480 research outputs found

    Single Tree Detection from Airborne Laser Scanning Data: A Stochastic Approach

    Get PDF
    Characterizing and monitoring forests are of great scientific and managerial interests, such as understanding the global carbon circle, biodiversity conservation and management of natural resources. As an alternative or compliment to traditional remote sensing techniques, airborne laser scanning (ALS) has been placed in a very advantageous position in forest studies, for its unique ability to directly measure the distribution of vegetation materials in the vertical direction, as well as the terrain beneath the forest canopy. Serving as basis for tree-wise forest biophysical parameter and species information retrieval, single tree detection is a very motivating research topic in forest inventory. The objective of the study is to develop a method from the perspective of computer vision to detect single trees automatically from ALS data. For this purpose, this study explored different aspects of the problem. It starts from an improved pipeline for canopy height model (CHM) generation, which alleviates the distortion of tree crown shapes presented on CHMs resulted from conventional procedures due to the shadow effects of ALS data and produces pit-free CHM. The single tree detection method consists of a hybrid framework which integrates low-level image processing techniques, i.e. local maxima filtering (LM) and marker-controlled watershed segmentation (MCWS), into a high-level probabilistic model. In the proposed approach, tree crowns in the forest plot are modelled as a configuration of circular objects. The configuration containing the best possible set of detected tree objects is estimated by a global optimization solver in a probabilistic framework. The model features an accelerated optimization process compared with classical stochastic models, e.g. marked point processes. The parameter estimation is another issue: the study investigated both a reference-based supervised and an Expectation-Maximization (EM) based unsupervised method to estimate the parameters in the model. The model was tested in a temperate mature coniferous forest in Ontario, Canada, as well as simulated coniferous forest plots with various degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering based methods, thus increasing the overall detection accuracy by approximately 10% on all of the datasets

    Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds

    Get PDF
    Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra–taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE%) for tree heights (mean R2 = 0.77, mean RMSE% = 18.46%) than for crown diameters (mean R2 = 0.46, mean RMSE% = 24.9%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees 15–20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest’s stand structure

    FOREST PARAMETER ESTIMATION FROM AIRBORNE LIDAR DATA IN RUGGED MOUNTAINOUS AREAS

    Get PDF
    Environmental Science and EngineeringDuring the past decade, the procedure for quantification of forest parameters using LiDAR data has been rapidly improved. Among various forest parameters, biomass is the paramount in understanding the potentials productivity of forests. Various methods have been developed to estimate biomass at both plot and individual tree levels. In order to quantify biomass at the individual tree level, tree crown delineation must be conducted, which is sometimes challenging especially for multi-layer dense forests in rugged mountainous areas. In this study, Light Detection and Ranging (LiDAR) data were used to delineate tree crowns and estimate biomass in a mountainous forest. Firstly, a novel algorithm was proposed to identify individual tree crowns using the concept of live crown ratios based solely on LiDAR data. Then, above ground biomass (AGB) was estimated using machine learning approaches based on tree crowns delineated in the previous step. LiDAR-derived metrics related to forest parameters such as tree height and crown areas as well as topographic characteristics extracted based on the delineated tree crowns were used to estimate AGB. Three machine learning models— random forest, Cubist, and support vector regression—were evaluated for AGB estimation and relative importance of input variables was examined.ope

    Tree Species Traits Determine the Success of LiDAR-based Crown Mapping in a Mixed Temperate Forest

    Get PDF
    Automated individual tree crown delineation (ITCD) via remote sensing platforms offers a path forward to obtain wall-to-wall detailed tree inventory/information over large areas. While LiDAR-based ITCD methods have proven successful in conifer dominated forests, it remains unclear how well these methods can be applied broadly in deciduous broadleaf (hardwood) dominated forests. In this study, I applied five common automated LiDAR-based ITCD methods across fifteen plots ranging from conifer- to hardwood- dominated at the Harvard Forest in Petersham, MA, USA, and assess accuracy against manually delineation crowns. I then identified basic tree- and plot-level factors influencing the success of delineation techniques. My results showed that automated crown delineation shows promise in closed canopy mixed-species forests. There was relatively little difference between crown delineation methods (51-59% aggregated plot accuracy), and despite parameter tuning, none of the methods produce high accuracy across all plots (27 – 90% range in plot-level accuracy). I found that all methods delineate conifer species (mean 64%) better than hardwood species (mean 42%), and that accuracy of each method varied similarly across plots and was significantly related to plot-level conifer fraction. Further, while tree-level factors related to tree size (DBH, height and crown area) all strongly influenced the success of crown delineations, the influence of plot-level factors varied. Species evenness (relative species abundance) was the most important plot-level variable controlling crown delineation success, and as species evenness decreased, the probability of successful delineation increased. Evenness was likely important due to 1) its negative relationship to conifer fraction and 2) a relationship between evenness and increased canopy space filling efficiency. Overall, my work suggests that the ability to delineate crowns is not strongly driven by methodological differences, but instead driven by differences in functional group (conifer vs. hardwood) tree size and diversity and how crowns are displayed in relation to each other. While LiDAR-based ITCD methods are well suited for conifer dominated plots with distinct canopy structure, they remain less reliable in hardwood dominated plots. I suggest that future work focus on integrating phenology and spectral characteristics with existing LiDAR approaches to better delineate hardwood dominated stands

    Improving Measurement of Forest Structural Parameters by Co-Registering of High Resolution Aerial Imagery and Low Density LiDAR Data

    Get PDF
    Forest structural parameters, such as tree height and crown width, are indispensable for evaluating forest biomass or forest volume. LiDAR is a revolutionary technology for measurement of forest structural parameters, however, the accuracy of crown width extraction is not satisfactory when using a low density LiDAR, especially in high canopy cover forest. We used high resolution aerial imagery with a low density LiDAR system to overcome this shortcoming. A morphological filtering was used to generate a DEM (Digital Elevation Model) and a CHM (Canopy Height Model) from LiDAR data. The LiDAR camera image is matched to the aerial image with an automated keypoints search algorithm. As a result, a high registration accuracy of 0.5 pixels was obtained. A local maximum filter, watershed segmentation, and object-oriented image segmentation are used to obtain tree height and crown width. Results indicate that the camera data collected by the integrated LiDAR system plays an important role in registration with aerial imagery. The synthesis with aerial imagery increases the accuracy of forest structural parameter extraction when compared to only using the low density LiDAR data

    Individual Tree Crown Delineation Using Multispectral LiDAR Data

    Get PDF
    In this study, an improved treetop detection and a region-based segmentation algorithm were developed to delineate Individual Tree Crowns (ITCs) using multispectral Light Detection and Ranging (LiDAR) data. The dataset used for this research was acquired from Teledyne Optechs Titan LiDAR sensor which was operated at three wavelengths: 1550 nm, 1064 nm, and 532 nm. An improved multi-scale method was developed to identify treetops for different crown sizes and merge them via Gaussian fitting. With the improved region growing segmentation method, neutrosophic logic was extensively used to incorporate contextual intensity information in the region merging decision heuristics. The LiDAR positional data was uniquely exploited, in this research, to generate refine crown boundary approximations. The results from the proposed method were compared with manually delineated ITCs to highlight the performance improvements. A 12% increase in the accuracy was observed with the proposed method over the popular Marker Controlled Watershed segmentation technique

    A Robust Stepwise Clustering Approach to Detect Individual Trees in Temperate Hardwood Plantations Using Airborne LiDAR Data

    Get PDF
    Precise tree inventory plays a critical role in sustainable forest planting, restoration, and management. LiDAR-based individual tree detection algorithms often focus on finding individual treetops to discern tree positions. However, deliquescent tree forms (broad, flattened crowns) in deciduous forests can make these algorithms ineffective. In this study, we propose a stepwise tree detection approach, by first identifying individual trees using horizontal point density and then analyzing their vertical structure profiles. We first project LiDAR data onto a 2D horizontal plane and apply mean shift clustering to generate candidate tree clusters. Next, we apply a series of structure analyses on the vertical phase, to overcome local variations in crown size and tree density. This study demonstrates that the horizontal point density of LiDAR data provides critical information to locate and isolate individual trees in temperate hardwood plantations with varied densities, while vertical structure profiles can identify spreading branches and reconstruct deliquescent crowns. One challenge of applying mean shift clustering is training a dynamic search kernel to identify trees of different sizes, which usually requires a large number of field measurements. The stepwise approach proposed in this study demonstrated robustness when using a constant kernel in clustering, making it an efficient tool for large-scale analysis. This stepwise approach was designed for quantifying temperate hardwood plantation inventories using relatively low-density airborne LiDAR, and it has potential applications for monitoring large-scale plantation forests. Further research is needed to adapt this method to natural stands with diverse tree ages and structures

    Mapping and Monitoring Forest Cover

    Get PDF
    This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources

    Remote sensing pipeline for tree segmentation and classification in a mixed softwood and hardwood system

    Get PDF
    The National Institute of Standards and Technology data science evaluation plant identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. I created a pipeline to perform three remote sensing tasks. First, a marker-controlled watershed segmentation thresholded by vegetation index and height was performed to identify individual tree crowns within the canopy height model. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset’s dimensionality through principle component analysis and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well
    corecore