
Anomaly-Based Intrusion Detection by
Modeling Probability Distributions of Flow
Characteristics

Buse Gul Atli

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 8.9.2017

Thesis supervisor:

Prof. N. Asokan

Thesis advisor:

D.Sc. (Tech.) Yoan Miche

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Buse Gul Atli

Title: Anomaly-Based Intrusion Detection by Modeling Probability
Distributions of Flow Characteristics

Date: 8.9.2017 Language: English Number of pages: 12+79

Department of Signal Processing and Acoustics

Professorship: Secure Systems

Supervisor: Prof. N. Asokan

Advisor: D.Sc. (Tech.) Yoan Miche

In recent years, with the increased use of network communication, the risk of
compromising the information has grown immensely. Intrusions have evolved
and become more sophisticated. Hence, classical detection systems show poor
performance in detecting novel attacks. Although much research has been
devoted to improving the performance of intrusion detection systems, few methods
can achieve consistently efficient results with the constant changes in network
communications.

This thesis proposes an intrusion detection system based on modeling dis-
tributions of network flow statistics in order to achieve a high detection rate for
known and stealthy attacks. The proposed model aggregates the traffic at the IP
subnetwork level using a hierarchical heavy hitters algorithm. This aggregated
traffic is used to build the distribution of network statistics for the most frequent
IPv4 addresses encountered as destination. The obtained probability density
functions are learned by the Extreme Learning Machine method which is a
single-hidden layer feedforward neural network. In this thesis, different sequential
and batch learning strategies are proposed in order to analyze the efficiency of this
proposed approach.

The performance of the model is evaluated on the ISCX-IDS 2012 dataset
consisting of injection attacks, HTTP flooding, DDoS and brute force intrusions.
The experimental results of the thesis indicate that the presented method achieves
an average detection rate of 91% while having a low misclassification rate of
9%, which is on par with the state-of-the-art approaches using this dataset. In
addition, the proposed method can be utilized as a network behavior analysis tool
specifically for DDoS mitigation, since it can isolate aggregated IPv4 addresses
from the rest of the network traffic, thus supporting filtering out DDoS attacks.
Keywords: Intrusion Detection, Network Behavior Analysis, Probability Distri-

bution, Hierarchical Clustering, ELM

iii

Preface
This thesis work was conducted at the Security Research team of Nokia Bell Labs
under the supervision of Dr. Yoan Miche (Nokia Bell Labs) and Prof. N. Asokan
(Aalto University). The work was a part of the degree requirement for the master
program in Signal, Speech and Language Processing.

I would like to thank my advisor Dr. Yoan Miche for providing constant sup-
port and guidance. Also special thanks to Aapo Kalliola (Nokia Bell Labs) for
helping me during the implementation of hierarchical heavy hitter algorithm.

Heartfelt thanks to my supervisor Prof. N. Asokan at Aalto University for providing
valuable comments and encouragements.

I would also like to thank to my manager Mr. Gabriel Waller at Nokia Bell Labs for
giving me the opportunity of being a part of his team. Thanks to Dr. Ian Oliver, Dr.
Silke Holtmanns and other team members of the security research team of the Nokia
Bell Labs for their motivation and support.

I wish to thank my boyfriend Bulut Tekgul for encouraging and supporting me
in my hardest times. Also thanks to Muge Tetik and Mehmet Okatan for their
friendship in Finland.

Most importantly, I would like to express my profound gratitude to my parents
and my sister for believing in me throughout my life. I always feel their support,
love and strength for all these years despite the kilometers between us.

Espoo, 8.9.2017

Buse Gul Atli

Contents

Abstract . ii
Preface . iii
Contents . iv
Symbols and Operators . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the Thesis . 2

2 Intrusion Detection Systems 3
2.1 Definitions and Terminology . 3
2.2 IDS Classification Based on Source 3

2.2.1 Host-based Intrusion Detection 4
2.2.2 Network-based Intrusion Detection 4

2.3 IDS Classification Based on Detection Method 4
2.3.1 Misuse Detection . 4
2.3.2 Anomaly Detection . 5
2.3.3 Hybrid Methods . 5

2.4 Network Anomaly Detection Systems 5
2.4.1 Statistics-based Anomaly Detection 6
2.4.2 Knowledge-based Anomaly Detection 6
2.4.3 Machine Learning-based Anomaly Detection 7

2.5 Network Behavior Analysis . 7
2.5.1 Packet-Level Analysis . 8
2.5.2 Flow-Level Analysis . 8

2.6 Problem Description . 8
2.7 Evaluation Metrics in IDS . 10

2.7.1 Detection Rate and Precision 10
2.7.2 False Alarms and False Positives 10
2.7.3 CPU Consumption . 11

2.8 Overview of the Proposed Solution 11
2.9 Related Work . 12
2.10 Summary . 13

iv

v

3 Network Traffic Dataset 15
3.1 Benchmark Datasets . 15
3.2 The ISCX-IDS 2012 Dataset . 16
3.3 Packet to Flow Conversion with Argus 18
3.4 Evaluation of Dataset with Simple Machine-Learning Based Anomaly

Detection Methods . 20
3.4.1 Principal Component Analysis 20
3.4.2 K Nearest Neighbor . 22
3.4.3 Gaussian Naïve Bayes . 22
3.4.4 Quadratic Discriminant Analysis 23
3.4.5 Multivariate Regression . 23
3.4.6 Decision Trees . 24
3.4.7 Random Forest . 25
3.4.8 Perceptron . 25
3.4.9 Extreme Learning Machine . 26
3.4.10 Results of Prior Machine Learning Techniques 26

3.5 Related work with the Dataset . 29
3.6 Summary . 30

4 Methodology 31
4.1 General Architecture . 31
4.2 Trie Data Structure . 32
4.3 Hierarchical Heavy Hitters . 33
4.4 Mapping Features into Probability Space 35
4.5 Extreme Learning Machines (ELM) 37

4.5.1 Batch ELM . 38
4.5.2 On-line Sequential ELM (OS-ELM) 39
4.5.3 One-Class Classification with ELM 41
4.5.4 Design Choices for ELM . 43

4.6 Implementation of Different Models 44
4.6.1 Case 1: OS-ELM+PT . 45
4.6.2 Case 2: ELM+PT 1 . 48
4.6.3 Case 3: ELM+PT 2 . 50

4.7 Summary . 52

5 Results and Evaluation 54
5.1 Experimental Setup . 54
5.2 Evaluation of Different Models . 55

5.2.1 Case 1: OS-ELM+PT . 55
5.2.2 Case 2 (ELM+PT 1) and Case 3 (ELM+PT 2) 58

5.3 Evaluation and Comparison of the IDS to State-of-the-Art Approaches 62
5.4 Summary . 64

6 Summary and Conclusion 65

References 66

vi

Appendix A: Generating Profiles 75

Appendix B: Argus Flow Level Numerical Features 78

List of Tables

2.1 Confusion Matrix . 10

3.1 Daily Traffic in Dataset . 18
3.2 Flow Comparison Results for the Week 20
3.3 Confusion Matrices for ELM with June 13 (a) and June 15 (b) 27
3.4 Comparison of Various Traditional Machine Learning Techniques . . . 29

4.1 Mean Squared Error of Training Data with Different Activation Functions 44

5.1 Confusion Matrices for Case 1 with June 13 (a) and June 15 (b) . . . 56
5.2 ISCX-IDS 2012 Results: Basic ELM, ELM+PT 1 and ELM+PT 2 . . 59
5.3 Average Results of ISCX-IDS 2012 Dataset: Basic ELM, ELM+PT 1,

ELM+PT 2, Decision Trees, Linear Regression and KNN 60
5.4 Comparison of Proposed Method Performance to Leading Approaches 63

vii

List of Figures

3.1 Flowchart of Matching Complete Traffic PCAP File with Given XML
Profiles . 19

3.2 Distribution of Flows for June 14 . 20
3.3 PCA Scree Graph . 21
3.4 Simple Decision Tree with Five Regions 25
3.5 Single Perceptron Structure . 26
3.6 Comparison of Various Traditional Machine Learning Techniques . . . 28

4.1 High Level Description of the Methodology 32
4.2 Example of IP Trie Structure . 33
4.3 Illustration of the Hierarchical Heavy Hitters Concept (N = 100,

ϕ = 0.1) . 34
4.4 Total Flow Duration Histogram for Normal Cluster 192.x.x.x 36
4.5 Distribution of (a) Source Port and (b) Time-to-Live Features for June

13 . 37
4.6 Comparison of OC-SVM and One-Class OS-ELM on 2D Toy Data

Moving in (x,y) Plane . 42
4.7 Mean Squared Error for Training and Validation Data with Different

Number of Neurons . 44
4.8 Training (Steps 1,2 and 3) and Updating (Steps 5,6 and 7) Mechanisms

for OS-ELM+PT . 47
4.9 Training Mechanism of ELM+PT 2 50
4.10 Training Mechanism of ELM+PT 2 51

5.1 Detection Rate for June 13 with Different Threshold Values 56
5.2 Estimated PDFs of 3 Different Statistics for Heavy Hitter 192.x.x.x.

in June 13 (a) and June 15 (b) . 57
5.3 Comparison of Decision Trees, ELM, ELM+PT 1 and ELM+PT 2 for

Precision, False Positive Rate, False Alarm Rate and Time Complexity 61

viii

ix

Symbols and Operators

Symbols
c sampled output vector dimension
d sampled input vector dimension
dELM distance metric
F matrix of probability density function for different statistics
I unit vector
N sample size
N0 sample size in first time window
Nk sample size in k’th time window
R radius
R set of real numbers
ti single moment in time
T time window
wij weight of j’th neuron for input i
xi arbitrary input sample
X A matrix containing the learning data
yi arbitrary output sample
Y A matrix containing the output data
z query point
β output weight in a neural network
∆ bin width
µ mean
φ activation function
Σ covariance matrix
θ threshold
ϕ proportion of data stream

x

Operators
.̃ estimate of a quantity
‖.‖ norm
|.| determinant
f(.) probability density function of a random variable
O(.) big O notation
XT transpose of X
X−1 inverse of X
X† Moore-Penrose generalized inverse of X
P (X) probability of observing an event X
P (Y |X) probability of observing an event Y given that X has occurred
exp(.) exponential function
log(.) logarithm
sign(.) sign function
α · β inner product of vectors α and β
N∑

i=1
sum of N input variables

xi

Abbreviations

ARP Address Resolution Protocol
CPS Colored Petri Nets
DDoS Distributed Denial of Service
DNS Domain Name System
DoS Denial of Service
DR Detection Rate
ELM Extreme Learning Machine
EMD Earth Mover’s Distance
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
FTP File Transfer Protocol
ISCX Information Security Center of Excellence
HHH Hierarchical Heavy Hitters
HIDE Hierarchical Intrusion Detection
HIDS Host-Based Intrusion Detection System
HTTP Hyper-Text Transfer Protocol
ID Intrusion Detection
IDS Intrusion Detection System
IMAP Internet Message Access Protocol
IPS Intrusion Prevention System
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IRC Internet Relay Chat
KNN K Nearest Neighbor
LAN Local Area Network
LS Least Squares
MSE Mean Squared Error
NAT Network Address Translation
NBA Network Behavior Analysis
NIDS Network-Based Intrusion Detection System
OS-ELM Online Sequential Extreme Learning Machine
OC-ELM One-Class Extreme Learning Machine
PCA Principal Component Analysis
PDF Probability Density Function
POP3 Post Office Protocol 3
QDA Quadratic Discriminant Analysis
ROC Receiver Operating Characteristic
SLFN Single Hidden Layer Feed-forward Neural Network
SMTP Simple Mail Transfer Protocol
SQL Structured Query Language

xii

SSH Secure Shell
SVM Support Vector Machines
TN True Negative
TP True Positive
TTL Time to Live

Chapter 1

Introduction

1.1 Motivation
In recent years, software services and web-based applications have generated much
interest because of advances in networking technology. Information networks, such
as voice and video over IP, encryption and authentication techniques are deployed
by both freelance developers and enterprises in order to produce more intelligent,
reliable services for direct interaction with customers [1]. Nowadays, cloud storage
services and the Internet of Things (IoT) have created new businesses and connected
the world by converting it into a massive information system. However, the use of
these technologies also brings more critical vulnerabilities [2]. Since cloud services
store personal and private data in hosting devices, hackers can craft attacks by
exploiting these vulnerabilities in both public networks and private devices to steal
important information [2]. Moreover, IoT and cloud storage pose a wide range of
cyber-risks that threaten not only businesses but also health care, education, banking
and government systems [3]. According to [4], global cyber-crime cost 3 trillion
dollars in the past year, and it is estimated that the loss for 2021 will be as high as 6
trillion dollars. Therefore, security practices have been the focus of intense research
due to the requirements for a safe, secure environment.

Traditionally, network and business assets have been protected using Intrusion
Prevention Systems (IPS). For example, firewalls [5] have been used to filter traffic
packets by checking the information in the packet header. Other prevention systems
include anti-virus programs or user identification and authentication mechanisms
[5]. Although these security components have provided useful tools for protecting
network confidentiality and integrity, they often neglect another key element of the
security strategy: availability [6]. Arbor Networks in [6] reported that intrusion
prevention systems are susceptible to numerous vulnerabilities, including flooding,
fragmentation and impersonation of legitimate users. Since new vulnerabilities are
constantly being discovered and attacks continue to evolve, Intrusion Detection
Systems (IDS) have emerged as a potential defense mechanism layer to monitor
network and detect intrusions unrecognized by the IPS [5].

1

2

Intrusion detection is the act of monitoring and analyzing network communica-
tion in order to detect any malicious behavior or unauthorized activity which might
intend to compromise the confidentiality, integrity and availability of the transmitted
information [7]. Accordingly, intrusion detection systems analyze network events
and capture security problems, also known as intrusions [8]. Intrusion detection
systems are capable of recognizing malicious activities and triggering an alert or
logging the results. Intrusion detection systems can be categorized based on alarm
triggering actions using either signatures or anomalies [5]. Signature-based IDSs
identify and compare network activities with predefined intrusions. On the other
hand, anomaly-based IDSs concentrate on finding unusual patterns which do not
conform to the normal baseline. IDSs can also be classified in terms of the monitoring
location [5]. Host-based IDSs monitor information from individual hosts or devices
in the network, whereas network-based IDSs collect data from multiple sources.

Anomaly-based intrusion detection has been the focus of intense research in re-
cent years [1]-[9]. Despite the significant number of existing studies in this area, more
research is needed due to the continuously evolving nature of the attacks. In order
to solve this problem, a practical intrusion detection system should be able to detect
novel and stealthier attacks when IPS fail to do so.

1.2 Structure of the Thesis
The remainder of this thesis is divided into 5 chapters. Chapter 2 provides a brief
introduction to intrusion detection systems and network behavior analysis. Chapter
2 also summarizes the related research in this field, highlights current problems
in intrusion detection systems, proposes a solution and presents the evaluation
criteria for the proposal. Chapter 3 analyses the ISCX-IDS 2012 network dataset and
explains the required preprocessing mechanisms for the proposed model. Additionally,
Chapter 3 reviews some state-of-the-art research done by using this dataset. Chapter
4 explains the overall architecture of the proposed IDS, the mathematical methods
applied in the model and different variants of this IDS. Chapter 5 assesses the
performance of the proposed scheme. Chapter 6 concludes the thesis and suggests
possible improvements to the proposed model as future work.

Chapter 2

Intrusion Detection Systems

This chapter presents the most common approaches for intrusion detection and
classifies these approaches in terms of the source and detection technique used. Section
2.5 provides a detailed summary of the network behavior analysis method which
supports IDS by monitoring traffic. Section 2.6 highlights relevant problems with
intrusion detection systems. Section 2.7 introduces the metrics used for evaluation
and Section 2.8 briefly describes the proposed solution. Work related to relevant
intrusion detection systems is discussed in Section 2.9.

2.1 Definitions and Terminology
In network security, intrusion is defined as any sequence of actions which attempts
to compromise the integrity, confidentiality or availability of the information in a
single system or network. An intruder initiates several related steps in the intrusion
procedure to violate a given security policy [10]. Intrusion detection (ID) is a process
of monitoring information, detecting such violations and responding with an action
in order to protect the system or network. An intrusion detection system (IDS)
deploys a set of hardware and software resources that performs intrusion detection.

Intrusion detection systems can be categorized based on the source of informa-
tion and type of the detection approach. Major classifications are discussed in the
following sections.

2.2 IDS Classification Based on Source
Intrusion detection systems can be sorted in different categories depending on the
source location and the position of an IDS. Host-based and network-based IDSs are
two main classifications based on these contexts [5].

3

4

2.2.1 Host-based Intrusion Detection
Host-based IDSs are installed on single hosts such as individual computers where data
is collected from local systems [11]. Host-based IDSs (HIDSs) monitor activities such
as system integrity, memory, calls and logs. HIDSs provide individualized protection
against malicious activities which cannot be detected by network-based IDSs [12].
HIDSs maintain a large history of behavioral information that is used for possible
misuse identifications; therefore, they are capable of responding to long term attacks
such as data-stealing malwares. However, HIDSs have a poor real-time response and
protection against one-time massive intrusions [13]. In addition, since HIDSs are
designed mostly to detect insider attacks, they cannot avert outsider compromises
[13].

2.2.2 Network-based Intrusion Detection
Network-based IDSs (NIDS) monitor the data coming from multiple resources and
attempt to protect the entire network [11]. As a NIDS has a number of own sensors
monitoring different sources, it can detect malicious activities affecting multiple
hosts [13]. Moreover, NIDSs are usually considered as active components, since
many of these systems examine the traffic packets or flows in real time. The main
disadvantage of NIDSs is that if they monitor a busy section of the network, their
packet processing rate might be smaller than the incoming data rate. Therefore,
they might be incapable of processing a large amount of data [14].

2.3 IDS Classification Based on Detection Method
The detection method is another significant characteristic that divides IDSs into two
subcategories: signature based systems (misuse detection), which depend on specific
knowledge, and anomaly based systems monitoring the behavior in the network [14].

2.3.1 Misuse Detection
Misuse detection (also known as signature-based detection) recognizes attack patterns
by comparing network data to known attacks. These identified attacks are stored in
the database as signatures [14]. Therefore, the accuracy of these systems is very high
and they have very low false positives since they only respond when the observed
attack patterns are matched with the known signature [1].

In misuse detection systems, signatures in the database must be maintained and
updated frequently to operate reliably and in a short response time. Otherwise, they
can fail to detect unknown attacks if they are not in the known database [8].

The open source network intrusion detection tool Snort [15] and The Bro Net-
work Security Monitor [16] are two famous network based misuse detection software
products.

5

2.3.2 Anomaly Detection
The anomaly detection method assumes that normal and attack traffic are different
in some aspect. This method depends on the idea that identifying an abnormal
behavior in the network could be possible by comparing current traffic to a normal
state [17]. For this reason, anomaly-detection IDSs can potentially detect novel
attacks without any specific knowledge.

Anomaly-based IDSs extract a comprehensive model of the normal profile by collecting
data from users, hosts or network connections [14]. Normal profile modeling can be
implemented in an off-line or on-line manner. Normal profiles in off-line aggregation
are mainly static, which means unchanged until another request is received by the
IDS for generating new profiles. On the other hand, on-line methods can include
dynamic thresholding related to certain behavior attributes [8]. Other methods such
as rule-based measures [18], machine learning [19], neural networks [20] or genetic
algorithms [21] can also be used in anomaly detection systems.

Despite their strong detection rate of new exploits and stealthy attacks, anomaly-
based IDSs suffer from high false positive rates due to the unexpected behavior of
normal traffic [1]. Moreover, anomaly-based IDSs might require a training phase
which needs a large amount of time and data in order to construct normal profiles.

2.3.3 Hybrid Methods
Hybrid IDSs combine misuse and anomaly detection models. They attempt to detect
both known and novel attacks. For example, a hybrid IDS can check packet headers
for signatures and collect network traffic to define normal behaviors [1].

For example, H-Snort [22] can be considered as a hybrid system that enhances
the basic functionalities of the original Snort software.

2.4 Network Anomaly Detection Systems
Anomaly detection systems monitor the network data and try to find patterns devi-
ating from the expected behavior. Anomaly-based IDSs assume that attacks differ
from the normal behavior in terms of certain aspects and that attackers have a
very limited knowledge about the normal traffic patterns of the target network. [1]
Anomaly detection systems have the ability to detect both novel and volumetric
attacks like Distributed Denial of Service (DDoS) [6]. Hence, anomaly-based intru-
sion detection has gained a growing interest in the field of intrusion detection [23]-[24].

Although the main assumption for differentiating normal and attack behaviors in
network anomaly detection provides a way of identifying attacks, high rates of false
alarms can be observed, since they might label unintentional anomalies as intrusions.
Therefore, strategies for measuring the deviation from normal behavior is crucial

6

in these intrusion detection systems. In order to obtain a more robust anomaly
detection system, the IDS module is divided into modeling and detection phases
[25]. The modeling phase trains the system, constructs normal profiles and defines
a proximity measure for finding an acceptable deviation range from these profiles.
The detection phase uses this obtained model to classify new events as outliers or
anomalies. If the observed network is performing under normal conditions and it is
considered that no attack is observed in the modeling phase, the current traffic or
data can be used to update the trained model in order to keep it up-to-date. Deciding
feasible deviation metrics and the construction of user profiles can be done with
different types of supervised and unsupervised methods. In the following subsections,
three different anomaly detection techniques will be introduced.

2.4.1 Statistics-based Anomaly Detection
Statistical methods extract normal network behavior for each protocol, IP address
or connection by using a variety of features, including packet rate, inter-packet
arrival time, and latency [23]. In statistical anomaly detection schemes, two different
network traffic datasets are maintained during the detection process. One dataset
refers to the previously trained profile and the other dataset associates with the
monitored traffic over time. Observed data is compared to the training data by
measuring statistical information, such as mean, standard deviation and approximate
distribution of the data. These comparisons produce an anomaly score. If this score
is beyond a certain threshold for a specific event, then the intrusion detection system
will classify that event as an anomaly [1].

The biggest advantage of these methods is that they do not require the designer
to explicitly embed prior knowledge. Furthermore, statistical anomaly detection
systems can retain a high performance in terms of accuracy over long periods of
time [23]. However, their training phase can be exploited by an intruder in order to
generate an attack traffic that imitates the normal behavior. Another challenging
aspect of statistical methods is setting a threshold value to separate normal and
attack events. Moreover, all behaviors in the training data are difficult to model by
only using statistical methods.

Implementing Gaussian random variables in univariate models [17], multivariate
statistical analysis that calculates correlation among more than two metrics [26],
time series models that also examines inter-arrival times of observations [27] are
examples of statistical-based intrusion detection systems.

2.4.2 Knowledge-based Anomaly Detection
Knowledge-based approaches use expert systems which are designed in order to
classify aggregated network data. Classification is performed with a set of rules and
procedures by checking different attributes identified from the training data [23].
Knowledge-based methods are robust, flexible and scalable [23]. However, developing

7

a set of rules to extract distinguishing attributes from the training data is difficult
and computationally complex in knowledge based methods, since the data needs to
be analyzed exclusively.

Finite state machines [28], rule based classifications having rule engines [15], and
description languages such as n-grams are a few prominent knowledge-based intrusion
detection methods.

2.4.3 Machine Learning-based Anomaly Detection
In machine-learning based anomaly detection, modeling the normal behavior is done
by learning patterns in the network data [23]. Some of these algorithms can support
on-line learning and make predictions on network data arriving in a streaming fashion.
Therefore, IDSs using these type of algorithms can adjust learning parameters and
possibly perform better compared to other anomaly detection techniques. However,
this might be considered as a drawback due to high resource consumption. Another
major disadvantage arises from over-fitting [25], since some of these methods are
computationally complex and can learn the detail or noise of the received network
traffic [23]. Consequently, they might show poor performance in classifying new
events in the received network traffic.

Many unsupervised and supervised machine learning methods have been imple-
mented according to the network data properties. Bayesian analysis representing
relationships between variables and predicting future events [29], Markov chains
systems calling event sequences from past observations [24], outlier detection by
clustering observed data according to a proximity measure [19], genetic algorithms
inspired by evolutionary biology [21] and a range of neural network methods simu-
lating operation of human brain are typically used machine learning techniques for
anomaly detection.

2.5 Network Behavior Analysis
Network Behavior Analysis (NBA) is an activity that enhances the security of a
system by monitoring traffic and auditing network data from existing infrastructure
devices [30]. Network analyzer tools like Wireshark [31] and Tcpdump [32] are used
in a wide range of applications from logging the network traffic to detecting spy-ware
and reverse engineering protocols.

Currently, different NBA methods and tools have been used as components in
many types of anomaly detection systems. NBA tools aggregate network statistics
of all traffic in either packet-level or flow-level.

8

2.5.1 Packet-Level Analysis
Packet level analysis inspects individual IP packets which are extracted from the
network traffic in real time. After capturing packets, the NBA component inspects
the highly informative header section and the payload. In addition to the header
information, some indirect properties including inter-arrival times, rate and fragmen-
tation levels can also be extracted with packet-level analysis [33].

Packet sniffers are used for packet level analysis, since they log communication
traffic, monitor network performance, recognize bottlenecks, retrieve lost data and
detect intrusions.

2.5.2 Flow-Level Analysis
According to IPFX terminology [34], a network flow (or traffic flow) is a unidirectional
sequence of IP packets passing through a point in a certain time interval. Packets
belonging to one flow should have invariant header fields, such as the source and
destination addresses, the protocol type and the port information. The total number
of flows summarizing a complete communication constructs a flow record. It reports
which hosts communicated with each other, when this connection occurred with which
transmission method and other attributes of a specific connection [35]. Similar to
packet analysis, flow records can also provide many indirect statistics about network
data.

Flow records can produce aggregated input which differs from the entire raw data.
Recording only the statistical information rather than the complete IP packets en-
ables to obtain quite small flow records compared to the raw output [35]. Therefore,
flow analysis is mostly done on routers or used with NIDS where the detection tool
can monitor multiple hosts.

FlowScan [36], SiLK [37] and Argus [38] are well known network flow analyzer
tools. A simple usage of Argus (Audit Record Generation and Utilization System)
application is explained in section 3.3 with details.

2.6 Problem Description
Network behavior analysis and intrusion detection systems play an important role in
cyber-security. For several years, intrusion detection systems have been the focus of
increasing work. Although numerous open-source and commercial signature-based
intrusion detection systems have been proposed [8, 15, 16], they lack the ability to
detect novel attacks. This problem has motivated researchers to focus on anomaly
detection [1, 14, 17]. Since anomaly-based intrusion detection approaches assume
that there are meaningful differences between normal and anomalous traffic, these
approaches can be used to detect new attacks. However, many anomaly-based IDSs
have a high false positive rate for detecting volumetric attacks and stealthy floods

9

generated by botnets [25].

Another significant problem in the intrusion detection approach is the unavail-
ability of a complete, realistic dataset. Many datasets have inadequate characteristics
and contain outdated or unlabeled traffic patterns. These deficiencies limit the use
of supervised methods for anomaly detection, since these methods require properly
labeled datasets. Moreover, many datasets cannot be shared due to privacy issues
[39]. Therefore, intrusion detection systems are often evaluated over a few publicly
available datasets containing obsolete network routing protocols. Moreover, the
constant change in the network traffic can pose new vulnerabilities and unfamiliar
types of intrusions as well as it can alter normal network traffic characteristics [40].
Therefore, old benchmark datasets appear less effective for measuring the performance
of an intrusion detection system.

Evaluating different IDSs and selecting the best intrusion detection system for
providing security in different environments require evaluation metrics. Evalua-
tion metrics should be properly selected in order to measure the effectiveness of
an intrusion detection system in terms of its ability to separate attacks from the
normal behavior [41]. Standard evaluation criteria developed for assessing IDSs are
true positive rate (or detection rate), false alarm and false positive rate. However,
alternative evaluation criteria should be used to measure the performance of an
intrusion detection system to perform a particular task. For example, the Receiver
Operating Characteristic (ROC) curve can be used to analyze the trade-off between
false positive and true positive rates or the speed of an IDS for detecting the burst rate
of an intrusion can be estimated by measuring response time [40]. Thus, objective,
specific metrics should be proposed to measure the capability of an IDS used for
different security purposes.

NBA has also generated considerable interest in the field of cyber-security, since NBA
tools are capable of aggregating data from many hosts in order to support off-line
anomaly detection systems [42]. Although much research has focused on network
behavior analysis, few studies have provided efficient models to extract useful profiles
from network data. Building comprehensive network behavior profiles from the
captured data needs huge memory and time. Therefore, an intrusion detection model
that implements cost-effective learning with a complementary network behavior
analysis remains a demanding task.

Although extensive studies have been devoted to IDS and anomaly detection, many
relevant problems explained above still remain unsolved. Hence, the goal of this thesis
is to develop an IDS which combines several individual methods to address these
challenges by providing high detection rate with minimal processing requirements
and realistic evaluation metrics.

10

2.7 Evaluation Metrics in IDS
IDS evaluation is an essential task, since intrusion detection systems have to demon-
strate how well they operate compared to other IDS tools [14]. Accuracy, sensitivity,
specificity, ROC curves, confusion matrix, precision, recall and f-measure are widely
calculated evaluation measures in network anomaly detection. Moreover, time and
space complexity of the model are useful for assessing the efficiency in real time IDSs.

In the field of pattern recognition and information retrieval, precision and recall are
more desired measures than accuracy. They are defined with True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN). The confusion
matrix is another ranking method to compare the actual class label against predicted
labels and demonstrates TP, TN, FP, FN values, as shown in Table 2.1. In this table,
TP represents the number of normal traffic correctly classified. Similarly, TN gives
the number of intrusions correctly detected. FP is the number of attack samples
undetected, and FN is the number of normal traffic samples classified as attack.
In the following subsections, the chosen metrics based on these measurements are
explained.

Predicted
Normal Attack

Actual Normal True Positive (TP) False Negative (FN)
Attack False Positive (FP) True Negative (TN)

Table 2.1: Confusion Matrix

2.7.1 Detection Rate and Precision
Precision is a measure of how many truly relevant results are retrieved from all
instances [43]. This metric, also known as the detection rate in IDSs, measures how
well the system identifies attack or normal traffic. A high detection rate should be a
requirement for the trustfulness of an intrusion detection system.

Detection Rate of Normal Traffic = TP

TP + FP
(2.1a)

Detection Rate of Attack Traffic = TN

TN + FN
(2.1b)

2.7.2 False Alarms and False Positives
The false positive rate attempts to estimate the percentage of malicious traffic
detected as normal. The false alarm rate (false negative rate) is the rate of normal
behavior detected as attack which triggers an unwanted action. Many anomaly
detection algorithms suffer from a large number of false positives and false negatives.
A high false alarm rate negatively affects the reliability of IDS model and users stop

11

responding to every false flag produced by the system. A high false positive rate is
also dangerous, since it shows that the IDS fails to detect malicious traffic. In an
ideal IDS, false positives must be almost zero and the system should be alerted when
only true attacks occur.

False Alarm rate of Normal Traffic = FN

TP + FN
(2.2a)

False Positive Rate of Attack Traffic = FP

FP + TN
(2.2b)

2.7.3 CPU Consumption
In order to select the best IDS configuration, resource consumption can be measured
in terms of CPU and memory usage. For example, the CPU consumption must be
considered as a time constraint for real-time intrusion detection systems [44]. If a
real-time IDS has a lower processing time than the rate of the arriving traffic, then
its performance degrades in terms of packet drops. CPU time can be measured with
different tools and presented as epochs or seconds. Since CPU consumption is useful
to estimate the response time of an IDS, it can be used as another evaluation metric.

2.8 Overview of the Proposed Solution
In order to improve the detection accuracy of stealthy attacks, this thesis develops a
method which combines machine learning techniques and statistical measurements
for analyzing network behavior during the intrusion detection process. Different
variants of this method are created and evaluated against the dataset provided by
The Canadian Institute for Cybersecurity (CIC) [39]. This dataset is used at the
flow-level and statistical measurements are collected from flow-level features. The
complete set of flow-level features are described and listed in Appendix B.

The scope of the thesis is limited to neural network methods, and we do not consider
feature selection techniques for generalizing the model and reducing the time com-
plexity in the presented work. The learning part of the proposed system is trained
with the probability density functions of the flow-level features as proposed in [45].
Full details of this approach are provided in Chapter 4.

The model described in this thesis is originated from the theoretical work done
by Aapo Kalliola and Yoan Miche [45]. The other parts of the development, modifi-
cations, tests and analyses are carried out by the author.

The proposed technique offers a baseline solution for the mitigation problem in
volumetric attacks, such as HTTP floods and DDoS attacks. This thesis demon-
strates the efficiency of the proposed method in four different attack scenarios and
provides a performance analysis using the ISCX IDS 2012 dataset with evaluation
metrics focusing on the detection and false positive rates.

12

2.9 Related Work
Various sequential and off-line methods have been proposed for improving accu-
racy in intrusion detection systems. Expert systems [46] are extensively used in
signature-based intrusion detection, also commonly known as knowledge-based intru-
sion detection. These types of IDS contain a set of rules which define good quality
signatures. Signatures should contain a wide range of information about all possible
attempts and means for compromising the host [47]. One of the earliest models for
knowledge-based intrusion detection was developed in [48], which used Colored Petri
Nets (CPS) to represent each signature. CPSs specify an attack scenario having
more than one start state and a unique final state. Another expert system (STAT)
was applied in [18], which models attacks as state transition diagrams. Although
numerous trademark signature-based IDSs have been proposed, many of these suffer
from high false alarm rates [49].

Because of the insufficiencies in signature-based IDSs, much research has been
devoted to finding patterns in network data that deviate from expected behavior.
Many machine learning techniques [9, 25, 50] have been proposed as a promising
approach for anomaly detection. The ADAM model was developed in [9], which im-
plements data mining techniques to discover attacks in an on-line fashion by building
a repository from normal behavior observed more frequently in the streaming network
data. In the testing phase, ADAM classifies frequent connections based on a trained
classification technique by comparing these connections to the normal repository.
Although experimental results in [9] show that ADAM is very effective, it only learns
normal events in the training data, and this approach still produces a significant num-
ber of false alarms. The authors in [50] proposed the Hierarchical Intrusion Detection
(HIDE) system, which involves different intrusion detection agents for monitoring
system activities coming from servers. Several layers inside each intrusion detection
agent provide different functionalities. Despite its efficiency in detecting flooding at-
tacks, HIDE and other statistical techniques have some drawbacks [25]. For instance,
these techniques often have difficulty in selecting the best statistical parameters. In
addition to these systems and testbeds, classification methods [51, 52], clustering and
outlier-based approaches [53, 54] as well as other combination learner systems [55]
have been presented for anomaly-based intrusion detection. Classification methods
usually give better results than other anomaly-based intrusion detection methods,
since they use labeled samples for training. However, they have low detection rate for
unknown intrusions unless the relevant information is not used for retraining purposes.
The techniques used in clustering and outlier-based approaches highly depend on
the parameters of proximity measures and optimization of these parameters are time
consuming [25]. Combination learner methods use ensemble methodology to combine
different classifiers and obtain a model with high performance. These methods have
higher accuracy than the individual classification methods, and can scale for larger,
more comprehensive datasets without any performance degradation. However, they
are usually slow and can not be used in real-time systems [25].

13

Recently, artificial neural networks, such as feed-forward neural networks [56] and
self organizing maps [57], have received considerable attention for intrusion detection,
since they can adapt the interconnection strengths and synaptic weights of the
network when the input data changes. Since some of the feedforward neural network
using back-propagation method for training suffer from slow learning time and high
false positive rates [58], improving the performance of neural networks by changing
the weight update rules has been the focus of intense research in intrusion detection.
Thus, Extreme Learning Machine (ELM) has emerged as a promising approach for
allowing low computation cost and faster training than other feed-forward neural
networks. For example, Cheng et al. [59] proposed kernel-based extreme learning
machines for both binary and multi-class classification in order to detect the type
of attack traffic. The authors found that basic ELM has a lower accuracy than
kernel-based ELM or support vector models. They also showed that kernel-based
ELM methods have better scalability than support vector machines, although these
two methods have almost similar computational complexity. In [60], the authors
suggested a weighted version of multi-class ELM to manage unbalanced class dis-
tribution. The weighted ELM in [60] achieves better performance than support
vector machines; however, this approach is less effective in classifying infiltration
and probing attacks. The authors in [61] tested a modified version of ELM using
multiple kernel boosting and an ensemble approach requiring no feature selection.
This approach achieved excellent results in terms of detection performance and false
positive rate despite the increased cost of memory usage.

Aggregation techniques for clustering network traffic and blacklisting arrived packets
have also generated increased interest in network behavior analysis, which highly
supports intrusion detection systems. For example, Kalliola et al. [62] focused
on end-host clustering in order to mitigate denial of service attacks. In [63], the
authors have demonstrated the feasibility of hierarchical clustering technique for
DDoS mitigation. However, a more exhaustive mechanism is needed to gather pro-
files consisting of a wider range of attacks in order to decrease potential false positives.

The solution proposed in this thesis offers a method for learning and predicting the
probability density function (PDF) of flow statistics. Since PDF can be used to
estimate the likelihood, it can also represent the normal behavior of the network in
terms of the probability values of the observed flow statistics. If estimated probability
values for many flow statistics at one sample are small, it probably does not belong to
the normal behavior and can be an anomaly. Therefore, a probabilistic approach may
be efficient to differentiate attack from normal traffic and can be used for network
anomaly detection.

2.10 Summary
This chapter has provided necessary definitions and the terminology in the field of
intrusion detection. Different IDSs have been reviewed in terms of their advantages

14

and drawbacks. In addition to the taxonomy of existing IDSs, this chapter has
explained the necessity of analyzing network behavior, which can be implemented at
either packet or flow level. Section 2.6 has identified some of the existing problems
in the area of intrusion detection. Section 2.7 has presented evaluation metrics
used for measuring the reliability and the effectiveness of the proposed approach.
Section 2.8 has briefly described the proposed method. Finally, recent work has been
summarized by presenting the difference between the existing work and the proposed
method. The following chapter provides an analysis of a real-life dataset built by the
Information Security Center of Excellence (ISCX) [64] and possible preprocessing
methods applied on this dataset.

Chapter 3

Network Traffic Dataset

Capturing and generating network traffic is an essential preprocessing step to compare
different intrusion detection systems and validate new approaches. In particular,
anomaly detection techniques require comprehensive and current network data which
resembles a real communication scenario. A proper dataset should be generated in a
realistic way with complete and correct labels. Moreover, it should have an unbiased
proportion of the normal to attack traffic [64].

This chapter discusses some of the well-known public datasets and their charac-
teristics. After the brief discussion, the ISCX-IDS 2012 dataset used throughout
the proposed solution is explained in detail. In addition, preprocessing methods
to extract flow records using the Argus tool are presented. Simple ML methods
implemented to validate the usability of the dataset are presented and evaluated.
Finally, some earlier intrusion detection approaches are reviewed and tested with
this dataset.

3.1 Benchmark Datasets
There are numerous benchmark datasets available for evaluating intrusion detection
methods and systems. In these datasets, different attack scenarios were generated
using simulated environments.

The KDDCup99 dataset [65] is one of the earliest and well-known IDS datasets. It
was collected from seven weeks of labeled data containing 41 features. The training
dataset consists of approximately 4,900,000 single connection vectors with 24 different
attacks, whereas the test dataset contains 300,000 samples with an additional 14
attack scenarios. [25]. There are four types of attacks in the KDDCup99 dataset:
denial of service (syn flood), remote to local (guessing password), user-to-root (buffer
overflow) and probing. Since this dataset has many problems that result in poor
evaluation of anomaly detection methods [25], the NSL-KDD [66] dataset was intro-
duced to solve these issues. The NSL-KDD dataset includes only selected records of
the complete KDDCup99 training dataset. In addition, this dataset does not include
redundant or duplicate records. Consequently, machine learning algorithms used for

15

16

intrusion detection are unbiased towards more frequent records [64]. Furthermore,
training and testing set contain various attack samples with a reasonable proportion.
This leads to more accurate, comparable performance evaluation, since there is no
need to select a portion of the dataset to test the performance of different intrusion
detection systems. In [67], the DARPA dataset was presented as another intrusion
detection dataset. The DARPA dataset was created by the MIT Lincoln Laboratory
in order to detect complex attacks that contain multiple steps. Attack scenarios were
simulated with sessions of probing, breaking into system by exploiting vulnerabilities
as well as installing and launching DDoS attack against other hosts [25]. The DE-
FCON dataset in [68], which was captured in a hacker competition, contains only
intrusive traffic. This dataset is very different from a real world network, thus it has
a limited use. Finally, the CAIDA dataset [69] is a collection of many different types
of network data, available for research purposes. However, the CAIDA dataset is
very specific to particular events and intrusions, such as DDoS attacks.

Although benchmark datasets are useful for evaluating intrusion detection systems,
many of them suffer from some problems such as unrealistic network configuration,
unlabeled or incomplete data, limited intrusion scenarios and disproportionate ratio
between normal and attack traffic. In order to generate more realistic network scenar-
ios, real-life datasets have been generated in recent years. For example, the UNIBS
[70] dataset was collected on the edge router of the campus network in University of
Brescia. The dataset was created in three consecutive days by running tcpdump on
the faculty router and stored using 20 workstations. In [64], the authors prepared the
TUIDS dataset at Tezpur University. This completely labeled dataset was captured
in both packet and flow level. The ISCX-UNB dataset [39] was constructed by creat-
ing profiles for agents and various multi-stage attack scenarios were implemented
to generate intrusions. The proposed solution in this thesis is evaluated with the
ISCX-IDS 2012 dataset which is a part of ISCX-UNB datasets, since these datasets
are recent, realistic and provide full packet captures with attack or normal labels.

3.2 The ISCX-IDS 2012 Dataset
Although there have been numerous benchmark datasets publicly available, many
of them include outdated, unmodifiable, inextensible and irreproducible intrusion
scenarios [39]. In order to overcome these shortcomings and create more current
traffic patterns, the ISCX-UNB dataset was created by the Canadian Institute for
Cybersecurity. It contains many different types of datasets to evaluate anomaly
based approaches.

The manually labeled ISCX-IDS 2012 dataset exhibits realistic network behavior and
contains diverse intrusion scenarios. Furthermore, it is shared as complete network
capture with all internal traces to analyze payloads for deep packet inspection. The
ISCX-IDS 2012 dataset includes seven days of both normal and malicious network
activity. The dataset was generated by profiles containing abstract representations

17

of events and behaviors in the network. For example, the communication between
a sender and a receiver host over the HTTP protocol can be represented by the
packets sent or received, end point properties or other similar characteristics. This
representation constructs a single profile. These profiles can generate real traffic
for HTTP, SMTP, SSH, IMAP, POP3 and FTP protocols [39]. They were used
by agents or human operators to inject different scenarios to the network. Profiles
are also shared with actual datasets for research groups to regenerate the network
behavior of different applications by modifying these profiles.

The ISCX-IDS 2012 dataset includes two distinct profiles to produce network behav-
iors and scenarios: α and β profiles. While α profiles introduce anomalous behavior
or multi stage attack scenarios in the network, β profiles represent the features and
mathematical distributions of the procedures. For example, β profile can include
distributions of packet sizes, certain patterns in the payload, request time distribution
of a protocol etc. On the other hand, α profiles are based on earlier attacks and
include sophisticated intrusions for each consecutive day. According to the α profiles,
there are four attack scenarios in the complete dataset.

1. Infiltrating the network from inside: In this scenario, an attacker gains
access to a host from inside. It starts by gathering information about the
target such as IP ranges, mail servers and email accounts by using a buffer
overflow vulnerability. Common web application hacking techniques such as
SQL injection or Cross Site Scripting were implemented to compromise systems.

2. HTTP denial of service: The Slowloris denial of service (DoS) attack tool
[71] was used in the second scenario to generate a low bandwidth and greedy
attack. The Slowloris tool holds connections open by sending incomplete yet
valid HTTP requests to servers at regular intervals to keep the sockets from
closing. Since servers allow limited amount of threading, sockets are eventually
tied up and no connection can be made [72].

3. Distributed denial of service using an IRC botnet: An Internet Relay
Chat (IRC) bot was used in this scenario to perform distributed denial of
service attack since botnets have the ability of combining previously malicious
activities into a single platform.

4. Brute force SSH: This final scenario was generated with brutessh tool [73]
to acquire an SSH account by running a dictionary brute force attack.

The testbed network architecture consists of 21 interconnected Windows workstations
divided into four distinct LANs in order to construct a realistic interconnected network.
The fifth LAN comprises different servers providing email, DNS and Network Address
Translation (NAT) services. The NAT server operates as an Internet service provider
for the entire network. The sixth LAN is built for monitoring and maintenance
purposes. A network tap is also responsible for transmitting the traffic to multiple
devices and monitoring the network [39]. The publicly available capturing period
starts at 20:10:39 on Friday June 11th 2010 and ends at 00:01:06 on Friday June

18

18th. The statistics for the overall dataset are summarized in Table 3.1. As can be
seen in Table 3.1, each attack scenario was implemented for only one specific day and
two days include only normal traffic. In addition, the authors in [39] state that the
variety of the normal network behavior and the complexity of the attack scenarios
increase from June 11th to June 18th.

Day Date Description Size (GB)
Friday 11/6/2010 Normal Activity. No malicious activity 16.1

Saturday 12/6/2010 Infiltrating the network from inside + Normal activity 4.22
Sunday 13/6/2010 Infiltrating the network from inside + Normal Activity 3.95
Monday 14/6/2010 HTTP Denial of Service + Normal Activity 6.85
Tuesday 15/6/2010 Distributed Denial of Service using an IRC Botnet 23.04

Wednesday 16/6/2010 Normal Activity. No malicious activity 17.6
Thursday 17/6/2010 Brute Force SSH + Normal Activity 12.3

Table 3.1: Daily Traffic in Dataset

Despite diverse real-life network intrusion scenarios, this dataset has some flaws. For
instance, a considerable portion of the IP packets generated by the maintenance and
network monitoring processes were unlabeled and left as unknown. Moreover, when
the flow records were extracted from the dataset, it was observed that some flows
include NaN (not-a-number) values. This might be explained by the properties of
different communications. For example, The Address Resolution Protocol (ARP)
requests does not use ports. For this reason, sender and receiver port numbers have
NaN values for flows having this communication protocol. In addition to the NaN
values, the proportion of attack to normal traffic is relatively small. In order to
address these issues, the dataset was preprocessed and sanitized. The following
sections are dedicated to these preprocessing steps.

3.3 Packet to Flow Conversion with Argus
Argus is an open source network audit record generation tool, which can produce
network flow status for every network transaction. It constructs detailed flow records
from live or stored packet contents and can store these reports for network security
research. It is currently running on Mac OS X, Linux, Solaris, FreeBSD, OpenBSD,
NetBSD, AIX, HP-UX, VxWorks, IRIX, Windows (under Cygwin) and OpenWrt [38].

Argus core client programs can generate protocol-specific flow transaction mod-
els from live network or stored pcap files and implement basic functions, including
printing, processing, sorting, aggregating, tallying, collecting, distributing and archiv-
ing flow records. It is also possible to write a generic configuration file with different
options for various purposes.

In the preprocessing phase, a status report was generated for each day with the
Argus tool. The flow status interval, which controls the period of report on a flow’s
activity, was selected as 5 seconds for the conversion of the complete dataset.

19

The preprocessing phase starts with converting pcap files to unlabeled Argus flow
records. After the conversion, all possible or desired features were extracted from the
flow records and written to a text file. The current version of the Argus can produce
up to 125 features of a one flow; however, only numerical features (59 of them) were
extracted from the flow records. The overall list of features with definitions can be
examined in Appendix B. From these features, IPv4 values were converted into a
decimal format and each octet was considered as a different feature. Consequently,
the final input data has 67 numerical features.

After converting the pcap file to an unlabeled Argus output, traffic profiles were read
from the provided XML files. Overall information acquired from a profile can be seen
in Appendix A. A small script was written in order to match these profiles with flow
records. Following the matching process, labels for each flow record were collected as
another output. Classes were named as "Normal" (-1), "Unknown" (0) and "Attack"
(1). This complete process can be seen as a flowchart in Figure 3.1. The number of
flows from each class with respect to the time elapsed in June 14 is shown in Figure
3.2. As illustrated in the figure, the number of flows belonging to the unknown class
were relatively low compared to the normal class. In addition, the time interval of
the attack scenario can be estimated around 5000 epochs from Figure 3.2.

input
data,(PCAP)

convert PCAP
data to argus
flow records

extract features
for each

flow record

desired (numeri-
cal) features to
extract

match flows
with XML
profiles

input data, net-
work profiles
(XML)

extract and
store labels for
each flow record

Impute the
missing data
in flow records

Figure 3.1: Flowchart of Matching Complete Traffic PCAP File with Given XML
Profiles

After the flow conversion, it was seen that there were missing statistics (NaN values)
in the output files. For example, it was observed that when there are no packet sent
in one flow, the mean of packet size becomes unavailable. For these reasons, missing
data was imputed with a replacement value −1. This negative value was chosen to
emphasize the difference of missing data from the rest of the flow features.

The number of flows and XML profile entries for each day are given in Table 3.2. The
first and the second days were given as single, compressed XML profile; therefore,
flow records are also combined for these two days.

20

Day Argus Flow Records XML Profiles
Normal Attack Unknown matched total unique

June 11 + June 12 224173 3221 34947 128816 133192
June 13 221148 12853 45179 135080 137160
June 14 220156 12761 46263 169950 171350
June 15 1033972 37402 66332 563583 571220
June 16 663642 0 347914 519146 522251
June 17 612089 3294 19973 180796 397595

Table 3.2: Flow Comparison Results for the Week

80000 100000 120000 140000 160000 180000
Time (epochs) +1.2764e9

0

5000

10000

15000

20000

25000

30000

Fr
e
q
u
e
n
cy

Normal

Unknown

Attack

Figure 3.2: Distribution of Flows for June 14

3.4 Evaluation of Dataset with Simple Machine-
Learning Based Anomaly Detection Methods

In this section, dimension reduction with principal component analysis and simple
machine learning techniques applied to the ISCX-IDS 2012 dataset will be briefly
summarized. These methods were implemented and evaluated in order to validate
the usability of the dataset.

These machine learning methods were performed using Python 2.7.11, numpy 1.11.0,
scipy 0.17.1, Argus 3.0.8.1, in an 64bit Ubuntu 16.04 LTS machine with 8 GB of
RAM and CPU of 2.70 GHz. Each method was applied to the largest 20 principal
components of the normalized data, which captures 95% of the variance in the
original data, and the overall performance was measured with 3-fold cross validation
technique.

3.4.1 Principal Component Analysis
Principal Component Analysis (PCA) [74, 75] is a simple, non-parametric method,
which is used in machine learning, statistics, and in many application areas mostly

21

for reducing the dimensionality of the data. PCA is mainly implemented for dimen-
sionality reduction and data interpretation for acquiring statistical knowledge.

PCA is an unsupervised projection method finding a mapping from higher dimen-
sional space to a new smaller space with a minimum loss of information. PCA obtains
a projection matrix that projects the original data by the basis vectors [75]. If the
original data matrix is defined as Xd×N , PCA constructs a projection matrix Wd×k

representing the basis change, where d is the original dimensionality of the data
vectors xj, k is the dimension of the transformed data vectors yj = WT xj after
the dimensionality reduction, and N is the number of data vectors xj. The goal in
PCA is to minimize the mean square representation error ||x −WWT x||2. For a
finite dataset, this is equivalent to finding the d × k matrix W which minimizes
||X−WWT X||2. Since d is usually much higher than k, this projection maps the
input from the original space to a lower dimensional space with minimum loss of
information. Finally, the projected data is represented as Z = WT X.

Before applying PCA, it is useful to normalize the data in order to eliminate pos-
sible negative effects of having different measurement units for each feature. This
preprocessing method produces a mean-centered and unit variance scaled data, and
XT X becomes a correlation matrix which will be used by PCA. The column vectors
of the optimal PCA transformation matrix Wd×k consists of k eigenvectors of the
data covariance matrix corresponding to its k largest eigenvalues.

0 5 10 15 20 25
Principal components

0

2

4

6

8

10

12

14

E
xp

la
in
ed

 v
ar
ia
nc

e

(a)

0 5 10 15 20 25 30
Principal components

0.00

0.05

0.10

0.15

0.20

0.25

E
xp

la
in
ed

 v
ar
ia
nc

e
ra
tio

 (
%
)

(b)

Figure 3.3: PCA Scree Graph

In this work, data normalization is implemented by subtracting the mean µ from the
original data and dividing this centered data by the square roots of eigenvalues, as pre-
sented in [74]. Therefore, the principal components of Xd×N will be the eigenvectors
calculated from the covariance matrix of the data. These components are extracted
and visualized in a scree graph until it reaches a convergence point to retrieve the

22

variance of the original data. Figure 3.3 illustrates an example of a scree graph,
which shows the fraction of the explained variance in a descending order, for June 13.
Figure 3.3a plots the amount of variance explained by the each component and Figure
3.3a presents the ratio of explained variance for each component. As shown in the
figure, 5 biggest components explains most of the variance, and the total explained
variance reaches an almost steady state after some point. As shown in Figure 3.3,
20 principal components can be chosen as a suitable value without losing consid-
erable amount of information, as only less than 5% of the variance are left unexplained.

After the dimension reduction, eight different supervised and unsupervised methods
were applied to the dataset. These methods are explained briefly in the following
subsections and their results are plotted in Figure 3.6.

3.4.2 K Nearest Neighbor
K nearest neighbor (KNN) is an unsupervised classification method that requires no
prior distribution of the sampled data [76]. Each sample xi is classified by checking
its kn nearest neighbors.

While constructing the nearest neighbor rule, a set of sampled data x1, x2, ..., xn

are converted into a metric space. The metric space is usually constructed with a
similarity measure such as Euclidean or Manhattan distance functions. This measure
is used to obtain the nearest neighbors of a new query point xi. Finally, the selected
k nearest neighbors decide the class through majority voting [76]. Although KNN
performs very well, it has a high time complexity since it searches the minimum
distance in all the training set for one test sample.

In this preliminary work, 5 equally weighted nearest neighbors were used to predict
the label of a query point and the similarity measure was chosen as the Euclidean
distance.

3.4.3 Gaussian Naïve Bayes
The Gaussian Naïve Bayes classifier defines a conditional model P (y1...N |x) of the data
sample x with N possible outcomes [75]. This model is called posterior probability
and represented by Bayes’ theorem given in Equation 3.1.

P (yk|x) = P (yk)P (x|yk)
P (x) , (3.1)

where yk is the label of class k.

If priors P (xk) and likelihoods P (x|yk) can be estimated from the training data, the
posterior probability is derived from Bayes’ theorem. This model also classifies the
test data samples based on highest posterior probability as in Equation 3.2, which

23

leads to the Maximum A Posteriori estimation. [75]

choose yi if P (yi|x) = max
k

P (yk|x). (3.2)

In Gaussian Naïve Bayes, the components of the data vectors are assumed to be
Gaussian distributed and statistically independent from each other given the class
label [75]. Based on these assumptions, the underlying distribution of the data is
modeled by multivariate Gaussian distribution N (µ,Σ) with location vector µ and
covariance matrix Σ. The multivariate normal density of observed samples’ prior
distribution class k = 1, 2..., N can be derived as

P (x|k) = 1√
(2π)d|Σk|

exp(−1/2(x− µk)T Σ−1
k (x− µk)), (3.3)

where the covariance matrix Σk and mean vector µk are calculated separately for
each class k [77].

The Gaussian Naïve Bayes classifier is easy to implement, highly scalable and can be
applied with a low computational cost to high dimensional data vectors. Although it
assumes that data samples are conditionally independent given the class label, this
method can yield reasonably good results even though the components of the data
vectors are not Gaussian distributed or the data is not statistically dependent [78].

3.4.4 Quadratic Discriminant Analysis
Quadratic discriminant analysis (QDA) is a supervised classifier with a quadratic
decision boundary, and resembles the Gaussian Naïve Bayes approach. Similar to
Naïve Bayes, QDA tries to estimate the posterior probability P (y1...N |x) using Bayes’
rule where x ∈ Rd. QDA also assumes that observed samples have the characteristic
of multivariate normal distribution. Unlike Gaussian Naïve Bayes, QDA does not
consider the class conditional independence assumption, and states that data vectors
do not have to be independent of other observations given the class label. Therefore,
if the covariance matrix Σ is diagonal, QDA becomes identical to Gaussian Naïve
Bayes [79].

In the case of multiple classes, a QDA predicts the label of a test sample by finding
the maximum of posterior distributions which corresponds to Equation 3.2.

QDA performs better with larger training samples as the effect of variance be-
comes lower and less crucial for this method. Additionally, it can produce better
results when the data is moderately non-linear since it assumes a quadratic decision
boundary [80].

3.4.5 Multivariate Regression
Logistic regression is a supervised learning model which explains a sample vector
x ∈ Rd and desired output y ∈ {0, 1} in a parametric form P (y|x). The desired

24

output is written as a linear function with weight vector w = [w0, w1, w2, ..., wd]. The
overall distribution can be modeled by logistic regression as in Equation 3.4 and
Equation 3.5 [81].

Pr(y = 1|x) = 1

1 + exp
(
w0 +

d∑
i=1

wixi

)
, (3.4)

Pr(y = 0|x) =
exp

(
w0 +

d∑
i=1

wixi)
)

1 + exp
(
w0 +

d∑
i=1

wixi

) . (3.5)

In logistic regression, the test data x is classified by comparing Pr(y = 0|x) and
Pr(y = 1|x). The predicted class maximizes the parametric form.

Logistic regression can be extended to the multivariate case when y has N dis-
crete values. In multivariate regression, y is assumed to be expressed as the weighted
sum of the input variables x. In this case, the weights wi of Equation 3.4 and 3.5 are
changed into weights wij associated with the class yk and the input x. In multivariate
logistic regression, the maximum value of P (Y = yk|x) classifies the testing data as
yk [81].

Logistic regression models are favored in data analysis tools and widely used in
medical applications such as diagnosing a patient to find some strong relationships
in input features [80]. Unlike QDA, it assumes no Gaussian prior distribution in
the training samples. However, these models can be costly and they might deliver
unstable results when the training data size is small or the decision boundary is
highly non-linear [80].

3.4.6 Decision Trees
Decision trees are non-parametric machine learning methods based on splitting rules
and can be used for regression and classification purposes. Decision tree construction
is performed with binary splitting as illustrated in Figure 3.4. End nodes in a decision
tree lead to a specific region with various class proportions. Therefore, a suitable
region is founded for observations and each testing data is predicted as the most
frequent class of that region [80].

The purity of each node evaluates the quality of the splits in decision trees. The
purity of trees can be calculated with the cross entropy given by Equation 3.6. In
the equation, pmk indicates the proportion of training samples from the k-th class in
the m-th region. If pmk’s are all near zero or near one, then the cross entropy will
produce a smaller value. Therefore, a node with a more negative entropy leads to

25

more dominated samples from a single class and less classification error for this node
[80].

H = −
K∑

k=1
pmk log(pmk) (3.6)

Decision trees are easily interpretable, require minimum data preparation and com-
putational complexity will decrease to log time. Unfortunately, they tend to be
unstable since they are affected by small variations in the training samples [82].

x1 ≤ t1

x1 ≤ t2

R1 R2

x1 ≤ t3

R3 x1 ≤ t4

R4 R5

Figure 3.4: Simple Decision Tree with Five Regions

3.4.7 Random Forest
Random forest [83] is an ensemble machine learning method which is based on
decision tree bagging. Bagging is a general procedure which aims to reduce the
variance of the learning method [82]. As stated in the subsection before, decision
trees suffer from high variance; thus, bagging may improve the overall performance

In the training part of the random forest classification, a portion of the data is
selected and a decision tree, fb, is fitted to the sample. This procedure is repeated
B times. In the prediction phase, new samples are classified with a majority vote [80].

Random forests are a quite robust machine learning method having high accu-
racy. Furthermore, they can achieve good performance even for larger datasets [82].
The effect of over-fitting is rare with random forests since they are less sensitive to
input variance [80].

3.4.8 Perceptron
The perceptron [84] is a classifier that computes a linear combination of the input
features and finds a separating hyperplane. It gives the position of a query sample
with respect to the separating hyperplane. Although the perceptron is an old, simple
classifier used for trivial classification problems, it is included and tested on the
dataset, since it is a former state-of-the-art linear classification tool and can be
compared to other linear classifiers in this section. Furthermore, it is considered
as the smallest component of neural network systems [84] and ELM, which will be
explained in detail in section 4.5.

26

A basic perceptron model is given in Figure 3.5. As illustrated in the figure, the
perceptron takes a weighted sum of the input. It typically applies a non-linear
activation function to this weighted sum and predicts the class of the input sample
with a threshold value decided beforehand.

Activation
function

∑
w2x2

......

wnxn

w1x1

w01

inputs weights

Figure 3.5: Single Perceptron Structure

The perceptron learning algorithm fits a separating hyperplane to a decision boundary
using weights w0, w1..., wn. The main objective of the algorithm is to minimize the
distance of misclassified samples using a stochastic gradient algorithm [82]. In the
case of multiple classes, the perceptron algorithm can be combined with a one-vs-all
scheme.

Although the perceptron is very fast even with large datasets, the algorithm does
not converge well when the data is not linearly separable. Moreover, the solution
highly depends on the initial values of weights [85].

3.4.9 Extreme Learning Machine
Extreme Learning Machine (ELM) [86] is a single hidden layer feedforward neural
network. It can be used for both regression and classification problems. The ELM
method provides a simple learning algorithm which is faster than those of traditional
feedforward networks. The ELM algorithm initializes input and hidden node weights
randomly. This learning method solves the learning problem by the Least Squares
(LS) method.

Since ELM forms the learning part of this thesis, section 4.5 will provide a more
detailed discussion of this method.

3.4.10 Results of Prior Machine Learning Techniques
Machine learning techniques indicated above were applied to each day of the dataset
and evaluation metrics were extracted for discussion. Figure 3.6 and Table 3.4 show
a comparison between these techniques. On June 12, a sample of infiltration attack
was used in training. Since this attack was performed on distinct ports, the detection
rate of normal and attack data was quite high for many machine learning algorithms,
as seen in the figure. The same case can be seen on June 17 with brute force SSH

27

attack. The measurements of attack data on June 16 were not marked on the figure
since this day contains zero attack. In addition, Figure 3.6 reveals that the attack
traffic on June 14 has the worst precision and false positive rate. This discrepancy is
expected because June 14 contains a HTTP DoS attack created with the Slowloris
tool. This type of stealthy intrusions is hard to detect, since they look like legitimate
flows, follow protocol rules and handshake procedures [72]. Similarly, false positives
and false alarms are high on June 15 due to the DDoS attack. However, the false
positive rate of the attack data on June 15 differs from the expected results. This
inconsistency can be explained by checking normal-to-attack ratio of the data. June
15 has considerably more attack flows and false predictions than those of other days,
as illustrated in Table 3.3. Therefore, this day has a lower false positive rate of attack
flows.

As can be seen in Figure 3.6 and in Table 3.1, the time complexity of many methods
increases as the data size grows. Normal flows have high precision and low false alarm
rate in almost every day in the dataset. However, it was found that the precision of
unknown labels varies each day. This might be caused by the nature of these flows.
Since unknown flows are transpired by the maintenance and monitoring, they are
treated differently than normal or attack data.

From these eight machine learning methods, KNN, logistic regression and deci-
sion trees show better performance than those of other techniques. However, KNN
and decision trees have quite high time complexity. Moreover, logistic regression has
a quite low detection rate for DoS attacks. On the other hand, ELM shows relatively
poor performance despite its low time complexity. KNN suffers from the curse of
dimensionality [87], which leads to a huge increase in the volume of the training
data. Thus, KNN requires more computations if no dimension reduction technique
for simpler representation is applied to the data. Therefore, the performance of the
proposed method will be mainly compared to the decision trees and ELM.

Predicted
Normal Unknown Attack

A
ct
ua

l Normal 220024 1012 112
Unknown 14842 26009 4328
Attack 2423 597 9833

(a)

Predicted
Normal Unknown Attack

A
ct
ua

l Normal 1026753 621 6598
Unknown 30502 35775 55
Attack 3469 0 33933

(b)

Table 3.3: Confusion Matrices for ELM with June 13 (a) and June 15 (b)

28

June12 June13 June14 June15 June16 June17
Days

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(%
)

Detection Rate of Normal Traffic

KNN
Regression
QDA
Naive Bayes
Perceptron
Random Forest
Decision Tree
ELM

June12 June13 June14 June15 June16 June17
Days

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(%
)

Detection Rate of Unknown Traffic

June12 June13 June14 June15 June16 June17
Days

0.0

0.2

0.4

0.6

0.8

1.0

(%
)

Detection Rate of Attack Traffic

June12 June13 June14 June15 June16 June17
Days

0.0

0.2

0.4

0.6

0.8

1.0

(%
)

False Alarm Rate of Normal Traffic

June12 June13 June14 June15 June16 June17
Days

0.0

0.1

0.2

0.3

0.4

0.5

(%
)

False Positive Rate of Attack Traffic

June12 June13 June14 June15 June16 June17
Days

0

10

20

30

40

50

60

E
p
o
ch

s

Time Complexity

Figure 3.6: Comparison of Various Traditional Machine Learning Techniques

29

Detection Rate of Normal Traffic Detection Rate of Unknown Traffic
Classifier June 12 June 13 June 14 June 15 June16 June 17 June 12 June 13 June 14 June 15 June16 June 17
KNN 0.97 0.97 0.96 0.98 0.87 0.99 0.83 0.85 0.75 0.85 0.75 0.94
Linear Regression 0.91 0.91 0.91 0.99 0.72 0.99 0.99 0.96 0.84 0.54 0.71 0.99
QDA 0.98 0.94 0.94 0.97 0.67 0.99 0.57 0.94 0.88 0.54 0.93 0.89
Naïve Bayes 0.98 0.91 0.92 0.97 0.67 0.99 0.54 0.62 0.47 0.88 0.56 0.37
Perceptron 0.91 0.91 0.91 0.96 0.70 0.99 0.61 0.43 0.89 0.94 0.56 0.99
Random Forest 0.92 0.93 0.91 0.96 0.78 0.99 1.00 0.97 0.93 0.99 0.78 1.00
Decision Tree 0.96 0.97 0.97 0.98 0.88 0.99 0.75 0.79 0.71 0.70 0.76 0.72
ELM 0.93 0.93 0.92 0.97 0.83 0.99 0.91 0.93 0.86 0.98 0.74 1.00

Detection Rate of Attack Traffic False Alarm Rate of Normal Traffic
Classifier June 12 June 13 June 14 June 15 June16 June 17 June 12 June 13 June 14 June 15 June16 June 17
KNN 0.99 0.76 0.59 0.91 - 0.97 0.00 0.21 0.45 0.06 - 0.00
Linear Regression 0.99 0.68 0.34 0.94 - 0.95 0.03 0.32 0.95 0.06 - 0.00
QDA 1.00 0.35 0.19 0.99 - 1.00 0.00 0.05 0.01 0.01 - 0.00
Naïve Bayes 0.58 0.64 0.17 0.65 - 0.95 0.00 0.30 0.58 0.02 - 0.00
Perceptron 0.86 0.25 0.32 0.77 - 0.90 0.03 0.57 0.95 0.31 - 0.33
Random Forest 1.00 0.67 0.69 0.92 - 0.99 0.44 0.32 1.00 0.27 - 0.04
Decision Tree 1.00 0.73 0.62 0.98 - 1.00 0.00 0.27 0.35 0.02 - 0.00
ELM 0.99 0.69 0.48 0.84 - 0.89 0.00 0.23 0.95 0.08 - 0.01

False Positive Rate of Attack Traffic Time Complexity (in Epochs)
Classifier June 12 June 13 June 14 June 15 June16 June 17 June 12 June 13 June 14 June 15 June16 June 17
KNN 0.02 0.02 0.03 0.01 - 0.00 3.61 4.84 4.98 31.91 36.54 19.81
Linear Regression 0.00 0.00 0.01 0.01 - 0.00 11.28 11.22 14.39 57.29 13.83 28.26
QDA 0.10 0.04 0.09 0.02 - 0.00 0.59 0.53 0.72 2.36 2.07 1.33
Naïve Bayes 0.45 0.07 0.11 0.02 - 0.04 0.51 0.24 0.31 0.90 0.71 0.53
Perceptron 0.05 0.21 0.01 0.03 - 0.00 0.51 0.49 0.71 2.08 0.99 1.24
Random Forest 0.00 0.00 0.00 0.00 - 0.01 1.15 1.18 1.80 6.07 7.39 3.57
Decision Tree 0.04 0.03 0.03 0.02 - 0.01 9.42 10.99 12.44 52.19 36.87 35.55
ELM 0.01 0.01 0.00 0.01 - 0.01 2.21 2.38 3.04 10.11 8.09 6.68

Bold face: best value for different classifiers

Table 3.4: Comparison of Various Traditional Machine Learning Techniques

3.5 Related work with the Dataset
Network traffic traces play a key role in evaluating the performance of any intrusion
detection method. Evaluations are more convincing when IDSs are tested with a
comprehensive and complete network dataset. Despite the importance of dataset
quality, few research has been done using the ISCX-IDS 2012 dataset.

One of the earliest methods evaluated with the ISCX-IDS 2012 dataset was proposed
in [88], which integrated K-means and Naïve Bayes classifiers. The proposed anomaly
detection algorithm was tested by selecting incoming packets for a specific host in one
day. Kumar et al. [89] applied a multi objective genetic algorithm to the KDD Cup
1999 dataset as well as to a subset of the ISCX-IDS 2012 dataset. In [90], decision
trees were constructed based on the alerts issued by Snort IDS. In this study, only
5 features (protocol, source IP, source port, destination IP, destination port) were
extracted from the dataset and decision trees were generated by using these attributes.
In [91], another ensemble learning method was developed and tested with a flow
level version of the ISCX-IDS 2012 dataset. The Flowcalc tool [92] was preferred
in the packet-to-flow conversion and relatively basic statistics were extracted from
the dataset. Tan et al. [93] analyzed traffic records by converting them to respective
images. This study focused on mitigating DoS attacks and deployed object shape
recognition principle with a special distance metric called Earth Mover’s Distance
(EMD). In addition, the authors in [93] applied PCA to the destination network
traffic which has only basic features. Similarly, Vasan et al. [94] analyzed the effect

30

of PCA in intrusion detection by implementing different machine learning algorithms
to ISCX-IDS 2012 dataset.

All previous studies in [88]-[94] either selected a subset of complete dataset or
extracted only a few features to represent the network traffic. While these approaches
can be simple, other complex features should be investigated to detect more stealthy
attacks with a good precision. In this thesis, a model is developed using complete
traffic capture in flow level with as many features as possible to achieve better
detection mechanism.

3.6 Summary
This chapter has presented different benchmark datasets and briefly explained some of
their drawbacks. The ISCX-IDS 2012 dataset has been introduced and performance
evaluation with various machine learning algorithms has been illustrated. Finally, a
review on the prior research using this dataset has been summarized. The following
chapter will present the mathematical background constructing the overall architec-
ture of the proposed system and the application of possible different approaches of
it.

Chapter 4

Methodology

This chapter provides the mathematical background as well as the methods required
for constructing the proposed system. Firstly, the general architecture of the system
is explained. Secondly, the function of each component and mathematical method
are presented in detail. Finally, the implementation of different on-line and off-line
learning mechanisms with the ISCX-IDS 2012 dataset are introduced.

4.1 General Architecture
Figure 4.1 illustrates the high level architecture of the designed system. The pro-
posed intrusion detection system consists of three parts: Network flows aggregation,
conversion from feature to likelihood domain, and machine learning. In order to
aggregate network data efficiently, prefix trees and the hierarchical heavy hitters
(HHH) approach [95] were used. As stated in [95], hierarchical algorithms are usually
used for network aware-clustering and detecting DoS attack patterns. In addition,
the authors stated that hierarchical algorithms can provide better exploration of
high-volume clusters than straightforward methods. In the proposed IDS structure,
HHH aggregation was defined on the destination IP addresses due to the hierarchical
addressing scheme of IP flows or packets. Section 4.3 explains HHH detection for
different classes in more detail. After detecting traffic clusters, every numerical fea-
ture of each cluster was treated as a set of events in a sample space and probabilities
were assigned to these events. In other words, probability density functions were
estimated from various numerical flow statistics of all heavy hitters. Finally, machine
learning was implemented for each cluster by using probabilities as input.

The complete mechanism with the HHH algorithm and machine learning in the
Figure 4.1 was written from scratch. A black box programming method, where the
inner functions in the overall system need not to be examined if inputs change, was
used in every step in order to ensure that each block is isolated and can be integrated
to other systems.

Different variants of the proposed intrusion detection system were implemented
in order to test the performance of both batch and streaming processing. In batch

31

32

learning, the proposed IDS is trained and tested with high volumes of data. On the
other hand, sequential learning was done by using small chunks of the network traffic
over time and updating the machine learning part when new patterns are observed.
These different implementations are explained in section 4.6.

training data

Build Hierarchial
Binary Tree of

IPs and get hierar-
chial heavy hitters

Build distribution
of flow statistics
for each cluster

0-256

0-128

0-64

0-32 · · ·

64-128

64-96 96-128

128-256

28-192

· · · · · ·

192-256

· · · 224-256

construct probability
density function
for all features

classify flows from
corresponding node’s
probability density
function

Figure 4.1: High Level Description of the Methodology

4.2 Trie Data Structure
A trie [96], which is also known as a prefix tree, is an ordered data structure based on
the prefix of a string. Tries can visualize strings as a tree structure in a hierarchical
manner. Tries have some advantages over binary search trees: For example, searching
a word with length of M takes O(M) time in the worst case. On the other hand,
binary search trees perform O(log(n)) comparisons, where n is the number of nodes.
Therefore, binary search trees take O(M log(n)) time for searching a word in the
worst case. In [97], it was also stated that tries are more space efficient than binary
search trees.

The proposed method has a natural hierarchical structure since it monitors destina-
tion IPs and aims to achieve a minimum number of operations, such as searching
and inserting an IP value. Therefore, the basic idea of a trie data structure was
applied for the IP lookup problem. While maintaining the standard trie structure,
the algorithm was designed for 8 bit IPv4 prefix trees to simplify the problem. In this
design, the first octet (first three members from the dotted decimal representation)
of an 32-bit IPv4 address was used to build prefix trees. The other parts of the IPv4
address representing subnetworks and hosts are not taken into consideration in order
to get a tree with smaller depth.

Trie search was implemented for solving the IP address lookup problem [98]. A
simple IP lookup operation for the proposed method is illustrated in Figure 4.2. As
can be seen in the figure, the most significant 8-bits representing the first octet are
extracted from IPv4 destination addresses. In other words, a 255.0.0.0 subnet mask
is applied to each IPv4 address in sampled flows. Similar to binary search trees, the

33

overall structure has a root containing all IPv4 destination addresses. In addition,
each node contains an ordered left or right subtree except leaf nodes, as seen in
Figure 4.2. In our design, each node n contains the depth, pointers to the children,
IP range associated with prefix and the volume of traffic for its sub-trie.

Searching and insertion operations of individual IP addresses are done recursively,
which is quite similar to binary search tree operations [99]. It should be noted that
trie modification by deletion is not implemented in the thesis.

0-256

0-128

0-64

0-32 · · ·

64-128

64-96 96-128

128-256

128-192

128-160 160-192

192-256

192-224 · · ·

Figure 4.2: Example of IP Trie Structure

4.3 Hierarchical Heavy Hitters
Heavy hitters is a data mining technique used for identifying and clustering frequent
patterns in hierarchical data and, since this type of data can be aggregated and
visualized at different levels [100]. It was proposed for detecting DoS attacks, since
such attacks send huge amount of SYN requests to a victim’s machine in order to
occupy all the resources of the host system [95]. A heavy hitter is a cluster which
has more frequent items than some specified threshold value. For example, after
aggregating and clustering IP addresses as in Figure 4.2, heavy hitters can be found
by comparing the volume of each node to some threshold value. As stated before, an
IP address has a hierarchical structure, since it contains 32-bits length information
about the network, subnetworks and host. For this reason, hierarchical heavy hitters
(HHH) can be defined for data streams with IP traffic. Given a proportion ϕ and a
data stream of length N which has hierarchical statistics similar to IPv4 address, p is
a HHH node in the hierarchy if it has total number of descendant nodes higher than
Nϕ after extracting descendants of p which are already HHH nodes themselves [95].

Figure 4.3 shows an example of HHH results with 100 flow records. In the fig-
ure, a threshold value was used as ϕ = 0.1 for clustering. It means that a node is
designated as an HHH if its volume is at least N ÷ ϕ = 10. The volume of a node is
defined as the total number of leaf elements under that node minus the cumulative
volume of all of its descendant nodes that are already designated as HHHs. Detected

34

HHHs in Figure 4.3 were drawn and highlighted with a red marker. In the figure,
node F is an HHH since it has a volume of 10 from its descendant nodes which are
not HHH. On the other hand, node G is not an HHH since its child node is already
an HHH, leading to a decrease in its volume from 45 to 2. In this case, G contains
less volume than Nϕ = 10. The same case can be seen for node B and node C. Node
B has 10 descendant nodes after removing its child nodes which are already HHHs;
therefore node B is also an HHH. Unlike node B, node C is not an HHH since it has
a volume of 2 after subtracting its child nodes which are HHHs.

0-256

A

0-128

B

0-64

D

0-32

20

32-64

3

23

64-128

E

64-96

15

96-128

7

22

45

128-256

C

128-192

F

128-160

5

160-192

5

10

192-256

G

192-224

43

224-256

2

45

55

Figure 4.3: Illustration of the Hierarchical Heavy Hitters Concept (N = 100, ϕ = 0.1)

Algorithm 1: Detecting HHHs from IP Trie
1 function ExtractHHH (trie, ϕ);
IP trie,freq :An IP trie trie and frequency ϕ
HHHs : list of HHHs

2 threshold = trie.root.volume× ϕ ;
3 for node ni in the postorder do
4 if ni.volume ≥ threshold then
5 HHHs.append(ni)
6 end
7 for node nj in the postorder do
8 if ni in the subtree of nj then
9 nj.volume = nj.volume− ni.volume;

10 end
11 end
12 end
13 if trie.root.volume ≥ 0 then
14 HHHs.append(trie.root)
15 end
16 return HHHs

35

In the hierarchical heavy hitters algorithm, detected clusters are non-overlapping.
This enables each flow to be in only one cluster and not to be found in the parents
of that node. In order to ensure that all flows are matched with one cluster, a root
node was also included as an HHH if the total flow record has left unclustered items.
The procedure for detecting HHHs is summarized in Algorithm 1. In this algorithm,
HHHs are detected using postorder traversal method [99], which visits first the left
sub-tree, then the right-subtree and finally the root. Detected HHHs are appended
into a list of object for further analysis which is explained in the following sections.

4.4 Mapping Features into Probability Space
Assuming that X is a discrete random variable defined on a sample space S, then
the probability density function f(x) (also referred as probability mass function for
discrete random variables) can be described as

f(x) = P (X = x) = P ({s ∈ S : X(s) = x}), (4.1)

where f(x) ≥ 0 and ∑x f(x) = 1. It can also be written by using the Dirac delta
function [101] for n possible discrete variables as

f(x) =
n∑

i=1
Pi × δ(x− xi). (4.2)

This function can map each real valued random variable X into a probability space.
Similarly, the proposed method tries to find a mapping for the probability density
function (PDF) by treating the features as random variables.
As explained in subsection 4.3, the most frequent clusters were extracted from the
network data with the HHH method. Each of these clusters has d flow features over
a time window t. If a cluster has N flows over this period t, then a matrix for the
k-th cluster can be formulated with Xk:

Xk =
[
xk1 · · · xkN

]T
=

x1

k1 · · · xd
k1... · · · ...

x1
kN
· · · xd

kN

N×d

, (4.3)

where xd
kn

represents the d-th flow feature for the n-th flow in cluster Xk. While
classical machine learning methods directly use this matrix in their learning part, the
proposed IDS finds the associated probability value for each feature in a sample flow
and trains the machine learning part with the representation of Xk in the probability
space.

Equation 4.4 describes the matrix of the constructed probability density functions
Fxk

, and Equation 4.5 defines the matrix X̃k as the pdf estimates of features for
cluster k in the probability space.

FXk
=
[
f 1

X1
k
· · · fd

Xd
k

]
, (4.4)

36

X̃k =

f 1

X1
k
(x1

k1) · · · fd
Xd

k
(xd

k1)
... · · · ...

f 1
X1

k
(x1

kN
) · · · fd

Xd
k
(xd

kN
)

 =

x̃1

k1 · · · x̃d
k1... · · · ...

x̃1
kN
· · · x̃d

kN

N×d

, (4.5)

where f i
Xi

k
is the probability density function of the i’th flow statistic for cluster k.

It is important to note that x̃i
kj

refers to the estimated probability of the i-th feature
of the j-th flow sample.

Probability density function can be estimated by the use of a histogram approach
[87]. The histogram method [87] first partitions a discrete feature x into bins of
width ∆i. Secondly, it counts the number of observations ni of x which falls into
the bin i. Finally, it divides the count with the total number of observations N in
order to find the normalized probability value for each bin as formulated in Equation
4.6. If all bins have equal weight ∆i = ∆, then it gives an estimated model for the
probability value of each bin [87].

Pi = ni

N∆i

. (4.6)

0 1 2 3 4 5
value

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
cy

∆=0. 5

0 1 2 3 4 5
value

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
cy

∆=0. 05

0 1 2 3 4 5
value

0.0

0.2

0.4

0.6

0.8

1.0

fr
e
q
u
e
n
cy

∆=0. 025

Figure 4.4: Total Flow Duration Histogram for Normal Cluster 192.x.x.x

Figure 4.4 illustrates the histogram approach in density estimation based on the
different choices of common bin width ∆. The normalized histogram for flow duration
within one cluster was plotted in the figure. It can be observed that when ∆ is very
small, the histogram is unable to estimate the underlying pattern in the network
since it shows too much individual data. Conversely, if bins are too large, then the
resulting graph was too smooth to capture the real behavior of the histogram [87].
There are numerous methods for finding optimal bin width to determine the goodness
of fit in histogram data [102] . The most common method is finding a bin width
∆ that minimizes the Mean Squared Error (MSE) [103] between the approximated
histogram function and the real distribution. Shimazaki et al. [104] also proposed a
method to minimize the global measure of estimation accuracy which has less time
complexity than calculating the MSE. However, both of these methods might be
computationally complex in the proposed approach, since more than fifty histograms
have to be calculated for each HHH. Therefore, we chose a simpler method in order

37

to determine the bin width. The best results for most of the features were obtained
when the bin width had been calculated as ∆ = (max(Xd

k)−min(Xd
k))/100 by fixing

number of bins to 100 for the d-th feature of the k-th cluster.

After histograms were computed for each feature in one cluster, the dataset it-
self can be discarded due to the histogram property [87]. Moreover, assuming that
data points arrive sequentially, histograms can predict the probability of that point by
comparing data with a simple lookup table. In contrast to normalization techniques, it
does not suffer from the loss of information since it is insensitive to input vector range.

In order to prove that attack and normal traffic are not identical in all aspects,
some selected features were compared for the same destination address. As can
be seen in Figure 4.5, comparison results are in very good agreement with this
assumption. For a specific destination IPv4 address, the source port and time-to-live
statistics were clearly distinguishing features between normal and attack traffic.

After converting input features to probability densities, training and predictions were
performed with the Extreme Learning Machine based approaches.

−10000 0 10000 20000 30000 40000 50000 60000 70000
sport (192.x.x.x)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

fr
e
q
u
e
n
c
y

normal

unknown

attack

(a)

−50 0 50 100 150 200 250
sttl (192.x.x.x)

0

5000

10000

15000

20000

25000

30000

fr
e
q
u
e
n
c
y

normal

unknown

attack

(b)

Figure 4.5: Distribution of (a) Source Port and (b) Time-to-Live Features for June
13

4.5 Extreme Learning Machines (ELM)
The Extreme Learning Machine (ELM) algorithm was proposed by Huang et al. in [86].
ELM is one adaptation of single hidden-layer feedforward neural networks (SLFN)
[105]. ELM randomly initializes the input weights and updates only the output
weights in a single iteration, which differs from other neural network structures in
order to reduce computational time [106]. It also provides robust learning capabilities
despite the mathematically simple structure [107].

38

4.5.1 Batch ELM
Considering a set ofN arbitrary samples {(xi,yi)}1≤i≤N where xi = [xi1, xi2, · · · , xid]T ∈
Rd and yi = [yi1, yi2, · · · , yic]T ∈ Rc. Then a SFLN with M hidden neurons can be
represented as

M∑
i=1

βiφ(wT
i xj + bi) j ∈ [1, N], (4.7)

where wi = [wi1, wi2, · · · , wid]T is the weight vector connecting the i-th hidden node
to the input nodes, bi is the bias of the i-th hidden node, βi = [βi1, βi2, · · · , βic]T is
the output weight vector connecting the i-th hidden node to the outer nodes and
φ : R→ R is the activation function.

If a SLFN can approximate N samples without error, then the difference between
the estimated outputs ỹj and actual outputs yj should be equal to zero. It also
expresses wi, βi and φ such that

M∑
i=1

βiφ(wT
i xj + bi) = yj j ∈ [1, N], (4.8)

which can eventually be written as

Hβ = Y, (4.9)

where

H =

φ(wT

1 x1 + b1) · · · φ(wT
Mx1 + bM)

... · · · ...
φ(wT

1 xN + b1) · · · φ(wT
MxN + bM)

N×M

, (4.10)

and

β =

βT

1
...
βT

M

M×c

, Y =

yT

1
...

yT
N

N×c

, (4.11)

assuming that the hidden layer has M nodes.

In [86], Huang et al. defines H as the hidden layer output matrix of the neural
network where the i-th column of H represents the i-th hidden node output.

Unlike back-propagation methods, ELM tries to minimize the squared Euclidean
norm of the error matrix ||Hβ −Y||2 for the randomly initialized input weights wi

and biases bi. In most cases, there are more equations than unknowns in the linear
system shown in Equation 4.9. Therefore, H might be defined as a non-square matrix
since the number of hidden nodes is less than the number of training samples. In this
case, there may not be an exact solution. Therefore, ELM finds the pseudoinverve
solution of the system as

β̂ = H†Y, (4.12)

39

where H† is the Moore-Penrose generalized inverse [108] of H. This generalized
inverse can be calculated by using several methods. If HT H is nonsingular, then the
pseudoinverve solution can be converted to the least-squares solution in Equation
4.13.

β̂ = (HT H)−1HY. (4.13)

Singular value decomposition can also be used to calculate the Moore-Penrose gener-
alized inverse [86].

ELM can solve both regression and classification problems. In the case of multi-class
classification, the predicted class assignment is based on the closest numerical value
when the class labels are converted into numerical representations {−1, 0, 1}. Since
the benchmark dataset consists of three different classes (normal, attack, unknown),
ELM can be adapted in the learning phase of the proposed solution.

The detailed theoretical proofs of generalized inverse and the complete ELM procedure
can be found in [108] and [86], respectively.

4.5.2 On-line Sequential ELM (OS-ELM)
Most of the SLFN applications are designed as batch-learning training methods.
Batch-learning is a type of off-line learning that needs a whole dataset for efficient
performance. Although, Huang et al. [86] reported that ELM is extremely fast and
performs better than other batch training methods, batch learning itself is usually
time consuming since it requires many iterations to converge into a solution [109].
Moreover, it needs complete re-computation of the model parameters whenever a
new data stream arrives. In addition to this challenge, if the received sequential
data arrives faster than the computational time, re-computation may be aborted to
process the newly observed data chunk.

In order to avoid these problems, Liang et al. [109] developed the On-line Sequen-
tial Extreme Learning Machine (OS-ELM) algorithm that can learn the sequential
training observations. OS-ELM handles observations that arrive one-by-one and
chunk-by-chunk with fixed or varied chunk length. When the new data is received,
OS-ELM is able to update the model without requiring the entire past information
and without full retraining.

The batch ELM presented in Section 4.5 assumes that all training samples are
available for training. OS-ELM divides the training part into two phases: initial
learning and sequential learning. In the initial learning phase, it assumes the observed
data {(xi,yi)}N0

i=1 as a first chunk and N0 ≥ M where M is the number of hidden
neurons. Under those assumptions, the OS-ELM algorithm tries to minimize the l2
norm of the error in the first chunk (represented as the 0-th chunk) ‖H0β −Y0‖

40

where

H0 =

φ(wT

1 x1 + b1) · · · φ(wT
Mx1 + bM)

... · · · ...
φ(wT

1 xN0 + b1) · · · φ(wT
MxN0 + bM)

N0×M

, (4.14)

and

Y0 =

yT

1
...

yT
N0

N0×c

. (4.15)

In [109], an orthogonalization method was implemented to find the Moore-Penrose
generalized inverse of hidden layer output matrix H. Therefore, the solution to the
l1 minimization problem ‖H0β −Y0‖ can be solved as

β0 = (HT
0 H0)−1HT

0 Y0. (4.16)

After this initial training, a new chunk of data {(xi,yi)}N0+N1
i=N0+1 with N1 samples is

concatenated to the end of the old dataset to find the new β by minimizing∥∥∥∥∥
[
H0
H1

]
β −

[
Y0
Y1

]∥∥∥∥∥ . (4.17)

Therefore, the output weights β1 can be updated with

β1 = β0 + (HT
0 H0 + H1

T H1)−1HT
1 (Y1 −H1β

0). (4.18)

The algorithm can be generalized to the (k + 1)-th chunk of newly arrived dataset

{(xi,yi)}
∑k+1

j=0 Nj

i=(
∑k

j=0 Nj)+1
with Nk+1 sequential observations. The equations for updating

βk+1 can be written as

βk+1 = βk + Pk+1HT
k+1(Tk+1 −Hk+1β

k)
Pk+1 = Pk −PkHT

k+1(I + Hk+1PkHT
k+1)−1Hk+1Pk,

(4.19)

where
Pk+1 = (Kk+1)−1, (4.20)

(Kk+1)−1 = (Kk + HT
k+1Hk+1)−1, (4.21)

and
K0 = HT

0 H0. (4.22)

OS-ELM updates (Kk+1)−1 using the Sherman-Morrison-Woodbury formula [110].

OS-ELM was found to have better performance than other sequential regression
and classification applications in [111]. For this reason, the proposed solution also
implemented the on-line learning procedure by the OS-ELM method.

41

4.5.3 One-Class Classification with ELM
A One-class classifier based on ELM was proposed by Leng et al. in [111]. One-class
classification is an outlier detection method which differs from normal classification.
It samples data from only one target class since training data consists of no or
very few samples from the other classes. One-class classification defines a distance
function dELM which is applied to the test samples and target class. With the distance
function, this classifier accepts or rejects new observations having a higher distance
from the target than some threshold parameter θ. In [111], the One-Class ELM
(OC-ELM) algorithm was developed from the assumption that similar objects are
close in the feature space. Thus, if similar objects are from a single class, then the
estimated ŷi and target outputs yi should be the same. Then, Equation 4.9 can be
combined with the distance function and defined as

dELM(xi) = ‖H(xi)β − yi‖, (4.23)

where H(xi) represents the output of the hidden layer for the sample xi.

In order to achieve the best classification rate, the optimum threshold distance
θ to the separating hyperplane must be determined carefully. Extreme cases such
as too large or too small θ should be avoided for less generalization error. In [111],
a proper method was proposed to select an optimal θ. After calculating the dis-
tances of N training samples, they are sorted in terms of magnitude such that
dELM(x1) ≤ · · · ≤ dELM(xN). The function determining this threshold value θ can be
chosen as a distance higher than the least deviant sample dELM(x1) and lower than
the most deviant sample dELM(xN). Then, the decision function for OC-ELM can be
defined as

CELM = sign(θ − dELM(z))

=

+1 z belongs to the class
−1 z is an outlier,

(4.24)

for a query point z. A more detailed exploration of the OC-ELM procedure can be
found in the original paper [111].

OC-ELM can also be combined with update equations and approaches of on-line
sequential ELM in order to achieve a low cost strategy. In intrusion detection sys-
tems, OC-ELM can be applied to the network data delivered in real-time in order
to construct a normal profile and outliers can be considered as attacks in a single
moment or in a time window.

Figure 4.6 shows a comparison between one-class OS-ELM and one class support
vector machines (SVM) classifier. One-class SVM [112] is an unsupervised outlier
detection method which maps input data to a high-dimensional feature space in
order to create a non-linear decision boundary for the target class. One-class SVM
has gained considerable attention in machine learning over the last decade due to its

42

−8 −6 −4 −2 0 2 4 6 8

error tra n: 19/200 ; errors novel regular: 4/40 ; errors novel abnormal: 0/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on w th OC-SVM

learned front er

tra n ng observat ons

new regular observat ons

new abnormal observat ons

−8 −6 −4 −2 0 2 4 6 8

error tra n: 0/200 ; errors novel regular: 0/40 ; errors novel abnormal: 2/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on w th One-Class OS-ELM

learned front er

tra n ng observat ons

new regular observat ons

new abnormal observat ons

−8 −6 −4 −2 0 2 4 6 8

error tra n: 42/200 ; errors novel regular: 8/40 ; errors novel abnormal: 1/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on for Mov ng Data (OC-SVM, 1st Move)

−8 −6 −4 −2 0 2 4 6 8

error tra n: 4/200 ; errors no)el regular: 0/40 ; errors no)el abnormal: 7/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on for Mo) ng Data (One-Class OS-ELM, 1st Move)

−8 −6 −4 −2 0 2 4 6 8

error tra n: 42/200 ; errors no)el regular: 9/40 ; errors no)el abnormal: 0/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on for Mo) ng Data (OC-SVM, 2nd Move)

−8 −6 −4 −2 0 2 4 6 8

error tra n: 4/200 ; errors no)el regular: 0/40 ; errors no)el abnormal: 2/20

−8

−6

−4

−2

0

2

4

6

8
Outl er Detect on for Mo) ng Data (One-Class OS-ELM, 2nd Move)

Figure 4.6: Comparison of OC-SVM and One-Class OS-ELM on 2D Toy Data Moving
in (x,y) Plane

43

high accuracy. Thus, the performance of one-class OS-ELM can be interpreted by
comparing it to one-class SVM. In the comparison experiments, both one-class SVM
and OS-ELM were applied to a synthetically generated toy data. The observations of
this data are Gaussian distributed, and a few random outliers are added to the input
space. As seen in Figure 4.6, the center of this data slowly moves in the (+x,+y)
direction in each step.

In Figure 4.6, both one-class OS-ELM and OC-SVM try to find a description
boundary, which is illustrated by the red line, for the training data and label new
observations as outliers if they are not inside the red line. First two figures plot
the results for the initial training and testing samples as well as draws the original
description boundary. Although one-class OS-ELM has a bigger boundary containing
the training samples than the OC-SVM has, it successfully detects outliers. It should
be noted that we might obtain a better fit for the boundary with different weight
initializations. After the initial training, observations move in the (+x,+y) direction.
The second and third plots in Figure 4.6 show that the center of the training and test
samples moves from (0, 0) to (1, 1) by preserving the underlying distribution. In this
case, one-class OS-ELM and OC-SVM update their boundary considering the shift in
the data and predict new observations by checking the new boundary conditions. As
seen in these two plots in the figure, one-class OS-ELM achieves better performance
with less error than OC-SVM does in this step, since one-class OS-ELM updates the
definition boundary by checking the data from the previous step and detects new
regular observations, which are similar to the old training observations, correctly.
The same result can be seen in the last two plots in the same figure. In the last plots,
the center of the training and testing observations are shifted to (2, 2), and one-class
OS-ELM has less classification error due to its learning and storing capability of
sequential training observations. Therefore, one-class OS-ELM was also implemented
in one variant of the proposed method.

4.5.4 Design Choices for ELM
The performance of neural networks heavily depends on the dataset as well as the
neural network configuration. Therefore, preliminary experiments were done with
ELM in order to determine the network performance. For these experiments, mean
squared error of training and validation data were calculated for different number
of neurons. Figure 4.7 gives the mean squared error of training and validation data
for a specific day by using the ELM+PT 2 approach, which will be thoroughly
explained in the following section. Although results give a steady error rate after
200 neurons in this figure, 200 neurons were used in hidden layer of all ELM models
to save memory and reduce the time complexity. In addition to the time complexity,
different activation functions φ : R → R were tested for this scenario to find the
best generalization performance. The most common five activation functions were
implemented for 200 neurons and the mean squared error for training data was
computed. As can be seen in Table 4.1, the sigmoid activation function gives the
minimum error. Thus, activation functions of all neurons were selected as sigmoid

44

for a fair comparison.

0 50 100 150 200 250 300 350 400

Number of neurons

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

M
S
E
 e
rr
o
r

train err

val. error

Figure 4.7: Mean Squared Error for Training and Validation Data with Different
Number of Neurons

Activation func. MSE
linear 0.068
sigmoid 0.060
hyperbolic tangent, tanh 0.061
radial basis function with Manhattan distance 0.218
radial basis function with Euclidean distance 0.069

Table 4.1: Mean Squared Error of Training Data with Different Activation Functions

4.6 Implementation of Different Models
This section presents three cases of the proposed IDS applied to the ISCX-IDS 2012
dataset:

1. Case 1 (OS-ELM + PT): It implements on-line learning mechanism by treating
the dataset as a data stream as well as learns and retrains a normal profile.

2. Case 2 (ELM+PT 1): It applies batch-learning by accessing the complete
dataset.

3. Case 3 (ELM+PT 2): It is another off-line learning mechanism and quite
similar to ELM+PT 1. The difference between ELM+PT 1 and ELM+PT 2 is
the number of tries constructed from normal, unknown and attack classes.

In all cases, the input data was the flow records extracted from the pcap files with
the Argus tool. Each day was trained and tested independently. Additionally, 6
features were eliminated from the learning algorithm, since they have zero variance.
This preprocessing produced flow data with 61 different features for evaluating the
proposed model.

45

The proposed algorithm was implemented using the same software tools and on the
same computer explained in section 3.4. The performance of these cases will be
evaluated in Chapter 5 using the criteria defined in section 2.7.

4.6.1 Case 1: OS-ELM+PT
In this case, the learning model is updated without the need of complete data.
Therefore, the basic updating capability of OS-ELM was used to train the model
continuously. In addition to the machine learning part, a 8-bit IPv4 prefix tree (IP
trie) structure grows dynamically with the new flow arrival in a sliding time window.

Although one-class classification is an unsupervised learning method and built on
the target data, this case still checks data labels since there might be unknown flows
as stated in Chapter 3. When the dataset was investigated further, it was found that
each day starts with a combination of normal and unknown flows. This behavior is
useful and supports the proposed initial training part of the one-class classification
with OS-ELM.

In the initial training phase, the IP prefix tree was built over a period of time
T0:t0 = [0; t0] from normal flow records. From this structure, hierarchical heavy
hitters were extracted, as presented in section 4.3. Initially, each heavy hitter Xk

has N0
k flows with d flow features including TTL, average packet size, duration of

flow, port numbers, protocols, total number of routers that a flow passes through and
other numerical features. If N0

k is large enough and heavy hitters have a sufficient
number of flow statistics, the distribution of values for Xk can be constructed over
the time period T0:N0

k
as fXk

. As explained in section 4.4, the discrete probability
density function (pdf) was produced with the aid of a histogram approach. In these
probability density functions, the common bin width ∆ was calculated specifically for
each feature by a fixed number of bins decided as 100. A lookup table was constructed
using these values and stored in each cluster. With this approach, flow statistics can
be discarded to decrease the memory usage as stated in section 4.4. After converting
flow features of training samples into a matrix for estimated probability values X̃k

using a lookup table, the one-class OS-ELM was initialized in each normal heavy
hitter with 200 neurons in the hidden layer and sigmoid activation functions in every
neuron. Therefore, the output matrix of the hidden layer for the first training part
in each heavy hitter can be formulated as

H0 =

φ(wT

1 x̃1 + b1) · · · φ(wT
200x̃1 + b200)

... · · · ...
φ(wT

1 x̃N0
k

+ b1) · · · φ(wT
200x̃N0

k
+ b200)

N0

k
×200

, (4.25)

where
X̃k =

[
x̃1 x̃2 · · · x̃N0

k

]T
. (4.26)

46

Initial output weights β0 were calculated with Equation 4.16. The threshold value θ
was defined as 0.9× dmax where dmax represents the maximum distance of a specific
sample from the normal data, as explained in section 4.5. Since the input is high
dimensional, the idea of the hypersphere in [113] was used to obtain the minimum
separating dimension. In this case, OS-ELM tries to find the smallest sphere which
contains the normal data samples and separates these from the outliers. OS-ELM
decides an optimum ball radius R which is equal to the threshold value θ defined in
section 4.5.

In the testing phase, the same statistics for the flow records were collected over a
certain time period Tti,tj = [ti; tj]. Each flow was matched to the closest cluster.
Matching was performed by comparing the IP value of a test sample with the range
of each HHHs. As described in Algorithm 1, HHHs are collected into a structure
with a recursive postorder traversal method. This tree traversal method ensures
finding the most similar heavy hitter behavior for each cluster. Secondly, the pdf of
each feature in matched clusters was estimated using the previously obtained lookup
table. Thirdly, these probabilities were given as an input to the one class OS-ELM
of matched cluster. Flows with a distance smaller than the threshold θ were labeled
as normal flows. Otherwise, they were considered as attacks and discarded from the
updating phase.

In the update mechanism, the IP trie grows with the new data and the one class
ELM is retrained. In this case, normal predicted flows from the previous time window
were added to the IP trie. Secondly, hierarchical heavy hitters were constructed
from this growing trie and the learning mechanism was updated with new look up
tables. The second procedure was divided into two cases: adding data to existing
heavy hitters and initial training of possible new clusters. If the 8-bit IPv4 prefix
of a newly arrived flow presents in an HHH node, then the features of this flow are
added to this heavy hitter. The initial training of new clusters is done when a node
has enough traffic volume to be extracted as an HHH, as the IP trie grows with the
received data stream.

Adding Data to Existing Heavy Hitters

In this case, newly obtained heavy hitters are the same as the old HHHs. A new
lookup table was extracted from the statistical values which had been gathered over
a time period T0,ti = [0; ti] where the test phase before this procedure was from
the time window Tti−1,ti = [ti−1; ti]. The previous lookup table was replaced with
the new lookup table, since it provides a more generalized and updated version of
the gathered flow features. By using the new lookup table, the probabilities were
estimated for the recently arrived N i

k flows in the i’th sliding window for a heavy
hitter Xk. Consequently, the output matrix of the hidden layer for the i’th time

47

window in each heavy hitter can be written as

Hi =

φ(wT

1 x̃1 + b1) · · · φ(wT
200x̃1 + b200)

... · · · ...
φ(wT

1 x̃N i
k

+ b1) · · · φ(wT
200x̃N i

k
+ b200)

N i

k
×200

, (4.27)

where
X̃k =

[
x̃1 x̃2 · · · x̃N i

k

]T
. (4.28)

Since OS-ELM allows to add new data to the model for retraining, the updated
output weights βi can be computed using Equation 4.19. This continuous learning
was performed in every time window over data matrix Xk of each heavy hitter unless
the volume of the cluster has a complete network data proportion smaller than ϕ.
Otherwise, Xk was dropped from the HHH list, as it is no longer a frequent event in
the network data.

Adding a New Heavy Hitter to the Model

Adding a new heavy hitter to the model is a straightforward process. If the recently
obtained heavy hitter list contains a new cluster which had not been seen before,
the probabilistic representation of features and the initial training of the one class
OS-ELM was conducted for that heavy hitter by using the exact procedure in the
initial training. Hence, the model can continue to grow by adding new subnetworks
without any disruptions.

0-256

0-128

0-64

0-32 · · ·

64-128

64-96 96-128

128-256

28-192

· · · · · ·

192-256

· · · 224-256

Normal
Unknown
Attack

7.Update ELMs for each HHHs

3.Train ELMs for each HHHs

96-128 224-256 0-64 128-256 0-256

1.I

P trie
for normal class

5.T
rie

upd
ate for

normal class

2/6.Post order traversal of
HH

Hs

4.Find the closest HHH for eac
h flow

Figure 4.8: Training (Steps 1,2 and 3) and Updating (Steps 5,6 and 7) Mechanisms
for OS-ELM+PT

48

Figure 4.8 illustrates the initial training (steps 1,2,3) and update mechanisms (steps
5,6,7) for the streaming input data shown as matrix. In this case, the main objective
is to label outliers as attack. Therefore, unknown flows were either identified as
normal or attack. As illustrated in Figure 4.8, training and updating mechanisms
follow these steps:

1. In the initial training part, the IP trie for the normal class is obtained.

2. HHHs are identified from the IP trie with a post order traversal method.

3. For each HHH, a lookup table is constructed by calculating histograms and
one-class OS-ELMs are trained with the estimated pdf values of each feature
in every HHH.

4. In the testing phase, this case tries to find the closest HHH for the recently ob-
served flows and labels each flow with respect to the output of the corresponding
ELM.

5. IP trie is updated with the new flows predicted as normal data.

6. Possible new HHHs are detected from the updated IP trie with the same post
order traversal method. In the same time, histograms are updated in every old
HHH.

7. If a new observation is added to an existing heavy hitter, OS-ELM of this
cluster is retrained. If a new HHH is added to the complete model, OS-ELM is
initialized for that heavy hitter.

4.6.2 Case 2: ELM+PT 1
As stated earlier, batch learning requires a complete dataset. For this reason, each day
in the dataset was randomly split into training and testing samples by using 3-fold
cross-validation. This batch learning model was trained with 1/3 of the complete
dataset for each day and the remaining part of the data was used to validate the
resulting model. In the learning part of this method, ELM was applied with 200
neurons in the hidden layer and the sigmoid activation functions in every neuron.

In the training phase, IP trie and HHHs were obtained by using only normal flows
randomly sampled from the training data. A lookup table was constructed with
the same method explained in the first training part of Case 1. In contrast to the
previous case, ELMs were trained by using complete training set. For each flow, the
closest cluster was found by comparing the IPv4 value of the destination address
with the IP range of the HHH list. After obtaining the matrix X̃ for the estimated
pdf values of the training data, ELMs of the k-th heavy hitter were trained with
this matrix. X̃k training matrix for the k-th HHH contains samples from the normal

49

X̃kn, unknown X̃ku and attack X̃ka classes. In ELM+PT 1, the training data for
cluster k is represented as Equation 4.29.

X̃ =

X̃kn

X̃ku

X̃ka

 . (4.29)

The probability values of each feature for all classes were predicted as

X̃kn =
[
f 1

X1
kn

(X1
kn) · · · fd

Xd
kn

(Xd
kn)
]

X̃ku =
[
f 1

X1
kn

(X1
ku) · · · fd

Xd
kn

(Xd
ku)
]

X̃ka =
[
f 1

X1
kn

(X1
ka) · · · fd

Xd
kn

(Xd
ka)
] (4.30)

where the k-th normal HHH has a lookup table f i
(Xi

kn
) for its i-th feature.

The corresponding output of the training samples for the k-th HHH was converted
into binarized vectors

Y =

yT
kn

yT
ku

yT
ka

 , (4.31)

The correct output was labeled as

yT
ni

= [1, 0, 0]
yT

ui
= [0, 1, 0]

yT
ai

= [0, 0, 1]
. (4.32)

where yT
ni

is the normal class sample, yT
ui

is the unknown class sample and yT
ai

represents attack class sample in the training dataset.

There might be cases when the training samples of an HHH does not contain
any attack or unknown labeled flows. Although this highly indicates that this HHH
node probably represents only normal traffic of the complete dataset, the training
phase was performed with multi-class classification, as written in Equation 4.31. It
should be assumed that the 8-bit IPv4 prefix value of an unknown or attack labeled
test sample can match to this HHH and the ELM algorithm should identify this
sample correctly. For example, if the learning input of k-th normal cluster consists
of N perfectly normal data samples, Equation 4.29 and 4.31 are converted into

X̃k =
[
X̃kn

]
=
[
x̃kn1 · · · x̃knN

]T
,

(4.33)

and

Y =

yT

kn1...
yT

knN

T

, (4.34)

50

where

yT
ni

= [1, 0, 0]. (4.35)

Figure 4.9 demonstrates the training procedure for batch input data. The training
phase is as follows:

1. 8-bit IPv4 prefix tree is obtained from only normal class samples of the training
dataset.

2. HHHs are retrieved from this IPv4 trie with a post order traversal method.

3. After extracting the HHHs from the normal data samples, all available training
data is matched to its closest HHH and a lookup table for the pdf estimation
of every feature is constructed for each HHH.

4. ELMs of each HHH are trained with the estimated pdf values.

Prediction for the remaining dataset is performed in a similar way to the training
part. Probabilities are estimated for each feature of every flow in the remaining data
by finding the closest HHH. Estimated probabilities are given as an input to the
corresponding ELMs in order to predict the labels. These labels are also obtained in
a binarized vector shape as in Equation 4.32. Finally, the estimated vectors were
categorized as normal, attack or unknown flows for evaluation.

0-256

0-128

0-64

0-32 · · ·

64-128

64-96 96-128

128-256

28-192

· · · · · ·

192-256

· · · 224-256

Normal
Unknown
Attack

4.Train ELMs for each HHHs
96-128 224-256 0-64 128-256 0-256

1.I

P trie
for normal class

2.Post order traversal of H
HH

s

3.Find the closest HHH for eac
h flow

Figure 4.9: Training Mechanism of ELM+PT 2

4.6.3 Case 3: ELM+PT 2
This strategy is the extended version of the ELM+PT 1 case in order to find out
the possible effects of modeling different trees for each class. This case is also a

51

batch learning algorithm and each day of the weekly dataset was randomly split into
training and test dataset using a 3-fold cross-validation approach.

0-256

0-128

0-64 64-128

128-256

28-192 192-256

0-256

0-128

0-64 64-128

128-256

28-192 192-256

0-256

0-128

0-64

0-32
· · ·

64-128

64-96 96-128

128-256

28-192

· · · · · ·

192-256

· · · 224-256

Normal
Unknown
Attack

1.N

orm
al cl

ass Trie

1.Unknown class Trie

1.Attack class Trie

96-128 224-256 0-64 128-256 0-256

96-128 0-64 192-256 0-256

96-128 0-64 192-256 0-256

2.F
ind

the
closes

t HHH for each flow

2.Find the closest HHH for each flow

2.Find the closest HHH for eac
h flow

3

3.
Es

ti
m
at
e
pd

fs

3

4.Train ELMs for each HHHs

Figure 4.10: Training Mechanism of ELM+PT 2

The training phase is illustrated in Figure 4.10. This version differs from previous
cases in terms of the number of IPv4 tries. The proposed training part requires these
steps:

1. 8-bit destination IPv4 address prefix trees (IP tries) are obtained separately
for normal, unknown and attacks flows in the training data. After this step,
different hierarchical heavy hitters are extracted and collected as lists with the
post order traversal method. At the end of this step, there are three distinct
HHH lists for different labels, and for each HHH, a lookup table is constructed
by calculating and normalizing histograms.

2. For each sample flow in the training network, the closest normal, unknown and
attack HHHs are found.

3. Since, there are three different lookup tables based on class tries, probability
values of each flow are estimated from the closest HHHs’ lookup table. For
instance, supposing that the i-th flow vector xi with a label yi is the closest

52

training sample to the n-th normal, u-th unknown and a-th attack HHHs, then
the estimated pdfs of this flow will be

x̃in =
[
f 1

X1
n
(x1

i) · · · fd
Xd

n
(xd

i)
]T
,

x̃iu =
[
f 1

X1
u
(x1

i) · · · fd
Xd

u
(xd

i)
]T
,

x̃ia =
[
f 1

X1
a
(x1

i) · · · fd
Xd

a
(xd

i)
]T
,

(4.36)

where f j

Xj
n
is the lookup table of the n-th normal HHH, f j

Xj
u
is the lookup

table of the u-th unknown HHH and f j

Xj
a
is the lookup table of the a-th attack

HHH for the j-th feature. In addition, the output label yi was binarized and
transformed into a vector yi, as in Equation 4.32.

4. Estimated probabilities of each sample flow are given as a learning input to
train ELMs of the closest normal HHH. Unlike the previous cases, dimensions
of the training input is 3×N × d in this case. Under certain circumstances
such as purely normal destination IPv4 HHHs, the training phase is performed
with only estimations from the available closest heavy hitters. As a result, the
input matrix for the learning part might reduce to 2×N × d or even to N × d
in purely normal destination IPv4s.

In the testing part, steps 4 and 5 are performed directly and the probability estima-
tions are given as input to the ELM in order to make predictions.

4.7 Summary
This chapter has provided a detailed analysis of the proposed intrusion detection
system as well as the mathematical methods used in the design. The proposed IDS
first builds a hierarchical binary tree of the destination IPv4 addresses and obtains
the most frequent traffic patterns with hierarchical heavy hitters algorithm as an
initial learning model. Secondly, it converts features of each heavy hitter into a prob-
ability space by using histogram normalization. In the last part of the training, the
estimated probability values are trained with a supervised learning method. Since the
fundamental learning method of the proposed IDS is ELM, this chapter has reviewed
the original ELM algorithm by providing design choices for a better performance.
Two of ELM variants, OS-ELM and OC-ELM have also been presented. In addition
to the mathematical review, this chapter has introduced different sequential and
batch learning cases with three novel approaches. In the first case, which implements
the on-line learning method, the model is continuously updated with OS-ELM binary
classification to test the capability of sequential learning. In other cases, the proposed
methodology uses batch ELM to build and predict different classes by using estimated
probability densities of network flow. These batch cases were constructed to evaluate
the efficiency of learning from the aggregated probability space.

53

The following chapter will evaluate the performance of the proposed intrusion detec-
tion system in the three different cases explained in this chapter.

Chapter 5

Results and Evaluation

This chapter provides an evaluation of the proposed solution presented in Chapter 4.
Section 5.1 explains the experimental setup in detail. In section 4.6, the performance
of three different cases (OS-ELM+PT, ELM+PT 1 and ELM+PT 2) is discussed
in terms of the criteria defined in Chapter 2. Finally, the two most efficient cases
are compared to the simple machine learning-based anomaly detection methods and
other state-of-the-art intrusion detection systems presented in Chapter 3.

5.1 Experimental Setup
In this thesis, measurements were performed using the ISCX-IDS 2012 dataset [39].
As introduced in Chapter 3, this dataset contains different normal traffic profiles as
well as attack scenarios. These intrusions include HTTP DoS with Slowloris, DDoS
using botnets, brute force SSH as well as infiltrating the network from inside, such
as SQL injection and Cross Site Scripting.

Three different cases from section 4.6 were developed based on the proposed IDS
architecture:

1. Case 1 (OS-ELM+PT): This case uses one class OS-ELM and takes streaming
data as input in order to imitate existing real-life IDSs. Semi-supervised
learning by using only normal behavior was implemented in this sequential
model. Predicted outliers were removed and normal predictions were used in
the update mechanism.

2. Case 2 (ELM+PT 1): This batch-learning case was trained with the sampled
normal, attack and unknown behavior; however the training part was imple-
mented using only normal flows. The rest of the dataset was used for testing
purposes. ELM was used as a supervised learning algorithm.

3. Case 3 (ELM+PT 2): Similar to the previous case, ELM+PT 2 also conducted
a batch learning method and used supervised ELM. The difference is that,
this case constructs all possible tries (Normal, unknown and attack tries) and
trains ELMs of each HHHs.

54

55

For batch learning models, a k-fold cross validation approach was used, where k was
fixed as 3 in both proposed models and other machine learning methods explained
in Chapter 3. In the experiments, each day was tested separately to compute the
detection rate for different attack scenarios.

Experiments were conducted on a 64bit Ubuntu 16.04 PC with 8GB of RAM and
CPU of 2.70GHz. In addition, experiments and all resulting figures were performed
using Python 2.7.11, numpy 1.11.0, scipy 0.17.1 and Argus 3.0.8.1. The implemen-
tation of the proposed algorithm takes the flow records file and case choice as an
input. Rest of the parameters including k-fold, threshold number for extracting
heavy hitters, histograms bins and other metrics were tuned automatically.

In order to assess the performance of the proposed IDS, predicted labels were
compared to expected classes. The experimental results and evaluations for these
cases are provided in the following subsections.

5.2 Evaluation of Different Models
This section provides experimental results and evaluations of the proposed cases
explained in section 4.6. The performance of these procedures was assessed by
observing the confusion matrix, time complexity and other criteria explained in
section 2.7. In addition to these results, the proposed cases were also compared with
the traditional machine learning methods applied to the ISCX-IDS 2012 dataset in
section 3.4. The experimental results of OS-ELM+PT are presented separately since
it applies a sequential learning method.

5.2.1 Case 1: OS-ELM+PT
This procedure trains and updates the model with sequentially observed data. As
discussed in section 4.6, the initial training was performed by aggregating flows
observed in the first hour. In the ISCX-IDS 2012 dataset, the beginning of each
day was a mixture of both normal and unknown flows. Therefore, the model can
learn a normal profile for each heavy hitter and obtain a proper distance measure for
one class classification. Since there is only one trie constructed from normal flows
and one class classification was implemented to define the boundary for the normal
data, the unknown flows can be predicted as normal if they are inside this boundary.
Furthermore, outliers were directly predicted as attack. Therefore, the number of
predicted classes was reduced to two: normal and attack class.

After the initial training, the retraining of the model is done in every one hour.
In the testing part, the proposed model predicted the label of each flow by calculating
the distance to the separating hyperplane as explained in section 4.6. Outliers were
labeled as attack and discarded from the update procedure. In the update part,
estimated pdf statistics of each normal predicted flow were given as a sequential

56

input to the ELM method.

After applying OS-ELM+PT to each day, confusion matrices were computed for
the testing and updating part of the day. Confusion matrices for June 13 and June
15 are given in Table 5.1. In these results, unknown flows were predicted as either
normal or attack, as expected. However, the results conflict with the theoretical
model in terms of updating the learning part and differentiating the normal and
attack classes in the sequential data. For example, the one-class OS-ELM model fails
to find an optimum boundary of the separating hypersphere for normal and attack
classes, as theoretically explained in section 4.5. For further analysis, experiments
were repeated with different thresholds causing a change in the number of heavy
hitters in order to examine the possible effect of this change. As illustrated in Figure
5.1, the detection rate of attack flows is very low for various threshold values. In order
to understand the reason behind this discrepancy, the properties of each day in the
dataset were thoroughly investigated. One possible explanation for this conflict might
be the estimated pdf values of different features. Since all numerical statistics were
considered in the learning part, some of them might negatively affect the construction
of the classification boundary around the normal flows.

Predicted
Normal Unknown Attack

A
ct
ua

l Normal 205923 0 3451
Unknown 18712 0 23707
Attack 2855 0 9599

(a)

Predicted
Normal Unknown Attack

A
ct
ua

l Normal 990314 0 328
Unknown 55695 0 7146
Attack 37156 0 236

(b)

Table 5.1: Confusion Matrices for Case 1 with June 13 (a) and June 15 (b)

0 10000 20000 30000 40000 50000 60000

Threshold number

0.0

0.2

0.4

0.6

0.8

1.0

D
e
te
ct
io
n
 R
a
te

Attack DR

Normal DR

Figure 5.1: Detection Rate for June 13 with Different Threshold Values

57

rank

−0.005
0.000

0.005
0.010

0.015
0.020

0.025
0.030

sti
m
e

−0.01
0.00

0.01
0.02

0.03
0.04

0.05

lt
im

e

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

Distribution of Features
attack

unknown

normal

(a)

rank

−0.005
0.000

0.005
0.010

0.015
0.020

0.025

sti
m
e

−0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

lt
im

e

−0.005
0.000
0.005
0.010

0.015

0.020

0.025

0.030

0.035

0.040

Distribution of Features
attack

unknown

normal

(b)

Figure 5.2: Estimated PDFs of 3 Different Statistics for Heavy Hitter 192.x.x.x. in
June 13 (a) and June 15 (b)

Figure 5.2 provides the estimated probability values of three different statistics for
the only heavy hitter containing IPv4 addresses 192.x.x.x. These statistics were
estimations from one complete day and saved for further analysis. As shown in

58

this figure, the trend in the data coincides with the possible explanation of the fail.
Figure 5.2a shows that the attack data is almost in the center of the hypersphere
containing normal flows. Furthermore, normal flows are spread in the ltime direc-
tion which leads to predicting many normal data samples as outliers. As can be
observed in Figure 5.2b, a large number of attack and unknown flows are inside the
normal hyperspace. Hence, most of the attack flows might be predicted as normal
by checking these three features. If these 3 features only had been used for the
proposed methodology, the results would have been much worse than that of Table 5.1.

Since all possible numerical features were used for the learning, some of them
decreased the overall performance of the system. In order to avoid this degradation,
feature selection algorithms can be deployed as a preprocessing method. However,
extracting relevant features and excluding redundant feature subsets are demanding
tasks, especially for this dataset. For example, it is hard to estimate the dependencies
between variables for feature selection [114]. Moreover, this dataset contains unknown
type flows which might pose highly non-linear dependencies among features. Also,
streaming data can change the relevance of features and the previously selected
features may not be suitable for the data anymore. Therefore, application of feature
selection algorithms and elimination of irrelevant features are left as a future work.

The specific one class formulation used in the first case (OS-ELM+PT) can be
extended to multi class classification. As stated in [115], multi class classification
might be a more efficient implementation as it can handle the separation of different
classes. Therefore, case 2 and 3 should perform better than this approach since they
are able to learn characteristics of attack, normal and unknown classes.

5.2.2 Case 2 (ELM+PT 1) and Case 3 (ELM+PT 2)
After observing the poor performance of the first case, batch learning of ELM using
the hierarchical heavy hitter aggregation concept was implemented. Therefore, the
main focus of these cases is to assess the capability of the proposed model when
trained with attack samples beforehand. In addition, tries were constructed for each
class sample in order to examine the effect of the known classes. Similar to the
OS-ELM+PT approach, these cases are applied to each day in the data set separately.
In both of these cases, 1/3 of the flow records are randomly sampled for the training
and the rest of it used as testing dataset. It should be noted that each training and
test set contains approximately the same percentage of normal, attack and unknown
classes in order to ensure that enough attack flows are also used in the training
part. Although this homogeneous proportion method differs from real life data in
terms of continuous network traffic property, this approach allows Case 2 and 3 to be
evaluated in a similar way as the other state-of-the-art intrusion detection systems,
since the approaches in [88]-[93] also split the data into training and testing with
similar proportions.

59

Dataset Basic ELM ELM+PT 1 ELM+PT 2
Actual class Predicted class Predicted class Predicted class

June 12
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 222506 1633 34 219364 4778 31 220550 3617 6
Unkn. 16260 18683 4 10003 25321 3 9401 25546 0
Attack 6 28 3189 1 3 3206 1 0 3220

June 13
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 220024 1012 112 218468 2594 86 218261 2786 101
Unkn. 14842 26009 4328 8302 34146 2731 7105 35349 2725
Attack 2423 597 9833 299 1801 10753 293 1829 10731

June 14
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 317571 667 128 315977 2263 126 314485 3837 44
Unkn. 23736 22161 306 16161 27667 2375 10486 33307 2410
Attack 5491 2757 424 491 2890 5291 63 3278 5331

June 15
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 1026753 621 6598 1032760 351 861 1029481 3903 588
Unkn. 30502 35775 55 29477 36802 53 24096 42193 43
Attack 3469 0 33933 409 0 36993 522 0 36880

June 16
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 587867 75775 - 593402 70240 - 592039 71603 -
Unkn. 120504 227410 - 55675 292239 - 56037 291877 -
Attack - - - - - - - - -

June 17
Normal Unkn. Attack Normal Unkn. Attack Normal Unkn. Attack

Normal 611587 4 498 612039 40 10 612043 43 3
Unkn. 6316 13639 18 6251 13720 2 6226 13747 0
Attack 49 2 3243 10 0 3284 0 1 3293

Table 5.2: ISCX-IDS 2012 Results: Basic ELM, ELM+PT 1 and ELM+PT 2

Training and testing part of these cases were implemented as explained in section
4.6. Contrary to the OS-ELM+PT case, these methods do not include an update
procedure. Therefore, predictions were averaged over 50 runs of experiments having
3-fold cross validation. Furthermore, confusion matrices were built for each day
after obtaining predictions. Confusion matrices for each day and the comparison
between the basic ELM, ELM+PT 1 and ELM+PT 2 are provided in Table 5.2.
The table shows that the proposed method for ELM+PT 1 and ELM+PT 2 achieve
better performance than the basic ELM. If June 14, which contains a DoS attack,
is specifically compared, these methods have far less false positives than does the
basic ELM. In addition, a further investigation of the mislabeled unknown data in
these methods shows that those flows were observed from either heavily normal or
attack traffic. Hence, these unknown flows might be falsely predicted due to the
excessive traffic of a specific class. Nevertheless, misclassification rates of the normal
and attack classes were quite low in contrast to the basic ELM. Thus, these results
confirm that the basic ELM method can be improved by aggregating the data into
heavy hitters and learning in a probability space, as proposed in this work.

After this simple analysis, average statistics were obtained for the last two cases:
False positives, false alarms and detection rate for different classes as well as for
various attack types were computed. In addition, the time complexity of each method
was measured. These final results for these cases were compared to the performance
of the best simple machine learning algorithms explained in Chapter 3. Table 5.3
shows this comparison and the best results for each criterion are written in bold

60

letters. As can be seen from the table, ELM+PT 1 and ELM+PT 2 achieve the best
performance in most of the evaluation criteria. These two methods were found to be
very effective in terms of detection rate, false positives and false alarms. This table
clearly shows that these two methods detect HTTP DoS attacks much better than
the other machine learning techniques, at the cost of a larger computational time.

Basic ELM Decision Trees
ID Class Name False Pos. False Alarm Detec. rate False Pos. False Alarm Detec. rate
1 Normal - 0.03 0.93 - 0.04 0.96
2 Infiltration (SQL, CSS) 0.13 - 0.84 0.14 - 0.87
3 HTTP DoS 0.95 - 0.38 0.35 - 0.62
4 DDoS (using botnet) 0.08 - 0.84 0.02 0.98
5 Brute SSH 0.01 - 0.89 0.00 - 1.00
6 Unknown - - 0.90 - - 0.74

Average elapsed time (sec.) 5.32 Average elapsed time (sec.) 26.12

Linear Regression KNN
ID Class Name False Pos. False Alarm Detec. rate False Pos. False Alarm Detec. rate
1 Normal - 0.02 0.91 - 0.04 0.96
2 Infiltration (SQL, CSS) 0.18 - 0.84 0.11 - 0.87
3 HTTP DoS 0.95 - 0.68 0.45 - 0.59
4 DDoS (using botnet) 0.06 - 0.34 0.06 - 0.91
5 Brute SSH 0.00 - 0.94 0.00 - 0.97
6 Unknown - - 0.84 - - 0.83

Average elapsed time (sec.) 22.72 Average elapsed time (sec.) 16.94

ELM+PT 1 ELM+PT 2
ID Class Name False Pos. False Alarm Detec. rate False Pos. False Alarm Detec. rate
1 Normal - 0.02 0.96 - 0.02 0.97
2 Infiltration (SQL, CSS) 0.08 - 0.88 0.10 - 0.90
3 HTTP DoS 0.38 - 0.65 0.38 - 0.70
4 DDoS (using botnet) 0.01 - 0.98 0.02 - 0.98
5 Brute SSH 0.00 - 1.00 0.01 - 0.99
6 Unknown - - 0.90 - - 0.89

Average elapsed time (sec.) 21.07 Average elapsed time (sec.) 42.27
Bold face: best value for different classes

Table 5.3: Average Results of ISCX-IDS 2012 Dataset: Basic ELM, ELM+PT 1,
ELM+PT 2, Decision Trees, Linear Regression and KNN

The basic ELM consumes quite low CPU time in both training and testing since
its parameters can be randomly assigned in the initialization process [59]. For this
reason, it was expected that a simple ELM might run much faster than the other
algorithms and the results were consistent with that expectation. It was also observed
that the time complexity of the proposed methods were quite high. It appears that
ELM+PT 2 has the worst time complexity as the pdf of each flow is estimated
from 3 different heavy hitters and the dimension of the input data was quite big.
However, the time elapsed for ELM+PT 1 was lower than both decision trees and
linear regression. In addition, the overall performance of this case is quite satisfying
and very close to the best statistics. This table confirms that these two cases can
operate consistently better than the other simple algorithms with a trade-off between
the time complexity and the performance.

A more detailed comparison of these cases with the basic ELM and decision trees

61

June12June13June14June15June16June17
Days

0.80

0.85

0.90

0.95

1.00

(%
)

Detection Rate of Normal Traffic

ELM
DecisionTrees
ELM+PT 1
ELM+PT 2

June12June13June14June15June16June17
Days

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(%
)

Detection Rate of Unknown Traffic

June12June13June14June15June16June17
Days

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(%
)

Detection Rate of Attack Traffic

June12June13June14June15June16June17
Days

0.0

0.2

0.4

0.6

0.8

1.0

(%
)

False Alarm Rate of Normal Traffic

June12June13June14June15June16June17
Days

0.00

0.01

0.02

0.03

0.04

0.05

(%
)

False Positive Rate of Attack Traffic

June12June13June14June15June16June17
Days

0

20

40

60

80

100

e
p
o
ch
s

Time complexity

Figure 5.3: Comparison of Decision Trees, ELM, ELM+PT 1 and ELM+PT 2 for
Precision, False Positive Rate, False Alarm Rate and Time Complexity

62

was made in order to strengthen the findings of ELM+PT 1 and ELM+PT 2. Since
decision trees had provided the best results, compared to other simple machine
learning classification techniques, ELM+PT 1 and ELM+PT 2 were compared with
the decision trees by analyzing each day separately. The statistics for each day
were plotted in Figure 5.3. As shown in this figure, the simulation results agree
well with the average statistics shown in Table 5.3. ELM+PT 1 and ELM+PT
2 have generally higher precision and lower false alarm rate than the basic ELM
and decision trees in each day. In addition, this figure clearly illustrates that time
complexities of ELM+PT 1 and ELM+PT 2 were strongly dependent on the data
size. For instance, the elapsed time of each algorithm were relatively close in the first
three days. However, the difference between elapsed times are higher when the flow
records contain more traffic. This outcome was expected since a heavily populated
traffic tends to produce more heavy hitters. Accordingly, the pdf prediction for each
heavy hitter consumes more time. Despite this trade-off, ELM+PT 1 and ELM+PT
2 generally achieve good learning performance under 20 seconds.

In the evaluation criteria, the confusion matrix, the detection and false alarm
rates are chosen as main performance measures instead of other unifying measures,
such as F1-score that can capture overall classifier performance. The main reason
for this choice is the difference between the cost of false positives and false negatives.
For instance, if an unknown flow is mislabeled in a heavily normal or attack traffic,
then its cost should be lower than a misclassified attack or normal flow in the same
time window. Especially on June 16, which is an attack-free day, even if all unknown
flows are misclassified as normal, it should be considered as a good performance by
only checking the detection rate of normal flows or the confusion matrix. However,
F1-score might give worse results, since it calculates and adds the misclassification
rate of unknown flows to the overall performance.

Since all cases were tested on a network traffic dataset representing only a small
period of time with a few types of intrusions, evaluation results might not be the
same with a more comprehensive and continuously updated real-life network traffic.
However, gathering massive network traffic dataset that exactly represents the most
current vulnerabilities and intrusions is quite hard. Therefore, the experimental
results can be interpreted by comparing ELM+PT 1 , ELM+PT 2 and other leading
approaches using the same dataset with similar evaluation metrics.

5.3 Evaluation and Comparison of the IDS to State-
of-the-Art Approaches

The experiments in the previous section show that the last two cases have provided
good learning results. However, the ELM+PT 2 approach may not be feasible with
large datasets since its time complexity increases with the size of the dataset, as
illustrated in Figure 5.3. Although ELM+PT 1 and ELM+PT 2 outperform simple
machine learning techniques, it is important to compare the results of these cases to

63

other leading intrusion detection approaches.

Table 5.4 demonstrates a comparison in terms of average detection (DR) and false
positive (FPR) rates between ELM+PT 1, ELM+PT 2 and state-of-the-art intrusion
detection systems summarized in Chapter 3. It should be noted that other IDSs
mostly used a subset of the dataset with selected features. Moreover, few of these
supply per class detection or a false positive rate. For example, the EMD algorithm in
[93] has only focused on the detection of DoS attacks. In [88], testing and evaluation
data are sampled and aggregated from specific days. Nevertheless, average detection
and false positive rates can still be compared to the findings of the leading approaches
in order to show the efficacy of the proposed model. The table shows that ELM+PT
1 and ELM+PT 2 demonstrate consistently good performance by using the complete
dataset without any sampling method.

Technique Avg. DR Avg. FPR
KMC+NBC [88] 0.98 0.02
Bagged-NB [89] 0.45 0.09
Boosted-NB [89] 0.43 0.09
AMGA2-NB [89] 0.94 0.07
Decision Tree Classifier with Snort Priority [90] 0.98 0.06
CAGE-MetaCombiner [91] 0.76 0.06
CAGE-MetaCombiner+ Specialized Ensemble [91] 0.83 0.09
EMD [93](low threshold, only on DoS attacks) 0.90 0.08
EMD [93](high threshold, only on DoS attacks) 0.44 0.01
Case 2 (ELM+PT 1) 0.90 0.09
Case 3 (ELM+PT 2) 0.91 0.09
Case 2 using only normal and attack flows (ELM+PT 1) 0.994 0.016
Case 3 using only normal and attack flows (ELM+PT 2) 0.997 0.008

Table 5.4: Comparison of Proposed Method Performance to Leading Approaches

Table 5.4 shows that K means clustering and Naïve Bayes Classifier in [88] as well as
the method in [90] achieved the highest average detection rate. When the dataset
description of [88] is analyzed, it can be seen that the authors performed experiments
by selecting only attack and normal labeled incoming packets sampled from particular
days for a particular host. Similarly, the authors in [89] randomly selected normal
and attack instances to create a training and test subset for the evaluation of their
multi-objective genetic algorithm. In [90], the training dataset consists of Snort
alerts corresponding to only true attacks, and these alerts are randomly subdivided
into learning, validation and testing datasets. Since the same sampling scenario of
these methods can not be recreated, ELM+PT 1 and ELM+PT 2 were evaluated
again without unknown flows in order to see the effect of these flows on the average
detection rate as well as the average false positive rate.

The last two rows of Table 5.4 present ELM+PT 1 and ELM+PT 2 results when
performed on the only attack and normal flows of the ISCX-IDS 2012 dataset. It is
clear that both ELM+PT 1 and ELM+PT 2 have very low average false positive
rates, as well as provide average detection rates much greater than before reported

64

in Table 5.4. These results confirm that ELM+PT 1 and ELM+PT 2 outperform
other leading approaches and improve the performance of the basic ELM.

In conclusion, the batch learning of estimated probability density functions computed
from aggregated heavy hitters can significantly improve the simple ELM algorithm
in intrusion detection systems, despite a trade-off between performance and time
complexity. The time consumed can be decreased by reducing the input dimen-
sion, feature selection or applying an adaptive threshold for detecting heavy hitters.
Possible improvements will be presented in the next chapter.

5.4 Summary
This chapter has provided an evaluation of the proposed intrusion detection system
based on different cases explained in the previous chapter. Using the experimental
setup and tuned parameters, the performance of the first case, where the model is
continuously updated, was found to be the worst of the three cases. Unfortunately,
the results for this case conflicted with the theoretical model, suggesting that this
poor performance may have been attributed to feature characteristics. One future
improvement for this case would be to select the most important features. The
findings of the second and third case, where the learning was implemented in off-line
mode, demonstrated that the off-line version of the proposed method outperforms
the most commonly used simple machine learning techniques for intrusion detection.
The results also revealed that the proposed system achieves a very good detection
rate while preserving a lower rate of false positives and false alarms. In addition,
the computational time of the proposed method is in an acceptable range, in that it
matches the other traditional machine learning methods. However, it can be inferred
that the time complexity of the proposed system is highly dependent on the size
of the dataset. Average results of the last two cases have been compared with the
leading approaches summarized in Chapter 3. The results showed that the proposed
method is one of the most efficient detection methods when applied to the ISCX-IDS
2012 dataset. The following chapter will conclude the thesis by summarizing the key
points as well as suggest possible future work.

Chapter 6

Summary and Conclusion

In this thesis, the features of a sample network traffic dataset have been modeled
with probability density functions relating to the hierarchical heavy hitters concept
in order to improve detection accuracy of the attacks. The developed intrusion
detection system provides probability estimation of feature statistics and uses these
values to learn different normal and attack behaviors. Clustering network statistics
and learning from the probabilistic space of the network data features is the main
contribution of the thesis.

Instead of outdated benchmark datasets, the proposed method was evaluated with a
relatively new ISCX-IDS 2012 dataset created by the Canadian Institute for Cyberse-
curity. Since this dataset has the complete capture of a one week network traffic and
includes more real life attack scenarios, evaluations were done on this dataset to show
the effectiveness of the approach in a more realistic way. As few researchers have
studied the ISCX-IDS 2012 dataset, a preliminary work consisting in data analysis
and preprocessing was implemented in order to confirm the usability of this dataset.
In addition, the dataset was converted into flow level data with the Argus software
tool, since the proposed method is based on flow analysis.

Three novel approaches were proposed as different cases. One of them captures the
characteristics of the sequential normal network traffic and can update the model
without being fully retrained. Major deviations from the normal profile were la-
beled as outliers, and the update mechanism continuously changes the definition
of normal profile. The second and the third approaches were constructed in an
off-line fashion in order to respond to the challenges of the first approach. The
proposed system for those approaches achieved 90.0 percent of the detection ac-
curacy on the ISCX-IDS 2012 dataset. The experimental results confirmed that
these approaches made a significant improvement to the simple extreme learning
machine method. The proposed method in the last two approaches also outperformed
simple machine learning methods including decision trees, k nearest neighbors and
regression models. Furthermore, the proposed detection system achieved a better
performance in comparison with other state-of-the-art approaches evaluated on the
ISCX-IDS 2012 dataset. Although the time complexity of the solution is highly

65

66

dependent on the data size, measured computational time is still satisfactory and
can be deployed as a learning mechanism in more complex intrusion detection systems.

In conclusion, results suggest that modeling the probability density functions of the
aggregated network statistics can be applied as an intrusion detection mechanism
and can possibly cooperate with other network behavior analysis tools for DoS and
DDoS defense.

Future Work
As presented in Chapter 5, the first case achieves lower performance than other
traditional methods and predicts unknown flows as either normal or attack class.
One reason for this discrepancy might be due to characteristics of different features.
As plotted in Figure 5.2, estimated probability values of some features in the attack
class can resemble the normal behavior. Since these features can negatively affect
the overall performance, they might be excluded from the input data. Therefore,
feature selection methods for streaming data might be incorporated into the first
case. Another possible future work can be adding a forgetting factor for continuous
learning. This can fix the size of the tree in a reasonable way and save memory
as well as forcing only the most recent normal behavior to be used for probability
density estimation, as recently observed source and destination addresses are most
likely to connect again soon.

Although ELM+PT 1 and ELM+PT 2 achieve a high detection rate, the time
and memory complexity for large datasets might be high. Therefore, some future
computational improvements can be included to the proposed method. For instance,
appropriate feature selection methods can be deployed in order to decrease the size
of the input and improve the learning speed. In addition, a variable threshold can
be incorporated in the heavy hitter extraction to limit the size of the trie and the
number of clusters.

Bibliography

[1] A. Patcha and J. M. Park, “An overview of anomaly detection techniques:
Existing solutions and latest technological trends,” Computer networks, vol. 51,
no. 12, pp. 3448–3470, 2007.

[2] O. Barayas. (2014) How the Internet of Things Is Changing the Cybersecurity
Landscape. [Online]. Available: https://securityintelligence.com

[3] R. P. Hartwig and W. Claire, “Cyber risk: Threat and opportunity(white
paper),” Insurance Information Institute, Tech. Rep., 10 2015.

[4] C. Ventures. (2016) Cybersecurity Economic Predictions: 2017 to 2021.
[Online]. Available: http://cybersecurityventures.com/cybercrime-infographic/

[5] D. Sequeira, “Intrusion prevention systems: security’s silver bullet? (white
paper),” Business Communications Review, vol. 33, no. 3, pp. 36–41, 2003.

[6] “Why IPS Devices and Firewalls Fail to Stop DDoS Threats (white paper),”
Arbor Networks, Inc, Tech. Rep., 2015.

[7] F. P. Stanley, “Intrusion detection and response for system and network
attacks,” Master’s thesis, Iowa State University, USA, 2009.

[8] R. Bace and P. Mell, “NIST special publication on intrusion detection systems,”
DTIC Document, Tech. Rep., 2001.

[9] D. Barbará, J. Couto, S. Jajodia, and N. Wu, “ADAM: a testbed for exploring
the use of data mining in intrusion detection,” ACM Sigmod Record, vol. 30,
no. 4, pp. 15–24, 2001.

[10] R. Heady, G. F. Luger, A. Maccabe, and M. Servilla, The architecture of a net-
work level intrusion detection system. University of New Mexico. Department
of Computer Science. College of Engineering, 1990.

[11] V. Jaiganesh, S. Mangayarkarasi, and P. Sumathi, “Intrusion detection systems:
A survey and analysis of classification techniques,” International Journal of
Advanced Research in Computer and Communication Engineering, vol. 2, no. 4,
pp. 1629–1635, 2013.

[12] H. Alene, “Graph Based Clustering for Anomaly Detection in IP Networks,”
Master’s thesis, Aalto University, Finland, 2011.

67

https://securityintelligence.com
http://cybersecurityventures.com/cybercrime-infographic/

68

[13] H. Kozushko, “Intrusion detection: Host-based and network-based intrusion
detection systems,” Independent study, 2003.

[14] J. Corsini, “Analysis and evaluation of network intrusion detection methods to
uncover data theft,” Ph.D. dissertation, Napier University, 2009.

[15] A. Orebaugh, S. Biles, and J. Babbin, Snort Cookbook: Solutions and Examples
for Snort Administrators. O’Reilly Media, Inc., 2005.

[16] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[17] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software
engineering, no. 2, pp. 222–232, 1987.

[18] K. Ilgun, R. A. Kemmerer, and P. A. Porras, “State transition analysis:
A rule-based intrusion detection approach,” IEEE transactions on software
engineering, vol. 21, no. 3, pp. 181–199, 1995.

[19] K. Sequeira and M. Zaki, “ADMIT: anomaly-based data mining for intru-
sions,” in Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2002, pp. 386–395.

[20] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural
networks and support vector machines,” in Neural Networks, 2002. IJCNN’02.
Proceedings of the 2002 International Joint Conference on, vol. 2. IEEE, 2002,
pp. 1702–1707.

[21] W. Li, “Using genetic algorithm for network intrusion detection,” Proceedings
of the United States Department of Energy Cyber Security Group, vol. 1, pp.
1–8, 2004.

[22] J. Gómez, C. Gil, N. Padilla, R. Baños, and C. Jiménez, “Design of a snort-
based hybrid intrusion detection system,” in International Work-Conference
on Artificial Neural Networks. Springer, 2009, pp. 515–522.

[23] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: techniques, systems and chal-
lenges,” Computers & security, vol. 28, no. 1, pp. 18–28, 2009.

[24] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and
static behavioral models,” Pattern recognition, vol. 36, no. 1, pp. 229–243,
2003.

[25] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: methods, systems and tools,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 303–336, 2014.

69

[26] N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical
analysis of audit trails for host-based intrusion detection,” IEEE Transactions
on computers, vol. 51, no. 7, pp. 810–820, 2002.

[27] “Detecting Hackers (Analyzing Network Traffic) by Poisson Model Measure,”
Simon Fraser University, School of Engineering Science, Tech. Rep., 2004.

[28] J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo, “Stochastic
protocol modeling for anomaly based network intrusion detection,” in Pro-
ceedings of the first IEEE International Workshop on Information Assurance.
IEEE, 2003, pp. 3–12.

[29] D. Heckerman, “A tutorial on learning with Bayesian networks,” in Learning
in graphical models. Springer, 1998, pp. 301–354.

[30] S. Y. Lim and A. Jones, “Network anomaly detection system: The state of
art of network behaviour analysis,” in Convergence and Hybrid Information
Technology, 2008. ICHIT’08. International Conference on. IEEE, 2008, pp.
459–465.

[31] L. A. Chappell, Wireshark network analysis: the official Wireshark certified
network analyst study guide. Protocol Analysis Institute, Chappell University,
2010.

[32] V. Jacobson, C. Leres, and S. McCanne, “TCPDUMP public repository.”
[Online]. Available: http://www.tcpdump.org

[33] C. E. Perkins, IP mobility support for IPv4, revised. Internet Engineering
Steering Group, 2010.

[34] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for IP flow
information export (IPFIX),” Tech. Rep., 2004.

[35] M. Lucas, Network flow analysis. No Starch Press, 2010.

[36] D. Plonka, “FlowScan: A Network Traffic Flow Reporting and Visualization
Tool,” in LISA, 2000, pp. 305–317.

[37] M. Thomas, L. Metcalf, J. Spring, P. Krystosek, and K. Prevost, “Silk: A
tool suite for unsampled network flow analysis at scale,” in Big Data (BigData
Congress), 2014 IEEE International Congress on. IEEE, 2014, pp. 184–191.

[38] C. Bullard, “Argus, Auditing Network Activity.” [Online]. Available:
https://www.qosient.com/argus/index.shtml

[39] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing
a systematic approach to generate benchmark datasets for intrusion detection,”
Computers & security, vol. 31, no. 3, pp. 357–374, 2012.

http://www. tcpdump. org
https://www.qosient.com/argus/index.shtml

70

[40] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A comparative
study of anomaly detection schemes in network intrusion detection,” in Pro-
ceedings of the 2003 SIAM International Conference on Data Mining. SIAM,
2003, pp. 25–36.

[41] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measuring intrusion
detection capability: an information-theoretic approach,” in Proceedings of the
2006 ACM Symposium on Information, computer and communications security.
ACM, 2006, pp. 90–101.

[42] K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Internet traffic behavior profiling
for network security monitoring,” IEEE/ACM Transactions On Networking,
vol. 16, no. 6, pp. 1241–1252, 2008.

[43] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval. ACM
press New York, 1999, vol. 463.

[44] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Predicting the resource
consumption of network intrusion detection systems,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 36, no. 1. ACM, 2008, pp. 437–438.

[45] A. Kalliola, Y. Miche, I. Oliver, S. Holtmanns, B. Atli, A. Lendasse, K.-M.
Bjork, A. Akusok, and T. Aura, “Learning flow characteristics distributions with
elm for distributed denial of service detection and mitigation,” in Proceedings
of ELM-2016. Springer, 2018, pp. 129–143.

[46] T. F. Lunt and R. Jagannathan, “A prototype real-time intrusion-detection
expert system,” in Security and Privacy, 1988. Proceedings., 1988 IEEE
Symposium on. IEEE, 1988, pp. 59–66.

[47] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-detection
systems,” Computer Networks, vol. 31, no. 8, pp. 805–822, 1999.

[48] S. Kumar and E. H. Spafford, “A pattern matching model for misuse intrusion
detection,” Purdue University, Department of Computer Science, Tech. Rep.,
1994.

[49] N. Hubballi and V. Suryanarayanan, “False alarm minimization techniques in
signature-based intrusion detection systems: A survey,” Computer Communi-
cations, vol. 49, pp. 1–17, 2014.

[50] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE: a
hierarchical network intrusion detection system using statistical preprocessing
and neural network classification,” in Proc. IEEE Workshop on Information
Assurance and Security, 2001, pp. 85–90.

[51] K. Das, J. Schneider, and D. B. Neill, “Anomaly pattern detection in categorical
datasets,” in Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2008, pp. 169–176.

71

[52] I. Kang, M. K. Jeong, and D. Kong, “A differentiated one-class classifica-
tion method with applications to intrusion detection,” Expert Systems with
Applications, vol. 39, no. 4, pp. 3899–3905, 2012.

[53] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion detec-
tion systems: Detecting the unknown without knowledge,” Computer Commu-
nications, vol. 35, no. 7, pp. 772–783, 2012.

[54] C. Zhang, G. Zhang, and S. Sun, “A mixed unsupervised clustering-based
intrusion detection model,” in Genetic and Evolutionary Computing, 2009.
WGEC’09. 3rd International Conference on. IEEE, 2009, pp. 426–428.

[55] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and ensemble
design of intrusion detection systems,” Computers & security, vol. 24, no. 4,
pp. 295–307, 2005.

[56] G. Wang, J. Hao, J. Ma, and L. Huang, “A new approach to intrusion detection
using Artificial Neural Networks and fuzzy clustering,” Expert Systems with
Applications, vol. 37, no. 9, pp. 6225–6232, 2010.

[57] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack detection
using NOX/OpenFlow,” in Local Computer Networks (LCN), 2010 IEEE 35th
Conference on. IEEE, 2010, pp. 408–415.

[58] Y.-S. Goh and E.-C. Tan, “An integrated approach to improving back-
propagation neural networks,” in TENCON’94. IEEE Region 10’s Ninth
Annual International Conference. Theme: Frontiers of Computer Technology.
Proceedings of 1994. IEEE, 1994, pp. 801–804.

[59] C. Cheng, W. P. Tay, and G.-B. Huang, “Extreme learning machines for
intrusion detection,” in Neural networks (IJCNN), the 2012 international joint
conference on. IEEE, 2012, pp. 1–8.

[60] W. Srimuang and S. Intarasothonchun, “Classification model of network in-
trusion using Weighted Extreme Learning Machine,” in Computer science and
software engineering (JCSSE), 2015 12th international joint conference on.
IEEE, 2015, pp. 190–194.

[61] J. M. Fossaceca, T. A. Mazzuchi, and S. Sarkani, “MARK-ELM: Application
of a novel Multiple Kernel Learning framework for improving the robustness of
Network Intrusion Detection,” Expert Systems with Applications, vol. 42, no. 8,
pp. 4062–4080, 2015.

[62] A. Kalliola, T. Aura, and S. Šćepanović, “Denial-of-service mitigation for
internet services,” in Nordic Conference on Secure IT Systems. Springer, 2014,
pp. 213–228.

72

[63] A. Kalliola, K. Lee, H. Lee, and T. Aura, “Flooding DDoS mitigation and
traffic management with software defined networking,” in Cloud Networking
(CloudNet), 2015 IEEE 4th International Conference on. IEEE, 2015, pp.
248–254.

[64] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards Generating
Real-life Datasets for Network Intrusion Detection,” IJ Network Security, vol. 17,
no. 6, pp. 683–701, 2015.

[65] M. Lichman, “UCI Machine Learning Repository,” University of California,
Irvine, School of Information and Computer Sciences, 2013.

[66] “NSL-KDD dataset,” University of New Brunswick, Canadian Institute for
Cybersecurity. [Online]. Available: http://www.unb.ca/cic/research/datasets/
nsl.html

[67] “Darpa Intrusion Detection Evaluation,” Massachusetts Institute of
Technology, Cambridge, MIT Lincoln Laboratory, 2000. [Online]. Available:
https://www.ll.mit.edu/ideval/index.html

[68] “DEFCON Capture the Flag Contest traces,” The Shmoo Group, 2011.

[69] “CAIDA Data - Overview of Datasets, Monitors, and Reports,” 2011. [Online].
Available: http://www.caida.org/data/overview/

[70] “UNIBS: Data sharing,” 2009. [Online]. Available: http://netweb.ing.unibs.it/
~ntw/tools/traces/

[71] L. Loris, “A new DOS Perl Programm,” https://github.com/llaera/slowloris.pl,
2013.

[72] G. Kumar, “Denial of service attacks–an updated perspective,” Systems Science
& Control Engineering, vol. 4, no. 1, pp. 285–294, 2016.

[73] Obnosis, “QuickTools for PLUG Hackfest demonstrations and presentations,”
https://github.com/obnosis/QuickTools, 2012.

[74] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[75] E. Alpaydin, Introduction to Machine Learning. MIT press, 2014.

[76] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transac-
tions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[77] I. Narsky and F. C. Porter, “Linear and Quadratic Discriminant Analysis,
Logistic Regression, and Partial Least Squares Regression,” Statistical Analy-
sis Techniques in Particle Physics: Fits, Density Estimation and Supervised
Learning, pp. 221–249.

http://www.unb.ca/cic/research/datasets/nsl.html
http://www.unb.ca/cic/research/datasets/nsl.html
https://www.ll.mit.edu/ideval/index.html
http://www.caida.org/data/overview/
http://netweb.ing.unibs.it/~ntw/tools/traces/
http://netweb.ing.unibs.it/~ntw/tools/traces/
https://github.com/llaera/slowloris.pl
https://github.com/obnosis/QuickTools

73

[78] H. Zhang, “Exploring conditions for the optimality of naive Bayes,” Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, vol. 19, no. 02,
pp. 183–198, 2005.

[79] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT press,
2012.

[80] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning. Springer, 2013, vol. 112.

[81] T. M. Mitchell, Machine learning. WCB. McGraw-Hill Boston, MA, 1997.

[82] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics Springer, Berlin, 2001.

[83] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[84] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.” Psychological review, vol. 65, no. 6, p. 386,
1958.

[85] B. Ripley, “Neural networks and pattern recognition,” Cambridge University,
1996.

[86] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory
and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[87] C. M. Bishop, “Pattern recognition,” Machine Learning, vol. 128, pp. 1–58,
2006.

[88] W. Yassin, N. I. Udzir, Z. Muda, M. N. Sulaiman et al., “Anomaly-based
intrusion detection through k-means clustering and naives bayes classification,”
in Proc. 4th Int. Conf. Comput. Informatics, ICOCI, no. 49, 2013, pp.
298–303.

[89] G. Kumar and K. Kumar, “Design of an evolutionary approach for intrusion
detection,” The Scientific World Journal, vol. 2013, 2013.

[90] A. Ammar et al., “A decision tree classifier for intrusion detection priority
tagging,” Journal of Computer and Communications, vol. 3, no. 04, p. 52, 2015.

[91] G. Folino, F. S. Pisani, and P. Sabatino, “A distributed intrusion detection
framework based on evolved specialized ensembles of classifiers,” in European
Conference on the Applications of Evolutionary Computation. Springer, 2016,
pp. 315–331.

[92] P. Foremski, C. Callegari, and M. Pagano, “Waterfall: rapid identification of
ip flows using cascade classification,” in International Conference on Computer
Networks. Springer, 2014, pp. 14–23.

74

[93] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, “Detection of
denial-of-service attacks based on computer vision techniques,” IEEE transac-
tions on computers, vol. 64, no. 9, pp. 2519–2533, 2015.

[94] K. K. Vasan and B. Surendiran, “Dimensionality reduction using Principal
Component Analysis for network intrusion detection,” Perspectives in Science,
vol. 8, pp. 510–512, 2016.

[95] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding hierar-
chical heavy hitters in data streams,” in Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment, 2003, pp.
464–475.

[96] F. M. Liang, “Word hy-phen-a-tion by com-put-er,” Calif. Univ. Stanford.
Comput. Sci. Dept., Tech. Rep., 1983.

[97] S. Sahni, Data Structures, Algorithms and Applications in Java, 1st ed. New
York, NY, USA: McGraw-Hill, Inc., 1999.

[98] V. Srinivasan and G. Varghese, “Faster IP lookups using controlled prefix
expansion,” in ACM SIGMETRICS Performance Evaluation Review, vol. 26,
no. 1. ACM, 1998, pp. 1–10.

[99] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[100] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding hier-
archical heavy hitters in streaming data,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 4, p. 2, 2008.

[101] R. F. Hoskins, Delta functions: Introduction to generalized functions. Elsevier,
2009.

[102] C. Tomasi, “Lecture notes in Computational Modeling for the Sciences,” Spring
2007.

[103] W. Härdle, M. Müller, S. Sperlich, and A. Werwatz, Nonparametric and
semiparametric models. Springer Science & Business Media, 2012.

[104] H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of a time
histogram,” Neural computation, vol. 19, no. 6, pp. 1503–1527, 2007.

[105] G.-B. Huang, L. Chen, C. K. Siew et al., “Universal approximation using
incremental constructive feedforward networks with random hidden nodes,”
IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[106] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, “OP-
ELM: optimally pruned extreme learning machine,” IEEE Transactions on
Neural Networks, vol. 21, no. 1, pp. 158–162, 2010.

75

[107] Y. Miche, M. Van Heeswijk, P. Bas, O. Simula, and A. Lendasse, “TROP-
ELM: a double-regularized ELM using LARS and Tikhonov regularization,”
Neurocomputing, vol. 74, no. 16, pp. 2413–2421, 2011.

[108] C. R. Rao and S. K. Mitra, “Generalized inverse of matrices and its applica-
tions,” 1971.

[109] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A fast
and accurate online sequential learning algorithm for feedforward networks,”
IEEE Transactions on neural networks, vol. 17, no. 6, pp. 1411–1423, 2006.

[110] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press, 2012,
vol. 3.

[111] Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su, “One-class classification with
extreme learning machine,” Mathematical problems in engineering, vol. 2015,
2015.

[112] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[113] Z. Zhang and X. Zhu, “SVC-based multivariate control charts for automatic
anomaly detection in computer networks,” in Autonomic and Autonomous
Systems, 2007. ICAS07. Third International Conference on. IEEE, 2007, pp.
56–56.

[114] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu,
“Feature selection: A data perspective,” arXiv preprint arXiv:1601.07996, 2016.

[115] M. Aly, “Survey on multiclass classification methods,” Neural Netw, pp. 1–9,
2005.

76

77

Appendix A: Generating Profiles

Field Description (GB)
appName transport layer protocols such as TCP and

UDP.
totalSourceBytes total bytes sent from source to destination in

a single profile
totalDestinationBytes total bytes sent from destination to source in

a single profile
totalDestinationPackets total packets sent from source to destination

in a single profile
totalSourcePackets total packets sent from destination to source

in a single profile
sourcePayloadAsBase64 actual message sent from source to destination

and decoded as bytes
sourcePayloadAsUTF actual message sent from source to destination

and decoded as textual format
destinationPayloadAsBase64 actual message sent from destination to source

and decoded as bytes
destinationPayloadAsUTF actual message sent from destination to source

and decoded as textual format
direction Flow direction: local-to-local(L2L), local-to-

remote (L2R), remote-to-local(R2L), remote-
to-remote (R2R)

sourceTCPFlagsDescription from source to destination TCP control bits
destinationTCPFlagsDescription from destination to source TCP control bits
source sender IP in IPv4 format
protocolName communication protocol as textual format
sourcePort port number from source to destination
destination receiver IP in IPv4 format
destinationPort port number from destination to source
startDateTime communication profile starting time in

YY/MM/DD
stopDateTime communication profile ending time in

YY/MM/DD
Tag Normal or Attack profile

Appendix B: Argus Flow Level
Numerical Features

Feature
Name

Type Description

rank D ordinal value of the output flow record
stime C start time
ltime C stop time
seq D Argus sequence number
dur C total record duration
runtime C total active flow run time
mean C average duration of aggregated records
stddev C standard duration of aggregated records
sum C total accumulated duration of aggregated records
saddr4 D source IP addres (MSB)
saddr3 D source IP addres
saddr2 D source IP addres
saddr1 D source IP addres (LSB)
daddr4 D destination IP address (MSB)
daddr3 D destination IP address
daddr2 D destination IP address
daddr1 D destination IP address (LSB)
proto D transaction protocol
sport D source port number
dport D destination port number
stos C source TOS byte value
dtos C destination TOS byte value
sdsb C source diff serve byte value
ddsb C destination diff serve byte value
sttl D src to dst TTL value
dttl D dst to src TTL serve byte value
shops D estimate number of IP hops from src to this point
dhops D estimate number of IP hops from dst to this point
sipid D source IP identifier
dipid D destination IP identifier
autoid D auto generated identifier(mysql)
nstroke D number of observed strokes
snstroke D number of observed strokes from src to dst

78

79

dnstroke D number of observed strokes from dst to src
pkts D total transaction packet count
spkts D src to dst packet count
dpkts D dst to src packet count
bytes D total transaction bytes
sbytes D src to dst transaction bytes
dbytes D dst to src transaction bytes
appbytes D total application bytes
sappbytes D total application bytes from src to destination
dappbytes D total application bytes from dst to source
pcr C producer consumer ratio
loss D pkts transmitted or dropped
sloss D source pkts retransmitted or dropped
dloss D destination packets retransmitted or dropped
retrans D pkts retransmitted
sretrans D source pkts retransmitted
dretrans D destination pkts retransmitted
sgap D source bytes missing in the data stream
dgap D destination bytes missing in the data stream
rate C pkts per second
srate C source pkts per second
drate C destination pkts per second
swin D source TCP window advertisement
dwin D destination TCP window advertisement
stcpb D source TCP base sequence number
dtcpb D destination TCP base sequence number
tcprtt C TCP connection setup round trip time
synack C TCP connection setup time between SYN and SYN_ACK
ackdat C TCP connection setup time between SYN_ACK and ACK
offset D record byte offset in file or stream
smeansz C mean of the flow packet size transmitted by the src
dmeansz C mean of the flow packet size transmitted by the dst

C-Continuous, D-Discrete

	Abstract
	Preface
	Contents
	Symbols and Operators
	Introduction
	Motivation
	Structure of the Thesis

	Intrusion Detection Systems
	Definitions and Terminology
	IDS Classification Based on Source
	Host-based Intrusion Detection
	Network-based Intrusion Detection

	IDS Classification Based on Detection Method
	Misuse Detection
	Anomaly Detection
	Hybrid Methods

	Network Anomaly Detection Systems
	Statistics-based Anomaly Detection
	Knowledge-based Anomaly Detection
	Machine Learning-based Anomaly Detection

	Network Behavior Analysis
	Packet-Level Analysis
	Flow-Level Analysis

	Problem Description
	Evaluation Metrics in IDS
	Detection Rate and Precision
	False Alarms and False Positives
	CPU Consumption

	Overview of the Proposed Solution
	Related Work
	Summary

	Network Traffic Dataset
	Benchmark Datasets
	The ISCX-IDS 2012 Dataset
	Packet to Flow Conversion with Argus
	Evaluation of Dataset with Simple Machine-Learning Based Anomaly Detection Methods
	Principal Component Analysis
	K Nearest Neighbor
	Gaussian Naïve Bayes
	Quadratic Discriminant Analysis
	Multivariate Regression
	Decision Trees
	Random Forest
	Perceptron
	Extreme Learning Machine
	Results of Prior Machine Learning Techniques

	Related work with the Dataset
	Summary

	Methodology
	General Architecture
	Trie Data Structure
	Hierarchical Heavy Hitters
	Mapping Features into Probability Space
	Extreme Learning Machines (ELM)
	Batch ELM
	On-line Sequential ELM (OS-ELM)
	One-Class Classification with ELM
	Design Choices for ELM

	Implementation of Different Models
	Case 1: OS-ELM+PT
	Case 2: ELM+PT 1
	Case 3: ELM+PT 2

	Summary

	Results and Evaluation
	Experimental Setup
	Evaluation of Different Models
	Case 1: OS-ELM+PT
	Case 2 (ELM+PT 1) and Case 3 (ELM+PT 2)

	Evaluation and Comparison of the IDS to State-of-the-Art Approaches
	Summary

	Summary and Conclusion
	References
	Appendix A: Generating Profiles
	Appendix B: Argus Flow Level Numerical Features

