min<-c(1-d2[o]^2,2*d2[o]*(1-d2[o]),(d2[o])^2)             
                Jdist.min<-matrix(0, nrow=length(Pr1.min), ncol=length(Pr2.min)) 
                Jdist.min<-Pr1.min%*%t(Pr2.min) 
                Gvals.min<-matrix(0,nrow = length(Gvl1.min), ncol= length(Gvl2.min)) 
                #genotypic values 
                for (q in seq_along(Gvl1.min)) { 
                  for (r in seq_along(Gvl2.min)) { 
                    Gvals.min[q,r]<-pmin(Gvl1.min[q],Gvl2.min[r]) 
                  } 
                } 
                MuG.min<-sum(Jdist.min*Gvals.min)  
                TotalGenVar.min<-sum(Jdist.min*(Gvals.min-MuG.min)^2)  
                u<-rep(1,3) #conditional means and conditional variances 
                CmL1.min<-(solve(diag(Pr1.min))%*%(Jdist.min*Gvals.min))%*%u  
                #conditional mean for locus 1 
                CmL2.min<-(solve(diag(Pr2.min))%*%(t(Jdist.min)*t(Gvals.min)))%*%u  
                 Cvar.min<-c(sum(Pr1.min*CmL1.min^2) - 
 MuG.min^2,sum(Pr2.min*CmL2.min^2)-MuG.min^2 
                ContMeans.min<-c(2*(1-d1[k]), 2*(1-d2[o]))  
                Contvars.min<-c(2*d1[k]*(1-d1[k]), 2*d2[o]*(1-d2[o])) 
                Gcont.min<-c(0,1,2) 
                Cov.min<-c(sum(Pr1.min*(CmL1.min-MuG.min)*Gcont.min), 
                           sum(Pr2.min*(CmL2.min-MuG.min)*Gcont.min))  
                #gene content and genotypic value covaraince 
                #Matrix of main effect fitted values 
                Gmain.min<-matrix(nrow=length(Gvl1.min),ncol=length(Gvl2.min)) 
                for (q in seq_along(Gvl1.min)){ 
                  for (r in seq_along(Gvl2.min)) { 
                    Gmain.min[q,r]<-CmL1.min[q]+CmL2.min[r]-MuG.min  
                  }           
                } 
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Avar.min<-
(Cov.min[1]^2/Contvars.min[1])+(Cov.min[2]^2/Contvars.min[2])                  
Domvar.min<-Cvar.min[1]+Cvar.min[2]-Avar.min  

                EpVar.min<-sum(Jdist.min*(Gvals.min-Gmain.min)^2)  
                 
                Iccm.min<-Gvals.min+Imatep.min  
                MuE.min<-sum(Jdist.min*Imatep.min)  
                MuZ.min<-MuG.min+MuE.min  
                Icml1.min<-(solve(diag(Pr1.min))%*%(Jdist.min*Iccm.min))%*%u  
                Icml2.min<-(solve(diag(Pr2.min))%*%(t(Jdist.min)*t(Iccm.min)))%*%u 
                Icvar.min<-c(sum(Pr1.min*Icml1.min^2)-MuZ.min^2, 
                             sum(Pr2.min*Icml2.min^2)-MuZ.min^2)  
                Icov.min<-c(sum(Pr1.min*(Icml1.min-MuZ.min)*Gcont.min), 
                            sum(Pr2.min*(Icml2.min-MuZ.min)*Gcont.min)) 
                Iavar.min<-
 (Icov.min[1]^2/Contvars.min[1])+(Icov.min[2]^2/Contvars.min[2])  
                Idomvar.min<-(Icvar.min[1]+Icvar.min[2])-Iavar.min  
                Igxevar.min<-sum(Jdist.min*(Imatep.min-MuE.min)^2) 
                covGE.min<-sum(Jdist.min*Imatep.min*Gvals.min)-
 MuG.min*MuE.min 
                corrGE.min<-covGE.min/sqrt(Igxevar.min*TotalGenVar.min) 
                IGmain.min<-matrix(nrow=length(Gvl1.min),ncol=length(Gvl2.min)) 
                for (q in seq_along(Gvl1.min)) { 
                  for (r in seq_along(Gvl2.min)){ 
                    IGmain.min[q,r]<-Icml1.min[q]+Icml2.min[r]-MuZ.min 
                  } 
                } 
                 
                Iepvar.min<-sum(Jdist.min*(Iccm.min-IGmain.min)^2) 
                VarER.min<-((1/H2[p])-1)*TotalGenVar.min-2*covGE.min-Igxevar.min 
                Phenvar.min<-sum(Jdist.min*(Iccm.min-MuZ.min)^2)+VarER.min 
                Phenvarch.min<-
 TotalGenVar.min+2*covGE.min+Igxevar.min+VarER.min 
                if (VarER.min > 0) {Effect.min<-sqrt(EpVar.min/VarER.min);  
                Ieffect.min<-sqrt(Iepvar.min/VarER.min)} 
                else {Effect.min<--10;Ieffect.min<- -10}  
                 
                t<-t+1 
   
                StoreENV.min[t]<-VarER.min 
                StorePHEN.min[t]<-Phenvar.min 
                StorePHENA.min[t]<-Phenvarch.min 
                StoreINT.min[t]<-Igxevar.min 
                StoreCOV.min[t]<-covGE.min 
                StoreCORR.min[t]<-corrGE.min 
                StoreADD.min[t]<-Avar.min 
                StoreDOM.min[t]<-Domvar.min 
                StoreEP.min[t]<-EpVar.min 
                StoreEFFECT.min[t]<-Effect.min 
                StoreIADD.min[t]<-Iavar.min 
                StoreIDOM.min[t]<-Idomvar.min 
                StoreIEP.min[t]<-Iepvar.min 
                StoreIEFFECT.min[t]<-Ieffect.min 
                 
                STOREAVL1Bias.min[t]<-AVL1bias.min 
                STOREKVL1Bias.min[t]<-KVL1bias.min 
                STOREDVL1Bias.min[t]<-DVL1bias.min 
                STOREAVL2Bias.min[t]<-AVL2bias.min 
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                STOREKVL2Bias.min[t]<-KVL2bias.min 
                STOREDVL2Bias.min[t]<-DVL2bias.min 
                STOREH2Bias.min[t]<-H2abias.min 
              } 
            } 
          } 
        } 
      } 
    } 
 }  
     
z<<-cbind("ADD L1" = STOREAVL1Bias.min[StoreEFFECT.min!=-10], 
          "DOM L1" = STOREKVL1Bias.min[StoreEFFECT.min!=-10], 
          "AF- L1" = STOREDVL1Bias.min[StoreEFFECT.min!=-10], 
          "ADD L2" = STOREAVL2Bias.min[StoreEFFECT.min!=-10], 
          "DOM L2" = STOREKVL2Bias.min[StoreEFFECT.min!=-10], 
          "AF-L2" =  STOREDVL2Bias.min[StoreEFFECT.min!=-10], 
          "H2" = STOREH2Bias.min[StoreEFFECT.min!=-10], 
          "Env Var.Min"= StoreENV.min[StoreEFFECT.min!=-10], 
          "Phenotypic Var.Min"= StorePHEN.min[StoreEFFECT.min!=-10], 
          "Interaction Var.Min" = StoreINT.min[StoreEFFECT.min!=-10], 
          "Covariance.Min" = StoreCOV.min[StoreEFFECT.min!=-10], 
         "Correlation.Min" = StoreCORR.min[StoreEFFECT.min!=-10], 
          "Additive Var.Min" = StoreADD.min[StoreEFFECT.min!=-10], 
          "Dominance Var.Min" = StoreDOM.min[StoreEFFECT.min!=-10], 
          "Epistatic Var.Min" = StoreEP.min[StoreEFFECT.min!=-10], 
          "Additive Var.Cont.Min" = StoreIADD.min[StoreEFFECT.min!=-10], 
          "Dominance Var.Cont.Min" = StoreIDOM.min[StoreEFFECT.min!=-10], 
          "Epistatic Var.Cont.Min" = StoreIEP.min[StoreEFFECT.min!=-10], 
          "Effect.Cont.Min" = StoreIEFFECT.min[StoreEFFECT.min!=-10], 
          "OmegaAdd.Min"=StoreADD.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
          "OmegaDom.Min"=StoreDOM.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
          "OmegaEp.Min"=StoreEP.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
          "OmegaAdd.C.Min"=StoreIADD.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
          "OmegaDom.C.Min"=StoreIDOM.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
           "OmegaEp.C.Min"=StoreIEP.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
            "Effect.Min"=StoreEFFECT.min[StoreEFFECT.min!=-10], 
            "Effect.C" =StoreIEFFECT.min[StoreEFFECT.min!=-10], 
            "Env.Min"=StoreENV.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
            "Phen.Min"= StorePHEN.min[StoreEFFECT.min!=-10]) 
             
 
y<<-cbind("ADD L1" = STOREAVL1Bias.min[StoreEFFECT.min!=-10], 
          "DOM L1" = STOREKVL1Bias.min[StoreEFFECT.min!=-10], 
          "AF- L1" = STOREDVL1Bias.min[StoreEFFECT.min!=-10], 
          "ADD L2" = STOREAVL2Bias.min[StoreEFFECT.min!=-10], 
         "DOM L2" = STOREKVL2Bias.min[StoreEFFECT.min!=-10], 
          "AF-L2" =  STOREDVL2Bias.min[StoreEFFECT.min!=-10], 
           "H2" = STOREH2Bias.min[StoreEFFECT.min!=-10], 
      "OmegaAdd.Min"=StoreADD.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
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     "OmegaDom.Min"=StoreDOM.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
     "OmegaEp.Min"=StoreEP.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
     "OmegaAdd.C.Min"=StoreIADD.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
     "OmegaDom.C.Min"=StoreIDOM.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
      "OmegaEp.C.Min"=StoreIEP.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
      "Effect.Min"=StoreEFFECT.min[StoreEFFECT.min!=-10], 
      "Effect.C" =StoreIEFFECT.min[StoreEFFECT.min!=-10], 
     "Env.Min"=StoreENV.min[StoreEFFECT.min!=-
 10]/StorePHEN.min[StoreEFFECT.min!=-10], 
      "Phen.Min"= StorePHEN.min[StoreEFFECT.min!=-10]) 
 
 
return(head(z))  
 
} 
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Appendix H R Code Corollary Relationships 

Partition Empirical distributions into the 1st, 2nd, 3rd quantiles: 
 

Effect.Size.small<-function(x) { 
  quantiles <- quantile(x$`Effect.S`) 
 
  q25 <- quantiles[2] 
  q50 <- quantiles[3] 
  q75 <- quantiles[4] 
 
  a<-which(x$`Effect.S` <= q75) 
  b<-which(x$`Effect.S` > q25) 
 
  identical(a,b) 
    smalleffect<<-x[which(x$`Effect.S` <= q25),] #25 quantile 
    return(smalleffect)  
} 
 
 
Effect.Size.medium<-function(x) { 
  quantiles <- quantile(x$`Effect.S`) 
 
  q25 <- quantiles[2] 
  q50 <- quantiles[3] 
  q75 <- quantiles[4] 
 
  a<-which(x$`Effect.S` <= q75) 
  b<-which(x$`Effect.S`> q25) 
 
  identical(a,b) 
  mediumeffect<<-x[intersect(a,b),] #inbetween 25 and 75 
  return(mediumeffect) 
} 
 
 
Effect.Size.large<-function(x) { 
  quantiles <- quantile(x[,12]) 
 
  q25 <- quantiles[2] 
  q50 <- quantiles[3] 
  q75 <- quantiles[4] 
 
  a<-which(x$`Effect.S` <= q75) 
  b<-which(x$`Effect.S` > q25) 
 
  identical(a,b) 
  largeeffect<<-x[which(x$`Effect.S`> q75),]#75quantile 
  return(largeeffect) 
} 

ANOVA Decomposition of 127 estimable effects: 
 

Anova<-function(x) { 
library(dplyr) 
library(sjstats) 
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x.fact<-x %>% mutate_at(vars(`Add.L1`, `Dom.L1`, `Allele.F.L1`,`Add.L2`, `Dom.L2`, 
`Allele.F.L2`, `H2`), as.factor) 
model<<-aov(Effect.S ~`Add.L1`*`Dom.L1`*`Allele.F.L1`*`Add.L2`* `Dom.L2` 
*`Allele.F.L2`* 
  `H2`, data = x.fact) 
partial.omega<<-omega_sq(model, partial=TRUE) 
omegasq.max<<-omega_sq(model) 
omega.table<<-merge(omegasq.max,partial.omega) %>% 
  arrange(desc(omegasq.max)) %>% 
  filter(omegasq.max >=0.01) %>% 
  mutate_at(vars(omegasq.max,partial.omegasq),round,3) %>% 
  return() 
return(omega.table) 
} 
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Appendix I R Code Power 

Seed Values:   
 

n<-c(10,20,50,100,500,1000) 
alpha<-c(0.01, 0.05, 0.1, 0.2, 0.3, 0.4) 

 
Median Power: 
 

Power.Median <-function(n,alpha,x){ 
  Power.Median<-matrix(0,nrow=(length(n)), ncol=(length(alpha))) 
  for (a in seq_along(n)) { 
    for (b in seq_along(alpha)) { 
      for (c in seq_along(x)) 
        Power.Median[a,b]<-median(pf(qf(1-alpha[b],4, 9*(n[a]-1)), 4, 9*(n[a]-1), 
n[a]*(x$Effect.S), lower.tail = FALSE)) 
    } 
  } 
  colnames(Power.Median)<-c(".01",".05",".10", ".20",".30",".40") 
  rownames(Power.Median)<-c( "10","20","50","100","500","1000") 
  return(Power.Median) 
} 

 
Proportion of Architectures with Satisfactory Power:  
 

Proportion.Power <-function(n,alpha,x){ 
  Power.9<-matrix(0,nrow=(length(n)), ncol=(length(alpha)))  
  for (a in seq_along(n)) { 
    for (b in seq_along(alpha)) { 
      Power.9[a,b]<-mean(pf(qf(1-alpha[b],4,9*(n[a]-1)), 4,9*(n[a]-1), n[a]*(x$Effect.S^2), 
lower. Tail=FALSE) > .90) 
    } 
  } 
  return(Power.9) 
} 
print(Proportion.Power) 
 


