Submitted 4 June 2018
Accepted 27 September 2018
Published 28 February 2019

Corresponding author
Conor A. McMahon,
conor.mcmahon@utexas.edu

Academic editor
Alison Boyer

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.5837

© Copyright
2019 McMahon

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Remote sensing pipeline for tree
segmentation and classification in a
mixed softwood and hardwood system

Conor A. McMahon

Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA

ABSTRACT

The National Institute of Standards and Technology data science evaluation plant
identification challenge is a new periodic competition focused on improving

and generalizing remote sensing processing methods for forest landscapes. I created a
pipeline to perform three remote sensing tasks. First, a marker-controlled watershed
segmentation thresholded by vegetation index and height was performed to
identify individual tree crowns within the canopy height model. Second, remote
sensing data for segmented crowns was aligned with ground measurements by
choosing the set of pairings which minimized error in position and in crown area as
predicted by stem height. Third, species classification was performed by reducing the
dataset’s dimensionality through principle component analysis and then
constructing a set of maximum likelihood classifiers to estimate species likelihoods
for each tree. Of the three algorithms, the classification routine exhibited the
strongest relative performance, with the segmentation algorithm performing the
least well.

Subjects Biogeography, Ecology, Natural Resource Management, Forestry, Spatial and
Geographic Information Science

Keywords Remote sensing, Forestry, Lidar, Hyperspectral camera, Segmentation, Classification,
Alignment, Ecology, Data science, Biogeography

BACKGROUND

Characterizing the structure and species makeup of forest systems is an important task in
many disciplines. These kinds of analysis are necessary for assessing the quality of a
patch of habitat for conservation of particular target taxa (Rose et al., 2015; Fletcher ¢
Erskine, 2012), for estimating system-level properties like primary productivity or capacity
for carbon sequestration (Vassallo et al., 2013), and also for landowners interested in
directly managing forests for wood or fruit production (Tang ¢ Shao, 2015). Traditional
methods of characterizing forests involved expensive, laborious, and time-consuming
deployment of experts on foot to manually label individual trees with location, species, and
structural data (Barbosa & Asner, 2017; Marconi et al., 2018). More recently, remote
sensing technologies have emerged which show the potential to massively alter the scale
and efficacy with which these characterizations can be performed. These technologies
utilize aircraft (small planes or unmanned aerial vehicles, or in some cases satellites) to fly
cameras and light detection and ranging (LiDAR) units over forests, collecting massive
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amounts of data on the structural and spectral properties of the communities
(Tang & Shao, 2015; Mulla, 2013).

Extracting useful ecosystem parameters from this mass of generated data involves three
primary steps: segmentation, alignment, and classification (Marconi et al., 2018). In the
segmentation step, individual tree crowns (ITCs) are automatically extracted from the
scene so that they can be counted and analyzed separately. During alignment, individual
trees from the segmented scene are automatically paired with stems labeled during
traditional ground-based methods to improve the richness of the remote sensing dataset.
This also allows assignment of species labels to some crowns, which provides training
data for the classification step. During classification, species labels are estimated for
remaining trees which were not already assigned labels by experts on foot.

In general the efficacy of different remote sensing processes depends strongly on the
forest type being surveyed—in particular the degree of canopy openness and overall
species diversity (Naidoo et al., 2012; Zhen, Quackenbush & Zhang, 2016).

When new methods are introduced in the literature there is often a lack of robust
comparison to existing methods, and the comparisons which are included are difficult to
apply broadly due to these inherent differences in performance on different systems
(Marconi et al., 2018; Zhen, Quackenbush & Zhang, 2016). As well, the formats in which
remote sensing data are saved and processed vary hugely across platforms and research
disciplines, and have proven difficult to standardize (Marconi et al., 2018; Zhen,
Quackenbush & Zhang, 2016).

The data science competition
The National Institute of Standards and Technology (NIST) data science evaluation (DSE)
plant identification challenge (Marconi et al., 2018) was introduced this year to try to
combat these problems and to increase standardization, methods benchmarking, and
collaboration within the remote sensing research community. During this competition, the
three tasks outlined above (segmentation, alignment, and classification) were performed
on the same dataset by multiple competing teams. To keep the results of each task
from limiting the performance of subsequent tasks, the input data for each task was
provided a priori by the competition organizers. In a real-world scenario the tasks could
instead be arrayed in a single coherent pipeline to perform more meaningful automatic
forest characterization. More detailed descriptions of the data will be provided in the
method subsections following, and exact methods of input data collection and
preprocessing can be found in the parent paper on the overall competition pilot,
along with elaboration on the nature and goals of the competition (Marconi et al., 2018).
The input data used for the competition were collected by National Ecological
Observatory Network (NEON) over the Ordway-Swisher Biological Station (Domain D03,
OSBS) from 2014 to 2017 (Marconi et al., 2018). The field site has a mix of species,
with the two most common being the coniferous longleaf pine (Pinus palustris) and the
deciduous turkey oak (Quercus laevis). The forest is largely split into three distinct
ecosystem types: evergreen forest, emergent herbaceous wetland, and woody wetland
(Marconi et al., 2018). This mixed softwood and hardwood system provides a suitably
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complex combination of different habitats and canopy structures to ensure that
segmentation and classification efforts are challenged adequately.

Following is a discussion of prior work within the segmentation and classification
subtasks, both of which represent well-studied areas in the remote sensing field.

Segmentation

Many segmentation algorithms have been investigated by remote sensing researchers,
with results that vary strongly based on algorithm choice (Kaartinen et al., 2012) and on
system structural parameters, with more structurally complicated systems generally
being more difficult to segment (Naidoo et al., 2012). LIDAR sensors produce point clouds
made up of unordered XYZ points, and some segmentation algorithms are run on

these point clouds. However, many others are instead run on a raster gridded canopy
height model (CHM) which is created via postprocessing of the point cloud into a more
convenient matrix format, with each pixel in the grid containing the local height of the
canopy above the ground (Van Leeuwen ¢ Nieuwenhuis, 2010). CHM models are more
simple, less storage-intensive, and may be less computationally expensive than point
cloud models. This comes with the disadvantage that CHM models contain less
information than point clouds, and understory trees are often completely omitted,
although some workers have attempted to ameliorate this problem (Van Leeuwen ¢
Nieuwenhuis, 2010; Lee ¢ Lucas, 2007).

One common CHM method involves labelling of local maxima in the image
(representing the peaks of ITCs) and subsequent watershed segmentation about those
peaks into discrete trees (Van Leeuwen ¢ Nieuwenhuis, 2010). One point of variability
within these marker-controlled watershed systems is the means of selection of local
maxima. The primary issue here is that a single tree crown may actually include multiple
maxima if it is not perfectly conical or spherical—for example, a tree may have several
separate branching sections which each contain maxima. Careless selection of local
maxima may result in oversegmentation of single trees into multiple modeled crowns.
One method to deal with this is the selection of a varying window size in which to look
for local maxima. Popescu ¢» Wynne (2004) put forward a method in which window sizes
are given by a linear function of tree height. This method is effective in cases where
tree height is strongly correlated with crown diameter, because then the window can be
effectively set to the diameter of the target tree based on the height of each pixel
being considered, allowing exclusion of maxima from other trees from consideration
while locating the maximum of a given tree.

An approach which attempts to correct for shortcomings in CHM approaches was
presented by Van Leeuwen, Coops ¢» Wulder (2010). The authors used a modified
Hough transform to search for conical shapes directly in the point cloud space, using a
defined range of cone angles and heights. Their algorithm allows sharp delineation of
borders between trees (intersections of cones) and precise specification of tree tops
(cone maxima, or points). It also creates a much less data-intensive cloud, as each cone can
be represented with only a few parameters, eliminating the need to store every pixel on the
cone’s surface within the CHM and consequently reducing the data size by 80 times.
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The resulting parametric height model closely matched with both the CHM and the actual
ground-truth tree data. However, the authors note that their study system may be
unusually suited to this kind of analysis, because it consisted of a plantation of coniferous
trees, all of which were relatively young (mostly free from broken branches) and of
similar shape and structure (conical). In more complicated forests featuring many different
crown shape types, such as the OSBS, this kind of method may not be feasible.

Another approach which works directly on point clouds has been investigated by
Morsdorf et al. (2004). The authors first found local maxima from the pixel-based digital
surface model (the digital surface model is analogous to the CHM but gives actual canopy
height, not the height above the ground). Next, k-means clustering was used in XYZ to
create masses of points (representing trees) around each maximum. The clustering was
based on simple Euclidean distances, with Z being weighted differently from X or Y to
account for the vertical ellipsoid shape of tree canopies in the boreal, coniferous system in
which the study was conducted. The work was successful at predicting the heights of trees
that were detected (R* = 0.923) but was much less successful at estimating crown area
(R* = 0.204). The authors believe this is because of the algorithm’s tendency to clump trees
which are nearby one another into single tree masses—this tendency is also reflected in
their relatively high omission error (finding 1,200 trees in a 1984-tree stand). This
shortcoming may make their approach unattractive for systems with low canopy openness
in which trees are packed tightly against one another. As well, this kind of algorithm is
again suited best for cases where tree shape is reasonably predictable (vertical ellipsoids).

Comparisons between different segmentation methods have been difficult because of
the high dependency of success on system characteristics like tree shape, canopy openness,
variation in tree age, species composition, and other factors (Marconi et al., 2018;
Kaartinen et al., 2012). Additionally, the actual point density produced by the LIDAR
within the output cloud may vary substantially across studies, with denser clouds generally
allowing better discrimination between individual crowns (Zhen, Quackenbush ¢
Zhang, 2016). One study expressly sought to address these problems by comparing many
different segmentation techniques on a single common data set (Kaartinen et al., 2012).
A number of different techniques were used and their results were evaluated in terms
of the number of correctly matched trees, the number of missed trees, the accuracy
in XY location and height of the identified trees, and comparisons of the predicted to
the expected crown area. The best algorithm investigated in their study was based on the
minimum curvature within the CHM, with each CHM point being scaled by its local
minimum curvature prior to local maxima finding and marker-controlled watershed
segmentation.

Due to its relative simplicity and the existence of open source software to support its
application, marker-controlled watershed segmentation with a variable-sized maxima search
window was selected for the segmentation task in this competition. This algorithm is similar
to (but simpler than) the best-performing algorithm discussed in the comparative paper
above (Kaartinen et al., 2012). The authors of that study also tested an algorithm very
similar to this one and it performed only slightly less well in most metrics than the best
algorithm used (see references to the method FGI_VWS in that work).
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Classification

One old and well-studied method for species classification is Gaussian maximum likelihood.
This method represents each tree class using a signature template given by a list of normal
distributions in each feature variable to be used during classification. Templates describe
the distribution of expected values in each variable for the species class in question.

Each target tree is decomposed into a test vector in feature space and compared to every
template, and the likelihood of the test vector belonging to each template distribution is
calculated. The most likely species class may then be assigned as the tree’s species label.
Maximum likelihood methods have achieved high classification accuracy in some test systems
(Sisodia, Tiwari & Kumar, 2014; Dalponte et al., 2013; Clark, Roberts & Clark, 2005), but may
perform poorly when the feature space is highly dimensional and the training data for
classes are unevenly sampled, causing the covariance matrices necessary for the likelihood
model formulation to be estimated poorly (Naidoo et al., 2012). Nonetheless, for cases where it
is able to perform, maximum likelihood is useful for its simplicity and its parametric nature,
allowing the user to create actual models of the expected tree signatures in feature space.

Spectral angle mapping (SAM) is another common classification technique used in
remote sensing (Clark, Roberts ¢» Clark, 2005). This method also creates signature spectra
of training trees in the feature space, but models them only as mean values, not
distributions. Then, test trees are compared to the list of training trees and the training
vector with the smallest angular deviation in feature space from the test vector is selected as
the best species class. SAM approaches have been implemented which treat tree classes
with either single or multiple signature spectra for each species (Cho et al., 2010). The latter
approach can be leveraged to account for differences in plant phenology across individuals
which result in multiple signature modes within the feature space for each class.

More complicated systems for classification include support vector machines
(Dalponte et al., 2013; Heinzel ¢~ Koch, 2012), artificial neural networks (ANN), random
forest systems (Dalponte et al., 2013), and object-based image analysis (Blaschke, 2010).
Although these systems have shown promise in some applications, they require
greater complexity in implementation and in some cases computation time (Naidoo et al,
2012), and for some systems (especially ANN (Blaschke, 2010)) may require substantial
training data. Consequently, these systems were not considered for this project due to the
time constraints of the competition and the small training sample size for some tree species.
Instead, maximum likelihood was selected for the first round of competition tests,
largely due to its relative simplicity of implementation and proven record in many test
systems (Sisodia, Tiwari & Kumar, 2014; Dalponte et al., 2013; Clark, Roberts & Clark, 2005).

METHODS

Data collection
All data used were provided by NEON (Keller et al., 2008; National Ecological Observatory
Network, 2016), and included:

1. Woody plant vegetation structure (NEON.DP1.10098)—hand-labeled data on tree
species, height, diameter, location, and stem-crown correspondences;
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2. Spectrometer orthorectified surface directional reflectance—{lightline (NEON.
DP1.30008)—hyperspectral data representing the canopy in 426 spectral bands;

3. Ecosystem structure (NEON.DP3.30015)—LiDAR-produced CHM;

4. High-resolution orthorectified camera imagery (NEON.DP1.30010)—RGB images of
the scenes in question.

Again, more information regarding the data provided can be found in the parent paper
(Marconi et al., 2018).

Segmentation

Input data

For this task, only the CHM and hyperspectral camera imagery were used. The dataset
consisted of 30 training and 13 test plots, each a pair of CHM and hyperspectral

camera images of the forest in an 80 x 80 m area, including a 20 m buffer on each edge of
the 40 x 40 m plot. Both rasters were gridded with 1 x 1 m pixel sizes such that they
contained 6,400 points each. The hyperspectral image contained 426 bands between

350 and 2,500 nm, while the CHM image contained only a single band filled with height
values. More details on the methods of collection for the input data can be found in the
parent paper (Marconi et al., 2018).

Processing overview

The approach used started with application of a normalized differential vegetation index
(NDVTI) filter to the CHM image in order to ignore pixels that had NDVI values too
low to be plant matter. Next a variable-sized window to identify local maxima
(presumptive treetops) was applied. Finally, a watershed segmentation to create tree
polygons around these top points was performed.

Vegetation filtering
Normalized differential vegetation index is an index used to determine the degree of plant
cover at a point in a spectral scene (Mulla, 2013). It is given as:

NIR — RED
NDVI=— (1)
NIR + RED

where NIR and RED are reflectances of the scene in the red and near infrared bands.
For this filter bands 50 and 70 of the hyperspectral image were used, which correspond to
wavelengths of 628.1 and 728.3 nm (respectively in the red and near-red IR ranges).
High positive values of NDVI indicate substantial plant cover. Low or negative NDVI
indicates land cover by non-vegetative materials. A threshold of 0.5 was used for filtering
because this removed most of the ground cover from the image while maintaining all
of the canopy material—this was confirmed via manual inspection of the RGB imagery
pre- and post-filtering.

Maxima search
A search for local maxima (treetops) was performed on the NDVI-filtered CHM using the
open source R package ForestTools (Plowright, 2018). The TreetopFinder() function
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within that package was used, which implements an algorithm presented by Popescu ¢
Wynne (2004). This algorithm searches in a variable-diameter spatial window around
each pixel in the image, and if the pixel’s height is the greatest within that window it is
marked as a local maximum, or tree top. The window radius used was given by the
function

f=025x+12 (2)

where x is the CHM tree height at the target pixel, and f gives the window radius.

The maximum search was thresholded to ignore maxima below five m, because the
great majority of crowns were above this height and all ground points were below it.
The linear window function form above was selected based on the recommendations of the
package documentation, and the two parameters of the function were manually tuned,
starting from their default values and ending with those presented above, until the
segmentation results on the test data appeared to be appropriately segmenting the canopies
to individual trees. This manual testing and tuning was performed iteratively across several
input image plots with varying tree heights and degrees of openness to ensure that
performance would be acceptable across the structurally heterogeneous woodland
evaluated here.

Segmentation

Following identification of treetops, watershed segmentation was performed, again using
the ForestTools package (Plowright, 2018). The SegmentCrowns() function was used
with the treetops found above. This function performs a marker-controlled watershed
segmentation, finding one segmented tree crown around each specified tree top marker
from the function in the previous section. The function was used with the minimum
canopy height parameter set to three m, preventing pixels below three m from being
included in crowns. This means that while tree crown maxima were not permitted to occur
below five m (in Section 2.2.4), tree crown edges were allowed to extend down to as low as
three m. This height limit prevented inclusion of ground points while still retaining
most of the canopy structure. The SegmentCrowns() function returns empty polygonal
lines when the format parameter is set to “polygons,” and these were saved to a shapefile
using the R function writeOGR().

Alignment

Input data

Alignment was performed between the provided ground and ITC datasets. The ITCs
present in the dataset were divided up into training and test data as described in the parent
paper (Marconi et al., 2018). The ground data consisted of stem IDs, locations in latitude
and longitude, stem heights, and stem diameters. The remote sensing ITC data
consisted of crown IDs, location in latitude and longitude, crown area, and plot IDs.

Algorithm
First, stems were divided into plots. This information was not provided in the input data,
but plot IDs were included in the provided ITC crown data. Because the plots were
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small relative to the distance between plots, it was possible to cluster stem data into plots by
simply iterating through the list and assigning each stem to the plot containing its
nearest crown neighbor in latitude and longitude. In order to correct for the possibility
of systematic error in ground-based estimation of location, all the stems in each plot were
transformed by the difference in average coordinates between stem and crown groups
within the plot.

Next, for each crown an estimate of crown diameter was formed using the known crown
area and the assumption that crowns are roughly circular:

0.5
D2 (é) 3)
e

Linear regressions were performed to find the relationships between the crown and stem
diameter and between crown diameter and stem height. As well, multiple regression
models with both of these predictive terms either with or without an interaction term
were also run. Stem diameter was found to predict crown diameter more strongly than
did stem height. As well, neither addition of stem height nor of both stem height and an
interaction term between stem height and stem diameter was found to substantially
improve the resulting correlation, so only the single regression model between stem
diameter and crown diameter was used in further analysis. See the results section for
greater detail on the statistical results of these regression models.

The RMS error between all crown diameter predictions based on this equation and all
actual crown diameter values was determined across the training dataset. Analogously, the
RMS error in latitude and longitude was found for all training crowns vs. the
corresponding values for their paired stems.

Within each plot, a list of all possible pairings of stems and crowns was created and
iterated through, with every pairing possibility being given a cost which was determined
as follows:

Ay 2 o 2 AN 2
D-D X—X Y-Y
= 4
¢ (Drms> * < ers > * ( Yrms ) ( )

where C is the cost, D is crown diameter estimated from crown area, D is crown diameter

predicted from the stem using the regression equation, D, is the RMS error in diameter
predictions, X is crown longitude, X is stem longitude, X, is the longitude prediction
RMS error, Y is crown latitude, Y is stem latitude, and Y.ms is the latitude prediction
RMS error. The RMS error values were thus used to create dimensionless costs across the
three variables, scaled by the overall noise in each signal. Within each plot, the set of
pairings which minimized the total cost across all pairs was taken as the best alignment.

Classification
Input data
The input data for this task consisted of a dataframe of individual pixel observations within

each tree. Each pixel was labeled with its associated crown ID and contained the height
within the CHM at that point and the response in all the hyperspectral bands.
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Species labels were also provided for each crown ID within the training set. Again, see the
parent paper (Marconi et al., 2018) for more information on the input dataset.

Algorithm
First, all the pixels in each tree were aggregated into a single observation of that tree,
containing the average reflectance value in each band as well as the average height,
the minimum height, and the maximum height across crown pixels, and the square root
of the total number of pixels in the tree (as an approximation of crown diameter,
since each pixel is 1 x 1 m).

The resulting tree vectors within the training set were grouped by species class.
Two separate principle component analysis (PCA) routines were run on the four structural
and 426 spectral parameters. The dimensionality of the set was reduced by retaining
only the three most informative dimensions from the PCA result for the structural matrix
and the 10 most informative dimensions from the spectral PCA result. The vectors
within each class group were assembled into a prediction matrix for that class.

A set of maximum likelihood classifiers was built on the training data for each species
class. Maximum likelihood methods work by assigning likelihoods L based on the
following equation (Sisodia, Tiwari & Kumar, 2014):

L= (2m) V27| *Pexp(—0.5(t — T))Y ' (t = T) (5)

where N is the total number of variables used in the classifier (here bands and structural
parameters of trees), Y is the covariance matrix of the entire set of training vectors
for the target class, t is the vector of parameters for the tree to be classified, and T is
the average vector from the set of training vectors for the target class.

Each individual tree vector in the test set was transformed by the PCA parameters found
above and used to determine a likelihood of assignment to each class. Trees were then
assigned to the class with the highest likelihood score.

RESULTS

Segmentation

The segmentation routine had the weakest results out of the three algorithms implemented
here. The scoring used by the competition was based on the Jaccard index, which
measures the overlap between two sets, and is given as follows:

_|AnB| |AN B
~ |AUB|  |A|+|B|—|ANB]

J(A,B) (6)

This index ranges between 0 and 1, with 0 representing a complete lack of overlap and
1 representing complete overlap. The index was calculated on the output trees compared
to models of tree crowns produced by the competition coordinators hand-drawing
crown segmentations on the data (Marconi et al., 2018). The algorithm used here yielded
J = 0.184, compared to the baseline score found by the organizers of J = 0.0863

which used a simpler segmentation routine. Figure 1 below provides the Jaccard scores
for all participants evaluated across tree sizes. The implementation in this study performed
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Figure 1 Jaccard scores for each participating team, evaluated across crown diameters. This figure
was produced and provided by the competition organizers (Marconi et al., 2018).
Full-size & DOIL: 10.7717/peer].5837/fig-1

most strongly for larger trees, outperforming all other methods for the largest tree class,

and outperformed the “baseline” method for trees of all sizes except for the 65 m” area class.
An example segmentation of a plot scene is given in Fig. 2. Note the robustness of

the routine to areas that do not contain tree crowns, with bare soil or vegetative

ground cover visible.

Alignment
The regression equation found between crown diameter (as estimated by crown area)
and stem diameter is given by

A

Dcrown - 0'114Dstem + 0.882 (7)

where D own is crown diameter in m and Dy, is stem diameter in centimeter.

This equation was found to be significant (p < 0.0001) with R* = 0.697. A plot of crown
diameters vs. stem diameters is given in Fig. 3. Also included in the figure is a plot of crown
diameter vs. stem height, with regression equation

A~

Dcrown — 0'127Hstem + 2.152 (8)

where Deown is crown diameter and Hyep, is stem height, both in m. That model was
also found to be significant (p < 0.01) but provided a relatively weak correlation with only
R? = 0.092, explaining relatively little of the variation in crown diameter.

Multiple regressions were also performed using both explanatory variables, one with
an interaction term and one without. These respectively resulted in R* values of
0.7106 and 0.7066, but while both models were significant overall, in both models all
variables other than stem diameter failed to significantly predict crown diameter (p > 0.05).
Because the stem diameter model outperformed the stem height model and addition
of neither the stem height nor an interaction term in a multivariate model substantially
improved the explanatory power of the model over stem diameter alone, only the
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Figure 2 Segmentation results for one plot. (A) Raw RGB image of the plot scene. (B) Canopy height
model of the scene, filtered to exclude points with NDVT <0.5 and height <3 m. Local maxima associated
with presumptive treetops are shown in black marks. (C) Output of the watershed segmentation routine
showing polygonal crowns. (D) Crown segmentations overlaid in red on the input RGB image. All RGB
color imagery was created by NEON and is directly available within the dataset used in the competition
(National Ecological Observatory Network, 2016). NEON’s data use policy allows for the free use and
publication of all data contained within these datasets provided that credit is attributed.

Full-size k&) DOT: 10.7717/peer;j.5837/fig-2

simple linear regression between crown diameter and stem diameter was used for
subsequent analysis.

As mentioned in the methods section, RMSE values in actual location (UTM easting
and northing) vs. the location estimated from ITC segmentation were calculated,
with respective values of 3.192 and 5.901. The RMSE value for the crown diameter
predicted by the stem/crown diameter regression model vs. the actual crown diameter
(approximated based on crown area) was also used, and was found to be 2.753.

The alignment routine performed better overall than segmentation, and was able to
correctly align 48% of the input crowns to the associated trees. However, an identical
performance was yielded by the benchmark routine used by the competition organizers.
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Figure 3 (A) Linear regression for stem diameter (cm) vs. crown diameter (m) as estimated from
crown area. (B) Linear regression for stem height (m) vs. crown diameter (m) as estimated from
crown area. Full-size K&l DOT: 10.7717/peerj.5837/fig-3

That routine was very similar to the one implemented here, but used only latitude and
longitude to align trees and ignored stem and crown diameters.

Classification

The classification performance of algorithms in the competition was measured by

two metrics—rank-1 score (recall, or the percentage of all test trees correctly classified)
and cross-entropy score (which rewards participants for expressing uncertainty about
predictions). Higher rank-1 scores and lower cross-entropy scores are associated

with “better” classification results. The organizers also provided the precision and

F1 scores of the competing submissions.

Classification yielded a rank-1 score of 0.8253, indicating that it correctly classified
82.53% of all the trees in the set, and had a cross-entropy score of 1.2247. This can be
compared to the “baseline” method implemented by the competition organizers,
which yielded a rank-1 score of 0.6667 and cross-entropy score of 1.1306. Figure 4
below provides a graph of precision, recall (or rank-1 accuracy), and F1 score results
across the nine species classes used.

My algorithm was the only method other than the baseline which had a 100%
success rate at correctly identifying the most common tree in the dataset (the longleaf pine,
P. palustris). It also yielded a very high success rate at identifying the second most
common species (the Turkey oak, Q. laevis), at 87.0%. However, it did not correctly
identify any tree of any species other than these two most common species. Despite this,
the two most common species represent a huge majority of the overall canopy in this
system, covering 82.3% and 84.9% of all the trees in the training and test datasets,
respectively.

DISCUSSION

Segmentation
Segmentation remains a major challenge within the remote sensing community in
systems with hardwood trees or substantial structural complexity and variability
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Figure 4 Classification results across tree species, presented in terms of precision (white), recall
(gray), and F1 scores (black). Full-size k4] DOIL: 10.7717/peerj.5837/fig-4

(Kaartinen et al., 2012; White et al., 2016; Heinzel ¢ Koch, 2012), and individual tree
segmentation algorithms are still often not fully deployed in commercial settings
(Kaartinen et al., 2012; White et al., 2016). No group participating in this competition was
able to yield a segmentation Jaccard score of higher than 0.34. This deficiency is likely
exacerbated by the heterogeneity of canopy structure between test plots in this test
system. Segmentation algorithms are often sensitive to canopy structure differences such as
degree of openness (Naidoo et al., 2012; Kaartinen et al., 2012; White et al., 2016; Heinzel ¢
Koch, 2012), and so in the future it might be beneficial to focus efforts on testing
more algorithms which can automatically adjust their tuning based on the local openness
and tree shape within different areas of the canopy. My approach used a single
manual tuning of input parameters (although the window size used is variable), and
work to automatically learn more effective parameters using training data represents a
potential area for future improvement.

Alternatively, the linear regression model found to relate tree height to crown size,
presented in 3.2, could simply be used for the window size model, eliminating these
two parameters from the tuning effort. The NDVI filter parameter used can most likely be
fixed at a constant value (such as the 0.2 used here) across all forestry applications,
because all trees will be substantially higher in NDVI than are either the bare rock or
water this parameter is meant to exclude. The height parameter should be varied across
applications based on usage needs, especially the overall height of dominant trees in the
target system and the question of whether understory trees and saplings in openings
should be included. However, it is likely that any researcher or worker surveying a
new system will already know this basic structural information, so the selection of these
parameters need not be onerous.

Because most of the classification results submitted by teams in this competition were
fairly powerful, it might be possible to perform pixel-wise classification to species first,
and use this information to help inform the aggregation of those pixels into crowns
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(i.e., trees of different species cannot be part of the same crown). An alternative possibility
is an iterative process which first segments and classifies crowns at the crown level

and then splits crowns that appear to be combinations of two trees of differing species,
or lumps adjacent crowns of the same species which might be different subcrowns
within the same tree. Such solutions have been attempted before in other structurally
heterogeneous systems, with moderate improvements reported over the original
segmentation (Heinzel & Koch, 2012).

It may also be worthwhile to try pulling in more data for the segmentation routine
than just CHM results, including hyperspectral information. As well, other segmentation
algorithms could be considered which operate directly on the LiDAR point cloud,
instead of the CHM. The CHM used here contained pixels 1.0 m wide, which
reduces the height information available within a given tree by a factor of four relative
to the previous analyses performed using 0.5 m pixels (Popescu & Wynne, 2004;
Kaartinen et al., 2012) using the same segmentation technique. Point clouds typically
contain more structural information than do the CHMs derived from them, and so
direct operation on the point cloud could allow more useful height information to be
gleaned from the data despite the dependence on coarser LiIDAR scans than were used in
other studies.

Alignment

I was surprised that the alignment algorithm did not perform more strongly, especially
because the strongest alignment algorithm implemented by another team used a method
very similar to the one implemented here (Dalponte, Frizzera ¢» Gianelle, 2018).

I believe that there may have been an error in the relative weighting of the shape and
position terms, because the results here were identical to those produced by the
“benchmark” algorithm which ignored crown area and used only tree positions.

Further investigation will be warranted in future work.

However, the broader applicability of these alignment algorithms is limited, because
they rely on one-to-one datasets of perfectly labeled crowns and stems. They cannot
perform on datasets in which not every stem is labeled, which is likely the case in a real
forestry application. Also, the pairing algorithm implemented here is suited to this
competition but scales poorly with larger plot sizes—if it were to be implemented on a
forest scale it would take an extremely long time to process all the potential pairings.
Algorithms to automatically section the forest for alignment analysis into plots like those
used here may be an area of potential interest for future work. Alternatively, it may be
beneficial to rely instead on algorithms in which each target stem is compared to all
of its nearest neighbor crowns, possibly with some cost to penalize multiple stems being
mapped to the same crown.

Classification

The classification routine was extremely effective at identifying common species.

In some contexts, this may be all that matters. For example, this would be entirely sufficient
if the primary intent is to quantify the numbers in a community of a few very common
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“dominant” species. This would be the case for efforts to take inventory of a wood
production forest, or to calculate parameters related to gross system function like primary
productivity, water filtration, or carbon sequestration. In these cases, the small number of
misidentified rare species may not be important.

In other cases, this kind of result would not be acceptable. If the goal is to identify
rare species in a community so that they can be managed for conservation,
ability to recognize uncommon species may be important. However, while this
algorithm was aimed primarily at identifying the most common species, it should be
noted that no algorithm was able to yield strong performance on all the uncommon
species. In fact, the best other submission for uncommon species identification
was still only able to recognize four of the seven uncommon classes with greater than a
50% success rate—and this came at a loss in accuracy of about 10% at identifying
the second most common species. Further work is warranted to develop
algorithms that are capable of robustly recognizing rare species based on very sparse
training data.

CONCLUSION

This submission to the data science competition includes a tree segmentation,
alignment, and classification pipeline which performs most strongly for common

tree species. Consequently, it may be appropriate for applications such as maintenance
of highly managed forestry plantations and efforts to estimate gross forest parameters
in natural systems. Future work will focus primarily on improving the results

of the segmentation algorithm, with emphasis also on improving the alignment of
remotely collected and hand-labeled ground data. The latter will become especially
important as the competition moves toward more realistic tree selection, potentially
with overlapping plots and incomplete correspondence between the aerial and

ground datasets.

As remote sensing methods continue to develop and the cost of deployment continues
to decrease (with more and cheaper sensors and small aircraft), the technologies
targeted by this competition may become increasingly important in a diverse array of
disciplines, from agriculture to forestry to ecological research (Mulla, 2013). The newly
introduced NIST DSE plant identification challenge may help to foster the development of
systems for remote sensing analysis that are more streamlined and generalized across
applications, which should aid their wider deployment across these fields. It is hoped
that future competitions will continue to elaborate further on the methods developed here,
and that this will aid in the expansion of remote sensing approaches into even more
real-world applications and fields.

ACKNOWLEDGEMENTS

I thank the two anonymous reviewers and the editor for their extremely helpful and
constructive feedback. Thanks are also due to the organizing team who structured the
competition, provided data to the participants, and performed analysis of team
submissions. Finally, I thank NEON for providing the data used herein.

McMahon (2019), Peerd, DOI 10.7717/peerj.5837 15/18


http://dx.doi.org/10.7717/peerj.5837
https://peerj.com/

Peer/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The National Ecological Observatory Network is a program sponsored by the National
Science Foundation and operated under cooperative agreement by Battelle Memorial
Institute. This material is based in part upon work supported by the National Science
Foundation through the NEON Program. The ECODSE competition was supported,

in part, by a research grant from NIST IAD Data Science Research Program to

D. Z. Wang, E. P. White, and S. Bohlman, by the Gordon and Betty Moore Foundation’s
Data-Driven Discovery Initiative through grant GBMF4563 to E. P. White, and by an
NSF Dimension of Biodiversity program grant (DEB-1442280) to S. Bohlman.

These funding sources allowed the collection of the data used in the competition and the
specification of the competition rules. The authors received no resources from these
organizations outside of the data provided for the competition. There was no additional
internal or external funding received for this study. The data provided for the
competition were provided by the National Ecological Observatory Network as described
in the Funding Statement. Provision of this data was the only manner in which resources
were provided by that organization. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The National Science Foundation.

Battelle Memorial Institute.

The National Science Foundation through the NEON Program.

NIST IAD Data Science Research Program.

The Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative: GBMF4563.
An NSF Dimension of Biodiversity program: DEB-1442280.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Conor A. McMahon conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared
figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

GitHub: https://github.com/conormcmahon/canopy_segmentation.

The data used in the project were produced by NEON. A link to NEON’s data use
policy is below, which covers the freedom for users to publish the aerial RGB imagery
included in Fig. 2.

http://data.neonscience.org/data-policy.

McMahon (2019), PeerdJ, DOI 10.7717/peerj.5837 16/18


https://github.com/conormcmahon/canopy_segmentation
http://data.neonscience.org/data-policy
http://dx.doi.org/10.7717/peerj.5837
https://peerj.com/

Peer/

REFERENCES

Barbosa JM, Asner GP. 2017. Prioritizing landscapes for restoration based on spatial patterns of
ecosystem controls and plant-plant interactions. Journal of Applied Ecology 54(5):1459-1468
DOI 10.1111/1365-2664.12857.

Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS Journal of
Photogrammetry and Remote Sensing 65(1):2-16 DOI 10.1016/j.isprsjprs.2009.06.004.

Cho MA, Debba P, Mathieu R, Naidoo L, Aardt JV, Asner GP. 2010. Improving discrimination
of savanna tree species through a multiple-endmember spectral angle mapper approach:
canopy-level analysis. IEEE Transactions on Geoscience and Remote Sensing 48(11):4133-4142
DOI 10.1109/tgrs.2010.2058579.

Clark ML, Roberts DA, Clark DB. 2005. Hyperspectral discrimination of tropical rain forest tree
species at leaf to crown scales. Remote Sensing of Environment 96(3-4):375-398
DOI 10.1016/j.rse.2005.03.009.

Dalponte M, Frizzera L, Gianelle D. 2018. NEON NIST data science evaluation
challenge: methods and results of team FEM. Peer] Preprints 6:¢26973v1
DOI 10.7287/peerj.preprints.26973v1.

Dalponte M, @rka HO, Gobakken T, Gianelle D, Nesset E. 2013. Tree species classification
in boreal forests with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing
51(5):2632-2645 DOI 10.1109/TGRS.2012.2216272.

Fletcher AT, Erskine PD. 2012. Mapping of a rare plant species (Boronia deanei) using
hyper-resolution remote sensing and concurrent ground observation. Ecological Management ¢
Restoration 13(2):195-198 DOI 10.1111/j.1442-8903.2012.00649 x.

Heinzel J, Koch B. 2012. Investigating multiple data sources for tree species classification in
temperate forest and use for single tree delineation. International Journal of Applied Earth
Observation and Geoinformation 18(1):101-110 DOI 10.1016/j.jag.2012.01.025.

Kaartinen H, Hyyppd J, Yu X, Vastaranta M, Hyyppéa H, Kukko A, Holopainen M, Heipke C,
Hirschmugl M, Morsdorf F, Nasset E, Pitkinen J, Popescu S, Solberg S, Wolf BM, Wu JC.
2012. An international comparison of individual tree detection and extraction using
airborne laser scanning. Remote Sensing 4(4):950-974 DOI 10.3390/rs4040950.

Keller M, Schimel DS, Hargrove WW, Hoffman FM. 2008. A continental strategy for the
National Ecological Observatory Network. Frontiers in Ecology and the Environment
6(5):282-284 DOI 10.1890/1540-9295(2008)6[282: ACSFTN]2.0.CO;2.

Lee AC, Lucas RM. 2007. A LiDAR-derived canopy density model for tree stem and crown
mapping in Australian forests. Remote Sensing of Environment 111(4):493-518
DOI 10.1016/j.rse.2007.04.018.

Marconi S, Graves S, Gong D, Nia M, Le Bras M, Dorr BJ, Fontana P, Gearhart J, Greenberg C,
Harris D, Kumar S, Nishant A, Prarabdh J, Rege S, Bohlman S, White E, Wang D. 2018.
A data science challenge for converting airborne remote sensing data into ecological
information. Peer] 6:e26966v1 DOI 10.7287/peerj.preprints.26966v1.

Morsdorf F, Meier E, Kotz B, Itten KI, Dobbertin M, Allgéwer B. 2004. LIDAR-based geometric
reconstruction of boreal type forest stands at single tree level for forest and wildland fire
management. Remote Sensing of Environment 92(3):353-362 DOI 10.1016/j.rse.2004.05.013.

Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: key advances
and remaining knowledge gaps. Biosystems Engineering 114(4):358-371
DOI 10.1016/j.biosystemseng.2012.08.009.

Naidoo L, Cho MA, Mathieu R, Asner G. 2012. Classification of savanna tree species, in the
Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a

McMahon (2019), PeerdJ, DOI 10.7717/peerj.5837 17/18


http://dx.doi.org/10.1111/1365-2664.12857
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.1109/tgrs.2010.2058579
http://dx.doi.org/10.1016/j.rse.2005.03.009
http://dx.doi.org/10.7287/peerj.preprints.26973v1
http://dx.doi.org/10.1109/TGRS.2012.2216272
http://dx.doi.org/10.1111/j.1442-8903.2012.00649.x
http://dx.doi.org/10.1016/j.jag.2012.01.025
http://dx.doi.org/10.3390/rs4040950
http://dx.doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2007.04.018
http://dx.doi.org/10.7287/peerj.preprints.26966v1
http://dx.doi.org/10.1016/j.rse.2004.05.013
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.7717/peerj.5837
https://peerj.com/

Peer/

Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote
Sensing 69:167-179 DOI 10.1016/j.isprsjprs.2012.03.005.

Network National Ecological Observatory. 2016. Data Products NEON.DP1.10098, NEON.
DP1.30010, NEON.DP3.30015, NEON.DP1.30008. Boulder: Battelle. Available at http://data.
neonscience.org (accessed 26 January 2016).

Plowright A. 2018. Canopy analysis in r using ForestTools. Available at https://cran.r-project.org/
web/packages/ForestTools/vignettes/treetopAnalysis.html.

Popescu SC, Wynne RH. 2004. Seeing the trees in the forest. Photogrammetric Engineering &
Remote Sensing 70(5):589-604 DOI 10.14358/PERS.70.5.589.

Rose RA, Byler D, Eastman JR, Fleishman E, Geller G, Goetz S, Guild L, Hamilton H,
Hansen M, Headley R, Hewson J, Horning N, Kaplin BA, Laporte N, Leidner A,
Leimgruber P, Morisette J, Musinsky J, Pintea L, Prados A, Radeloff VC, Rowen M,
Saatchi S, Schill S, Tabor K, Turner W, Vodacek A, Vogelmann J, Wegmann M, Wilkie D,
Wilson C. 2015. Ten ways remote sensing can contribute to conservation. Conservation Biology
29(2):350-359 DOI 10.1111/cobi.12397.

Sisodia PS, Tiwari V, Kumar A. 2014. Analysis of supervised maximum likelihood classification
for remote sensing image. In: International Conference on Recent Advances and Innovations in
Engineering (ICRAIE-2014). Piscataway: IEEE, 1-4.

Tang L, Shao G. 2015. Drone remote sensing for forestry research and practices. Journal of
Forestry Research 26(4):791-797 DOI 10.1007/s11676-015-0088-y.

Van Leeuwen M, Coops NC, Wulder MA. 2010. Canopy surface reconstruction from a
LiDAR point cloud using Hough transform. Remote Sensing Letters 1(3):125-132
DOI 10.1080/01431161003649339.

Van Leeuwen M, Nieuwenhuis M. 2010. Retrieval of forest structural parameters using
LiDAR remote sensing. European Journal of Forest Research 129(4):749-770
DOI 10.1007/s10342-010-0381-4.

Vassallo MM, Dieguez HD, Garbulsky MF, Jobbagy EG, Paruelo JM. 2013. Grassland
afforestation impact on primary productivity: a remote sensing approach. Applied Vegetation
Science 16(3):390-403 DOI 10.1111/avsc.12016.

White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P. 2016. Remote sensing
technologies for enhancing forest inventories: a review. Canadian Journal of Remote Sensing
42(5):619-641 DOI 10.1080/07038992.2016.1207484.

Zhen Z, Quackenbush L], Zhang L. 2016. Trends in automatic individual tree crown detection and
delineation-evolution of LiDAR data. Remote Sensing 8(4):1-26 DOI 10.3390/rs8040333.

McMahon (2019), PeerdJ, DOI 10.7717/peerj.5837 18/18


http://dx.doi.org/10.1016/j.isprsjprs.2012.03.005
http://data.neonscience.org
http://data.neonscience.org
https://cran.r-project.org/web/packages/ForestTools/vignettes/treetopAnalysis.html
https://cran.r-project.org/web/packages/ForestTools/vignettes/treetopAnalysis.html
http://dx.doi.org/10.14358/PERS.70.5.589
http://dx.doi.org/10.1111/cobi.12397
http://dx.doi.org/10.1007/s11676-015-0088-y
http://dx.doi.org/10.1080/01431161003649339
http://dx.doi.org/10.1007/s10342-010-0381-4
http://dx.doi.org/10.1111/avsc.12016
http://dx.doi.org/10.1080/07038992.2016.1207484
http://dx.doi.org/10.3390/rs8040333
http://dx.doi.org/10.7717/peerj.5837
https://peerj.com/

	Remote sensing pipeline for tree segmentation and classification in a mixed softwood and hardwood system
	Background
	Methods
	Results
	Discussion
	Conclusion
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


