
A practical computerized decision support system for 

predicting the severity of Alzheimer’s disease of an 

individual 

 

Magda Bucholca,*, Xuemei Dingb,c, Haiying Wangd, David H. Glassd, Hui Wangd, Girijesh 

Prasada, Liam P. Maguirea, Anthony J. Bjoursone, Paula L. McCleane, Stephen Toddf, David 

P. Finng, KongFatt Wong-Lina,* for the Alzheimer’s Disease Neuroimaging Initiative1 

 

 

a Intelligent Systems Research Centre, School of Computing, Engineering & Intelligent 

Systems, Ulster University, Magee campus, Northern Ireland, United Kingdom (E-mails: 

m.bucholc@ulster.ac.uk, g.prasad@ulster.ac.uk, lp.maguire@ulster.ac.uk, k.wong-

lin@ulster.ac.uk). 

b Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, 

Ulster University, Magee campus, Northern Ireland, United Kingdom (Email: 

x.ding@ulster.ac.uk) 

c Fujian Provincial Engineering Technology Research Centre for Public Service Big Data 

Mining and Application, College of Mathematics and Informatics, Fujian Normal University, 

Fuzhou, Fujian, 350108, China 

d School of Computing and Mathematics, Ulster University, Jordanstown campus, Northern 

Ireland, United Kingdom (E-mails: hy.wang@ulster.ac.uk, dh.glass@ulster.ac.uk, 

h.wang@ulster.ac.uk). 

e Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, 

Ulster University, Northern Ireland, United Kingdom (E-mails: aj.bjourson@ulster.ac.uk, 

pl.mcclean@ulster.ac.uk). 

f Altnagelvin Area Hospital, Western Health and Social Care Trust, Northern Ireland, United 

Kingdom (E-mail: stephen.todd@westerntrust.hscni.net). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/304668033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:m.bucholc@ulster.ac.uk
mailto:g.prasad@ulster.ac.uk
mailto:lp.maguire@ulster.ac.uk
mailto:k.wong-lin@ulster.ac.uk
mailto:k.wong-lin@ulster.ac.uk
mailto:hy.wang@ulster.ac.uk
mailto:dh.glass@ulster.ac.uk
mailto:h.wang@ulster.ac.uk
mailto:aj.bjourson@ulster.ac.uk
mailto:pl.mcclean@ulster.ac.uk
mailto:stephen.todd@westerntrust.hscni.net


g Pharmacology and Therapeutics, School of Medicine, and NCBES Galway Neuroscience 

Centre, National University of Ireland, Galway, Republic of Ireland (E-mail: 

david.finn@nuigalway.ie). 

 

*Corresponding author: Intelligent Systems Research Centre, School of Computing, 

Engineering & Intelligent Systems, Ulster University, Magee campus, Northern Ireland, United 

Kingdom, BT48 7JL. Phone: +44 28 7167 5155. E-mail: m.bucholc@ulster.ac.uk. 

 

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 

the ADNI contributed to the design and implementation of ADNI and/or provided data but did 

not participate in analysis or writing of this report. A complete listing of ADNI investigators can 

be found at: 

 http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 

 

  

mailto:david.finn@nuigalway.ie
mailto:m.bucholc@ulster.ac.uk
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Abstract  1 

Computerized clinical decision support systems can help to provide objective, standardized, 2 

and timely dementia diagnosis. However, current computerized systems are mainly based on 3 

group analysis, discrete classification of disease stages, or expensive and not readily 4 

accessible biomarkers, while current clinical practice relies relatively heavily on cognitive and 5 

functional assessments (CFA). In this study, we developed a computational framework using 6 

a suite of machine learning tools for identifying key markers in predicting the severity of 7 

Alzheimer’s disease (AD) from a large set of biological and clinical measures. Six machine 8 

learning approaches, namely Kernel Ridge Regression (KRR), Support Vector Regression, 9 

and k-Nearest Neighbor for regression and Support Vector Machine (SVM), Random Forest, 10 

and k-Nearest Neighbor for classification, were used for the development of predictive models. 11 

We demonstrated high predictive power of CFA. Predictive performance of models 12 

incorporating CFA was shown to consistently have higher accuracy than those based solely 13 

on biomarker modalities. We found that KRR and SVM were the best performing regression 14 

and classification methods respectively. The optimal SVM performance was observed for a 15 

set of four CFA test scores (FAQ, ADAS13, MoCA, MMSE) with multi-class classification 16 

accuracy of 83.0%, 95%CI = (72.1%, 93.8%) while the best performance of the KRR model 17 

was reported with combined CFA and MRI neuroimaging data, i.e., R2 = 0.874, 95%CI = 18 

(0.827, 0.922). Given the high predictive power of CFA and their widespread use in clinical 19 

practice, we then designed a data-driven and self-adaptive computerized clinical decision 20 

support system (CDSS) prototype for evaluating the severity of AD of an individual on a 21 

continuous spectrum. The system implemented an automated computational approach for 22 

data pre-processing, modelling, and validation and used exclusively the scores of selected 23 

cognitive measures as data entries. Taken together, we have developed an objective and 24 

practical CDSS to aid AD diagnosis.  25 



Keywords: dementia; Alzheimer’s disease; decision support system; machine learning; 26 

diagnosis support; cognitive impairment  27 

1. Introduction  28 

Recent advances in machine learning (ML) and big data analytics have led to the emergence 29 

of a new generation of clinical decision support systems (CDSSs) designed to exploit the 30 

potentials of data-driven decision making in patient monitoring, particularly in the area of 31 

internal medicine, general practice, and remote monitoring of vital signs (Gálvez et al., 2013, 32 

Helldén et al., 2015 Lisboa & Taktak, 2006, Skyttberg, Vicente, Chen, Blomqvist, & Koch, 33 

2016). Improved access to large and heterogeneous healthcare data and an integration of 34 

advanced computational procedures into CDSSs has enabled the real-time discovery of 35 

similarity metrics for patient stratification, development of predictive analytics for risk 36 

assessment, and selection of patient-specific therapeutic interventions at the time of decision-37 

making (Brown, 2016, Dagliati et al., 2018, Farran, Channanath, Behbehani, & Thanaraj, 38 

2013). CDSSs provide clinical decision support at the time and location of care rather than 39 

prior to or after the patient encounter and therefore, help streamline the workflow for clinicians 40 

and assist real-time decision-making (diagnosis, prognosis, treatment) (Castaneda et al., 41 

2015, Wright et al., 2016). Numerous studies demonstrated that CDSSs contributed to 42 

improving patient safety and care by decreasing the number of therapeutic and diagnostic 43 

errors that are unavoidable in human clinical practice (Lindquist, Johansson, Petersson, 44 

Saveman, & Nilsson, 2008) and reduced the workload of medical staff, especially in contexts 45 

that require frequent monitoring or complex decision-making, such as management of chronic 46 

diseases (Wright et al., 2016). Current research directions in dementia, with Alzheimer’s 47 

disease (AD) being its most common form, focuses on interventions and treatments that can 48 

modify progression of dementia symptoms or lead to an early identification of individuals at 49 

risk of developing dementia (Brodaty et al., 2016, Ritchie et al., 2017). Increasing evidence 50 

suggests that early diagnosis of dementia can lead to significant clinical and economic 51 



benefits. However, the underdiagnosis of dementia is currently one of the key deficiencies in 52 

disease management in the primary care setting (Dodd, Cheston, & Ivanecka, 2015, Lang et 53 

al., 2017, Paterson & Pond, 2009). Research indicates that low dementia detection rates in 54 

primary care are mainly related to the absence of standardized and reliable screening tools, 55 

inadequate training on dementia of general practitioners (GPs), and the GPs' lack of 56 

confidence in providing a correct diagnosis (Koch, Iliffe, & EVIDEM-ED project, 2010).  57 

Technology-based tools have considerable potential to transform the dementia care pathway. 58 

CDSS utilized in the early diagnosis of AD may allow for the selection of patients for clinical 59 

trials at the earliest possible stage of disease development and enable clinicians to initiate the 60 

treatment as early in the disease process as possible to more effectively arrest or slow disease 61 

progression. A number of applications have been developed to serve as enabling tools for 62 

dementia diagnostics (Mandala, Saharana, Khana & Jamesa, 2015). These include software 63 

applications that provide practical information for those caring for dementia patients (e.g., 64 

Dementia Support by Swedish Care International, Alzheimer’s and Other Dementias Daily 65 

Companion, MindMate) as well as tools used for mobile cognitive screening (e.g., MOBI-COG, 66 

Mobile Cognitive Screening, Dementia Screener, Sea Hero Quest, CANTAB). In addition, 67 

CDSSs, designed to aid clinical decision making by adapting computerized clinical practice 68 

guidelines to individual patient characteristics or integrating machine learning methodologies 69 

for pattern recognition, have been recently gaining more interest in expediting dementia 70 

diagnosis and disease management (Antila et al., 2013, Frame, LaMantia, Bynagari, Dexter, 71 

& Boustani, 2013, Lindgren, 2011, Lindgren, Eklund, & Eriksson, 2002). It has been shown 72 

that such systems are more sensitive in detecting an early-stage disease and more objective 73 

than diagnostic decisions made by a single practitioner (Moja et al., 2015).  74 

Despite the fact that advanced computational approaches for AD classification and 75 

progression have been applied to large sets of patient data, including magnetic resonance 76 

imaging (MRI) (Karas et al., 2008, Lebedeva et al., 2017, Moradi et al., 2015), positron 77 

emission tomography (PET) (Higdon et al., 2004, Grimmer et al., 2016, Sanchez-Catasus et 78 



al., 2017), cerebrospinal fluid (CSF) biomarkers (Forlenza et al., 2015, Handels et al., 2017, 79 

Mattsson et al., 2009), combination of the neuroimaging modalities (Youssofzadeh, 80 

McGuinness, Maguire, & Wong-Lin., 2017), and cognitive and functional assessments (CFA) 81 

(Ding et al., 2018, Chapman et al., 2011, Korolev, Symonds, Bozoki & Alzheimer's Disease 82 

Neuroimaging Initiative, 2016, Maroco et al., 2011), there is a significant gap between 83 

research outputs and their actual utilization in daily clinical practice. In contrast to other 84 

disease areas, the integration of machine learning methodologies into CDSSs and their 85 

deployment for a routine use in AD diagnostics is still very rare. The few systems that are used 86 

in dementia diagnostics require information from expensive and labour-intensive biomarkers 87 

(Antila et al., 2013, Soininen et al., 2012) or implement predictive methodologies based on 88 

discrete classes for the different stages of the disease even if the underlying neurobiology 89 

could possibly evolve in a continuous manner (Onoda & Yamaguchi, 2014). Furthermore, to 90 

the best of our knowledge, no CDSS for dementia detection or management has been 91 

developed so far for the use in the primary care setting. 92 

The aim of this study is two-fold: (1) to describe the developmental process of a computational 93 

framework for identifying key measures in predicting the severity of AD; and (2) to build upon 94 

this framework to develop a data-driven and self-adaptive prototype of a CDSS for evaluating 95 

the severity of AD of an individual on a continuous spectrum. In order to achieve this, we first 96 

utilize a suite of machine learning techniques to extract useful information from large volumes 97 

of patient data and provide a disease outcome prediction for different types and combinations 98 

of AD markers. We demonstrate that CFA can reliably and accurately provide prediction of AD 99 

severity. Next, we design a CDSS that incorporates an automated computational approach for 100 

data pre-processing, modelling, and validation and uses selected CFA scores as data input. 101 

Since our system was designed to utilize information from readily available and cost-effective 102 

CFA markers, it can be easily implemented in general clinical practice.  103 

 104 

  105 



2. Material and methods 106 

2.1    Development of a computational framework 107 

2.1.1 Participants 108 

Patient records from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 109 

(adni.loni.usc.edu) were used to develop the computational approach for evaluating the 110 

cognitive decline of an individual associated with AD. The primary goal of ADNI has been to 111 

test whether MRI, PET, other biological markers, and clinical and neuropsychological 112 

assessments can be combined to measure the progression of mild cognitive impairment (MCI) 113 

and early AD.  114 

The Clinical Dementia Rating Sum of Boxes (CDRSB) scores of 488 patients with a complete 115 

dataset of structural MRI and PET imaging, CSF biomarkers, CFA scores, socio-demographic 116 

features and medical history were used to describe AD staging and acted as an outcome 117 

(response) measure in prediction models. The CDRSB score is widely accepted in the clinical 118 

setting as a reliable and objective AD assessment tool (Cedarbaum et al., 2013). In total, we 119 

identified 178 cognitively healthy controls (CDRSB = 0), 263 subjects with questionable 120 

cognitive impairment (QCI) (0.5  CDRSB  4.0), 46 patients with mild AD (4.5  CDRSB  121 

9.0), and 1 patient with moderate AD (9.5  CDRSB  15.5). Since only one patient with 122 

moderate AD was identified, the subjects from mild and moderate AD categories were 123 

combined into one mild/moderate AD category.  124 

2.1.2 Data types 125 

We considered 66 features as potential predictors of cognitive decline associated with AD 126 

including 38 assessments/biomarkers (10 clinical and 28 biological measures) and 28 risk 127 

factors (family history, medical history, and sociodemographic characteristics). The cognitive 128 

and functional assessments offered information on memory deficits and behavioural 129 



symptoms of AD, CSF measures corresponded to the pathological changes at the biological 130 

level, while neuroimaging features allowed us to evaluate the neural degeneration related to 131 

AD. Sociodemographic, family, and patient’s medical history data enabled the identification of 132 

risk factors associated with increased risk of developing AD. 133 

Clinical measures included: Mini-Mental State Examination (MMSE) (Folstein, Robins & 134 

Helzer, 1983); Alzheimer’s Disease Assessment Scale 13 (ADAS13) (Mohs et al., 1997); 135 

Montreal Cognitive Assessment (MoCA) (Nasreddine et al. 2005); Logical Memory – 136 

Immediate Recall (LIMMTOTAL) (Abikoff et al., 1987); Logical Memory – Delayed Recall 137 

(LDELTOTAL) (Abikoff et al., 1987); Rey Auditory Verbal Learning Test (RAVLT): Immediate, 138 

Learning, Forgetting, and Perc Forgetting (Rey, 1964); and Functional Assessment 139 

Questionnaire (FAQ) (Pfeffer, Kurosaki, Harrah Jr, Chance & Filos, 1982).  140 

Biological data consisted of neuroimaging measurements and CSF biomarkers. Neuroimaging 141 

measures utilized MRI and PET (FDG and 18F-AV-45) data. MRI measures included 142 

volumetric data of hippocampus, ventricles, entorhinal, fusiform gyrus, middle temporal gyrus 143 

(MidTemp), whole brain, and intracerebral volume (ICV). The regional brain volumes were 144 

normalized by ICV. We also considered the volumetric data of intracranial gray matter 145 

(GRAY), white matter (WHITE), cerebrospinal fluid (CSF_V), and white matter 146 

hyperintensities (WHITMATHYP). Furthermore, two Boundary Shift Integral (BSI) measures 147 

were evaluated: whole brain (BRAINVOL) and ventricle (VENTVOL). Finally, we analysed the 148 

Florbetapir summary data represented by the gray matter regions of interest (frontal, 149 

anterior/posterior cingulate, lateral parietal, lateral temporal) normalized by the reference 150 

region of whole cerebellum (WHOLECEREBNORM). FDG-PET (FDG) was determined as a 151 

sum of mean glucose metabolism averaged across 5 regions of interest, i.e., right and left 152 

angular gyri (Angular Right and Temporal Left respectively), bilateral posterior cingulate 153 

(CingulumPost Bilateral), right and left inferior temporal gyri (Temporal Right and Temporal 154 

Left respectively) (Landau et al., 2011). Beside the composite FDG-PET, we also considered 155 

measurements for separate FDG-ROIs (i.e., Angular Right and Left, Temporal Right and Left, 156 



CingulumPost Bilateral) (Jagust et al., 2010). 18F-AV-45 PET (AV45) was represented by the 157 

mean of Florbetapir (F-18) standardized uptake value ratios (SUVR) of frontal, anterior and 158 

posterior cingulate, lateral parietal, and lateral temporal cortex (Landau et al., 2012). Other 159 

PET measures included spatial extent of hypometabolism determined using 3-dimensional 160 

stereotactic surface projection analysis (SUMZ2, SUMZ3) (Chen et al., 2010). In addition, CSF 161 

concentrations of total tau protein - t-tau (TAU), amyloid-β peptide of 42 amino acids - Aβ1–42 162 

(ABETA), and phosphorylated tau - p-tau181p (PTAU) were studied, as were ratios of t-tau to 163 

Aβ1–42 (TAU_ABETA), and p-tau181p to Aβ1–42 (PTAU_ABETA). The complete overview of data 164 

types used in our study and their abbreviations are shown in Table A.1.  165 

2.1.3      Feature selection and modelling approach 166 

The development of the computational framework consists of several steps. First, we 167 

conducted feature standardization to assimilate clinical measurements of diverse scales (Liu 168 

& Motoda, 2007). Accordingly, all features were rescaled so that they had the properties of a 169 

standard normal distribution with a mean of 0 and a standard deviation of 1 (Liu & Motoda, 170 

2007). The full dataset was then split into a model development set (90%) and a testing set 171 

(10%) was used for evaluating and comparing performances of competing models. The model 172 

development set was further split into training and validation sets (Barber, 2012). The training 173 

data was used to predict the responses for the observations in the validation set (Barber, 174 

2012). This provided us with an unbiased evaluation of a model fit on the training dataset while 175 

tuning the hyperparameters of the model. For the validation procedure, we used the leave-176 

one-out cross validation (LOOCV), which is a k-fold validation where k = n (Elisseeff & Pontil, 177 

2003). The final model evaluation was conducted on a held-out testing set that has not been 178 

used prior, either for training the model or tuning the model’s parameters. 179 

Since machine learning algorithms tend to produce biased models when dealing with 180 

imbalanced datasets, the Synthetic Minority oversampling technique (SMOTE) was used to 181 

handle the class imbalance in the model development set by resampling original patient data 182 



and creating synthetic instances (Chawla, Bowyer, Hall & Kegelmeyer, 2002). For improved 183 

generalization performance of predictive models, feature selection was implemented to 184 

identify the most relevant subset of features for predicting AD severity. Three regression 185 

models (Kernel Ridge Regression (KRR), Support Vector Regression (SVR), and k-Nearest 186 

Neighbor Regression (kNNreg)) and three classification models (Support Vector Machine 187 

(SVM), Random Forest (RF), k-Nearest Neighbor Classification (kNNclass))  were developed 188 

and their performance tested for different modality types and their combinations. The selection 189 

of features that achieved high predictive accuracy for the best performing classification and 190 

regression model was later used as entry input for CDSS. A leave-one-out cross validation 191 

(LOOCV) was applied for hyper-parameters optimization. The overall procedure for model 192 

development and evaluation is shown in Fig. 1. 193 

 194 

Fig. 1. Overview of the model development and validation procedure. 195 



2.1.3.1      Feature selection  196 

Previous studies typically used the univariate filtering methods to filter out the least promising 197 

features before the development of a predictive model (Michalak & Kwaśnicka, 2006). 198 

However, such filtering approaches can prompt loss of relevant features that are meaningless 199 

by themselves but when considered together, can improve model performance (Perez-Riverol, 200 

Kuhn, Vizcaíno, Hitz & Audain, 2017). To overcome this, the wrapper methods can be applied 201 

to assess the importance of specific feature sets. It has been shown that wrappers obtain 202 

subsets with better performance than filters. Wrappers use a search procedure to generate 203 

and evaluate different subsets of features in the space of possible feature subsets by training 204 

and testing a specific classification model (Hira & Gillies, 2015). The commonly used 205 

classification algorithms for identifying the most relevant input variables are: Naïve Bayes 206 

(Cortizo & Giraldez, 2006, Panthong & Srivihok, 2015), SVM (Maldonado & Weber, 2009, 207 

Maldonado, Weber & Famili, 2009), Random Forest (Rodin et al., 2009), Bagging (Panthong 208 

& Srivihok, 2015), AdaBoost (Panthong & Srivihok, 2015), and Extreme Learning Machines 209 

(Benoít, Van Heeswijk, Miche, Verleysen & Lendasse, 2013). These classification techniques 210 

combined with a greedy search algorithm allow for finding the optimal number of features by 211 

iteratively selecting features based on the classifier performance (Bengio et al., 2003).  212 

Since ADNI dataset is characterized by high dimensionality that increases the complexity of 213 

computation and analysis, we used the feature selection technique that was found to minimize 214 

redundancy and allowed for identifying features with the highest relevance to the disease class 215 

(Granitto, Furlanello, Biasioli & Gasperi, 2006). As such, we applied the Recursive Feature 216 

Elimination (RFE) method coupled with Random Forest for measuring variable importance. 217 

The RFE technique has been widely applied in healthcare applications due to its efficiency in 218 

reducing the complexity (Li, Xie, & Liu, 2018). Furthermore, studies demonstrated that RF-219 

RFE outperformed SVM-RFE in finding small subsets of features with a high discrimination 220 

capability and required no parameter tuning to produce competitive results (Granitto, 221 

Furlanello, Biasioli & Gasperi, 2006).The RFE method with the 10-fold validation was applied 222 



on the model development set (Bengio et al., 2003). For better replicability, the 10-fold CV 223 

procedure was repeated 10 times with different partitions of the data to avoid any bias 224 

introduced by randomly partitioning dataset in the cross-validation. The RFE technique 225 

searched for the optimal combination of predictors (among all possible subsets) that 226 

maximized model performance through backward feature elimination based on the predictor 227 

importance measure as a ranking criterion. At each iteration, the Random Forest (RF) 228 

algorithm, incorporating a hierarchical decision tree structure was used to explore all possible 229 

subsets of the features and measure their importance with respect to the classification 230 

outcome (Gregorutti, Michel & Saint-Pierre, 2017). To assess the robustness of RFE-RF 231 

process in selecting optimal subset of features, we applied the RFE technique to another 232 

similar type of ensemble methods, namely, bootstrap aggregated (bagged) trees (RFE-BT) 233 

and compared their results (Panthong & Srivihok, 2015). As with RFE-RF, the RFE-BT 234 

performance was evaluated in a 10-fold cross-validation repeated five times with different split 235 

positions. 236 

2.1.3.2     Development of predictive models 237 

A number of ML techniques have been used for AD detection. Classification approaches have 238 

been derived using Random Forest (RF) (Gray et al., 2013, Sarica, Cerasa & Quattrone, 239 

2017), Logistic Regression (Barnes et al., 2010, Bauer, Cabral & Killiany, 2018, Chary et al. 240 

2013, Wolfsgruber et al., 2014), and SVM (Casanova, Hsu, & Espeland, 2015, Cui et al., 2011, 241 

Klöppel et al., 2008, Ritter et al., 2015, Weygandt et al., 2011). In particular, the SVM showed 242 

great promise in improving diagnosis and prognosis in AD, especially in the studies 243 

characterized by a relatively small number of participants and disparate and high-dimensional 244 

data types (Dyrba, Grothe, Kirste, & Teipel, 2015, Klöppel et al., 2008, Long, Chen, Jiang, 245 

Zhang, & Alzheimer’s Disease Neuroimaging Initiative, 2017, Magnin et al., 2009). 246 

Furthermore, the SVM often outperformed other machine learning algorithms used for AD 247 



classification (e.g. RF, logistic regression) (Samper-González et al., 2018, Tripoliti, Fotiadis, 248 

Argyropoulou, & Manis, 2010). 249 

Compared to the ML classification methods, regression approaches focus on the estimation 250 

of continuous clinical variables along the continuum of disease severity (Wang, Fan, Bhatt & 251 

Davatzikos, 2010). Several regression methods have been applied in AD studies (Duchesne, 252 

Caroli, Geroldi, Collins, & Frisoni, G. 2009, Duchesne, Caroli, Geroldi, Frisoni, & Collins, 2005, 253 

Youssofzadeh et al., 2017). However, linear regression models have been often ineffective in 254 

capturing nonlinear relationships between biomarkers (e.g. neuroimaging data) and cognitive 255 

scores, especially when limited training examples of high dimensionality were used (Duchesne 256 

et al., 2009). On the other hand, nonparametric kernel regression methods yielded relatively 257 

robust estimations of continuous variables with good generalization ability (Liu, Cao, Yang, & 258 

Zhao, 2018, Wang et al., 2010). Regularized regression techniques, such as Ridge 259 

Regression, performed especially well given high dimensional and colinear AD data (Teipel et 260 

al., 2017, Youssofzadeh et al., 2017). In addition, the Ridge Regression combined with the 261 

kernel trick demonstrated high predictive performance when applied to individual patient data 262 

(Youssofzadeh et al., 2017). 263 

Our study built upon earlier findings and used six different non-parametric methods for the 264 

development of predictive models, namely SVM, RF, and kNNclass for classification and KRR, 265 

SVR, and kNNreg for regression. For each selected technique, we tested a series of values for 266 

the tuning process with the optimal parameters determined based on the model performance. 267 

The results of the best performing regression and classification algorithms are presented in 268 

the main text; the results of the remaining methods can be found in the Supplementary 269 

Material (Supplementary Table A.2., A.3, and A.4). 270 

The distinction between regression and classification models was reflected in definition of the 271 

response variable (CDRSB). The  regression models predicted a numerical value from a range 272 

of continuous values (i.e., 0 < CDRSB < 15.5) while the classification models predicted the 273 



target class, i.e., ‘Normal’ (CDRSB = 0), ‘QCI’ (0.5  CDRSB  4.0), ‘Mild/Moderate’ (4.5  274 

CDRSB  15.5). Since the model performance greatly depends on the choice of a kernel 275 

function (Hainmueller & Hazlett, 2014, Matheny, Resnic, Arora & Ohno-Machado, 2007), we 276 

tested different types of kernels, i.e., linear, polynomial, and radial basis function, and selected 277 

the one that maximized the performance measure for each model type.  278 

2.1.3.2.1   Kernel Ridge Regression 279 

The KRR combines ridge regression with a kernel trick allowing for mapping the input space 280 

into a higher dimensional space of nonlinear functions of predictors (Murphy, 2014). The 281 

general form of the KRR is described by:  282 

𝑓(𝑥) =  ∑ 𝛼𝑗𝑘(𝑥, 𝑥′)
𝑁𝑇
𝑗=1                                                 (1) 283 

where 𝑁𝑇 is the number of training points, 𝑘 is the kernel function, and  are the weights 284 

obtained through the minimization of the cost function: 285 

𝐶(𝛼) =  ∑ (𝑓𝑀𝐿(𝑥𝑗) −  𝑓𝑗)2 +  𝜆𝛼𝑇𝐾𝛼
𝑁𝑇
𝑗=1                                    (2) 286 

where 𝛼 =  (𝛼1, … , 𝛼𝑁𝑇
)𝑇, 𝐾 is the kernel matrix, and 𝜆 controls the amount of regularization 287 

applied to the model (Vu et al., 2015). The best performance of the KRR model was achieved 288 

by applying a radial basis function (RBF) kernel defined as: 289 

𝑘(𝑥, 𝑥′)𝛾
𝑟𝑎𝑑𝑖𝑎𝑙 = exp [−𝛾‖𝑥 − 𝑥′‖2]                                     (3) 290 

where 𝑥 and 𝑥′ are input vectors, and 𝛾 > 0 is a width parameter (Murphy, 2014).  291 

2.1.3.2.2    Support Vector Machine and Support Vector Regression 292 

SVM is a classification technique that performs classification tasks by mapping the input 293 

vectors onto a higher dimensional space denoted as Φ: Rd → Hf (d < f) where an optimal 294 

separating hyperplane is constructed using a kernel function 𝑘(𝑥𝑖, 𝑥𝑗) (Ramírez et al., 2013). 295 

The performance of the SVM classifier was maximized using a polynomial kernel:  296 



𝑘(𝑥𝑖 , 𝑥𝑗) 𝑐,𝑑
𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙

=  (< 𝑥𝑖 , 𝑥𝑗 > + 𝑐)𝑑                                        (4) 297 

where 𝑥𝑖  and 𝑥𝑗 are vectors in the input space, 𝑐 is a free parameter trading off the influence 298 

of higher-order versus lower-order terms in the polynomial, and 𝑑 is the degree of polynomial 299 

(Cortes & Vapnik, 1995).  300 

SVR is based on the same principles as SVM. In contrast to traditional regression techniques, 301 

SVR focuses on minimizing the bound of the generalization error instead of seeking to 302 

minimize the prediction error on the training set (training error) (Basak, Pal, & Patranabis, 303 

2007). The objective of SVR is to find a regression function, 𝑦 = 𝑓(𝑥), such as it predicts the 304 

outputs {y} corresponding to a new input-output set {(x, y)} which are drawn from the same 305 

underlying joint probability distribution as the training set g = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥𝑝, 𝑦𝑝)}, where 306 

𝑥𝑖𝜖 𝜐𝑁 is the vector of input variables and 𝑦𝑖𝜖 𝜐 is the vector of  corresponding output values 307 

(Awad & Khanna, 2015). The basic concept of SVR is to non-linearly transform the original 308 

input space into a higher dimensional feature space and perform linear regression in this 309 

feature space by ε-insensitive loss (Awad & Khanna, 2015). The SVR ε-insensitive loss 310 

function penalizes misestimates that are farther than ε from the desired output. The ε 311 

parameter determines the width of the ε-insensitive region (tube) around the function; a lower 312 

tolerance for error is reflected in a smaller ε value. If the predicted value is within the ε-zone, 313 

the loss is zero. If the predicted value is located outside the ε-zone, the loss is defined by the 314 

magnitude of the difference between the predicted value and the ε radius (Awad & Khanna, 315 

2015). 2.1.3.2.3 k-Nearest Neighbors  316 

kNN is a non-parametric approach applied to both classification and regression problems. The 317 

prediction of values of any new data points uses the 'feature similarity' measure (Kramer, 318 

2013). Accordingly, given a predefined threshold for the rule (i.e. the k number of neighbors) 319 

a new point is assigned a value based on its distance to training examples. Here, the distance 320 

between two data points is determined using the normalized Euclidean distance function 321 

defined as: 322 



dist(A,B) = √
∑ (𝑥𝑖− 𝑦𝑖)2𝑚

𝑖

𝑚
 323 

where A and B are represented by feature vectors A = (x1, x2, …, xm), B= (y1, y2, …, ym), and 324 

m is the dimensionality of the feature space (Kramer, 2013). The kNN classification assigns a 325 

class label of the majority of the k-nearest patterns in the feature space while the kNN 326 

regression calculates the mean of the function values of its k-nearest neighbors (Kramer, 327 

2013). 328 

2.1.3.2.4 Random Forest  329 

RF estimates the importance of features included in a model by constructing an ensemble of 330 

decision trees (Rodin et al., 2009). As a boosting type of algorithm, RF combines the efforts 331 

of an ensemble of weak classifiers to build a single, stronger classifier. It achieves it by training 332 

a specified number of decision trees using different partitions of the training set and conducting 333 

the following randomizing operations: 1) each tree is trained on a random bootstrap subset of 334 

the training data; 2) each node of a tree only uses a randomly selected subset of features. 335 

The trained decision trees then produce a single prediction by averaging the individual 336 

estimates from random subsamples of the data. More detail about the theory and mechanisms 337 

of RF is given in Breiman (2001). 338 

2.1.3.3      Model performance evaluation 339 

The optimal subset of features identified during the feature selection process was 340 

subsequently used for training the selected regression and classification models. Both types 341 

of models were developed using 90% of the original data. The values of hyper-parameters 342 

used in constructing the models were optimized by applying grid search with LOOCV on the 343 

training data (Elisseeff & Pontil, 2003). The LOOCV technique is N-fold cross-validation, where 344 

N is the number of instances in the dataset. Although LOOCV is computationally intensive, 345 

choosing the number of folds equal to N gives more accurate assessment as the true size of 346 

the training set is closely mimicked and hence, the model bias is minimized (Elisseeff & Pontil, 347 



2003). Accordingly, we tested each single held out patient record (validation set) on the 348 

classifier trained on the remaining (N - 1) patient observations. Note that, the optimal values 349 

of the parameters were determined separately for each model type and each modality type or 350 

their combinations (i.e., CFA, MRI, PET, CSF, Age). The predictive performance of trained 351 

models was later evaluated on an (unseen) test set randomly partitioned from the original data 352 

(10% of the original data). The test was performed once for each model constructed using 353 

different modality types and their combinations. This allowed us to identify a subset of features 354 

that was later used as entry input for the CDSS. 355 

Two established measures for assessing the performance of regression models were used: 356 

the adjusted coefficient of determination (R2) and the Root Mean Square Error (RMSE) (Allen, 357 

1997). For classification models, we calculated four metrics: multi-class classification accuracy 358 

(MCA), sensitivity, specificity, and area under the ROC curve (AUC) (Hand & Till, 2001). Since 359 

simple form of AUC is only used as a binary classification measure, we extended the definition 360 

of AUC to the case of multi-class problem by averaging pairwise comparisons (Hand &Till, 361 

2001). 362 

2.2      Development of clinical decision support system 363 

The development of the computational framework described above allowed us to identify a 364 

subset of features with high discriminative power in evaluating levels of cognitive impairment 365 

in AD. These features were used as CDSS inputs for assessing AD severity of an individual 366 

(Bucholc et al. 2017, Bucholc et al., 2018). The CDSS workflow characteristics are shown in 367 

Fig. 2. The elements of the framework responsible for data pre-processing, modelling, and 368 

validation were automated and realized in the CDSS. The software prototype was developed 369 

using R version 3.4.1 and Shiny version 1.0.5. A team of domain experts including computer 370 

scientists and clinical experts was involved in the design process. To maximize system 371 

effectiveness, clarity, and guarantee efficient interaction with clinical staff, the visual 372 

representations of clinical data were displayed in concise formats that did not lower cognitive 373 



effort required to interpret them in a timely manner. Consultations with medical personnel 374 

enabled an understanding of the local context in which the system will be implemented. 375 

Furthermore, all involved parties became familiar with the rationale and methodological 376 

approach behind the development of our decision support tool. This closed-loop process 377 

between the computer scientist and clinicians helped us identify leading obstacles to the 378 

system’s adoption and routine use in clinical practice. 379 

 380 

Fig. 2. UML activity diagram of the computer-based clinical decision support system for 381 

predicting AD severity of an individual. 382 

3. Results 383 

3.1   Identification of AD features for the CDSS data entry  384 

3.1.1 Dimensionality reduction of AD data  385 

Both feature selection methods (RFE-RF and RFE-BT) we consider are variants of the 386 

recursive stepwise selection approach. Fig. 3 shows the performance profile across different 387 

subset sizes evaluated with the RFE-RF (Fig. 3A) and RFE-BT (Fig. 3B) techniques. The 388 

plotted values refer to the average accuracy measured using 10 repeats of 10-fold cross-389 



validation. The accuracy of classifiers (RF and BT) was calculated for different combinations 390 

of features and the subset of features with best performance was retained.  391 

Given the RFE-RF, we found a combination of 21 features (LDELTOTAL, FAQ, MOCA, 392 

ADAS13, LIMMTOTAL, RAVLT Immediate, MMSE, Hippocampus, FDG, Angular Left, Whole 393 

Brain, Age, RAVLT Perc Forgetting, MidTemp, Angular Right, Temporal Left, SUMZ3, RAVLT 394 

Learning, TAU_ABETA, TAU, Entorhinal) to achieve the highest predictive accuracy (MCA = 395 

88.9%, 95%CI = (88.2%, 89.6%)). The optimal subset of features identified with RFE-BT 396 

consisted of 18 features with MCA = 88.5%, 95%CI = (87.5%, 89.5%). All features (with the 397 

exception of SUMZ2) selected during the RFE-BT process were also identified with RFE-RF. 398 

Since the best subset of features determined using the RFE-RF approach was more 399 

comprehensive and yielded higher accuracy, we henceforth used it for training regression and 400 

classification models.  401 

The features identified with RF-RFE were grouped into five modality types: 1) CFA 402 

(LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, MMSE, RAVLT Immediate, RAVLT Perc 403 

Forgetting, RAVLT Learning); 2) MRI (Hippocampus, MidTemp, Entorhinal, Whole Brain); 3) 404 

PET (FDG, Angular Left, Angular Right, Temporal Left, SUMZ3); 4) CSF (TAU_ABETA, TAU); 405 

and 5) Age. The reason for grouping the features into modality types was to determine if cost-406 

effective and non-invasive AD markers, and therefore, easier to implement into the CDSS, 407 

have high discriminative power in assessing the severity of AD. Accordingly, we analysed the 408 

performance of predictive models constructed using each data type (as well as their 409 

combinations). 410 



 411 

Fig. 3. A) Performance profile across different subset sizes evaluated using the RFE-RF 412 

technique. Dark blue dot: the subset of features with the best performance B) Resampling 413 

performance of the best subset of features across different folds. 414 

3.1.2     Model performance 415 

To test the robustness of our hypothesis, we used six different ML methods for the 416 

development of predictive models, namely KRR, SVR, and kNNreg for regression and SVM, 417 

RF, and kNNclass for classification. Our analysis showed that all models incorporating CFA into 418 



their design performed better than models based on a single or combination of biomarkers. 419 

The results of the best performing regression and classification models (KRR and SVM 420 

respectively) were presented in the main text while the performance measures for the 421 

remaining 4 models were included in the Supplementary Material (Table A.2, A.3, A.4). 422 

3.1.2.1   Kernel Ridge Regression model 423 

The KRR model constructed for a combination of CFA and biomarkers performed consistently 424 

better than models incorporating only biomarkers (either a single modality type  425 

Table 1. KRR model performance measures for MRI, PET, CSF and cognitive function 426 

modalities retained for the training after feature selection. CFA represents 9 selected cognitive 427 

and functional assessments (LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, MMSE, 428 

RAVLT Immediate, RAVLT Perc Forgetting, RAVLT Learning), MRI - 4 features 429 

(Hippocampus, MidTemp, Entorhinal, Whole Brain), PET – 5 features (FDG, Angular Left, 430 

Angular Right, Temporal Left, SUMZ3), and CSF – 2 features (TAU_ABETA, TAU). ‘All’ 431 

features refer to a combination of MRI, PET, CSF, CFA, and Age. Performances of predictive 432 

models for each combination of modalities were recorded using an (unseen) testing set 433 

partitioned from the original data (10% of the original data). R2: adjusted coefficient of 434 

determination; RMSE: Root Mean Square Error. Asterix (*): a subset of features with the 435 

highest R2. For more details on data types and their abbreviations, refer to Table A.1. 436 

Features R2 RMSE 

All 0.839, 95%CI (0.793,0.885) 0.463 

CFA, PET, MRI, CSF 0.847, 95%CI (0.802,0.892) 0.442 

CFA, PET, MRI 0.839, 95%CI (0.788,0.890) 0.436 

CFA, PET, CSF 0.850, 95%CI (0.798,0.903) 0.400 

CFA, MRI, CSF 0.865, 95%CI (0.817,0.913) 0.402 

PET, MRI, CSF 0.417, 95%CI (0.256,0.578) 0.795 

CFA, PET 0.821, 95%CI (0.757,0.884) 0.429 

CFA, MRI * 0.874, 95%CI (0.827,0.922) 0.379 



CFA, CSF 0.863, 95%CI (0.809,0.918) 0.374 

PET, MRI 0.407, 95%CI (0.237,0.578) 0.800 

PET, CSF 0.374, 95%CI (0.192,0.555) 0.860 

MRI, CSF 0.181, 95%CI (0.012,0.351) 0.942 

CFA 0.866, 95%CI (0.809,0.922) 0.369 

PET 0.404, 95%CI (0.215,0.593) 0.810 

MRI 0.317, 95%CI (0.120,0.513) 0.854 

CSF 0.024, 95%CI (0,0.105) 1.215 

Age 0.055, 95%CI (0,0.176) 1.036 

Set of 4 cognitive/functional 

assessments (FAQ, ADAS13, 

MoCA, MMSE) 

0.832, 95%CI (0.754,0.910) 0.423 

or their  combinations) (Table 1). The best performance of the KRR model was observed for 437 

the combined CFA and MRI data, i.e., R2 = 0.874, 95%CI = (0.827, 0.922) (Table 1, bold). Of 438 

the two modalities, CFA features were the most discriminative while MRI markers provided 439 

complementary information about AD severity, enhancing the predictive performance of the 440 

model. Taken together, CFA provided insight into the memory deficits and behavioural 441 

symptoms of AD while MRI features offered complementary information regarding the 442 

structural degeneration of AD. Biomarker features achieved significantly lower performance, 443 

e.g., combined PET, MRI, and CSF data yielded R2 = 0.417, 95%CI = (0.256, 0.578) while for 444 

PET and MRI features, we reported R2 of 0.407, 95%CI = (0.237, 0.578). Given a single 445 

modality type, the model based on CFA (R2 = 0.866, 95%CI = (0.809, 0.922)) clearly 446 

outperformed models constructed with MRI (R2 = 0.317, 95%CI = (0.120, 0.513)), PET (R2 = 447 

0.404, 95%CI = (0.215, 0.593)) and CSF (R2 = 0.024, 95%CI = (0, 0.105)) features. Modelsbuilt 448 

using Age or CSF data alone achieved the worst performance. KRR predictions of AD severity 449 

of individual patients along with the expected diagnosis for each modality type are shown in 450 

Fig. 4. 451 



 452 

Fig. 4. KRR model predictions of medical diagnosis (CDRSB) of individual patients for 5 453 

modality types: a) CFA, b) MRI, c) PET, d) CSF, and e) Age. Blue dots: observed values of 454 

CDRSB; red dots: predicted values of CDRSB; vertical lines: differences between observed 455 

and predicted values of the outcome. Models’ predictions for each set of considered markers 456 

were obtained using an (unseen) testing set partitioned from the original data (10%). CFA: 457 

functional and cognitive assessments; MRI: magnetic resonance imaging; PET: positron 458 

emission tomography; CSF: cerebrospinal fluid biomarkers. 459 



Table 2. SVM model performance measures for MRI, PET, CSF and cognitive function modalities retained for the training after feature selection. CFA 460 

represents 9 selected cognitive and functional assessments (LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, RAVLT Immediate, MMSE, RAVLT Perc 461 

Forgetting, RAVLT Learning), MRI – 4 features (Hippocampus, MidTemp, Entorhinal, Whole Brain), PET – 5 features (FDG, Angular Left, Angular Right, 462 

Temporal Left, SUMZ3), and CSF – 2 features (TAU_ABETA, TAU). ‘All’ features refer to a combination of MRI, PET, CSF, CFA, and Age. Performances of 463 

predictive models for each combination of modalities were recorded using an (unseen) testing set partitioned from the original data (10% of the original data). 464 

MCA: multi-class classification accuracy. Multi-class AUC: multiclass area under the curve. Asterix (*): a subset of features with the best predictive performance. 465 

For more details on data types and their abbreviations, refer to Table A.1. 466 

Features MCA (%) 

Sensitivity (%) Specificity (%) Multi-class AUC  

(%) Normal QCI Mild/ Moderate Normal QCI Mild/ Moderate 

All  74.5, 95%CI (61.9,87.1) 82.4 65.4 100 80.0 85.7 93.0 91.6 

CFA, PET, MRI, CSF 80.9, 95%CI (69.5,92.2) 82.4 76.9 100 86.7 85.7 95.4 93.4 

CFA, PET, MRI 82.9, 95%CI (72.1,93.8) 82.4 80.8 100 90.0 85.7 95.4 94.1 

CFA, PET, CSF 80.9, 95%CI (69.5,92.2) 88.2 73.1 100 86.7 90.5 93.0 94.0 

CFA, MRI, CSF 72.3, 95%CI (59.4,85.3) 82.4 65.4 75.0 80.0 81.0 93.0 87.7 

PET, MRI, CSF 61.7, 95%CI (47.7,75.8)  70.6 57.7 50.0 60.0 71.4 100 72.5 

CFA, PET 80.9, 95%CI (69.5,92.2) 82.4 76.9 100 86.7 85.7 95.4 93.4 

CFA, MRI 76.6, 95%CI (64.4,88.8) 76.5 73.1 100 80.0 80.1 97.8 91.7 

CFA, CSF 76.6, 95%CI (64.4,88.8) 88.2 65.4 100 80.0 90.5 93.0 92.5 

PET, MRI 44.7, 95%CI (30.3,59.1) 58.8 34.6 50.0 43.3 61.9 97.8 67.7 

PET, CSF 46.8, 95%CI (32.4,61.2) 64.7 34.6 50.0 46.7 71.4 93.0 68.0 

MRI, CSF 53.2, 95%CI (38.8,67.6) 64.7 50.0 25.0 56.7 66.7 95.4 65.4 

CFA 76.6, 95%CI (64.4,88.8) 82.4 69.2 100 80.0 85.7 95.4 92.2 

PET 46.8, 95%CI (32.4,61.2) 70.6 26.9 75.0 43.3 80.1 90.7 71.7 

MRI 55.3, 95%CI (41.0,69.7) 82.4 34.6 50.0 50.0 90.1 90.1 73.5 

CSF 42.6, 95%CI (28.3,56.8) 64.7 23.1 75.0 56.7 85.7 74.4 68.6 

Age 40.4, 95%CI (26.2,54.6) 100 7.7 0 6.7 100 100 50.0 

Set of 4 cognitive/functional tests 

(FAQ, ADAS13, MoCA, MMSE)* 83.0, 95%CI (72.1,93.8) 100 69.2 100 76.7 100 97.7 94.9 

467 



3.1.2.2    Support Vector Machine 468 

Three target disease classes associated with AD severity were used in SVM classification: 469 

‘Normal’ (CDRSB = 0), ‘QCI’ (0.5  CDRSB  4.0), and ‘AD Mild/Moderate’ (4.5  CDRSB  470 

15.5). The SVM MCA and multiclass AUC observed for a combination of all 5 modality types 471 

was 74.5%, 95%CI = (61.9%, 87.1%) and 91.6% respectively (Table 2). Again, combinations 472 

of features incorporating CFA yielded higher performance than models constructed using a   473 

single or combined biomarker modalities. The best SVM performance was observed for a 474 

subset of 4 CFA features (FAQ, ADAS13, MoCA, MMSE), i.e., MCA of 83.0%, 95%CI = 475 

(72.1%, 93.8%) and AUC = 94.9% (Table 2, bold). Given individual modality types, the model 476 

built using CFA outperformed models constructed with MRI, PET, or CSF data. Fig. 5 shows 477 

the expected diagnosis along with the corresponding SVM predictions obtained for 5 478 

considered modality types. The best sensitivity and specificity in distinguishing Normal from 479 

QCI and Mild/Moderate AD cases was achieved for a combination of four CFA (FAQ, ADAS13, 480 

MoCA, MMSE) (sensitivity = 100% and specificity = 100%) (Table 2). The best sensitivity and 481 

specificity in identifying QCI from Normal and Mild/Moderate AD subjects was observed for 482 

combined CFA, PET, and MRI features (sensitivity = 80.8% and specificity = 85.7%). For all 483 

modality types (and their combinations), the QCI category had generally lower sensitivity than 484 

Normal and Mild/Moderate AD.  485 

3.2    Development of computer-based decision support tool 486 

Given the high predictive power of CFA and their common use in clinical practice, we 487 

developed a prototype of the CDSS for assessing the severity of AD of an individual (based 488 

solely on CFA) to aid clinicians to diagnose AD (Fig. 6). The feasibility of our CDSS was 489 

demonstrated by using the baseline data from ADNI to benchmark the ability of the AD severity 490 

score to model disease prediction. The system implements an automated machine learning 491 

approach for data pre-processing, modelling, and validation (as described in Section 2.1) and 492 

uses scores of selected cognitive measures as data entries. The disease outcome prediction 493 



 494 

Fig. 5. SVM model predictions of medical diagnosis of individual patients for 5 data types: a) 495 

CFA, b) MRI, c) PET, d) CSF, and e) Age. The vertical axis values and corresponding 496 

horizontal lines refer to the target CDRSB class, i.e., ‘Normal’ (green) = 0 (CDRSB = 0), ‘QCI’ 497 

(yellow) = 1 (0.5  CDRSB  4.0), and ‘Mild/Moderate’ (red) = 2 (4.5  CDRSB  15.5). Circles: 498 

predicted CDRSB class. CFA: functional and cognitive assessments; MRI: magnetic 499 

resonance imaging; PET: positron emission tomography; CSF: cerebrospinal fluid biomarkers. 500 



is generated using the KRR model as it regards the course of disease as a continuous 501 

progression and therefore, allows for discriminating between different ‘stages’ of the same AD 502 

category (e.g., a light-green colour in Fig. 6 indicates less probable QCI whereas a light-503 

orange colour - more probable QCI). Furthermore, the KRR model achieved the best predictive 504 

performance of all regression techniques considered. 505 

The input panel of our CDSS is designed for a set of 4 CFA inputs, namely, the total scores 506 

for FAQ, ADAS13, MoCA, and MMSE. These 4 efficient AD markers achieved the highest 507 

performance for the SVM model (MCA of 83%, 95%CI = (72.1%, 93.8%)) while for the KRR 508 

model, their performance (R2 = 0.832, 95%CI = (0.754,0.910)) was only slightly lower than 509 

best performance reported for the combined CFA and (more labour-intensive and costly) MRI 510 

data, i.e., R2 = 0.874, 95%CI = (0.827,0.922) (Table 1 & 2). Although all four tests are 511 

commonly used to provide a measure of cognitive impairment in clinical, research, and 512 

community settings, they have never been used in combination for evaluating AD severity 513 

(Nasreddine et al., 2006, Skinner et al., 2012, Teng et al., 2010, Trzepacz et al., 2015). The 514 

MMSE is currently the most widely used screening assessment for general cognitive 515 

evaluation and staging of Alzheimer’s disease (Nasreddine et al., 2006, Vertesi et al., 2001). 516 

It assesses various cognitive areas including attention, memory, language, orientation, and 517 

visuospatial abilities (Vertesi et al., 2001). The MMSE has been frequently applied not only to 518 

scale the severity of cognitive impairment at a given point in time but also to document the 519 

overall progression of cognitive decline over time (de Souza, Sarazin, Goetz, & Dubois, 2009). 520 

When compared to the MMSE, the MoCA consists of more memory, structured language, and 521 

executive function items and demonstrates high discriminant potential for MCI patients that 522 

performed within the normal range of the MMSE (Nasreddine et al., 2006, Trzepacz et al., 523 

2015, Whitney, Mossbarger, Herman, & Ibarra, 2012). In addition, the MoCA has been shown 524 

to exhibit superior sensitivity for amnestic MCI detection compared to the MMSE (Freitas, 525 

Simões, Alves, & Santana, 2013). The ADAS13 is mainly applied to evaluate the severity of 526 

cognitive and non-cognitive disfunctions from mild to severe AD (Skinner et al., 2012). 527 



However, it has also been used as an outcome measure for trials of interventions in people 528 

with MCI and appeared to be able to discriminate between patients with MCI and mild AD 529 

(Kueper, Speechley, & Montero-Odasso, 2018). In contrast to MMSE, MoCA, and ADAS13, 530 

the FAQ is not used in everyday clinical routine (Ritter et al., 2015). However, its relevance for 531 

determining impairment in everyday functioning and ensuring accurate early diagnosis of AD 532 

has been well-documented (Devanand et al., 2008, Ding et al., 2018, Ritter et al., 2015). For 533 

instance, studies found the use of FAQ can significantly contribute to discerning MCI versus 534 

AD cases with MoCA scores overlapping in the MCI range (Trzepacz et al., 2015). 535 

Furthermore, the FAQ has been shown to be highly sensitive in detecting differences in 536 

cognitive functioning between healthy and MCI patients, mainly via the assessment of the 537 

ability of assembling documents and remembering appointments (Jekel et al., 2015).  538 

Given the scores of 4 CFA described above, our system is able to provide an evidence-based 539 

AD score reflecting the severity of AD in the case of an individual subject. The score is 540 

generated by comparing selected CFA scores of an undiagnosed patient against a large 541 

database of existing patient records (Figs. 2 & 6). A single patient data with the predicted AD 542 

severity score is later added to the clinical data warehouse, updating the database, and 543 

initiating the retraining and validation procedure of the predictive model. To highlight the 544 

uncertainty inherent in the disease prediction, the system also provides a confidence interval 545 

for the predicted AD severity score based on the output from the individual sample validation 546 

procedure. Since our approach does not currently use input from clinicians for subsequent 547 

learning but uses its own predictions for reinforcing the existing model, further work is required 548 

to incorporate a self-training scheme that chooses only high-confidence predictions in the 549 

iterative process of model training. 550 

The CDSS patient profile includes only content that is relevant in the context of AD diagnosis, 551 

in a concise format to allow quick and unambiguous interpretation. It consists of: 1) the patient 552 

information section with patient’s medical, psychiatric, and personal history details (Fig. 6A); 553 

2) the AD severity measurement scale along with the predicted AD score and its confidence 554 



interval (Fig. 6B); and 3) CFA test scores together with their corresponding cut-off values for 555 

disease classes (Fig. 6C). The AD severity measurement scale is divided into 5 classes based 556 

on the CDRSB score i.e. ‘Normal’ (CDRSB = 0), ‘QCI’ (0.5  CDRSB  4.0), ‘AD Mild’ (4.0  557 

CDRSB  9), ‘AD Moderate’ (9.5  CDRSB  15.5)., and ‘AD severe’ (16  CDRSB  18). 558 

Simple and user-friendly layout of the patient profile allows clinicians to easily assess how 559 

different CFA contribute to the predicted AD severity score (Bucholc et al. 2018).  560 

4. Discussion  561 

In this study, we have developed a computational framework for identifying key measures in 562 

predicting the severity of AD using baseline data from ADNI, which leads to the development 563 

of an efficient and practical CDSS prototype for evaluating the severity of AD of an individual 564 

on a continuous spectrum. It is efficient in that only a small subset of the data attributes with 565 

the highest predictive accuracy of AD severity level is chosen, and they consist of readily 566 

available CFA scores. This is practical in the sense that clinical decisions of AD relies relatively 567 

heavily on CFA scores. Furthermore, the system uses an automated machine learning 568 

approach for data pre-processing, modelling, and validation, making the clinical decision 569 

process more objective and accurate. 570 

We showed that model predictions incorporating CFA were more accurate than those based 571 

solely on biomarker modalities (single or combinations) in this particular ADNI dataset. The 572 

KRR model performed best for the combined CFA and MRI data, i.e., R2 = 0.874, 95%CI = 573 

(0.827, 0.922) (Table 1). However, the KRR model incorporating only CFA scores (FAQ, 574 

ADAS13, MoCA, MMSE) achieved comparable performance, i.e., R2 = 0.832, 95%CI = (0.754, 575 

0.910). The SVR achieved the highest performance for the combination of CFA and MRI, i.e., 576 

R2 = 0.790, 95%CI (0.715, 0.866) while kNNreg performed best for CFA, i.e., R2 = 0.750, 95%CI 577 

(0.653,0.847) (Table A.2). Given the SVM model, the optimal performance was reported for 578 

CFA data, i.e., MCA of 83.0%, 95%CI = (72.1%, 93.8%) for a subset of 4 CFA (FAQ, ADAS13, 579 

MoCA, MMSE) (Table 2). Again, the highest accuracy of the RF model was reported for all 580 



 581 

Fig. 6. Graphical user interface of the computer-based clinical decision support system for 582 

predicting severity of dementia of an individual patient. A) Patient information panel; B) AD 583 

severity measurement scale with AD severity score (black line) and its confidence interval 584 

(gray range); C) Measurement scales for the selected cognitive/functional assessments (FAQ, 585 

ADAS13, MoCA, MMSE). To allow quick interpretation, the AD severity measurement scale 586 

is divided into 5 classes based on the CDRSB score, i.e., ‘Normal’ (CDRSB = 0), ‘QCI’ (0.5  587 

CDRSB  4.0), ‘AD Mild’ (4.0  CDRSB  9), ‘AD Moderate’ (9.5  CDRSB  15.5)., and ‘AD 588 

severe’ (16  CDRSB  18).” 589 



CFA with MCA of 80.0%, 95%CI (66.7%, 90.9%) while kNNclass performed best for the 590 

combinations of CFA, MRI and CSF, i.e., MCA of 89.7%, 95%CI (76.9%,  96.5%) (Table A.3, 591 

A.4). These results lend support to existing clinical practices that depend relatively heavily on 592 

CFAs (Grober, Wakefield, Ehrlich, Mabie & Lipton, 2017). Future analysis of individual tasks 593 

making up each of the considered CFAs can lead to building a single optimised CFA. 594 

High predictive power of CFA has been demonstrated in previous studies (Chapman et al., 595 

2011, Cui et al., 2011, Korolev et al. , 2016). Cui et al. (2011) showed that single-modality 596 

predictive models based on CFA, namely FAQ, LM Delayed Recall, LM Immediate Recall, 597 

AVLT Delayed Recall and AVLT trials 1–5 (accuracy of 65%) outperformed those based on 598 

volumetric based CSF (accuracy of 60%) and MRI (accuracy of 62%) biomarkers in the task 599 

of early identification of MCI patients at risk of progressing to AD. In addition, incorporating 600 

multiple data modalities into the model, i.e., CFA, MRI, and CSF data, only slightly improved 601 

model performance (accuracy of 67%). Similar observations have been reported by (Chapman 602 

et al., 2011, Ewers et al., 2012). Cognitive measures (either alone or combined with other 603 

predictors) were also highly predictive in discriminating between stages of cognitive decline 604 

(Ewers et al., 2012, Nestor, Scheltens, & Hodges, 2004). In Ewers et al. (2012), the best 605 

statistical differentiation between AD and healthy subjects was reached for a combination of 606 

neuropsychological tests (RAVLT Immediate and RAVLT Delayed Recall) and CSF t-tau/Aβ1-607 

4 ratio. However, a single-modality model incorporating cognitive measures showed a 608 

predictive accuracy comparable to that of the multi-predictor model. Few other studies claimed 609 

relatively good predictive performance of models constructed using tests for memory 610 

impairment, abstract reasoning, and verbal fluency (Jacobs et al., 1995, Small, Herlitz, 611 

Fratiglioni, Almkvist, & Bäckman, 1997). Note that an increasing number of studies is based 612 

on the multimodal approach for either differentiating between stages of disease severity or 613 

identifying potential descriptors for the decline of cognition from MCI to AD (Bauer, Cabral, & 614 

Killiany, 2018, Ritter et al., 2015). Therefore, it is difficult to assess the individual contributions 615 

of modalities, such as CFA, to the accuracy of predictive models. Furthermore, differences in 616 



study designs reflected in different data types used, characteristics of patient populations, 617 

subject inclusion/exclusion criteria, diagnostic criteria for AD, classification frameworks and 618 

evaluation metrics make it challenging to compare results across studies. However, the 619 

discriminatory value of cognitive measures in the AD severity assessment or MCI-to-AD 620 

conversion has been repeatedly demonstrated. 621 

Numerous predictive approaches have been developed for diagnosis of AD, most of them 622 

derived using Cox Regression (Barnes et al., 2014, Derby et al., 2013, Ewers et al., 2012, 623 

Okereke et al., 2012, Seshadri et al., 2010), and Logistic Regression (Barnes et al., 2010, 624 

Bauer et al., 2018, Chary et al. 2013, Wolfsgruber et al., 2014). In the past decade, there has 625 

also been growing interest toward the application of SVM (Casanova et al., 2015, Cui et al., 626 

2011, Klöppel et al., 2008, Ritter et al., 2015, Weygandt et al., 2011), RF (Gray et al., 2013, 627 

Sarica et al., 2017) as well as deep neural network models for AD diagnostics (Ortiz, Munilla, 628 

Gorriz, & Ramirez, 2016, Shen, Wu, & Suk, 2017). The SVM-based models have been 629 

developed for both differential diagnosis and assessment of AD severity using neuroimaging, 630 

genome-based, and blood-based biomarkers (Klöppel et al., 2008, Laske et al., 2011, Smith-631 

Vikos & Slack, 2013, Weygandt et al., 2011). RF demonstrated advantages over other ML 632 

methods regarding the ability to handle highly non-linearly correlated data (Caruana & 633 

Niculescu-Mizil, 2006). While most of deep learning models show great performance in 634 

diagnostic classification, their interpretation remains an emerging field of research (Che, 635 

Purushotham, Khemani, & Liu, 2016). Other machine learning approaches for assisted 636 

diagnosis of cognitive impairment and dementia include linear regression (Agosta et al., 2012, 637 

Bauer et al., 2018, Koch et al., 2012), penalized regression (Wang, Liu, & Shen, 2018), 638 

Bayesian networks (Ding et al., 2018), hidden Markov models (Wang et al., 2014), and 639 

probabilistic multiple kernel learning (MKL) classifiers (Korolev et al., 2016, Youssofzadeh et 640 

al., 2017). Despite the common use of machine learning techniques for the disease 641 

diagnostics, controversy still exists regarding the effects of different combinations of 642 

explanatory variables, hyper-parameter tuning, sample size and class balance on the 643 



performance of predictive models (Du, Fu, & Calhoun, 2018, Finch & Schneider, 2007, Michie, 644 

Spiegelhalter, & Taylor, 1994). Different applications using different data sets (simulated or 645 

real) have failed to generate a model that performed best in all applications (Michie wt al., 646 

1994, Wolpert & MacReady (1997). The results of empirical comparisons often showed 647 

opposite results, for example one study claiming that decision trees are superior to neural 648 

nets, and another making the opposite claim (Michie et al., 1994). In fact, Wolpert & MacReady 649 

(1997) demonstrated the danger of comparing performance of algorithms on a small sample 650 

of problems and showed the best learning algorithm is always context dependant. 651 

The integration of efficient, less invasive, and cost-effective clinical markers into CDSS for AD 652 

diagnosis of individuals can support prevention-related decision-making in clinical settings. So 653 

far, educational interventions aimed at improving GPs’ knowledge and skills in recognition and 654 

management of dementia made no significant impact on the number of dementia patients’ 655 

care reviews or newly diagnosed cases (Dodd et al., 2015). Despite this, the deployment of 656 

CDSSs for a routine use in AD diagnostics, especially those incorporating machine learning 657 

methodologies, is still very rare. Furthermore, CDSSs currently used in dementia decision-658 

making require information from expensive and labour-intensive biomarkers (e.g., PredictAD) 659 

(Antila et al., 2013) or make use of predictive methodologies based on binary classifications 660 

(e.g., CADi2 or CANTAB) (Fray, Robbins & Sahakian, 1996, Onoda & Yamaguchi, 2014). 661 

Such approaches are designed to differentiate between two disease categories, e.g., healthy 662 

patients and individuals with cognitive impairment. Our computational approach defines the 663 

disease in more realistic manner as a continuous progress rather than a sequence of discrete 664 

stages, conforming more to the pathology of the disease. Importantly, it also provides clinician 665 

with an estimate of prediction reliability by adopting a validation procedure appropriate for an 666 

individual participant data.  667 

Our study has several limitations worth noting. First, our CDSS prototype does not yet include 668 

a mechanism for handling missing data. Work is currently in progress to develop an automated 669 

approach for missing data imputation that will be later incorporated into the system. Second, 670 



the current version of our CDSS provides clinicians with the predicted AD severity score of an 671 

individual with the corresponding confidence interval and CFA test scores together with cut-672 

off values for disease classes; however, it does not provide any measures of predictive 673 

accuracy of the incorporated model or information regarding the relative importance of 674 

individual predictors in the model. We plan to address these issues in future work by making 675 

the model evaluation metrics available to clinicians. We also intend to provide the relative 676 

importance of individual features incorporated into the model based on the magnitude of 677 

standardized regression coefficients. The format of visual representations of performance 678 

metrics will be developed in consultation with clinical end-users. Third, the AD measurement 679 

scale in our CDSS covers all 5 disease classes i.e. ‘normal’, ‘QCI’, ‘mild’, ‘moderate’, and 680 

‘severe’. However, due to data unavailability, patients with the ‘severe’ type of AD have not 681 

been included into our model training set and therefore, such cases could not be learned from 682 

the data. The inclusion of the ‘severe’ disease class in the CDSS means the suitability of our 683 

KRR model for making predictions outside the range of data used to estimate the model must 684 

be further evaluated. The necessary follow-up step would be a testing phase, to establish the 685 

degree to which prediction for ‘severe’ cases is contextually valid and hence, clinically useful. 686 

This could be done when additional data for patients with the ‘severe’ AD type is obtained, for 687 

example from memory clinics.  688 

It is also worth noting that the current computational approach implemented into our CDSS is 689 

based on the iterative method for semi-supervised learning that uses its own predictions to 690 

assign AD severity labels to new (unlabelled) patient data. Accordingly, our CDSS does not 691 

use input from clinicians for subsequent learning of the predictive model but uses its own 692 

predictions to reinforce the current model. We are aware that this may have a tendency for 693 

the model to overfit. Hence, for future work, we plan to enhance our computational framework 694 

by incorporating a self-training algorithm for selecting only high-confidence predictions to a 695 

training set for the next iteration. Most importantly, we will develop interpretability of our 696 

models, either through development of algorithms to “peer” through the black box (Giudotti et 697 



al., 2018) or complementing with more interpretable models such as decision trees (Sokol & 698 

Flach, 2018). This will facilitate an easy explanation of system’s content and allow for 699 

adjustment/correction of the AD severity class based on feedback from clinicians. A dynamic, 700 

easily interpretable predictive model interacting with decision makers to re-estimate 701 

predictions according to new clinical information could increase the clinical value of our CDSS. 702 

Finally, we acknowledge that the proposed CDSS requires further real-time testing and 703 

validation in a clinical setting to enhance system’s reliability, stability and adoptability.  704 

5. Conclusion  705 

Our CDSS offers a platform to standardize diagnostics in AD and has the potential to address 706 

variations in the quality of GP services associated with the lack of experience or skills in 707 

dementia recognition. By taking full advantage of ML techniques, our system can develop, 708 

update, and visualize AD risk profiles of individual patients by utilizing only non-invasive and 709 

cost-effective AD markers. Although our CDSS has not been designed to provide a diagnosis, 710 

it can streamline a clinical workflow and assist with clinical decision-making. As our predictive, 711 

ML-based framework becomes more established and its performance better characterized 712 

and tested, it could be further upgraded to automate the care pathway for dementia. This 713 

process will require the active involvement of the medical community to ensure that developed 714 

algorithms are intelligently integrated into existing medical practice and are rigorously 715 

validated for clinical efficacy.  716 
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Appendix A  

Table A.1. Data types and their abbreviations. 
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Musculoskeletal MH8MUSCL Right angular gyri Angular Right 

Endocrine-metabolic MH9ENDO 
Bilateral posterior cingulate CingulumPost Bilateral 

Gastrointestinal MH10GAST 

Hematopoietic-lymphatic MH11HEMA 
Sum of z-scores more than 2 
standard deviations below the 
mean of normal control subjects 

SUMZ2 

Renal-genitourinary MH12RENA 
Sum of z-scores more than 3 
standard deviations below the 
mean of normal control subjects 

SUMZ3 

Allergies or drug sensitivities MH13ALLE 

M
R

I 
d

a
ta

 

Ventricles volume Ventricles 

Alcohol abuse MH14ALCH Hippocampus volume Hippocampus 

Drug abuse MH15DRUG Whole Brain volume Whole Brain 

Smoking MH16SMOK Entorhinal volume Entorhinal 

Malignancy MH17MALI Fusiform volume Fusiform 

Major surgical procedures MH18SURG Middle temporal gyrus volume MidTemp 

Other (if none, select ‘No’) MH19OTHR Intracerebral volume ICV 

C
S

F
 b

io
m

a
rk

e
rs

 

Total tau protein (t-tau) TAU BSI whole brain volume BRAINVOL 

Amyloid-β peptide of 42 amino 
acids (Aβ1–42) 

ABETA 

BSI ventricular volume VENTVOL 

Cortical summary ROI (cortical 
grey matter regions of 
frontal, anterior/posterior 
cingulate, lateral parietal, lateral 
temporal) divided by the whole 
cerebellum reference region 

WHOLECEREBNORM 

Phosphorylated tau (p-tau181p) PTAU Cerebrospinal fluid volume CSF_V 

Ratio of tau to Aβ1–42 TAU_ABETA Intracranial gray matter volume GRAY 

Ratio of p-tau181p to Aβ1–42 PTAU_ABETA 

Intracranial white matter volume WHITE 

White matter hyperintensities 
(WMH) volume 

WHITMATHYP 

* Medical and family history is either Yes or No. 



Table A.2. SVR and kNNreg model performance measures for MRI, PET, CSF and cognitive function 

modalities retained for the training after feature selection. CFA represents 9 selected cognitive and 

functional assessments (LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, MMSE, RAVLT Immediate, 

RAVLT Perc Forgetting, RAVLT Learning), MRI - 4 features (Hippocampus, MidTemp, Entorhinal, Whole 

Brain), PET – 5 features (FDG, Angular Left, Angular Right, Temporal Left, SUMZ3), and CSF – 2 features 

(TAU_ABETA, TAU). ‘All’ features refer to a combination of MRI, PET, CSF, CFA, and Age. Performances 

of predictive models for each combination of modalities were recorded using an (unseen) testing set 

partitioned from the original data (10% of the original data). R2: adjusted coefficient of determination; 

RMSE: Root Mean Square Error. Asterix (*): a subset of features with the highest R2. For more details on 

data types and their abbreviations, refer to Table A.1. 

 

Features 
SVR kNNreg 

R2 RMSE R2 RMSE 

All 0.723, 95%CI (0.649,0.796) 1.116 0.658, 95%CI (0.571,0.744) 1.223 

CFA, PET, MRI, CSF 0.736, 95%CI (0.662,0.809) 1.082 0.641, 95%CI (0.548,0.734) 1.274 

CFA, PET, MRI 0.747, 95%CI (0.671,0.823) 1.074 0.684, 95%CI (0.593,0.774) 1.208 

CFA, PET, CSF 0.789, 95%CI (0.720,0.858) 0.975 0.637, 95%CI (0.530,0.744) 1.277 

CFA, MRI, CSF 0.788, 95%CI (0.716,0.859) 1.010 0.723, 95%CI (0.633,0.812) 1.103 

PET, MRI, CSF 0.577, 95%CI (0.440,0.714) 1.428 0.348, 95%CI (0.184,0.512) 1.842 

CFA, PET 0.788, 95%CI (0.714,0.862) 0.985 0.662, 95%CI (0.555,0.770) 1.228 

CFA, MRI*  0.790, 95%CI (0.715,0.866) 1.004 0.738, 95%CI (0.647,0.829) 1.074 

CFA, CSF 0.767, 95%CI (0.680,0.854) 1.040 0.708, 95%CI (0.604,0.813) 1.131 

PET, MRI 0.436, 95%CI (0.268,0.603) 1.706 0.306, 95%CI (0.133,0.478) 1.920 

PET, CSF 0.257, 95%CI (0.079,0.435) 1.946 0.361, 95%CI (0.180,0.542) 1.703 

MRI, CSF 0.525, 95%CI (0.359,0.692) 1.537 0.480, 95%CI (0.306,0.654) 1.132 

CFA* 0.743, 95%CI (0.644,0.843) 1.059 0.750, 95%CI (0.653,0.847) 1.043 

PET 0.377, 95%CI (0.188,0.566) 1.720 0.328, 95%CI (0.137,0.518) 1.780 

MRI 0.475, 95%CI (0.292,0.658) 1.618 0.323, 95%CI (0.129,0.518) 1.788 

CSF 0.235, 95%CI (0.039,0.431) 1.962 0.093, 95%CI (0.000,0.239) 2.219 

Age 0.139, 95%CI (0.000,0.077) 2.148 0.013, 95%CI (0.000,0.074) 2.156 



Table A.3. RF model performance measures for MRI, PET, CSF and cognitive function modalities retained for the training after feature selection. 

CFA represents 9 selected cognitive and functional assessments (LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, RAVLT Immediate, MMSE, 

RAVLT Perc Forgetting, RAVLT Learning), MRI – 4 features (Hippocampus, MidTemp, Entorhinal, Whole Brain), PET – 5 features (FDG, Angular 

Left, Angular Right, Temporal Left, SUMZ3), and CSF – 2 features (TAU_ABETA, TAU). ‘All’ features refer to a combination of MRI, PET, CSF, 

CFA, and Age. Performances of predictive models for each combination of modalities were recorded using an (unseen) testing set partitioned 

from the original data (10% of the original data). MCA: multi-class classification accuracy. Multi-class AUC: multiclass area under the curve. 

Asterix (*): a subset of features with the best predictive performance. For more details on data types and their abbreviations, refer to Table A.1. 

 

Features MCA (%) 

Sensitivity (%) Specificity (%) Multi-class AUC  

(%) Normal QCI Mild/ Moderate Normal QCI Mild/ Moderate 

All  78.7, 95%CI (64.3,89.3) 82.4 80.8 50.0 83.3 76.2 100 85.7 

CFA, PET, MRI, CSF 74.5, 95%CI (59.7,86.1) 88.2 69.2 50.0 73.3 81.0 100 86.1 

CFA, PET, MRI 78.7, 95%CI (64.3,89.3) 82.4 80.8 50.0 83.3 76.2 100 85.7 

CFA, PET, CSF 72.3, 95%CI (57.4,84.4) 82.4 69.2 50.0 73.3 76.2 100 84.7 

CFA, MRI, CSF 72.3, 95%CI (57.4,84.4) 82.4 69.2 50.0 73.3 76.2 100 84.7 

PET, MRI, CSF 53.2, 95%CI (38.1,67.9)  76.5 42.3 25.0 50.0 66.7 100 78.2 

CFA, PET 76.6, 95%CI (62.0,87.7) 88.2 73.1 50.0 76.7 81.0 100 86.5 

CFA, MRI 76.6, 95%CI (62.0,87.7) 82.4 76.9 50.0 80.0 76.2 100 85.3 

CFA, CSF 76.6, 95%CI (62.0,87.7) 82.4 76.9 50.0 80.0 76.2 100 85.3 

PET, MRI 44.7, 95%CI (30.2,59.9) 82.4 26.9 0.0 40.0 66.7 97.7 76.9 

PET, CSF 53.2, 95%CI (38.1,67.9) 82.4 38.5 25.0 46.7 71.4 100 79.8 

MRI, CSF 46.8, 95%CI (32.1,61.9) 70.6 34.6 25.0 53.3 61.9 93.0 75.3 

CFA* 80.0, 95%CI (66.7,90.9) 88.2 80.8 50 83.3 81.0 100 87.1 

PET 51.1, 95%CI (36.1,65.9) 82.4 34.6 25.0 46.7 71.4 97.7 79.3 

MRI 48.9 95%CI (34.1,63.9) 70.6 38.5 25 50.0 66.7 95.3 67.8 

CSF 42.6, 95%CI (28.3,57.8) 64.7 19.2 100 63.3 85.7 69.8 78.3 

Age 38.3, 95%CI (24.5,53.6) 52.9 30.8 25 60.0 66.7 76.7 58.5 

 



Table A.4. kNNclass model performance measures for MRI, PET, CSF and cognitive function modalities retained for the training after feature 

selection. CFA represents 9 selected cognitive and functional assessments (LDELTOTAL, FAQ, MOCA, ADAS13, LIMMTOTAL, RAVLT 

Immediate, MMSE, RAVLT Perc Forgetting, RAVLT Learning), MRI – 4 features (Hippocampus, MidTemp, Entorhinal, Whole Brain), PET – 5 

features (FDG, Angular Left, Angular Right, Temporal Left, SUMZ3), and CSF – 2 features (TAU_ABETA, TAU). ‘All’ features refer to a 

combination of MRI, PET, CSF, CFA, and Age. Performances of predictive models for each combination of modalities were recorded using an 

(unseen) testing set partitioned from the original data (10% of the original data). MCA: multi-class classification accuracy. Multi-class AUC: 

multiclass area under the curve. Asterix (*): a subset of features with the best predictive performance. For more details on data types and their 

abbreviations, refer to Table A.1. 

Features MCA (%) 

Sensitivity (%) Specificity (%) Multi-class AUC  

(%) Normal QCI Mild/ Moderate Normal QCI Mild/ Moderate 

All  70.2, 95%CI (55.1, 82.7) 94.1 53.9 75.0 73.3 90.5 90.7 88.4 

CFA, PET, MRI, CSF 63.8, 95%CI (48.5,77.3) 82.4 50.0 75.0 70.0 81.0 90.7 85.7 

CFA, PET, MRI 78.7, 95%CI (64.3,89.3) 94.1 65.4 100 83.3 95.2 90.7 93.4 

CFA, PET, CSF 66.0, 95%CI (50.7,79.1) 64.7 61.5 100 73.3 71.4 95.3 88.2 

CFA, MRI, CSF* 89.7, 95%CI (76.9,96.5) 82.4 92.3 100 96.7 85.7 97.7 95.9 

PET, MRI, CSF 57.5, 95%CI (42.2,71.7) 76.5 42.3 75.0 56.7 85.7 90.7 74.6 

CFA, PET 61.7, 95%CI (46.4,75.5) 64.7 53.9 100 73.3 71.4 90.7 87.3 

CFA, MRI 89.4, 95%CI (76.9,96.5) 94.1 84.6 100 93.3 95.2 95.3 96.5 

CFA, CSF 72.3, 95%CI (57.4,84.4) 70.6 69.2 100 80.0 76.2 95.3 90.4 

PET, MRI 63.8, 95%CI (48.5,77.3) 82.4 53.9 50.0 70.0 85.7 88.4 73.5 

PET, CSF 48.9, 95%CI (34.1,63.9) 70.6 34.6 50.0 53.3 76.2 88.4 69.4 

MRI, CSF 59.6, 95%CI (44.3,73.6) 58.8 57.7 75.0 70.0 81.0 86.1 70.2 

CFA 76.6, 95%CI (62.0,87.7) 82.4 69.2 100 80.0 85.7 95.4 92.2 

PET 42.6, 95%CI (28.7,57.8) 58.8 30.8 50.0 56.7 61.9 86.1 73.9 

MRI 55.3, 95%CI (40.1,69.8) 64.7 46.2 75.0 73.3 81.0 79.1 72.1 

CSF 29.8, 95%CI (17.3,44.9) 41.2 19.2 50.0 63.3 61.9 67.4 60.3 

Age 53.2, 95%CI (38.1,67.9) 47.1 65.4 0.0 80.0 61.9 81.4 50.7 



 


