4,559 research outputs found

    Linking component importance to optimisation of preventive maintenance policy

    Get PDF
    In reliability engineering, time on performing preventive maintenance (PM) on a component in a system may affect system availability if system operation needs stopping for PM. To avoid such an availability reduction, one may adopt the following method: if a component fails, PM is carried out on a number of the other components while the failed component is being repaired. This ensures PM does not take system’s operating time. However, this raises a question: Which components should be selected for PM? This paper introduces an importance measure, called Component Maintenance Priority (CMP), which is used to select components for PM. The paper then compares the CMP with other importance measures and studies the properties of the CMP. Numerical examples are given to show the validity of the CMP

    The monotonicity of component importance measures in linear consecutive-k-out-of-n systems

    Get PDF
    The monotonicity behavior of component importance measures in linear consecutive-k-out-of-n systems is studied through the formulation of a number of importance measures for these systems when all components are assumed to be independently and equally reliable. For the system with unequally reliable components, specific formulations are also developed. The structure and reliability functions for linear consecutive-k-out-of-n systems are derived through the notion of minimal-path vector representation of system structure;Three types of component importance measures are considered in this study: first, importance measures based on critical vectors which include the Birnbaum and Barlow-Proschan measures; second, importance measures based on minimal-path vectors, which include the Deegan-Packel measure; and third, importance measures based on minimal-cut vectors, which include the Vesely-Fussel measure. It is shown that, for k ≤ n ≤ 2k, these measures are always monotone. However, for n \u3e 2k, only the Deegan-Packel and Vesely-Fussel measures are monotone, whereas the Birnbaum and Barlow-Proschan measures are shown to be nonmonotone for the entire domain of component reliability p, where n is in the range (2k + 1,3k + 1). For n \u3e 3k + 1, the Birnbaum measure is nonmonotone for certain p and k, and the Barlow-Proschan measure is nonmonotone when n is sufficiently large

    p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice

    Get PDF
    Epilepsy is a complex clinical condition characterized by repeated spontaneous seizures. Seizures have been linked to multiple drivers including DNA damage accumulation. Investigation of epilepsy physiopathology in humans imposes ethical and practical limitations, for this reason model systems are mostly preferred. Among animal models, mouse mutants are particularly valuable since they allow conjoint behavioral, organismal, and genetic analyses. Along with this, since aging has been associated with higher frequency of seizures, prematurely aging mice, simulating human progeroid diseases, offer a further useful modeling element as they recapitulate aging over a short time-window. Here we report on a mouse mutant with progeroid traits that displays repeated spontaneous seizures. Mutant mice were produced by reducing the expression of the gene Ft1 (AKTIP in humans). In vitro, AKTIP/Ft1 depletion causes telomere aberrations, DNA damage, and cell senescence. AKTIP/Ft1 interacts with lamins, which control nuclear architecture and DNA function. Premature aging defects of Ft1 mutant mice include skeletal alterations and lipodystrophy. The epileptic behavior of Ft1 mutant animals was age and sex linked. Seizures were observed in 18 mutant mice (23.6% of aged ≥ 21 weeks), at an average frequency of 2.33 events/mouse. Time distribution of seizures indicated non-random enrichment of seizures over the follow-up period, with 75% of seizures happening in consecutive weeks. The analysis of epileptic brains did not reveal overt brain morphological alterations or severe neurodegeneration, however, Ft1 reduction induced expression of the inflammatory markers IL-6 and TGF-β. Importantly, Ft1 mutant mice with concomitant genetic reduction of the guardian of the genome, p53, showed no seizures or inflammatory marker activation, implicating the DNA damage response into these phenotypes. This work adds insights into the connection among DNA damage, brain function, and aging. In addition, it further underscores the importance of model organisms for studying specific phenotypes, along with permitting the analysis of genetic interactions at the organismal level

    Birnbaum Importance Patterns and Their Applications in the Component Assignment Problem

    Get PDF
    The Birnbaum importance (BI) is a well-known measure that evaluates the relative contribution of components to system reliability. It has been successfully applied to tackling some reliability problems. This dissertation investigates two topics related to the BI in the reliability field: the patterns of component BIs and the BI-based heuristics and meta-heuristics for solving the component assignment problem (CAP).There exist certain patterns of component BIs (i.e., the relative order of the BI values to the individual components) for linear consecutive-k-out-of-n (Lin/Con/k/n) systems when all components have the same reliability p. This study summarizes and annotates the existing BI patterns for Lin/Con/k/n systems, proves new BI patterns conditioned on the value of p, disproves some patterns that were conjectured or claimed in the literature, and makes new conjectures based on comprehensive computational tests and analysis. More importantly, this study defines a concept of segment in Lin/Con/k/n systems for analyzing the BI patterns, and investigates the relationship between the BI and the common component reliability p and the relationship between the BI and the system size n. One can then use these relationships to further understand the proved, disproved, and conjectured BI patterns.The CAP is to find the optimal assignment of n available components to n positions in a system such that the system reliability is maximized. The ordering of component BIs has been successfully used to design heuristics for the CAP. This study proposes five new BI-based heuristics and discusses their corresponding properties. Based on comprehensive numerical experiments, a BI-based two-stage approach (BITA) is proposed for solving the CAP with each stage using different BI-based heuristics. The two-stage approach is much more efficient and capable to generate solutions of higher quality than the GAMS/CoinBonmin solver and a randomization method.This dissertation then presents a meta-heuristic, i.e., a BI-based genetic local search (BIGLS) algorithm, for the CAP in which a BI-based local search is embedded into the genetic algorithm. Comprehensive numerical experiments show the robustness and effectiveness of the BIGLS algorithm and especially its advantages over the BITA in terms of solution quality

    Measurement of Perceived School Climate for Active Travel in Children.

    Get PDF
    Objectives : To describe the development of an original scale that measures perceived school climate for active travel in fourth- and fifth-grade girls and boys. Methods : The data were analyzed using confirmatory factor analysis (CFA) to provide evidence of factorial validity, factorial invariance, and construct validity. Results : The CFA supported the fit of a 3-factor (encouragement, praise, and importance) correlated model for the school climate for active travel measure. This hierarchical model was invariant between sex and across a 7-month time period, and initial evidence for construct validity was provided. Conclusions : School climate for active travel is a measurable construct, and preliminary evidence suggests relationships with more support for active travel from friends and family

    Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions

    Get PDF
    Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly

    Resilience Assessment: A Performance‐Based Importance Measure

    Get PDF
    The resilience of a system can be considered as a function of its reliability and recoverability. Hence, for effective resilience management, the reliability and recoverability of all components which build up the system need to be identified. After that, their importance should be identified using an appropriate model for future resource allocation. The critical infrastructures are under dynamic stress due to operational conditions. Such stress can significantly affect the recoverability and reliability of a system‘s components, the system configuration, and consequently, the importance of components. Hence, their effect on the developed importance measure needs to be identified and then quantified appropriately. The dynamic operational condition can be modeled using the risk factors. However, in most of the available importance measures, the effect of risk factors has not been addressed properly. In this paper, a reliability importance measure has been used to determine the critical components considering the effect of risk factors. The application of the model has been shown through a case study

    Birnbaum importance measure for reliability systems with dependent components

    Get PDF
    © 2019 This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the accepted version of a published work that appeared in final form in IEEE Transactions on ReliabilityComponent importance measures are relevant to improve the system design and to develop optimal replacement policies. Birnbaum’s importance measure is one of the most relevant measures. If the components are (stochastically) independent, this measure can be defined using several equivalent expressions. However, in many practical situations, the independence assumption is unrealistic. It also turns out that in the case of dependent components, different Birnbaum’s measure definitions lead to different concepts. In this paper,we extend Birnbaum’s importance measure to the case of dependent components in a way allowing us to obtain relevant properties including connections and comparisons with other measures proposed and studied recently. The dependence is modeled through copulas and the new measure is based on the contribution of the component to the system reliability

    Flexible modelling in statistics: past, present and future

    Get PDF
    In times where more and more data become available and where the data exhibit rather complex structures (significant departure from symmetry, heavy or light tails), flexible modelling has become an essential task for statisticians as well as researchers and practitioners from domains such as economics, finance or environmental sciences. This is reflected by the wealth of existing proposals for flexible distributions; well-known examples are Azzalini's skew-normal, Tukey's gg-and-hh, mixture and two-piece distributions, to cite but these. My aim in the present paper is to provide an introduction to this research field, intended to be useful both for novices and professionals of the domain. After a description of the research stream itself, I will narrate the gripping history of flexible modelling, starring emblematic heroes from the past such as Edgeworth and Pearson, then depict three of the most used flexible families of distributions, and finally provide an outlook on future flexible modelling research by posing challenging open questions.Comment: 27 pages, 4 figure
    corecore