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Abstract—Component importance measures are relevantraiability. It can be defined by using different expression
improve the system design and to develop optimal repladsee, (1.10a)-(1.10c) in Barlow and Proschan (1975), p. 26,
ment policies. Birnbaum’s importance measure is one of thad Chapter 4 in Kuo and Zhu (2012b)). If the components
most relevant measures. If the components are (stochligticaare independent, these expressions are equivalent (e, t
independent, this measure can be defined using severat eqoincide). If they are dependent, then these options may lea
alent expressions. However, in many practical situatitims, to different concepts. Extensions of Birnbaum’s measure to
independence assumption is unrealistic. It also turnslmait tnon-coherent systems and risk models were studied in Aliee
in the case of dependent components different Birnbaungsal. (2017); Andrews and Beeson (2003) and Vaurio (2016).
measure definitions lead to different concepts. In this pape In many practical situations, the assumption of indepen-
we extend Birnbaum’s importance measure to the case d#fnce is unrealistic (consider, for example, the wheels in a
dependent components in a way allowing us to obtain relevamatr or the engines in a plane). The dependence is usually a
properties including connections and comparisons witlerothconsequence of the common environment for the components.
measures proposed and studied recently. The dependenddowever, as far as we know, only two importance measures
modeled through copulas and the new measure is basedhame been recently studied in the case of dependent compo-
the contribution of the component to the system reliability nents.

Index terms—Coherent system; Birnbaum importance mea- lyer (1992) extended the Barlow-Proschan importance mea-
sure; Barlow-Proschan importance measure; copula;figeti sure through

ratio order. Ipp(i) = Pr(T =T;), (1)
N whereT is the lifetime of the system and; is the lifetime
OTATION ) ; .
of theith component. This measure has a clear meaning and

n number of components depends on the joint distribution of the component lifeme
p=(p1,...,pn) @an element ofo,1]" However, it is not easy to compute it in the case of dependent
0, =(0,...,0)  n-dimensional vector of zeros components (both in practice and in theoretical cases).eSom
1,=(1,...,1)  n-dimensional vector of ones properties of this measure and connections with signatures
T system lifetime were given in Marichal and Mathonet (2013).
Ty,...., T component lifetimes More lately, Zhang and Wilson (2017) studied the following
Fr(t) reliability function of T alternative measure, proposed in Barlow and Proschan J1975
Fi(t) reliability function of 7; p. 27, for systems with dependent components
c copula of(Ty,...,T,)
C survival copula of(Ty,...,T,) In(i) = E(6(1;, X) — ¢(0i, X)),
ID identically distributed whereg is the structure function of the systedi, represents
Ipp(i) Barlow-Proschan importance measurgye siate of thejth component at time, for j = 1,....n,
Ip(i;p) Birnbaum importance measure (1, X) = (X1,..., Xi-1, 1, Xis1, ..., Xn) and (0;, X) =
tdl. time-dependent lifetimes (X1,...,X;_1,0,X441,...,X,). They studied this measure
Lil. time-independent lifetimes in the case of coherent systems with discrete marginals when
i.m. importance measure

the component states are dependent and positively assiciat
They characterize the influence of dependence structure on
system reliability and component importance. They used a
A number of component importance measures have bempula approach to represent the dependence between the
proposed and studied in the literature in the case of inemponents. For more details and reviews on importance
dependent components. Some of these have prevailed amehsures of independent and dependent components we refer
some others have disappeared. A good survey can be stenreader to Kuo and Zhu (2012b). Recent properties can be
in Kuo and Zhu (2012a) (see also Kuo and Zhu, 2012kgeen in Eryilmaz (2016); Lin et al. (2016); Zhu et al. (2016).
The Birnbaum’s measure for independent components waslhe dependence between the component lifetimes can be
proposed in 1969 (see Birnbaum, 1969) and it is still one ofpresented by the copula of the random ve¢far, ..., T,,).
the most popular component importance measures. It islglos€his is a very good way to represent the dependence rela-
related with the impact of the components in the systetionships between the components due to the common envi-
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ronment. The copula representation allows us to separate pnoperties of the importance measure defined in (3) when
structure dependence which is usually fixed (by a given cojre components are dependent. Some illustrative examgdes a
ula) or that just depends on a dependence parameter (inclutleluded in Section 4 and the conclusions can be found in
in the copula) from the different marginal distributionsieth Section 5. The technical proofs are placed in the Appendix.
represent the different units available for a given systém. Throughout the paper we say that a functipis increasing
short introduction on copula theory is given in Subsectioflecreasing) ify(z1,...,2,) < g(y1,...,y.) (>) forall z; <

[ILA. Additional results can be seen in the books Durante ang, i = 1,...,n.

Sempi (2016) and Nelsen (2006). Then, it is well known that

the system reliability at a given timecan be written as

Fr(t) :=Pr(T >t) = R(Fi(t),...,F.(t)) 2

Il. PRELIMINARIES

L _ . — A. Introduction to Copula Theory.
(see the details given in Subsection II.B) whefg(t) =

Pr(T; > t) is the reliability of theith component and The component lifetimes can be represented by a (nonneg-
R : [0,1]" — [0,1] is a continuous aggregation functiorative) random vecto(7?,...,7,). The different models are
which only depends on the structure of the system and EgPresented by the joint distribution function

the copula (see, e.g., Samaniego and Navarro, 2016; Miziuta
and Navarro, 2017). The functioR is increasing (in each

variable) and satisfie£(0, ...,0) = 0 and R(1,..., 1) = 1. The function F' contains both the information about the

This .represen_tanon holds for any kind of joint distributo dependence structure and the marginals distributions hwhic
(continuous, discrete, etc.) and can be used to computgshe s

tem reliability and to compare different systems (see Nzwarcan be obtained as
2018; Navarro et al., 2016; Navarro and del Aguila, 2017; Fi(t) = Pr(T; < t) = F(co,...,00,t,00,...,00)
Navarro and Durante, 2017) and to obtain bounds for the -
system performance (see Miziuta and Navarro, 2017, 201@eret is placed at theéth position, fori =1, ..., n.
If the components are independent, then the funciiois The copula theory (Sklar's Theorem) allows us to represent
a multinomial called thereliability function of the system ipe joint distribution functionF" as
structure(see Barlow and Proschan, 1975, p. 21).
In this paper, we use the copula-representation (2) to pro- F(ty,...,t,) = C(Fi(t),..., Fu(t)), (4)
pose and study an extension of classic Birnbaum component
importance measure to the case of dependent components.fbh@ copula functiorC'. A copulais a continuous multivariate

F(tlv-- -7tn) = Pr(Tl <ty,...,Tn < f'n)-

considered measure is defined by distribution function having uniform marginals over théen
Inlis R 3 val (0,1). The main advantage of expression (4) is that we can
(51, pn) = OiR(p1,. - pn), () separate the structure dependence (contained)ifrom the

whered; R represents the partial derivative &f with respect marginal distributions. By changing (or the parameter values

to its ith variable (we assume that this derivative existsicluded inC) or the marginals we obtain new models. This

This measure has also a clear meaning based on (2) siiscespecially useful when we represent the joint distrdoutf

it represents how an increment in the reliability of tita the component lifetimes in a system.

component, increments the system reliability. Note that it Analogously, the joint reliability (or survival) functiof" of

does not depend on the component reliability functions. (f1,...,7,) can be written as

the components are independent, then this measure cancide o

with that studied in Zhang and Wilson (2017) but if they are F(ty,...,ty) =Pr(T1 > t1,..., T, > ty)

dependent, then they are different (see Example 1). Morgove — C*(Fl(t), L Fa(t)), (5)

we show that the importance measure given in (1) can be

obtained from that in (3) as where F;(t) = Pr(T; > t) = 1 — f;(t) are the marginal

oo _ _ reliability functions andC' is another copula callegurvival

Ipp(i) =/ Ip (i F1(t), ..., Fn(t))dFi(t), copula. Notice that(C' is not the reliability functionC' as-

0 _ sociated toC. Actually, C' is a distribution function (it is
where F(t) = 1 — Fy(t) for i = 1,...,n, extending a increasing) whileC is a reliability function (it is decreasing).
similar well known property for systems with independemn{ote thatC' can be obtained fromi' (and vice versa).
components. The case of independent components can also be modelled

following section we introduce the preliminary results deg¢

in the present paper which include (Subsection 2.1) the Cp1s---spn) =C1,--.,Dn) =D1---Dn

copula representation for coherent systems with dependent

components and some ordering properties and (Subsectioh p1,...,p, € [0,1]. This copula is called theroduct

2.2) the importance measures used in the article with theppula

basic properties in the case of independent components. Th&or more properties of copulas and applications we refer
main results are given in Section 3 where we study the batliie readers to Nelsen (2006) and Durante and Sempi (2016).



B. Copula representation of system reliability for p = (p1,...,pn) € [0,1]™, where R is an increasing

An n-component system is a Boolean function continuous function such thak(0,,) = 0 and R(1,) = 1.
Function R depends on the structure of the system (the
¢:{0,1}" — {0,1} minimal path sets) and on the dependence structure between

_ . the components (the survival copula). When the components
where; < {0,1} represents the state of tith component are independent this function is called ttediability function

(s =1 means thgt it works) and(z1, L »¥n) the state of f the structurep in Barlow and Proschan (1975), p. 21. The
the system which is completely determined by the stateseof ; . : .
unction R in expression (8) can be seen as an extension of

components. The system é®herentif its structure function this function to the case of dependent components
¢ is increasing and each component is relevant for the systemA | . for th e lifeti h '
The ith component isrelevant for the system if¢ is not hajogously, for the respective lireimes we have
constant inz;. The system isemicoherentif ¢ is increasing, r

$(0,) = 0 and $(1,,) — 1, whereo, — (0,...,0) € {0,1}»  Pr(T>t)=> Pr(Tp, > )~ Y Pr(Tpup >1)
and 1, = (1,...,1) € {0,1}". The basic properties of i=1 l<i<js<r

systems can be seen in, for example, the classic book Barlow ©)
and Proschan (1975). + . 4 (1) Pr(Tru.up, > t)
If the component states (at a given time) are random, then = R(F1(t),..., Fa(t)), (10)
they are represented by the random vedo (X,..., X,,), B
#(X) represents the state of the system ane- Pr(X; = 1) WhereTpr = minjep 7. Note thatFr(t) := Pr(T > t) is
is the survival probability of theéth component. the reliability function associated to the system lifetiffielt
If the time is known, than the random vectdé(t) = is also called theavailability at timet of the system (see,

(Xl(f,), . ,X”(t)) represents the state of the Componen%g., Kuo and Zhu, 2012b, P. 31) The respective distrilputio
at time t. Then ¢(X (¢)) represents the state of the systenfunctions satisfy

If, as in the preceding subsection, the random ve@for= B

(Th,...,T,) represents the component lifetimes, thep= 1 Pr (T < t> = Q(F(0), -, Fu(t), (11)
if and only if 7; > ¢ and thenPr(X;(t) = 1) = Pr(T; > t) = whereQ(q1,...,q.) =1— R(1—qu,...,1— q,). Represen-
Fi(t) is theith component reliability at time. If 7' represents tations (9) and (11) are equivalent. FunctiGnhcan also be

the lifetime of the systemp(X(¢)) = 1 if and only if 7' > ¢ obtained from the minimal cut sets of the system (see, e.g.,
and thenPr(¢(X) = 1) = Pr(T > t) = Fr(t) is the system |Lemma 1 in Navarro and del Aguila, 2017). Also note that
reliability at time ¢. From now on we omit in X (¢) and these representations hold for any kind of coherent systems

Xi(t) to simplify the notation. (we do not need additional assumptions). Similar represent
It is well known (see, e.g., Barlow and Proschanions hold for semicoherent systems and mixed systems.
1975, p. 12) that(X) can be written as¢(X) =  The distributions that can be written in this way are
max;—1, ., minjep, X;, Where P, ..., P. stand for all the called generalized distorted distributions (see Navarro et

minimal path sets of the system. A st C {1,...,n} is al., 2016). The function® andQ are calleddual distortion
called apath setof a coherent system if the system operateghddistortion functions, respectively. Ordering properties and
when all the components iff do so. Aminimal path setis bounds for this kind of distributions can be seen in Navarro
a path set which does not contain other path sets. Throughetil. (2016); Miziuta and Navarro (2017, 2018); Navarro and
the paper we use the notatiofip = minjep Xj, i.6.,, Xp is  del Aguila (2017); Navarro and Durante (2017). Theorem 1
the state of the series system with component®irHence in Zhang and Wilson (2017) is extended in the following
r theorem. We use there the stochastic (st) order defined as
{p(X) =1} = U{XP% =1}, (6) follows: if X andY are two random variables, thet <., YV’
i=1 if and only if Pr(X > t) < Pr(Y > ¢) for all ¢. Its proof is

that is, the system works if and only if any of its minimal patfmmediate by (9) and (11). More ordering properties can be
sets does so. Note that,df is the survival copula of, then found in Navarro et al. (2016).

Pr(Xp=1) = C‘p(pl, D), @) Theorem 1. Le_t T, and T, be the_lifetin_"nes_ of_ two coh_er—
A A ent systems witih components having distribution functions
whereCp(py,...,pn) = Claf,...,al), af =piif ie P P ... F, LetR;, Ry and Qy,Q, be the respective distor-
andz! = 1if i ¢ P (that is, Cp is the marginal survival tion functions in representatior(®) and (11). Then:
copula of the random vector with the component lifetimes 1. 7, >, T, for all F,..., F, if and only if R; > R,.
included in P). Then, by applying the inclusion-exclusion 2.7, >, T, for all Fi,...,F, if and only ifQ; < Q.

formula to the union in (6), we get
For a parallel system, we hae = max(7Ty,...,T,) and

Pr(sb(X):l):ZC"pi(p)— > Crup(@)+...  PrT<t)=Pr(Ti <t,....Ty <t)=C(Ft),...,Fu(t)),

1<i<j<r
i (71>r+1é ! (p) that is,Q = C. A copula (distribution function)’; is said
I to be more positive lower orthant dependent (PLOD) than
=: R(p) () anotherc, if ¢, > Cs (see, e.g. Zhang and Wilson, 2017). So,



for parallel systems, the condition in item 2 of the precgdinwrite I5(i;p) := Ig(i;p,...,p). This allow us to compare
theorem can also be written &% is more PLOD thanCy, the importance of the components without including the com-
obtaining item 2 of Theorem 1 in Zhang and Wilson (2017)ponent reliability functions. Birnbaum constructed a stoual

For a series system, we ha¥e= min(73,...,7;,) and measure by putting = 1/2, that is, Iz(i) = Ip(i;1/2).

A = — The Birnbaum time-dependent importance measure is olotaine
Pr(I'> 1) =Pr(Ty > t,..., T > t) = C(F1(t), ... Fu(t), 1y replacingp with (F1(t),..., F,(t)) in (12), cf. Lambert
that is, R = C.. Hence the condition in item 1 of the preceding1975) and Natvig (1979).
theorem can also be written a3 > (5 or asC; is more  The Barlow-Proschan t.i.l. importance measure for systems
PLOD thanCs. A copula (distribution function); is said Wwith independent components can be defined (cf. Boland and
to be more positive upper orthant dependent (PUOD) th&hNeweihi, 1995) as
anotherC;, if the respective reliability functions satisty; > .
C (see, e.g., Zhang and Wilson, 2017). Hence, the condition Lpp(i) =Pr(T = To). (14)
C1 > Cy is equivalent ta”; is more PUOD thai@,, obtaining It is the probability that the system lifetime coincidesiwihe
item 1 of Theorem 1 in Zhang and Wilson (2017). lifetime of component. If the components are independent
with absolutely continuous distributions, then

C. Component importance measures oo _ _

In this paper we adapt the classification of component im- Ipp(i) :/O I (& F1(1), - Fu(t))dFi(2). (15)
portance measures given in Kuo and Zhu (2012a,b). MeAasuAesain to compare the components we can assume that the
based on only system structuge and survival copulaC' gan, P comp y

are calledstructure importance measuresand denoted by & c D, thalisfl =...Fy =F. In this casels» does not

, - mp . . y depend onF' and we get (see Marichal and Mathonet, 2013)
I(i;¢,C). If we additionally consider components’ reliabili-
tiesp; = Pr(X; = 1),j = 1,...,n, at a fixed unspecified N
time point, we say that we work witteliability importance Ipp(i) = . Ip (i3 p)dp. (16)
measures denoted byI(i;p), wherep = (p1,...,pn). If

the actual value of matters, we puf, () instead ofp, for lyer (1992) used expression (14) to extend Barlow-Proschan

measure to the case of dependent components. In this case

ijmpolrié.n.c,: rﬁggstsrlgsadb:#;g; S;?gr%jﬁ?;l.lfét:%i(gsdg'r) Ipp(i) depr(]ands on the structure o:the system,tEe dependence
I(i;t) for short. Finally, measures based on componengelt[W;ﬁn ft N pomponents (copula) and on the component
reliability functions Fj,j = 1,...,n for all the positive reliability functions.

t are calledtime-independent lifetime (t.i.l.) importance

measuresand denoted by (7). lIl. M AIN RESULTS

Birnbaum (1969) originally defined the reliability impor- We propose the following extension of Birnbaum impor-
tance measure of théh component for systems with inde-tance measure for systems with dependent components based
pendent component as follows on formula (13). In this section and in the following ones

) we use the notation and representations introduced in the
Ip(i;p) = Pr (¢(X) = 1|X; = 1) —Pr (¢(X) = 1|X; = 0). i ; P
(12) preceding section.

By using the notation introduced in the preceding sectibn, Definition 1. The Birnbaum reliability importance measure of
can also be written as: the ith component in a coherent system with dual distortion

) function R is defined b
IB(Zyp) = R(lup) - R(Oup)a y

I(i;p) = 0; 17
Where(liap) = (pla"'vpiflalvpﬂrlv"'7pn) and (017p) = B(%p) aR(p) ( )
(P1,--+,Pi-1,0,Dit1,-..,pn), OF @S (whered; R represents the partial derivative @ with respect
Inli;p) = E(¢(1i; $(X)) — ¢(0i7¢(X>))- to its ith variable) whenever this partial derivative exists for

p=(p1,...,pn) €[0,1]"
This last expression was used in Barlow and Proschan (1975) . : .
p. 27, to extend this measure to the case of depend nfor P = (p,...,p) we just write I5(i;p). Analogously
components (the three preceding expressions lead to the sgﬁ“? t|m§—dependent‘llf_et|me importance measure is_defined
measure). Zhang and Wilson (2017) studied properties of tfY Ip(i;t) = Ip(i;Fi(t),....Fu(t)) for t > 0. The
extension in the case of discrete marginals. precgdmg deflnltlons_ can glso be applied to semicoherent
Another equivalent expression for independent componeﬁ{s rmxed systems _(|.e_., mixtures of cqherent systt_ems). I
the ith component is irrelevant, thefz(i;p) = 0 (since
o R is constant inp;). By (9), Ig(i;p) measures how the
I5(i;p) = 9: R(p). (13) system reliability increases whqyg ingreases and the other
However, (12) and (13) are not longer equivalent when tlteemponent reliabilities are fixed. Sind&(p) is increasing in
components are dependent (see Example 1). In all these casash variable, measutg; (i; p) is nonnegative. Note that the
we can assume that the component lifetimes are identicaltyportance of a component may depend on the dependence
distributed (ID), that isp; = --- = p, = p. Then we just structure (copula), which is an expectable property. Soutat

is



also be written adg(i; p, C'). Moreover, Example 1 provesRemark 1. Theorem 3 can be also stated in the following
that this measure is different to that studied in Zhang arfidrm:

Wilson (2017) denoted here (for dependent components) as oo _ _
Pr(T=T)) = / OiR(F1(t),...,Fyo(t)) dFi(t).
Ip(isp) = E(¢(1i,6(X))) — E(6(0, ¢(X))). 0

It can also be written agj(i;p) = R(1;,p) — R(0;, p). For_given ¢, C' and Fi(t),...,Fu(t), the function
From now on we assume that the random vector with tH&(£'1(t).- -, F(t)) is explicit. Hence the above integral
component lifetimeg7y,...,7T,) has an absolutely contin-€an be calculated. Thus, we receive a formula to compute
uous joint distribution. In the first theorem we show thaf*(?" = T:). By Theorem 1, this formula can be simplified

measurel (i;p) defined in (17) is naturally related to theWhenfs = ... = I, = F', obtaining
measurelzp (i) proposed by lyer. 1
Pr(T =T;) = / @R(p, . ,p)dp.
Theorem 2. For anyi € {1,...,n} we have 0
Ip (i;Fl(ﬁ), o ,F,L(t)) =Pr(T =T)|T; = t). Then, in this casePr(T = T;) does not depend oR.

The technical proof of Theorem 2 is placed in the Appendix. Definitions and relations between discussed measures are
As we see, the time-dependent importance measure that%éhered in Table 1. Note that all of them are valid in both
propose has a natural interpretation: it is the probabiligt independent and dependent cases.
the failure of theith component at momentcauses the failure

of the entire system. As a consequence, we also infer that TABLE |
. . .. . DEFINITIONS AND RELATIONS BETWEEN DISCUSSED MEASURES
Ip (z;p) € [0, 1]. Also, the following result is immediate from
Theorem 2 and equality Birnbaum reliability i.m. Ip(i;p) = 0iR(p) _
o Birnlbaum t.d.:]. i.m. | Ip (z(, t)) = IB((i; Fl(t)), o Fo(1)
oy o . Barlow-Proschan t.i.l. i.m. Ipp(i) =Pr(T =1T;
Pr(T' =T, = A Pr(T =T|T; = t)dEi(t). Barlow-Proschan structure i.n. Igp(i; ¢, C) = fol I (i;p)dp
. Relation Ipp(i) = [;° I (i;t)dF;(t)
Theorem 3. For anyi € {1,...,n} we have Relation in the ID case Lnp(i) = Tnp (i, C)

Ipp(i) :/ Ig (i Fa(t), -, Fu(t))dF(1). (18) The following property shows thafgz can also be used

0 - . .
Theorem 3 is one of the main results of the paper sinﬁ%etcir?]rgpme the probability density function of the system

it proves that the measurk;p(i) proposed by lyer can be
obtained from measurég (i;p) defined in (17) (as in (15) Proposition 1. Let fr and fi,..., f, be probability density
for the case of independent components). Also, expres$®)n (functions ofl” and T4, .. ., T, respectively. Then for atl > 0
could be used to compute the importance measufdi). The we have
measurelj;(i; p) does not satisfy this property. n - o

Expressions (16) and (18) can be used to define the Barlow- fr(t) = Zfi ) Ip (i F1(t), ..., Fa(t)). (20)
Proschan structure importance measure as i=1

X 1 Proof. By (9), we have
Iar(i56,C) = [ Inlispdp (19) . -
0 fT(t):*ﬁR(Fl(t%-'-aFn(t))
which depends on the system structgrand on the survival n
copulaC, but not on the marginal distributions. The following _ Z Fi00R(Fi(t), ..., Falt))
corollary proves that, for identical marginals, measuigs(7) P
and Igp(i; ¢, O) coincide (as in the case of independeng‘nd (20) holds since
components).
Corollary 1. If Fy = ... =F, = F, thenIzp(i) does not Ip(i: Fr(t), ... Fu(t) = OR(E1(0), ... Fu(D)).
depend onF and Ipp(i) = Ip(i; ¢,C). The above formula becomes even more interesting if the
Proof. Substitutionp = F(t) in (18) gives us components are ID.
oo . Corollary 3. If fy = ... = f, = f, then for allt > 0 we
Tarn(i) = [ 1a (i F(0)dF() have
0

1 . frt)=f@) > Is(i;F(t)).
=/ Ip(i;p)dp = Ipp(i; ¢,C). ;
0 This allows us to study the likelihood ratio (Ir) order

pr?p)ser?; immediate consequence we obtain the fOIIOWIr]c?etween the ID components and the system. This order is
' defined as follows: LetX and Y be two random variables

Corollary 2. For any copulaC, S Isp(is ¢, C) = 1 with probability density functiong’ and g, respectively, then

holds. X <, Y if g(¢t)/f(t) is increasing in the union of their



supports. This ordering is the strongest order among thalusu The Barlow-Prochan information measure of the first com-
reliability orders since it implies the hazard rate, measideal ponent is
life, stochastic and reversed hazard rate orders (see Shakie

Shantikumar, 2007). Now we can state the following result. Igp(1) =Pr(T =T1) = Pr(Ty <T3)

Theorem 4. If f1 =...= f, = f, thenT <;,. T1 (T} <;,- T) / / Iz, y)dydx,

holds for any f if and only if 27" | Ip(i;p) is increasing

(decreasing) irp in (0,1). where f is the joint probability density function of7},75)

A similar technique can be used to compare the sam Wh'Ch by (5), can be written as

system with two different copulas or two different systems. f(z,y) = fL(2) f2(y)920,C(F1(2), Fa(y)).
The result can be stated as follows. Note thatcontains all
the information needed to perform such comparisons. Thus

A —
Theorem 5. Let 7 andT"” be lifetimes of two systems with ; / / F1(2) f2()0:0.C(F1 (x), Fa(y))dyda
n components having a common probability density function” 0

f. Let I (i;p) and If (i;p) be the respective information —
measures. Ther4 <, P T% holds for anyf if and only if = [ h@aC(F(2), Fa(e))de

S I (isp) _ / 11 Fa(2), Fa () dF ().
S I (ip) ’

Note that
is decreasing irp in (0,1). .
Finally, note that the joint reliability importance measur Ipp(1) # . Ip(1; F1(2), F2(2))dFi (x)
of components: and j introduced in Hong and Lie (1993) o
and Armstrong (1995) for independent components can be :A (x)dFy(z)

extended to the case of dependent components as

o since the last expression does not depend canlf the
Ig(i, j;p1,- - pn) = 0:0;R(p1, - .., Pn) components are 1D, then

whenever these partial derivatives exist.

Ipp(1) = / " 15T (2). Fa()dF (x) = / 1(1; p)dp.

IV. EXAMPLES In particular, for the C-O copula used above we obtain

The first simple example shows that importance measures 1 1 1 1
Ip and I} are different when the components are dependent Igp(1) :/ I(1;p)dp :/ ﬁdp =3
and that/z can be used to computie;p. 0 o (2-p)
as expected since this copula is exchangeable.
If we want to use Theorem 5 to compare the series system
h the C-O copulal® with that with the product copula
(independent component&)!, we should study the function

Fr(t) =Pr(T > t) =Pr(Ty > t,Ty > t) = C(F1(t), Fa(t)), 15 (1:p) + I8 (2:p) 1

that is, R = C. HenceIg(1;p1,p2) = 0,C(p1,p2) and I5(Lp) + I5(1;p)  p(2—p)?
I5(1;p1,p2) = C(1,p2) — C(0,p2) = pa. If the components
are independent, thefi(p,p2) = pip2 and Ip(1;p1,p2) =

p2 = I5(1;p1,p2). However, if they are dependent, then thes
measures can be different. For example, for the followin

Example 1. Let us consider a series system with two de-
pendent components having an absolutely continuous Jomtt
distribution with a survival copul&’. Then

As it is not monotonic in0, 1), 74 andT? are not Ir-ordered
for all f. So, in this case, the dependence does not improve
Ee series system (in the Ir order).

Clayton-Oakes copula In the following example we study a system with a different
Olpr.p) = P1po structure.
’ p1 + p2 — p1p2 Example 2. Consider a3-component coherent system with
we have the structure function given by(x1, 22, 23) = 1 + xows —

x122x3. Its structure can be presented as

2
b3 *
= Ix(1; .
(p1 + p2 — p1p2)? # D2 p(1;p1,p2) _(@)_@@

If the components are ID, that is; = p2 = p, then

Ip(1;p1,p2) =

Its minimal path sets arél} and{2,3}. Hence, by (8),

IB(Z’p) (2 ) 7& p= (1 p) R(plap27p3) =D1 + é(lap25p3) - é(plap25p3)-



Therefore We have seen that for ID components, the first one has the
' A greatest information measure. The situation may changawhe
Ip(Lip1,p2,ps) = O1R(p1,p2,p3) =1 = 1 C(p1,p2,ps)s e place the ‘weakest’ component in the ‘strongest’ place.

I5(2;p1,p2,p3) = O2R(p1,p2, p3) For example, ifFy(t) = e=%, Fy(t) = F3(t) = et and
= 8,C(1, p2, p3) — 0:C(p1, pa, p3), I(ist) := I (i; F1(t), Fa(t), F3(t)) for i =1,2,3, then
Ip(3;p1,p2,p3) = 5'3]?(171,172,173) ) T(1it) = 1 — e 2[1 + a(l — 2e~2)(1 — e 1)),
= 05C(1,p2,p3) — 93C(p1,p2,Dp3)- 121 = et — e 31+ a(l — e 2)(1 — 2¢7Y),
For example, consider the Farlie-Gumbel-Morgensternleopu ~ I(3;t) = e ' —e 3 [1 + a1l —e ) (1 — e ).

given by
. In the independent case (far= 0), we have

C(p1,p2,p3) = p1p2ps[l + a(l — p1)(1 — p2)], y ) 9

wherea € [—1,1]. For that copula[s is independent from [A51) =1 - e > ™1 —e™) = I(i:7)

T1,T> and the strength of dependence (either positive gy, , _ 2,3 and allt > 0. However, fora = 1 we getl(2;¢) >

negative) betweeft; andT; is controlled by the parameter. I(1;¢) for smallt’s and fora = —1 we obtainZ(3;t) > I(1;¢)

In particular, fora = 0 all the components are independenty, small +'s. The plots can be seen in Figure 1.
For this copula we have
Ip(1;p1,p2,p3) = 1 — pap3[l + a(l — 2p1)(1 — p2)],
Ip(2;p1,p2,p3) = p3 — pip3[l + (1 — p1)(1 — 2p2)],
Ip(3;p1,p2,p3) = p2 — pip2[l + (1 — p1)(1 — p2)].

0.5

0.4
In particular, ifp; = p2 = ps = p, then

Ip(1;p) =1 —p*[1 + a1l —2p)(1 —p)], .
I3(2;p) = p—p*[1 4 a(1 — 2p)(1 - p)),
Ip(3;p) =p — p*[1 + a1 = p)?].

One can check thatip(1;p,C) > Ip(2;p,C) and 014

Ip(Lip.C) 2 Ip(3:p,C) for all a € [-L1], p € [0,1]
and Ig(2;p,C) > Ip(3;p,C) for all p € [0,1] if and only ‘ ‘ ‘ ‘
if & > 0. The same order is preserved by Barlow-Proschan 0 01 02 03 04

structure importance measure defined in (19):

0.2

0.5

Ipp(1; ¢, é) = / Ig(1;p)dp = (2/3) + (1/60)a,
IB(2§p)dp = (1/6) + (1/60)Oé, 04

Ipp(3;0,C) = | I(3:p)dp = (1/6) — (1/30)ar

o

IBP(Q; ¢7 é) =

S—

0.24
We havelgp(1;¢,C) +Igp(2:0,C) + Ipp(3;9,C) =1, as
stated. ol
If the components are ID with a common probability density
function f, then the function

~—

0 0.1 0.2 03 04
3 t

> Ip(isp) =1+ 2p—p*[3+ a(l —p)(3 - 5p)]

i=1 Fig. 1. Importance measures for component 1 (red), 2 (blué)3agreen) for
. L the system considered in Example 2 with a FGM survival copolacy = 1
is not monotonic inp for any « € [—1,1]. So, by Theorem (top) anda = —1 (bottom).

4, we conclude thaf” and7; are not Ir-ordered under this
copula for allf. In a similar way we can compare the systems

obtained for different values af. Thus as the function The dependence provided by the Farlie-Gumbel-

) Morgenstern copula used in the preceding example is

Yo I8(i5p,Cs) 14 2p—p?[3 + B(1 —p)(3 — 5p)] too weak to significantly change components importance

S I (i p, éa) 1+ 2p—p2[3+ a(l —p)(3 —5p)] measures in relation to the independent case when the
components are identically distributed. In the following

is not monotonic whem: 7 [3, the system does not improveg, ample we use copulas bringing much stronger dependence.
(in the Ir order) when the dependence increases (decreases)




Example 3. Consider a5-component coherent system withfor i = 1,2 whene — 0. Also Kz (p,p,p;e) = p* ~ p
the structure function given by(z1, zo, z3, 24, 25) = z122+ andd;Kp(p,p, p;e) = 35 1p> ~1 ~ 1/3 for i = 3,4,5 when

T3T4T5 — T1T2T3T4T5. |tS Structure can be drawn as ¢ — 0. Hence
1/(1—¢)
D—@ = Inisp) ~ { 0, »<(1/2) 22

—~®—0—0 pER =4y e @D
Moreover, assume thdt, 7> are independent froffi, 7'y, 75.  for i = 1,2 and
In other words, we assume that the survival copulaan be 1/3 p < (1/2)1/09)
expressed as Ip(i;p) ~ { (2/:’3)(1 “p) p N (1/2)1/(175) (23)

C(p1,p2,ps, 04, p5) = Ka(p1, p2) K5 (ps, pa. ps) for i = 3,4,5. In particular,

for some copulasi,, K. Since{1,2} and{3,4,5} are the Iplisp) ~0<1/3~I5(j;p)

minimal path sets, we have
fori = 1,2, j = 3,4,5 andp < (1/2)/0=¢) ~ 1/2.
R(p) = Ka(p1,p2)+KB(ps, P4, ps)—Ka(p1, p2) K5(ps, s, Ps)Moreover,
and . ! 1/8, i=1,2
. Ipp(i;¢,C Z/IBi;pdp:*{ .
Tn(isp) = { 0iK a(p1,p2)[1 — Kp(ps,pa,ps)], i=1,2 ( ) 0 (i:p) 1/4, i=3,4,5.
: OiKp(ps, pa; ps)[L — Ka(p1,p2)l, i =3,4,5. Thyus ifTy,....Ts are identically distributed then

(21)
In the independent case, i.e., féf4(p1,p2) = pip> and Pr(T = T)) ~ 110 Pr(T = T)
Kp(ps,psa; ps) = p3paps, We have g8 4 !
. 4 5 4 , fori=1,2andj = 3,4,5 and, i.e., components 2 are ‘less
Ip(isp) =p—p" >p" —p" = I(j;p) important’ in the BP sense than componehts, 5. However,
fori = 1,2 andj = 3,4,5 and allp € (0,1). This result _ ‘ 1/2, i=1,2
is intuitive: components on the shorter path set are ‘more (i) :=Ip(i;1/2) N{ /3. i=3.4,5,

important’ than these on the longer path set. However, ibis n . ) )
longer true when we choos§ 4 and K5 in such a way that SO the Birbaum importance order between them is the same

T, and T» are strongly negatively dependent afig, 7,, 75 @S in the independent case.

are strongly positively dependent. Remark 2. In order to construct an example for which the
The ‘border’ copulas (Fréchet-Hoeffding bounds), whicBrders of the Birnbaum structural component measures in the

provide the maximum possible dependence, are the counitependent and dependent case are not the same, it suffices

monotonic and comonotonic ones, given BY.(p1,p2) = to slightly modify Example 3. In fact, by (21), (22) and (23),

0V (p1 +p2 — 1) and Ky, (p3,pa;p5) = p3 A pa A DPs,  we have

respectively, whereV' and ‘A’ stand for the maximum

and the minimum, respectively. Unfortunately, we cannat us I5(1) = 01Ka(1/2,1/2;¢)[1 — Kp(1/2,1/2,1/2;¢)]

them directly becausé, K.(1/2,1/2) and 95K, (p, p,p) do ~1-[1-1/2]

not exist. Therefore we approximate them by the following > (1/3)-[1 0]

Clayton-Oakes and Gumbel copulas ~ 5K p(1/2,1/2,1/2: )1 — Ka(1/2,1/2;2)]

Ka(p1,p2;e) = [0V (pi~° +py = — 1)V, = I5(3).
. C o) — _((_ \1/e _ 1/e )
Kp(ps, pa psie) = exp [ (( 1°g€5) + (=~ logpa) The value 9;K5(1/2,1/2,1/2:¢) ~ 1/3 is too small
+ (—logps)'/?)] to reverse the inequality. But if we chosk? such that

K5(1/2,1/2,1/2;¢) ~ 1/2 and 95 K3(1/2,1/2, 1/2;¢) >
1/2 instead, we would obtain the desired relatibn(1) <
lim Ka(p1,p2;¢) = Ke(p1,p2) I(3).

for a small parameter > 0. Then one can see that

Example 4. A very relevant system structure is the bridge

and )
lim Kp(ps,pa, ps; €) = Km (s, pa, ps)- system given by
D)o
Furthermore, we have
—@
1
Ka(p,pic) = 0, 1 p<(1/2)<  its structure function is
” 2t —1)TF ~2p—1, p>(1/2)7= . .
¢(x) = max| min(z1, x2), min(xs, x4),
and

min(zy, x4, x5), min(zs, 3, 5]

_1
0K a(p,pic) — 0, ) p<(1/2)"=  for & = (21,3, 25,24,25) € {0,1}". Let us assume that
(2p'*—1)T=pc~1, p>(1/2)T= only the component§l,4} and{2, 3} are dependent with the



same dependence structure, that is, the survival copulde&arcomponents in the same way as their respective counterparts
written as are in the independent components case.

C(p) = ps K (p1, pa) K (p2, p3) Ordering the system components with respect to their
importance measures is a natural way to seek the ‘fragile’
places of the system structure. It turns out that the order of
components significantly depends on the dependence between
R(p) = p1p2 + p3pa + ps K (p1, pa) + ps K (p2,p3) components. Hence, one can boost the system performance
— K(p1, pa) K (p2, p3) — pops K (p1, pa) — p1ps K (p2, p3) by a reasonable location of dependent components in a given

system structure when the dependence (copula) is known (or
— p3ps K (p1, pa) — paps K (p2, p3) + 2ps K (p1, pa) K (p2,13)- 3 pe estimated).

for p = (p1,p2,p3,p4,p5) € [0,1]™ and a bidimensional
copulaK. Then by (8),

Therefore, the importance index of the first componentis  Also, using the Birnbaum component importance measure
Tn(1p) = 1o — oo K one can easily examine the likelihood ratio order between th
5(L;P) = p2 = psK(p2, ps) entire system and single component lifetimes or lifetimés o
+ [p5(1 = p2 — p3) + (25 — 1)K (p2,p3)|01 K (p1,p1).  two systems with the same components, but different strestu
Lol dependences. Since the likelihood ratio order implieayma
other well known stochastic orders, in this way, we are able
to effortlessly check if all the popular orderings occurdref
Ig(5;p) = (1 — p2 — p3)K(p1,p4) + (1 — p1 — pa)K (p2,p3) the further analysis.
+ 2K (p1,pa) K (p2,p3). This paper is just a first step in this direction showing which
ortance measures should be used in the case of dependent
Indices 1 and 5 are not ordered in general. If we assume t'&%&ponents There are several open problems. Thus some
the components are identically distributed ane p; for i = gpecific (relevant) dependence models in reliability stidu
1,2,3,4,5, then examined in detail following the key ideas given here. Also,
Is(1;p) = p— pK(p,p) + (1 — 2p)[p — K(p, p)|01 K (p, p) particglar (more realistic) system structures should b.elied
including modular systems. Furthermore, the propertiehef
and joint reliability importance measure proposed here shdugd
I5(5:p) = 2(1 — 2p)K (p,p) + 2(K(p,p))2 studied as well as the connections of component information

measures with replacement policies.
In the independent case, we haVép, p) = p?, h K (p,p) = p
and

I5(1;p) = p+p* —4p® +2p* > 2p* — 4p® + 2p* = I(5;p). APPENDIX: Proof of Theorem 2.

So components 1, 2, 3, 4 are more important than componenty prove Theorem 2 we need the following technical
5. However, when components 1, 4 are strongly positivel¥mmas and corollaries.

correlated and so they are components 2, 3, the order tends to

flip. For example, take the Gumbel copula; (p, p; €) defined Lemma 1. For any system structurg and anyi € {1,...,n}
in Example 3. Then, for — 0, we haveK z(p, p;¢) = p> ~ we have

p, W Kp(p,p;e) =2¢"1p* "1 ~1/2 and

The indices of components 2, 3 and 4 are similar by t
symmetry. The importance index for component 5 is

Ip(l;p) ~p(1 —p) <2p(1 —p) =~ Ip(5;p). Pr(¢)(X):1) = Z Pr(X; =y; for all j #14)
. s (0;,9)=1
Besides, one may check that Y Y o
+ Z Pr(X; =1,X, =y, for all j #1).
IB(l) = IB(l; 1/2) < 13(5; 1/2) = 13(5) y: ¢(1li,y)—¢(05,y)=1
for e < 0.44.
Proof. Since
V. CONCLUSIONS
The copula approach is a convenient way to express the A = {x: ¢(x) = 1}

system reliability as a function of component (marginal)  — {(1, y): ¢(1;,y) = 1} U {(0s,): 6(0;,) = 1}
reliability functions and the dependence structure betwee — {(11,y): ¢(1s,y) = 1,6(0s, ) = 0}
them. This representation allows us to generalize the Binnb nY nY P Y
component importance measure to the case of dependent U{(Liy): o(Li,y) = 1,605, y) = 1}
components. Our generalization is consistent with theltesu U{(0;,y): ¢(0;,y) =1}
already existing in the literature. It shares propertieth\its ={(15,9): ¢(1s,y) — ¢(0s,y) = 1}
original version defined for independent components. Ewth U{(1s,y): 6(0s,y) = 1}
more, the extended Birnbaum component measure is related y nY
to the version of the Barlow-Proschan measure for dependent U{(0:,9): ¢(0;,y) = 1},



Z Pr(X;=ax,i=1,...,n)
x: p(x)=1
PI‘(XZ = ].,Xj =Yj for all J 7& Z)

>

y: ¢(1i,y)—9(0;,y)=1

+ ) Pr(Xi=1,X; =y, forall j # i)
y: ¢(0:,y)=1

+ > Pr(Xi=0,X; =y forall j # i)
y: ¢(0:,y)=1

Pr(X; =1,X; = y; for all j # 7)
y: ¢(1i,y)—¢(0i,y)=1
+ Y Pr(X; =y, forall j #i).
y: ¢(0:,y)=1

This concludes the proof.

If Pr(X; =1)=p; fori=1,...,n then, for anyy, the
probability Pr(X; = 1, X; = y; for all j # 4) is a function
of C. In particular, fory = (1,...,1), by (5), we have
PI‘(X,L' = 1,Xj =Yj for all 7 752) :PI‘(Xl =1,...,. X, = 1)

= C(p).

Fori<nandy = (1,...,1,0), by (5) and (7) we get

Pr(X; =1X; =y, forall j #1)
=Pr(X;=1,...., X, 1=1,X,=0)
=Pr(X;=1,....X,_1=1)

—Pr(X;=1,...,X, =1)
=C((1n,p)) — C(p).

The analogous formulas for any and y can be obtained

explicitly in a similar way. They are sums af at points

with the coordinateg; and 1 in some configurations. More
precisely, they are thé'-volume of a hyperrectangle defined

by i andy in the following way: theith interval is[0, p;] and

for j # 4, if y; = 1, then choose intervdD, p,], else choose

10

Now assume that/’,...,V,, are random vaﬁables with
uniform distributions in(0, 1) and with a copula’, i.e.,

Pr(Vi <pi,..., Vi < pn) = C(p) (25)

for anyp = (p1,...,pn) € [0,1]™. Then one can see that for
any: andy we have

Pr(Vi <pi,V; <p; Vj:y; =1,V; > p; Vj:y; =0)
Also the following lemma holds.

(26)

Lemma 2. For anyi andy we have
Pr(V; <pj Vj:y; =1,V; >p; Vj:y; = 0[Vi = pi)
providing this partial derivative exists.
Proof. To simplify the notation, we present the proof

for + = 1. It is analogous for every othen. Let
fg VVVVV n‘l(u,g, . ,un|u1), f17,,,,n(u1, . ,un) andf1 (Ul) stand
for the conditional density ofls, . .., V,,) under the condition
Vi = us, the joint density of(V4,...,V,,) and the density of
V1, respectively. By the formula of conditional density we @av

f1 777 (’U,l oy U )
f2,...,n|1(u2a' "7un|u1) - nfl('t’bl) —
= fin(un, .o un)

sincefi(u;) =1forallu; € (0,1). Let A,y =Io x...x 1,
Wherte = [0,]7]) if Yyj = landl, = (pj,l] if Yyj = 0,
j=2,...,n. Then, by (26), forl0 < p; < 1, we get

Pr ((‘/27 ceey V;L) S Ap,y|‘/1 = pl)

= / . ./f17...7,,L(p1,UQ, . ,’U,n)d’UQ e dun

Apy
P1
:61/...// f1,on(ur, ug, .o uy)durdus . . . duy,
0
Ap,y

= 31K1(Pa y)

interval [p,, 1]. However, we do not need the exact formulas. Corollary 4 and Lemma 2 imply the following result.

We only note that there exists a functid@y such that

Pr(X; = 1,X; = y; for all j #i) = K,(p,y)

for all p andy. If &-C‘(p) exists, then the partial derivative of

K,(p,y) with respect top;, denoted byd; K;(p, y), exists as
well. We can considePr(X; = y; for all j # ) in the same
way and conclude that

Pr(Xj =Y for all j 7& Z) = Kz((lzap)vy)a (24)

i.e, it does not depend on. Hence, Lemma 1 and (8) imply F5(7;) and p; = F;(t) for i

the following corollary.
Corollary 4. For anyi € {1,...,n} we have
y: ¢(1i,y)—(0i,y)=1

providing these partial derivatives exist.

Corollary 5. For anyi € {1,...,n} we have
O;R(p,K) = ZPr(Vj <pj;forall j:y; =1,
yes Vi >pjforall j:y; =0V =p,),
providing this partial derivative exists, where
S={y: o(1li,y) — ¢(0;,y) = 1}.

Let us consider now the component lifetimgs, ..., T,,)
with reliability functionsFy, ..., F,,. Then by puttingV; =
1,...,n, we obtain the
.,V fulfilling

uniformly distributed random variableg, . .
(25). Moreover,

Pr(‘max T; <t< min T} Ti:t)
Jtyi=

Jry;=1
=Pr(V; <p; forall j:y; =1,
V; > p; forall j:y; =0|V; =p;)
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holds for any: andy. Therefore we can rewrite Corollary 5for an (n — 1)-dimensional copulak, i.e., when X; is
as follows. independent from allX;, j # i.

Corollary 6. For anyi € {1,...,n} we have

OiR(Fi(t),..., Fn(t)) = > Pr(Ay|T; =1t)
yeS
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