369 research outputs found

    Master of Science

    Get PDF
    thesisRecent accelerated mass loss offset by increased Arctic precipitation highlights the importance of a comprehensive understanding of the mechanisms controlling mass balance on the Greenland ice sheet. Knowledge of the spatiotemporal variability of snow accumulation is critical to accurately quantify mass balance, yet, considerable uncertainty remains in current snow accumulation estimates. Previous studies have shown the potential for large-scale retrievals of snow accumulation rates in regions that experience seasonal melt-refreeze metamorphosis using active microwave remote sensing. Theoretical backscatter models used in these studies to validate the hypothesis that observed decreasing freezing season backscatter signatures are linked to snow accumulation rates suggest the relationship is inverse and linear (dB). The net backscatter measurement is dominated by a Mie scattering response from the underlying ice-facie. Two-way attenuation resulting from a Raleigh scattering response within the overlying layer of snow accumulation forces a decrease in the backscatter measurement over time with increased snow accumulation rates. Backscatter measurements acquired from NASA's Ku-band SeaWinds scatterometer on the QuikSCAT satellite together with spatially calibrated snow accumulation rates acquired from the Polar MM5 mesoscale climate model are used to evaluate this relationship. Regions that experienced seasonal melt-refreeze metamorphosis and potentially formed dominant scattering layers are delineated, iv freeze-up and melt-onset dates identifying the freezing season are detected on a pixel-by-pixel basis, freezing season backscatter time series are linearly regressed, and a microwave snow accumulation metric is retrieved. A simple empirical relationship between the retrieved microwave snow accumulation metric (dB), , and spatially calibrated Polar MM5 snow accumulation rates (m w. e.), , is derived with a negative correlation coefficient of R=-.82 and a least squares linear fit equation of . Results indicate that an inverse relationship exists between decreasing freezing season backscatter decreases and snow accumulation rates; however, this technique fails to retrieve accurate snow accumulation estimates. An alternate geometric relationship is suggested between decreasing freezing season backscatter signatures, snow accumulation rates, and snowpack stratigraphy in the underlying ice-facie, which significantly influences the microwave scattering mechanism. To understand this complex relationship, additional research is required

    Community Review of Southern Ocean Satellite Data Needs

    Get PDF
    This review represents the Southern Ocean community’s satellite data needs for the coming decade. Developed through widespread engagement, and incorporating perspectives from a range of stakeholders (both research and operational), it is designed as an important community-driven strategy paper that provides the rationale and information required for future planning and investment. The Southern Ocean is vast but globally connected, and the communities that require satellite-derived data in the region are diverse. This review includes many observable variables, including sea-ice properties, sea-surface temperature, sea-surface height, atmospheric parameters, marine biology (both micro and macro) and related activities, terrestrial cryospheric connections, sea-surface salinity, and a discussion of coincident and in situ data collection. Recommendations include commitment to data continuity, increase in particular capabilities (sensor types, spatial, temporal), improvements in dissemination of data/products/uncertainties, and innovation in calibration/validation capabilities. Full recommendations are detailed by variable as well as summarized. This review provides a starting point for scientists to understand more about Southern Ocean processes and their global roles, for funders to understand the desires of the community, for commercial operators to safely conduct their activities in the Southern Ocean, and for space agencies to gain greater impact from Southern Ocean-related acquisitions and missions.The authors acknowledge the Climate at the Cryosphere program and the Southern Ocean Observing System for initiating this community effort, WCRP, SCAR, and SCOR for endorsing the effort, and CliC, SOOS, and SCAR for supporting authors’ travel for collaboration on the review. Jamie Shutler’s time on this review was funded by the European Space Agency project OceanFlux Greenhouse Gases Evolution (Contract number 4000112091/14/I-LG)

    Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data

    Get PDF
    The concept of isohydry/anisohydry describes the degree to which plants regulate their water status, operating from isohydric with strict regulation to anisohydric with less regulation. Though some species level measures of isohydry/anisohydry exist at a few locations, ecosystem-scale information is still largely unavailable. In this study, we use diurnal observations from active (Ku-Band backscatter from QuikSCAT) and passive (X-band vegetation optical depth (VOD) from Advanced Microwave Scanning Radiometer on EOS Aqua) microwave satellite data to estimate global ecosystem isohydry/anisohydry. Here diurnal observations from both satellites approximate predawn and midday plant canopy water contents, which are used to estimate isohydry/anisohydry. The two independent estimates from radar backscatter and VOD show reasonable agreement at low and middle latitudes but diverge at high latitudes. Grasslands, croplands, wetlands, and open shrublands are more anisohydric, whereas evergreen broadleaf and deciduous broadleaf forests are more isohydric. The direct validation with upscaled in situ species isohydry/anisohydry estimates indicates that the VOD-based estimates have much better agreement than the backscatter-based estimates. The indirect validation with prior knowledge suggests that both estimates are generally consistent in that vegetation water status of anisohydric ecosystems more closely tracks environmental fluctuations of water availability and demand than their isohydric counterparts. However, uncertainties still exist in the isohydry/anisohydry estimate, primarily arising from the remote sensing data and, to a lesser extent, from the methodology. The comprehensive assessment in this study can help us better understand the robustness, limitation, and uncertainties of the satellite-derived isohydry/anisohydry estimates. The ecosystem isohydry/anisohydry has the potential to reveal new insights into spatiotemporal ecosystem response to droughts

    Passive Microwave Remote Sensing of Ice Cover on Large Northern Lakes: Great Bear Lake and Great Slave Lake, Northwest Territories, Canada

    Get PDF
    Time series of brightness temperature (TB) measurement obtained at various frequencies by the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) are investigated to determine ice phenology parameters and ice thickness on Great Bear Lake (GBL) and Great Slave Lake (GSL), Northwest Territories, Canada. TB measurements from the 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset (FO)/melt-onset (MO), ice-on/ice-off dates, and ice thickness on both lakes. The sensitivity of TB measurements at 6.9, 10.7, and 18.7 GHz to ice thickness is also examined using a previously validated thermodynamic lake ice model and the most recent version of the Helsinki University of Technology (HUT) model, which accounts for the presence of a lake-ice layer under snow. This study shows that 18.7 GHz H-pol is the most suitable AMSR-E channel for detecting ice phenology events, while 18.7 GHz V-pol is preferred for estimating lake ice thickness on the two large northern lakes. These two channels therefore form the basis of new ice cover retrieval algorithms. The algorithms were applied to map monthly ice thickness products and all ice phenology parameters on GBL and GSL over seven ice seasons (2002-2009). Through application of the algorithms much was learned about the spatio-temporal dynamics of ice formation, decay and growth rate/thickness on the two lakes. Key results reveal that: 1) both FO and ice-on dates occur on average 10 days earlier on GBL than on GSL; 2) the freeze-up process or freeze duration (FO to ice-on) takes a comparable amount of time on both lakes (two to three weeks); 3) MO and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL; 4) the break-up process or melt duration (MO to ice-off) lasts for an equivalent period of time on both lakes (six to eight weeks); 5) ice cover duration is about three to four weeks longer on GBL compared to its more southern counterpart (GSL); and 6) end-of-winter ice thickness (April) on GBL tends to be on average 5-15 cm thicker than on GSL, but with both spatial variations across lakes and differences between years

    Investigation of ice formation and water mass modification in eastern Laptev Sea polynyas by means of satellites and models

    Get PDF
    Salt expelled during the formation of ice in polynyas leads to a downward precipitation of brine that causes thermohaline convection and erodes the density stratification of the water column. In this thesis we investigate by means of flux models and satellite data the ability of the Western New Siberian (WNS) flaw polynya to modify the stratification of the water column and to form saline bottom water. The accuracy of existent microwave satellite-based polynya monitoring methods is assessed by a comparison of derived estimates with airborne electromagnetic ice thickness measurements and aerial photographs taken across the polynya. The cross-validation indicates that in the narrow flaw polynyas of the Laptev Sea the coarse resolution of commonly used microwave channel combinations provokes errors through mixed signals at the fast and pack ice edges. Likewise, the accuracy of flux models is tested by comparing model results to ice thickness and ice production estimates derived from high-resolution thermal infrared satellite observations. We find that if a realistic fast ice boundary and parameterization of the collection depth H is used and if the movement of the pack ice edge is prescribed correctly, the model is an appropriate tool for studying polynya dynamics and estimating associated fluxes. Hence, a flux model is used to examine the effect of ice production on the stratification of the water column. The ability of the polynya to form dense shelf bottom water is investigated by adding the brine released during an except ionally strong WNS polynya event in 2004 to the average winter density stratification of the water body. Owing to the strong density stratification and the apparent lack of extreme polynya events in the eastern Laptev Sea, we find the likelihood of convective mixing down to the bottom to be extremely low. We conclude that the recently observed breakdown of the stratification during polynya events is therefore predominantly related to wind- and tidally-driven turbulent mixing

    Passive microwave derived snowmelt timing: significance, spatial and temporal variability, and potential applications

    Get PDF
    Snow accumulation and melt are dynamic features of the cryosphere indicative of a changing climate. Spring melt and refreeze timing are of particular importance due to the influence on subsequent hydrological and ecological processes, including peak runoff and green-up. To investigate the spatial and temporal variability of melt timing across a sub-arctic region (the Yukon River Basin (YRB), Alaska/Canada) dominated by snow and lacking substantial ground instrumentation, passive microwave remote sensing was utilized to provide daily brightness temperatures (Tb) regardless of clouds and darkness. Algorithms to derive the timing of melt onset and the end of melt-refreeze, a critical transition period where the snowpack melts during the day and refreezes at night, were based on thresholds for Tb and diurnal amplitude variations (day and night difference). Tb data from the Special Sensor Microwave Imager (1988 to 2011) was used for analyzing YRB terrestrial snowmelt timing and for characterizing melt regime patterns for icefields in Alaska and Patagonia. Tb data from the Advanced Microwave Scanning Radiometer for EOS (2003 to 2010) was used for determining the occurrence of early melt events (before melt onset) associated with fog or rain on snow, for investigating the correlation between melt timing and forest fires, and for driving a flux-based snowmelt runoff model. From the SSM/I analysis: the melt-refreeze period lengthened for the majority of the YRB with later end of melt-refreeze and earlier melt onset; and positive Tb anomalies were found in recent years from glacier melt dynamics. From the AMSR-E analysis: early melt events throughout the YRB were most often associated with warm air intrusions and reflect a consistent spatial distribution; years and areas of earlier melt onset and refreeze had more forest fire occurrences suggesting melt timing\u27s effects extend to later seasons; and satellite derived melt timing served as an effective input for model simulation of discharge in remote, ungauged snow-dominated basins. The melt detection methodology and results present a new perspective on the changing cryosphere, provide an understanding of melt\u27s influence on other earth system processes, and develop a baseline from which to assess and evaluate future change. The temporal and spatial variability conveyed through the regional context of this research may be useful to communities in climate change adaptation planning

    Correcting Multiyear Sea Ice Concentration Estimates from Microwave Satellite Observations with Air Temperature, Sea Ice Drift and Dynamic Tie Points

    Get PDF
    Arctic sea ice cover is a sensitive climate indicator. Due to the warming climate, it has decreased dramatically in the Arctic over the past three decades. Moreover, multiyear ice (MYI), ice which has survived at least one summer, is decreasing at a much higher rate. MYI concentration can be retrieved from microwave remote sensing data. However, the retrieval shows flaws under specific weather conditions. The current thesis is motivated by the need of better estimates of MYI distribution. It introduces three methods to improve/correct the MYI concentration estimates from microwave satellite observations. The first method builds upon the NASA Team algorithm and uses dynamic tie points to compensate the temporal variations of tie points (typical brightness temperatures of each surface type at all the channels). The MYI retrievals in winters (Oct-May) of the years 1989-2012 show that the method with dynamic tie points yields higher estimates than the original method in most years. Both methods show clear declining trends of the MYI area from 1989 to 2012, which is consistent with the sea ice extent minimum. The MYI concentration retrieval with the NASA Team algorithm is most sensitive to the tie points of MYI and FYI at 19 GHz vertical polarized channel. These tie points should be treated with more caution when dynamic tie points are used. The second and third methods are two correction schemes used to account for radiometric anomalies that trigger the erroneous MYI concentration retrievals from microwave satellite observations. The correction based on air temperature is introduced to restore the underestimated MYI concentration under warm conditions. It utilizes the fact that the warm spell in autumn lasts for a few days and replaces the erroneous MYI concentrations with interpolated ones. It is applied to MYI retrievals from the Environment Canada Ice Concentration Extractor (ECICE) using inputs from QuikSCAT and AMSR-E data, acquired over the Arctic in a series of autumn seasons (Sep-Dec) from 2003 to 2008. The correction works well by identifying and correcting the anomalous MYI concentrations. For September of the six years, it introduces over 1.0x105 km2 MYI area, except for 2005. The correction based on ice drift is designed to correct the overestimated MYI concentrations that are impacted by factors such ice deformation, snow wetness and metamorphism. It utilizes ice drift records to constrain the MYI changes within a predicted contour and uses two thresholds of passive microwave radiometric parameters to account for snow wetness and metamorphism. It is applied to the MYI concentration retrievals from ECICE in winters (Oct-May) from 2002 to 2009. Qualitative comparison with Radarsat-1 SAR images and quantitative comparison against results from previous studies show that the correction works well by removing the anomalous high MYI concentrations. On average, the correction reduces 5.2x105 km2 of the estimated MYI area in Arctic except for the April-May time frame, when the reduction is larger as the warmer weather prompts the condition of the anomalous snow radiometric signatures. Both corrections can be used as post-processings to all the microwave-based MYI concentration retrieval algorithms. Due to the regional effect of weather conditions, they could be important in the operational applications. In addition, both corrections take the spatial and temporal continuity of MYI into account, which gives a new insight that instantaneous observations alone of sea ice may lead to ambiguities in determination of partial ice concentrations. This approach may be applicable to the retrieval of other sea ice parameters as well

    GNSS-R as a source of opportunity for remote sensing of the cryosphere

    Get PDF
    This work evaluates the potential use of signals from the Global Navigation Satellite Systems (GNSS) that scatter off the Earth surface for the retrieval of geophysical information from the cryosphere. For this purpose, the present study is based on data collected with a dedicated reflectometry GNSS receiver during two field campaigns, which were focused on two types of characteristic surfaces of the cryosphere: thin sea ice covers and thick dry snow accumulations. During the first experiment, the complete process of formation, evolution and melting of sea ice was monitorized for more than seven months in a bay located in Greenland. This type of ice is typically characterized by its thickness, concentration and roughness. Different observables from GNSS reflections are analyzed to try to infer these properties. The ice thickness is linked to the free-board level, defined as the height of the sea ice surface. Accurate phase altimetry is achieved, showing good agreement with an Arctic tide model. In addition, the long term results of ellipsoidal height retrievals are consistent with the evolution of the ice surface temperature product given by MODIS, which is a key parameter in the rate of growth of sea ice. On the other hand, the presence of salinity in the sea ice modifies its dielectric properties, resulting in different amplitude and phase for the co- and cross-polar components of the complex Fresnel coefficients. The polarimetric measurements obtained show good agreement with visual inspections of ice concentration from an Arctic weather station. Finally, the shape of the reflected signals and its phase dispersion are tested as potential signatures of surface roughness. For comparison, ice charts of the experimental area are employed. In particular, maximums in roughness given by the GNSS observables coincide with fast ice events. Fast ice is defined as ice anchored to the coast, where the tidal movements contribute to the development of strange patterns, cracks, and fissures on its surface, thus consistent with the GNSS-R roughness retrievals. The second experiment took place on Antarctica, monitoring a pristine snow area which is well-known for the calibration of remote sensing instruments. Due to the relative stability of the snow layers, the data acquisition was limited to ten continuous days. Interferometric beats were found after a first analysis of the amplitude from the collected signals, which were consistent with a multipath model where the reflector lies below the surface level. Motivated by these results, a forward model is developed that reconstructs the complex received signal as a sum of a finite number of reflections, coming from different snow layers (a snow density profile obtained from in-situ measurements). The interferometric information is then retrieved from the spectral analysis applied to time series from both real and modeled signals (lag-holograms). We find that the frequency bands predicted by the model are in general consistent with the data and the lag-holograms show repeatability for different days. Then, we attempt a proper inversion of the collected data to determine the dominant layers of the dry snow profile that contribute to L-band reflections, which are related to significant gradients of snow density/permittivity.Aquest treball avalua el possible ús dels senyals dels sistemes mundials de navegació per satèl lit (GNSS) que es reflecteixen a la superfície terrestre, per a l’extracció de la informació geofísica de la criosfera. Amb aquest propòsit, el present estudi es basa en dades recollides amb un reflectòmetre GNSS durant dues campanyes experimentals, centrades en dos tipus de superfícies característiques de la criosfera: cobertes de gel marí i gruixudes acumulacions de neu seca. En el primer experiment, el procés complet de formació, evolució i fusió del gel marí va ser monitoritzat durant més de set mesos a una badia situada a Groenlàndia. Aquest tipus de gel es caracteritza típicament amb el seu gruix, concentració i rugositat. Diferents observables de les reflexions GNSS són analitzats per tractar de fer una estimació d’aquestes propietats. El gruix de gel està relacionat amb el nivell de francbord, que a la seva vegada està relacionat amb l’alçada de la superfície de gel marí. S’ha aconseguit altimetria de fase precisa, que mostra correlació amb un model de marea de l’Àrtic. A més, els resultats a llarg termini de l’alçada elipsoidal segueixen l’evolució de les mesures de temperatura de superfície de gel donades per MODIS. La temperatura és un paràmetre clau en el ritme de creixement del gel marí. Per altra banda, la presència de sal a aquest tipus de gel modifica les seves propietats dielèctriques, el que implica variacions d’amplitud i fase per als coeficients de Fresnel complexos amb polaritzacions oposades. Les mesures polarimètriques obtingudes mostren concordança amb els valors de concentració de gel obtinguts des d’una estació meteorològica propera. Finalment, la forma de la senyal reflectida i la dispersió de la seva fase s’evaluen com a potencials indicadors de la rugositat de superfície. Per a la seva comparació, es fan servir mapes del gel de la zona experimental. En concret, els valors màxims a la rugositat estimada a partir pels observables GNSS coincideixen amb el gel fixe, que es refereix a gel ancorat a la costa, on els moviments de les marees contribueixen al desenvolupament de patrons estranys, esquerdes i fissures en la seva superfície. El segon experiment es va dur a terme a l’Antàrtida, monitoritzant una àrea de neu pristina que és ben coneguda per al calibratge d’instruments de teledetecció. A causa de la relativa estabilitat de les capes de neu, l’adquisició de dades es va limitar a deu dies consecutius. Es van trobar pulsacions interferomètriques a partir d’un primer anàlisi de l’amplitud de les senyals recollides, les quals eren compatibles amb un model de propagació multicamí a on el reflector es troba per sota del nivell de superfície. Com a conseqüència d’aquests resultats, s’ha desenvolupat un model que reconstrueix el senyal complexe rebut com la suma d’un nombre finit de reflexions, procedents de diferents capes de neu (determinat per mesures locals). La informació interferomètrica es recupera després de l’anàlisi espectral aplicat a les sèries temporals tant de les senyals reals, com de les modelades (lag-hologrames). Trobem que les bandes de freqüències predites pel model són en general consistents amb les dades i que els lag-hologrames mostren repetibilitat per dies diferents. Posteriorment, es realitza un anàlisi de les dades recollides per determinar les capes dominants del perfil de neu seca que contribueixen a les reflexions en banda L, i que a la seva vegada, estan relacionades amb gradents significatius de densitat/permitivitat.Este trabajo evalúa el posible uso de las señales de los sistemas globales de navegación por satélite (GNSS) que se reflejan en la superficie terrestre para la extracción de información geofísica de la criosfera. Con este propósito, el presente estudio se basa en datos recogidos con un reflectómetro GNSS durante dos campañas experimentales, centradas en dos tipos de superficies características de la criosfera: capas de hielo marino y gruesas acumulaciones de nieve seca. Durante el primer experimento, el proceso completo de formación, evolución y fusión del hielo marino fue monitorizado durante más de siete meses en una bahía ubicada en Groenlandia. Este tipo de hielo se caracteriza típicamente por su grosor, concentración y rugosidad. Diferentes observables de las reflexiones GNSS son analizados para tratar de estimar dichas propiedades. El espesor de hielo está relacionado con el nivel de francobordo o borda libre, que a su vez está relacionado con la altura de la superficie de hielo marino. Se ha logrado altimetría de fase precisa, mostrando correlación con un modelo de marea del Ártico. Además, los resultados a largo plazo de la altura elipsoidal siguen la evolución de las mediciones de temperatura de superficie de hielo proporcionadas por MODIS. La temperatura es un parámetro clave en el ritmo de crecimiento del hielo marino. Por otro lado, la presencia de sal en este tipo de hielo modifica sus propiedades dieléctricas, lo que implica variaciones en las amplitudes y fases de los coeficientes complejos de Fresnel con polarizaciones opuestas. Los resultados polarimétricos concuerdan con los valores de concentración de hielo obtenidos mediante inspección visual desde una estación meteorológica cercana. Por último, la forma de la señal reflejada y la dispersión de su fase son evaluadas como potenciales indicadores de la rugosidad de superficie. Para su comparación, se emplean mapas del hielo de la zona experimental. En particular, valores máximos de rugosidad estimada por los observables GNSS coinciden con hielo fijo, que se refiere al hielo anclado a la costa, donde los movimientos de las mareas contribuyen al desarrollo de patrones extraños, grietas y fisuras en su superficie. El segundo experimento se llevó a cabo en la Antártida, monitorizando una área de nieve pristina que es bien conocida para la calibración de instrumentos de teledetección. Debido a la relativa estabilidad de las capas de nieve, la adquisición de datos se limitó a diez días consecutivos. Se encontraron pulsaciones interferométricas a partir de un primer análisis de la amplitud de las señales recibidas, las cuales eran compatibles con un modelo de propagación multicamino donde el reflector se encuentra por debajo del nivel de la superficie. Como consecuencia de estos resultados, se ha desarrollado un modelo que reconstruye la señal recibida como la suma de un número finito de reflexiones, procedentes de diferentes capas de nieve (caracterizados por mediciones locales). La información interferométrica se recupera después del análisis espectral aplicado a las series temporales tanto de las señales reales, como de las modeladas (lag-hologramas). Encontramos que las bandas de frecuencias predichas por el modelo son en general consistentes con los datos y que los lag-hologramas muestran repetibilidad para días diferentes. Posteriormente, se realiza un análisis de los datos recogidos para determinar las capas dominantes del perfil de nieve seca que contribuyen a las reflexiones en banda L, y que a su vez, están relacionadas con gradientes significativos de densidad/permitivida

    Mixed Layer Dynamics Along the Seward Line in the Northern Gulf of Alaska

    Get PDF
    The northern Gulf of Alaska marine ecosystem is very productive with a nutrient paradox . Primary producers require light and nutrients for photosynthesis. A primary source of nutrients is the deep ocean, while light is available in a relatively shallow layer in the upper ocean. In most productive parts of the world oceans, nutrients are brought to surface waters by upwelling. However, in the northern Gulf of Alaska, the winds are generally downwelling inducing and the mechanism(s) by which nutrients are brought to the euphotic zone are not known. One mechanism that might bring nutrients into the euphotic zone is the deepening of mixed layers. This dissertation is the first study of mixed layer depths (MLDs) across the continental shelf of the northern Gulf of Alaska. Hydrographic and nutrient data have been collected as part of the GLOBEC NEP (GLOBal ocean Ecosystem dynamics North East Pacific) project along the Seward Line in the northern Gulf of Alaska. The Seward Line of hydrographic stations extends from the coast, across the continental shelf and beyond the shelf break. It intersects two major circulation features—the Alaska Coastal Current (ACC) on the inner shelf and the Alaska Current offshore of the shelf-break. This dissertation contains calculations and descriptions of the across-shelf and temporal (seasonal and interannual) variability in the MLDs and assessments of the role of MLDs in providing nutrients to the euphotic zone. The MLDs across the shelf are deepest in late winter/early spring and shallowest in summer. In general, MLDs on the shelf are deeper than those offshelf, with deepest MLDs near the shelf-break. This annual cycle is primarily in response to freshwater discharge, winds and solar insolation. On longer timescales, four forcing mechanisms have been identified: the direct interaction of freshwater discharge and winds; an estuarine-type circulation controlled by freshwater discharge and winds; upwelling related to the curl of the wind stress; and interactions with anticylonic eddies. Interannually, deep winter MLDs show a deepening trend near the coast and a shoaling trend mid-shelf and at the shelf-break. This might lead to greater productivity near the coast and decreasing productivity offshore. A primary source of nutrients to the region is the deep ocean, but the coastal runoff might be a secondary source at the inner shelf. The nutrients correlate well with MLDs on the inner and mid-shelf, where they play a significant role in the supply of nutrients to the euphotic zone. However, at the shelf-break and beyond, other mechanisms might be more important for supplying nutrients. Further studies need to be done to include the effects of bathymetric interactions and horizontal advection and to resolve the episodic wind events that are possibly responsible for deep mixing
    corecore