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Abstract: Precise tree inventory plays a critical role in sustainable forest planting, restoration, and
management. LiDAR-based individual tree detection algorithms often focus on finding individual
treetops to discern tree positions. However, deliquescent tree forms (broad, flattened crowns) in
deciduous forests can make these algorithms ineffective. In this study, we propose a stepwise tree
detection approach, by first identifying individual trees using horizontal point density and then
analyzing their vertical structure profiles. We first project LiDAR data onto a 2D horizontal plane and
apply mean shift clustering to generate candidate tree clusters. Next, we apply a series of structure
analyses on the vertical phase, to overcome local variations in crown size and tree density. This
study demonstrates that the horizontal point density of LiDAR data provides critical information to
locate and isolate individual trees in temperate hardwood plantations with varied densities, while
vertical structure profiles can identify spreading branches and reconstruct deliquescent crowns. One
challenge of applying mean shift clustering is training a dynamic search kernel to identify trees of
different sizes, which usually requires a large number of field measurements. The stepwise approach
proposed in this study demonstrated robustness when using a constant kernel in clustering, making
it an efficient tool for large-scale analysis. This stepwise approach was designed for quantifying
temperate hardwood plantation inventories using relatively low-density airborne LiDAR, and it has
potential applications for monitoring large-scale plantation forests. Further research is needed to
adapt this method to natural stands with diverse tree ages and structures.

Keywords: LiDAR; tree detection; temperate forests; mean shift; stepwise clustering

1. Introduction

Airborne light detection and ranging (LiDAR) has become an important tool in remote
sensing for forest inventory, particularly for detecting individual trees and extracting their
characteristics, such as tree height, crown diameter, diameter at breast height (DBH), and
stem volume [1–5]. These characteristics are useful for various applications, including
estimating aboveground biomass [6,7], assessing wildlife biodiversity and habitats [8],
modeling forest ecosystems [9,10], and monitoring biological and biogeochemical processes
at broad spatial levels [11]. While LiDAR-based approaches for detecting individual
trees often focus on finding treetops to allocate tree positions. This approach works well
for trees with an excurrent branching habit (conical crowns) (e.g., coniferous in boreal
forests) [12], but it is not as effective for temperate hardwood forests dominated by trees
with deliquescent forms (cylindrical, broad flattened crowns) (Figure 1) [13]. As a result,
alternative approaches for detecting hardwood trees are needed.
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Figure 1. A profile of airborne LiDAR data representing a transect of the northern red oak stand in
the study site. The red curve stands for the canopy height model (canopy surface), and the blue curve
stands for the LiDAR point density distribution.

There are several methodologies for detecting individual trees in remotely sensed data,
which can be broadly categorized into raster-based classification [1,12–14] and point-cloud-
based clustering [14–16]. The raster-based classifications are mainly based on two-dimensional
(2D) image processing algorithms [17]. Individual trees are typically identified using local
maxima detection [12], edge detection [18], watershed segmentation [19,20], region growth
segmentation [21], and object-based image analysis [15]. Local maxima detection is a ker-
nel approach that uses moving windows to search treetops and identify individual trees.
Popescu et al. [22] applied variable-sized moving windows to detect individual trees in a
mixed conifer and hardwood forest in Virginia, USA. Edge detection is an image processing
method that isolates individual trees by finding and delineating crown edges. Li et al. [23]
applied convolutional neural network-based edge detection to delineate subtropical planta-
tions in southern China. Watershed segmentation is another widely used image processing
algorithm that separates individual tree canopies using image morphology operations. It has
advantages in isolating canopy trees and delineating individual tree crowns. Hu et al. [24]
designed a multi-scaled watershed segmentation to delineate tree crowns in a boreal forest
in Ontario, Canada. Duncanson [3] designed a multi-layered watershed segmentation to
delineate tree crowns in both the overstory and understory in multiple forest sites of U.S.
temperate forests. Tang et al. [25] applied marker-controlled watershed segmentation to
high-density unmanned aerial vehicle (UAV) data, to isolate individual trees and monitor tree
growth in Guangxi, China. Other algorithms such as region growth and object-based image
analysis have been studied in previous research but are often used in combination with other
techniques to achieve accurate tree detection outcomes. For example, Gleason and Im [26]
integrated local maxima filtering, object recognition, and hill climbing methods to delineate
even-aged Norway spruce (Picea abies) in New York, USA.

Point-cloud-based clustering methods offer the potential to fully utilize LiDAR data
in a 3D space [27], thereby improving the capability to extract individual tree information
in temperate hardwood forests. These algorithms group the 3D LiDAR data into clusters
that correspond to individual trees by utilizing techniques such as density-based, centroid-
based, or hierarchical clustering. Morsdorf et al. [28] used this approach by applying
k-means clustering to detect individual trees in boreal pine (Pinus spp.) forests in the
Ofenpass valley, Switzerland. Reitberger et al. [29] and Yao et al. [16] demonstrated the
application of normalized cut segmentation, a spectral clustering approach to deal with
uneven-sized clusters, to detect small crowns under the canopy surface in boreal forests in
Germany. Lee et al. [30] developed an adaptive supervised clustering approach to identify
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tree crowns in pine forests in Florida, USA. Li et al. [31] and Jakubowski et al. [15] employed
a geometric approach, largely based on the spacing between the tops of tree to segment the
LiDAR points into individual conifer trees in California, USA. These point-cloud-based
approaches can enhance the ability to extract detailed information about individual trees
compared with raster-based classification methods.

Kaartinen et al. [12] reviewed and compared 33 algorithms for individual tree detection
and found that the point-cloud-based algorithms outperformed raster-based algorithms in
detection accuracy. Point-cloud-based techniques for individual tree detection typically
require high-density airborne LiDAR data, which can be costly to acquire and may have lim-
ited spatial coverage. Raster-based techniques, on the other hand, can use well-established
computer vision and image processing algorithms and are more computationally efficient,
but they lack the 3D spatial information and vertical structure information that is essential
for tree detection.

LiDAR data can be collected from different platforms, including airborne, UAV, and
terrestrial. The choice of platform can impact the performance of individual tree detection,
as each platform may result in different point densities and scan patterns of LiDAR data.
Airborne systems collect data from maned aircraft and provide LiDAR point clouds over
large areas. The point density of airborne systems varies based on the senor used and the
elevation of the aircraft. Some systems collect airborne LiDAR with a point density less
than 1 pts/m2 [32], while others collect data with a point density over 20 pts/m2 [33]. For
individual tree detection, Kaartinen et al. [12] recommended airborne LiDAR with a point
density of more than 2 pts/m2. UAV systems are flexible and cost-effective alternatives
to airborne LiDAR. Drones are flown over the study area at local scale and collect high-
density LiDAR, providing detailed information on individual trees in a small area [34].
Terrestrial systems gather high-density LiDAR data by scanning tree stems from close range
on the ground, making them ideal for local stand-level tree inventory and in-depth tree
structure analysis [35]. Numerous studies have compared lidar platforms for individual tree
detection [36–38]. Overall, airborne LiDAR systems offer broad spatial coverage and are
best for detecting individual trees at regional or larger scale. UAV and terrestrial systems,
on the other hand, provide more precise tree information in a smaller area and are suitable
for local-scale forest inventory and multi-temporal analysis, because of their flexibility.

In this study, we focused on airborne LiDAR systems and proposed and evaluated
a stepwise approach that projects 3D LiDAR data onto 2D horizontal and vertical phases
for analysis. This approach leverages a horizontal point density distribution to locate
individual trees (Figure 1), followed by vertical structure analysis for reconstructing tree
canopies and extracting relevant features. This approach preserves 3D spatial information
through a stepwise process of 2D operations, allowing for a balance between the accuracy of
point-cloud-based algorithms and the computational efficiency of the raster-based methods.

2. Data and Methods
2.1. Study Area

This study was conducted on data acquired from northern red oak (Quercus rubra)
and black walnut (Juglans nigra) plantations located in the Martell Forest, West Lafayette,
Indiana, USA (40◦26′N, 87◦2′W). This property, managed by the Department of Forestry
and Natural Resources at Purdue University, contains 193 ha of natural hardwood forests
and plantations. The northern red oak and black walnut stands were established between
1962 and 1964 and cover areas of 1.1 and 0.9 ha, respectively. Both stands were initially
planted at constant spacing, but natural mortality and thinning management have resulted
in variable crown sizes and uneven spacing in both stands (Figure 2, more details in
Section 2.2. Field data).
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subplot blocks; the bottom two aerial photos show the black walnut stand during leaf-on (c) and 
leaf-off (d) seasons; red lines were added to the leaf-ff photo to show the subplot blocks (see more 
details in Section 2.2.). 

2.2. Field Data 
The northern red oak stand was stem-mapped in 2013 and georegistered using a port-

able Differential global positioning system (DGPS) assisted by leaf-on and leaf-off aerial 
photos. DBH of sampled trees was measured with a DBH tape in 2013 and tree heights 
were measured using a Swedish Haglöf Vertex IV Hypsometer in October 2015. The 
northern red oak stand was split into 96 square blocks with an average area of 100 m2; 
among which, 10 blocks without stems were excluded from this study (the yellow-colored 
blocks in Figure 2). The tree densities in the remaining 86 blocks varied between 100 and 
1200 trees per hectare (TPH), with an average of 568 TPH. In the black walnut stand, a 
stem map, tree heights, and DBH were all measured in February 2014. The black walnut 
stand was split into 7 blocks with unequal areas, ranging from 900 to 1500 m2. Tree density 
of blocks in the black walnut stand varied between 115 and 232 TPH, with an average of 
161 TPH. The validation procedures using field data are discussed in detail in Section 2.5. 

2.3. LiDAR Data and Pre-processing 
LiDAR data were obtained from the Indiana Statewide LiDAR program [39] and col-

lected during the leaf-off season in 2013 using an Airborne Optech Gemini LiDAR system 
(ALS50). This sensor collected up to 4 returns per pulse with a 99 kHz pulse repetition 
rate, flying at the above ground level (AGL) of 2000 m, with a scan angle of 40 degrees 
and a 35.8 Hz scan frequency. The swath width was 1731 m, and the distance between 
flight lines was 1211 m. The average point density in the study area was approximately 
2.3 pts/m2, which is considered a relatively low-density airborne dataset for individual 
tree detection according to previous studies by Kaartinen et al. [12] and Vastaranta et al. 
[40].  

Figure 2. Aerial view of the study area. The top two aerial photos show the northern red oak stand
during leaf-on (a) and leaf-off (b) seasons; a stem map was added to the leaf-off photo, to show the
subplot blocks; the bottom two aerial photos show the black walnut stand during leaf-on (c) and
leaf-off (d) seasons; red lines were added to the leaf-ff photo to show the subplot blocks (see more
details in Section 2.2).

2.2. Field Data

The northern red oak stand was stem-mapped in 2013 and georegistered using a
portable Differential global positioning system (DGPS) assisted by leaf-on and leaf-off
aerial photos. DBH of sampled trees was measured with a DBH tape in 2013 and tree
heights were measured using a Swedish Haglöf Vertex IV Hypsometer in October 2015.
The northern red oak stand was split into 96 square blocks with an average area of 100 m2;
among which, 10 blocks without stems were excluded from this study (the yellow-colored
blocks in Figure 2). The tree densities in the remaining 86 blocks varied between 100 and
1200 trees per hectare (TPH), with an average of 568 TPH. In the black walnut stand, a
stem map, tree heights, and DBH were all measured in February 2014. The black walnut
stand was split into 7 blocks with unequal areas, ranging from 900 to 1500 m2. Tree density
of blocks in the black walnut stand varied between 115 and 232 TPH, with an average of
161 TPH. The validation procedures using field data are discussed in detail in Section 2.5.

2.3. LiDAR Data and Pre-Processing

LiDAR data were obtained from the Indiana Statewide LiDAR program [39] and
collected during the leaf-off season in 2013 using an Airborne Optech Gemini LiDAR system
(ALS50). This sensor collected up to 4 returns per pulse with a 99 kHz pulse repetition rate,
flying at the above ground level (AGL) of 2000 m, with a scan angle of 40 degrees and a
35.8 Hz scan frequency. The swath width was 1731 m, and the distance between flight lines
was 1211 m. The average point density in the study area was approximately 2.3 pts/m2,
which is considered a relatively low-density airborne dataset for individual tree detection
according to previous studies by Kaartinen et al. [12] and Vastaranta et al. [40].

Preprocessing was required to extract the above-ground height information of each
point and eliminate ground points and outliers [41]. First, a digital elevation model (DEM)
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with a pixel resolution of 1 m was generated using classified ground points in the raw
dataset. Second, the above-ground height of each point was calculated by subtracting their
Z coordinate value from the corresponding DEM value [42]. Points with an above-ground
height less than 0.5 m were then removed from the dataset, to reduce the effects of ground
points on the tree detection algorithm. Finally, points with an above-ground height greater
than three standard deviations of the mean point height were eliminated as outliers.

2.4. Stepwise Tree Detection Approach

The stepwise tree detection approach analyzes LiDAR point cloud data in two phases:
a horizontal phase, and a vertical phase (Figure 3). In the horizontal phase, a machine
learning algorithm called horizontal mean shift clustering (HMeanShift) is used to locate
individual hardwood tree positions by analyzing the distribution of LiDAR point density.
This is based on the assumption that the point density is higher at the center of a tree
crown than at the edges of the crown [41]. In the vertical phase, a series of vertical struc-
ture analysis techniques are applied to verify each tree cluster and extract tree attributes.
HMeanShift clustering provides a unique approach to tree detection that relies on the
horizontal point distribution rather than the traditional method of finding treetops. Vertical
structure analysis is a post-processing step that merges spreading branches with the main
crown and reconstructs deliquescent canopies. This enables the stepwise approach to
effectively detect trees with flat, deliquescent crowns, which are often difficult to identify
using traditional methods.
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Figure 3. Flowchart of the stepwise tree detection approach.

2.4.1. HMeanShift Clustering

Mean shift clustering (MeanShift) is a nonparametric machine learning algorithm that
defines local maxima using a density function of the given samples [43]. Using mean shift
clustering, individual trees are located as mean density centers instead of finding treetops.
Traditionally, MeamShift has been used for image processing and segmentation [44]. Re-
cently, it has been shown to have the potential to segment point clouds of LiDAR data,
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for individual tree detection [14]. Given n data points Xi, i = 1, . . . , n on a d-dimensional
space Rd, the probability density function of X is:

f(X) =
1

nhd

n

∑
i=1

K
(

X− Xi

h

)
(1)

where h is the radius of the kernel, K(X) is the kernel function, which satisfies
K(X) = ck,dk

(
‖X‖2

)
, where ck,d is a scaling value to assure K(X) will integrate to one.

Setting g(s) = − k′(s) and G(X) = cg,dg
(
‖X‖2

)
, the density gradient estimator can be

written as

∇f(X) =
2

nhd+2

[
n

∑
i=1

G
(

X− Xi

h

)]
mh(X) (2)

where

mh(X) =
∑n

i=1 Xig
(
‖X− Xi

h ‖2
)

∑n
i=1 g

(
‖X− Xi

h ‖2
) − X (3)

is the mean shift vector. Then, the iterative mean shift procedure at step t can be written as

Xt+1 = Xt + mh
(
Xt) (4)

Both 2D and 3D MeanShift are available for LiDAR-based individual tree detection. In
this study, 2D horizontal MeanShift (HMeanShift) was employed because 3D MeanShift
usually focuses on tree crowns, ignoring/removing the stem LiDAR points in the analysis.
Stem LiDAR points may provide critical information for individual deciduous tree detec-
tion, particularly when utilizing low-density LiDAR data for tree detection. Additionally,
HMeanShift reduces the data dimensionality and improves the computational efficiency.

2.4.2. HMeanShift Search Kernel Selection

Selection of the search kernel size is an important aspect of HMeanShift, as it is the
only parameter in the model and can have a direct impact on the detection results. Previous
research has suggested the use of varied or dynamic search kernels, to detect crowns of
different sizes in 3D MeanShift [14]. However, defining the appropriate dynamic search
kernel can be challenging, as it requires in-depth knowledge of the forest’s structural
characteristics and may need to be adjusted for different forest stands. In this study, we
investigated the effects of both constant and dynamic search kernels on our proposed
stepwise tree detection approach.

A constant kernel utilizes a fix-sized searching window in mean shift clustering, while
a dynamic kernel applies different sized searching windows based on the tree density. In
this study, the constant kernel was set based on the average stem spacing of sampled trees
in each stand. The dynamic kernel was calculated with the LiDAR metrics of each block
(86 blocks in the northern red oak stand and 7 blocks in the black walnut stand). In the
northern red oak stand, every block was similar in size but with different tree numbers
and stem allocations. The dynamic kernel was set based on the canopy coverage and
the “pseudo” tree number of each block. Canopy coverage can be directly calculated
using a LiDAR-derived canopy gap fraction Equation (5). The “pseudo” tree numbers
were simulated using selected LiDAR metrics. First, half of the blocks were randomly
selected as training samples for “pseudo” tree number training. Then, linear regression
was applied between the observed tree number and the LiDAR metrics, to calculate the
pairwise correlation (Figure S1). The LiDAR metrics used in this study included average
point density, canopy gap fraction, and the maximum and mean height in each block. Then,
the average point density and mean height metrics were selected as predictors to estimate
the tree numbers in each block, due to their high correlation with tree numbers and low
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correlation between each other (Figure S1). Finally, the radiuses of the dynamic kernel were
estimated using the following equation:

Radius = e∗
(

A∗(1−Gap)
π∗NT

) 1
2

NT = a ∗ MeanH− b ∗ PtsD + c
(5)

where A is the area of the block, Gap is the canopy gap fraction; NT is the pseudo tree
number; MeanH is the block mean height; PtsD is the block average point density; and a,
b, c, and e are the constant factors. A similar procedure was applied in the black walnut
stands. As there was no significant variation in the stem spacing in the black walnut stand,
we only split the stand into 7 blocks and randomly selected 4 blocks to train the varying
kernel radius.

2.4.3. Vertical Structure Analysis

Vertical structure analysis was used to address the issues of over- or under-estimation
in HMeanShift clusters. Due to the variable size of the deliquescent crowns, HMeanShift
may split a single large tree into one tree cluster and several crown clusters. In addition,
ground residuals (e.g., tree snags) under tree canopies or in open areas may be wrongly
identified as tree clusters, impacting the accuracy of individual tree detection. To address
these challenges, we proposed two vertical analyses: vertical strata analysis, and vertical
length ratio.

Vertical strata analysis involves analyzing the profile of the LiDAR point cloud, to
identify vertical gaps in tree candidate clusters. In this study, we focused on single-layered
plantation stands and used vertical strata analysis to find clusters with parts of canopy
crowns and the ground residuals underneath (as shown in Figure 4). We defined a vertical
gap as an opening in the vertical profile that was greater than 30% of the cluster’s maximum
height. This 30% threshold was defined based on the stand structure and LiDAR data used
in this study and may need to be fine-tuned when being applied to other forest stands.
LiDAR points above the vertical gap were marked as crown points, while those below the
gap were removed as ground residuals.

Following the vertical strata analysis, we checked the vertical length ratio (VLR) of the
remaining tree candidate clusters, to distinguish crown clusters from tree clusters using
stem information. The VLR was defined using the following equation:

VLR =
(Hmax −Hmin)

Hmax
(6)

where Hmax and Hmin are the maximum and minimum heights of the cluster, respectively.
High VLR clusters were assigned as tree clusters because they included information about
both the crown and stem. In contrast, clusters with lower values were assigned as crown
clusters containing only crown information. In this study, the cut-off threshold was set as
0.7, which was the average of the sampled live crown ratios in the study area.

2.4.4. Clustering Optimization and Individual Tree Parameter Estimation

As a nonparametric learning approach, HMeanShift is highly flexible and can capture
the diverse characteristics of individual trees. However, this flexibility can also result in
inconsistent tree density estimations across classifications, due to a random seed selection
each time. To address this issue, we iterated HMeanShift 100 times per block and averaged
the results, to obtain a more stable estimate of tree density in each block (See Figure S2
in the supplementary materials for more information about tree number estimations over
100 iterations in each block).

Once our stepwise tree detection approach reached a stable solution, we calculated
the various characteristics of individual trees within each tree cluster. These characteristics
included tree height and crown size, which represent the horizontal and vertical structural
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variations of the forest stands, respectively. To calculate tree height, we determined the
vertical elevation of the highest LiDAR point in each tree cluster. The crown size was
estimated using the average of the two perpendicular diameters (north-south and east-
west) of the tree clusters.
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Figure 4. Visualization of the stepwise tree detection approach, including horizontal mean shift
clustering (HMeanShift), vertical strata analysis, and the vertical length ratio (VLR). The black dots
in the main graph represent the horizontal projections of LiDAR points, and the different colors
represent the clusters created by HMeanShift. The HMeanShift graph (a) shows the search radius
(red circles), the final position of the cluster (solid-lined circles), and the pathway of the mean shift
(dash-lined circles). In the vertical strata analysis graph (b), the blue dots within the left cylinder
represent the original LiDAR points in the cluster, while the blue dots within the right cylinder
represent the crown points without ground residuals (black dots). The VLR graph (c) shows the
VLR values of each cluster, with the blue cluster marked as a crown cluster and merged with the
distance-closer pink cluster.

2.5. Algorithm Validation
2.5.1. Accuracy Assessment of Individual Tree Detection

The algorithm validation included both accuracy assessment of individual tree de-
tection and validation of the individual tree parameter estimation. Owing to the wide
variability in density in the northern red oak plantation, those blocks were grouped into low
(100–500 TPH), medium (500–900 TPH), and high (900–1200 TPH) densities; as the blocks of
black walnuts had similar densities, there were no additional subgroups in the black walnut
stand. The accuracy assessment was performed by matching the mean positions of tree
clusters to the positions obtained by stem mapping, with a radius equal to the search radius
in HMeanShift. If more than one tree cluster was found within the search radius, the one
closer to the center was marked as the correct match, all other tree clusters were marked as
commission errors. If no tree cluster was found within the search radius, this was counted
as an omission error. Detection rate, detection accuracy, and estimation percentage were
used to assess omission and commission errors [3]. The detection rate was an assessment of
omission errors, which was calculated using the number of correctly detected trees divided
by the total number of trees in the stand. Estimation percentage assessed the commission
errors, utilizing the total number of detected trees divided by the total number of trees in
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the stand. Detection accuracy was an accuracy measurement regarding both omission and
commission errors. Its equation is as follows:

A =
2T

2T + O + C
× 100% (7)

where A is the detection accuracy, T is the number of corrected detected trees, O is the
number of undetected trees, and C is the number of overestimated trees.

McNemar’s test was used to test the differences between estimations using constant
and dynamic kernels in HMeanShift [45]. The Z score was calculated as follows:

Z =
|a− b|√

a + b
(8)

where a is the number of trees that were detected using the constant kernel but undetected
using the dynamic kernel, and b is the number of trees that were detected using the dynamic
kernel but undetected using the constant kernel. We assumed these two estimations were
statistically different at a 95% confidence interval if the Z score was more significant
than 1.96.

2.5.2. Validation of the Individual Tree Parameter Estimation

Field-observed tree heights and DBH of 60 trees (about 10% of the study area) were
used as reference measurements to validate LiDAR-derived tree heights and crown sizes
(Table 1). As mentioned in Section 2.2, the field measurements were collected later than the
LiDAR survey. They were mainly used as the reference data to represent the stand structure
variations. The tree heights were compared directly using linear regressions. To validate our
crown delineation results, we established linear regressions between LiDAR-derived crown
size and field-observed DBH as a proxy. This was done because direct field measurements
of crown size were not available. We expected that the LiDAR-derived crown size would
be able to reflect the variation in DBH in the field data, as seen in previous forestry studies,
which demonstrated a correlation between crown size and DBH (e.g., Lockhart et al. [46]
and Shimano [47]). We also compared the LiDAR-derived estimations using constant and
dynamic kernels in HMeanShift through linear regression and paired t-tests.

Table 1. Tree height and DBH of the black walnut and northern red oak stands from the field
measurements and stand tree densities.

Stand
Name Tree Height (m) DBH (cm) Tree Density

(trees ha−1)

Max Min Mean Median SD Max Min Mean Median SD

Black
walnut 21.8 15.3 19.4 19.5 1.7 23.8 43.9 33.1 23.0 5.3 161

Northern
red oak 28.1 19.1 25.0 25.8 2.5 7.2 23.9 12.3 12.4 3.3 568

Additionally, our validation procedures were employed both before and after the
vertical structure analysis. Therefore, we could investigate the effects of HMeanShift and
the vertical structure analysis on the individual tree detections separately. The outcomes of
single-step HMeanShift were assessed to explore the responses of individual tree detection
to the changes of constant and dynamic kernels. The detection results after vertical structure
analysis were assessed and compared to the results of the single-step HMeanShift, to
evaluate the efficiency of the vertical strata analysis and VLR in overcoming the spreading
crowns of hardwood trees.
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3. Results
3.1. Assessment of Single-Step HMeanShift

The detection results of the single-step HMeanShift were assessed before the pro-
cessing the vertical structure analysis. Using constant kernel in HMeanShift, the overall
detection accuracy was 89%, with a 89% detection rate and 1% overestimation in the whole
study area (Table 2). However, the accuracy of the detection varied across different stands
and density groups within the oak stands, ranging from 77% to 93%. The black walnut
stand had higher detection rates and accuracy compared to the northern red oak stand
(Table 2), possibly due to more consistent density within the black walnut stand. Within
the northern red oak stand, low-density blocks had the highest detection rate but lowest
detection accuracy, due to a high overestimation rate of 37%. High-density blocks had the
highest detection accuracy but the lowest detection rate of 86% and a high underestimate
rate of 12% (Table 2).

Using the dynamic kernel in HMeanShift, the overall detection accuracy improved to
91%, with a higher detection rate of 91% and a slightly higher overestimation rate of 4%
(Table 1). The detection rates and accuracies were slightly improved compared to the use
of the constant kernel, and there were generally fewer under- and overpredictions of tree
density across the stands and density groups. However, the detection rates and accuracies
were still somewhat inconsistent among the different density groups (Table 2).

3.2. Assessment of the Stepwise Approach

The stepwise approach, HMeanShift clustering followed by vertical structure analysis,
resulted in an overall accuracy of 94% with the constant kernel, and 93% with the dynamic
kernel (Figures S3 and S4). The detection rates were more consistent across stands and
density groups and were all above 90%. There was also less overestimation in low-density
groups (<8%) and less underestimation in the higher-density groups (<7%) compared to
the single-step HMeanShift approach. Overall, the stepwise approach improved the accu-
racy and consistency of the tree detection compared to the single-step approach (Table 3).
Additionally, the stepwise approach showed better detection rate and accuracy compared
to traditional treetop-based watershed algorithm [3] and improved on the density-based
watershed segmentation approach [41], as seen in Table 3. However, the stepwise ap-
proaches tended to underestimate the overall tree number, while the watershed algorithms
tended to overestimate it. More detailed comparisons are included in Table S2 in the
supplementary document.

Table 2. The results of individual tree detection using single-step HMeanShfit with either a constant
or dynamic kernel.

Single-Step HMeanShift

Plot Type * Actual Correct Omission Commission Detection
Rate

Detection
Accuracy

Estimated
Percentage
(100% = 1)

Constant Kernel
H-oak 125 108 17 2 0.86 0.92 0.88
M-oak 267 233 34 17 0.87 0.90 0.94
L-oak 97 89 8 44 0.92 0.77 1.37
Oak 489 430 59 63 0.88 0.88 1.01

B. Walnut 118 111 7 10 0.94 0.93 1.03
Total 607 541 66 73 0.89 0.89 1.01

Dynamic Kernel
H-oak 125 114 11 3 0.91 0.94 0.94
M-oak 267 243 24 23 0.91 0.91 1.00
L-oak 97 90 7 36 0.93 0.81 1.30
Oak 489 447 42 62 0.91 0.90 1.04

B. Walnut 118 113 5 8 0.96 0.95 1.03
Total 607 560 47 70 0.92 0.91 1.04

* H-oak = high density oak blocks; M-oak = medium density oak blocks; L-oak = low density oak blocks;
Oak = total northern red oaks; B. Walnut = total black walnuts.
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Table 3. Results of the stepwise tree detection approach (HMeanShift with either constant or dynamic
kernel followed by vertical structure analysis).

Stepwise Tree Detection Approach

Plot Type * Actual Correct Omission Commission Detection
Rate

Detection
Accuracy

Estimated
Percentage
(100% = 1)

Constant Kernel
H-oak 125 116 9 3 0.93 0.95 0.95
M-oak 267 242 25 7 0.91 0.94 0.93
L-oak 97 90 7 15 0.93 0.89 1.08
Oak 489 448 41 25 0.92 0.93 0.97

B. Walnut 118 111 7 2 0.94 0.96 0.96
Total 607 559 48 27 0.92 0.94 0.97

Dynamic Kernel
H-oak 125 117 8 2 0.94 0.96 0.95
M-oak 267 239 28 7 0.90 0.93 0.92
L-oak 97 89 8 12 0.92 0.90 1.04
Oak 489 445 44 21 0.91 0.93 0.95

B. Walnut 118 113 5 9 0.96 0.94 1.03
Total 607 558 49 30 0.92 0.93 0.97

Treetop
Watershed 607 516 88 134 0.85 0.82 1.07

Density
Watershed 607 547 58 81 0.90 0.89 1.03

* H-oak = High-density oak blocks; M-oak = Medium-density oak blocks; L-oak = Low-density oak blocks;
Oak = total northern red oaks; B. Walnut = total black walnuts, Total = total northern red oaks and black walnuts.

As the detection results using constant and dynamic kernels were similar in the stepwise
approach, McNemar’s test was applied to evaluate the similarity of all four detections results
(single-step HMeanShift with both constant and dynamic kernels, and stepwise approach
with both constant and dynamic kernels) (Table 4). In McNemar’s test, a higher Z value
indicates a more significant difference between the detection results. The results of McNemar’s
tests showed that using a dynamic kernel significantly improved the results of mean shift
clustering for the individual tree detection, which is consistent with previous literature studies.
McNemar’s test also found that the stepwise approach was significantly better than both
single-step HMeanShift approaches. There were no significant differences in the stepwise
approach using either a constant or dynamic kernel, indicating that the stepwise approach is
robust and relatively insensitive to the kernel size used in HMeanShift.

Table 4. Paired McNemar’s tests between the results using single-step HMeanShift and the stepwise
approach with either a constant or dynamic kernel. The chi-square Z values are presented in the table.

Approach * C-HMeanShift D-HMeanShift C-Stepwise

D-HMeanShift 3.35
C-Stepwise 3.20 6.14
D-Stepwise 3.52 5.19 0.23

* C-HMeanShift = Constant kernel HMeanShift; D-HMeanShift = Dynamic kernel HMeanShift; C-Stepwise = Con-
stant kernel stepwise approach; D-Stepwise = Dynamic kernel stepwise approach.

3.3. Validation of Tree Height Estimation

The tree height estimates showed a high level of agreement with the field measure-
ments in all the designed approaches (Figure 5). The estimates made using the stepwise
approach with a constant kernel had the highest agreement with the field measurements,
with 88% of the vertical structural variance captured (Figure 5d). The estimates with the
lowest correlation with field measurements were made using the single-step HMeanShift
with the dynamic kernel, which still had a coefficient of determination of 0.85.
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The stepwise approach slightly improved the tree height estimation compared to
single-step HMeanShift, but the improvement was not statistical significance based on
a paired t-test with a p-value of 0.15 (Table S3). Similarly, applying different kernels in
HMeanShift produced no significant differences in the tree height estimation (Figure 5c,f
and Tables S2–S4). Constant and dynamic kernels had nearly identical estimations with
both the single-step HMeanShift (R-squared of 0.98 and RMSE of 0.45 m) and the stepwise
approach (R-squared of 1 and RMSE of 0.19).

3.4. Validation of Canopy Crown Estimation

Correlating the LiDAR-derived crown sizes and field-measured DBH indicated that
our algorithms were able to partition the horizontal structure at the individual tree level
(Figure 6). The stepwise approach with the dynamic kernel showed the highest correlation
with DBH measurements and the stepwise approach with the constant kernel had the lowest
RMSE (20.59 cm). The stepwise approaches outperformed the single-step HMeanShift in
crown size estimation, and the improvement was statistically significant, based on the
paired t-test with a p-value of 0.019 (Tables S5–S7). The dynamic kernel improved the
crown size estimations compared to the constant kernel. The R-squared improved from
0.75 to 0.79 in single-step HMeanShift and from 0.79 to 0.84 in the stepwise approach. There
were no significant improvements/differences in the RMSE (Figure 6).
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As the tree number was overestimated by over 30% in the low-density oak blocks
(Table 1), there are some concerns about crown size underestimation using single-step
HMeanShift. Our crown analysis showed that the stepwise approach produced larger
crown sizes compared to the single-step HMeanShift method (see the mean crown sizes in
Tables S6 and S7). This indicated a potential improvement of crown delineation using the
step-wise approach.

4. Discussion
4.1. Detection Accuracy of the Stepwise Approach

In this study, the stepwise approach using a constant kernel outperformed all other
designed approaches and achieved a detection accuracy of 94%. This performance is
comparable to that of the conventional 3D point-cloud-based approaches, such as the 91%
detection rate of dominant and codominant Eucalyptus trees using a 3D mean shift cluster-
ing approach reported by [14]. Though our study sites are even-aged plantations with no
stratification, the deliquescent tree forms of temperate hardwoods lead to a homogeneous
canopy surface but with variable tree densities, which consequently decreases the efficiency
of individual tree detection [41]. Our algorithm also outperformed most of the individual
tree detection approaches in dense temperate hardwood forests [48]. To our knowledge, the
densest hardwood forests reported in previous individual tree detection studies were about
500–600 TPH, including trees in both the overstory and understory [29], which is similar
to the average density in the northern red oak stand used in this study. Our detection
algorithm achieved a higher detection accuracy than its 70% detection rate of the dominant
trees over the canopy.

4.2. Impacts of the Clustering Kernel of Mean Shift on the Tree Detection

Our results showed that the performance of the stepwise approach using constant and
dynamic kernels was similar, indicating that the clustering kernel size has little impact on
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detection accuracy. In theory, using a dynamic kernel in clustering should improve the
detection accuracy, by adjusting the kernel size to match the size of different trees. Previous
literature recommended using a dynamic kernel with mean shift clustering [14]. Similarly,
our single-step HMeanShift approach also showed a significant improvement in detection
accuracy when using the dynamic kernel, particularly in reducing overestimations in the
low-density northern red oak blocks (Table 2). However, when using the designed stepwise
approach, the detection results were similar for both constant and dynamic kernels. In fact,
the detection accuracy using a constant kernel was 1% higher than that using a dynamic
kernel, as it performed better in detecting medium-density oak trees and black walnuts
(Table 3). The constant kernel also had a slightly better performance in the tree height
estimation but underperformed compared to the dynamic kernel in crown size estimation
(Figures 5 and 6).

One possible explanation for the similar performances of the constant and dynamic
kernels in the stepwise approach could be that the implementation of vertical structural
analysis may have offset the effects of the dynamic kernel and resulted in better tree
detection. Vertical structural analysis functions as a post-processing step for the mean
shift clustering, removing ground wood residuals, separating tree clusters with stems
from crown-only clusters, and merging crown clusters with the closest tree clusters, to
reshape the canopy. The dynamic kernel uses different search windows to generate tree
clusters of different sizes. Our results suggest that vertical structural analysis is insensitive
to variations in tree cluster size and can improve the detection accuracy when used in
combination with a constant kernel.

Additionally, the use of a dynamic kernel in the clustering process considers the
variations in the canopy and adjusts the kernel size as the search window moves, which
can increase the processing time by changing the speed at which the mean shift kernel
moves. The combination of a constant kernel and vertical structural analysis, on the other
hand, is more time efficient, because it creates relatively even-sized tree clusters and only
considers canopy variations in the post-processing step. This allows for more efficient tree
detection and attribute extraction.

Furthermore, defining a dynamic kernel can be challenging, as this often requires
more ground information about the target forests. In our study, for example, we trained the
dynamic kernel function using statistical modeling between LiDAR metrics and sampled
tree numbers (Section 2.4.3). The sample size and model selection can significantly impact
the results. To reduce uncertainties in kernel size generation, we collected and used
relatively large samples (covering approximately half of the study area). In contrast, the
combination of a constant kernel and vertical structural analysis requires less information
about the stand, only requiring measurements of stem spacing, vertical gaps, and live
crown ratio. Therefore, this approach is recommended, to maintain reliable accuracy and
relatively high efficiency, without the need for extensive inventory information.

4.3. Efficiency of the Stepwise Approach

Instead of using a computation-intensive 3D clustering algorithm, we designed a
stepwise approach to project 3D LiDAR points onto horizontal and vertical phases, and
only applied 2D HMeanShift to the horizontal phase. In our processing efficiency tests, we
found the processing time of the mean shift clustering had power relationships with both
the point density and the spatial extent of the processing area (Table S8). This increment
would be more prominent with an increase of LiDAR point density and spatial scales. We
used a Dell OptiPlex 980 desktop with an Intel i7 CPU (860 @ 2.8 GHz) and 8 GB RAM to
process the LiDAR data in these two forest stands. At the block level, the 2D HMeanShift
was 2.2 times faster than 3D MeanShift (Table 5). At the stand level, HMeanShift was
5.7 and 21.2 times faster than 3D MeanShift in the black walnut and northern red oak
stands, respectively. Therefore, HMeanShift greatly improved the work efficiency and
preserved regional 3D structural information in a stepwise fashion. Additionally, since the
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LiDAR data used in this study had relatively low-density but large spatial coverage, our
stepwise approach might have potential for application at large scale.

Table 5. Comparison of the computing efficiency between 2D HMeanShift (SA) and 3D MeanShift.

Time (s) BW-B * BW-S NRO-B NRO-S

2D HMeanShift 30.86 90.22 76.70 2420
3D MeanShift 67.19 514.84 168.47 51340
3D/2D Ratio 2.1 5.7 2.1 21.2

* BW-B = average processing time of single black walnut blocks; BW-S = processing time for the whole black
walnut stand, without splitting into blocks; NRO-B = average processing time of single northern red oak block;
NRO-S = processing time for whole northern red oak stand, without splitting into blocks.

4.4. Field Measurements and Tree Height Underestimation

Our algorithms globally underestimated the tree heights, with the RMSE consistently
being around 2.7 m. There were several potential reasons for this underestimation in
height. First, the field measurements were collected about two growing seasons later
than the LiDAR measurements. Tree growth between the time of LiDAR acquisition and
field measurements could be one of the main reasons for the tree height underestimation.
Second, the LiDAR data were collected during the leaf-off season and the point density
of the dataset was relatively low compared with the data used in other individual tree
detection studies, which made it difficult for the LiDAR to capture the terminals of the
branches, and therefore it underestimated the tree heights. Additionally, the small footprint
of airborne LiDAR makes it difficult to capture treetops with a low-density survey, and tree
height underestimations were reported in many previous LiDAR studies [49].

4.5. Limitations and Uncertainties

There are some limitations and uncertainties in this study that should be noted. The
study sites were mono-strata deciduous plantations with a uniform age structure. Though
mortalities, thinning, and other management activities cause the stands to have diverse
tree densities, the forests seem to preserve some plantation patterns in spacing, which
could benefit the tree detection. Therefore, the designed tree detection approach is more
suited for hardwood plantation forests with the current framework. Further investigations
would be required to apply it to natural stands with a more complex vertical stratification
and tree age structure. The stepwise approach used vertical strata analysis and vertical
length ratio (VLR) data to identify canopy gaps and distinguish crown clusters and ground
residuals from tree cluster candidates. However, its application in natural forests with a
more diverse range of tree species and crown shapes is unclear, which may require high-
density airborne or UAV LiDAR. The discrepancy in timing between the LiDAR survey
and field measurements prevented us from fully assessing the accuracy of LiDAR-derived
tree parameter estimates. Additionally, the limited number of field observations hindered
our ability to accurately evaluate the heights and crown sizes of the different groups used
in the study. Further studies, including extensive field data collection and LiDAR surveys,
are needed for a better assessment, especially for a multitemporal analysis. Additionally,
the LiDAR data used in this study were collected during the leaf-off season, which may
have resulted in higher stem point densities. It is unknown how well the algorithm would
perform using LiDAR data collected during the leaf-on season, which may have lower stem
point densities. Finally, the stepwise approach was designed to specifically improve tree
detection in temperate hardwood forests, and further investigation is needed to determine
its effectiveness in other types of forests, such as boreal forests and tropical rainforests.

5. Conclusions

In this study, we developed a stepwise approach to detect individual trees in two
temperate hardwood plantations, by first identifying individual trees using horizontal
point density with HMeanShift clustering and then analyzing their vertical structure
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profiles for canopy reconstruction and feature extraction. The approach was robust for
detecting deciduous trees with deliquescent, flat crowns in hardwood plantation stands.
The stepwise approach produced promising results using a constant clustering kernel size,
which reduced the need for field work and computational power to train a dynamic kernel
function for varying tree sizes. This approach preserves the 3D spatial information through
a stepwise process of 2D operations, enabling a balance between the accuracy of point-
cloud-based algorithms and the computational efficiency of raster-based methods. This
unique approach allows for both high precision and cost-effectiveness, making it an ideal
solution for large-scale tree detection and characterization in temporal plantation forests.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15051241/s1. Figure S1: Linear correlation between tree number
and LiDAR metrics in northern red oak stand; Figure S2: The boxplot shows tree cluster estimation
distribution over 100 iterations in each block. Subplot 1 (on top) presents the results using constant kernel
HMeanShift clustering; Subplot 2 (at bottom) shows the results using dynamic kernel HMeanShifter
clustering; Figure S3: Individual tree maps in the northern red oak stand; Figure S4: Individual tree
maps in the black walnut stand; Table S1: Tree detection accuracy comparison table; Table S2: t-test
for tree heights between single-step HMeanShift using constant (C–H) and dynamic kernels (D–H);
Table S3: t-test for tree heights between stepwise approach (C–S) and single-step HMeanShift (C–H)
using constant kernel; Table S4: t-test for tree heights between stepwise approach (D–S) and single-step
HMeanShift (D–H) using dynamic kernel; Table S5: t-test for crown size between single-step HMeanShift
using constant (C–H) and dynamic kernels (D–H); Table S6: t-test for crown size between stepwise
approach (C–S) and single-step HMeanShift (C–H) using constant kernel; Table S7: t-test for crown size
between stepwise approach (D–S) and single-step HMeanShift (D–H) using dynamic kernel; Table S8:
Time efficiency analysis of point cloud based mean shift clustering.
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