
Intelligent intrusion detection in low power IoTs

Saeed, Ahmed; Ahmadinia, Ali; Javed, Abbas; Larijani, Hadi

Published in:
	ACM Transactions on Internet Technology

DOI:
10.1145/2990499

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Saeed, A, Ahmadinia, A, Javed, A & Larijani, H 2016, 'Intelligent intrusion detection in low power IoTs', ACM
Transactions on Internet Technology, vol. 16, no. 4, 27. https://doi.org/10.1145/2990499

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2990499
https://researchonline.gcu.ac.uk/en/publications/f928f318-b10e-4214-82b2-3cabb71ddc4c
https://doi.org/10.1145/2990499

0

Intelligent Intrusion Detection in Low Power IoTs

Ahmed Saeed, School of Engineering and Built Environment, Glasgow Caledonian University, UK
Ali Ahmadinia∗, Department of Computer Science, California State University San Marcos, US
Abbas Javed, Hadi Larijani, School of Engineering and Built Environment, Glasgow Caledonian
University, UK

Security and privacy of data are one of the prime concerns in today’s internet of things (IoT). Conventional
security techniques like signature-based detection of malware and regular update of signature database are
not feasible solutions as they cannot secure such systems, having limited resources, effectively. Program-
ming languages permitting immediate memory accesses through pointers often result in applications having
memory-related errors, which may lead to unpredictable failures and security vulnerabilities. Furthermore,
energy efficient IoT devices running on batteries cannot afford the implementation of cryptography algo-
rithms as such techniques have significant impact on the system power consumption. Therefore, in order
to operate IoT in a secure manner, the system must be able to detect and prevent any kind of intrusions
before the network (i.e., sensor nodes and base station) is destabilized by the attackers. In this paper, we
have presented an intrusion detection and prevention mechanism by implementing an intelligent security
architecture using Random Neural Networks (RNN). The application’s source code is also instrumented at
compile time in order to detect out-of-bound memory accesses. It is based on creating tags, to be coupled with
each memory allocation and then placing additional tag checking instructions for each access made to the
memory. To validate the feasibility of the proposed security solution, it is implemented for an existing IoT
system and its functionality is practically demonstrated by successfully detecting the presence of any sus-
picious sensor node within the system operating range and anomalous activity in the base station with an
accuracy of 97.23%. Overall, the proposed security solution has presented a minimal performance overhead.

CCS Concepts: rSecurity and privacy → Intrusion/anomaly detection and malware mitigation;rNetworks→ Sensor networks;

Additional Key Words and Phrases: IoT security, data integrity, code instrumentation, illegal memory ac-
cesses, buffer overflows, neural networks

ACM Reference Format:
Ahmed Saeed, Ali Ahmadina, Abbas Javed and Hadi Larijani, 2016.Random Neural Network based Intelli-
gent Intrusion Detection and Prevention Mechanism for IoT Applications ACM Trans. Internet Technol. 0,
0, Article 0 (2016), 26 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The tremendous growth of the IoT devices has changed the world of embedded systems
and the availability of low-cost typical IoT components has enabled designers to con-
nect ”things”, including but not limited to industrial sensors, smart phones, medical
devices, household appliances, cars and other vehicles to the internet. There are two
important key characteristics that make such systems prone to the security attacks.
Firstly, the simplified processing capabilities and limited power resources expose them
to a number of possible security attacks. Secondly, the network connectivity to the
outside world, without any inbuilt protection, also leaves such systems vulnerable to

∗Corresponding Author: Ali Ahmadinia, Email: aahmadinia@csusm.edu

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:2

security attacks. In a typical IoT system, these vulnerabilities can be exploited by an
attacker to steal private data, drain the power supply, destroy the system, or modify
the system behaviour for other than its designed purpose as shown with an example
of smart home in Fig. 1. Furthermore, advancements in communication technology
has also resulted in direct machine-to-machine (M2M) communication for example in
smart electric meters, remote controlled devices and wireless sensor nodes. As system
components are interconnected and also accessible via internet, they are at increased
risk of security attacks. Therefore, security-awareness is becoming a primary design
objective to be considered at each level of the software and hardware platforms de-
sign for future IoT devices. The full advantages of the IoT cannot be realized without
ensuring the security of all the connected devices [Miorandi et al. 2012; Xu et al. 2014].

Different system requirements such as high throughput, low power consumption
and higher level of security must be considered during the design phase. For example,
IoT devices with direct power supply connection do not consider energy efficiency as a
prime concern. However, most of the IoT nodes are micro-controller based embedded
devices relying on batteries where reducing energy consumption is a top priority. Nor-
mally such devices have zero security due to limited resources and therefore cannot
afford security solutions like anti-virus and cryptography [Trappe et al. 2015]. In such
IoT devices, the information transmitted by the nodes can be interfered and the appli-
cation running on the micro-controller can also be compromised. In this way, at least
the application data will be corrupted which results in its incorrect execution. We will
demonstrated in our case study that without proper security mechanism, the wireless
sensor nodes can be manipulated and the base station can be compromised easily if
the attacker is familiar with the communication protocol and hardware architecture.

In the traditional IoT devices, the confidentiality and integrity of data are achieved
by end-to-end encryption as the M2M communication cannot be accessed by other than
authorized nodes as it will be always encrypted. For battery operated IoT devices,
such encryption based security features are not a feasible solution as the encrypted
communication has a significant impact on the system power consumption. In such
power constrained systems, without encryption support, the software must be able to
detect and report any malicious activity within the system.

The vulnerabilities in the application, running on a IoT device, can also be exploited
and manipulated by software-based attacks such as through buffer overflows. For in-
stance, programming languages like C and C++ are commonly used by the embedded
system software designers as they provide a powerful set of features such as low mem-
ory footprint, little run-time support, low-level direct memory accesses and arithmetic
operations through pointers. At the same time, illegal memory accesses (IMAs) such as
out-of-bound buffer accesses are also major concerns in applications written with such
programming languages. Normally, the starting address is assigned to a pointer when
a memory area of required size is allocated, whereas an access is considered legal only
when either its actual pointer or a pointer derived from it is used between the allo-
cation and deallocation of a specific memory area. For example, memory accesses can
happen outside the intended range if the index calculation of an array is based on an
erroneous formula. It is almost impossible to detect and diagnose such behaviour us-
ing static analysis-based tools. Even when an application is tested intensively through
these tools, such bugs can still exist as it is practically impossible to create all of the
input combinations for an error to occur in the development or test phase.

Without required protection, many security threats like viruses, trojans and worms
can modify application data by gaining illegitimate access to secured blocks of the
memory. Software-based attacks have become increasingly widespread and buffer
overflow is one of the major causes of such security outbreaks. According to a report
published by Sourcefire [Younan 2014], buffer overflow based attacks are responsible

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:3

3

3

3

3

1

2

1

2

1

2

1

2

3

3

3

3
Valid data

Base-Station

Attacker
Node

Valid data

Valid data

Invalid data

Attacker
Node

Invalid data

To
 in

te
rn

et

1. Data Integrity attacks as
result of buffer overflow

2. Performance degradation
attacks as result of flooding
and invalid data transfer

Fig. 1: Attack scenarios in a typical wireless sensor nodes based smart home IoT Sys-
tem

for 14% of all and 35% of critical vulnerabilities over the past 25 years. Stack smash-
ing [One 1996] is a classic example of buffer overflow based attacks. During attack
execution, the return address of a function on the stack is replaced through buffer over-
flow. In case of unprotected execution, on function return, the control may be switched
to the specific location where malicious code is placed as shown in Fig. 2. In order to
conduct this kind of attack, an unprotected buffer variable is located in the program
and then it is loaded with a special input value so that its stack frame is overflown and
the return address changed to jump to a new location. Likewise, the buffers allocated
either dynamically in the heap region or globally in the data region of the memory can
be also overflown and exploited by the attackers.

Similarly, performance degradation attacks such as denial of service (DOS), flood-
ing, jamming and battery drainage attacks bring down the system performance by
overloading the computing and communications resources. The unnecessary resource
utilization downgrades the operability of the system and may implicate real-time be-
haviours of the system. IoT devices operating on battery are target of these types of
attacks. Such attacks may also involve continuous sending of requests to the victim
base station, in order to force execution of power-hungry tasks. Such type of attacks
also targets communication medium of the system in order to reduce throughput which
may result in failure to meet specific deadlines especially in the case of real-time sys-
tems. The system can only be considered secured if it has the ability to detect any
abnormality and to stop its propagation preventing further damage to the system op-
erability.

In this paper, a fast and effective two-layer anomaly based intrusion detection and
prevention mechanism (IDPM) is presented to detect and prevent a wide range of data
integrity and performance degradation attacks in the IoT systems. The fist layer of the
IDPM is based on learning normal behaviour of the system using RNN taking diverse
dataset, covering both valid and invalid cases, as input parameters. The trained RNN
model is then embedded in the base station of the IoT system to detect any anomalous
behaviour and prevent its propagation. The second layer of the IDPM is designed to

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:4

Program Code

Stack region

buffer

Return address

Heap region

Program address
space before attack

Program Code

Stack region

Buffer overflow

Modified return address

Heap region

Program address
space after attack

Malicious code

Data region Data region

Fig. 2: Typical buffer overflow leading to stack smashing or ROP attack

detect a wide range of IMA bugs and data integrity attacks dynamically including out-
of-bound read and write accesses, stack-overflows, stack-underflows, heap-overflows,
heap-underflows, overflows and underflows in globally defined variables (data and bss
segments) and direct-indexed overflows/underflows. The proposed solution also acts as
a health monitoring system for the IoT sensor nodes by analysing data being transmit-
ted to the base station. As in case of any malfunction, the valid sensor node may either
stop its operation and or transmit invalid data to the base station. The RNN model
has been trained to detect such cases as an intrusion and report them to the main
server. The proposed solution effectiveness and performance overhead is measured for
an existing IoT system consisting of sensor nodes transmitting data to a base station.
Through experimental setup it is shown that without proper security mechanism it is
possible to intrude into the application running on the base station. Furthermore, it
is also demonstrated that the base station successfully detected the presence of the
malicious sensor node when the given IoT device is enabled with the proposed IDPM.

The paper is organized as follows: The current work related to the existing intrusion
detection techniques is summarized in Section 2. The general approach and imple-
mentation details of the proposed intrusion detection and prevention mechanism for
an existing IoT system are described in Section 3. Section 4 presents the effectiveness
and performance evaluation while Section 5 concludes this paper.

2. RELATED WORK
Intrusion detection has been studied widely in the perspective of computer networks
as they have been the prime target of security attacks. It is also becoming one of the
key research areas in the field of embedded and IoT systems due to their increas-
ing functionality and connectivity. Different solutions have been proposed to detect
and prevent security attacks either through dedicated hardware modules or software-
based mechanisms. Currently, various security techniques have been presented in the
literature such as reference monitors, cryptography, dynamic information flow track-

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:5

ing (DIFT), neural network based intrusion detection solutions and compile-time code
instrumentation.

Most of the reference monitor related solutions are based on scanning processor-
executed code by comparing it to a predefined model and the security subsystem
operates in parallel with each processor such as presented by Kornaros and Pnev-
matikatos [Kornaros and Pnevmatikatos 2013]. The hardware-assisted security mon-
itors [Mao and Wolf 2010; Rahmatian et al. 2012; Yoon et al. 2013] are based on the
concept of sensing deviation in program execution at run-time by comparing behaviour
against a static model for the purpose of detecting code modification attacks. Mao and
Wolf [Mao and Wolf 2010] have used hash-based patterns for basic blocks compris-
ing of fewer instructions. Similarly, Yoon et al. [Yoon et al. 2013] presented a security
solution for multicore processor based real-time embedded systems that is based on
running monitoring program on a dedicated core.

Security attacks that target confidentiality and integrity of the data can be avoided
by encrypting the data. Various security technologies and mechanisms have been de-
signed around cryptography algorithms in order to provide specific security services.
Cryptography algorithms such as Advanced Encryption Standard (AES) [NIST 2001]
and RSA [RSA 2003] have been used in embedded systems to establish integrity of
data within the system. In a recent survey [Granjal et al. 2015], various security mech-
anisms for the IoT devices have been discussed based on cryptography. However, such
techniques are not realistic for low-power IoT devices due to resource constraints and
large power consumption overheads.

Dynamic Information Flow Tracking (DIFT) [Doudalis et al. 2012; Suh et al. 2004;
Schwartz et al. 2010] is another effective technique to ensure protection against
software-based attacks. The basic idea is to mark certain input sources that are un-
trusted and track the flow of information that is being supplied to the program through
these input sources. All data values that are dependent on the marked input value are
also get marked (more commonly known as tainted values). If the tainted value leads
to any un-tainted data value during program execution then alert signal is generated
reflecting an unauthorized access.

The hardware-based security solutions [Mao and Wolf 2010; Rahmatian et al. 2012;
Yoon et al. 2013], are not generic and require either dedicated hardware modules
or specific modifications in the processor pipeline or cache architecture. Similarly,
DIFT based hardware-assisted solutions such as Secure Program Execution [Suh et al.
2004], Dynamic Tainting [Doudalis et al. 2012; Suh et al. 2004; Schwartz et al. 2010]
are based on tagging data coming from untrusted sources and then tracking their
usage as the application executes. These techniques require modifications in applica-
tion’s data, processor architecture and memory layout. Therefore, they are not feasible
for low-cost IoT systems.

Intrusion detection techniques [Amin et al. 2009; Raza et al. 2013] for IP based
sensor networks would require implementation of TCP/IP stack and signature storage
which is not possible for power and resource constrained microcontroller based sensor
nodes. Similarly vector based classification methods [Li et al. 2014] require storing of
valid dataset on the system and then performing intrusion detection analysis which is
again not feasible due to higher memory footprint and performance overhead.

Different anomaly based intrusion detection techniques have been proposed in the
literature based on statistical modelling of system behaviour. Machine-learning tech-
niques have been utilized by learning a model, depicting both normal and anomalous
behaviour of the system. Moreover, application data can also be protected by insert-
ing run-time checks in the application code in order to detect illegal memory accesses
(IMAs). Existing anomaly detection solutions based on neural networks and compiler-

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:6

based techniques for the detection of IMAs have been presented in the following sub-
sections.

2.1. Neural Networks based Intrusion Detection
Neural networks have been deployed in different scenarios, covering pattern classi-
fication, function approximation, prediction, optimization and control theory. Neural
networks have been used to detect anomalies in the program behaviour by classifying
system-call sequences [Han and Cho 2005]. Recent surveys [Bhuyan et al. 2014; Bu-
tun et al. 2014] have presented an extensive overview of anomaly detection techniques
and showed that the neural networks have been tested and implemented in the field
of network systems largely. Wu and Banzhaf. [Wu and Banzhaf 2010] has presented
a comprehensive overview of intrusion detection techniques using computational in-
telligence methods such as fuzzy systems, evolutionary neural networks, artificial im-
mune systems, artificial neural networks (ANN) and swarm intelligence. Callegari et
al. [Callegari et al. 2014] have used neural networks to predict the flow of traffic in
a given time window within a network and detect any intrusion in the system. They
have used a multilayer feed-forward architecture for this purpose.

Viera et al. [Vieira et al. 2010] have used ANN in the cloud environment for anomaly
based intrusion detection. They have used a large feature vector for training the model
and presented that the ANN can be used to detect intrusions more effectively. The de-
tection accuracy of ANN based models is dependent on the input feature vector and
number of hidden layers used in the training phase. Furthermore, the detection phase
of such intrusion detection systems is computationally intensive and requires more
time to detect any anomaly. Gelenbe [Gelenbe 1989; 1990] proposed the new class of
ANN as RNN which is based on concepts of probability theory applied to Markovian
queuing theory. In the literature, RNN has been referred to as a G-network [Gelenbe
1991]. RNN is easy to implement on hardware as its neurons can be represented by
simple counters [Abdelbaki et al. 2000; Mohamed and Rubino 2002]. Mohamed and Ru-
bino. [Mohamed and Rubino 2002] compared RNN with ANN and showed that train-
ing time for RNN is greater than ANN, but RNN outperformed ANN during run-time
phase in total calculation time. They further showed that RNNs have strong general-
isation capability for the patterns not covered in the training phase. Applications of
RNN have been reported for modelling, optimisation, pattern recognition, classifica-
tion, and communication [Timotheou 2010].

Different neural network architectures have been proposed depending on the ap-
plication under consideration but the overall efficiency is largely dependent on the
learning algorithm being used in the training phase [Alarcon-Aquino et al. 2006]. For
example, the gradient descent (GD) algorithm was introduced by Gelenbe [Gelenbe
1993] for recurrent RNN, which can be applied to feed forward RNN model. Likas
and Stafylopatis [Likas and Stafylopatis 2000] proposed another learning algorithm
based on minimisation of quadratic error function using quasi-Newton optimisation
technique. The learning algorithm for multiple class RNN is introduced by extending
the GD algorithm for single class of RNN which is applicable on feed forward and re-
current RNN [Gelenbe and Hussain 2002]. The complexity of learning algorithm is
O(nC3) for recurrent RNN and O(nC2) for feed forward RNN where n is the number of
neurons and C is the number of signal classes. Timotheou [Timotheou 2008] proposed
the non-negative least square (NNLS) learning algorithm for RNN by approximating
the RNN equations and showed that his algorithm is better than the GD algorithm.

The majority of researchers have used the GD algorithm for learning the weights of
the RNN model. The GD algorithm is easier to implement, but zigzag behaviour may
occur near the local minimum and in case of problems with multiple local minima.
The evolutionary algorithms are more suitable for solving the optimisation problem.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:7

These techniques are better than gradient-based techniques as they do not require
the calculation of derivatives and they do not get stuck in local minimum (the major
problem with GD algorithm).

Georgiopoulos et al. [Georgiopoulos et al. 2011] have used the differential evolution
(DE) and particle swarm optimisation (PSO) algorithms for training of RNN and com-
pared with the GD algorithm. Aguilar and Colmenares [Aguilar and Colmenares 1998]
have implemented the hybrid training algorithm for RNN by integrating genetic a al-
gorithm with GD algorithm. They trained the RNN with GD algorithm and optimised
the weights with genetic algorithm. The results showed that hybrid algorithm is better
than GD algorithm.

The existing neural networks based intrusion detection solutions [Vieira et al. 2010;
Mohamed and Rubino 2002] are computationally intensive, rely on extensive profiling
of the communication traffic and have been designed for such systems having ample
resources where power consumption is not a design constraint. Therefore, such solu-
tion cannot be deployed for battery operated wireless sensor nodes based IoT systems.
On the other hand, the first security layer of our proposed solution is based on a RNN
model which is easy to implement, has low memory footprint, consumes minimal power
and can detect any deviation in the system behaviour effectively.

2.2. Compile-time Code Instrumentation
Different solutions have been proposed to detect memory errors in C/C++ based ap-
plications. As mentioned earlier, static analysis tools do not provide 100% guarantee,
and hence they have been substituted with dynamic techniques. Many software-based
dynamic memory bug detection techniques have been proposed in the literature that
vary in implementation level, memory utilization, run-time overhead, types of bugs
detected, probability to detect bugs, supported architectures and many other features.
In this section, we have discussed only those solutions that are similar to our proposed
compile-time instrumentation solution.

Referent-object based approaches [Jones and Kelly 1997; Ruwase and Lam 2004;
Younan et al. 2010; Akritidis et al. 2009] work at source-code level by maintaining a
separate table, using different data structures, to record bounds of each memory allo-
cation. This table is then used to verify memory accesses by performing table lookups
at run-time. These techniques differ in the implementation and handling of record
tables. Avijit et al. [Avijit et al. 2004; Avijit and Gupta 2006] have implemented Lib-
safePlus and TIED. Static allocations are handled by TIED whereas LibsafePlus deals
with dynamic information about the stack size and heap allocations. These details are
then used at run-time to detect any overflow. Furthermore, these solutions require cus-
tomised memory allocator libraries to achieve reduced performance overhead. SAFE-
Code [Dhurjati et al. 2006] which is also an object-based approach, operates at source-
code level. It instruments loads and stores to prevent illegal memory accesses by using
points-to analysis and type-inference to find type-safe regions of the heap. Similarly,
PAriCheck [Younan et al. 2010] computes bounds and assigns label to each fixed-size
memory block and stores these labels in a separate table at run-time. On each pointer
arithmetic operation, the label is compared by values in the table.

On the other hand, the pointer-based approaches [Necula et al. 2005; Nagarakatte
et al. 2009; Hasabnis et al. 2012] associate base and size metadata with every pointer
and insert run-time checks manipulating metadata information during load/store op-
erations of pointer values. CCured [Necula et al. 2005] combines instrumentation with
static analysis to insert run-time checks and removes redundant checks at compile
time. CCured fails to work when un-instrumented pre-compiled libraries are in use.
Unlike prior pointer-based (also known as fat pointer) approaches that modify pointer
representations and object layouts [Hasabnis et al. 2012], SoftBound [Nagarakatte

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:8

et al. 2009] records the bounds information in a disjoint metadata which is accessed
via explicit table lookups on loads and stores of pointer values only. AddressSani-
tizer [Serebryany et al. 2012] verifies whether each allocated memory block is safe to
access by creating shadow memory around stack and global objects to detect overflows.
The shadow memory is checked on each load and store request.

Each of the above mentioned memory bug detection tools has its own strengths and
limitations. For example, tools that operate at binary level detect bugs effectively with-
out any source code requirement but at the cost of more execution time overhead. As
discussed earlier, the tools that operate at source-code level also require either mod-
ified run-time memory allocators or a dedicated compiler driver as it is the case in
several existing solutions [Doudalis et al. 2012; Dhurjati et al. 2006; Serebryany et al.
2012; Akritidis et al. 2009; Younan et al. 2010]. Other software based techniques such
as LBC [Hasabnis et al. 2012] have presented much lower performance overhead but
they require modifications in the source code, thus presenting compatibility issues.
While our solution also requires source code for instrumentation, it does not need
customized run-time libraries and static analysis. Our technique presents higher de-
tection rate by instrumenting all buffer allocations including buffers allocated inside
struct type data variables which are left undetected by the existing solutions exclud-
ing SoftBound.

Unlike SoftBound, the second security layer of our proposed solution is a combi-
nation of object and pointer-based approach. We create tag marks for each memory
object and propagate these tag marks to all the pointers that are associated with
that memory object. Moreover, we do not perform any table-lookup search at run-time
which makes our solution more efficient. Existing solutions are able to detect temporal
safety errors but with much higher performance overhead. On the contrary, lower per-
formance and power consumption overhead has been reported by our solution when
tested in a IoT system.

3. SYSTEM ARCHITECTURE
Detecting abnormality based on behaviour analysis involves learning of the normal
operation of the system and identification of any event that deviates from the previ-
ously learned model. In this way, unknown security attacks can also be detected which
normally left undetected by the signature-based techniques. The proposed intrusion
detection and prevention mechanism (IDPM) is enabled with two layers of security. In
the first layer, the Random Neural Network (RNN) is used to detect any abnormality in
the behaviour of the system. In the second layer, a compile-time code instrumentation
approach is used to detect illegal memory accesses (IMAs) at run-time.

A previously designed smart controller [Javed et al. 2015] IoT system, as shown in
Fig. 3, has been used to implement the proposed IDPM. The system comprises of a base
station, sensor nodes and a web server. This has been designed using multiple RNN
models, which have been implemented on low cost Arduino boards. The base station
is developed on an Arduino Mega board and it is connected with control panel of the
environment chamber to turn on/off heater, cooler, and ventilation. Each sensor node is
connected with RFM 69 W transceiver to transmit the data to base station in the form
of a string with the following format [node ID, CO2, temperature, humidity, light, and
intensity (optional)]. This smart controller is capable of detecting and estimating the
number of occupants inside the building in order to turn on/off the Heating, Ventilation
and Air Conditioning (HVAC) control. In addition, it can interact with occupants to
maintain the occupant preferred set points for heating and cooling. The application
running on the base station processes data after receiving it from the sensor nodes
through a transceiver and further communicates with a web server through a on-board

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:9

Fig. 3: Smart Controller IoT System [Javed et al. 2015]

WiFi module. The sensor nodes are battery operated and cannot afford to send data in
encrypted form as it consume considerable amount of power.

Although the proposed IDPM solution has been implemented and tested for a cen-
tralized system (consisting of a base station and wireless sensors) but this can be
adopted to other scenarios as well. For distributed systems, the same approach can
be incorporated by implementing the proposed IDPM inside each IoT device that re-
ceives data but in such cases this will require separate training phase for each of the
devices.

3.1. Layer-1: RNN based Intelligent anomaly detection
3.1.1. Random Neural Networks. The proposed solution has been designed keeping in

mind the scalability of the specific IoT system. For instance, when large number of
wireless sensor nodes (i.e. more than 10) are communicating with the base station
it is not feasible to implement simple solutions (such as if-else conditional statements
are computationally intensive). Moreover, during experimental testing of the given IoT
system it is learned that threshold checks cannot applied against each sensor node at
the base-station. Thus, it has become necessary to generate a predictive model consid-
ering all the input parameters being received by the base station from each node.

First we need to understand how RNN works in oder to adjust it for anomaly detec-
tion. In the RNN, as shown in Fig. 4, signal travels in the form of impulse between the
neurons. If the receiving signal has a positive potential (+1) it represents excitation,
and if the potential of the input signal is negative (-1) it represents inhibition to the
receiving neuron. Each neuron, i, in the RNN has a state ki(t) which represents the po-
tential at time t. This potential ki(t) is represented by non-negative integer. If ki(t) > 0
then neuron, i, is in excited state and if ki(t) = 0 then neuron i is in idle state. When
neuron, i, is in excited state, it transmits impulse according to the Poisson process rate
ri. The transmitted signal can reach neuron, j, as excitation signal with probability
p+(i, j) or as inhibitory signal with probability p−(i, j), or can leave the network with

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:10

Ki(t)

K1(t)

K2(t)

Kn(t)

Kj(t)

(w
i1
 +

 w
i1
)

+

-

(w
1i +

 w
1i)

+

-

(wi2 + wi2)+
-

(w2i + w2i)+ -

(wji + wji)
+

-

(wij + wij)
+

-

(w
ni + w

ni)

+
-

(w
in + w

in)

+
-

λi

Ʌi

Fig. 4: Random Neural Network

probability d(i) such that

d(i) +

N∑
j=1

[
p+(i, j) + p−(i, j)

]
= 1∀i (1)

w+(i, j) = rip
+(i, j) > 0 (2)

w−(i, j) = rip
−(i, j) > 0 (3)

combining Equation 1- 3

r(i) = (1− d(i))
−1

N∑
j=1

[
w+(i, j) + w−(i, j)

]
(4)

The firing rate between the neuron is represented by r(i) =
∑N
j=1 [w+(i, j) + w−(i, j)].

As ’w’ matrices are the product of firing rate and probabilities, therefore these ma-
trices always hold non-negative values. External positive or negative signal can also
reach neuron i at poisson rate Λi and λi respectively. When positive signal is received
at neuron i its potential ki(t) will increase to +1. If neuron i is in excitation state and it

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:11

Table I: Description of RNN symbols

RNN
Symbols

Description

qi Probability neuron i excited at
time t

p+(i, j) Probability neuron j receives pos-
itive signal from neuron i

p−(i, j) Probability neuron j receives neg-
ative signal from neuron i

ri Firing rate of neuron i
Λi Arrival rate of external positive

signals
λi Arrival rate of external negative

signals
d(i) Probability a signal from neuron

departs from the network
ki(t) Potential of neuron i at time t

receives negative signal the potential of neuron i will decrease to zero. Arrival of neg-
ative signal will have no effect on neuron i if its potential is already 0. The description
of symbols used is given in Table I.
Consider the vector K(t)= (k1(t),kn(t)) where ki(t) is the potential of neuron i, n is
the total number of neurons in the network and K is continuous time Markov process.
The stationary distribution of K is represented as:

lim
t→∞

Pr(K(t))) = (k1(t).......kn(t)) =

n∏
i=1

(1− qi)qnii (5)

For each node i

qi =
G+
i

ri +G−i
(6)

where

G+
i = Λi +

N∑
j=1

qjw
+(j, i) (7)

G−i = Λi −
N∑
j=1

qjw
−(j, i) (8)

For three layer network, qi for each layer is calculated as

qiεI =
Λi

ri + λi
where Iis input layer (9)

qhεH =

∑
iεI qiw

+(i, h)

rh +
∑
iεI qiw

−(i, h)
where His hidden layer (10)

qoεO =

∑
iεH qhw

+(h, o)

rh +
∑
iεI qhw

−(h, o)
where Ois Output layer (11)

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:12

System
application

System Input
parameters

RNN
Model

Filter

Detected/
Not detected

System
output

System Application
under test

Valid system Input
parameters

Dataset
(Valid cases)

System Application
under test

Invalid system
Input parameters

Dataset
(Invalid cases)

Combined
Dataset

RNN
Training

System Behaviour Profilling

RNN Model

(a)

(b)

Fig. 5: Layer-1 design and implementation of the proposed IDPM: (a) Feature dataset
acquisition and training of RNN model. (b) Trained RNN model implemented within
the system.

3.1.2. Training data for RNN. The intelligent intrusion detection solutions are based on
generating prediction model using the extracted feature dataset. In our case, the in-
puts and outputs of the system under test are profiled in the form of a feature dataset
presenting behaviour of the system under normal conditions and invalid inputs re-
spectively. The RNN is then used to train a predication model classifying the obtained
feature dataset as either anomalous or normal. Invalid input parameters provided to
the system under test and output generated as a result are considered as a sign of po-
tential anomaly in the system behaviour. The design and implementation of the layer-1
of the proposed IDPM is presented in Fig. 5. To get the feature dataset, the application
running on the main system can be profiled as shown in Fig. 5(a). The feature dataset
is then used to train the RNN model as shown in Fig. 5(b).

To verify the functionality of the proposed intrusion detection mechanism, the fea-
ture dataset is obtained for the given smart controller IoT system. The valid feature
dataset is constructed by profiling the smart controller application, representing the
system behaviour under normal conditions. For this purpose, outputs generated by
base station transceiver in the form of node id, temperature, CO2 and humidity values
are stored in the dataset. Furthermore, the execution time of smart controller appli-
cation running on the base station for the single event as well as aggregate execution
time for a specific period of time are stored in the dataset.

3.1.3. RNN Predictive Model Design. During the training phase, valid ranges of the out-
puts generated by the base station transceiver are recorded which have been used to
determine the invalid cases. It is important to note here that we have added only few
invalid test inputs for training purpose in order to distinguish between normal and ab-
normal system behaviour for the RNN model. For testing purposes, the performance
of RNN predictive model is evaluated for the patterns not included in the training
dataset.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:13

After getting the comprehensive feature dataset, the next step is learning of system
behaviour in the form of RNN prediction model. Here, the main goal of the training is
to learn the input and output relationship by adjusting the interconnections weights of
RNN. In our previous work [Javed et al. 2015], we have presented the benefits of using
a hybrid particle swarm optimisation with sequential quadratic programming (PSO-
SQP) algorithm for training the RNN. For instance, the PSO converges very quickly to
global minima but it gets very slow on local minima whereas, SQP optimisation algo-
rithm can be used for fine tuning if feasible starting points are provided. In this work,
we have used the same algorithm and trained a RNN prediction model, as shown in
Fig. 6, having six nodes in the input layer, six nodes in the hidden layer and one node
in the output layer. We trained the RNN model using different numbers of hidden
neurons keeping in mind its implementation cost. For instance, when using a lower
number of hidden neurons (i.e. 3, 4, 5 neurons), the trained model accuracy deterio-
rated whereas when a higher number of hidden neurons (i.e. 7, 8, 9 neurons) is used,
the detection accuracy remained almost the same but at the expense of increase in its
implementation cost. In our case, the PSO algorithm slowed down the training phase
around 100 iterations when the obtained feature dataset is used. For this reason, the
PSO algorithm has been used for first 100 iterations to get initial weights values and
then SQP optimization algorithm has been further used for fine tuning. The mean
squared error (MSE) achieved by PSO is 0.134 while MSE achieved by PSO-SQP is
0.104. Achieving lower MSE has resulted in higher accuracy to detect intrusions.

Although, using more than one output neuron improves the training time of RNN
model but it increases the implementation cost resulting overhead in application code
size and power consumption. When using two output neurons, the RNN model as-
signed same number of weights to each output which doubled the implementation cost.
Furthermore, in our previous work [Javed et al. 2015; Javed et al. 2016], we have suc-
cessfully demonstrated that a single output neuron can be used to represent the given
dataset. The over-fitting problem is avoided by defining the valid limits of each input
parameter given to the RNN model. For instance, the particular IoT system under
test, we have gathered dataset covering valid variations in supervised mode (changes
in Co2, humidity and temperature with respect to weather) and any sudden change in
these features will correspond to the intrusion in the system.

The base station architecture enabled with layer-1 of the proposed IDPM is shown
in Fig. 7. The RNN model output predicts whether the system is working normally
or it has been intruded by generating the enable signal. In case of any intrusion, the
enable signal will alert the filter module to stop receiving data from sensor nodes. The
filter module will disable the smart controller application and send the pre-defined
data as output for the HVAC. Furthermore, an alert signal will be sent to the web
server indicating occurrence of anomalous activity at the base station. In this way, the
intrusion will be prevented and system will operate in default mode.

The main drawback of anomaly based intrusion detection techniques is they might
generate false alarms if the normal behaviour of the system changes over a period of
time. In such cases, it is necessary to update the normal profile periodically. For sys-
tems, as in our case, that do not change the normal behaviour rapidly, the anomalous
activity can be detected effectively. The learned model must be updated periodically
when the normal system behaviour changes. In this way the intrusion detection accu-
racy can be improved.

The design and implementation of the second security layer is presented in next sub-
section whereas the effectiveness and overheads of the proposed solution are discussed
in the Section 4.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:14

2

3

4

5

6

1

2

3

4

5

6

1Node id

Execution time

Temperature

CO2

Humidity

Aggregate
execution time

1

Input Layer Hidden Layer Output Layer

Fig. 6: Architecture of the RNN model

Smart Controller
Application

Tranceiver

node_id

CO2

Humidity
Temperature

R
N

N
 M

o
d

elExecution
 Time

Aggregate
 Time

Base-Station

Filter

C
o

n
tr

o
l P

ar
am

et
er

s
fo

r
H

V
A

C

To
 W

eb
se

rv
er

Enable

In
tru

sio
n

 D
etectio

n
 an

d

P
reven

tio
n

 M
ech

an
ism

:Layer-1

Sen
so

r d
ata

Fig. 7: IoT System protected with layer-1 of the proposed intrusion detection and pre-
vention mechanism (IDPM).

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:15

3.2. Layer-2: Compile-time Code Instrumentation
This security layer instrument the source code of the application running on the base
station. It is based on storing the memory objects bounds information in separately
allocated tag marks and then inserting tag checking instructions. For example, when
a memory object created and a certain memory area is reserved for it, our technique
creates two tag marks tag start and tag end. The base address and the end address
of that memory object are calculated and stored in the tag start mark and thetag end
mark respectively. Finally, when that memory object is accessed, the run-time check in-
structions compare the address being accessed with the bounds stored in its associated
tag marks.

Our solution is compatible with C/C++ source code as it does not change the memory
layout and tag marks are generated and maintained separately. The source code of
the application is converted into an intermediate representation form which is used
to detect each memory allocation, create tag marks and insert run-time checks. The
typical memory layout of a C/C++ program is shown in Fig. 8(a). For each memory
object, whether it is globally, statically or dynamically allocated, the tag marks are
created and memory object bounds are assigned to these tag marks as shown in
Fig. 8(b). The record of tag marks along with their associated memory objects is kept
separately in a specialized record table as depicted in Fig. 8(c). The tag marks are also
created for sub-objects that are defined inside a structure memory object. In that case,
our solution stores the sub-object information along with the main memory object in
third column of the record table. It should be noted that the record table is used at the
time of code instrumentation only to place relevant check instructions and it is not
part of the final executable file. Unlike SoftBound, which uses record tables for bounds
lookup at runtime, our solution utilizes this record table at compile time only and
are deleted before generating final instrumented executable. Using this record table,
the tag checking instructions will be inserted before each load or store instruction
detected for the corresponding memory object. During tag address comparison, the
given memory access will be considered legal only if the address used to access the
memory area is greater than the address stored in its tag end mark and less than the
address contained by its tag start mark. In case of any spatial IMA bug, the addresses
stored in tag marks will be surpassed and tag check instructions will raise bug alarm
and abort the application. The design of layer-2 of the proposed IDPM is based on the
following steps.

Step-1. Function Duplication Enabling Inter-procedural Tag propagation: When
memory objects are accessed by the pointers and these pointers are passed as function
arguments then the corresponding tag marks must also be propagated with them
as well. One solution is to allocate all the tag marks globally so that the tag marks
can be accessed anywhere in the program without modifying the function arguments.
However during testing, this approach failed when functions are called recursively. To
handle this problem, the tag marks are created in the same memory segment where
corresponding memory object is being allocated. Moreover, the function duplication
technique is used to create a copy of the function and additional arguments are added
to pass tag start and tag end marks for each pointer argument. In order to mark
the function being duplicated the actual function name is used along with a unique
attribute. The details of each function being duplicated is saved in a separate table
that is used in later stages to replace function call instructions.

Step-2. Tag Creation for Global Memory Objects: For globally defined memory
objects that are created statically, such as buffers and structures, the memory is
allocated directly at program entry level in data and bss segments as shown in

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:16

Initialized data
(data segment)

uninitialized data
(bss segment)

Heap-dynamic
allocations

Stack- static
allocations

Program code
(text seg)

(a)

(b)

G
lo

b
al

 a
llo

ca
ti

o
n

s

Allocated memory object

Tag_startAllocation type

Tag_end element index, if struct

 end address

memory object

start address

tag_end marktag_start mark

(c)

Command-line
arguments

Fig. 8: (a) Typical memory layout of a C program. (b) Memory objects coupled with
tag start and tag end marks. (c) Record table layout used at the time of code instru-
mentation.

Fig. 8(a). In order to instrument such global allocations the tag marks are created
globally. For each global memory object that is allocated as an array data variable
the tag start and tag end mark pointers are created. The start and end address of the
given memory object are calculated and assign to the corresponding tag marks.

Step-3. Tag Creation for Local Memory Objects: For the local memory objects that are
defined at function level statically, the memory is reserved explicitly on stack and tag
marks are also allocated on stack for such memory objects. The start and end address
of such memory objects are calculated, after which tag start and tag end marks are
initialized respectively with these addresses. For each memory object pointer that
is used to allocate memory dynamically, tag start and tag end mark pointers are
also allocated and initialized with NULL. For such dynamically created objects, the
memory is reserved on heap implicitly by calling special memory allocation functions
(e.g, malloc, calloc, realloc, xcalloc etc.) and starting address is returned to a
pointer variable. Our proposed solution intercepts such function calls and the start
address is assigned to its tag start mark pointer. End address of the allocated object is
also determined by our solution and it is assigned to its corresponding tag end mark
pointer. If a pointer is derived from another pointer, the tag mark pointer associated
with the actual object pointer must also be propagated. Our proposed technique
detects store instructions, at LLVM-IR level, that are used to pass address values

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:17

ALGORITHM 1: Stage-5:Tag checks placement.
Input: Instrumented LLVM-IR code β 4 generated in stage-4; memory map table

Tag map table;Dedicated tag address globaltag
Output: Final Instrumented LLVM-IR code γ generated through LLVM opt command using

stage-5
for each function definition fun def in β 3 do

for each instruction fun inst in fun def do
if fun inst is function call without definition and not a memory allocation or
deallocation call then

for each function argument fun arg in fun inst do
Create two memory objects before fun and after fun. Retrieve respective
tag start and tag end marks from Tag map table.
Read address location next to tag end address before and after fun inst
instruction and store the values in before fun and after fun respectively.
Place tag check instruction after function call fun inst comparing before fun
and after fun memory objects.

end
end
if fun inst is a STORE/LOAD instruction then

Retrieve respective tag start and tag end marks from Tag map table and get
address to be accessed address tobe accessed by the fun inst instruction.
Perform address comparison checks: address tobe accessed with the tag start and
tag end.

end
end

end
Delete memory map table Tag map table.
Save modified LLVM-IR code as an final instrumented LLVM-IR code γ

from one pointer object to another pointer object. Extra instructions are inserted by
our solution to copy the tag mark of one pointer object to the tag mark of other pointer
object. Our solutions instruments main memory objects and the sub-memory objects
that are being allocated inside the structs type memory objects and it also instrument
the sub-memory object that is being allocated inside another sub-memory object(such
as linked lists).

Step-4. Inter-procedural Tag Propagation: As discussed earlier it is very critical
to allocate tag marks in the same memory segment(e.g., heap, stack, bss, data) where
memory object is being created. The memory objects can be accessed inside the body
of another function through pointers that are passed as arguments at the function
call. To handle inter-procedural tag marks propagation, functions containing pointers
as arguments are duplicated. In order to update function calls for these newly created
functions, the function call instructions are detected by our solution and replaced with
new instructions so that tag marks can be propagated separately without changing
the data-flow of the application under instrumentation.

Step-5. Tag Checks Placements: In the final step, the tag checks are created by
following the steps as shown in Algorithm 1. Memory read and write accesses are
performed through LOAD and STORE operations respectively at LLVM-IR level. Our
solution detects such instructions and uses record table to locate the memory object
pointer and tag marks to be accessed. Tag check instructions, to compare the start and
end address of memory object with its associated tag marks, are then inserted before
each load and store instruction to detect spatial IMA bug.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:18

Table II: Effectiveness of the proposed tag-protection solution on different applications
from BugBench benchmark suite

Application Bug location Bug type Detected
bc-1.06 storage.c:177 heap yes
bc-1.06 util.c:577 heap yes
bc-1.06 bc.c:1425 global yes
gzip-1.2.4 gzip.c:457 global yes
man-1.5h1 man.c:978 global yes
ncompress compress.c:896 stack yes
polymorph-0.40 polymorph.c:120 global yes
polymorph-0.40 polymorph.c:193 stack yes
squid-2.3 ftp.c:1024 heap yes

3.2.1. Implementation. The proposed approach operates at the source-code level and it
is loaded as an instrumentation pass at compile time. The current implementation is
based on the LLVM v3.4 compiler infrastructure as shown in Fig. 9. The Clang com-
piler is used to compile C/C++ source file and generate Intermediate Representation
(LLVM-IR) code. The LLVM Linker (llvm-link) is then used to link and generate a
single LLVM-IR code file before running the instrumentation pass. In order to have
minimum overhead, this pass is placed at the end of optimization pipeline and instru-
ments only those memory operations that sustains other optimizations implemented
by the LLVM Optimizer (opt). For instance, the memory operations such as accesses
to local stack variables and objects created through LLVM code generator (e.g., debug
information and metadata) will not be instrumented by our pass as these will be op-
timized out by the LLVM during pre-processing at compile time. After the LLVM-IR
code has been transformed by our layer-2 instrumentation pass , it is processed again
through LLVM optimization pipeline in order to simplify the tag marks propagation
and checks. Furthermore, our solution is independent of any specific Instruction Set
Architecture (ISA) as it is executed on LLVMs target-independent intermediate repre-
sentation form.

We have also assessed our compile-time instrumentation solution using publicly
available Wilander and Nikiforakis’ benchmark software, runtime intrusion preven-
tion evaluator (RIPE) [Wilander et al. 2011]. Various buffer-overflow vulnerabilities
depending on the technique used to overflow the buffer, the kinds of attacks performed
and the location of the buffer to be overwritten, have been covered by RIPE. For in-
stance, RIPE covers four memory locations: Stack, Heap, BSS, and Data segment to
allocate the buffer to be overflowed and uses return address, old base pointer, function
pointer, longjmp buffers and buffers inside the structs to as code target pointers. Our
solution provides 100% accuracy by successfully detecting all the supplied overflows.

To verify the effectiveness of second layer of IDPM, real-world applications, from
BugBench benchmark suite [Lu et al. 2005] that have been reported with buffer over-
flow vulnerabilities, are also compiled and instrumented. These applications are then
executed using input sets, triggering each known IMA bug. Our proposed solution de-
tected all the bugs successfully as presented in Table II.

3.2.2. Limitations. Calls to pre-compiled library functions where source code is not
available (e.g., memcpy, strcpy, sscanf etc.) are also identified. In such cases, it is
not possible to insert tag address checking instructions. Alternatively, our code instru-
mentation solution inserts one tag value check instruction after such function calls by
detecting memory objects passed as function arguments and loading tag mark values
as defined in Algorithm 1. Any write overflow that occurs, as a result of sequential

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:19

llvm-link

clang

Opt -O2

Layer-2
instrumentation pass

executable

clang

LLVM-IR
Code

Source Code

C/C++ file

clang
C/C++ file

clang
C/C++ file

Opt

Fig. 9: Layer-2 implementation block diagram based on LLVM v3.4 compiler frame-
work

write operation during an array or continuous memory access, during the execution of
these functions will overwrite the memory pointed by the tag mark which will be even-
tually detected on function return by tag value check instructions placed after function
call. If the overflow attack occurs at the same memory location with different values
over a period of time (such as brute-force or adaptive attacks), the tag mark can be
overwritten with the same value that was present initially. In such cases, our address
checking mechanism can detect these kinds of attacks only if complete source code is
provided.

4. EVALUATION AND EXPERIMENTAL RESULTS
The effectiveness and overheads are evaluated by implementing the proposed IDPM
within the application running on the base station. In the first step, a malicious node
is introduced into the system which compromises the base station and in the second
step, it is shown that our solution can successfully detect and prevent such attacks
with minimum impact on the system resources, performance and power consumption.

The first layer of IDPM is mainly responsible to detect performance degradation
attacks such as detection of invalid packets transmitted by a malicious sensor node
with the aim to drain battery and unnecessary utilization of system resources (i.e
base station transceiver). Any data corruption as the result of buffer overflow will also
be detected by this layer as long as the application’s data memory is intact and pro-
gram instructions are executing. However, it is observed that the attacker sensor node
can initiate buffer overflow attack leading to data memory corruption where micro-
controller failed to continue application execution. The second layer of the IDPM has
successfully detected such buffer overflows when initiated by the attacker sensor node.

Through an experimental setup, as shown in Fig. 10, it is demonstrated that the
given IoT system can be intruded if the attacker is familiar with the communication
protocol used by the valid sensor nodes. As the sensor nodes are battery operated, the
encryption support has been disabled to save the power. The effectiveness of the pro-
posed solution has been tested under different attack scenarios as explained below.
Test Case 1: The first test case refers to inclusion of malicious sensor node with invalid

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:20

Tranceiver

Program
Memory

Gateway

Microprocessor

Wireless
Sensor-node 1

Wireless
Sensor-node 2

Base Station

IO devices Malicious
Wireless

Sensor-node

Program Code

Stack region

Heap region

Program memory
after attack

Data region

Webserver

Buffer overflow

Fig. 10: Smart Controller IoT system compromised with malicious sensor node

node ids in order to drain the system battery and degrade the system performance. In
such cases where the attacker sensor node is transmitting data with node ids different
from authorized node ids. In such cases, the system output is not affected but the base
station have to receive and discard packet each time consuming extra power.
Test Case 2: The attacker might be able to get valid node ids through eavesdropping by
receiving the data packets being transmitted by the valid sensor nodes. In this case,
the attacker sensor node can flood the base station by sending data packets with a
valid node id, leading to performance degradation of the system. This will directly af-
fect the aggregate execution time.
Test Case 3: The attacker can disable the valid sensor and replace it with another sen-
sor node transmitting malicious packet with invalid node id. In this way, the attacker
can send invalid packets to the base station causing degradation in the performance.
Test Case 4: In the worst case scenario, the attacker can disable the valid sensor and
replace it with another sensor node transmitting malicious packet with valid node id.
In this way, the attacker can send invalid values of temperature,CO2 and humidity re-
sulting incorrect working of the base station.
Test Case 5: If the length of the packet being transmitted by the valid sensor nodes
is identified by the attacker, then buffer overflow based attacks can be launched by
sending packets exceeding the valid data length and corrupting the program memory.
In such cases, the stored data value can be overwritten which can alter actual flow of
data leading to system malfunction.
Test Case 6: The valid sensor nodes might malfunction either due to depleting battery
or faults in the sensor nodes. In such cases, the sensor node can transmit invalid data
or completely fail to operate properly. Furthermore, if the base station transceiver
stops receiving data, then system will not be able generate correct output. Our pro-
posed solution also acts as sensor node health monitoring system. Such events will be
reported to the main web server.

These test cases have been summarised in Table III. To practically evaluate these
attack scenarios, we placed a malicious sensor node in the range of the base station.
This malicious sensor node can transmit the packet containing more data as intended
to receive or even transmitting packets containing invalid data. The length and format

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:21

Table III: Test cases under different attack scenarios

Test Cases Attack Scenario

Test Case 1

Attacker canr Add extra sensor noder Have invalid node idr Transmit invalid sensor data

Test Case 2

Attacker canr Add extra sensor noder Have valid node idr Transmit invalid sensor data

Test Case 3
Attacker canr Disable one of the valid sensor nodesr Add malicious sensor node with invalid node id

Test Case 4

Attacker canr Disable one of the valid sensor nodesr Add malicious sensor node with valid node idr Transmit invalid sensor data

Test Case 5
Attacker canr Identify length of valid data packetr Generate buffer overflow attack at the base station

Test Case 6
r One of the valid sensor nodes stop transmitting datar Base station stops receiving data.

of data transmitted by valid sensor nodes is analysed by placing another receiving
node. After that, the attacker sensor node starts transmitting its own packet leading
to performance degradation and generating buffer overflow in the memory where the
received data is being stored by the base station. In this way, the base station failed
to execute the code in the correct manner. On the contrary, when the base station is
protected with our proposed IDPM, the security attacks are detected successfully. In
such event, the base station is configured to stop receiving further packets and an
alarm signal is generated to the web server for further action.

The anomaly based intrusion detection systems (IDSs) work on the notion that any
intrusive activity is a subset of anomalous behaviour of the system. If the attacker is
not fully aware of the communication protocol followed by the valid sensor nodes and
tries to intrude into the base station, then this will be detected as an anomalous ac-
tivity by the system with high probability. In the worst case scenario, if the attacker
knows the system very well, then it becomes more difficult to detect the intrusion. Ku-
mar and Stafford [Kumar and Spafford 1994] suggested that the output of any anomaly
based IDS can be categorized into four different groups(i.e. true positives, true nega-
tives, false positives and false negatives). For instance, if there is an intrusion in the
system and the IDS successfully detected it, then the IDS output will be labelled as
a true positive (TP). False negatives (FN) represent those cases when the intrusion
is left undetected. Similarly, if there is no intrusion in the system and IDS does not

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:22

Table IV: Accuracy of Proposed Intrusion Detection and Prevention Solution

Test Cases
True
Positives

False
Negatives

True
Negatives

False
Positives

Detection
Level

Overall 96.52% 3.48% Layer-1,2
Test Case 1 100% 0% Layer-1
Test Case 2 98.41% 1.60% Layer-1
Test Case 3 100% 0% 97.94% 2.06% Layer-1
Test Case 4 94% 6% Layer-1
Test Case 5 100% 0% Layer-1,2
Test Case 6 100% 0% Layer-1

generate any alarm signal, then it will be termed as a true negative (TN). Reporting
normal behaviour of the system as intrusive is labelled as a false positive (FP).

The detection accuracy of the proposed IDPM is defined as its ability to detect normal
behaviour and intrusion in the system successfully. This has been measured by using
equation 12.

IDPM detection accuracy =
TP + TN

TP + TN + FN + FP
(12)

Table IV presents the detection accuracy of our proposed solution under different
attack scenarios. Overall, our proposed IDPM has reported an accuracy of 97.23% with
false negative rate of 3.48%. Majority of the false negatives are generated by ”Test Case
4” where it is assumed that the attacker has complete knowledge and access to the
sensor nodes. The valid sensor node has been replaced with a malicious sensor node
having valid node id. On closer analysis of this test case results, it is the observed that
if the invalid sensor node is transmitting data within the allowed frequency range
and not all packet data values(i.e. temperature, CO2, humidity) are invalid, then the
IDPM will fail to detect it. Such cases are very hard to detect and normally labelled
as non-intrusive as they very closely correlate to the normal behaviour of the system.
Similarly, in the ”Test Case 2”, the attack scenario corresponds to degradation of system
performance by overloading the transceiver module and the IDPM has reported 1.60%
false negatives. If the invalid node is not transmitting data frequently, then it will
have minimum effect on the system execution time. In that case, it will be treated
as normal behaviour by the IDPM. Beside these two test cases, our proposed security
solution has presented 100% true positives. Overall, the IDPM has presented 2.06%
false positives and correspond to those cases where valid sensor nodes transmit data
values that are very close to maximum allowed range learned by the RNN model. ”Test
Case 6” presents those cases when the valid sensor node either develops a fault or
it runs out of battery. The base station transceiver can also develop a fault and stop
receiving data. In all such cases, our IDPM has presented 100% true positive results.

Beside verifying the effectiveness of the proposed IDPM, its impact on the system
performance, power consumption, data transfer rate and hardware resources has been
analysed. The performance overhead is measured in terms of system execution time
that is defined as the time required to generate the output after receiving data from
the transceiver module. Similarly, power consumption is defined as the power required
to execute the single event and it has been calculated by measuring the current drawn
by base station while running the application. Here, data transfer rate is defined the
maximum number bits that can be received by the base station in one second. Hard-

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:23

Table V: Overhead of the proposed Intrusion Detection and Prevention Mechanism

Security Level
System
Execution
Time (ms)

Power
Consumption
(mW)

Data
Transfer
Rate (kbps)

Dedicated
Hardware
Logic

Packet
Lengthβ

(bytes)

Baseline 8.584 72 31.69 – 255
AES Encrypted 8.623 86.90 31.54

YES 64
Change∗ +0.45% +20.69% -0.54%
Layer-1 8.794 78.545 30.93

NO 255
Change∗ +2.45% +9.09% -2.40%
Layer-2 8.644 72.821 31.47

NO 255
Change∗ +0.7% +1.14% -0.69%
Combinedα 8.868 79.524 30.67

NO 255
Change∗ +3.31% +10.45% -3.22%

∗Percentage change with respect to baseline, βMaximum length of a packet that can be received/-
transmitted in a single event, αProposed IDPM combining first and second layer.

ware resources overhead is defined as the requirement of dedicated hardware logic to
implement the proposed solution. In the first step, these values have been measured for
the baseline application running on the base station without encryption and IDPM. In
the next step, these values are measured with encryption enabled, layer-1 only, layer-2
only and finally for the IDPM combining two layers respectively. From the results, as
shown in Table V, it is visible that, the proposed IDPM has presented very minimal
impact on the system.

”RFM 69 W” transceiver module on the base station has 128-bit AES encryption sup-
port. This has been implemented using dedicated hardware logic whereas our IDPM
does not require any such dedicated resources. Although, the encryption enabled base
station has lower execution time but it has higher power consumption as compared
to our proposed IDPM. The encrypted communication also have a significant impact
on the sensor nodes power consumption as each node has to transmit encrypted data,
consuming more power for each sensor node in the system. Moreover, this encryp-
tion is only supported to transmit/receive packets with maximum data length of 64
bytes [HOPERF 2015]. Therefore, to transfer large packets, the power consumption of
the encryption enabled base station will increase. On the contrary, our proposed IDPM
has no such restrictions as it does not depend on the packet data length.

5. CONCLUSION
In this work, we have presented a multi-layer and effective intrusion detection and
prevention mechanism for low-power IoT systems. In the first layer, an intelligent
anomaly detection model is learned using RNN to deal with performance degradation
attacks. In the second layer, a lightweight compile-time code instrumentation tech-
nique is implemented to protect program memory from illegal memory accesses. The
proposed solution also acts as sensor node health monitoring system and it is shown
that it can successfully detect the failure of a valid sensor node. The feasibility of the
proposed solution is demonstrated for a wireless sensor nodes based IoT system, with
the detection accuracy of 97.23%. The effectiveness of the proposed solution is further
tested by adding attacker sensor node and generating different security attacks that
are eventually detected by our solution. The proposed IDPM does not require dedi-

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:24

cated hardware resources and presented negligible performance overhead with 10.45%
increase in the power consumption.

REFERENCES
Hossam Abdelbaki, Erol Gelenbe, and Said E El-Khamy. 2000. Analog hardware implementation of the

random neural network model. In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on, Vol. 4. IEEE, 197–201.

J Aguilar and A Colmenares. 1998. Resolution of pattern recognition problems using a hybrid genetic/ran-
dom neural network learning algorithm. Pattern Analysis and Applications 1, 1 (1998), 52–61.

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy Bounds Checking: An Ef-
ficient and Backwards-Compatible Defense against Out-of-Bounds Errors.. In USENIX Security Symp.
51–66.

Vicente Alarcon-Aquino, Javier Barria, and others. 2006. Multiresolution FIR neural-network-based learn-
ing algorithm applied to network traffic prediction. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 36, 2 (2006), 208–220.

Syed Obaid Amin, Muhammad Shoaib Siddiqui, Choong Seon Hong, and Sungwon Lee. 2009. RIDES: Robust
intrusion detection system for IP-based ubiquitous sensor networks. Sensors 9, 5 (2009), 3447–3468.

Kumar Avijit and Prateek Gupta. 2006. Binary rewriting and call interception for efficient runtime protec-
tion against buffer overflows. Software: Practice and Experience 36, 9 (2006), 971–998.

Kumar Avijit, Prateek Gupta, and Deepak Gupta. 2004. TIED, LibsafePlus: Tools for Runtime Buffer Over-
flow Protection.. In USENIX Security Symposium. 45–56.

M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita. 2014. Network Anomaly Detection: Methods, Systems
and Tools. Communications Surveys Tutorials, IEEE 16, 1 (First 2014), 303–336.

I. Butun, S.D. Morgera, and R. Sankar. 2014. A Survey of Intrusion Detection Systems in Wireless Sensor
Networks. Communications Surveys Tutorials, IEEE 16, 1 (First 2014), 266–282.

C. Callegari, S. Giordano, and M. Pagano. 2014. Neural network based anomaly detection. In Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD), 2014 IEEE 19th Inter-
national Workshop on. 310–314. DOI:http://dx.doi.org/10.1109/CAMAD.2014.7033256

Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFECode: Enforcing Alias Analysis for
Weakly Typed Languages. In Proceedings of the 27th ACM SIGPLAN Conference on Programm. Lang.
Design and Imp. ACM, New York, NY, USA, 144–157. DOI:http://dx.doi.org/10.1145/1133981.1133999

Ioannis Doudalis, James Clause, Guru Venkataramani, Milos Prvulovic, and Alessandro Orso. 2012. Effec-
tive and Efficient Memory Protection Using Dynamic Tainting. Computers, IEEE Trans. on 61, 1 (2012),
87–100.

Erol Gelenbe. 1989. Random neural networks with negative and positive signals and product form solution.
Neural computation 1, 4 (1989), 502–510.

Erol Gelenbe. 1990. Stability of the random neural network model. Neural computation 2, 2 (1990), 239–247.
Erol Gelenbe. 1991. Product-form queueing networks with negative and positive customers. Journal of ap-

plied probability (1991), 656–663.
Erol Gelenbe. 1993. Learning in the recurrent random neural network. Neural Computation 5, 1 (1993),

154–164.
E. Gelenbe and K.F. Hussain. 2002. Learning in the multiple class random neural network. Neural Networks,

IEEE Transactions on 13, 6 (Nov 2002), 1257–1267.
Michael Georgiopoulos, Cong Li, and Taskin Kocak. 2011. Learning in the feed-forward random neural

network: A critical review. Performance Evaluation 68, 4 (2011), 361–384.
J. Granjal, E. Monteiro, and J. Sa Silva. 2015. Security for the Internet of Things: A Survey of Existing Pro-

tocols and Open Research Issues. Communications Surveys Tutorials, IEEE 17, 3 (thirdquarter 2015),
1294–1312. DOI:http://dx.doi.org/10.1109/COMST.2015.2388550

Sang-Jun Han and Sung-Bae Cho. 2005. Evolutionary neural networks for anomaly detection based on the
behavior of a program. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 36, 3
(2005), 559–570.

Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-weight Bounds Checking. In Proceedings
of the Tenth International Symposium on CGO (CGO ’12). ACM, New York, NY, USA, 135–144.
DOI:http://dx.doi.org/10.1145/2259016.2259034

HOPERF. Accessed: 15-9-2015. RFM69 ISM TRANSCEIVER MODULE. (Accessed: 15-9-2015). http://www.
hoperf.cn/upload/rf/RFM69-V1.3.pdf

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

Intelligent Intrusion Detection in Low Power IoTs 0:25

A. Javed, H. Larijani, A. Ahmadinia, R. Emmanuel, D. Gibson, and C. Clark. 2015. Experimental testing of
a random neural network smart controller using a single zone test chamber. Networks, IET 4, 6 (2015),
350–358. DOI:http://dx.doi.org/10.1049/iet-net.2015.0020

A. Javed, H. Larijani, A. Ahmadinia, and D. Gibson. 2016. Smart Random Neural Network Controller for
HVAC using Cloud Computing Technology. IEEE Transactions on Industrial Informatics PP, 99 (2016),
1–1. DOI:http://dx.doi.org/10.1109/TII.2016.2597746

Richard WM Jones and Paul HJ Kelly. 1997. Backwards-Compatible Bounds Checking for Arrays and Point-
ers in C Programs.. In Proceedings of the 3rd Int. Workshop on Automatic Debugging. Citeseer, 13–26.

Georgios Kornaros and Dionisios Pnevmatikatos. 2013. A survey and taxonomy of on-chip monitoring of
multicore systems-on-chip. ACM Trans. Des. Autom. Electron. Syst. 18, 2, Article 17 (2013), 38 pages.

Sandeep Kumar and Eugene H. Spafford. 1994. An Application of Pattern Matching in Intrusion Detection.
Technical Report. Department of Computer Sciences, Purdue University.

Wenchao Li, Ping Yi, Yue Wu, Li Pan, and Jianhua Li. 2014. A new intrusion detection system based on KNN
classification algorithm in wireless sensor network. Journal of Elect. and Comp. Engineering (2014).

Aristidis Likas and Andreas Stafylopatis. 2000. Training the random neural network using quasi-Newton
methods. European Journal of Operational Research 126, 2 (2000), 331–339.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005. Bugbench: Benchmarks for
evaluating bug detection tools. In Workshop on the Evaluation of Software Defect Detection Tools. 1–5.

Shufu Mao and T. Wolf. 2010. Hardware Support for Secure Processing in Embedded Systems. Computers,
IEEE Transactions on 59, 6 (2010), 847–854.

Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac. 2012. Internet of
things: Vision, applications and research challenges. Ad Hoc Networks 10, 7 (2012), 1497 – 1516.
DOI:http://dx.doi.org/10.1016/j.adhoc.2012.02.016

Samir Mohamed and Gerardo Rubino. 2002. A study of real-time packet video quality using random neural
networks. Circuits and Systems for Video Technology, IEEE Transactions on 12, 12 (2002), 1071–1083.

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. 2009. SoftBound: highly com-
patible and complete spatial memory safety for c. In ACM Sigplan Notices, Vol. 44. ACM, 245–258.

George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured:
type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (2005), 477–526.

NIST. 2001. Advanced Encryption Standard:U.S. National Institute of Standards and Technology (NIST):
Federal Information Processing Standards Publication (FIPS PUBS) 197. (2001). http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

Aleph One. 1996. Smashing the stack for fun and profit. Phrack magazine 7, 49 (1996), 14–16.
M. Rahmatian, H. Kooti, I.G. Harris, and E. Bozorgzadeh. 2012. Hardware-Assisted Detection of Malicious

Software in Embedded Systems. Embedded Systems Letters, IEEE 4, 4 (2012), 94–97.
Shahid Raza, Linus Wallgren, and Thiemo Voigt. 2013. SVELTE: Real-time intrusion detection in the Inter-

net of Things. Ad Hoc Networks 11, 8 (2013), 2661–2674.
RSA. 2003. Public-Key Cryptography Standards (PKCS): RSA Cryptography Specifications Version 2.1.

(2003). https://tools.ietf.org/html/rfc3447
Olatunji Ruwase and Monica S Lam. 2004. A Practical Dynamic Buffer Overflow Detector. In In Proceedings

of the 11th Annual Network and Distributed System Security Symposium.
Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid to ask). In Security
and Privacy (SP), 2010 IEEE Symposium on. IEEE, 317–331.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. 2012. AddressSani-
tizer: A fast address sanity checker. In USENIX ATC, Vol. 2012.

G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure Program Execution via
Dynamic Information Flow Tracking. SIGARCH Comput. Archit. News 32, 5 (Oct. 2004), 85–96.

Stelios Timotheou. 2008. Nonnegative least squares learning for the random neural network. In Artificial
Neural Networks-ICANN 2008. Springer, 195–204.

Stelios Timotheou. 2010. The random neural network: a survey. The computer journal 53, 3 (2010), 251–267.
W. Trappe, R. Howard, and R.S. Moore. 2015. Low-Energy Security: Limits and Opportunities in the Internet

of Things. Security Privacy, IEEE 13, 1 (Jan 2015), 14–21. DOI:http://dx.doi.org/10.1109/MSP.2015.7
Kleber Vieira, Alexandre Schulter, Carlos Westphall, and Carla Westphall. 2010. Intru-

sion Detection for Grid and Cloud Computing. IT Professional 12, 4 (2010), 38–43.
DOI:http://dx.doi.org/10.1109/MITP.2009.89

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

0:26

John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen. 2011. RIPE: Runtime
Intrusion Prevention Evaluator. In Proceedings of the 27th Annual Computer Security Applications Con-
ference. ACM.

Shelly Xiaonan Wu and Wolfgang Banzhaf. 2010. The use of computational intelligence in
intrusion detection systems: A review. Applied Soft Computing 10, 1 (2010), 1 – 35.
DOI:http://dx.doi.org/10.1016/j.asoc.2009.06.019

Li Da Xu, Wu He, and Shancang Li. 2014. Internet of Things in Industries: A Survey. Industrial Informatics,
IEEE Transactions on 10, 4 (Nov 2014), 2233–2243. DOI:http://dx.doi.org/10.1109/TII.2014.2300753

Man-Ki Yoon, S. Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013. SecureCore: A multicore-based in-
trusion detection architecture for real-time embedded systems. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th. 21–32.

Yves Younan. 2014. 25 Years of Vulnerabilities: 1988-2012. (2014). http://labs.snort.org/blogfiles/Sourcefire\
\-25-Years-of-Vulnerabilities-Research-Report.pdf.

Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R Sekar, Frank Piessens, and Wouter Joosen. 2010.
PAriCheck: an efficient pointer arithmetic checker for C programs. In Proceedings of the 5th ACM Symp.
on Info., Comp. and Comm. Security. ACM, 145–156.

ACM Transactions on Internet Technology, Vol. 0, No. 0, Article 0, Publication date: 2016.

