19,757 research outputs found

    Secured node detection technique based on artificial neural network for wireless sensor network

    Get PDF
    The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to process purposes. Many vital challenges face the deployment of WSNs such as energy consumption and security issues. Various attacks could be subjects against WSNs and cause damage either in the stability of communication or in the destruction of the sensitive data. Thus, the demands of intrusion detection-based energy-efficient techniques rise dramatically as the network deployment becomes vast and complicated. Qualnet simulation is used to measure the performance of the networks. This paper aims to optimize the energy-based intrusion detection technique using the artificial neural network by using MATLAB Simulink. The results show how the optimized method based on the biological nervous systems improves intrusion detection in WSN. In addition to that, the unsecured nodes are affected the network performance negatively and trouble its behavior. The regress analysis for both methods detects the variations when all nodes are secured and when some are unsecured. Thus, Node detection based on packet delivery ratio and energy consumption could efficiently be implemented in an artificial neural network

    Anomaly-Based Intrusion Detection by Modeling Probability Distributions of Flow Characteristics

    Get PDF
    In recent years, with the increased use of network communication, the risk of compromising the information has grown immensely. Intrusions have evolved and become more sophisticated. Hence, classical detection systems show poor performance in detecting novel attacks. Although much research has been devoted to improving the performance of intrusion detection systems, few methods can achieve consistently efficient results with the constant changes in network communications. This thesis proposes an intrusion detection system based on modeling distributions of network flow statistics in order to achieve a high detection rate for known and stealthy attacks. The proposed model aggregates the traffic at the IP subnetwork level using a hierarchical heavy hitters algorithm. This aggregated traffic is used to build the distribution of network statistics for the most frequent IPv4 addresses encountered as destination. The obtained probability density functions are learned by the Extreme Learning Machine method which is a single-hidden layer feedforward neural network. In this thesis, different sequential and batch learning strategies are proposed in order to analyze the efficiency of this proposed approach. The performance of the model is evaluated on the ISCX-IDS 2012 dataset consisting of injection attacks, HTTP flooding, DDoS and brute force intrusions. The experimental results of the thesis indicate that the presented method achieves an average detection rate of 91% while having a low misclassification rate of 9%, which is on par with the state-of-the-art approaches using this dataset. In addition, the proposed method can be utilized as a network behavior analysis tool specifically for DDoS mitigation, since it can isolate aggregated IPv4 addresses from the rest of the network traffic, thus supporting filtering out DDoS attacks

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Intelligent intrusion detection in low power IoTs

    Get PDF

    A survey of intrusion detection system technologies

    Get PDF
    This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection
    • …
    corecore