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Abstract 

Tree Species Traits Determine the Success of LiDAR-based Crown Mapping in a Mixed 

Temperate Forest 

by 

Jack Hastings 

Department of Natural Resources, University of New Hampshire 

 

Automated individual tree crown delineation (ITCD) via remote sensing platforms offers a path 

forward to obtain wall-to-wall detailed tree inventory/information over large areas. While 

LiDAR-based ITCD methods have proven successful in conifer dominated forests, it remains 

unclear how well these methods can be applied broadly in deciduous broadleaf (hardwood) 

dominated forests. In this study, I applied five common automated LiDAR-based ITCD methods 

across fifteen plots ranging from conifer- to hardwood- dominated at the Harvard Forest in 

Petersham, MA, USA, and assess accuracy against manually delineation crowns. I then identified 

basic tree- and plot-level factors influencing the success of delineation techniques. My results 

showed that automated crown delineation shows promise in closed canopy mixed-species forests. 

There was relatively little difference between crown delineation methods (51-59% aggregated 

plot accuracy), and despite parameter tuning, none of the methods produce high accuracy across 

all plots (27 – 90% range in plot-level accuracy). I found that all methods delineate conifer 

species (mean 64%) better than hardwood species (mean 42%), and that accuracy of each 

method varied similarly across plots and was significantly related to plot-level conifer fraction. 
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Further, while tree-level factors related to tree size (DBH, height and crown area) all strongly 

influenced the success of crown delineations, the influence of plot-level factors varied. Species 

evenness (relative species abundance) was the most important plot-level variable controlling 

crown delineation success, and as species evenness decreased, the probability of successful 

delineation increased. Evenness was likely important due to 1) its negative relationship to conifer 

fraction and 2) a relationship between evenness and increased canopy space filling efficiency. 

Overall, my work suggests that the ability to delineate crowns is not strongly driven by 

methodological differences, but instead driven by differences in functional group (conifer vs. 

hardwood) tree size and diversity and how crowns are displayed in relation to each other. While 

LiDAR-based ITCD methods are well suited for conifer dominated plots with distinct canopy 

structure, they remain less reliable in hardwood dominated plots. I suggest that future work focus 

on integrating phenology and spectral characteristics with existing LiDAR approaches to better 

delineate hardwood dominated stands. 
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Introduction 

Individual tree crown delineation (ITCD) via remote sensing platforms offers a path 

forward to obtain wall-to-wall detailed tree inventory/information over large areas. ITCD has 

been used to map species (Shi et al., 2018), biodiversity (Zhao et al., 2018), and carbon stocks 

(Coomes et al., 2017), as well as to quantify tree structural (Palace et al., 2008) and spectral 

characteristics (Clark et al., 2005). While manually delineating crowns from high resolution 

imagery provides accurate measurements for small scale studies (Asner et al., 2002; Clark et al., 

2005; Fang et al., 2018), effective automated methods are necessary if efforts are to be scaled to 

larger geographic regions. An ideal crown delineation method would be broadly applicable 

across stands varying in structural and compositional complexity. Given that many forests across 

the globe are under increasing pressure from climate change (Rustad et al., 2012), invasive pests 

(Crowley et al., 2016), and land-use change (Houghton, 1995), reliable methods for measuring 

and mapping forests takes on additional urgency. Despite this need, broad-scale application of 

automated ITCD techniques remains difficult and unreliability is uncertain. 

Considerable work has been done to develop and improve automated ITCD techniques 

(Ayrey et al., 2017; Dalponte and Coomes, 2016; Jing et al., 2012; Li et al., 2012; Lu et al., 

2014; Silva et al., 2016a; Wan Mohd Jaafar et al., 2018; Zhen et al., 2015). Light Detection and 

Ranging (LiDAR) crown delineation methods tend to be favored over spectral methods because 

they are not impaired by shadow and illumination artifacts (Dalponte et al., 2015), and because 

of the ability to directly measure crown architecture (Zhen et al., 2016). However, reported 

accuracies of different LiDAR-based methods is wide-ranged (Lu et al., 2014), and the success 

of their application is largely controlled by the structure of the forest of interest (Vauhkonen et 

al., 2012). 
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The structure of an individual crown and its position relative to neighboring crowns has a 

direct bearing on the success of ITCD. Crown architecture controls leaf display (Valladares and 

Niinemets, 2007), and trees must balance resource acquisition (e.g. light) with mechanical 

constraints (e.g. buckling under its own weight; Chave et al., 2009; Horn, 1971). Tree crown 

form is also plastic (Forrester et al., 2017; Muth and Bazzaz, 2003; Pretzsch, 2014; Valladares 

and Niinemets, 2007) and crown shape is a response to spatio-temporal variation in facilitative 

and competitive interactions with neighboring trees (Fichtner et al., 2017; Givnish, 2002), as 

well as a function of site history and disturbance (Forrester et al., 2017; Oliver and Stephens, 

1977).  

Despite the seemingly stochastic and complex nature of crown and stand structural 

development, there are also characteristic differences between needle-leaf evergreen (conifer) 

and deciduous broadleaf (hardwood) plant functional types that influence ITCD. Conifers and 

hardwoods exhibit differences in physiological traits and adaptation to resource acquisition, 

disturbance and stress (Augusto et al., 2014; Brodribb et al., 2012) that manifest in difference in 

crown shape and stand arrangement. LiDAR-based ITCD methods have been successfully 

applied in conifer dominated systems (Li et al., 2012; Silva et al., 2016b; Wang et al., 2016), 

while hardwood dominated systems tend to be more challenging (Broadbent et al., 2008; Zhen et 

al., 2016). Discrepancies in accuracy of ITCD methods between conifer and hardwood systems is 

often attributed to the characteristic plagiotropic growth form (ellipsoidal or umbrella-shape) of 

hardwood crowns that make it difficult to identify tree tops, differentiate neighboring crowns, 

and group split canopies of an individual crown (e.g. Lu et al. 2014). 

Despite the challenges, there is a need for ITCD in many regions dominated by 

hardwoods and mixed stands. The temperate forests of the northeastern United States are 
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typically characterized by dense mixed species stands with closed canopies, where crowns often 

overlap and have irregular shape. Given the complexity of the forests and the dominance of 

hardwood trees, it remains unclear the degree to which automated ITCD techniques can be 

employed in the region, or what the best ITCD approach would be. Here, I applied a series of 

automated LiDAR-based ITCD methods across plots ranging from conifer to hardwood 

dominated. I identified basic tree- and plot-level factors influencing the success of delineation 

techniques. Finally, I comment on how the ecology of conifer and hardwoods might best be 

exploited to delineate trees in temperate forests. 

Methods 

Site Description 

 This study was conducted in a Smithsonian Forest Global Earth Observatory 

(ForestGEO) MegaPlot (Anderson-Teixeira et al., 2015) at the Harvard Forest (HF), in north-

central Massachusetts (42°32’ N, 72°11’ W). Located within the Prospect Hill Tract of HF 

(Figure 1), the 35 ha MegaPlot is structurally and compositionally representative of the central 

New England landscape. It encompasses a continuous forest comprised of mature eastern 

hemlock (Tsuga Canadensis) stands, mixed-hardwood stands, remnant red pine (Pinus resinosa) 

plantations, and a 3-ha swamp (Orwig and Ellison, 2015). The age structure is dominated by 75-

125 year old second growth forest (Plotkins et al., 2015). Dominant species include red oak 

(Quercus rubra), red maple (Acer rubrum), eastern hemlock, and white pine (Pinus strobus). 

Other common species include Norway spruce (Picea abies), American beech (Fagus 

grandifolia) and birch (Betula spp.). Between 2010 and 2014 a census of the MegaPlot was 

conducted, where all woody stems ≥ 1 cm were mapped, measured, and identified to species 

(http://harvardforest.fas.harvard.edu:8080/exist/apps/datasets/showData.html?id=hf253) (Orwig 
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and Ellison, 2015). Height of all stems were calculated using site-specific allometric equations 

(Sullivan et al., 2017). In 2018, I remotely established fifteen 20 m radius plots across the 

MegaPlot (supplemental Figure 11). Plots were selected to capture a full range of tree functional 

composition from conifer dominated to hardwood dominated.  

 

 

Figure 1: This study was conducted in a ForestGEO MegaPlot (outlined in red) in the Prospect 

Hill Tract (inset) of the Harvard Forest, in Petersham, Massachusetts, USA. 

Remote Sensing Data 

 LiDAR and hyperspectral data were collected over Prospect Hill by NASA’s Goddard 

LiDAR, Hyperspectral and Thermal (G-LiHT) sensor package (Cook et al., 2013) between 19-21 

June, 2012. LiDAR point cloud and canopy height model (CHM), and hyperspectral data were 

downloaded on October 22, 2018 (https://glihtdata.gsfc.nasa.gov/), and clipped to a 10m 

buffered extent of the MegaPlot. The LiDAR point cloud has an average density of 26.98 points 

per m2 within the MegaPlot. The hyperspectral and LiDAR CHM data have a spatial resolution 

of 1m.  

https://glihtdata.gsfc.nasa.gov/
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 Aerial surveys of the MegaPlot were conducted by an RGB camera-equipped unmanned 

aerial vehicle (UAV) throughout the 2018 growing season (David Basler, personal 

communication). Collected imagery had a spatial resolution of 0.01m but was down sampled to 

0.1m for use in this analysis. Using the georeferencer plugin in QGIS (v 2.18; QGIS 

Development Team, 2018) UAV imagery was registered to the G-LiHT remote sensing data by 

identifying distinguishable features in both the UAV imagery and the hyperspectral imagery. 

Each UAV image was aligned with the G-LiHT imagery with 20 control points, and transformed 

using a first-order polynomial. The resulting georeferenced UAV images were found to be in 

good visual agreement and tree crowns aligned with those visible in the G-LiHT hyperspectral 

and LiDAR imagery and field-measured stem locations. 

 Crown Delineation 

All tree crowns visually distinguishable within the fifteen plots were manually delineated 

by onscreen digitizing of the September 13th UAV image. This study excluded understory 

crowns not visible within UAV imagery. Manual delineation of individual tree crowns (MITC) 

was done with a stylus pen using the FreehandEditing plugin in QGIS. While crown digitization 

was performed on the September 13th image for consistency, multiple dates of imagery 

(September 13th, October 5th, October 12th, and November 4th) were used to help distinguish 

crowns and identify the species of each crown based on differences in shadow and phenology 

(Figure 2). 
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Figure 2: Manual crown delineation was performed using high resolution UAV imagery. All 

delineations were done on the September 13th image (left panel), but other dates of imagery were 

used to help differentiate crowns growing in close proximity. The right panel (October 12th) 

gives an example of phenologic differences between species that can be leveraged to help 

separate crowns that might otherwise be clumped during manual interpretation. 

 

MITC species label and associated stem attributes (DBH and allometrically derived tree 

height) were assigned manually during the digitization process from the ForestGEO stem data. In 

rare cases where a crown could conceivably belong to one of multiple stems from either the same 

species or stems from different species that could not be distinguished using phenology and 

textural cues, the crown was assigned to the stem with the higher allometrically derived tree 

height. Crown area and maximum CHM-derived crown height were calculated for each MITC. 

Using MITC crowns, conifer fraction of each plot was calculated as the ratio of conifer crown area 

to hardwood crown area. 

I tested five automated individual tree crown (AITC) delineation techniques (Table 1) 

available in the R (v. 3.5.1; R Core Team, 2018) package (Roussel and Auty, 2019). Four 

routines are surface-based methods applied to a rasterized CHM, and the fifth is a 3D method 

applied to a LiDAR point cloud. Dalponte2016 (DALPONTE) is a surface-based seed and region 
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growing method (Dalponte and Coomes, 2016). Silva2016 (SILVA) is a surface-based seed and 

voronoi tessellation method (Silva et al., 2016a). Simple Watershed (SWS) is an a surface-based 

watershed segmentation (Vincent and Soille, 1991). Marker-controlled Watershed (MCWS) is a 

watershed segmentation that relies on a priority seed map. Li2012 (LI) is a 3D region growing 

method applied to a point cloud (Li et al., 2012). All techniques were run using the lastrees 

function. Treetop priority seed points used in DALPONTE, SILVA, and MCWS were created 

with the tree_detection function using the lmf (local maximum filtering) algorithm (Popescu and 

Wynne 2013). SWS did not rely on a priority seed map, and LI has a tree top detection built into 

the function. While four of the five routines are surface-based methods applied to CHM, by 

default, all methods segment the point cloud. Final AITC polygons were generated using the 

tree_hulls function, by creating a 2D concave hull around the segmented point cloud. I chose not 

to smooth CHM data (e.g. Gaussian filtering) prior to crown delineation analyses. My 

preliminary results showed smoothing either made no marked improvement on delineation 

success, or, in certain cases, decreased overall accuracy of the methods. 

Table 1: Five automated LiDAR-based individual tree crown delineation routines were 

evaluated in this study. † Four routines are surface-based methods applied to rasterized canopy 

height models. ‡The fifth routine is a 3D method applied to a point cloud. All routines were 

implemented in the R package lidR, developed by Roussel and Auty (2019). 

 Crown Delineation Routine  Reference  

 Dalponte2016 (DALPONTE)†   Dalponte and Coomes, 2016  

 Silva2016 (SILVA)†  Silva et al., 2016  

 Simple Watershed (SWS)†  Vincent and Soille, 1991  

 Marker-controlled Watershed (MCWS)†  Vincent and Soille, 1991  

 Li2012 (LI)‡  Li et al., 2012  
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Parameter Tuning and Accuracy Assessment 

 To apply each crown delineation method, we tuned parameters against manually 

delineated crowns. Each automated delineation technique has different input parameters 

controlling how the algorithm searches and delineates the CHM or point cloud, and methods 

vary in input parameter complexity. Parameters include search window sizes, maximum height 

or radius values and drop-off thresholds. I first applied each automated delineation technique 

with default parameters. I specified a 3x3 moving window for the lmf tree top detection during 

default parameterization because a default parameter was not given.  

 I then tuned each technique’s input parameters to find 1) the best plot-tuned parameters – 

potentially unique parameters that maximized plot-level accuracy and 2) the best generalized 

parameters – a single set of parameters that achieved the highest accuracy when evaluated across 

all 15 plots. Parameter tuning was done using a bootstrapping approach, where, during each 

iteration, input parameters were randomly selected within a predefined range. Following each 

delineation iteration, accuracy was assessed by comparing the generated AITC polygons to the 

reference MITC delineations. Automated delineations were paired to manual delineations so that 

any given MITC was labeled as either correctly or incorrectly delineated. A detection accuracy 

score (DA) was assigned to each iteration:  

 DA =
nTP
N

 (Eq. 1) 

where, 𝑛𝑇𝑃 is the number of correctly delineated AITC and N is the number of MITC (Yin and 

Wang, 2016). A given AITC was considered correctly delineated (true positive) if ≥ 50% of the 

area of both AITC and MITC overlap (Figure 3; e.g. Lamar, McGraw, and Warner 2005; Leckie et 

al. 2004). Accuracies were recorded as plot-level accuracies, and as well as overall accuracy – 

aggregated across all 15 plots. Each routine except LI was iterated 500 times. LI was only 
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iterated 200 times because it was substantially slower than the surface-based methods and 

because maximum accuracy achieved did not improve beyond the first 100 iterations. I retained 

tuning iterations for the highest generalized parameter accuracy and the highest plot-tuned 

accuracy for each automated crown delineation.  

To further understand how each method performed at the crown-level, I characterized the 

incorrect AITC delineations by type of error. Therefore, each crown was ultimately assigned one 

of four categories based on their overlap with MITC (Figure 3) :  

A) Over-segmentation: The intersecting area between AITC and MITC is greater than or equal 

to 50% of the area of only AITC. 

B)  True Positive: The intersecting area between AITC and MITC is greater than or equal to 

50% of the area of both AITC and MITC (as defined above). 

C) Under-segmentation: The intersecting area between AITC and MITC is greater than or equal 

to 50% of the area of only MITC. 

D) False Positive: The intersecting area between AITC and MITC is greater than or equal to 

50% of the area of neither AITC and MITC.  

Given that any MITC can only be linked to one AITC, in the case were multiple AITC  crowns fell 

within a single MITC  (as is the case with over-segmentation), the MITC  was assigned to the AITC 

that best overlapped with the particular MITC identified based on the AITC crown that maximized 

the sum of IA and IM, where IA is the ratio of AITC:MITC intersection area to AITC area, and IM is 

the ratio of AITC:MITC intersection area to MITC area.  
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Figure 3: Automated crown delineations (AITC; shown with bold outline) were assessed against 

manual crown delineations (MITC; shown with green fill) and assigned into one of four categories 

based on overlapping area: a) Over-segmentation: The intersecting area between AITC and MITC 

is greater than or equal to 50% of the area of only AITC. b) True Positive: The intersecting area 

between AITC and MITC is greater than or equal to 50% of the area of both AITC and MITC. 

c) Under-segmentation: The intersecting area between AITC and MITC is greater than or equal to 

50% of the area of only MITC. d) False Positive: The intersecting area between AITC and MITC is 

less than 50% of the area of both AITC and MITC.  

 

Statistical Analysis 

 To understand the factors that influenced automated crown delineation I calculated 

multiple metrics used to describe tree-level attributes (DBH, crown height, and crown area), and 

plot-level vertical and horizontal structural and compositional complexity (canopy complexity, 

uniformity of crown spacing, relative density, trees per plot, and species diversity). Plot-level 

metrics only included stem attributes associated with MITC data.  
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Plot canopy complexity was estimated using the Rumple Index (Kane et al., 2008) – a 

ratio of canopy surface area to projected ground area. Uniformity of crown spacing– an 

aggregation index (AGI) developed by Clark and Evan (1954) – was calculated from MITC 

centroids as described by Pommerening (2002). Relative stem density was calculated using a 

mixed-species relative density equation (Ducey and Knapp, 2010). Trees per plot (TPP) was 

calculated as the number of MITC per plot. Species diversity was calculated using Shannon’s 

Diversity Index (H), Pielou’s Evenness Index (J), and species richness (Heip et al., 1998). All 

predictor variables were standardized to have a mean of zero and a standard deviation of one by 

subtracting the mean and dividing by one standard deviation (McCune and Grace, 2002). 

To identify important plot-level variables I performed univariate linear regressions 

between all plot-level metrics and plot-tuned accuracy (n = 15) for all five crown delineation 

routines, and I retained any variable found to be significant (α < 5%) in at least one regression. I 

then built global multiple linear regression model including all significant variables from the 

univariate analyses. Multicollinearity was evaluated using variance inflation factor (VIF), and I 

removed highly inter-correlated variables until VIF of all variables was <10 (Hair et al., 1995). 

The best model for plot-level performance was chosen using a corrected Akaike Information 

Criterion (AIC) to account for small sample size (Burnham and Anderson, 2002).  

Finally, I built mixed-effect logistic regressions to help understand which of the tree- and 

plot-level factors influenced the odds that each MITC would be correctly delineated as a linear 

function of covariates in a logistic regression (Oberle et al., 2018). Logit models were built in the 

R package lme4 (Bates et al., 2015). Each global model included tree-level variables and the 

plot-level variables found to be significant during the univariate analyses described above. I 

controlled for plot-level variability by including plot as a random effect in each model. Model 
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selection was performed by backward elimination from the global model, and the final model 

was chosen by minimum AIC (Burnham and Anderson, 2002). I took the number of times a 

variable was included across the five models as an indication of the importance of that variable 

on crown delineation.  

Model accuracies were evaluated using a 10-fold cross validation, where the developed 

logistic relationships were each trained on 90% of the data and tested on the remaining 10%. 

Training and testing were performed on all 10 folds of data and the results were averaged to give 

an estimate of each model’s accuracy. 

Results 

Manual Crown and Plot Characteristics 

I manually delineated 650 tree crowns from 14 unique species. Of those, 379 were 

conifer crowns, and 271 were hardwood crowns. The range in height, DBH, and crown area were 

comparable between conifer and hardwoods. On average conifers were taller and had larger 

DBH (Figure 4), while median conifer crown area was 27% smaller than hardwood crowns.  

TPP ranged from 25 to 66 (mean 43), and structural complexity and composition varied 

substantially across the 15 plots. Average plot canopy height ranged from 15.5 m to 28.9 m, and 

average crown area ranged from 13.75 m2 to 47 m2. Conifer fraction, as estimated by crown area, 

ranged from 14% to 96%. Six of the 15 plots were characterized as conifer dominated with ≥ 

50% conifer fraction.  

Plot level characteristics showed varying degrees of relation to conifer fraction. For 

example, there was a strong positive linear relationship between conifer fraction and rumple (R2: 

0.78; p <0.001). Rumple ranged from 1.34 to 2.16, with conifer dominated plots occupying the 

upper end of this range (1.69 – 2.16). Species evenness (J) also had a strong linear relationship 
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with conifer fraction (R2: 0.71; p < 0.001), as did Shannon’s Index (R2: 0.58; p < 0.001). Conifer 

fraction showed a weak, but non-significant relationship with TPP (R2: 0.17; p = 0.12) and AGI 

(R2: 0.17; p = 0.13).  

 

 

Figure 4: Density distribution of tree-level variables showing differences between conifer and 

hardwood functional groups. Conifers tend to have high diameter at breast height (DBH) and 

crown height values, while hardwoods tend to have larger crown area values. 
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 Automated Crown Delineation Accuracy 

Differences in methods and influence of parameter tuning 

The influence of generalized parameter tuning compared to default parameters varied by 

method (Table 2). LI improved by 17% to achieve the highest generalized parameter accuracy 

(55%). SWS was particularly sensitive to parameterization, and overall accuracy improved from 

8% to 49% compared to default parameters. In contrast, MCWS – which differs from SWS only 

in having a priority seed point – was relatively robust against parameterization tuning. MCWS 

achieved 49% overall accuracy with default parameters and only improved by 6% following 

tuning. SILVA and DALPONTE were similarly robust and generalized tuning of parameters 

only marginally improved accuracy (+ 1-2%).  While further plot-tuning of method parameters 

only marginally improved overall accuracy scores (+2-6%), I chose to continue the analyses 

using plot-tuned results because plot-level accuracy (supplemental Table 5) improved by as 

much as 36% (LI) and because I was interested in understanding the factors that influenced the 

highest quality delineations.  

Overall and plot-level accuracy 

Following plot-tuning overall accuracy and plot-level accuracy did not vary substantially 

across delineation methods. Overall accuracy ranged from 51% by SWS to 59% by LI. Though 

LI was marginally more accurate (+4%) than the second highest overall accuracy (MCWS: 

55%), it came at a substantial increase in processing time and complexity of input parameters 

(and necessarily require parameter tuning to achieve high accuracy).  

Plot-level accuracy ranged from 27% (DALPONTE and SWS) to 90% (MCWS), and the 

difference between the most- and least- accurately delineated plot was >40% for all methods. 
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Plot-level accuracy was similarly wide-ranged for all methods (supplemental Figure 10), and 

significantly related to conifer fraction (p <0.05) for all methods. 

Table 2: Overall site accuracy (%) of five different automated crown delineation techniques. The 

table included default, generalized, and plot-tuned parameters. ǂ Conifer and hardwood 

accuracies are from plot-tuned model runs. 
 

Default Generalized Plot-tuned Coniferǂ Hardwoodǂ 

MCWS 0.49 0.53 0.55 0.65 0.40 

SWS 0.08 0.49 0.51 0.54 0.46 

DALPONTE 0.46 0.48 0.52 0.63 0.38 

SILVA 0.48 0.49 0.54 0.67 0.39 

LI 0.38 0.55 0.59 0.69 0.46 

 

Differences in accuracy across species 

All methods more accurately delineated conifer crowns (mean 64%) than hardwood 

crowns (mean 42%). Each method had trade-offs in accuracy at the species level, and no single 

method stood out has having the highest accuracy across all species (Figure 5). For example, 

SILVA delineated red pine especially well (81%), but had consistently low hardwood accuracy 

scores. While SWS, which had the lowest red pine accuracy (53%), excelled at delineating red 

oak in comparison to other methods (+9%). 

Hemlock accuracy ranged from 76% (LI) to 56% (SWS). White pine accuracy ranged 

from 62% (MCWS) to 57% (SILVA). Spruce spp. accuracy ranged from 57% (MCWS) to 21% 

(LI and SWS), though only 13 spruce were present in the plots. Red maple accuracy ranged from 

53% (LI) to 45% (DALPONTE). Red oak accuracy ranged from 48% (SWS) to 28% (MCWS). 
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Other hardwood species (birch spp., black oak, white ash, and black cherry) accuracy ranged 

from 40% (LI) to a low of 15% (DALPONTE) 

 

Figure 5: All automated crown delineation methods showed similar species level accuracy. 

Generally, conifer species (eastern hemlock, red pine, white pine and spruce) were more 

accurately delineated than hardwood species.  

 

Variables Influencing Accurate Automated Crown Delineation 

Linear regressions 

 Five plot-level variables (J, TPP, rumple, H, and AGI) were found to be significant (p < 

0.05) in at least one univariate regression (Figure 6Error! Reference source not found.). All five 

variables were included in the multivariate global model. However, TPP and AGI were highly 

correlated (r = 0.97), and H and J were highly correlated (r = 0.94). To reduce VIF values to 

below 10, I removed TPP and H from the analysis. For each of the five multivariate regression 

analyses, the model including only J was selected as the best model, and this relationship 
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between accuracy and J was significant (p < 0.05) for all models (supplemental material: Table 

4). 

 

 

 

Figure 6: Linear regression analysis for plot-level variables and accuracy of one of the 

automated crown delineation methods (DALPONTE). Points are colored to show fraction of 

conifer crown area per plot (conifer fraction). The relationship between accuracy and evenness 

(J) was significant (p<0.05) across all methods. However, the relationship between accuracy and 

aggregation index (AGI) was only significant for DALPONTE AND SILVA, and the 

relationship between accuracy and rumple index was only significant for DALPONTE, SIVLA 

and LI.  

Logistic Regressions  

Global logit models consisted of tree-level variables (DBH, height, and crown area) and 

the plot-level variables (rumple, J and AGI) identified in the linear regression analyses. Results 

of the final logit models are shown in Table 3. Cross validation model accuracy ranged from 

61% (MCWS) to 70% (SWS), suggesting that while I captured the most impactful variables in 

predicting crown delineation, there may be addition factors unaccounted for in my analysis. 
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There was no single variable that was included in all five models. However, all but one model 

(SWS)  consisted of at least one tree-level variable related to tree size and one plot-level variable 

related to tree arrangement. 

Table 3: Results of the logit models assessing the important tree- and plot-level variables 

influencing the odds of successful individual tree crown delineation. All variables were 

standardized prior to analyses. The table includes the 10-fold cross-validation (CV %) model 

accuracy estimates, coefficients of variables in the models and the corresponding standard error 

(SE) (*p <0.05, **p < 0.01, ***p < 0.001). 
 

CV % Coefficient SE (Coef) Z value p-value 
 

MCWS 60.77 
     

Intercept  0.19 0.16 1.16 0.25 
 

Crown Area  -0.38 0.11 -3.41 0.00 *** 
DBH  0.42 0.14 3.06 0.00 ** 
Height  0.39 0.28 1.39 0.16 

 

J  -0.68 0.26 -2.64 0.01 ** 
Rumple  -0.49 0.26 -1.89 0.06 . 
DALPONTE 62.00 

     

Intercept  0.12 0.09 1.35 0.18 
 

AGI  0.36 0.12 2.88 0.00 ** 
DBH  0.60 0.11 5.51 0.00 *** 
J  -0.25 0.12 -2.11 0.03 * 
SWS 70.00 

     

Intercept  -0.10 0.33 -0.30 0.76 
 

Crown Area  0.76 0.12 6.39 0.00 *** 
Height  1.25 0.25 4.91 0.00 *** 
SILVA 65.32 

     

Intercept  0.27 0.20 1.33 0.18 
 

AGI  0.47 0.21 2.21 0.03 * 
Height  1.04 0.24 4.37 0.00 *** 
LI 61.54 

     

Intercept  0.41 0.11 3.78 0.00 *** 
Crown Area  -0.20 0.10 -1.97 0.05 * 
DBH  0.50 0.11 4.39 0.00 *** 
J  -0.33 0.12 -2.75 0.01 ** 

 

All tree-level variables were important, each showing up in three of the five logit models, 

though not always together. Height and DBH always had a positive effect on the odds a crown 

would be successfully delineated. Crown area had a negative effect in two models, but it had a 

positive effect on the odds of delineation for the SWS method.  
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Plot-level variables were not consistently important across methods. Species evenness 

was the most important, showing up in three models, and each time having a negative effect on 

crown delineation accuracy (p <0.05).  AGI was included as positively affecting delineation in 

two models (p < 0.05), while rumple was only included in one model and negatively affected 

delineation odds (p = 0.06). 

Discussion 

 Automated crown delineation remains difficult to apply in closed canopy mixed-species 

forests. Despite parameter tuning, none of the methods produced high accuracy across all plots, 

and there was relatively little difference between crown delineation methods. I found that all 

methods delineate conifer species better than hardwood species, and that accuracy of each 

method varied similarly across plots. Thus, it is evident that the ability to delineate crowns is not 

strongly driven by methodological differences, but instead driven by differences in conifer and 

hardwood functional groups. Conifers and hardwoods have developed traits that distinguish their 

ability to compete for resources and respond to disturbance and competition. In turn these traits 

influence tree height, crown architecture (crown spreading and leaf-display), and how crowns 

interact with neighboring crowns. 

Tree Architecture  

Tree size 

I found that taller trees and larger diameter trees were more likely to be correctly 

delineated. This is in part because large trees often hold dominant positions in the canopy and 

tend to have more symmetrical crown shape (Muth and Bazzaz, 2003). Yet, this is also because 

conifers in the canopy tended to be taller and have larger diameters (Figure 4). Conifer species 

identified on the plots have lower average wood density (specific gravity) than the hardwood 
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species (Ducey and Knapp, 2010), which is energetically efficient for height growth (Anten and 

Schieving, 2010; Horn, 1971). In higher diameter size classes conifers diverge from hardwoods, 

growing taller (Ducey, 2012). 

 

 

Figure 7: G-LiHT LiDAR point cloud comparison highlighting the differences in structure 

between a hardwood dominated stand (A) and a conifer dominated stand (B). Warmer colors 

represent higher points in the canopy. The conifer dominated stand exhibits higher canopy 

rumple, and uniformity of crown shape. The conical, less-plastic shape of conifer crowns may 

also reduce canopy space filling efficiency. 

 

Conifers, especially white pine, are larger (diameter and height) because of site history 

and growth strategy. Much of the northeastern United States landscape has been shaped by 

historical land use (Foster et al., 1998; Thompson et al., 2013). White pine are successful 

colonization of disturbed sites, and many of the large white pine are old-field pines that invaded 
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agricultural and pastoral fields following abandonment in the mid-1800s (Abrams, 2001). Low 

density wood, and relatively high photosynthetic rates (Anten and Schieving, 2010; Brodribb et 

al., 2012) allow pine to achieve rapid vertical growth, and they continue to avoid direct 

competition by occupying a higher canopy stratum than hardwoods. On a canopy height model, 

emergent white pine appear as hotspots (supplemental Figure 13) because they often stand five 

or more meters above the continuous canopy; thus, they are easily detected and delineated by 

automated crown delineation methods.  

Crown Spread 

I found smaller crowns were more likely to be successfully delineated, and similar to 

height this is likely related to differences between conifers and hardwoods. Many mid- and shade 

tolerant hardwood species have weak apical control that results in plagiotropic growth forms 

(Pretzsch and Rais, 2016). Weak apical control allows multiple stems to compete for a dominant 

terminal position, the result of which can be a broad and flat crown, often with forked trunks and 

multiple differentiated sections within a single crown (i.e. crown splitting).  

Conifer crowns tend to spread less than hardwood crowns, though it is possible to find 

white pine or hemlock that are comparable in spread to hardwood crowns. However, conifers 

maintain a more rigid, apically controlled growth form, and are less likely to exhibit crown 

plasticity (Strigul et al., 2008; Vincent and Harja, 2008). This results in a singularly defined 

orthotropic bole and the characteristically conical crown shape, and it far rarer to find conifers 

with forked trunks and split crowns.  
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Figure 8: Two-dimensional density plot showing different patterns of crown delineation 

accuracy between conifer and hardwood functional groups. The circles provide crown size 

comparison for two end member species: red pine (shown in red circles) and red oak (shown in 

blue circles). This figure corresponds with delineation categories described in Figure 3: the top 

right quadrant signifies true delineations, the top left signifies over-segmentation, the bottom 

right signifies under-segmentation, and the bottom left signifies false positive. This figure shows 

data generated from the DALPONTE method, though all methods show similar patterns. 

 

The ability to spread branches laterally is associated with wood density. Wood density is 

correlated with structural properties, including resistance to splitting, rupture stress, dynamic 

breakage, and increased elasticity (Chave et al., 2009). While low density wood is a lower 

carbon-cost approach to attain vertical expansion, hardwood species with denser wood can 

expand lateral branching without compromising structural integrity (Anten and Schieving, 2010; 

Horn, 1971). This is in agreement with crown radius – DBH allometric equations developed by 
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Sullivan et al. (2017) at the Harvard Forest. They found the crown radius slope to be steeper for 

hardwoods than conifers, and that this relationship was related to wood specific gravity.  

Red oak, in particular, often have substantial crown spread and split crowns. This type of 

architecture presents two major challenges for automated tree crown delineation: 1) It is difficult 

to define a singular local maximum and 2) crowns either interdigitate with neighboring crowns – 

resulting in under-segmentation, or crowns split – resulting in over-segmentation. I found all 

methods most often over-segmented red oak (Figure 8). My results agree with other studies that 

found hardwood canopies are often over-segmented (Zhen et al., 2016).  

Mechanical interaction  

Mechanical interactions between neighboring crowns is another major dynamic 

controlling lateral branch expansion, perhaps even more than resource competition (Hajek et al., 

2015). Crown shyness – gaps that form between adjacent crowns, often of the same species – can 

result from mechanical bud abrasion and branch damage during crown collisions (Putz et al., 

1984). While mechanical interactions occur between all adjacent crowns in closed-canopy 

stands, canopy gap persistence (i.e. crown shyness) is controlled by branch fragility and rates of 

regrowth following lateral branch damage (Hajek et al., 2015). 

Crown shyness is especially visible in red pine dominated plots (supplemental Figure 

14), which were placed in an even-aged remnant pine plantation (Rainey et al., 1999). Crown 

shyness is a common occurrence in even-aged conifer dominated stands (Goudie et al., 2009), 

and shyness likely contributed to not only the high accuracy in these plots (as high as 80%), but 

also the fidelity of the delineations, because gaps between adjacent crowns creates defined 

borders for delineation (Figure 8). In comparison to hardwood species with strong, dense 

branches (e.g. red oak), red pine is more susceptible to collision damage. High height:diameter 
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ratios coupled with low wood density make the crowns of red pine susceptible to wind damage 

(Wonn and O’Hara, 2001) through increased crown mobility and resulting high-impact crown 

collisions (Rudnicki et al., 2001). 

A traits perspective  

Major differences in tree architecture between conifers and hardwoods stem from 

differences in underlying traits. While in direct competition, hardwoods often outcompete 

conifers in nutrient rich environments (Oliver and Larson, 1996), conifers have evolved different 

trait adaptations to disturbance and tolerance to stress (Brodribb et al., 2012) that allow them to 

persist (and sometimes outcompete hardwoods) in temperate forests. Within the ‘fast-slow’ plant 

economic spectrum proposed by Reich (2014) many of the traits exhibited by conifers would be 

considered slow in comparison to hardwood traits.  

Conifers – many of which have evolved in resource poor conditions – often invest in 

long-lasting low-nitrogen (N) foliage (Gower et al., 1995). Convergent leaf- and canopy- 

structural properties (conical crown shape, clumped foliage) promote light scattering and more 

even/diffuse light conditions throughout the canopy, which in turn increasing radiation use 

efficiency of low foliar N species (Cohen and Pastor, 1996; Gower et al., 1995). Further, 

Ollinger (2011) pointed out that plants grown (or adapted to grow) in resource poor conditions 

allocate fewer resources to wood vs foliage, constraining crown spread. 

In contrast, hardwoods have developed a fast strategy where they invest in costly high-N 

deciduous foliage which turns over annually. To pay for the high carbon-cost investment, 

hardwoods must maximize direct light interception. Mid- and shade- tolerant hardwoods (red 

oak, red maple) achieve this by spreading their crowns to maximize foliage display on a more 

even plane.  
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Within Reich’s (2014) plant economic spectrum fast-trait species should have lower 

density wood optimized to transport water, and one might also expect fast-trait species to reach 

taller heights to optimized high-N leaf display. However, conifers and hardwoods have different 

wood anatomy (e.g. tracheids vs. xylem vessels for water transport), which makes direct 

comparison difficult (Brodribb et al., 2012). Further, while less dense wood of conifers allows 

comparable (or greater) height growth, it does so at a lower carbon-cost, which allows more 

carbon investment elsewhere (e.g belowground in nutrient poor environments; Gower et al., 

1995). 

There is also considerable variation in traits within each functional group (supplemental 

Figure 15). While in comparison to hardwoods white pine may be considered slow, within 

conifers, white pine is undoubtedly fast, with higher foliar nitrogen, shorter leaf life-span and 

low-density wood. At HF, white pine can diverge from the typical conical shape seen in other 

conifers, displaying spreading and flat-topped crowns. If it were not for other characteristics (e.g. 

occupying a higher canopy stratum) it may have been more difficult to delineate pine. Within 

hardwoods, early successional species (aspen, birch) have comparably high foliar N and low 

wood density. Where oaks and maples spread, these species invest in rapid vertical growth and 

very modest crown spread, and this combination of traits may result in easier ITCD, though this 

study did not permit me to investigate this. Thus, it appears that while the ‘fast-slow’ traits 

perspective provides an interesting lens to view crown architecture as it relates to crown 

delineation, there is considerable variation in traits, and perhaps even with inverse relationships 

within functional groups. 
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Species Evenness 

I found that species evenness was the most important plot-level variable controlling 

crown delineation success. As species evenness decreased, the odds of successful delineation 

increased. Evenness was likely important because of 1) its negative relation to conifer fraction, 

and 2) a relationship between evenness and canopy space filling efficiency.  

There was a strong relationship between species evenness and conifer fraction 

(supplemental Figure 9); the least even plots had the highest conifer fraction while the most 

even plots tended to have the lowest conifer fraction. It is important to note that two of the low 

evenness conifer plots were artificial in the sense that they are remnant red pine plantation, 

though red pine can grow naturally in monoculture. However, the other low evenness conifer 

plot was in a natural mature hemlock stand, a common occurrence in temperate forests (Small et 

al., 2005). It is not uncommon for conifer stands to have low evenness because of generally 

lower diversity (Augusto et al., 2014) of conifer species, and because needles of conifer species 

have high C:N ratio that can alter soil fertility conditions and deter hardwood establishment and 

growth (Brodribb et al., 2012). 

Despite the evident influence of conifer fraction, the evenness – accuracy relationship 

may also be reflective of increased efficiency of canopy space filling (i.e. crown packing) in 

higher diversity plots. Recent work has shown that crown packing increases with species 

diversity (Jucker et al., 2015; Pretzsch, 2014), and that neighborhood species diversity also has a 

positive impact on individual tree productivity (Fichtner et al., 2018, 2017). In low diversity 

stands, trees from the same species compete similarly for growing space (sensu Oliver & Larson, 

1996), while in higher diversity stands, niche partitioning and complementarity of crown 

architecture promote partitioning of resources (Morin et al., 2011; Sapijanskas et al., 2012), 

allowing more efficient and complete use of available canopy space (Pretzsch and Schütze, 2016; 
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Williams et al., 2017). As plot diversity increases crown packing increases, and it becomes 

increasingly difficult to differentiate neighboring crowns (Figure 7). 

To further investigate the potential relationship between species evenness and crown 

packing, I calculated plot NDVI from the G-LiHT hyperspectral data as a proxy estimate of leaf 

area index and foliar density (Qiao et al., 2019), assuming increased crown packing would be 

related to increased LAI. I found evenness is strongly related to NDVI (p < 0.001; R2: 0.81). 

However, because NDVI is also related to conifer fraction (Waring et al., 1995), I performed a 

partial correlation test. I found that after accounting for conifer fraction, NDVI was still 

positively correlated (r: 0.58) with species evenness, lending support to the idea that the evenness 

- accuracy relationship is both a result of conifer fraction and increased crown packing in higher 

diversity plots.  

A silver lining: where do these methods work? 

I found automated LiDAR ITCD methods show great promise for delineation of large 

trees. Despite lower accuracy for smaller size trees, these results are encouraging given the 

important role large trees play in terrestrial ecosystems (Freckleton and Watkinson, 2001), 

especially in terms of carbon accumulation (Stephenson et al., 2014). I was able to delineate 62- 

70% of all trees ≥ 40 cm DBH, which is promising for the prospect of tree-centric carbon 

mapping (Coomes et al., 2017; Dalponte and Coomes, 2016).  

I also found these methods to perform especially well in conifer dominated stands. In 

particular, the current ability to delineate mature eastern hemlock has implications for current 

research and conservation interests in monitoring and mapping hemlock wooly adelgid (HWA) 

infestations (Orwig et al., 2012). Given the impact HWA has on the structure and composition of 
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infested forests (Small et al., 2005), the scientific community should not hesitate to deploy 

existing crown delineation methods to aid in measuring and mapping HWA impacts.   

Much of the northeast United States is still aggrading second growth forest (Thompson et 

al., 2013). However, while our plots cover a range of structure and composition, they are 

undoubtedly still just a sample of the different forest types found across the northeast. LiDAR-

crown delineation methods are likely to show varying degrees of accuracy based on additional 

factors influencing structure, such as stage of forest succession (van Ewijk et al., 2013). 

Relatively young stands in stem-exclusion stage (sensu Oliver & Larson, 1996), are likely to be 

especially difficult to delineate because of high-stem density and intense competition, while 

mature- and old-growth stands may show opposite patterns. Given that stand structural 

complexity often increase with stand age (Bradford and Kastendick, 2010), with increased 

number of large trees (Lorimer and Frelich, 1998) and canopy surface complexity (Ogunjemiyo 

et al., 2005), I would expect mature- and old-growth stands to be delineated with higher 

accuracy.  

Moving forward 

LiDAR-based crown delineation methods have garnered substantial interest in recent 

years because of the ability to directly measure structural characteristics of tree crowns 

(Lindberg and Holmgren, 2017). However, these methods still struggle to delineate hardwood 

canopies. What many (deciduous) hardwood crowns lack in architectural distinction – that many 

conifer crowns have that lend towards LiDAR-based delineation – they make up for in 

phenology and spectral distinction. 

Indeed, much of the information I relied upon to manually delineate tree crowns – subtle 

differences in hue and texture – is lost in a LiDAR CHM model. Even more information may be 
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available hyperspectral or multi-temporal RGB imagery (supplemental Figure 12). Many studies 

have shown great success for spectrally distinguishing canopy species using hyperspectral (e.g. 

Shi et al., 2018) and multi-temporal imagery (Fang et al., 2018), while fewer studies have made 

use of this wealth of information available to delineate mixed- and hardwood- dominated forests 

(Maschler et al., 2018; Yang et al., 2017). 

 Undoubtedly, there has been work to use high resolution imagery for crown delineation, 

and it was the focus during the genesis of this research topic (Lamar et al., 2005; Leckie et al., 

2004). However, many of studies often relied on panchromatic (Palace et al., 2008) or single 

band imagery (Ke and Quackenbush, 2011).  Despite the limitations of spectral methods 

(Dalponte et al., 2015), integration of spectral characteristics into crown delineation methods 

would likely improve the ability to differentiate neighboring crowns that would otherwise be 

under-segmented or group crowns that would otherwise be over-segmented. Future work should 

focus on developing spectral- or integrated LiDAR-spectral delineation methods. The wide-

spread availability of spectral platforms – including high-resolution spaceborne platforms – adds 

incentive to develop effective methods because of the potential to apply methods broadly.  

Conclusion 

 The ability to automatically delineate individual tree crowns in all types of forests would 

be a major step forward for remote sensing-based ecology. I found that crown delineation 

remains difficult in closed-canopy mixed species forests of the northeastern United States. While 

LiDAR-based methods work well in conifer dominated plots, they are somewhat less effective in 

hardwood dominated plots, which maylimit the applicability of these methods over broad spatial 

scales. Overall, discrepancies in accuracy appears to be driven by differences in underly traits 

controlling tree architecture and how trees interact with each other in close proximity. LiDAR 
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methods work especially well in conifer dominated stands with distinct crown architecture. 

While hardwoods often lack the same structural distinction, they have unique phenology that 

may be exploited to improved delineation techniques.  My work points towards a need to 

develop crown delineation techniques that integrate both structural and spectral characteristics to 

effectively delineate mixed species stands.  
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Supplemental Material 

 

Figure 9: Relationships between the fraction of conifer crown area per plot (conifer fraction) and 

Shannon’s Diversity Index (A), Rumple Index (B), Pielou’s Evenness Index (C), trees per plot 

(D), and Aggregation Index (E). 

 



32 

 

 

 

Figure 10: Following parameter tuning, plot-level accuracy varied similarly by methods across 

plot, indicating that accuracy is largely controlled by the structure and composition of the plots 

rather than methodological differences.  

Table 4: Results from multivariate models assessing the influence of plot-level metrics on 

overall accuracy of five automated crown delineation methods. The table includes the 

coefficients of variables in the models and the corresponding standard error (SE) (*p <0.05,    

**p < 0.01, ***p < 0.001). 
 

Coefficient SE (Coef) t value p-value 
 

MCWS 
     

Intercept 0.52 0.02 21.30 0.0000 *** 

J -0.13 0.03 -4.99 0.0002 *** 

SWS 
     

Intercept 0.50 0.03 17.69 0.0000 *** 

J -0.08 0.03 -2.71 0.0177 * 

DALPONTE 
     

Intercept 0.51 0.02 31.33 0.0000 *** 

J -0.13 0.02 -7.50 0.0000 *** 

SILVA 
     

Intercept 0.53 0.02 30.16 0.0000 *** 

J -0.13 0.02 -7.29 0.0000 *** 

LI 
     

Intercept 0.53 0.02 30.16 0.0000 *** 

J -0.13 0.02 -7.29 0.0000 *** 
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Figure 11: September UAV image collected over the MegaPlot showing the location of the 

fifteen plots used in this study. 
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Table 5: Results from accuracy assessment from five different automated crown delineation 

method at the plot level. The table includes plot-tuned, generalized, and default parameter 

accuracy. 
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Figure 12: UAV imagery collected over the ForestGEO MegaPlot on September 13th (A), 

October 12th (B), October 22th (C) and November 4th (D). All these dates of imagery were used to 

during manual crown delineation interpretation. The images highlight differences in phenology 

that may be useful for future crown delineation work. 
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Figure 13: Emergent white pine crowns stand out as hotspots on a canopy height model. Low 

density wood allows white pine to grow taller than all other species in the Harvard Forest. They 

can often stand five or more meters above the continuous canopy.  

 

Figure 14: Red pine often exhibit crown shyness when grown in monoculture. Panel A shows 

crown shyness from below the canopy, while Panel B shows it from above the canopy. 
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Figure 15: Conifer and hardwood functional groups show distinct differences in foliar nitrogen 

and wood density (specific gravity) that influence overall tree architecture and how they interact 

with neighboring crowns. There is also considerable variation of traits within functional groups. 

Average foliar %N values taken from Northeastern Ecosystem Research Cooperative  ( 2010). 

Average specific gravity values taken from Ducey and Knapp (2010). 
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