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Abstract

The Birnbaum importance (BI) is a well-known measure that evaluates the relative

contribution of components to system reliability. It has been successfully applied to

tackling some reliability problems. This dissertation investigates two topics related

to the BI in the reliability field: the patterns of component BIs and the BI-based

heuristics and meta-heuristics for solving the component assignment problem (CAP).

There exist certain patterns of component BIs (i.e., the relative order of the BI

values to the individual components) for linear consecutive-k-out-of-n (Lin/Con/k/n)

systems when all components have the same reliability p. This study summarizes

and annotates the existing BI patterns for Lin/Con/k/n systems, proves new BI

patterns conditioned on the value of p, disproves some patterns that were conjectured

or claimed in the literature, and makes new conjectures based on comprehensive

computational tests and analysis. More importantly, this study defines a concept

of segment in Lin/Con/k/n systems for analyzing the BI patterns, and investigates

the relationship between the BI and the common component reliability p and the

relationship between the BI and the system size n. One can then use these

relationships to further understand the proved, disproved, and conjectured BI

patterns.

The CAP is to find the optimal assignment of n available components to n

positions in a system such that the system reliability is maximized. The ordering

of component BIs has been successfully used to design heuristics for the CAP.

This study proposes five new BI-based heuristics and discusses their corresponding
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properties. Based on comprehensive numerical experiments, a BI-based two-stage

approach (BITA) is proposed for solving the CAP with each stage using different

BI-based heuristics. The two-stage approach is much more efficient and capable

to generate solutions of higher quality than the GAMS/CoinBonmin solver and a

randomization method.

This dissertation then presents a meta-heuristic, i.e., a BI-based genetic local

search (BIGLS) algorithm, for the CAP in which a BI-based local search is

embedded into the genetic algorithm. Comprehensive numerical experiments show

the robustness and effectiveness of the BIGLS algorithm and especially its advantages

over the BITA in terms of solution quality.
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Chapter 1

Introduction

The importance measures of components evaluate the contribution of a component

to system performance (e.g., system reliability). Various importance measures have

been proposed for coherent systems (Freixas and Pons, 2008; Kuo et al., 2001,

1990; Kuo and Zuo, 2002; Zhu and Kuo, 2008) and have been successfully applied

in tackling some reliability optimization problems. The Birnbaum importance

(BI) (Birnbaum, 1969) has been used to solve the component assignment problem

(CAP) (Kontoleon, 1979; Lin and Kuo, 2002; Zuo and Kuo, 1990; Zuo and Shen,

1992). The improvement potential/risk achievement, criticality, Fussell-Vesely, risk

achievement worth, risk reduction worth, and differential importance measures

are widely used for probabilistic safety assessment and other reliability and risk

analysis (Aven and Nokland, 2010; Borgonovo and Apostolakis, 2001; van der Borst

and Schoonakker, 2001). The redundancy (Boland et al., 1991) and yield (Xie and

Lai, 1996; Xie and Shen, 1989) importance measures have been applied to the parallel

and series redundancy allocation problems. The joint (Armstrong, 1995) and total

order (Borgonovo, 2010) importance measures provide insights to the interaction of

components in determining system reliability. In addition, Beeson and Andrews

(2003), Lu and Jiang (2007), and Borgonovo (2010) extended some importance
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measures (e.g., the BI, Fussell-Vesely, joint, and differential importance measures)

to noncoherent systems.

The BI is one of the most widely investigated importance measures since it

was first proposed by Birnbaum (1969). In a coherent system of n components

with independent failures, the BI of component i is defined as the probability that

component i becomes critical to system failure, and can be calculated as (Birnbaum,

1969)

In(i) =
∂R(p1, p2, . . . , pn)

∂pi
,

where pi denotes the reliability of the component in position i for i = 1, 2, . . . , n

and R(p1, p2, . . . , pn) the system reliability. The BI measures the relative importance

and contribution of a component to the system reliability by the rate at which the

system reliability improves as the component reliability improves. Note that the BI is

defined based on the change of the system reliability caused by the uniform changes

of component reliabilities (i.e., all component reliabilities are changed by the same

small amount) (Borgonovo and Apostolakis, 2001). This study focuses on the BI and

its applications in two aspects: the patterns of component BIs in linear consecutive-

k-out-of-n (Lin/Con/k/n) systems and the BI-based heuristics and meta-heuristics

for solving the component assignment problem (CAP).

1.1 BI Patterns in Lin/Con/k/n systems

A Lin/Con/k/n:F (G) system is a linear sequence of n components such that the

system fails (works) if and only if at least k consecutive components fail (work). A

Lin/Con/k/n system can represent oil pipeline networks Kuo et al. (2001), computer

ring networks Hwang (1989), street lights and microwave towers Chao and Lin (1984),

parking spaces Kuo et al. (1990), quality control lot acceptance sampling Shen
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and Zuo (1994), etc. Eryilmaz (2010) presented a review of recent developments in

reliability of consecutive k-out-of-n systems†.

To determine the Birnbaum importance of components, we need to know not only

the structure of the coherent system but also the component reliabilities involved. In

the early stage of system design, the component reliabilities may be unknown. Thus,

in order to investigate the BI patterns (i.e., the relative order of the BI values to the

individual components) in Lin/Con/k/n systems, we assume that

0 < p1 = p2 = . . . = pn = p < 1. (1.1)

Under assumption (1.1), the BI is also referred to as the B-importance (Lin and Kuo,

2002), and the common component reliability p is an arbitrary parameter.

The BI patterns may be different for distinct values of p. Chang et al. (2002), Chang

and Hwang (2002), and Lin et al. (1999) investigated the BI patterns in Lin/Con/k/n

systems for different values or ranges of p. Recall from Chang et al. (2002) that

component i is said to be more uniformly B-important than component j (denoted

by i �u j) if In(i) > In(j) for all 0 < p < 1, more half-line B-important (denoted

by i �h j) if In(i) > In(j) for all 1
2
≤ p < 1 (this condition can be expected in most

cases), and more combinatorially B-important (denoted by i �c j) if In(i) > In(j) for

p = 1
2
. A BI pattern in the uniform case is stronger than the half-line case, which,

in turn, is stronger than the combinatorial case, i.e., i �u j ⇒ i �h j ⇒ i �c j.

Components i and j are said to be equally B-important in the uniform case (denoted

by i =u j) if In(i) = In(j) for all 0 < p < 1.

†Consecutive k-out-of-n systems include Lin/Con/k/n and circular consecutive k-out-of-n
(Cir/Con/k/n) systems which are same as Lin/Con/k/n systems except all components are
arranged in a circle rather than a line (Kuo and Zuo, 2002).
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1.2 The CAP

Given a coherent system of n positions and n available components with reliabilities

0 < p̂1, p̂2, . . . , p̂n < 1, different assignments of n components to n positions result

in different values of the system reliability. Assuming that each position must be

assigned one and only one component, let πi be the index of the component assigned

to position i, i = 1, 2, . . . , n. Then vector π = (π1, π2, . . . , πn) is a permutation of

component indices 1, 2, . . . , n, representing an arrangement of the n components to the

n positions. The CAP is to find an optimal permutation π∗ under which the system

reliability is maximized. The CAP is a NP-hard problem due to its combinatorial

nature. When the optimal arrangement depends only on the ordering of component

reliabilities, it is called the invariant optimal arrangement (Lin and Kuo, 2002) since

it exists as such regardless of the magnitude of the component reliabilities.

The CAP has the applications in the case where a given set of components

are functionally exchangeable and need to be assigned to different positions in a

system. By optimally assigning these components, the resulting system reliability is

maximized. For example, in the oil pipeline pumping system that is a Lin/Con/k/n:F

system (Zuo and Shen, 1992), there are n pump stations along an oil pipeline, and

each pump station is used to pump oil to the next k pump stations. The pumps in

this pumping system are functionally exchangeable, and thus, given n pumps with

different reliabilities, the reliability of this pumping system is determined by the

assignment of the n pumps to the n pump stations. Intuitively, the high reliable

pump should be assigned to the important position in the system. Other examples in

two-terminal networks include wireless and hard-wired telecommunication networks,

computer networks, and electric power distribution networks (Gebre and Ramirez-

Marques, 2007; Kontoleon, 1979). In a two-terminal network, the links are regarded

as the components and have different reliabilities due to the different supporting

resources behind the links. Optimally arranging the components (i.e., allocating the
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different supporting resources) can maximize the reliability of the network given a

fixed set of supporting resources.

In addition, the components degrade differently due to their positions and uses

in the system and thus have different reliabilities as time goes on. Generally, the

relatively expensive and new ones have higher quality and are more reliable. Rear-

ranging them has the potential to improve the system reliability. The corresponding

CAP can provide the new assignment of these components based on their current

reliabilities (i.e., the extents of degradation) so that the system reliability is improved

to a possibly maximal level.

Generally, most of systems use multiple types of components, and different types

of components are not exchangeable. At the early stage of system reliability design,

we assume that only the reliabilities of one type of components that perform the same

function are known and that all the other components are perfect (with reliability

of 1). Then, the remaining system design of allocating this type of components into

their positions can be completed by solving the corresponding CAP. As an extension,

suppose that certain types of components have been fixed in the system and their

reliabilities are known. Built on that information, the system reliability design is

to allocate the remaining types of components type-wise one-by-one in the order of

their importance to the system until all types of components are assigned. For each

type of components, the CAP is to determine the allocation of these functionally

exchangeable components to the system so as to maximize the system reliability

whose calculation is based on the assignments of the allocated types of components

and the assumption that all the undealt types of components are perfect.

1.3 Solution methods for the CAP

To the best of our knowledge, there is no study on exact optimization method except

the trivial enumeration methods for solving the CAP. The exact enumeration method

evaluates the system reliability for every possible permutation and chooses the one
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that achieves the highest system reliability as the optimal assignment; thus, it requires

to calculate the system reliability for n! times. As n increases, the computation time

of the exact enumeration would be intolerably long. For example, in a system with

n = 20 positions, the exact enumeration method takes several days without obtaining

the optimal assignment. Hence, the fast and high-performance heuristics are highly

demanded. Some heuristic type methods have been proposed for the CAP and can

mainly be classified into two groups. One group is the BI-based heuristics as reviewed

in Subsection 1.3.1, and another group is the meta-heuristics including simulated

annealing and genetic algorithm in Subsection 1.3.2.

1.3.1 The BI-based heuristics

The ordering of component BIs is a good indicator for the solution of the CAP. Lin

and Kuo (2002) proved that when the component reliabilities are close enough,

the optimal assignment of the CAP is always consistent with the BI ordering of

components that is calculated using the lowest component reliability. In other words,

the optimal assignment is to assign the most reliable component to the position with

the largest BI value, the second most reliable component to the position with the

second largest BI value, and so on. Some Lin/Con/k/n systems admit invariant

optimal assignments (Malon, 1984, 1985; Zuo and Kuo, 1990); then these systems

must have a consistent BI ordering, and the invariant optimal arrangement assigns

components according to the consistent BI ordering (Lin and Kuo, 2002). Motivated

by these properties of the BI, research has been conducted to design heuristics for

the CAP as illustrated below.

Kontoleon (1979) presented an iterative algorithm, which starts with all positions

assigned the same component of the lowest reliability and then iteratively assigns

the available components to the system. At each iteration, two possible positions

are selected as candidates to receive the component of higher reliability. The first

candidate is the position whose BI is the largest and for which there exists an available
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component of higher reliability. The second candidate is the position which currently

has the highest reliability among the positions whose reliabilities are lower than the

reliability of the component to be assigned. Setting the reliability of the second

position equal to that of the first position and recalculating the BIs of all positions,

if any updated BI is larger than the original BI of the first position, then the second

position is chosen; otherwise, the first position is chosen. The iterations continue

until all components are assigned to the system.

Zuo and Kuo (1990) designed two related heuristics, referred to as the ZKA and

ZKB heuristics, for Lin/Con/k/n systems. They start with a feasible initial solution

(i.e., arrangement) and try to improve the arrangement by pairwise exchanging the

allocations of components to match the BI ordering. Lin and Kuo (2002) proposed a

greedy algorithm, referred to as the LKA heuristic, with analytically calculated error

terms. It initializes all positions with the least reliable component and iteratively

assigns the available most reliable component to the unassigned position with the

largest BI. Zuo and Shen (1992) also proposed a heuristic, which is actually the same

as the LKA heuristic except that it is specialized for redundant Lin/Con/k/n:F

systems whereas the LKA heuristic is for any general system.

1.3.2 The meta-heuristics for Cir/Con/k/n:F systems

The meta-heuristics (e.g., genetic algorithm and simulated annealing) have shown

great potential to break local optimum and are expected to obtain better solutions

than the local search algorithms. They have been successfully applied to solve some

difficult combinatorial optimization problems. For example, genetic algorithm has

been used in the traveling salesman problem (Grefenstette et al., 1985), the scheduling

problem (Yamada and Nakano, 1992), and the assignment problem (Pentico, 2007),

and simulated annealing in scheduling, routing, assignment problems (Koulamas

et al., 1994).
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A few genetic algorithms and simulated annealing algorithms have been proposed

for the CAP in Cir/Con/k/n:F systems in the literature. Note that for a

Cir/Con/k/n:F system, two assignments are equivalent if one can be obtained

by rotating or reversing another because the components are arranged in a circle.

Shingyoch et al. (2009) developed a genetic algorithm that modifies Grefenstette’s

ordinal representation schema (Grefenstette et al., 1985) by keeping only one of the

equivalent assignments and eliminating others. Their genetic algorithm always assigns

the most reliable components at every kth positions because the Cir/Con/k/n:F

system works if the components at every kth positions work.

In addition to this genetic algorithm, Shingyoch et al. (2010) proposed two

simulated annealing algorithms – a standard simulated annealing and an improved

one that further eliminates equivalent assignments as in Shingyoch et al. (2009). The

numerical experiments showed that these two simulated annealing algorithms usually

generate better solutions than the genetic algorithm in Shingyoch et al. (2009) but

take longer computation time; the improved simulated annealing can generate as good

solutions as the standard one but takes only half of the computation time due to its

reduced search space.

1.4 Dissertation overview

The remainder of this dissertation is structured as follows. Chapter 2 conducts

literature review on the BI patterns and, more importantly, studies the nature

of BI patterns in Lin/Con/k/n systems by utilizing a new division method for

Lin/Con/k/n systems. Chapter 3 proposes five new BI-based heuristics based on

the schemes of the existing BI-based heuristics and a two-stage approach for solving

the CAP. Chapter 4 proposes a BI-based genetic local search algorithm for the CAP.

Chapter 5 concludes this dissertation.
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Chapter 2

BI Patterns in Lin/Con/k/n

Systems†

Some valuable research has been conducted on the BI patterns in Lin/Con/k/n

systems (Chadjiconstantinidis and Koutras, 1999; Chang et al., 1999, 2000, 2002;

Chang and Hwang, 2002; Kuo et al., 1990; Lin et al., 1999; Zuo, 1993). However,

the existing results are dispersive and some of them are misleading or inaccurate. To

the best of our knowledge, no research work has been done to unscramble the results

and explore the nature of BI patterns for Lin/Con/k/n systems. This chapter first

summarizes and clarifies all existing BI patterns, and, most importantly, presents our

new findings, which discover the nature of BI patterns for Lin/Con/k/n systems.

Then, some new BI patterns are proved conditioned on the value of p. Further, based

on systematic computational tests, we disprove some conjectures and claims that were

made in the literature, and make new conjectures. With the discovery of the nature

of BI patterns, we can understand the proved and disproved patterns and analyze the

conjectures in-depth.

Now, we list the notation used in this chapter.

†Reused with permission from Xiaoyan Zhu, Qingzhu Yao, and Way Kuo (2011) Patterns of the
Birnbaum importance in linear consecutive-k-out-of-n systems, IIE Transactions, in press. Copyright
IIE Transactions 2011.
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Notation

• p: common component reliability, i.e., p1 = p2 = . . . = pn = p

• q = 1− p: common component unreliability

• R(k, n): reliability of a Lin/Con/k/n:F system with components of common

reliability p

• R′(k, n): reliability of a Lin/Con/k/n:G system with components of common

reliability p

• In(i): BI of component i

• i �u j, i �h j, i �c j: component i is more uniformly, half-line, and

combinatorially B-important than component j, respectively

• i =u j: components i and j are equally B-important in the uniform case

Note that a Lin/Con/k/n system is structurally symmetric with respect to the

middle component(s); thus in a Lin/Con/k/n:F or G system, for any 0 < p < 1,

In(i) = In(n− i+ 1). (2.1)

Throughout this chapter, the BI is discussed for the first half components i ≤ dn
2
e,

unless otherwise specified. The BIs of components dn
2
e+1, . . . , n can be compared

using the symmetric property of components i and n−i+1 in (2.1). For convenience,

we do not explicitly state the upper bound dn
2
e each time. Consequently, the default

range of n is assumed so that each component i involved is in the first half part of the

system, i.e., n ≥ 2i. Moreover, the results in this chapter are mainly presented for

Lin/Con/k/n:F systems because the results for the F system are also true for the G

system via changing the common component reliability p to 1−p (Kuo et al., 1990).

2.1 Existing BI patterns

For a Lin/Con/k/n system, the BI patterns are complex. This section summarizes all

existing BI patterns for Lin/Con/k/n systems in the uniform case (Subsection 2.1.1)

and the half-line case (Subsection 2.1.2).
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2.1.1 The uniform BI patterns

Based on previous research, we summarize all existing uniform BI patterns for

Lin/Con/k/n:F and G systems in Lemma 1.

Lemma 1. The uniform BI in a Lin/Con/k/n (either F or G) system has the

following patterns:

(i) when k = 1 or n: i =u j for 1 ≤ i < j ≤ n

(ii) when k = 2: a. 2t �u 2t− 1

b. 2t �u 2t+ 2

c. 2t+ 1 �u 2t− 1

(iii) when n
2
≤ k < n: a. i+ 1 �u i for 1 ≤ i ≤ n− k

b. i =u i+ 1 for i > n− k

(iv) when 2 < k < n
2
: a. i+ 1 �u i for 1 ≤ i < k

b. i �u 1 for i > 1

c. k �u i for i ≥ 1, i 6= k

(v) when n ≥ 2k + 3: k + 2 �u k + 1

(vi) when n ≥ 4k + 1: 2k �u 2k + 1

(vii) when n = 4k − 1: 2k �u 2k − 1

(viii) when n = 6k + 1: 3k �u 3k + 1.

In part (ii), t ≥ 1 is an integer.

Lemma 1 is accompanied for illustration by Figure 2.1 in which the horizontal

axis stands for the component index i and the vertical axis for the corresponding BI.

Figure 2.1 shows the combinatorial BI patterns for Lin/Con/k/14:F (the same for

G) systems with k = 2, 3, 7, and 12, representing the different relative magnitudes of

k and n in Lemma 1. Figure 2.1 also demonstrates the symmetric property of the BI

around the middle (two) component(s) in (2.1). For all other figures in this chapter,

only components 1 to dn
2
e are shown to save space.

11
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0.06

Component index i
(a) k = 2

I n(i)

1 3 5 78 10 12 14

0.1

0.15

0.2

Component index i
(b) k = 3

1 3 5 78 10 12 14
0.01

0.02

0.03

0.04

0.05

Component index i
(c) k = 7

1 3 5 78 10 12 14

4

6

8

x 10−4

Component index i
(d) k = 12

Figure 2.1: The combinatorial BI for Lin/Con/k/14:F systems with k = 2, 3, 7, and 12
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Part (i) in Lemma 1 indicates that when k = 1 in an F system or k = n in a

G system (i.e., a series system) or when k = n in an F system or k = 1 in a G

system (i.e., a parallel system), all components are equally important according to

the BI. For the series system, the failure of any component is equally likely to cause

system failure, and for the parallel system, the survival of any one of n components

guarantees the working of the system.

Part (ii) completely identifies the uniform BI patterns for a Lin/Con/2/n system,

which was discovered by Zuo and Kuo (1990). For the Lin/Con/2/n system (e.g.,

the Lin/Con/2/14:F system in Figure 2.1(a)), the BI value alternatively jumps up

and down and the relative difference of the BI values of two consecutive components

decreases as component index i increases from 1 to dn
2
e.

Part (iii) was presented by Zuo (1993), completely identifying the patterns of the

uniform BI when k ≥ n
2
. When n is even and k = n

2
(or n is odd and k = n+1

2
)

(e.g., the Lin/Con/7/14:F system in Figure 2.1(c)), the middle two components (or

the middle component) have (has) the largest BI value and the BI value increases

from components 1 to k and decreases from components k + 1 (or k) to n. When

k> n
2

as shown in Figure 2.1(d), the BI value increases from components 1 to n−k+1

and decreases from components k to n because beginning with component 1 until

component n−k+1, each component gradually has more components adjacent to it,

and this has a heavier impact on system reliability than its preceding components.

Moreover, when k > n
2
, the components between n−k+1 and k maintain the same

BI value:

In(i) =
1

q
[1−R(k, n)] for F systems

and

In(i) =
1

p
R′(k, n) for G systems

because the survival (failure) of any one of these components guarantees the working

(failure) of the F (G) system. Further, these components are more uniformly B-

important than others.
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When 2 < k < n
2
, parts (iv)-(viii) identify the partial ordering of component

BIs; however, the BI patterns, particularly for components k to n − k + 1, have

not been completely identified. Specifically, part (iv) indicates that the BI value

monotonically increases in the first k-interval (see Definition 1 below) and that the

BIs of components 1 and k, respectively, are the lower and upper bounds on the BIs of

all other components (e.g., the Lin/Con/3/14:F system in Figure 2.1(b)). Chang et al.

(2002) presented a review on parts (iv)-(vii) and also proved part (viii). Note that part

(v) was also independently proved by Chadjiconstantinidis and Koutras (1999) using

the Markov chain approach. Chang et al. (2002) proved that in a Lin/Con/k/(tk −

1):F system (t − 2)k �u (t − 2)k − 1 for t ≥ 3. When t = 3, it is equivalent to

k �u k−1 which is covered by part (iv)c; when t ≥ 5, it is equivalent to 2k �u 2k+ 1

which is covered by part (vi); when t = 4, it is part (vii).

Defination 1. For a Lin/Con/k/n system with n > 2k, a k-interval (or simply,

interval) is a set of k consecutive components starting from component (t − 1)k + 1

for each 1 ≤ t ≤ d n
2k
e, except that the last interval (t = d n

2k
e) may include less than

k components: (t− 1)k + 1, . . . , dn
2
e.

2.1.2 The half-line BI patterns

Except for the uniform BI patterns presented in Lemma 1, Lemma 2 presents all

additional patterns for the half-line BI for the Lin/Con/k/n:F system with 2 < k < n
2
.

The half-line BI patterns in Lemma 2 were proved by Chang et al. (2002), and some

of them are extensions of the combinatorial BI patterns presented by Lin et al. (1999).

Lemma 2. The half-line BI in a Lin/Con/k/n:F system has the following patterns:

(i) k + 1 �h k − 1

(ii) i+ 1 �h i for k < i < 2k

(iii) i �h k + 1 for i > k + 1

(iv) 2k �h i for i > 2k

(v) 2k + 2 �h 2k + 1
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(vi) 3k �h 3k + 1.

These BI patterns also hold for a Lin/Con/k/n:G system with 0 < p ≤ 1
2
.

With the restriction of p ≥ 1
2
, patterns in part (iv) in Lemma 1 are extended to

parts (ii)-(iv) in Lemma 2. Note that part (iv) in Lemma 1 specifies the uniform BI

patterns of components in the first k-interval, and parts (ii)-(iv) in Lemma 2 specify

the same half-line BI patterns of components in the second k-interval (i.e., components

k + 1 to 2k), e.g., Figure 2.1(b). However, even with the addition of patterns in

Lemma 2, the half-line BI patterns for the Lin/Con/k/n:F system with 2 < k < n
2

has

not been completely determined. If we specify p = 1
2

and consider the combinatorial

BI, no additional pattern is obtained. As will be shown in Section 2.3, the half-line

BI patterns in parts (i), (ii), (iv) and (vi) in Lemma 2 cannot be generalized to the

uniform case and the ones in parts (iii) and (v) are conjectured to the uniform case.

Remark 1. Summarizing Section 2.1, we present three points based on Lemmas 1

and 2.

(i) Regardless of the relative magnitudes of k and n and the value of p, component

k has the largest BI value, component 1 has the smallest BI value, and the BI values

of components 1 to k are nondecreasing (see parts (i)-(iv) in Lemma 1).

(ii) The patterns of the uniform BI for a Lin/Con/k/n system with k = 1, 2, or

k ≥ n
2

are completely identified (see parts (i)-(iii) in Lemma 1).

(iii) For a Lin/Con/k/n system with 2 < k < n
2
, the BI patterns have not been

completely identified yet. In addition to the patterns in point (i), the half-line BI in

the second k-interval (see parts (ii)-(iv) in Lemma 2) has the same patterns as the

uniform BI in the first k-interval (see part (iv) in Lemma 1).

2.2 The nature of BI patterns

The rest of this chapter investigates the BI patterns for the Lin/Con/k/n systems

with 2 < k < n
2

because the BI patterns for the cases of k ≤ 2 or n ≤ 2k have been
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completely identified in parts (i)-(iii) in Lemma 1. Research has been done towards

completely identifying the BI patterns for such systems but instead has turned in

some disproofs of the “expected” patterns on change and left some patterns for

conjectures (see Section 2.3). This section investigates the fundamental behaviors

of BI patterns for the Lin/Con/k/n:F systems. Subsection 2.2.1 demonstrates the

nonexistence of “expected” patterns, and Subsection 2.2.2 proposes a new direction

for analyzing the BI patterns for the Lin/Con/k/n systems. Then, Subsections

2.2.3 and 2.2.4 investigate the relationship between the BI patterns and p and the

relationship between the BI patterns and n, respectively.

2.2.1 The nonexistence of “expected” patterns

Previous research on the BI patterns for a Lin/Con/k/n system (Chang et al., 1999,

2000, 2002; Chang and Hwang, 2002; Zuo, 1993) explicitly or implicitly used a concept

of the k-interval (see Definition 1) and tried to find the similar patterns within an

interval and/or among intervals. Shingyoch and Yamamoto (2009) and Shingyochi

et al. (2009) also proposed that using k-interval can usually improve the performance

of their meta-heuristics. Note that the length of intervals is fixed to k, possibly

except the last interval. Motivated by the results in Section 2.1 and particularly in

Remark 1, one may expect a general “fixed-length BI ordering” for some range of p

(e.g., 0 < p < 1, p ≥ 1
2
, or p = 1

2
), which embodies the BI patterns in Lemmas 1

and 2 and can be specified by the following patterns (here 1 ≤ t ≤ d n
2k
e):

(i) In(i+ 1) > In(i) for (t− 1)k < i < tk

(ii) In(i) > In((t− 1)k + 1) for i > (t− 1)k + 1

(iii) In(tk) > In(i) for i > tk

(iv) In(tk + 1) > In(tk − 1).

As its name implies, the “fixed-length BI ordering” is based on the k-interval

division, and the patterns look like a water wave with the wave form repeating itself

at intervals of fixed length, k. Mimicking part (iv) in Lemma 1 and parts (ii)-(iv)
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in Lemma 2, patterns (i)-(iii) describe that the BI values of components within a k-

interval strictly increases, and that the BI of the first (last) component in a k-interval

is the lower (upper) bound of the BIs of its succeeding components. Mimicking part

(i) in Lemma 2, pattern (iv) shows that the BI of component tk + 1 is between the

BIs of components tk − 1 and tk, which describes the relation of the component BIs

among two consecutive intervals.

However, our computational tests show that the “fixed-length BI ordering” does

not exist in general when 2 < k < n
2
, although it may hold for some special

cases determined by the values of k, n, and p (e.g., the Lin/Con/3/14:F system

in Figure 2.1(b) with p = 1
2
). Thus, when 2 < k < n

2
, the effort for finding similar BI

patterns within each of all intervals and among intervals is futile and cannot bring

about general BI patterns. This is illustrated by the example in a Lin/Con/8/128:F

system (n > 2k) with p = 0.2 in Figures 2.2 and 2.3. Figure 2.2 illustrates the

whole picture of how the BI changes in the first half (i.e., components 1 to 64) of

the Lin/Con/8/128:F system. Noting that the BIs after the first two intervals are

not easy to be compared based on Figure 2.2, Figure 2.3 draws the BIs in the eight

intervals separately in order to further amplify the differences of the BI values. In

Figure 2.3, the vertical axis represents the BI values scaled by multiplying 104.

As in Figure 2.3(a), a nice uniform BI pattern exists for the first interval in

which the BI value increases as component index i increases from 1 to k. However,

such a pattern cannot be extended even to the second interval. In some cases (e.g.,

Figure 2.3(b)), the component BI value within the second interval first increases and

then decreases as component index i increases. If we treat the monotone-increasing

pattern in the first interval as a special case of the increasing-then-decreasing pattern

in the second interval, the patterns are consistent in this sense. However, we note that

the increasing-then-decreasing pattern does not hold for all intervals (e.g., the fifth,

sixth, and seventh intervals). Moreover, the last interval has a completely reversed

pattern: first decreasing and then increasing. We observe the same phenomenon for

various values of 0 < p < 1.
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I n(i)

Component index i

Figure 2.2: BI patterns for a Lin/Con/8/128:F system with p = 0.2
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1 2 3 4 5 6 7 8
1.0791

4.2941

7.5092

10.7242

(a) interval [1, k]
9 10 11 12 13 14 15 16

6.6884

7.0366

7.3847

7.7328

(b) interval [k+1, 2k]
17 18 19 20 21 22 23 24

7.4880

7.5208

7.5537

7.5865

(c) interval [2k+1, 3k]
25 26 27 28 29 30 31 32

7.5666

7.5690

7.5714

7.5739

(d) interval [3k+1, 4k]

33 34 35 36 37 38 39 40
7.5723

7.5724

7.5725

7.5727

(e) interval [4k+1, 5k]
41 42 43 44 45 46 47 48

7.572535

7.572540

7.572545

7.572550

(f) interval [5k+1, 6k]
49 50 51 52 53 54 55 56

7.5725401

7.5725405

7.5725409

7.5725413

(g) interval [6k+1, 7k]
57 58 59 60 61 62 63 64

7.57254036

7.57254040

7.57254043

7.57254047

(h) interval [7k+1, 8k]

Figure 2.3: Intervals for a Lin/Con/8/128:F system with p = 0.2
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2.2.2 Segments and their lengths and peaks

The observations in Subsection 2.2.1 reveal that the “fixed-length BI ordering” based

on the k-interval division does not always hold. The fundamental problem is that the

k-interval division (i.e., all intervals of equal length k except for the last one) is not

appropriate. Now, we propose a new segment-based division for grouping the first

half components (i.e., components 1 to dn
2
e) in a Lin/Con/k/n system with n > 2k

and define a segment and its length and peak as below.

Defination 2. For a Lin/Con/k/n system with n>2k, a segment is a maximal set

of consecutive first-half components whose BI values first increase and then decrease,

satisfying that the union of all segments covers the first half components and two

consecutive segments contain exactly one common component.

Defination 3. The length of a segment is the number of components in the segment

minus 1 since one common component is shared by two consecutive segments.

Defination 4. The peak of a segment is the index of the component corresponding

to the maximal BI value in the segment.

Then, according to parts (iv) and (v) in Lemma 1, in any Lin/Con/k/n system

with n > 2k, the first segment always contains components 1 to k and k+1, and both

its length and its peak are k. Figure 2.4 shows the newly-defined segments for the

Lin/Con/8/128:F system in Figure 2.2. In Figure 2.4, the vertical axis represents

the BI values scaled by multiplying 104. There are 9 segments, and each segment

shows an increasing-then-decreasing pattern except for the last segment, which may

be monotonically increasing. Actually, the last segment is truncated by the middle

component of the system.
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1 3 5 7 9
1.0791

4.2941

7.5092

10.7242

(a) Segment 1 (length of 8)
9 11 13 15 17

6.6884

7.0366

7.3847

7.7328

(b) Segment 2 (length of 8)
17 19 21 23 25

7.4880

7.5208

7.5537

7.5865

(c) Segment 3 (length of 8)
25 27 29 31

7.5666

7.5690

7.5714

7.5739

(d) Segment 4 (length of 7)
32 34 36 38

7.5721

7.5723

7.5725

7.5727

(e) Segment 5 (length of 7)

39 41 43 45
7.572509

7.572523

7.572537

7.572551

(f) Segment 6 (length of 7)
46 48 50 52

7.572538

7.572539

7.572540

7.572541

(g) Segment 7 (length of 7)
53 55 57 59 61

7.5725401

7.5725403

7.5725404

7.5725405

(h) Segment 8 (length of 8)
61 62 63 64

7.57254036

7.57254037

7.57254038

7.57254040

(i) Segment 9 (length of 3)

Figure 2.4: Segments for a Lin/Con/8/128:F system with p = 0.2
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From Figure 2.4 and all of our computational tests, we observe that the lengths of

segments can be different. Starting from k for the first segment, the length of segments

may decrease in the subsequent segments and then may increase again, and so on. It

looks like a water wave but the wave form repeats at intervals of different lengths.

Although we do not know the exact formula to determine the length of each segment

(it may be hard or impossible), at least the increasing-then-decreasing BI pattern is

consistent in all segments. We also observe from our computational tests that the

lengths of segments are never greater than k. We conjecture that this observation is

true for any general cases. Additionally, the peaks can appear at different relative

positions in the segments. In Figure 2.4, for segments 1 and 2, the peaks appear at

the back end of each segment; for the other segments except the last one, the peaks

appear at the middle of each segment. Because the length and the relative position

of the peak vary with the segments, the “fixed-length BI ordering”, of course, do not

hold for general. In the next subsection, we investigate the peak and the length of

segments with respect to p.

2.2.3 Patterns with respect to p

Theorem 2.1, presented below, gives the smallest possible index of the peak of the

second segment for different p values, which also implies the lower bound on the

length of the second segment.

Theorem 2.1. Considering a Lin/Con/k/n:F system with components of the

common reliability p and k > 2, if p ≥ 1
k−s , where 0 ≤ s ≤ k − 3, then

(i) In(k + 1) > In(s+ 1) for n ≥ 2k + 1, and

(ii) In(i+ 1) > In(i) for k + 1 ≤ i ≤ k + s+ 1 and n ≥ 4k + s+ 2.

Proof. We only prove the statements for the case of s = k − 3 ≥ 1 (i.e., p ≥ 1
3
). The

other cases of 0 ≤ s ≤ k − 4 can be proved similarly.
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(i) According to Kuo and Zuo (2002),

R(k, n) = R(k, n− 1)− pqkR(k, n− k − 1), (2.2)

In(i) =
R(k, i− 1)R(k, n− i)−R(k, n)

q
, (2.3)

where R(k, n) = 1 for 0 ≤ n < k, and R(k, k) = 1− qk. Using (2.2) and (2.3), for any

n ≥ 2k + 1,

In(k + 1)− In(k − 2)

=
R(k, k)R(k, n− k − 1)−R(k, n)

q
− R(k, k − 3)R(k, n− k + 2)−R(k, n)

q

=
1

q

[
(1− qk)R(k, n− k − 1)−R(k, n− k + 2)

]
=

1

q

[
(1− qk)R(k, n− k − 1)

−R(k, n− k − 1) + pqk (R(k, n− 2k − 1) +R(k, n− 2k) +R(k, n− 2k + 1))
]

= qk−1 [p (R(k, n− 2k − 1) +R(k, n− 2k) +R(k, n− 2k + 1))−R(k, n− k − 1)] ,

where the third equation is obtained by iteratively using (2.2) for three times. Further,

by (2.2), we know that R(k, n) decreases as n increases; thus, each of R(k, n− 2k −

1), R(k, n−2k), and R(k, n−2k+1) is greater than R(k, n−k−1). Therefore, p ≥ 1
3

implies that

In(k + 1) > In(k − 2). (2.4)

(ii) Chang et al. (2002) proved that for i ≥ k + 1 and 0 < j − i < k,

In(j)− In(i) = pqk
j−i∑
r=1

[In−k−r(i)− In−k−r(j − k − r)] . (2.5)

Letting j = i+ 1 in (2.5), for i ≥ k + 1,

In(i+ 1)− In(i) = pqk [In−k−1(i)− In−k−1(i− k)] . (2.6)
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For any n ≥ 4k + s+ 2 = 5k− 1 and k + 2 ≤ i ≤ k + s+ 1 = 2k− 2, by (2.5), we

have

In−k−1(i)−In−k−1(k+1) = pqk
i−k−1∑
r=1

[In−2k−r−1(k + 1)− In−2k−r−1(i− k − r)] . (2.7)

For any 1 ≤ r ≤ i−k−1, we know n−2k−r−1 ≥ n−k−i ≥ 2k+1 and 1 ≤ i−k−r ≤

k − 3. Thus, by part (iv)a in Lemma 1, In−2k−r−1(k − 2) > In−2k−r−1(i− k − r), and

by (2.4), In−2k−r−1(k+1) > In−2k−r−1(i−k−r). Then, from (2.7), for any n ≥ 5k−1

and k + 2 ≤ i ≤ 2k − 2,

In−k−1(i) > In−k−1(k + 1). (2.8)

On the other hand, by part (iv)a in Lemma 1 and (2.4), we have

In−k−1(k + 1) > In−k−1(i− k) (2.9)

for n − k − 1 > 2k + 1 and 2 ≤ i − k ≤ k − 2, which are satisfied when n ≥ 5k − 1

and k + 2 ≤ i ≤ 2k − 2.

From (2.8) and (2.9), we obtain In−k−1(i) > In−k−1(i − k) for n ≥ 5k − 1 and

k + 2 ≤ i ≤ 2k − 2. By part (iv)b in Lemma 1, In−k−1(i) > In−k−1(i− k) also holds

for n ≥ 5k − 1 and i = k + 1. Therefore, by (2.6), we obtain In(i + 1) > In(i) for

n ≥ 5k − 1 and k + 1 ≤ i ≤ 2k − 2.

Note that in Theorem 2.1, when s = 0, parts (i) and (ii) come directly from

parts (iv)b and (v) in Lemma 1, respectively. As shown in part (ii) in Theorem 2.1,

In(k + s+ 1) > In(k + s) > · · · > In(k + 1) when p ≥ 1
k−s with 1 ≤ s ≤ k − 3. Thus,

the peak of the second segment is no less than k+s+1, and, consequently, the length

of the second segment is no less than s + 1. As p ≥ 1
k−s increases, s and k + s + 1

increase, which means that the lower bounds of the peak and the length increase as

p increases.
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We now conduct the numerical studies on the relations of the segment length

and the segment peak to p. As an example, Figure 2.5 presents the BIs for the

Lin/Con/5/29:F system for p = 0.1, 0.3, 0.5, 0.7 and 0.9. We focus on the contrast

of component BI values; thus, Figure 2.5 does not present the BIs of the first k

components since the patterns of these components are known and fixed. We observe

the following results for the segment length and peak from our numerical studies.

(i) Given a Lin/Con/k/n:F system (e.g., Figure 2.5), as p becomes smaller, it

is more likely to have short segment length and the segment length decreases

more quickly. With a lower p (e.g., 0.1 in Figure 2.5(a)), the segment length

may become less than k starting from the third segment, but with a higher p,

it may maintain k for the first few segments.

(ii) As p increases (e.g., from 0.1 to 0.9 as in Figure 2.5), the BI patterns change

gradually. With a lower p (e.g., 0.1 in Figure 2.5(a)), each segment except the

first segment has clearly both increasing and decreasing parts, and its peak

usually appears before the second component from the end of each segment.

With a higher p, the increasing part is much longer than the decreasing part in

each segment, and the peak usually is the second component from the end of

each segment. When p is very high (e.g., 0.9 in Figure 2.5(e)), the BI values

are almost the same starting from the second segment, which will be proved in

Theorem 2.2.
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Figure 2.5: The BI for Lin/Con/5/29:F systems with p = 0.1, 0.3, 0.5, 0.7, and 0.9
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Remark 2. In summarizing the theoretical and numerical findings, we give three

points about the peaks and lengths of the first three segments.

(i) For any 0 < p < 1, the first segment always has the length equal to k, and the

peak of the first segment is k (see part (iv) in Lemma 1).

(ii) When p ≥ 1
2
, the length of the second segment is always k, and the peak of

the second segment is 2k (see parts (ii), (iv), and (v) in Lemma 2). When p < 1
2
,

we observe from the computational tests that the BI value in the second segment

first increases and then decreases until component 2k + 1 and that the peak of the

second segment can appear earlier than 2k, but the length of the second segment is

always k. This observation leads to conjecture (2.37), i.e., 2k + 2 �u 2k + 1 (see

Subsection 2.3.2).

(iii) The third segment may have a length less than k. For example, in

Figure 2.5(a), the third segment from component 11 to component 14 has a length

of 3.

Remark 3. With the discoveries in this subsection, we can explain why some half-

line BI patterns in Lemma 2 hold for p ≥ 1
2

but cannot be extended to p < 1
2
. This is

because the BI patterns for a system, in particular the lengths and peaks of segments,

may vary for different p values. For example, considering part (ii) in Lemma 2

and the Lin/Con/5/29:F system in Figure 2.5, if p ≥ 1
2

(e.g., p = 0.5, 0.7, 0.9 in

Figures 2.5(c)-(e)), the peak of the second segment is 2k = 10 according to part (ii)

in Lemma 2. However, when p becomes smaller (e.g., p = 0.1 in Figure 2.5(a)), the

peak of the second segment is 9, less than 2k, and the decreasing part in the second

segment starts from component 9 until component 11, which implies that part (ii) in

Lemma 2 cannot be extended to the uniform BI.

Kuo et al. (1990) claimed that the illustrations of the BI patterns for p = 1
2

are

also true for p 6= 1
2

except that contrast is less sensitive to variations. From this

subsection, we see that the BI patterns for a Lin/Con/k/n system may differ for

distinct values of p.
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2.2.4 Patterns with respect to n

For the Lin/Con/k/n:F system with 2 < k < n
2
, Lemma 1 presents the uniform BI

patterns for the first k+2 components, and Lemma 2 presents the half-line BI patterns

for the first 2k+ 2 components. Because the lengths of segments can be different, the

BI patterns that exist for the first or first few k-intervals cannot generally be extended

further. Fortunately, for the half-line case, only the BIs of components in the first

few segments make a difference as n increases, and the components in the middle of

the n-component line have almost the same BI values. This subsection supports this

statement via investigating the changes of BI patterns with respect to the system size

n. In the following, we first study the difference of the BI values of some special pairs

of components in one Lin/Con/k/n system and then compare the BI values in two

different systems: Lin/Con/k/n and Lin/Con/k/n+ 1.

Difference of BIs of two components in one system

Theorem 2.2 shows that the difference of In(k) − In(k + 1) decreases as n increases

or p increases.

Theorem 2.2. For a Lin/Con/k/n:F system with components of the common

reliability 0 < p < 1 and n > 2k, the difference of In(k) − In(k + 1) decreases as

n increases and approaches 0 as p approaches 1.

Proof. Considering a Lin/Con/k/(n−k−1):F system with n−k−1 ≥ k (i.e., n > 2k)

and making a pivotal decomposition on component k, the Lin/Con/k/(n− k − 1):F

system is decomposed into two subsystems: a Lin/Con/k/(k − 1):F system and a

Lin/Con/k/(n− 2k − 1):F system. Then we have
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R(k, n− k − 1)

= pPr {the Lin/Con/k/(n− k − 1):F system works | component k works}

+q Pr {the Lin/Con/k/(n− k − 1):F system works | component k fails}

= pR(k, n−2k−1)

+q Pr {the Lin/Con/k/(n−k−1):F system works | component k fails} .

Using (2.2) and (2.3), we have

In(k)− In(k + 1)

=
R(k, n− k)−R(k, k)R(k, n− k − 1)

q

=
R(k, n− k − 1)− pqkR(k, n− 2k − 1)− (1− qk)R(k, n− k − 1)

q

= qk−1 [R(k, n− k − 1)− pR(k, n− 2k − 1)]

= qk Pr {the Lin/Con/k/(n− k − 1):F system works | component k fails} . (2.10)

Note that Pr {the Lin/Con/k/(n− k − 1):F system works | component k fails} is

just the system reliability of a Lin/Con/k/n:F system with component reliabilities

pk = 0 and pi = p for i 6= k, and by (2.2), we know that the system reliability decreases

as n increases. Therefore, we have from (2.10) that In(k)− In(k + 1) decreases as n

increases.

Furthermore, from (2.10), it is straightforward that In(k)−In(k+1) approaches 0

as p approaches 1 since qk approaches 0 and the second term in (2.10) approaches 1

as p approaches 1.

In the half-line case, In(k + 1) and In(k) are the lower and upper bounds of the

BIs of components k+1 < i < n−k, respectively, according to part (iv)c in Lemma 1

and part (iii) in Lemma 2 (note that In(2k) is a tighter upper bound). Thus, the

significance of Theorem 2.2 is that, for the half-line case, when n is large enough or p
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approaches 1, there is no significant difference between the BIs of any two components

i and j for k + 1 < i, j < n − k, and thus we may not need to investigate the BI

patterns of these components. This is consistent with the numerical observation in

Subsection 2.2.3 that the BI values are almost the same starting from the second

segment when p is very high. In addition, if conjecture (2.36) (see Subsection 2.3.2)

can be proved, then In(k + 1) and In(k) will be the lower and upper bounds of the

BIs of components k + 1 < i < n− k in the uniform case, and the above statements

will be extended to the uniform case.

For the half-line or uniform BI, results for some other special pairs of components

are presented in Theorem 2.3, whose proof needs Lemma 3. Theorem 2.3 shows that

when n is large, if p ≥ 1
2
, In(i) ≈ In(i− k) for k < i < 2k, i = 2k + 1, and i = 3k; if

0 < p < 1, In(i) ≈ In(i− k) for i = 2k.

Lemma 3. Considering a Lin/Con/k/n:F system and a Lin/Con/k/(n+1):F system

with components of the common reliability 0 < p < 1 and k > 2, for k+2 ≤ i ≤ dn+1
2
e,

In+1(i− 1)− In+1(i)

= [In+1(i− 1)− In+1(i− k − 1)]− [In(i− 1)− In(i− k − 1)] . (2.11)

Proof. Considering a Lin/Con/k/(n + k + 2):F system with k > 2, for any k + 2 ≤

i ≤ dn+1
2
e, we obtain from (2.5),

In+k+2(i+ 1)− In+k+2(i− 1)

= pqk[In+1(i− 1)− In+1(i− k) + In(i− 1)− In(i− k − 1)], (2.12)

and from (2.6),

In+k+2(i+ 1)− In+k+2(i− 1)

= In+k+2(i+ 1)− In+k+2(i) + In+k+2(i)− In+k+2(i− 1)

= pqk[In+1(i)−In+1(i−k)+In+1(i−1)−In+1(i−k−1)], (2.13)
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where (2.13) uses (2.6) twice. Making (2.12) equal (2.13) gives (2.11).

Theorem 2.3. For a Lin/Con/k/n:F system with components of the common

reliability p and k > 2, the following statements hold.

(i) The difference of In(i)−In(i−k) decreases as n increases for p ≥ 1
2
, k < i < 2k,

and n ≥ 4k − 1.

(ii) The difference of In(k) − In(2k) decreases as n increases for 0 < p < 1 and

n ≥ 4k.

(iii) The difference of In(2k) − In(3k) decreases as n increases for p ≥ 1
2

and

n ≥ 6k.

(iv) The difference of In(2k + 1) − In(k + 1) decreases as n increases for p ≥ 1
2

and n ≥ 4k + 2.

Proof. (i) According to part (ii) in Theorem 2, we have Ihn+1(i)−Ihn+1(i+1) < 0 for k <

i < 2k and n ≥ 4k−1. Then, by (2.11),
[
Ihn+1(i)− Ihn+1(i− k)

]
−
[
Ihn(i)− Ihn(i− k)

]
<

0, which implies that Ihn(i)− Ihn(i− k) decreases as n increases.

(ii) Letting i = 2k + 1 in (2.11), then

[In+1(2k)− In+1(k)]− [In(2k)− In(k)] = In+1(2k)− In+1(2k + 1) > 0,

where the inequality holds for n ≥ 4k because of part (vi) in Theorem 1. Thus,

In(k)− In(2k) decreases as n increases.

(iii) Similar to (ii), part (iii) could be proved by letting i = 3k + 1 in (2.11) and

using part (vi) in Theorem 2 (i.e., Ihn+1(3k + 1) < Ihn+1(3k)).

(iv) Similar to (ii), part (iv) could be proved by letting i = 2k + 2 in (2.11) and

using part (v) in Theorem 2 (i.e., Ihn+1(2k + 1) < Ihn+1(2k + 2)).
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Comparison of BIs in systems of different sizes

Considering a Lin/Con/k/n:F system and a Lin/Con/k/(n + 1):F system with

components of the common reliability 0 < p < 1, we define

∆In(i) = In(i)− In+1(i) for 1 ≤ i ≤ n, (2.14)

∆Ĩn(i) =

 In(i)− In+1(i) for 1 ≤ i ≤ dn
2
e,

In(i)− In+1(i+ 1) for dn
2
e+ 1 ≤ i ≤ n.

(2.15)

Note that a Lin/Con/k/(n+1):F system has one more component than a Lin/Con/k/n:F

system. ∆In(i) and ∆Ĩn(i) represent two different ways of comparing the BIs of

components in these two systems. By definition, ∆Ĩn(i) has the symmetric property

∆Ĩn(i) = ∆Ĩn(n− i+ 1) for 1 ≤ i ≤ n, (2.16)

inheriting the symmetric property of BI in (2.1). Further, because ∆Ĩn(i) = ∆In(i)

for 1 ≤ i ≤ dn
2
e, it is enough to only investigate the properties of ∆In(i). Theorem 2.4

presents the main results related to ∆In(i), which demonstrates how the BI value of

component i changes as n increases.

Theorem 2.4. For a Lin/Con/k/n:F system and a Lin/Con/k/(n + 1):F system

with components of the common reliability 0 < p < 1 and n > 2k, the following

statements hold.

(i) ∆In(i) > 0 (i.e., In(i) decreases as n increases) and ∆In(i) approaches 0 (i.e.,

In+1(i) ≈ In(i)) as p approaches 1 for 1 ≤ i ≤ n− k.

(ii) ∆In(i) decreases (i.e., the decreasing rate of In(i) slows down) as n increases

for 1 ≤ i ≤ n− 2k.

Proof. (i) Chang et al. (2002) proved that for 1 ≤ i ≤ n− k + 1,

In+1(i) = pIn(i) + pqIn−1(i) + · · ·+ pqk−1In−k+1(i).
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Then, for 1 ≤ i ≤ n− k, we have

In+1(i) = pIn(i) + q
[
pIn−1(i) + pqIn−2(i) + · · ·+ pqk−2In−k+1(i)

]
= pIn(i) + q

[
pIn−1(i) + · · ·+ pqk−2In−k+1(i) + pqk−1In−k(i)

]
− pqkIn−k(i)

= pIn(i) + qIn(i)− pqkIn−k(i)

= In(i)− pqkIn−k(i).

Thus, we have

∆In(i) = pqkIn−k(i), for 1 ≤ i ≤ n− k. (2.17)

Note that Chang and Hwang (2003) gave (2.17) without proof. From (2.17), it

is straightforward that ∆In(i) > 0 since In−k(i) > 0 for i ≤ n − k. Then, by (2.14),

we have In(i) > In+1(i), which means that In(i) decreases as n increases for any

component 1 ≤ i ≤ n− k. Moreover, pqk approaches 0 as p approaches 1 and In−k(i)

in (2.17) is bounded; thus ∆In(i) approaches 0 as p approaches 1, which means that

In+1(i) ≈ In(i) when p is close to 1, for 1 ≤ i ≤ n− k.

(ii) According to part (i), the value In−k(i) decreases as n increases for 1 ≤ i ≤

n − 2k. Then, for fixed p and k, the value ∆In(i) in (2.17) decreases as n increases

for all 1 ≤ i ≤ n− 2k.

Figure 2.6 demonstrates the changes of the BI values for the Lin/Con/4/n:F

systems for n = 14, 15, 16, 17, and 18, in which (a) and (b) are for the case of p = 0.2,

and (c) and (d) for p = 0.7. As in Theorem 2.4, Figures 2.6(a) and (c) draw the BI

values for components 1 ≤ i ≤ n − k, and (b) and (d) show the changes of ∆In(i)

with n for components 1 ≤ i ≤ n − 2k. Figure 2.6(a) clearly verifies that In(i)

decreases as n increases for 1 ≤ i ≤ n − k as shown in part (i) in Theorem 2.4.

Further, Figure 2.6(b) indicates that ∆In(i) is positive and decreases as n increases

for 1 ≤ i ≤ n− 2k, that is, the decreasing rate of In(i) slows down as n increases, as

shown in part (ii) in Theorem 2.4. When p = 0.7, a relatively high component
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Figure 2.6: The changes of BIs for Lin/Con/4/n:F systems for n = 14, 15, 16, 17, and 18
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reliability, Figure 2.6(c) shows that In+1(i) ≈ In(i), and Figure 2.6(d) shows that

∆In(i) is almost zero (< 5 × 10−4). That is, for a given component, there is no

significant decrease of its BI value in the Lin/Con/4/n:F systems as n changes from

14 to 18 as proved in part (i) in Theorem 2.4.

2.3 Disproved patterns and conjectures

Based on computations of the BIs for the Lin/Con/k/n:F systems with 3 ≤ k ≤

8, 1 ≤ n ≤ 50, and also n = 60, 70, . . . , 200, Chang et al. (2002) disproved some

patterns by counterexamples and made some conjectures. Along this line, we conduct

more comprehensive computational tests with 3 ≤ k ≤ 20, 2k + 1 ≤ n ≤ 10k + 1,

and p = 0.01, 0.02, . . . , 0.99, and, consequently, more patterns are disproved and

conjectured. These tests are computed using symbolic operations in Matlab and thus

are accurate enough even when p is small.

Our new observations concerning the BI patterns in Section 2.2 give a better

understanding of the disproved patterns and conjectures. With the knowledge of

the segments and their lengths and peaks of the BI patterns, we can effectively

find the counterexamples and intuitively disprove some previous conjectures. All

the patterns that have been disproved and conjectured (including our new findings)

are summarized in Subsections 2.3.1 and 2.3.2, respectively.

2.3.1 Disproved patterns

For a Lin/Con/k/n (either F or G) system, the following previously claimed or

conjectured patterns are now disproved by counterexamples. These patterns are

disproved in the sense that they do not always hold for all the specified values of

parameters (i.e., p, t, k, and/or i). Detailed illustrations on each of disproved patterns

(2.18) – (2.31) are provided below. Note that if a BI pattern is disproved for the

combinatorial case, it does not hold for the half-line and uniform cases because the
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combinatorial BI is a special case of the half-line BI and uniform BI; therefore, in this

situation, we will only claim the disproof of the pattern for the combinatorial case.

k + 1 �u n− 2k for 2k + 2 ≤ n < 3k (2.18)

tk �c tk + 1 for t ≥ 4 (2.19)

tk �c tk − 1 for n = 2tk − 1 and t ≥ 3 (2.20)

tk + 2 �u tk + 1 for t ≥ 4 (2.21)

i �u tk + 1 for i > tk + 1 and t ≥ 3 (2.22)

i+ 1 �u i for 2k < i < 3k − 1 (2.23)

i+ 1 �c i for 3k < i < 4k − 1 (2.24)

tk �c (t+ 1)k for t ≥ 3 (2.25)

k + 1 �u k − 1 (2.26)

i+ 1 �u i for k < i < 2k (2.27)

3k �u 3k + 1 (2.28)

2k �u 3k (2.29)

2k �u i for i > 2k (2.30)

tk �u tk + 1 for n = 2tk + 1 and t ≥ 4 (2.31)

Chadjiconstantinidis and Koutras (1999) claimed that they proved (2.18), which

is, however, a false statement, as disproved by our next counterexample.

Example 1. For k = 4, n = 11, and p = 0.01, 0.02, . . . , 0.34, In(k + 1) < In(n− 2k).

For example, when p = 0.01, In(k+ 1) = 0.0006810248 < In(n− 2k) = 0.0008673900.

Chang et al. (2002) disproved (2.19), (2.20), and (2.21) using numerical coun-

terexamples. For (2.21), we find another counterexample as shown in Example 2 in

which t is reduced to 4 compared with t= 7 in the counterexample in Chang et al.
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(2002). Note that (2.21) is disproved only for t ≥ 4 and is conjectured for t = 2 and

3 as shown in conjectures (2.37) and (2.39) in Subsection 2.3.2.

Example 2. For k = 18, n = 145, and p = 0.06, 0.07, 0.08, In(4k + 2) < In(4k + 1).

For example, when p = 0.06, In(4k+2) = 0.0017098693 < In(4k+1) = 0.0017098709.

Uniform BI pattern (2.22) is conjectured for t = 1 and 2 as shown in conjectures

(2.36) and (2.35) in Subsection 2.3.2, and is disproved for t ≥ 3 by Chang et al. (2002).

They also disproved patterns (2.23), (2.24), and (2.25). Although the half-line BI

patterns in parts (i), (ii), and (vi) in Lemma 2 have been proved, the corresponding

uniform BI patterns (2.26) – (2.28) do not hold. Chang et al. (2002) disproved (2.26)

and (2.27), and our next counterexample disproves (2.28).

Example 3. For k = 14, n = 92, and p = 0.03, 0.04, . . . , 0.1, In(3k) < In(3k + 1).

For example, when p = 0.03, In(3k) = 0.0000492933 < In(3k + 1) = 0.0000493310.

Because the half-line BI pattern in part (iv) in Lemma 2 has been proved, the

corresponding uniform BI patterns (2.29) and (2.30) were conjectured by Chang et al.

(2002). In fact, pattern (2.29) is a special case of (2.30) and can be disproved by

Example 4. Chang and Hwang (2002) disproved (2.30) by a counterexample of the

rare-event importance, which is equivalent to the BI as p approaches 0.

Example 4. For k = 15, n = 96, and p = 0.04, 0.05, 0.06, 0.07, In(2k) < In(3k). For

example, when p = 0.04, In(2k) = 0.0004558502 < In(3k) = 0.0004559212.

Motivated by parts (iv)c, (vi), and (viii) in Lemma 1 where tk �u tk + 1 for

t = 1, 2, and 3, respectively, Chang et al. (2002) conjectured (2.31) for all t ≥ 4.

However, Example 5 disproves it.

Example 5. For k = 4, n = 57, t = 7, and p = 0.08, 0.09, . . . , 0.46, In(7k) < In(7k +

1). For example, when p = 0.30, In(7k) = 0.0006396002 < In(7k+1) = 0.0006396003.

Our observations to the nature of BI patterns in Section 2.2 facilitate the process of

seeking counterexamples. Take the disproved patterns (2.28) and (2.29) as examples.
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For a period of time, one can neither prove nor disprove these patterns. Now, utilizing

the concepts of segments, we can conclude that these patterns have been conjectured

inappropriately. As stated in Subsections 2.2.2 and 2.2.3, the length of segments may

decrease, especially when the component reliability p is small. If the length of the

third segment decreases to k−1 or smaller, then both components 3k and 3k+1

are in the increasing part of the fourth segment, resulting in In(3k + 1) > In(3k).

Following this analysis, we use small p values and easily find the counterexample to

(2.28), as shown in Example 3. As for (2.29), if p is small enough, the peak of the

second segment may appear earlier than component 2k as discussed in Remark 2(ii).

Consequently, component 2k is not the peak of the second segment any more. Then,

the BI value of component 2k could be less than the BI values of the peak and its

surrounding components in the third segment. Thus, the counterexample for (2.29)

is found by using small p values as in Example 4.

2.3.2 Conjectures

We present the following conjectures on the BI patterns for a Lin/Con/k/n (either

F or G) system. We neither prove nor find counterexamples to disprove them. Chang

et al. (2002) made the conjectures of (2.32) – (2.36) and (2.38), and we make the new

conjectures of (2.37) and (2.39) for the reasons illustrated below.

2k − 1 �c 2k + 1 for k ≥ 4 (2.32)

i+ 1 �c i for 2k < i < 3k − 1 (2.33)

i �c tk + 1 for i > tk + 1 and t ≥ 2 (2.34)

i �u 2k + 1 for i > 2k + 1 (2.35)

i �u k + 1 for i > k + 1 (2.36)

2k + 2 �u 2k + 1 (2.37)

2k + 1 �u k + 1 (2.38)
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3k + 2 �u 3k + 1 (2.39)

Note that (2.33) and (2.34) cannot be extended to the uniform case as in disproved

patterns (2.23) and (2.22), respectively, and (2.33) can not be extended to the next

k consecutive components as in disproved pattern (2.24). Conjecture (2.35) is an

extension of (2.34) with t = 2. Uniform BI patterns (2.36) and (2.37) are conjectured

because the corresponding half-line BI patterns in parts (iii) and (v) in Lemma 2

have been proved. Patterns (2.37) and (2.38) are important special cases of (2.35)

and (2.36), respectively. It is worthy to present them separately because it may be

relatively easier for the future research to prove the special cases than the general

cases. Pattern (2.39) is an extension of (2.37) and is conjectured because we do not

find its counterexample in our computational tests, but related pattern (2.21) has

been disproved.

The above conjectures do not have obvious violations against our findings about

the BI patterns in Section 2.2. For example, conjecture (2.37) is consistent with the

observation that the length of the second segment is always k as in Remark 2(ii). We

notice that all conjectures except for (2.34) are made for the first few segments rather

than for all segments. Because the length of segments varies and complex increasing-

then-decreasing patterns exist for the general case, it becomes very hard to make the

conjectures which may hold in general. Further, conjecture (2.34) is made for the

case of p = 1
2

only, which may simplify the change of the length of segments and the

complexity of the increasing-then-decreasing patterns, and thus make (2.34) possibly

hold for all segments under the special condition of p = 1
2
.

2.4 Summary

This chapter summarizes the current existing BI patterns for Lin/Con/k/n systems,

disproves some plausible patterns using counterexamples, and gives illustrations
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based on our findings on the BI patterns. Through theoretical analysis, we prove

new BI patterns conditioned on the value of p (see Theorem 2.1). Based on both

computational tests and systematic analysis on the rules of BI patterns, we make

conjectures as shown in (2.37) and (2.39).

An investigation has been conducted to explore the nature of BI patterns for

Lin/Con/k/n:F systems. We observe that the “fixed-length BI ordering” that is

based on the k-interval division and expected for a period of time does not exist.

This chapter proposes a nonequal-length segment division method and discovers the

increasing-then-decreasing pattern in each segment. Both theoretical and numerical

studies on the relationship between the BI patterns and p and the relationship between

the BI patterns and n have been conducted. It is observed that BI patterns are

sensitive to the value of p. The relationship between the BI patterns and p also shows

that in the half-line case only the BI values of components in the first few segments

make a difference, and that the components in the middle of the n-component line

have almost the same BI values when n is large or p is high.

These new findings make a better understanding of the BI patterns (e.g., see

Remarks 2 and 3) as well as help to intuitively disprove some conjectures and

effectively find the counterexamples (see Section 2.3). Because the BI measures

the contribution of a component to the system reliability, it can be used to direct

the assignment of components or the determination of component reliabilities when

designing Lin/Con/k/n systems. For example, according to Remark 1, an engineer,

at least in the early stage of design, should place the most reliable component in

position k and the least reliable component in position 1, and assign the components

from positions 1 to k in the increasing order of component reliabilities. The

relationship between the BI patterns and p inspires the design of Lin/Con/k/n

systems with p ≥ 1
2

to focus on the first few segments and pay less resources in

designing the middle components of the n-component line.

In addition, the relationship between the BI patterns and n is useful for the

redesign of existing Lin/Con/k/n systems. For example, consider the problem of
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shrinking (expanding) a Lin/Con/k/n:F system to a Lin/Con/k/n′:F system with

n′ < n (n′ > n) by removing n−n′ (adding n′−n) components in the middle. Suppose

that the component assignment in the Lin/Con/k/n:F system is optimal. According

to Theorem 2.4, when the system size n is large or the component reliabilities

are high, the component assignment in the Lin/Con/k/n′:F system remains or is

close to be optimal because the BI patterns do not change significantly. Otherwise,

the BI patterns change significantly, and thus the component assignment should be

reexamined to account for the new BI patterns in the Lin/Con/k/n′:F system.

As future research, the conjectures presented in Subsection 2.3.2 need to be proved.

There is a need for further theoretical work on the length of segments and the positions

of peaks. Moreover, it is also worthy to study the theoretical aspects rather than the

computational tests on how the value of p affects the BI patterns.
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Chapter 3

BI-based heuristics for the CAP†

Given a set of n functionally exchangeable components with different reliabilities, the

CAP is to determine the allocation or rearrangement of these n components into the

n positions in the system with the objective of maximizing the system reliability.

There is no effective exact optimization method except the enumeration method

which evaluates all n! possible assignments. In this situation, heuristics become more

important for solving CAPs to find optimal or sub-optimal solution in a reasonable

time. The BI has been applied to design heuristics for CAPs by trying to assign more

reliable components to the positions with larger BI values (Kontoleon, 1979; Lin and

Kuo, 2002; Zuo and Kuo, 1990; Zuo and Shen, 1992).

This chapter focuses on the BI-based heuristics for the CAP. We propose three

new heuristics based on the scheme of the LKA heuristic (Lin and Kuo, 2002) and two

new heuristics based on the schemes of the ZKA and ZKB heuristics (Zuo and Kuo,

1990). We investigate the properties of these heuristics, particularly the relations

between invariant optimal arrangements and the arrangements generated by these

heuristics. Significantly, we conduct comprehensive numerical tests to evaluate the

performances of all these heuristics on various coherent systems and different types

†Reused with permission from Qingzhu Yao, Xiaoyan Zhu, and Way Kuo (2011) Heuristics for
component assignment problems based on the Birnbaum importance, IIE Transactions, in press.
Copyright IIE Transactions 2011.
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of components, filling the gap in this field. Based on statistical analysis of this part

of computational results, we make suggestions on choosing appropriate heuristics

and further propose a BI-based two-stage approach (BITA) with each stage using

different BI-based heuristics. The BITA is evaluated by various computational tests

(including both small and large systems), benchmarking on the GAMS/CoinBonmin

solver and a randomization method. This study does not further investigate the

heuristic by Kontoleon (1979) because our preliminary numerical tests show that the

LKA heuristic always outperforms it.

The following notation and assumptions are used in the rest of this dissertation.

Notation

N = {1, 2, . . . , n}, the index set of n positions

πi The index of the component assigned to position i, i ∈ N

π = (π1, π2, . . . , πn), a permutation of components 1, 2, . . . , n

π(i, j) a permutation formed from permutation π by interchanging the

integers in positions i and j, i, j ∈ N

p̂i the reliability of available component i, i = 1, 2, . . . , n

pi = p̂πi , the reliability of position i, i.e., the reliability of component πi,

the one assigned to position i, i ∈ N

pπ = (p̂π1 , p̂π2 , . . . , p̂πn), vector of the position reliabilities specified by a

permutation π

I(i; ·) the BI of position i under the position reliability vector ·, i ∈ N

I(i; p) the BI of position i with all positions having a common reliability p,

i ∈ N

R(·) the system reliability under the position reliability vector ·
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For simplification, the reliability (BI) of the component in position i is referred to

as the reliability (BI) of position i. Using the above notation, the BI of position i,

i ∈ N , can also be calculated as (Birnbaum, 1969)

I(i; pπ) = R(p̂π1 , . . . , p̂πi−1
, 1, p̂πi+1

, . . . , p̂πn)−R(p̂π1 , . . . , p̂πi−1
, 0, p̂πi+1

, . . . , p̂πn).

(3.1)

Assumptions

1. The system is coherent and consists of n positions.

2. Components are functionally interchangeable and can be assigned to any

position.

3. The number of available components equals the number of positions, and each

position can be assigned exactly one component.

4. Component reliabilities are independent of positions.

5. Component failures are independent.

6. The component reliabilities are in nondecreasing order, i.e., p̂1 ≤ p̂2 ≤ · · · ≤ p̂n.

According to Assumption 6, πi < πj implies that the component reliability in position

i is not higher than that in position j, i.e., p̂πi ≤ p̂πj .

3.1 LK type heuristics

This section reviews the LKA heuristic (Lin and Kuo, 2002) and proposes three new

heuristics based on its scheme. We call these four heuristics LK type heuristics.

3.1.1 The LKA heuristic

The LKA heuristic uses the BI as an indicator to assign components to system

positions one by one. The detailed procedure is shown below, which generates a

solution of arrangement π.
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The LKA heuristic

1. Initially, all positions are assigned component 1, i.e., πi = 1 for i ∈ N .

2. Let S = N .

3. Do loop, for k = n to 2

(a) compute I(i; pπ) for all i ∈ S according to (3.1),

(b) find position mk such that I(mk; pπ) = max
i∈S

I(i; pπ) (break tie

arbitrarily),

(c) let S = S\{mk},
(d) assign component k to position mk, i.e., πmk = k.

Initially, all positions are temporarily assigned component 1, the least reliable

component. Set S stands for the collection of the positions that are not assigned any

components rather than component 1. At each iteration in Step 3, the BIs of the

positions in S are computed, and the available component of the highest reliability

is assigned to the position with the largest BI in S. This process is repeated until all

components are assigned to the system.

3.1.2 Three new LK type heuristics

The rationale of the LKA heuristic is that a position with a larger BI should be

assigned a component with higher reliability. Continuing with the scheme of the LKA

heuristic, we propose three alternative ways to implement the rationale of the LKA

heuristic by modifying the initialization in Step 1 and/or the assignment rule in Step 3.

Then, as shown in Table 3.1, three new LK type heuristics are generated, namely the

LKB, LKC, and LKD heuristics. Each of them is delineated by replacing the partial

contents in Steps 1, 3, 3b, and 3d of the LKA heuristic with the corresponding contents

of the new heuristics in Table 3.1.
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Table 3.1: The LK type heuristics

Heu. Step 1 Step 3 Step 3b Step 3d

LKA component 1, i.e., πi = 1 n to 2 I(mk; pπ) = max
i∈S

I(i; pπ) component k to position mk, i.e., πmk = k

LKB component n, i.e., πi = n 1 to n− 1 I(mk; pπ) = min
i∈S

I(i; pπ) component k to position mk, i.e., πmk = ka

LKC component 1, i.e., πi = 1a 2 to n I(mk; pπ) = min
i∈S

I(i; pπ) component k to positions in S, i.e., πi = k for i ∈ S

LKD component n, i.e., πi = n n− 1 to 1 I(mk; pπ) = max
i∈S

I(i; pπ)a component k to positions in S, i.e., πi = k for i ∈ S
aNo change is made in this step compared to the LKA heuristic.
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The LKB heuristic initializes all positions by the most reliable component (i.e.,

component n) and then starts the assignment from the least reliable component, i.e.,

assigning the current available component of the lowest reliability to position mk,

which has the smallest BI among the positions currently with component n. The LKC

heuristic starts from the same initialization as the LKA heuristic but uses a different

assignment rule, which remains the assignment of position mk that has the smallest

BI in S and allocates the least reliable unassigned component to all other positions

in S. The LKD heuristic uses the same assignment rule as the LKC heuristic, but it

iterates differently from the most reliable component to the least reliable component.

Lin and Kuo (2002) proved that the existence of an invariant optimal arrangement

for a system guarantees the LKA heuristic to produce the invariant optimal

arrangement. This statement holds in general but can fail for a special case where

more than one position achieve the same largest BI in Step 3b in some iteration.

Under this situation (i.e., a tie is present in Step 3b in some iteration), the LKA

heuristic may choose a position which is not consistent with the invariant optimal

arrangement and, consequently, the generated arrangement may be not an invariant

optimal and even not optimal arrangement, as shown in Example 6 below.

Example 6. Consider the CAP instance of assigning seven components with

reliabilities (0.806, 0.809, 0.818, 0.833, 0.853, 0.925, 0.934) to the Lin/Con/2/7:F

system which has an invariant optimal arrangement π∗ = (1, 7, 3, 5, 4, 6, 2) (treating

the inverse (2, 6, 4, 5, 3, 7, 1) as the same invariant optimal arrangement due to the

symmetry of the Lin/Con/2/7:F system). Under the invariant optimal arrangement,

the maximal system reliability is 0.910892. To solve this instance using the LKA

heuristic, any tie in Step 3b is broken by choosing the position with the lowest index

among tied positions. In Step 3 of the LKA heuristic, at the first iteration (k= 7),

positions 2 and 6 have the same largest BI value (i.e., a tie), and the rule of breaking

ties chooses position 2 to receive the candidate component (i.e., component k = 7).

At the following four iterations (k = 6, 5, 4, 3), there is no tie and the intermediate
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assignment after all these five iterations is (1, 7, 3, 5, 4, 6, 1), that is so far consistent

with invariant optimal arrangement π∗. At the last iteration (k=2), a tie is present

that positions 1 and 7 have the same BI value, and the rule of breaking ties chooses

position 1 to receive component k = 2. Thus, the final generated arrangement is

(2, 7, 3, 5, 4, 6, 1) with the system reliability of 0.910868, which is not even an optimal

arrangement.

Therefore, the statement and its proof in Lin and Kuo (2002) must be amended

by adding the condition that no tie is present in Step 3b in all iterations, as shown

in Theorem 3.1 below. Meanwhile, Theorem 3.1 also states that the same property

can be proved for the LKB, LKC, and LKD heuristics. Note that as in the proof of

Theorem 3.1, if no such tie is present in Step 3b, the LK type heuristics assign the

components according to the invariant optimal arrangement.

Theorem 3.1. If a system admits an invariant optimal arrangement, the arrange-

ment generated by each of the LKA, LKB, LKC, and LKD heuristics is the invariant

optimal arrangement given that no tie is present in Step 3b in all iterations.

Proof. We only prove that the statement is true for the LKB heuristic by contra-

diction, and the proofs for the LKA, LKC, and LKD heuristics can be similarly

completed. Recall that in the kth iteration, Step 3d of the LKB heuristic in Table 3.1

assigns component k to position mk for k = 1, 2, . . . , n− 1.

Assume to the contrary that the arrangement specified by mk for k = 1, 2, . . . , n−1

(i.e., generated by the LKB heuristic) does not match any invariant optimal

arrangement. Consider an arbitrary invariant optimal arrangement, which assigns

component k to position ik for k = 1, 2, . . . , n. Then, there exists an integer r,

1 ≤ r < n, such that mk = ik for k = 1, 2, . . . , r − 1 and mr 6= ir. Furthermore,

p̂r < p̂n; otherwise (i.e., p̂r = p̂n), p̂r = p̂r+1 = · · · = p̂n by Assumption 6, which

means that any assignment of components r to n after the (r − 1)th iteration would

make the arrangement generated by the LKB heuristic invariant optimal.
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If this is the case, then the invariant optimal arrangement implies

R((p̂1)i1 , . . . , (p̂r−1)ir−1 , (p̂r)ir ; p̂n) ≥ R((p̂1)i1 , . . . , (p̂r−1)ir−1 , (p̂r)mr ; p̂n), (3.2)

where the notation ((p̂1)i1 , . . . , (p̂r)ir ; p̂n) denotes the vector of the position reliabilities

where all positions have a common reliability p̂n except that positions i1, i2, . . . , ir

have different reliabilities p̂1, p̂2, . . . , p̂r, respectively. Using the relationship between

system reliability and the BI in Lin and Kuo (2002) on both sides of (3.2), Equation

(3.2) becomes

R((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n) + (p̂r − p̂n)I(ir; ((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n))

≥R((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n)+(p̂r − p̂n)I(mr; ((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n)).

Because p̂r < p̂n, then

I(ir; ((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n)) ≤ I(mr; ((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n)),

which contradicts the fact that in Step 3b of the rth iteration,

I(mr; pπ) < I(i; pπ),

for any i ∈ S = N\{i1, . . . , ir−1} where pπ = ((p̂1)i1 , . . . , (p̂r−1)ir−1 ; p̂n), noting that

I(mr; pπ) is strictly less than I(i; pπ) because no tie is present. Therefore, the ar-

rangement generated by the LKB heuristic is the invariant optimal arrangement.

In fact, it is equivalent for the LK type heuristics to use the improvement

potential or criticality importance measure instead of the BI because the improvement

potential and criticality importance measures of position i equal (1− pi)I(i; pπ) and

pi
R(pπ)

I(i; pπ) (Kuo and Zuo, 2002), respectively, and in Step 3a, all positions i ∈ S

temporarily have the same reliability. Therefore, the importance ordering of positions

in S is the same according to the BI, improvement potential, or criticality importance
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measure, and the heuristics choose the same position mk in Step 3b. In turn, even

if the LK type heuristics use the improvement potential or criticality importance

measure, Theorem 3.1 still holds true essentially due to the above relations of these

two importance measures to the BI. In solving the CAP, the BI is better than the

other two because they are built upon the BI.

3.2 ZK type heuristics

This section reviews the ZKA and ZKB heuristics (Zuo and Kuo, 1990) and proposes

two new heuristics based on their scheme. We call these heuristics ZK type heuristics.

3.2.1 The ZKA and ZKB heuristics

The ZKA and ZKB heuristics try to match the BI ordering by pairwise exchanges of

components. They are originally designed for the CAPs in Lin/Con/k/n (either F

or G) systems and can be extended to solve the CAPs in any coherent system. The

detailed procedure is shown below.

The ZKA and ZKB heuristics

1. Generate an initial arrangement π.

2. Compute I(i; pπ) for all positions i ∈ N according to (3.1).

3. Do loop, for k = 1 to n− 1

(a) (Alternative 1 :ZKA) Find positions i and j such that πi = k and
πj = k + 1,
(Alternative 2 :ZKB) Find positions i and j such that πi = k and
I(j; pπ) = min

r:pr>pi
I(r; pπ) (break tie arbitrarily),

(b) If I(i; pπ) > I(j; pπ) and R(pπ(i,j)) > R(pπ), then exchange the
positions of components πi and πj, i.e., π = π(i, j), and update
the position BIs.

4. If there is no exchange in Step 3, stop; otherwise go to Step 3.

Note that the ZKA and ZKB heuristics use Alternatives 1 and 2 in Step 3a,

respectively. Recall that the LK type heuristics and the heuristic in Kontoleon (1979)
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start from an infeasible arrangement that duplicates a single component and assigns

it to all positions, and obtain a feasible arrangement only at the end of the heuristic

procedures that assigns each component to a distinct position. Differently, the ZKA

and ZKB heuristics start from a feasible initial arrangement in Step 1 (i.e., each

component is initially assigned to a distinct position) and maintain the feasibility

throughout the procedure. Zuo and Kuo (1990) presented four initial arrangements

below for solving the CAPs in Lin/Con/k/n systems.

Initial Arrangement 1: (1, n− 1, 3, n− 3, . . . , n− 2, 4, n, 2).

Initial Arrangement 2: (1, n, 3, n− 2, . . . , n− 3, 4, n− 1, 2).

Initial Arrangement 3: (1, 3, 5, . . . , n, . . . , 6, 4, 2).

Initial Arrangement 4: (1, 2, 3, 4, . . . , n− 1, n).

Zuo and Kuo (1990) claimed that Initial Arrangement 1 is the B-importance ordering

of a consecutive-2-out-of-n (Con/2/n) system; however, Initial Arrangement 1 is

neither the B-importance ordering of linear nor circular Con/2/n systems. Initial

Arrangement 2 is the invariant optimal arrangement of a Lin/Con/2/n:F system.

Initial Arrangement 3 is an arrangement found to be optimal for many tests on the

Lin/Con/k/n systems in Zuo and Kuo (1990). Initial Arrangement 4 is a naturally

ordered arrangement. We introduce more initial arrangements in Subsection 3.3.4.

Step 3 conducts pairwise exchanges iteratively from the least reliable component

to the most reliable component and is repeated until no more exchange can be made

(see Step 4). In loop k of Step 3, two alternative methods are provided in Step 3a to

find positions i and j for exchange. Alternative 1 associated with the ZKA heuristic

compares component k which is in position i with the next more reliable component

k+1 which is in position j, while Alternative 2 associated with the ZKB heuristic

compares component k in position i with component πj in position j that has the

smallest BI among the positions whose reliabilities are higher than the reliability of

component k (i.e., pi). In either alternative/heuristic, if the BI of the less reliable

component πi is larger than the BI of the more reliable component πj and the exchange
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of these two components can improve the system reliability, then exchange them (see

Step 3b).

3.2.2 Two new ZK type heuristics

The ZKA and ZKB heuristics start pairwise exchanges from the least reliable

component. We propose two derivative methods, the ZKC and ZKD heuristics,

which start pairwise exchange from the most reliable component and use the revised

Alternatives 1 and 2, respectively. The ZKC (ZKD) heuristic is delineated by

replacing the partial contents in Steps 3, 3a, and 3b of the ZKA (ZKB) heuristic

with the corresponding contents as shown in Table 3.2.

The new Alternative 1 associated with the ZKC heuristic compares component

πi =k with the next less reliable component πj =k − 1, while the new Alternative 2

associated with the ZKD heuristic compares component πi=k with component πj in

position j that has the largest BI among the positions whose reliabilities are lower

than pi. Noting that p̂πi ≥ p̂πj in both new alternatives, if the BI of component πi is

smaller than the BI of component πj and the exchange of these two components can

improve the system reliability, then exchange them (see Step 3b).

Different from the LK type heuristics, when a system admits an invariant optimal

arrangement, the ZK type heuristics may not find the invariant optimal arrangement,

as shown in Example 7 for the ZKA and ZKB heuristics.

Example 7. Considering the CAP instance of assigning seven components with

reliabilities p̂i = 0.1× i for i = 1, 2, . . . , 7 to the Lin/Con/2/7:F system, it has

an invariant optimal arrangement π∗= (1, 7, 3, 5, 4, 6, 2) (see also Example 6), under

which the maximal system reliability is 0.2538. Using Initial Arrangement 1, 2, or 3

in Step 1, both the ZKA and ZKB heuristics generate the optimal arrangement π∗.

However, using Initial Arrangement 4 in Step 1, the ZKA heuristic generates
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Table 3.2: The ZK type heuristics

Heu. Step 3 Step 3a Step 3b

Alternative 1 Alternative 2

ZKA 1 to n− 1 πj = k + 1 — I(i; pπ) > I(j; pπ)

ZKB 1 to n− 1 — I(j; pπ) = min
r:pr>pi

I(r; pπ) I(i; pπ) > I(j; pπ)

ZKC n to 2 πj = k − 1 — I(i; pπ) < I(j; pπ)

ZKD n to 2 — I(j; pπ) = max
r:pr<pi

I(r; pπ) I(i; pπ) < I(j; pπ)
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arrangement π1 =(1, 7, 2, 6, 4, 5, 3) with the system reliability of 0.2524, and the ZKB

heuristic generates arrangement π2 = (3, 4, 6, 1, 7, 2, 5) with the system reliability of

0.1559. Both π1 and π2 differ from π∗.

Note that the ZK type heuristics using an initial arrangement with high system

reliability may produce a worse final arrangement than using one with low system

reliability, as shown in the next example. Therefore, it is not sufficient to judge

the performances of initial arrangements by simply comparing the system reliabilities

associated with them.

Example 8. Table 3.3 presents the results that the ZKA heuristic solves the instance

of assigning ten components with reliabilities p̂i = 0.61+0.03× (i−1), i = 1, 2, . . . , 10

to the C3 system (see Figure 3.1(c) in Subsection 3.3.1). As shown in Table 3.3, the

system reliability associated with the final arrangement generated using better Initial

Arrangement 4 is lower than that generated using worse Initial Arrangement 3.

Table 3.3: Comparison of initial and final arrangements in the ZKA heuristic

Initial Arrangement π R(pπ) Final Arrangement π′ R(pπ′)

3: (1, 3, 5, 7, 9, 10, 8, 6, 4, 2) 0.9781 (5, 6, 1, 4, 7, 3, 2, 9, 10, 8) 0.9928
4: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 0.9918 (4, 5, 1, 3, 6, 2, 7, 8, 9, 10) 0.9927

3.3 Comparisons of LK and ZK type heuristics

This section conducts numerical experiments to evaluate the LK and ZK type

heuristics in Tables 3.1 and 3.2, respectively. Section 3.3.1 illustrates the design of the

experiments. Section 3.3.2 gives a preliminary example that details the descriptions of

the computational results. Sections 3.3.3 and 3.3.4 present the computational results

related to the LK and ZK type heuristics, respectively.
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3.3.1 Design of experiments

For the computational tests, we choose ten complex systems, as shown in Table 3.4,

including four general coherent systems (C1 - C4 systems in Figure 3.1) and six

Lin/Con/k/n systems. These systems were previously studied in the field of the

CAP. The C1 system in Figure 3.1(a) is given by Boland et al. (1989) and has

six components. The C2 and C3 systems in Figures 3.1(b) and 3.1(c) are studied

by Lin and Kuo (2002). The C2 system has five components, and the C3 system

has ten components and is a parallel combination of the C2 system and a bridge

system. The C4 system in Figure 3.1(d) is studied by Prasad and Kuo (2000) and

has ten components. The Lin/Con/k/n:F and G systems with k = 2, 3 and n = 7, 8

are studied except for the Lin/Con/2/7:F and Lin/Con/2/8:F systems for which

the invariant optimal arrangements exist (Du and Hwang, 1986; Malon, 1984). The

Lin/Con/k/n systems are studied by Zuo and Kuo (1990) and Zuo and Shen (1992).

None of these ten tested systems admits invariant optimal arrangements.

In order to see if the performances of the heuristics depend on the component reli-

abilities, we consider three types of available components – High, Low, and Arbitrary

reliable components, which have the component reliabilities randomly generated from

uniform distributions on [0.8, 0.99], [0.01, 0.2], and [0.01, 0.99], respectively.

A CAP instance is defined on a given system and involves a set of available

components that are of specific reliabilities and are to be assigned to the system.

Given a system (one of the ten systems) and a type of component (one of the three

types), we generate 100 instances by populating 100 sets of component reliabilities

Table 3.4: Tested systems

C1: Figure 3.1(a) C2: Figure 3.1(b) C3: Figure 3.1(c)
C4: Figure 3.1(d) G1: Lin/Con/2/7:G G2: Lin/Con/2/8:G
G3: Lin/Con/3/7:G G4: Lin/Con/3/8:G F1: Lin/Con/3/7:F
F2: Lin/Con/3/8:F
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Figure 3.1: Diagrams of four coherent systems
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independently according to the distribution specified by the component type. We call

each set of such 100 instances a trial, which is characterized by the system and the

type of components. In our computational tests, we consider ten systems in Table 3.4

and three types of components, thus producing 10×3 = 30 trials with 3, 000 instances.

We solve each CAP instance using each of the eight heuristics in Tables 3.1 and 3.2.

To evaluate the quality of the solution generated by a heuristic on a single instance,

we calculate a standardized system reliability (SSR):

SSR =
Rheu −Rwor

Ropt −Rwor

, (3.3)

where Rheu stands for the system reliability corresponding to the arrangement

generated by the heuristic, Ropt the system reliability corresponding to the optimal

arrangement, and Rwor the system reliability corresponding to the worst arrangement.

The enumeration method, which evaluates all the arrangements of components, is

used to find the optimal and the worst arrangements (i.e., Ropt and Rwor). Thus, for

each trial, we obtain 100 SSRs when we use a heuristic to solve the 100 instances in the

trial, each SSR corresponding to an instance. Since a single instance may be biased,

we evaluate the performances of the heuristics at the level of trials. To evaluate the

performance of a heuristic on a trial, we use the mean (MSSR), standard deviation,

minimum, and maximum over the 100 SSRs associated with the trial, representing

the on-average, variability of, worst, and best performances of the heuristic on the

trial, respectively.

For example, considering a trial where the system is the Lin/Con/3/8:F system

and the available components are High reliable, we generate 100 instances by

specifying 100 sets of component reliabilities according to uniform distribution on

[0.01, 0.2]. We use the LKA heuristic to solve the 100 instances in this trial, obtain

100 SSRs, and then evaluate the performance of the LKA heuristic on this trial by

calculating the MSSR, standard deviation, minimum, and maximum of these 100

SSRs. The corresponding values are presented in the bold cell in Table 3.5.
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Zuo and Kuo (1990) and Zuo and Shen (1992) used a measure Rheu
Ropt

to evaluate

the performance of a heuristic on an instance. A drawback of this measure is that it

ignores the difference between the worst arrangement and the arrangement generated

by a heuristic. For example, we use a heuristic to solve an instance and obtain

Rheu = 0.96, and use the enumeration method to obtain Ropt = 0.98 and Rwor = 0.94.

Then, the measure Rheu
Ropt

= 0.96
0.98
≈ 0.9796 can lead to the wrong conclusion that this

heuristic performs well and is almost 98% accurate. In fact, the heuristic does not

perform well and only achieves the middle point between the optimal and the worst

arrangements, which is precisely demonstrated by our SSR = 0.96−0.94
0.98−0.94 = 0.5.

We program all heuristics in MATLAB 7.8 and conduct all experiments on a server

with two Intel Dual-Core Xeon 5160 3.0 GHz processors and 8GB RAM. We do not

focus on the computation time in this section because all heuristics are very efficient

compared with the enumeration method. For example, to solve a single instance in the

C4 system, the heuristics take 0.006 to 0.02 seconds while the enumeration method

takes about 280 seconds. All LK type heuristics execute (n− 1) iterations in Step 3

and thus have almost the same computation time for an instance. Observed from our

computational tests, all ZK type heuristics with the same initial arrangement have

a similar computation time for an instance. In Section 3.4, we report computation

time of various solution methods on both small and large CAP instances.

3.3.2 A preliminary example

As an example, we use the four LK type heuristics to solve three trials (i.e., 100

instances in each trial) that correspond to the Lin/Con/3/8:F system and three

component types. Table 3.5 presents the computational results in terms of the MSSR,

standard deviation, minimum, and maximum of SSRs. From Table 3.5, the LKB

performs best for Low and Arbitrary reliable components in terms of all four statistics.

For High reliable components, the LKB performs best in terms of the MSSR and the

minimum of SSRs, but the LKA heuristic performs a little more robustly with the
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smallest standard deviation, which, however, just slightly differs from that of the LKB

heuristic.

Through this example and all of our computational tests, we find that almost

all of the maximum SSRs are 1, implying that almost all heuristics are able to find

the optimal arrangement for some instances in every trial (with some exceptions,

e.g., in Table 3.5, the LKA and LKD heuristics for Arbitrary reliable components).

Furthermore, ignoring slight difference, the MSSR, standard deviation, minimum,

and maximum of SSRs give consistent conclusions. Therefore, we only present the

computational results in terms of MSSR hereafter.

3.3.3 Comparison of the LK type heuristics

Figure 3.2 presents the computational results of the LK type heuristics on solving all

30 trials, in which each graph involves ten trials corresponding to one component type

and ten systems, and associated with each trial, four MSSRs (data points) correspond

to the four LK type heuristics. As shown in Figure 3.2, the LK type heuristics have

no clear system preference. For a trial, the best performance is always achieved by

either the LKA (in 12 out of 30 trials) or LKB (in the other 18 trials) heuristic. The

LKC and LKD heuristics never outperform both of the LKA and LKB heuristics,

and the LKD heuristic is more likely to generate extremely low MSSRs than the

others. Therefore, we recommend using both the LKA and LKB heuristics so that

the best arrangement from the LK type heuristics can be obtained. In addition, these

observations imply that in Step 3d, updating reliability of only one position (as in

the LKA and LKB heuristics) is more effective than updating reliabilities of multiple

positions (as in the LKC and LKD heuristics).
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Table 3.5: Test results for the LK type heuristics on the Lin/Con/3/8:F system

Heuristic Component Type

High Low Arbitrary

LKA 0.992768/0.008709a 0.990222/0.008306 0.984292/0.013921
0.945815/1.000000 0.966053/1.000000 0.934308/0.999438

LKB 0.992851/0.010327 0.999188/0.001509 0.990570/0.012027
0.954624/1.000000 0.993580/1.000000 0.941072/1.000000

LKC 0.988928/0.011870 0.997797/0.004272 0.987222/0.015851
0.958660/1.000000 0.976579/1.000000 0.909321/1.000000

LKD 0.988882/0.010626 0.984776/0.012151 0.975388/0.021366
0.945815/1.000000 0.936150/1.000000 0.894853/0.998664

aIn each cell, the two numbers in the first row are the MSSR and standard deviation
of SSRs; in the second row are the minimum and maximum SSRs.
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Figure 3.2: MSSRs associated with 30 trials and obtained by the LK type heuristics
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Table 3.6 presents the overall performances of the LK type heuristics with respect

to the component types, in which each number stands for the mean of ten MSSRs

associated with ten trials of the same component type but ten different systems.

Over all ten systems, the LKA heuristic performs best for High reliable components,

and the LKB heuristic performs best for Low and Arbitrary reliable components.

Table 3.6 provides a good reference for choosing a single LK type heuristic according

to the component types.

Table 3.6: Overall performances of the LK type heuristics on ten systems

Heu. Component Type

High Low Arbitrary

LKA 0.9964a 0.9869 0.9920
LKB 0.9770 0.9939a 0.9961a

LKC 0.9775 0.9865 0.9929
LKD 0.9573 0.9236 0.9515
aThe best heuristic for each type of components

3.3.4 Comparison of the ZK type heuristics

The ZK type heuristics need an initial arrangement to start the procedure. In this

subsection, we first discuss the choice of initial arrangements for the ZK type heuristics

and then evaluate the ZK type heuristics.

The choice of initial arrangements

Initial arrangements are critical for the ZK type heuristics. As listed in Subsec-

tion 3.2.1, Initial Arrangements 1 and 2 are designed for the Lin/Con/2/n systems;

therefore, only Initial Arrangements 3 and 4 are tested here for general systems. In

addition, we propose and test

Initial Arrangements 5 – 8: arrangements generated by the LKA, LKB, LKC,

and LKD heuristics, respectively.
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Noting that Initial Arrangements 3 and 4 are fixed arrangements regardless of

system structures, Initial Arrangements 5 – 8 are instance-specialized, particularly,

the solutions from the LK type heuristics. Using them ensures that the ZK type

heuristics do not generate bad solutions. Although it takes time to generate them by

the LK type heuristics, the high quality of Initial Arrangements 5 – 8 can accelerate

the termination of the ZK type heuristics. Thus, generating Initial Arrangements 5 – 8

does not significantly increase the overall computation time of the ZK type heuristics.

For example, solving the trial of the C4 system with High reliable components, the

ZKD heuristic takes 0.99 seconds with Initial Arrangement 3, and 1.01 seconds with

Initial Arrangement 6.

As illustrated in Subsection 3.2.2, to compare Initial Arrangements 3 – 8, we can

not simply comparing the system reliabilities associated with them. Instead, we use

all of them in each ZK type heuristic to solve all 30 trials. Figure 3.3 presents the

number of trials on which the heuristic (x-axis) using the initial arrangement (the

legend) achieves the highest MSSRs compared to using other initial arrangements.

Because some of Initial Arrangements 5 – 8 may be the same for an instance and a

heuristic using different initial arrangements may achieve the same highest MSSR on

a trial, the ties exist and thus for each heuristic the total number of trials summed

over all initial arrangements is more than 30. As shown in Figure 3.3, for all ZK

type heuristics, the first three choices should be Initial Arrangements 6, 5 and 7,

respectively.

An alternative is to use multiple initial arrangements in the ZK type heuristics

and then choose the best arrangement generated as the final solution. Table 3.7

tallies the number of trials on which the highest MSSRs are achieved using the initial

arrangement(s) listed in the first column. When the ZK type heuristics use the first

two best choices – Initial Arrangements 6 and 5, they achieve the highest MSSRs on

almost all trials (27 – 29 trials), increasing at least 9 trials compared to using Initial
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Arrangement 6 alone. But there are no more improvement when using the first three

best choices – Initial Arrangements 6, 5, and 7. Thus, we suggest to use Initial

Arrangements 6 and 5.

Table 3.7: Comparison of using multiple initial arrangements

Initial Arrangement(s) used ZKA ZKB ZKC ZKD

Initial Arrangement 6 18 17 18 16
Initial Arrangements 6 and 5 27 28 29 27
Initial Arrangements 6, 5 and 7 27 28 29 27

Test results of the ZK type heuristics

To evaluate each ZK type heuristic, we use both Initial Arrangements 5 and 6 and

select the better arrangement generated as the final solution from that heuristic, as

suggested above. Similar to Figure 3.2, Figure 3.4 presents the computational results

of the ZK type heuristics on all 30 trials, and shows that none of them outperforms the

others on all trials. Further analysis based on Figure 3.4 shows that one of the ZKB

and ZKD heuristics that use Alternative 2 in Step 3a achieves the highest MSSRs on

28 out of 30 trials, while one of the ZKA and ZKC heuristics that use Alternative 1

achieves the highest MSSRs on 20 trials. Thus, Alternative 2 is superior to Alternative

1 overall.

Similar to Table 3.6, Table 3.8 demonstrates the overall performances of the

ZK type heuristics with respect to the component types. Over all ten systems, for

High and Arbitrary reliable components the ZKD heuristic performs best and thus is

recommended; for Low reliable components, the ZKB heuristic performs best and is

recommended. These conclusions are consistent with the above result that Alternative

2 (in the ZKB and ZKD heuristics) outperforms Alternative 1 (in the ZKA and ZKC

heuristics). Since all the ZK type heuristics perform similarly, there is no need to use

more than one ZK type heuristic to solve the CAP.
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Table 3.8: Overall performance of the ZK type heuristics on ten systems

Heu. Component Type

High Low Arbitrary

ZKA 0.999444 0.998931 0.998104
ZKB 0.999444 0.998959a 0.998337
ZKC 0.999440 0.998927 0.998110
ZKD 0.999511a 0.998929 0.998391a

aThe best heuristic for each type of components

From our tests as shown in Figure 3.4, one of the ZKA and ZKC heuristics that use

Alternative 1 in Step 3a achieves the highest MSSRs on 20 out of 30 trials, while one

of the ZKB and ZKD heuristics that use Alternative 2 achieves the highest MSSRs

on 28 trials. Thus, Alternative 2 has better overall performance than Alternative 1.

From this point of view, the ZKB and ZKD heuristics, which use Alternative 2, are

outstanding, and our computational results in Table 3.8 justify it.

3.4 A BI-based two-stage approach (BITA)

3.4.1 The BITA

As stated in Subsections 3.3.3 and 3.3.4, we suggest using the solutions of the LKA

and LKB heuristics as the initial arrangements in the ZK type heuristics, the ZKB

heuristic for solving the CAPs of low reliable components, and the ZKD heuristic for

solving the CAPs of other types of components. Now, integrating these results, we

propose the BITA for solving the CAP:

Stage 1: Use both the LKA and LKB heuristics to generate two initial arrangements,

i.e., Initial Arrangements 5 and 6.

Stage 2: If the CAP involves only low reliable components (≤ 0.2), choose the ZKB

heuristic; otherwise, choose the ZKD heuristic. Using Initial Arrangements 5

and 6 separately, solve the instance by the chosen ZK type heuristic (either
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the ZKB or ZKD heuristic), and the final solution is the better one of the two

arrangements generated.

Stage 2 can be regarded as an improvement stage that further improves the

arrangements generated in Stage 1. If computation time is restricted, use only Stage

1 (i.e., the LKA and LKB heuristics) and then choose the better arrangement as the

final solution, or even choose one single LK type heuristic according to Table 3.6.

3.4.2 Computational tests on small instances

Note that the CAP can be formulated as a mixed integer nonlinear programming

problem and solved by GAMS/CoinBonmin solver, which basically uses a branch

and bound algorithm. This subsection compares the BITA with GAMS/CoinBonmin

solver by solving the 30 trials corresponding to the ten small systems (with no more

than ten components) in Subsection 3.3.1. Table 3.9 presents the results in terms

of MSSR and computation time. Note that GAMS/CoinBonmin solver does not

guarantee to generate optimal solutions for the nonconvex problems including the

CAP. Thus, the computation time of the enumeration method for finding optimal

solutions is also listed in the last column. The “Time” column represents the seconds

used to solve the whole trial, i.e., 100 instances.

As shown in Table 3.9, the BITA achieves higher MSSRs than GAMS/CoinBonmin

solver in all trials except the one of the F1 system and Low reliable components,

and is also much faster than GAMS/CoinBonmin solver by around 54 – 1268 times.

Furthermore, the BITA takes much shorter computation time than the enumeration

method, especially for those systems with more than seven components.

From Table 3.9, we can conclude that the BITA has clear advantage over

GAMS/CoinBonmin solver in terms of both solution quality and computation time,

especially when the system size (i.e., the number of components) gets larger and

larger. Although the enumeration method can find optimal solutions for the small

instances, it takes extremely long time for the medium-to-large instances and even
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Table 3.9: Comparison of the BITA, GAMS, and enumeration method on 30 trials
of small systems

System Component MSSR Time (second)

Type BITA GAMS BITA GAMS Enumeration

C1 High 1.000000 0.999886 0.56 46.58 2.59
Low 0.999981 0.997689 0.50 70.97 2.60
Arbitrary 0.999497 0.993666 0.47 62.26 2.58

C2 High 0.999991 0.995693 0.45 28.64 0.49
Low 0.999971 0.998134 0.45 25.59 0.49
Arbitrary 0.997348 0.988374 0.45 27.33 0.49

C3 High 0.999307 0.998270 1.55 1971.98 20058.76
Low 0.999450 0.999375 1.83 714.92 19492.95
Arbitrary 0.999018 0.997354 1.63 1291.07 19337.29

C4 High 1.000000 0.999995 2.05 749.54 27880.76
Low 1.000000 0.997216 2.59 2511.12 28918.37
Arbitrary 0.999544 0.994482 2.45 1503.31 27920.94

G1 High 0.999708 0.994352 0.82 162.75 45.45
Low 0.999934 0.998317 0.78 70.74 45.31
Arbitrary 0.996222 0.994522 0.76 49.80 46.66

G2 High 0.998771 0.989447 0.77 536.09 381.39
Low 0.999965 0.997088 1.05 119.76 377.61
Arbitrary 0.996252 0.994360 0.86 94.58 510.24

G3 High 0.998896 0.998267 0.65 66.56 44.15
Low 1.000000 0.993257 0.67 109.25 45.06
Arbitrary 0.998622 0.995506 0.60 74.47 49.63

G4 High 0.997950 0.996138 0.86 143.19 364.25
Low 0.999989 0.995767 0.84 284.05 362.69
Arbitrary 0.997106 0.994336 0.74 176.65 370.51

F1 High 0.997088 0.994183 0.78 124.20 51.92
Low 0.999711 0.999894 0.65 71.73 50.63
Arbitrary 0.998151 0.980612 0.78 52.68 58.90

F2 High 0.998692 0.996627 0.84 141.11 442.57
Low 0.999589 0.997331 0.97 253.16 438.88
Arbitrary 0.996984 0.979267 0.93 90.61 534.25

results in out-of-memory, being impractical for achieving the optimal solutions. For

example, to solve the instance in the Lin/Con/3/20:F system with High reliable

components, the BITA takes only 0.02 seconds with the system reliability of 0.993657,

but GAMS/CoinBonmin solver takes 49.09 seconds with the system reliability of
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0.993606, and the enumeration method cannot achieve the optimal solution after

several days of computation. Therefore, in the next subsection of computational tests

on large instances (with 20 or more components), we only test the BITA because it can

generate solutions of better quality in much shorter time than GAMS/CoinBonmin

solver and the enumeration method cannot solve these large systems in a reasonable

time.

3.4.3 Computational tests on large instances

We now evaluate the performance of the BITA on 28 large Lin/Con/k/n systems,

including 12 Lin/Con/k/n:F systems with k = 3, 4, 5 and n = 20, 30, 50, 100

and 16 Lin/Con/k/n:G systems with k = 2, 3, 4, 5 and n = 20, 30, 50, 100. As

mentioned above, the enumeration method is extremely slow and even out-of-memory

to calculate the Ropt and Rwor in (3.3) for a CAP instance. Instead, a randomization

method is used to approximate the Ropt and Rwor. To solve a CAP instance,

10,000 random arrangements are generated, and the Ropt and Rwor are the system

reliabilities corresponding to the best and worst arrangements out of the 10,000

random arrangements. Then, the approximate SSR of the instance and the MSSR

of the trial can be calculated. Table 3.10 presents the approximate MSSRs and the

computation time for the BITA to solve the trials on the 28 large systems. The

“Time” column still represents the seconds used to solve the whole trial, i.e., 100

instances. Note that there is no MSSR for the trial of the Lin/Con/3/100:F system

and Low reliable components because in this trial the system reliabilities of any

instance found by both the randomization method and the BITA are less than 10−19

and the calculation of the SSRs and MSSR is misleading under this situation.

As shown in Table 3.10, for the trials associated with High reliable components,

most of the MSSRs are larger than 1 which means that the BITA performs better than

the randomization method, though there are four exceptions on the Lin/Con/2/50:G,

Lin/Con/2/100:G, Lin/Con/3/100:G, and Lin/Con/4/100:G systems where the
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Table 3.10: MSSRs and computation time of the BITA on the trials of large systems

System Component Type

High Low Arbitrary

MSSR Time MSSR Time MSSR Time

Lin/Con/3/20:F 1.0954 3.87 1.4454 3.76 1.2204 3.76
Lin/Con/3/30:F 1.1727 8.33 2.4771 9.60 1.6664 9.57
Lin/Con/3/50:F 1.3168 26.80 7.9320 39.37 3.3948 34.36
Lin/Con/3/100:F 1.5966 133.67 — 116.98 34.2925 233.79
Lin/Con/4/20:F 1.0411 3.95 1.3203 3.93 1.0793 4.33
Lin/Con/4/30:F 1.0900 8.39 1.8716 7.75 1.2350 8.70
Lin/Con/4/50:F 1.1669 25.97 3.5567 39.10 1.6296 28.23
Lin/Con/4/100:F 1.3239 158.96 26.6616 336.66 4.1843 267.61
Lin/Con/5/20:F 1.0237 4.31 1.2420 3.63 1.0313 4.40
Lin/Con/5/30:F 1.0473 11.66 1.6418 9.51 1.0879 12.70
Lin/Con/5/50:F 1.0934 39.40 2.7746 38.23 1.2370 50.82
Lin/Con/5/100:F 1.2035 203.43 9.8065 379.43 1.8477 347.29
Lin/Con/2/20:G 1.0039 2.57 1.1340 3.21 1.0092 2.69
Lin/Con/2/30:G 1.0036 4.02 1.2410 6.28 1.0048 5.46
Lin/Con/2/50:G 0.6790 7.14 1.3860 16.08 1.0012 15.57
Lin/Con/2/100:G 0.6309 23.14 1.6408 62.68 1.0001 34.42
Lin/Con/3/20:G 1.0154 2.89 1.2134 3.16 1.0337 2.35
Lin/Con/3/30:G 1.0192 5.73 1.3830 6.47 1.0258 4.51
Lin/Con/3/50:G 1.0160 9.74 1.6377 15.84 1.0117 17.19
Lin/Con/3/100:G 0.6183 24.34 2.0558 63.35 1.0014 59.29
Lin/Con/4/20:G 1.0337 2.84 1.2702 2.73 1.0820 2.27
Lin/Con/4/30:G 1.0461 6.43 1.5150 6.10 1.0955 4.55
Lin/Con/4/50:G 1.0469 16.02 1.8418 15.97 1.0576 14.56
Lin/Con/4/100:G 0.9000 28.27 2.4501 61.91 1.0159 60.38
Lin/Con/5/20:G 1.0568 2.69 1.3312 2.45 1.1274 2.20
Lin/Con/5/30:G 1.0783 6.11 1.5872 5.76 1.1952 4.53
Lin/Con/5/50:G 1.0885 15.34 2.1065 15.21 1.1505 12.15
Lin/Con/5/100:G 1.0622 31.83 2.9050 58.86 1.0818 72.44

MSSRs are less than 1. For the trials associated with Low and Arbitrary reliable

components, the BITA always finds the MSSRs larger than 1, and in some trials

the MSSRs are even larger than 2, which implies that the BITA generates much

better arrangements than the randomization method in these trials. The larger the

MSSR is, the better the BITA performs. Moreover, the BITA takes a reasonable time
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for solving the CAPs associated with the large systems. For example, the longest

computation time is about 380 seconds for solving the 100 instances in the trial of

the Lin/Con/5/100:F system and Low reliable components. On average, the BITA

takes only 1/6 time of the randomization method for the same instance in Table 3.10.

We also test even larger systems, for example, a trial of the Lin/Con/3/300:F system

and High reliable components. Solving this trial, the MSSR is 2.3973, the BITA takes

1,425 seconds, and the randomization method takes 2,537 seconds. That is, the BITA

uses only about 3/5 time of and obtains far better solutions than the randomization

method. In summary, the BITA is capable of solving the large instances with high

accuracy in short computation time. The BITA is very practically implementable

and absolutely outperforms the randomization method.

3.5 Summary

This chapter proposes three new LK type heuristics (i.e., the LKB, LKC, and LKD

heuristics) and two new ZK type heuristics (i.e., the ZKC and ZKD heuristics) for

solving the CAP. We prove that if a system admits an invariant optimal arrangement,

the arrangements generated by the LK type heuristics must be the invariant optimal

arrangement given that there is no tie in Step 3b in all iterations, but the ZK type

heuristics do not have such a property. Based on the numerical analysis on the LK

and ZK type heuristics, we propose the BITA whose first stage uses the LKA and LKB

heuristics, and the second stage uses the ZKB or ZKD heuristic depending on the

component types. Our numerical experiments involving both small and large systems

show that the BITA absolutely performs much better than GAMS/CoinBonmin

solver, the enumeration method, and the randomization method, especially for those

CAPs with large system sizes. The BITA is efficient and capable to generate solutions

of high quality.
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Chapter 4

A BI-based Genetic Local Search

Algorithm for the CAP

In Chapter 3, we unsurprisingly observe that the BITA may converge to a local

optimal arrangement as illustrated in Table 3.9. The meta-heuristics have the

potential to break local optimal arrangements and thus are expected to obtain

solutions of higher quality. As shown in Subsection 1.3.2, some simulated annealing

and genetic algorithms have been proposed for solving the CAP. However, these

methods were designed specially for the CAP in the Cir/Con/k/n:F systems and did

not utilize the BI which can be used to improve the performance of heuristics. In

the literature, there is no meta-heuristic for solving the CAP in general systems, and

none of them utilized the BI. These observations encourage us to develop BI-based

meta-heuristics for the CAP in general systems.

In this chapter, we propose a BI-based genetic local search (BIGLS) for tackling

the CAP in general coherent systems. The genetic local search is a hybrid

genetic algorithm that integrates both the population-based search and the local

optimization. The genetic operations explore the broad search space in order to

identify promising subregions, meanwhile the local search exploits good solutions

in these small subregions by iteratively moving from one solution to a better one
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in its neighborhood until a local optimum is reached. Genetic local search has

been successfully applied to the traveling salesman (Freisleben and Merz, 1996),

quadratic assignment (Lim et al., 2000), and flowshop scheduling (Tseng and Lin,

2009) problems but never been used for solving the CAP.

The BIGLS uses the BI in directing the local improvement and uses the general

scheme of the genetic local search to overcome the potential shortcoming of premature

that the BI-based heuristics in Chapter 3 might arise. The BIGLS has a great chance

of achieving solutions of high quality effectively because it takes advantages of both

the efficient local search directed by the BI and the population-based global search

(broad exploration) of genetic algorithm. Comprehensive numerical tests compare

the BIGLS with two benchmarking methods (i.e., the BITA and a simple genetic

algorithm) on various coherent systems and different types of components, and verify

the importance of embedding the BI in the genetic evolutionary mechanism and the

effectiveness of the BIGLS.

4.1 The BIGLS algorithm

Based on the BIGLS framework shown below, we develop the BIGLS algorithm

for the CAP using specially designed operators in each step, which are detailed in

Subsections 4.1.1 – 4.1.7. Particularly, the BIGLS uses an initial assignment generated

by the BITA and applies the efficient BI-based local search.

The BIGLS framework

1. Generate an initial population with m chromosomes. Perform the BI-based

local search on each initial chromosome.

2. If the current population satisfies the termination conditions, perform the BI-

based local search on the best chromosome and stop.

3. Evaluate the scaled fitness of each chromosome according to (4.1) (introduced

later).
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4. Perform elitism strategy, i.e., the mβ best chromosomes in the current

population are directly reproduced into the next population.

5. Perform crossover on the current population to generate m(1 − β) offspring

chromosomes into the next population.

6. Perform mutation on the selected offspring chromosomes, and perform the

BI-based local search on each mutated offspring chromosome and on the

unmutated offspring chromosomes that are better than the best one in the

current population.

7. Replace the current population with the next population and go to Step 2.

Starting with the initial population generated in Step 1, an iterative procedure

from Steps 2 to 7 is performed on each generation of population, until the termination

conditions in Step 2 is satisfied. In Step 3, the scaled fitness values are computed for

all chromosomes. Then, in Step 4, themβ best chromosomes in the current population

as the elitists are directly reproduced into the next population, where β is called the

elitist rate, 0 < β < 1. In Step 5, a crossover operator generates m(1 − β) offspring

chromosomes into the next population. In Step 6, mutation is conducted on a small

portion of the offspring chromosomes, and the BI-based local search is performed on

the mutated and some promising unmutated offspring chromosomes. Considering the

solution quality and the computational efficiency, Lim et al. (2000) found that for

the quadratic assignment problems the local search should not be performed for each

new chromosome, and our preliminary numerical tests for the CAP obtain the same

finding. Thus, our BIGLS algorithm performs the BI-based local search in Step 6

only on some promising rather than all offspring chromosomes. After Step 6, a new

population of size m is generated and replaces the current population in Step 7.
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4.1.1 Gene, chromosome, and population

In the BIGLS, a chromosome is coded as an assignment π, and each integer πi,

i = 1, 2, . . . , n, in the chromosome is a gene. Each population has m chromosomes,

and the population size m is constant through the generations. The initial population

includes m − 1 randomly generated chromosomes and one special chromosome

generated by the BITA. According to Chapter 3, the BITA is the most accurate

BI-based heuristic. Thus, including the assignment generated by the BITA in the

initial population can improve the quality of the initial population while the other

m− 1 random chromosomes maintain the diversity of the population.

4.1.2 The BI-based local search

Steps 1, 2, and 6 of the BIGLS use a BI-based local search to boost a given assignment

π in its neighborhood. That is essentially a pairwise exchange method based on the

BI as detailed below.

The BI-based local search

Given an assignment π, do loop for k = n to 2,

1. Compute I(i; pπ) for all i = 1, 2, . . . , n according to (3.1).

2. Find positions i and j such that πi = k and I(j; pπ) = max
r:pπr<pπi

I(r; pπ) (break

tie arbitrarily).

3. If I(i; pπ) < I(j; pπ) and exchanging the allocations of πi and πj can improve

the system reliability, then exchange them and update π.

This BI-based local search conducts pairwise exchange iteratively (for k) from

the most reliable component n to the second least reliable component 2. Position i

associated with component k is compared with position j that has the largest BI value

among the positions with reliabilities lower than pπi . If position i is less important

than position j in terms of the BI and exchanging pπi and pπj can improve the system

reliability, then exchange the allocations of components πi and πj.
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4.1.3 Fitness scaling

In the CAP, the objective is to maximize the system reliability which is bounded by 0

and 1. It is natural to use the system reliability R(pπt) as the fitness of chromosome

πt, denoted by ft = R(pπt), for t = 1, 2, . . . ,m. Meanwhile, Step 3 calculates the

scaled fitness of chromosome πt, denoted by Ft, which is defined using a linear scaling

function with coefficients α1 and α2 as

Ft = α1 × ft + α2. (4.1)

Let fmax, fmin, and favg denote the maximum, minimum, and average fitness values of

the m chromosomes before the scaling, respectively, and Fmax, Fmin, and Favg denote

the maximum, minimum, and average fitness values after the scaling, respectively.

The coefficients α1 and α2 are chosen such that Favg = favg and Fmax = Sf × Fmin,

which yield

α1 =
(Sf − 1)× favg

(favg − fmin)× Sf + (fmax − favg)
(4.2)

α2 = (1− α1)× favg (4.3)

where Sf > 1 is the scaling factor. Note that α1 is always positive but α2 may not

be.

The scaled fitness in (4.1) is used with the aim of balancing the premature in

convergence and the divergence of the population (Goldberg, 1989). When Sf � 1, a

super good chromosome quickly dominates the population and results in premature

and a suboptimal solution. When Sf ≈ 1, the population always keeps large

dispersion, which makes the convergence very slow and even diverge. A proper scaling

factor Sf can prevent the premature in the early stage and the divergence in the late

stage.
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4.1.4 Termination conditions

The denominator of (4.2) reflects the extent of convergence of the population (Lim

et al., 2000), and thus is used as a termination condition in Step 2 of the BIGLS:

(favg − fmin)× Sf + (fmax − favg) < ε, (4.4)

where ε is a very small positive number. Another termination condition in Step 2

is that the number of generations can not exceed a pre-specified threshold (e.g., 200

generations). The BIGLS stops whenever one of the two termination conditions is

met.

4.1.5 Elitism

Step 4 of the BIGLS uses an elitism strategy. A proportion (i.e., elitist rate β) of the

best chromosomes (i.e., those with high fitness values) in the current generation are

directly copied to the next generation. These chromosomes are called elitists, which

carry the best genes from the current generation to the next generation. This strategy

can improve the performance of the genetic local search (Davis, 1991). Recall that the

initial population includes the assignment generated by the BITA as a chromosome.

Therefore, by the elitism strategy, the BIGLS could never generate a worse assignment

than the BITA.

4.1.6 Crossover

Step 5 of the BIGLS executes the crossover operator in order to produce offspring

chromosomes for the next population. The biased roulette wheel criterion (Goldberg,

1989) is used to select a pair of parent chromosomes from the current population;

each chromosome πt, t = 1, 2, . . . ,m, is selected as a parent with the probability

Ft

/∑m
j=1 Fj , proportional to its scaled fitness value. Note that Fmax = Sf × Fmin,

which means that the best chromosome has Sf times probability to be selected
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as the worst chromosome. After a chromosome is selected, it is replaced back to

the current population and is eligible to be re-selected. Totally, m(1 − β) pairs of

parent chromosomes are selected for reproducing m(1 − β) offsprings into the next

population. With probability Pcro, a crossover operation is executed on a pair of

parent chromosomes to generate an offspring chromosome into the next generation;

with probability 1−Pcro, no crossover operation is taken and the first selected parent

is reproduced to the next population.

In the CAP, the absolute positions of the components is more important than their

relative positions. Therefore, the partial matched crossover (PMX) (Goldberg and

Lingle, 1985) operator is implemented. Under this crossover operator, two crossing

points are picked uniformly at random. These two points define a matching section

between the parent chromosomes according to which a crossing of position-by-position

exchanges is implemented. As an example, consider a pair of parent chromosomes πa

and πb:

πa = 8 7 | 6 4 2 | 1 5 3

πb = 2 5 | 1 7 3 | 8 4 6

and two randomly selected crossing points 3 and 6 as indicated above. Then, relative

to chromosome πa, exchanging the positions of genes 6 with 1, 4 with 7, and 2 with

3 produces an offspring chromosome:

π′ = 8 4 | 1 7 3 | 6 5 2.

4.1.7 Mutation

Following Step 5 of the crossover operations, Step 6 of the BIGLS mutates

each offspring chromosome with probability Pmut to maintain the variation of the

population and spread out the search regions. The mutation operator randomly

picks two positions and swaps the genes in these two positions. For example, if the
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above chromosome π′ is chosen for mutation and the second and fourth positions are

randomly picked, then genes 4 and 7 in these positions are exchanged, producing a

mutated chromosome:

π′′ = 8 7 1 4 3 6 5 2.

In Step 6, the mutated offspring chromosomes and the unmutated ones with the

scaled fitness value higher than the best chromosome in the current population are

further improved by the BI-based local search, and the chromosomes generated by

the BI-based local search replace the original ones to enter the next population.

4.2 Numerical experiments

This section conducts numerical experiments to evaluate the performance of the

BIGLS on solving the CAP in various systems and with different types of component

reliabilities. To demonstrate the effectiveness of the utilization of the BI and BI-

based local search in the BIGLS, we propose a simple genetic algorithm (SGA) which

uses the same framework and parameter setting as the BIGLS but does not use any

local search in Steps 1, 2, and 6. We benchmark on the SGA and BITA to evaluate

the performance of the BIGLS. Note that the assignment generated by the BITA is

included in the initial populations of both the BIGLS and SGA, and their elitism

strategy makes the best assignment(s) evolve from one generation to another. Thus,

the BIGLS and SGA never generate solutions worse than the BITA.

The numerical experiments use the same setting as in Chapter 3. The systems are

divided into two groups by the system size: the ten small systems and the 28 large

Lin/Con/k/n systems in Chapter 3. We keep considering three types of components

– High, Low, and Arbitrary reliable components, which have the component

reliabilities randomly generated from uniform distributions on [0.8, 0.99], [0.01, 0.2],

and [0.01, 0.99], respectively, and the performances of the BIGLS, BITA, and SGA

are evaluated with respect to these three component types.
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We program the BIGLS and SGA in MATLAB 7.8 and conduct all experiments

on a server with two Intel Dual-Core Xeon 5160 3.0 GHz processors and 8GB RAM.

All BIGLS and SGA runs are performed with population size m = 50, fitness scaling

factor Sf = 3, crossover probability Pcro = 0.8, and mutation probability Pmut = 0.05.

The BIGLS is terminated after 200 generations or when the convergence criterion

in (4.4) is satisfied with ε = 0.0001.

For the CAP instances associated with the small systems, the enumeration method

can find the optimal assignments in a reasonable time (less than two minutes in

our computational setting), and thus we compare the assignments generated by

the BIGLS to the optimal assignments in addition to the assignments generated

by the benchmarking BITA and SGA. However, the enumeration method fails to

find the optimal solutions for the CAP instances associated with the large systems as

illustrated in Section 1.3. Therefore, in the large systems, we evaluate the performance

of the BIGLS only benchmarking on the BITA and SGA.

4.2.1 Preliminary test results

Because the execution of the BIGLS depends on the realization of the random

operations, preliminary tests on the large systems are conducted to examine the

robustness of the BIGLS to its random operations. For each large system with

n positions and each type of High, Low, and Arbitrary reliable components, an

instance is created by randomly generating n component reliabilities according to

the distribution specified by the component type. We execute ten random BIGLS

runs on each instance, and obtain ten assignments and correspondingly ten system

reliabilities which may be different due to the random operations. Fig. 4.1 shows the

coefficient of variation (i.e., σ/µ) of the ten system reliabilities for each instance

where σ is the standard deviation and µ the mean. The horizontal axis stands

for the systems of the instances with the omission of the phrase “Lin/Con/”. An

exponential transformation is conducted on the coefficients of variation in order to
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Figure 4.1: Robustness of the BIGLS in ten random runs for the Lin/Con/k/n
systems

clearly show the small values. Note that there is no value for the instance in the

Lin/Con/3/100:F system with Low reliable components because in this instance the

ten system reliabilities found by the ten BIGLS runs are less than 10−19 and then the

calculation of σ/µ is inaccurate and misleading.

In Fig. 4.1, the coefficients of variation are exact zero for 44 out of 83 instances

(i.e., those with value 1 above the corresponding bars) and are near zero for the others

with the largest value of 0.0026 associated with the instance in the Lin/Con/4/100:F

system with Arbitrary reliable components. The instances with Arbitrary reliable

components tend to have larger coefficients of variation, but all the coefficients of

variation are extremely small and close to zero. This implies that the standard

deviation of the ten random BIGLS runs is negligible compared to their mean.

Therefore, the BIGLS is robust to its random operations, and there is no need to

execute multiple BIGLS runs to solve a CAP instance. In the following tests, only

one BIGLS run is executed for each instance. Note that the same observation holds

for the SGA.
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4.2.2 Computational results on small instances

As in Section 3.3, for each system and each component type, 100 instances are

generated, each instance corresponding to a set of different randomly-generated

component reliabilities. There are ten small systems and three component types and

thus 30 trials, i.e., 30 sets of small CAP instances. Table 4.1 presents computational

results of the BITA, BIGLS, and SGA on solving the instances in the 30 trials. The

“Opt. #” columns represent the numbers out of 100 instances in each trial for which

the BITA, BIGLS, and SGA find the optimal assignments, respectively. Note that the

optimal assignments are found by the enumeration method. The “Imp. #” columns

show the numbers out of 100 instances in each trail for which the BIGLS and SGA

can improve the assignments generated by the BITA, respectively. Recall that the

BIGLS and SGA never generate solutions worse than the BITA as illustrated at the

beginning of Section 4.2. The “Time” columns record the average computation time

of the BITA, BIGLS, and SGA for solving one of the 100 instances in each trial,

respectively.

As shown in Table 4.1, the BITA finds the optimal assignments for all 100

instances in ten trials (e.g., the trials corresponding to the C1 system with High,

Low, and Arbitrary reliable components, respectively) and leaves no room for further

improvement to the BIGLS and SGA. Whereas as long as there is any room for

improvement left by the BITA (i.e., in the other 20 trials), the BIGLS and SGA can

always improve some, if not all, of the non-optimal assignments generated by the

BITA. Moreover, the BIGLS is superior to the SGA since the BIGLS achieves at

least as many optimal assignments as the SGA. For example, in the trial associated

with the Lin/Con/2/7:G system and the Arbitrary reliable components, the BITA

can not find optimal assignments for 48 instances; the BIGLS improves the solutions

for 47 out of these 48 instances to be the optimal assignments; the SGA improves

the solutions for 38 instances and achieves the optimal assignments for 35 out of the

38 instances. Overall, the BIGLS finds optimal assignments for all 100 instances in
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Table 4.1: Comparison of the BITA, BIGLS, and SGA on small systems

System Component Opt. # Imp. # Time (second)

Type BITA BIGLS SGA BIGLS SGA BITA BIGLS SGA

C1 High 100 100 100 – – 0.004 0.19 1.97
Low 100 100 100 – – 0.004 0.25 1.32

Arbitrary 100 100 100 – – 0.004 0.50 1.77
C2 High 100 100 100 – – 0.003 0.34 1.50

Low 100 100 100 – – 0.003 1.25 1.82
Arbitrary 100 100 100 – – 0.003 1.56 1.65

C3 High 55 81 72 35 30 0.012 0.41 0.58
Low 98 100 98 2 1 0.015 2.68 2.08

Arbitrary 63 100 91 37 29 0.013 3.63 2.54
C4 High 100 100 100 – – 0.016 1.16 2.48

Low 100 100 100 – – 0.019 0.34 0.20
Arbitrary 99 100 100 1 1 0.017 1.44 2.35

G1 High 40 100 100 60 60 0.006 1.19 1.77
Low 59 100 100 41 41 0.005 0.42 2.23

Arbitrary 37 100 100 63 63 0.006 1.88 2.47
G2 High 65 100 93 35 28 0.007 1.49 1.89

Low 82 100 99 18 17 0.008 0.62 2.48
Arbitrary 33 100 92 67 64 0.008 2.09 2.90

G3 High 80 99 99 19 19 0.006 0.94 1.16
Low 93 100 100 7 7 0.006 1.99 2.05

Arbitrary 52 99 87 47 38 0.005 2.70 2.43
G4 High 50 96 85 50 40 0.006 0.97 0.85

Low 92 100 96 8 4 0.007 2.38 2.24
Arbitrary 31 99 73 69 57 0.007 3.01 2.61

F1 High 92 100 100 8 8 0.005 1.41 2.17
Low 100 100 100 – – 0.005 1.18 1.88

Arbitrary 74 100 91 26 17 0.005 2.22 2.23
F2 High 72 100 95 28 25 0.006 1.54 2.25

Low 100 100 100 – – 0.006 1.56 1.76
Arbitrary 46 100 75 54 34 0.006 2.40 2.39

25 trials, 96-99 instances in four trials, and 81 instances in one trial; the SGA finds

optimal optimal assignments for all 100 instances in 16 trials and 72-99 instances in

the other 14 trials.

The computation time of the BITA (0.005-0.019 seconds) is much smaller than

those of the BIGLS (0.19-3.63 seconds) and SGA (0.20-2.90 seconds). Thus, including

the assignment generated by the BITA in the initial populations of the BIGLS and

SGA does not significantly increase their computational burden. Moreover, averaging

on the 100 instances in each trial, the BIGLS is faster than the SGA in 22 trials and
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slower in other eight trials. For the small instances, because the solution space of n!

assignments is relatively small, the BIGLS with the aid of the BI-based local search

can find assignments of high quality more easily than the SGA. Therefore, the BIGLS

can converge in less number of generations than the SGA and consequently the overall

time of the BIGLS can be smaller than the SGA although the BI-based local search

in the BIGLS consumes additional time in each generation. In summary, the BIGLS

is the best one among the three heuristics in terms of both solution quality and the

computation time for small size instances.

4.2.3 Computational results on large instances

Similarly, we generate a set of 100 instances for each large system and each component

type. There are 28 large systems and three component types and thus 84 trials of large

CAP instances. Because the enumeration method can not find optimal assignments

for the large systems in a reasonable time, we evaluate the BIGLS and SGA by the

number out of the 100 instances in each trial for which the BIGLS/SGA is able

to improve the assignments generated by the BITA. Table 4.2 presents this part of

the computation results and computation times. The first column represents the

Lin/Con/k/n systems with the omission of the phrase “Lin/Con/”. The “Imp. #”

and “Time” columns have the same meanings as in Table 4.1. Due to the same reason

as in Subsection 4.2.1, the results for the Lin/Con/3/100:F system with Low reliable

components are not available.

As summarized in the “Imp. #” columns, over 84 trials of instances, the BIGLS

improves the assignments generated by the BITA for more instances than the SGA

with only one exceptional trial (i.e., the one associated with the Lin/Con/5/20:F

system and the High reliable components). In the most trials, the BIGLS significantly

outperforms the SGA. For example, in the trial associated with the Lin/Con/3/50:F

system and the Low reliable components, the BIGLS can improve the BITA

assignments for 43 out of 100 instances, but the SGA fails to improve any of them.
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Table 4.2: Comparison of the BIGLS, BITA, and SGA on large systems

System
High reliable comp. Low reliable comp. Arbitrary reliable comp.

Imp. # Time (sec.) Imp. # Time (sec.) Imp. # Time (sec.)

BIGLS SGA BITA BIGLS SGA BIGLS SGA BITA BIGLS SGA BIGLS SGA BITA BIGLS SGA

3/20:F 90 71 0.04 4.70 3.32 8 0 0.04 0.59 0.18 89 67 0.04 6.27 3.98
3/30:F 91 59 0.09 9.31 4.02 26 0 0.10 1.25 0.11 97 76 0.10 10.40 4.75
3/50:F 93 43 0.28 24.36 5.53 43 0 0.41 3.41 0.43 99 35 0.36 22.43 6.62
3/100:F 94 29 1.40 89.24 10.26 – – – – – 99 31 2.46 56.06 11.20
4/20:F 89 60 0.04 3.46 1.42 32 9 0.04 1.64 1.71 95 79 0.05 7.58 4.23
4/30:F 83 42 0.09 8.18 1.95 12 1 0.08 1.23 0.24 85 50 0.09 12.92 5.07
4/50:F 82 14 0.27 27.64 2.74 57 0 0.41 3.45 0.43 96 47 0.29 27.92 6.80
4/100:F 74 7 1.67 117.39 5.63 100 0 3.50 15.37 3.55 100 29 2.78 112.25 12.67
5/20:F 30 44 0.04 1.06 0.71 64 34 0.04 1.83 2.93 98 86 0.05 8.34 4.38
5/30:F 47 35 0.12 3.73 1.02 47 9 0.10 2.85 1.59 99 83 0.13 14.46 5.26
5/50:F 70 17 0.41 18.23 1.70 42 0 0.40 3.42 0.42 100 54 0.53 33.94 6.85
5/100:F 64 10 2.11 99.14 4.30 99 0 3.95 15.79 4.00 97 30 3.60 123.90 13.87
2/20:G 1 0 0.03 0.37 0.03 21 0 0.03 4.64 2.99 80 36 0.02 4.56 2.31
2/30:G 2 0 0.04 0.54 0.05 31 1 0.07 6.05 3.69 39 22 0.06 3.11 1.22
2/50:G 77 36 0.07 0.47 0.09 22 1 0.17 9.78 4.54 1 1 0.16 1.91 0.37
2/100:G 85 39 0.24 1.45 0.27 4 0 0.66 29.68 6.60 1 0 0.36 4.57 0.39
3/20:G 13 0 0.03 0.40 0.05 6 0 0.03 2.28 2.75 85 39 0.02 5.47 3.52
3/30:G 0 0 0.06 0.76 0.07 5 0 0.07 3.50 3.43 90 24 0.05 7.39 3.22
3/50:G 1 0 0.10 1.42 0.11 6 0 0.17 6.24 4.08 75 10 0.18 9.01 1.95
3/100:G 95 30 0.26 1.67 0.28 1 0 0.67 18.47 6.07 0 0 0.63 6.99 1.52
4/20:G 87 49 0.03 1.77 0.92 3 0 0.03 1.70 2.13 74 23 0.02 5.10 3.36
4/30:G 4 1 0.07 0.77 0.10 0 0 0.07 2.88 2.20 76 14 0.05 8.06 3.80
4/50:G 0 0 0.17 1.91 0.18 0 0 0.17 5.77 3.30 90 21 0.15 12.63 3.63
4/100:G 32 5 0.30 2.17 0.33 0 0 0.67 18.46 4.81 28 2 0.64 17.90 2.64
5/20:G 93 46 0.03 2.37 2.16 8 0 0.03 1.46 0.85 62 23 0.02 4.51 3.38
5/30:G 59 12 0.07 2.01 0.79 2 0 0.06 2.48 1.17 79 19 0.05 7.29 3.90
5/50:G 1 0 0.16 1.93 0.17 0 0 0.16 5.24 1.59 91 10 0.13 14.44 4.61
5/100:G 3 0 0.34 5.34 0.36 0 0 0.63 17.08 2.90 85 14 0.77 32.26 3.74
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Note that, in the Lin/Con/k/n:G systems with Low reliable components

(especially when k ≥ 3), although the BIGLS still works better than the SGA,

neither of the BIGLS or SGA can significantly improve the assignments generated

by the BITA. A possible reason is that the BITA works very well on these instances

and already achieve optimal or near-optimal assignments (Yao et al., 2011), and thus

leaves very limited room for further improvement to the BIGLS and SGA.

Similar to the case of the small instances, over the 84 trials of large instances,

the average computation time of the BITA for a single instance (0.04-3.95 seconds)

is much smaller than those of the BIGLS (0.37-123.90 seconds) and SGA (0.03-13.87

seconds), again validating the reasonability of including the assignment generated by

the BITA in the initial populations of the BIGLS and SGA. However, different from

the case of the small instances, the BIGLS is usually slower than the SGA with a few

exceptions on the trials associated with the systems of size n = 20. As the system

size n increases, the BIGLS runs slower than the SGA. For the large CAP instances,

the solution space of n! assignments is large, and it is not easy to find assignments

of high quality by the BI-based local search over local subregions. Consequently, the

BI-based local search helps little on the convergence of the BIGLS, and the BIGLS

takes as many generations as the SGA before termination. On the other hand, the

BI-based local search consumes additional time in each generation of the BIGLS,

resulting in longer overall computation time than the SGA. Although the BIGLS is

the slowest one among the three heuristics in most of the large instances, the longer

(but still reasonable) computation time is paid off by its highest quality of solutions.

4.3 Summary

This chapter proposes the BIGLS algorithm for solving the CAP which is a hybrid

genetic algorithm with an embedded BI-based local search method. The BI is used not

only in the local search but also in generating the initial population of chromosomes.

The numerical experiments shows that the BIGLS behaves robust (hardly affected by
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its random operations) and effective in solving the CAP. The BI-based local search in

the BIGLS increases the solution quality for both the small and large CAP instances.

It also accelerates the convergence of the BIGLS for the small instances but adds

additional (still reasonable) computational burden for the large instances. The BIGLS

improves almost all the non-optimal assignments generated by the BITA and finds

the optimal assignments for most of the small instances. The BIGLS outperforms

both the BITA and SGA significantly in terms of solution quality, demonstrating

the critical role of the BI and the BI-based local search in combination with genetic

algorithm.
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Chapter 5

Conclusions

This dissertation studies two BI-related topics: the BI patterns in Lin/Con/k/n

systems and the BI-based heuristics and meta-heuristics for solving the CAP. The

results can be summarized as follows.

5.1 Nature of BI patterns in Lin/Con/k/n systems

We first summarize and clarify the existing results on BI patterns in Lin/Con/k/n

systems in the literature and notice that the existing research on BI patterns in

Lin/Con/k/n systems in the literature followed a fixed-length division method of

Lin/Con/k/n systems and tried to find repeated patterns among the divisions.

However, through some numerical experiments, we find that such a division method

is inappropriate and the repeated patterns do not exist under this division method.

This study explores the nature of BI patterns. We propose a new nonequal-length

division of Lin/Con/k/n system and discover consistent increasing-then-decreasing

patterns among the new divisions. We further investigate the relationship between

the BI patterns and the component reliability n and the relationship between the BI

patterns and the system size p, which also generate some new BI patterns conditioned

on p. These new findings also facilitate the understanding of the existing BI patterns,

89



the disproof of some conjectures, the construction of new conjectures, and even the

future research on BI patterns in Lin/Con/k/n systems.

5.2 BI-based heuristics for the CAP

BI has been successfully applied to design heuristics for the CAP. This study proposes

three new heuristics (i.e., the LKB, LKC, and LKD heuristics) based on the scheme

of the LKA heuristic and two new heuristics (i.e., the ZKC and ZKD heuristics) based

on the schemes of the ZKA and ZKB heuristics. We study all the existing and new

BI-based heuristics for the CAP thoroughly, including their theoretical properties and

numerical performances.

Based on comprehensive numerical experiments, we recommend a two-stage

approach (i.e., the BITA), in which Stage 1 uses both the LKA and LKB heuristics to

generate two initial assignments, and Stage 2 uses either the ZKB or ZKD heuristic

in combination with the two initial assignments obtained in Stage 1 to generate two

improved assignments and then chooses the one with the higher system reliability as

the final solution. In Stage 2, if all component reliabilities are less than or equal to

0.2, the ZKB is used; otherwise, the ZKD is used. Numerical tests show that the

BITA can achieve the best performances of all the BI-based heuristics in most cases

and outperforms the randomization method and the commercial GAMS/CoinBonmin

solver.

5.3 A hybrid genetic algorithm for the CAP

A drawback with the BI-based heuristics as well as the BITA is that they may stop

at local optimal or suboptimal solutions. Meta-heuristics are supposed to have better

performances in solving the CAP due to their potential to escape from local optimums.

Some simulated annealing and genetic algorithms have been proposed but are only

applicable to some special systems and do not utilize the useful BI information.
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To fill this gap, this study proposes a hybrid genetic algorithm (i.e., the BIGLS).

It embeds the BI into the generation of the initial population and the local search

approach (i.e., a BI-based pairwise exchange approach). We conduct comprehensive

numerical experiments to evaluate the robustness and effectiveness of the BIGLS and

the impact of embedding the BI in the BIGLS by comparing the BIGLS with the

benchmarking methods (i.e., the BITA and a simple genetic algorithm). The results

show that the BIGLS is robust to the random operations and is capable of generating

higher quality of solutions than the benchmarking methods.

The outstanding performances of both the BITA and the BIGLS on solving the

CAP inspire exploring the importance-measure based methods for solving various

highly challenging problems in the field of reliability optimization (e.g., the reliability

redundancy allocation problems (Kuo and Zuo, 2002)) and operations research (e.g.,

the logistics system design (Zhu et al., 2011)) by embedding the importance measures

into the design of solution methods. The findings and tests on the BI-based heuristics

in this dissertation will also benefit the development and evaluation of other BI-based

methods.
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