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ABSTRACT 

Time series of brightness temperature (TB) measurement obtained at various frequencies by 

the Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) are 

investigated to determine ice phenology parameters and ice thickness on Great Bear Lake 

(GBL) and Great Slave Lake (GSL), Northwest Territories, Canada. TB measurements from 

the 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are 

compared to assess their potential for detecting freeze-onset (FO)/melt-onset (MO), ice-

on/ice-off dates, and ice thickness on both lakes. The sensitivity of TB measurements at 6.9, 

10.7, and 18.7 GHz to ice thickness is also examined using a previously validated 

thermodynamic lake ice model and the most recent version of the Helsinki University of 

Technology (HUT) model, which accounts for the presence of a lake-ice layer under snow. 

 

This study shows that 18.7 GHz H-pol is the most suitable AMSR-E channel for detecting 

ice phenology events, while 18.7 GHz V-pol is preferred for estimating lake ice thickness 

on the two large northern lakes. These two channels therefore form the basis of new ice 

cover retrieval algorithms. The algorithms were applied to map monthly ice thickness 

products and all ice phenology parameters on GBL and GSL over seven ice seasons (2002-

2009).  

 

Through application of the algorithms much was learned about the spatio-temporal 

dynamics of ice formation, decay and growth rate/thickness on the two lakes. Key results 

reveal that: 1) both FO and ice-on dates occur on average 10 days earlier on GBL than on 

GSL; 2) the freeze-up process or freeze duration (FO to ice-on) takes a comparable amount 

of time on both lakes (two to three weeks); 3) MO and ice-off dates occur on average one 

week and approximately four weeks later, respectively, on GBL; 4) the break-up process or 

melt duration (MO to ice-off) lasts for an equivalent period of time on both lakes (six to 

eight weeks); 5) ice cover duration is about three to four weeks longer on GBL compared to 

its more southern counterpart (GSL); and 6) end-of-winter ice thickness (April) on GBL 
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tends to be on average 5-15 cm thicker than on GSL, but with both spatial variations across 

lakes and differences between years.   
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PREFACE 

In addition to introductory, research contents, study area and general conclusions chapters, 

this thesis contains three chapters (Chapters 4, 5 and 6) written in the form of journal 

articles. 

 

One article (Chapter 5), titled “Sensitivity of brightness temperature from AMSR-E 

frequency channels to the seasonal evolution of lake ice thickness in Great Bear and Great 

Slaves Lakes”, was published in 2010 in Geoscience and Remote Sensing Letters. The 

second article (Chapter 4) on “Estimating ice phenology on large northern lakes from 

AMSR-E: Algorithm development and application to Great Bear Lake and Great Slave 

Lake, Canada” was published in 2012 to The Cryosphere. This Chapter 4 was modified 

from the second article. The last article (Chapter 6), titled “Estimating ice thickness on 

Great Bear Lake and Great Slave Lake from AMSR-E brightness temperature 

measurements”, was recently submitted (May 2012) to Remote Sensing of Environment. 

Chapters 4, 5, and 6 are modified versions of the previously published journal articles. 

  

The first article (Chapter 5) is the result of direct collaboration with Prof. Claude R. 

Duguay, Dr. Stephen E. L. Howell, Dr. Chris P. Derksen, and Prof. Richard E. J. Kelly who 

provided guidance and comments throughout the duration of the study. Prof. Duguay 

advised with the initial scheme of the article as well as with the interpretation of results. 

Prof. Kelly’s contributions included explanations of AMSR-E data structure and processing 

of brightness temperature measurements. Drs. Derksen and Howell of Environment Canada 

provided comments in committee meeting and during the preparation of the manuscript. 

 

The second (Chapter 4) and third articles (Chapter 6) are the result of a close collaboration 

with Prof. Duguay. He contributed some ideas during the early stages of the development 

of lake ice phenology and thickness algorithms, as well as for the validation of the 

algorithms. Dr. Stephen Howell shared some of his experience in the development of active 

and passive microwave sea ice retrieval algorithm, which was useful when developing the 
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lake ice phenology algorithm. He also provided useful comments on the second article 

before its submission. Mr. Juha Lemmetyinen contributed simulated brightness 

temperatures of GBL and GSL obtained with the Helsinki University of Technology (HUT) 

model for comparison with AMSR-E measurements used in the third article. In this last 

article, Prof. Yulia Gel provided valuable statistical advice for the improvement of ice 

thickness retrieval algorithm using non-adaptive scheme of linear regression and out-of-

sample prediction methodology.  
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Chapter 1: Introduction 

When a lake surface approaches 4 C, which is the temperature of maximum density of 

freshwater, the surface water becomes denser.  With further cooling, the surface water layer 

becomes stable and lighter. As this water layer approaches the freezing point (0 C), ice 

starts to form on the lake surface (Jeffries et al., 2005b). The thermodynamics of lake ice 

depends on energy movement, which occurs during temperature change. Heat and energy 

transfer influences ice growth and thickening, and the timing of freeze-up and break-up.  

Freshwater ice scientists refer to freeze-up/break-up dates and the duration of ice on lakes 

(and rivers) as ice phenology (Jeffries and Morris, 2007). More specifically, lake ice 

phenology encompasses: freeze-up in the autumn; a long period of growth and thickening 

in winter; a short period of ice melting and thinning, and finally, break-up and the complete 

disappearance of the ice cover in spring, depending on lake bathymetry and its latitudinal 

position. Lake ice growth occurs between ice-on date (late stage of freeze-up period) and 

melt-onset (early stage of break-up period) as a result of energy loss by the conductive heat 

flow to the atmosphere above from the water under the ice through the ice/snow interface. 

 

As freeze-up and break-up dates, and maximum ice thickness, are good proxy indicators of 

climate variability and change, such ice information on lakes is crucial for understanding 

lake ice thermodynamics as well as the energy balance of the cold regions of the Northern 

Hemisphere. Understanding of lake ice phenology contributes not only to our 

understanding of environmental changes in northern Canada but also provides useful 

information for hydroelectric power generation and winter transportation on ice roads in the 

North. Shorter ice cover duration, thinner ice, and earlier break-up can influence the winter 

road season, thereby affecting industrial development and the delivery of goods in northern 

communities. Furthermore, changes in lake ice duration play a significant role in 

hydrological processes, and have important ecological implications (Duguay et al., 2006). 

For the aspects of lake ecology, the duration of ice cover and the date of break-up have an 

impact on lake oxygenation, fish winterkills, phytoplankton production, species 
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composition and abundance (Livingstone, 1997). Given the significance of freshwater ice 

as a climate indicator, the Global Climate Observing System (GCOS) requires the precise 

observation of complete freeze-over and water clear of ice dates (ideally at daily intervals)  

for several hundred of lakes at high latitudes (Key et al., 2007). In a recent study, it was 

also shown that knowledge of the entire extent of lake ice cover average is useful for 

calculating the total amount of shortwave radiation relating the area-averaged deficit of heat 

received by the lake during a winter/spring season (Austin and Colman, 2007).  

 

Circumpolar regions are strongly sensitive to global warming, which causes increasing 

melting of snow and ice; significant alteration of weather patterns (Woo et al., 2007). 

Trends towards earlier water clear of ice dates (i.e. when ice is no longer present on a lake), 

as determined through the analysis of ground-based observations, have provided much of 

the explanation for the increasingly shorter ice cover season on many lakes across Canada 

during the later part of the twentieth century (Duguay et al., 2006). Canada’s government-

funded historical ground-based observational network has provided much of the evidence 

for the documented changes and the links established with atmospheric forcings. However, 

this network has almost totally vanished over the last two decades. Also, although the 

ground-based ice observations were spatially consistent (usually the same site was observed 

year after year), they were not representative of the entire lake surfaces. Now, satellite 

remote sensing provides an attractive alternative for rebuilding the lost observational lake 

ice network, which had been previously available in a lake ice database, and also for 

providing more spatially representative information regarding both ice phenology and ice 

thickness.  

 

1.1  Thesis goal and objectives 

The main goal of this research is to improve our monitoring capabilities and understanding 

of lake ice thermodynamic processes in response to climate conditions on two large lakes in 

northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL), Northwest 

Territories. For this purpose, ice cover retrieval algorithms were developed using Advanced 
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Microwave Scanning Radiometer for EOS (AMSR-E) passive microwave brightness 

temperature measurements. This doctoral thesis has three main objectives: 

 

1. To develop and evaluate an algorithm for determining lake ice phenological parameters 

(freeze onset, ice on, melt onset, ice off, and ice duration) on GBL and GSL. 

 

2. To develop and evaluate algorithms for estimating lake ice thickness on GBL and GSL. 

 

3. To apply the developed retrieval algorithms for mapping the spatial and temporal 

patterns of lake ice phenology and ice thickness on GBL and GSL, and advancing our 

understanding of the response of ice cover on these two large northern lakes in 

response to air temperature variability. 

 

1.2   Structure of the thesis 

Chapter 2 introduces lake ice thermodynamics, remote sensing of lake ice, as well as the 

fundamentals and previous work on passive microwave (radiometry) of lake ice. Chapter 3 

briefly describes the characteristics of GBL and GSL, and our current knowledge of the 

response of ice cover on these lakes to climate conditions. Chapter 4 presents the 

development of an ice phenology algorithm from AMSR-E brightness temperature 

measurements and its application to map ice cover on GBL and GSL (2002-2009). Chapter 

5 describes the sensitivity of AMSR-E brightness temperature measurements to the 

seasonal evolution of lake ice thickness on the same lakes. As an extension of Chapter 5, 

Chapter 6 presents the development of ice thickness retrieval algorithms and its application 

to map the monthly distribution of ice thickness on GBL and GSL. Finally, Chapter 7 

provides a summary of the main findings of this thesis and recommends future research 

directions regarding remote sensing of lake ice. 
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Chapter 2: Research context 

2.1 Lake ice thermodynamics 

Ice growth occurs between ice-on date and melt-onset as a result of an energy surplus or 

deficit in the energy balance (Brown et al., 2010; Jeffries et al., 2006) and, in particular, 

energy loss through the conductive heat flow to the atmosphere above from the underlying 

freshwater under the lake ice to the ice/snow boundary. The thickness and condition of the 

ice layer are dependent on surficial and internal ice melting (i.e. candling), surface albedo 

and the insulating properties of the snow cover, deformation and fracture of ice by snow 

load, and ice growth rates at the ice-water interface (Livingstone, 1997), as well as thermal 

expansion/contraction of ice. The insulating role of snow causes a high temperature 

gradient between the air/snow and snow/ice interface, and this controls lake ice 

development and ice composition owing to the lower thermal conductivity of snow (0.08-

0.54 Wm
-2

K
-1

) in opposition to 2.24 Wm
-2

K
-1 

for ice (Brown et al., 2010). In addition, the 

presence of clouds can promote ice growth through cooling effect due to reflected solar 

radiation as well as warming effect by trapping emitted longwave radiation from the ice 

cover (Brown et al., 2010). Black ice (clear ice or congelation ice) and snow ice contribute 

to the thermodynamic thickening of lake ice: the former originates from freezing of water at 

the bottom of the ice cover. The latter is formed through refreezing of wet snow at the top 

of the ice cover following a slushing event, by liquid precipitation and associated water 

percolating through the snow to lake ice cover, or from snow precipitation incorporated into 

the ice during its initial formation (Brown et al., 2010; Duguay et al., 2003b; Jeffries et al., 

2006).  

 

The equilibrium between shortwave and longwave radiative fluxes at air/ice interfaces, 

sensible and latent heat fluxes, and the conductive heat flux through ice layers are the 

fundamental thermodynamics processes of lake ice (Duguay et al., 2003b; Jakkia et al., 

2009; McKay et al., 1985). The latent heat flux characterizes heat transfer when phase 

changes (i.e. solid to liquid, or water to ice) on lake ice surface; melting process is 
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described as the heat exchange related to the surface melt of different types of snow/ice. 

Furthermore, sensible heat flux occurs when temperature changes; the conductive heat flux 

plays a significant role in destroying the vertical temperature profile in the subsurface and 

restoring thermal equilibrium in ice cover (Duguay et al., 2003b; Serreze et al., 2005). 

Water currents in completely ice-covered lakes, where one half of the solar radiation 

penetrates through the top surface while the other half is absorbed at the surface, are 

commonly in a laminar-turbulent transition regime (Jakkia et al., 2009). The surface energy 

budget (F) is  

           
 (   )   (    )(    )                   (2.1) 

where Flw is the downward longwave radiative flux (W m
-2

), and Fsw shows downward 

shortwave flux (W m
-2

). The upward longwave radiation is calculated from     
 , where   

is surface emissivity (equal to 0.99), σ is a Stefan-Boltzmann constant (5.6697  10
-8

 W m
-2 

K
-4

), and Ts is surface temperature (in K). Otherwise, upward shortwave flux is derived 

from     , where α is surface albedo.    is fraction of shortwave radiation flux that 

penetrates the surface, equal to 0.17 if snow depth  0.01 m, and equal to 0 if snow depth > 

0.1 m. Flat and Fsens are downward latent and sensible heat fluxes, respectively (Duguay et 

al., 2003b). A schematic illustration of lake ice thermodynamics, as represented in the 

Canadian Lake Ice Model (CLIMo), is shown in Figure 2.1. In lake ice models, with the 

exclusion of downward longwave flux, all of the expressions in Equation 2.1 are dependent, 

either explicitly or implicitly, on surface temperature (Duguay et al., 2003b). Changes in 

the direction and magnitude of these heat fluxes determine ice growth and thickening on 

northern lakes such as GBL and GSL, the two lakes investigated in this thesis. 

 

Both the latent and sensible heat fluxes on GSL are higher than those of GBL; the latter 

being located at a more northern latitude (Rouse et al., 2009). Freeze-onset (FO) occurs 

when latent and sensible heat fluxes increase rapidly in the early winter season (Rouse et 

al., 2009). As these two heat fluxes reach zero, complete freeze over (CFO) occurs across 

the lake surface. In addition, conductive heat flux increases gradually from FO to CFO due 

to temperature gradient changes. As incoming solar radiation increases in spring on both 
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lakes (GSL first) the latent heat flux gradually increases from melt-onset (MO) and 

continues to increase until the complete disappearance of ice. The sensible heat flux 

increases negatively from MO to ice-off dates (Rouse et al., 2009). 

 

 

Figure 2.1: Schematic illustration of lake ice thermodynamics during the ice season (Duguay 

et al., 2003b). The layers with dots and with dashed lines point to snow and ice with depth 

(dz), respectively. The thick grey line represents the temperature profile from the surface 

temperature (Ts) on lake ice surface to the freezing temperature of fresh water (Tf).   

 

 

2.2 Remote sensing of lake ice 

2.2.1 Optical remote sensing 

Optical remote sensing instruments offer more limited potential for the retrieval of ice 

phenological information over lakes compared to microwave systems due to their 

sensitivity to the presence of clouds, polar darkness and generally lower temporal 

resolution. Spaceborne optical sensors such as LANDSAT-Multispectral Scanner (MSS), 

National Oceanic and Atmospheric Administration (NOAA)–Advanced Very High 
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Resolution Radiometer (AVHRR), Operational Linescan System (OLS) on Defense 

Meteorological Satellites Program (DMSP) have been used in a few studies for detecting 

ice formation, freeze-up/break-up dates, and ice type classification on the Great Lakes 

(Wiesnet, 1979; Leshkevich et al., 1985; 1988) and northern European lakes (Maslanik et 

al., 1987; Skorve et al., 1987). Satellite-derived ice phenological dates from AVHRR have 

also been utilized to improve ground observations, which are more spatially limited 

(Wynne et al., 1993; 1996).  

 

Ice break-up dates have been extracted recently with some degree of success from a long 

time series of NOAA-AVHRR data (1985-2004) for selected lakes across Canada 

(Latifovic et al., 2007). MODIS (Moderate-resolution Imaging Spectroradiometer) and 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) derived 

snow/ice surface temperature have also been identified as useful for learning about land 

surface processes and the influencing local climate (Hall et al., 2008). Finally, MODIS 

visible and near-infrared data have been used for the verification of lake ice cover 

parameters derived from active and passive microwave sensors under clear-sky conditions 

(Howell et al., 2009a; Kouraev et al., 2007a). 

 

2.2.2 Active microwave remote sensing 

Active microwave satellite sensors offer an advantage over optical satellite sensors; they 

provide data regardless of cloud presence and polar darkness, and, therefore, are of 

particular interest for monitoring of lake ice cover. In this respect, several studies have 

shown the potential of airborne/spaceborne radar (altimetry, scatterometry, but with 

emphasis on synthetic aperture radar or SAR) for lake ice investigations (Sellmann et al., 

1975; Elachi et al., 1976; Weeks et al., 1977, 1978, 1981; Swift et al., 1980; Mellor et al., 

1982; Leconte et al., 1991; Weydahl 1993; Hall et al., 1994; Jeffries et al., 1994, 1996; 

Morris et al., 1995; Duguay et al., 2002, 2003a; Kouraev et al., 2007a; Howell et al., 2009a). 

SAR data has been shown to be useful for detecting freeze-up dates (Hall et al., 1994). A 

number of radar-based studies have been carried out to monitor ice formation and growth, 
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floating and grounded lake ice, and the ice decay process near Churchill, Manitoba 

(Duguay et al., 1997, 1999, 2002, 2003a), the North Slope of Alaska (Jeffries et al., 1994, 

1996; Morris et al., 1995; Kozlenko et al., 2000; White et al., 2008), on a large, deep 

Siberian lake (Elgygytgyn) (Nolan et al., 2003), on shallow lakes of the N.W.T. (Hirose et 

al., 2008), as well as on GBL and GSL (Howell et al., 2009a), in addition to ice type 

classification (Leshkevich et al., 2007; Nghiem et al., 2007). One disadvantage of the use of 

SAR from current satellites is that data can only be acquired in one imaging mode (higher 

or lower spatial resolution) at a time and in some cases the data is not free-of-charge. The 

latter has been a major impediment to the operational use of RADARSAT data for lake ice 

monitoring in Canada. 

 

2.2.3 Passive microwave remote sensing 

Similar to active microwave satellite sensors, passive microwave systems can also provide 

data independent of the presence of clouds and polar darkness, and with frequent and large 

area coverage acquisitions (more than once daily). Although data from microwave 

radiometers are acquired at spatial resolutions in the order of tens of kilometres, the 

frequency range at which these systems operate (circa 6-89 GHz) makes this technology 

particularly interesting for operational lake ice monitoring on the very largest lakes of the 

Northern Hemisphere. 

 

2.2.3.1 Radiometry of lake ice 

2.2.3.1.1 Microwave dielectric properties of freshwater ice 

A term used in the literature is the relaxation frequency (f0), where 

       f0 = (   )
-1

             (2.2) 

The relaxation frequency of pure water (fw0) is placed in the microwave regions; for 

example, fw0 at 0 C and at 20 C are approximately 9 and 17 GHz, respectively (Ulaby et 

al., 1986). The upper panel of Figure 2.2 shows the relaxation frequency behavior of   
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water at 0 C and 20 C. These relaxation frequencies are influenced by molecular dipole in 

water (H3O
+
).  

 

Unlike liquid water, whose relaxation frequency is placed in the microwave region, the 

relaxation of pure ice takes place in the kilohertz region. The relaxation frequency (fi0) in 

freshwater ice is equal to 7.23 kHz at 0 C, and reduces with negative temperature to 3.5 

Hz at - 66 C (Ulaby et al., 1986). Freshwater ice (  
 ) is often assigned a constant value 

(3.15) because experimental evidence shows that the permittivity of ice is close to being 

independent of both temperature and frequency in the microwave region (Ulaby et al., 

1986). The loss factor of ice (  
  ), however, exhibits strong variations with both frequency 

and temperature. The range of values of   
   at frequencies from 10

7
 to 2  10

11
 Hz and 

temperatures from 190 to 265 K, in the bottom panel of Figure 2.2, indicates that   
   

changes slope at about 1 GHz and then begins to increase with increasing frequency.  
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Figure 2.2: Plots of real parts of the complex dielectric constant of pure water at 0 C and at 

20 C (upper, Ulaby et al., 1986), and loss factor of pure- and fresh-water ice against 

frequency at various temperatures (bottom, Matsuoka et al., 1996). 
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2.2.3.1.2 Emissivity, penetration depth, and brightness temperature 

The dielectric constant () and refractive index (n) are the physical properties of a material 

and are given by 

 

    
'''

'''

jnnn

j



 

     
     (2.3) 

where '(n') and ''(n'') are the real and imaginary parts of the dielectric constant (refractive 

index) (Mätzler et al., 1987). Permittivity describes what happens with electromagnetic 

energy when it impinges upon a boundary, and loss describes the electromagnetic loss once 

energy has penetrated the material (Ulaby et al., 1986). This total loss is a combination of 

the absorption loss (i.e., the transformation of energy into another form) and scattering loss 

(energy deflected to travel in directions other than that of incident) (Ulaby et al., 1986). For 

non-magnetic materials such as ice, a simple formula is applied: 

'''2''

''

nn

n








             (2.4) 

The real parts are approximately constant (' = 3.17, n' = 1.78) over a large frequency range 

(from 10 MHz to 1000 GHz) with a very slight temperature dependence (Mätzler et al., 

1987). The penetration depth (p) at which the energy transmitted across the boundary 

penetrates a medium can be expressed as: 

       ''2

'

''4

00










n
p

  
   (2.5)  

where  is wavelength in metres (Mätzler et al., 1987).  The penetration depth (p) is 

dependent of frequency and temperature at fixed incident angles (Table 2.1). 
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Table 2.1. Microwave penetration depth (m) in freshwater ice as a function of temperature 

and frequency 

 

 
Penetration Depth (m) Reference 

6.6 GHz 10.7 GHz 18 GHz 37 GHz 

Surdyk,2002 
190.00 K 58.00 20.00 6.60 1.40 

230.00 K 34.00 12.00 4.20 0.90 

265.00 K 19.00 8.00 2.80 0.70 

253.15 K   4.42 0.81 Chang et al., 1997 

  10 GHz  30 GHz 

Rees, 2006 258.15 K  6.50  0.79 

268.15 K  4.30  0.63 

 

The upwelling radiation observed as the apparent temperature at a spaceborne passive 

microwave radiometer (TB) can be expressed as 

atmsurfskyB TeTRRTT   ))1((   =     (2.6) 

where     is the atmospheric transmissivity; R is the surface reflectivity; 
skyT

 
is the sky 

radiation; 
surfT

 
is the surface emission, and atmT  is the atmospheric component (Kelly, 

2009). In most cases, atmT  and 
skyT are neglected because they are only small amounts. Thus, 

TB is directly related to surface conditions, and if microwave atmospheric windows are 

used, atmospheric transmissivity is maximized (~1) (Kelly, 2009). The frequency-

dependent surface emission is a function of physical temperature and surface emissivity of 

lake ice and the overlying snow cover. Thus, TB from a passive microwave sensor is 

defined as the product of the emissivity (ε) and physical temperature (Tkin) by Ulaby et al. 

(1986):  

 

     kinB TT    =         (2.7) 
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The emissivity is a ratio of the radiant energy of an object to that of a black body at the 

same temperature. Since emissivity has a range between 0 and 1, the TB is lower than the 

real kinetic temperature. Passive microwave systems, regardless of cloud coverage and 

darkness, can measure naturally emitted radiation by TB, which consists of the product of 

real physical temperature (Tkin) and the emissivity (ε) of the object (equation 2.7). In 

contrast to the high-loss characteristics of sea ice (due to salinity), one of the major 

microwave characteristics of pure ice (or freshwater ice) is its low-loss transmission 

behavior.  

 

The discrimination of ice characteristics using passive microwave technique requires a 

good knowledge of the radiometric properties of ice in nature (Kouraev et al., 2007a). One 

complicating factor pertaining to downward-looking radiometric observations of lake ice is 

that the surface of the ice is often overlain by snow cover, which modifies the radiative 

transfer problem, resulting in a reduction in radiometric sensitivity to the variation in ice-

thickness. Such a reduction in sensitivity is dependent on the snow depth (or density), 

wetness of surface conditions, and microwave frequency (Ulaby et al, 1986). 

 

2.2.3.2 Previous work 

TBs measured by airborne and spaceborne passive microwave systems have shown to be 

sensitive to the presence/absence of ice on lakes (Gloersen, 1973; Melloh et al., 1990; 

Barry et al., 1993; Walker et al., 1993; Pilant, 1995; Kouraev et al., 2007a) and ice 

thickness (Swift et al., 1980; Hall et al., 1981, 1993; Chang et al., 1997). Early airborne 

passive microwave measurement campaigns concurrent with limited in-situ observations 

from the Walden Reservoir, Colorado showed a strong relation between TB and ice 

thickness at frequencies between about 5 and 22 GHz (Hall et al., 1981). In particular, a 

higher sensitivity of TB to ice thickness was found at 5 GHz. A study by Hall (1993) also 

suggested that the frequencies of the Special Sensor Microwave/Imager (SSM/I) onboard of 

DMSP were not well-suited to studying lake ice thickness, but were suitable for monitoring 

ice growth and decay processes on large lakes, albeit the larger footprint of SSM/I at mid 

frequencies (18-37 GHz). 
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Work in the Climate Research Division at Environment Canada (CRD-EC) focused for 

several years on assembling a historical time series of ice freeze-up and break-up dates 

(corresponding to complete freeze over and ice-free conditions) over GSL through visual 

interpretation of SSM/I 85 GHz images (Schertzer et al., 2008; Walker et al., 1993; 2000). 

Determined ice break-up and freeze-up dates, and corresponding ice-free days are shown in 

Figure 2.3. Based on a composite of ice breakup and freeze-up dates from 1988 to 2003, 

the central basin of GSL is expected to be ice-free by DY 168 (June 17) on average and ice 

freeze-over is expected by DY 342 (December 8), and with an average ice-free duration of 

174 days (Schertzer et al., 2008; Walker et al., 1999). The 85 GHz SSM/I frequency (H- 

and V-pol) channels yield considerably higher resolution than the other SSM/I channels 

(about 15 km, with sampling distance of 12.5 km). However, the atmosphere is far more 

opaque at 85 GHz compared to 19 and 37 GHz, and can cause severe biases for data 

obtained at 85 GHz, particularly in cloud-covered areas which are prevalent during 

fall/early winter freeze-up in northern Canada. 
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Figure 2.3: Lake ice break-up and freeze-up dates, and corresponding ice-free seasons for 

1988-2003 period in the central basin of GSL as determined from the visual interpretation of 

85 GHz SSM/I images (Schertzer et al., 2003; Walker et al., 1999). 

 

Recently, Kouraev et al. (2007ab) showed that the combination of data from satellite 

altimetric and radiometric missions provide a significant potential for discriminating 

seasonal/regional ice phenological events on Lake Baikal, which has a large surface area 

and with complicated hydrological and weather regimes in its various sub-regions. A wide 

range of existing satellite radar altimetry (i.e. TOPEX/Poseidon, Jason-1, ENVISAT and 

Geosat Follow-On) and spaceborne radiometry data (i.e. SSM/I) was used to demonstrate 

applicability for lake ice/freshwater discrimination, and to determine the timing of freeze-

up and break-up (FO, ice-on, MO, and ice-off dates) on the lake (Kouraev et al., 2007a). 

The justification for the combination of altimetry and radiometry measurements is as 

follows. First, the longitudinal (narrow) shape of Lake Baikal makes the use of SSM/I 

alone somewhat limitative due to land contamination along lakeshore within of its large 

footprint. Second, altimetry data does not provide extra ice information when large lake 

areas are completely frozen, or when the whole lake changes simultaneously during the 

rapid freeze-up or break-up transition periods. 
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Figure 2.4 illustrates that radar altimeter backscatter acquired at Ku-band (13.6 GHz) and 

passive microwave TB measurements obtained at 18.7 and 37.0 GHz enhance the 

capabilities of microwave measurements for lake ice studies. Observations from these two 

types of satellite sensors provide particular advantages: 1) broad spatial coverage and good 

temporal resolution for SSM/I sensor; and 2) high radiometric sensitivity and along-track 

finer spatial resolution of altimetric measurements during ice formation, ice growth and 

decay periods (Kouraev et al., 2007a). 

 

 

 

Figure 2.4: Two-dimensional histograms between average brightness temperature at 18 and 

37 GHz in SSM/I, and backscatter coefficient at Ku-band (13.6 GHz) of TOPEX/Poseidon. 

Two main classes (open water and ice cover) and boundary (dashed line) are shown on the left 

panel. Arrows indicate the temporal evolution from open water (A) to freeze-onset (B) to 

complete freeze over (C), and then to snow accumulation, ice ageing and decay (D and E) 

(Kouraev et al., 2007a).  
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The work described thus far in section 2.2 relates to research-oriented investigations that 

have largely focused on demonstrating the potential of various satellite sensors to determine 

one or a few lake ice cover parameters. There are, however, a number of operational 

satellite products we are aware of that either use optical data alone or in combination with 

microwave data, mostly through visual interpretation, to monitor snow/lake ice cover. 

These are presented next. Both the previous work reviewed above and the survey of 

existing operational products will help to better place the main contributions of this thesis 

in the area of ice cover mapping/monitoring from satellite remote sensing. 

 

2.2.4 Operational products 

MODIS snow products: Earth Observation System (EOS) MODIS data from the Terra 

and Aqua satellite platforms are used to generate composites of daily global snow-cover 

products from the automated SNOWMAP algorithm, which provides ice cover information 

at 500-m spatial resolution in all inland water bodies (mainly medium-size to large lakes). 

The snow-mapping algorithm makes use of a grouped-criteria technique using the 

Normalized Difference Snow Index (NDSI) with the NDSI = (band 4 – band 6)/(band 4 + 

band 6) in MODIS, and other spectral threshold tests to identify snow on a pixel-by pixel 

basis as snow has a strong reflectance in the visible (band 4: (0.545-0.565 µm) and strong 

shortwave absorption characteristics in the mid-infrared (IR) (band 6: 1.628-1.652 μm) 

(Hall et al., 2001). However, clouds are highly variable and may be detected by their 

generally high reflectance in the visible and near-IR parts of the electromagnetic spectrum. 

Derived from the land/water mask, pixels on inland water bodies are calculated from same 

SNOWMAP algorithm as applied on land. Recently, new MODIS Cloud-Gap-Filled snow-

cover products by data assimilation technique are developed (Hall et al., 2010). Although 

the MODIS SNOWMAP product has not been validated yet over lakes, the algorithm is 

known to be able to detect snow-covered lake ice. Pixels over bare clear (black) ice, 

however, may be incorrectly labelled as open water pixels since reflectance in band 4 will 

be lower than that of snow-covered lake ice, and therefore may result in a NDSI threshold 

value lower than 0.4 set as the minimum to detect snow. 
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NOAA IMS Daily Snow and Ice 4 km/24 km products: The National Oceanic and 

Atmospheric Administration/National Environmental Satellite, Data, and Information 

Service (NOAA/NESDIS) creates Interactive Multisensor Snow and Ice Mapping System 

(IMS, http://www.natice.noaa.gov/ims/) daily 4-km resolution (6144  6144) and 24-km 

resolution (1024  1024) grid products with four different categories: water, land, snow, 

and ice (Helfrich et al., 2007). The IMS products integrate an extensive variety of satellite 

imagery (AVHRR, Geostationary Operational Environmental Satellite (GOES), and Special 

Sensor Microwave/Imager (SSM/I)), mapped products (USAF Snow/Ice Analysis, and the 

Advanced Microwave Sounding Unit (AMSU)) and ground observations for the 

improvement in the output resolutions (Key et al., 2007). Ice cover analysis relies on a 

different approach than snow cover for mapping. Ice cover determination depends less on 

high albedo, stagnate cover, and meteorological conditions (Helfrich et al., 2007). The 

presence of lake ice, however, can be unrelated to current meteorological conditions due to 

ice cover movement (dynamics), ice thickness, and water temperature among other factors. 

The 24- km (1997-present) and the 4-km (2004-present) IMS grid products provide ice 

extent/fraction information for all resolvable lakes at these resolutions. However, neither of 

these products has been validated or compared to date against other satellite-derived 

products. 

 

Canadian Ice Service lake-ice product: Ice analysts at the Canadian Ice Service (CIS) 

estimate lake ice cover fraction in tenths (0: open water – 10: complete ice cover) for nearly 

140 lakes across Canada/northern US, including GBL and GSL, on a weekly basis from 

visual interpretation of NOAA AVHRR 1.1 km and RADARSAT ScanSAR 100 m imagery 

(Howell et al., 2009a). CIS generates this product as a single lake-wide value per lake (text 

file) to support operational requirements for numerical weather forecasting by the Canadian 

Meteorological Centre (CMC) (Key et al., 2007). Complete freeze over (CFO) dates can be 

determined from the CIS file when the ice fraction on a lake changes from 9 to 10. Water 

clear of ice (WCI) dates can be derived when the ice fraction passes from 1 to 0. CFO and 

WCI derived dates can be estimated with about a one-week accuracy due to the weekly 
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nature of the product (Howell et al., 2009a). The accuracy of the information in the lake-ice 

fraction file provided by CIS is influenced not only by the amount of cloud cover over a 

particular lake in AVHRR imagery but also by the number of RADARSAT images 

acquired during the week. 

 

Great Lakes ice charts: Great Lakes synoptic ice charts are produced from the 

interpretation of a blend of observations from lakeshore, vessel, aircraft-based visual 

observations, and spaceborne- remote sensing measurements that cover the entire area of all 

five Great Lakes of southern Canada/northern US. Their production started in the 1970s, 

with the latest satellite technology being integrated over the years in the interpretation 

process (Assel et al., 2003; Key et al., 2007). Ice analysis charts provide information on 

estimated daily/weekly ice cover conditions (i.e. ice type, stage of development, and ice 

formation) from December to April every winter seasons by using the Egg Code format of 

the World Meteorological Organization (WMO). These ice charts products are available on 

the Canadian Ice Service (CIS) website as the Great Lakes regional area at 

http://www.ec.gc.ca/glaces-ice/default.asp. 

 

2.3 Summary 

In this chapter, basic principles of ice thermodynamics and previous lake ice research and 

operational products derived at a wide range of wavelengths were reviewed. The main 

limitation of lake ice products derived from optical satellite sensors is that they are 

influenced by polar darkness and persistent periods of cloud cover at high latitudes such as 

the GBL and GSL regions, particularly during the late fall/early-winter freeze-up period. 

Cloud cover remains somewhat of a problem during the spring break-up period as well. 

Also, optical sensors are still influenced by polar darkness for some time during the ice 

growth season, and the wavelengths at which these sensors operate do not permit to 

estimate ice thickness. Both active and passive microwave sensors are more suitable for 

estimating ice thickness and determining all ice phenological parameters (ice onset, ice on, 

melt onset, ice off, ice duration) since they operate at wavelengths sensitive to ice growth 
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and largely unaffected by cloud cover and by polar darkness. Active microwave satellite 

systems are an attractive technology for estimating ice phenological parameters and 

thickness because they can acquire data at high spatial resolution (about 3-100 m range). 

However, most past and current satellites (ERS-1/2, RADARSAT-1/2, TerraSAR-X) do not 

provide the large swath and revisit cycle needed to determine these parameters over large 

lakes, such as GBL and GSL, at the temporal resolution required by the weather forecasting 

and climate communities (e.g. every 1-2 days). Satellite passive microwave systems, on the 

other hand, provide the large swath and adequate revisit time (more than once daily) for 

monitoring ice phenology and thickness on the largest lakes of the northern hemisphere. 

Although the coarse spatial resolution of such systems (e.g. SSM/I, tens of kilometres 

footprints) has been a limiting factor to the development of ice cover retrieval algorithms, 

due to land contamination problems along lakeshores, some improvements have been made. 

Since 2002, NASA’s Aqua satellite has been operating the AMSR-E passive microwave 

radiometer which can acquire data at resolutions two to three times better than SSM/I. 

Surprisingly, to our knowledge, no previous investigation has examined the potential of 

AMSR-E for retrieving lake ice phenology and thickness. Therefore, the main contribution 

of this thesis is the development and application of new, novel, algorithms for 

determination of lake ice cover parameters on two of the largest lakes of the northern 

hemisphere, GBL and GSL.  
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Chapter 3: Study area 

Great Slave Lake and Great Bear Lake are, respectively, the 10
th

 and 8
th

 world largest 

freshwater lakes. Both lakes are also known as the Mackenzie Great Lakes, being located in 

the Mackenzie River Basin (MRB), within two physiographic regions of Canada’s 

Northwest Territories (NWT): the Precambrian Shield and the Interior Plains (Figure 3.1). 

The eastern parts of both lakes are situated in the Precambrian Shield. Its undulating 

topography with bedrock outcrops causes the formation of rounded hills and valleys. In 

addition, widespread discontinuous permafrost exists in surrounding lakes, but sporadic 

discontinuous permafrost is found in the west of GSL (French et al., 1993). The high 

topography of the western Cordillera, and low relief of the central and eastern parts of the 

Mackenzie Basin strongly influence the regional climate (e.g. atmospheric circulation 

pattern and the advective heat and moisture fluxes) (Woo et al., 2008). Most of GBL and 

the western and central parts of GSL are located in the flat-lying Interior Plains and 

underlain by thick glacial, fluvial, and lacustrine deposits; in addition, the Plains are dotted 

with numerous wetlands and lakes (Woo et al., 2008). 

 

GSL and GBL lie between 60° to 67° N and between 109° to 126° W (Figure 3.1), and 

with surface areas of 286,000 km
2
 and 313,000 km

2
, and average depths of 88 m and 76 m, 

respectively (Rouse et al., 2008b; Woo et al., 2008). Both lakes experience very short 

nighttime periods in summer and equally long ones in winter. The different hydrological 

systems and energy balance of GBL and GSL result in distinct thermodynamic, 

hydrodynamic, and surface climatic cycles. In general, for both lakes, early ice break-up is 

accompanied by later freeze-up and late ice break-up by early freeze-up (Rouse et al., 

2008a). The relation between the timing of lake ice break-up and the amount of the 

absorbed solar radiation, which delays freeze-up makes the two large lakes very sensitive to 

climatic variability (Rouse et al., 2008a). The lakes have regional annual air temperatures 

within 2 °C of each other, but GSL shows a longer open-water period with higher water 

temperatures than its counterpart, GBL (Rouse et al., 2008a). 
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Figure 3.1: Map of the Mackenzie River basin and the locations of Great Bear Lake and 

Great Slave Lake (Rouse et al., 2008a; Woo et al., 2008). 

 

3.1 Great Slave Lake  

3.1.1 Physical characteristics   

Great Slave Lake is part of the north-flowing river system in the Mackenzie Basin (Rouse 

et al., 2008a). The outflow of GSL into the Mackenzie River is more than eight times that 

from GBL as incoming freshwater from the south via the Slave River provides 82 percent 

of this water volume (Rouse et al., 2008a). GSL has a mean depth in the main basin of 41 

m (maximum depth of 163 m) while the eastern arm of GSL is much deeper with a mean 

depth of 249 m and a maximum depth of 614 m (Figure 3.2) (Howell et al., 2009a).  
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Figure 3.2: Bathymetry of Great Bear Lake (left) and Great Slave Lake with the location of 

Deline, Yellowknife, and Hay River (right). Depth contours are in meter (Rouse et al., 2008a). 

 

 

3.1.2 Regional climate   

The high spatiotemporal variability in near-surface air temperature and wind speed over 

GSL influences the surface water temperature and lake heat flux exchange (Rouse et al., 

2008a; Schertzer et al., 2008). Annual and seasonal air temperature anomalies from the 

Yellowknife (1943-2009) and Hay River (1944-2009) weather stations, which are located 

on opposite sides of GSL, are shown in Figures 3.3 and 3.4. Over the last six and a half 

decades or so, annual air temperature in the region has significantly increased at a rate of 

0.31 
o
C per decade or 2 °C over the full period at both stations. Annual snowfall (average 

of 17-18 cm over the same period) has also significantly increased by about 1.4 cm per 

decade or about 9 cm (1943-2009). Seasonally, in order of magnitude, winter (DJF) air 

temperature has increased more rapidly (4-5 
o
C), followed by spring (MAM) (about 2 

o
C) 

and then summer (JJA) (about 1 
o
C). Fall (SON) also shows an increase in temperature at 

the two stations (0.2-0.6 
o
C), but the trends are not significant. Placing the period of 

analysis of AMSR-E data (2002-2009) into the longer historical context, as illustrated in 

Figures 3.3 and 3.4, permits to see that winters and to a lesser extent springs have been 

becoming especially warmer over the last 30-40 years. Interestingly, the occurrence of 

“cold years” is also less frequent in winter and in fall since the mid-1990s. 
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Figure 3.3: Annual and seasonal mean air temperature (°C) for winter (DJF), spring (MAM), 

summer (JJA), and autumn (SON) at Yellowknife meteorological station (1943-2009). Black 

line represents 5-year running mean. Mean air temperatures are provided as a reference on 

the right hand side of the graphs. 
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Figure 3.4: Annual and seasonal mean air temperature (°C) for winter (DJF), spring (MAM), 

summer (JJA), and autumn (SON) at Hay River meteorological station (1944-2009). Black 

line represents 5-year running mean. Mean air temperatures are provided as a reference on 

the right hand side of the graphs. 
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3.1.3 Ice cover conditions 

GSL is ice-free from the beginning of June until mid- to late-December; however, ice 

conditions on the lake have been documented to vary significantly from year to year 

(Blanken et al., 2008). GSL generally reaches ice-free conditions by the end of June. This 

large lake experiences break-up dates close to a month in advance of GBL (Rouse et al., 

2009c). The hydrological system of GSL causes distinct thermodynamics and 

hydrodynamic process, influencing the timing and duration of the freeze-up and break-up 

processes. The discharge of Slave River into GSL has an important influence on the ice 

break-up process by melting the ice faster than if there was no major freshwater inflow (left, 

Figure 3.5). Water circulation in the lake can also have an impact on the spatial variability 

of ice phenological events (right, Figure 3.5). 

 

 
 

Figure 3.5: Great Slave Lake on June 10, 1992 (Image courtesy of Anne Walker at the 

CRYSYS Lake Ice Research Program) (left), and generalized dominant circulation pattern 

for the upper layer of Great Slave Lake based on ELCOM 3-D hydrodynamic model 

simulation (right) (Rouse et al., 2008d). 

 

 

The Environment Canada (2010) ice cover database provides weekly ice thickness 

measurements (1958-2010) in Back Bay near Yellowknife and ice phenology dates (1956-

1996) are available from the Canadian Ice Database (Lenormand et al., 2002), with the 

exception of some missing ice thickness (May 1996 to November 2002) and freeze-up 
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observations (1982-1984, 1993, 1995). According to Ménard et al. (2002), the average 

maximum in-situ ice thickness at 10 m depth in Back Bay (1960-1991) was 1.33 ± 0.19 m. 

Also, in-situ observations reveal that on average ice-on and ice-off dates in this bay 

occurred on Day of Year (DY) 302 and DY 152, respectively, during the period 1956-1996. 

As shown earlier in Chapter 2 (see Figure 2.3), the average (1988-2003) complete freeze-

over (CFO) date detected by SSM/I 85 GHz in the main basin of GSL was reported to be 

DY 342 and water clear-of-ice (WCI) DY 168, which gives an open water duration of 174 

days (Schertzer et al., 2008; Walker et al., 1999). In another study, from visual 

interpretation of 37 GHz SSM/I TB time series (1979-2005), Rouse et al. (2008c) report 

average dates of CFO and WCI for this basin to be on DY 349 and DY 165. 

 

3.2 Great Bear Lake 

3.2.1 Physical characteristics   

Great Bear Lake (GBL) is the largest lake of northern Canada. The northern extent of GBL 

is intersected by the Arctic Circle (66.5° N). GBL is affected by colder temperatures than 

its more southern counterpart, GSL (Rouse et al., 2008a). The lake has a mean depth of 76 

m and a maximum depth of 446 m. It flows into the Mackenzie River via the Great Bear 

River (Figure 3.2) (Howell et al., 2009a). GBL has the characteristics of a polar lake: a 

single period of circulation at a temperature close to 4 C in summer; high oxygen values at 

all times of the year with supersaturation in the summer surface waters and below the ice 

during winter; and a high oxygen content of the bottom waters in April (Johnson, 1975). 

Even though GBL has been described as cold monomictic with no vertical convective 

mixing, and thus, complete water turnover does not occur annually (Bursa et al., 1967), 

recent evidence indicates that this is not the case, at least in some parts of the lake (Rouse et 

al., 2008b). Unlike GSL, GBL is hydrologically isolated in its own relatively small 

drainage basin and all of its inflow and outflow derived from its immediate watershed 

(Rouse et al., 2008a). 
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3.2.2 Regional climate   

The historical climate record of the GBL region is very short, since 1992 only. Therefore, 

in contrast to the GSL region, too few years are available to determine any air temperature 

trend and put 2002-2009 (AMSR-E) into a long historical context. Annual and seasonal air 

temperatures from winter to fall at the Deline (1992-2009) weather station, located on the 

southwest shore of GBL, are illustrated in Figure 3.6. The average annual temperature is 

about two degrees colder (at -6.0 °C) than at GSL and snowfall averages about the same 

(17-19 cm) in the two regions over the same period (1992-2009). The average winter air 

temperature at Deline (1992-2009) is -23.6 °C (-26.3 to -20.0 °C). Average spring and 

summer air temperatures (1992-2009) are -7.7 °C (-11.3 to 4.4 °C) and 11.6 °C (10.1 to 

13.3 °C), respectively. Average fall temperature is -4.6 °C (-7.5 to -2.1 °C). 

 

3.2.3 Ice cover conditions 

Much less is known about ice cover conditions on GBL, compared to GSL. Ice-free 

conditions are only reached in general by the middle of July. Lake ice thickness has been 

reported to be in the order of 2 m by the end of winter in 1967 (Bursa et al., 1967). A recent 

study indicates that ice thickness reached only 1.37 m and 0.885 m on GBL in March 2004 

and 2005, respectively (Woo et al., 2007). The CFO and WCI dates for main section of 

GBL were determined to occur on DY 330 and DY 194, respectively, through visual 

interpretation of 37 GHz SSM/I data from 1979-2005 (Rouse et al., 2008a).  
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Figure 3.6: Annual and seasonal mean air temperature (°C) for winter (DJF), spring (MAM), 

summer (JJA), and autumn (SON) at Deline meteorological station (1992-2009). Mean air 

temperatures are provided as a reference on the right hand side of the graphs. 
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3.3 Summary 

In this chapter, the physical characteristics, local/regional climate, and the ice cover 

conditions of GBL and GSL were reviewed. The different hydrological and bathymetric 

systems of two large lakes and their differing location lead to contrasting climate conditions 

and ice regimes. Situated at a more southern location, GSL presents a longer open-water 

period with higher summer temperature than GBL (Rouse et al., 2008a; Schertzer et al., 

2008). In contrast to GBL, which is relatively isolated hydrologically, the inflow of 

freshwater from the Slave River influences the ice break-up process in GSL. Through the 

visual interpretation of SSM/I brightness temperature measurements (1979-2005), CFO and 

WCI dates for GBL have been reported to be three and four weeks later than those for GSL 

(Rouse et al., 2008a). Sub-zero winter temperatures provide subsequent ice growth and 

thickening for five to six months on the two lakes. Much less is known, however, about the 

seasonal evolution of ice thickness, mainly for GBL since no systematic measurements 

have been made on this lake in the past. 

 

Given that air temperatures have been increasing significantly in the GSL region since the 

1940s, particularly in the winter and spring seasons, it is expected that this has had an 

impact on ice cover phenology. Wintertime increases in both air temperature and snowfall 

also had a likely influence on ice thickness on GSL, though this remains to be investigated. 

The historical climate record of the GBL region is simply too short to draw any solid 

conclusion regarding the impact of climate on ice conditions for this lake, even more so 

because very few ice phenology observations exist for this lake. Since both GSL and GBL 

are very large and that no investments are foreseen in the establishment of in-situ 

observation sites other than the existing one in Back Bay (GSL), increase research activities 

must take place on the development of satellite-based retrieval algorithms in order to 

improve our understanding of ice conditions on GBL and GSL in relation to climate. This 

thesis contributes to this goal by developing and applying ice phenology and thickness 

algorithms on the two lakes using AMSR-E data for the period 2002-2009.  
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Chapter 4: Estimating Ice 
Phenology on large northern 
lakes from AMSR-E: algorithm 
development and application to 
Great Bear Lake and Great 
Slave Lake, Canada 
In this chapter, time series of brightness temperatures (TB) from the Advanced Microwave 

Scanning Radiometer–Earth Observing System (AMSR-E) are examined to determine ice 

phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) 

and Great Slave Lake (GSL). TB measurements from the 18.7, 23.8, 36.5, and 89.0 GHz 

channels (H- and V- polarization) are compared to assess their potential for detecting 

freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) 

channel is found to be the most suitable for estimating these ice dates as well as the 

duration of the ice cover and ice-free seasons. A new algorithm is proposed using this 

channel and applied to map all ice phenology variables on GBL and GSL over seven ice 

seasons (2002-2009). Analysis of the spatio-temporal patterns of each variable at the pixel 

level reveals that: 1) both freeze-onset and ice-on dates occur on average about one week 

earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for 

GSL); 2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly 

longer amount of time on GBL than on GSL (about 1 week on average); 3) melt-onset and 

ice-off dates occur on average one week and approximately four weeks later, respectively, 

on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); 4) the break-up process or 

melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and 

5) ice cover duration estimated from each individual pixel is on average about three weeks 

longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for 

several ice phenology variables derived from other satellite remote sensing products (e.g. 
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NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and 

Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, 

AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large 

northern lakes. 

Key words: Lake ice, phenology, AMSR-E, Great Bear Lake, Great Slave Lake, Canada 

 

4.1 Introduction 

Lake ice cover is an important component of the terrestrial cryosphere for several months 

of the year in high-latitude regions (Duguay et al., 2003b). Lake ice is not only a sensitive 

indicator of climate variability and change, but it also plays a significant role in energy and 

water balance at local and regional scales. The presence of an ice cover alters lake-

atmosphere exchanges (Duguay et al., 2006; Brown and Duguay, 2010). When energy 

movement occurs during temperature change, heat transfer (thermodynamics) influences 

ice thickening as well as the timing and duration of freeze-up and break-up processes, 

which is referred to as ice phenology (Jeffries and Morris, 2007). Lake ice phenology, 

which encompasses freeze-onset/melt-onset, ice-on/ice-off dates, and ice cover duration, is 

largely influenced by air temperature changes and is therefore a robust indicator of climate 

conditions (e.g. Bonsal et al., 2006; Duguay et al., 2006; Kouraev et al., 2007a; Latifovic et 

al., 2007; Schertzer et al., 2008; Howell et al., 2009). 

 

The analysis of historical trends (1846-1995) in in situ observations of lake and river ice 

phenology has provided evidence of later freeze–up (ice-on) and earlier break-up (ice-off) 

dates at the northern hemispheric scale (Magnuson et al., 2000; Brown and Duguay, 2010). 

In Canada, from 1951 to 2000, trends towards earlier ice-off dates have been observed for 

many lakes, but ice-on dates have shown few significant trends over the same period 

(Duguay et al., 2006). The observed changes in Canada’s lake ice cover have also been 

found to be influenced by large-scale atmospheric forcings (Bonsal et al., 2006). Canada’s 

government-funded historical ground-based observational network has provided much of 

the evidence for the documented changes for most of the 20
th

 century and for establishing 
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links with variations in atmospheric teleconnection indices, notably Pacific oscillation 

patterns such as Pacific North American Pattern and Pacific Decadal Oscillation. 

Unfortunately, the Canadian ground-based lake ice network has been eroded to the point 

where it can no longer provide the quantity of observations necessary for climate 

monitoring across the country. Satellite remote sensing is the most logical means for 

establishing a global observational network as the reduction in the ground-based lake ice 

network seen in Canada has been mimicked in many other countries of the Northern 

Hemisphere (IGOS, 2007). 

 

From a satellite remote sensing perspective, dates associated with estimating the freeze-up 

process (i.e. onset of freeze until a complete sheet of ice is formed) in autumn and early 

winter are particularly difficult to determine using optical satellite sensors such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High 

Resolution Radiometer (AVHRR) on high-latitude lakes due to long periods of obscuration 

by darkness and extensive cloud cover (Maslanik et al., 1987; Jeffries et al., 2005; Latifovic 

and Pouliot, 2007). QuikSCAT has been used successfully to derive and map freeze-onset, 

melt-onset and ice-off dates on Great Bear Lake (GBL) and Great Slave Lake (GSL) 

(Howell et al., 2009). Unfortunately, QuikSCAT data are no longer available for lake ice 

monitoring on large lakes since its nominal mission ended on November 23, 2009. Previous 

investigations have shown the utility of observing lake ice phenology variables through the 

visual interpretation of brightness temperature (TB) changes from the Scanning 

Multichannel Microwave Radiometer (SMMR) at 37 GHz (Barry and Maslanik, 1993) and 

the Special Sensor Microwave/Imager (SSM/I) at 85 GHz (Walker et al., 1993, 2000) on 

GSL, but identifying spatial variability in these variables is difficult due to their coarse 

resolution (~25 km). In a recent study, SSM/I has been used in combination with radar 

altimetry to determine automatically ice phenology events on Lake Baikal (Kouraev et al., 

2007a).  

 

Measurements by the Advanced Microwave Scanning Radiometer–Earth Observing System 

(AMSR-E) that offer improved spatial resolution have yet to be assessed for monitoring ice 
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phenology. The objectives of this paper are to i) evaluate the utility of AMSR-E TB 

measurements for estimating lake ice phenology, ii) develop a comprehensive algorithm for 

mapping lake ice phenology variables, and iii) apply the algorithm over both GBL and GSL 

to investigate the spatio-temporal variability of each lakes ice phonology from 2002 to 

2009. 

 

4.2 Background 

4.2.1 Passive microwave radiometry of lake ice 

The discrimination of ice cover characteristics from passive microwave TB measurements 

requires a good knowledge of the radiometric properties of ice in nature (Kouraev et al., 

2007a). In contrast to the high-loss characteristics of sea ice (due to salinity), one of the 

major microwave characteristics of pure freshwater ice is its low-loss transmission behavior 

(Ulaby et al., 1986). The brightness temperature (TB) at passive microwave frequencies is 

defined as the product of the emissivity (ε) and physical temperature (Tkin) of the medium: 

 

     kinB TT    =         (4.1) 

 

Passive microwave systems can measure, regardless of cloud coverage and darkness, 

naturally emitted radiation through TB. Since emissivity ranges between 0 and 1, the TB is 

lower than the kinetic temperature of the medium. The large change in emissivity from 

open water (ε = 0.443-0.504 at 24 GHz) to ice covered conditions (ε = 0.858-0.908 at 24 

GHz) (Hewison and English, 1999; Hewison, 2001) makes the determination of the timing 

of ice formation and decay on large, deep lakes, feasible from TB measurements. The 

emissivity of ice, and therefore TB, further increases from its initial formation as the effect 

of the radiometrically cold water under the ice cover decreases with ice thickening (Kang et 

al., 2010).  
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4.2.2 Definitions of ice phenology variables 

The definitions of freeze-up and break-up are opposite: the former describes the time period 

between the beginning of ice formation and the formation of a complete sheet of ice, while 

the latter describes the time period between the onset of spring melt and the complete 

disappearance of ice from the lake surface. Since the algorithm presented herein operates 

on a pixel-by-pixel basis and is applied over entire lake surfaces, it is important to provide 

clear definitions of the ice phenology variables as they relate to individual pixels and over 

whole lakes (or lake sections) (Table 4.1). At the level of the pixel, the freeze-up period 

encompasses freeze onset (FO), ice-on and freeze duration (FD), while the break-up period 

comprises melt onset (MO), ice off and melt duration (MD). The period between ice-on and 

ice-off covers an ice season and is referred to as ice cover duration (ICDp; p for pixel). At 

the lake or lake section level (third column of Table 4.1), complete freeze over (CFO), 

water clear of ice (WCI) and ice cover duration (ICDe; e for entire lake or lake sections as 

to avoid land contamination in some AMSR-E TB measurements) are the terms used from 

here onward. CFO corresponds to the date when all pixels within the lake or lake section 

have become ice-covered (i.e. all flagged with having ice-on). WCI corresponds to the date 

when all pixels have become ice-free (i.e. all flagged with having ice-off). While ICDp is 

calculated for each individual pixel from dates of ice-on to ice-off, ICDe is determined as 

the number of days between CFO and WCI within an ice season. 
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Table 4.1: Definition of ice phenology variables at per pixel level and for entire lake or lake 

section. 

 

 
Pixel level Entire lake or lake section 

Freeze-up 

Period 

Freeze onset (FO): First day of the year on 

which the presence of ice is detected in a 

pixel and remains until ice-on 

Ice-on: Day of the year on which a pixel 

becomes totally ice-covered 

Freeze duration (FD): number of days 

between freeze-onset and ice-on dates  

Complete freeze over (CFO):  

Day of the year when all pixels become 

totally ice-covered 

Break-up 

period 

Melt onset (MO): First day of the year on 

which generalized spring melt begins in a 

pixel 

Ice-off: Day of the year on which a pixel 

becomes totally ice-free  

Melt duration (MD): numbers of days 

between melt-onset and ice-off dates 

Water clear of ice (WCI):  

Day of the year when all pixels become 

totally ice-free  

 

Ice season Ice cover duration (ICDp): number of days 

between ice-on and ice-off dates 

Ice cover duration (ICDe): number of days 

between CFO and WCI 

 

4.3 Study area 

GBL and GSL are two of the largest freshwater lakes in the world. Located in the 

Mackenzie River Basin they fall within two physiographic regions of Canada’s Northwest 

Territories: the Precambrian Shield and the Interior Plains (Figure 4.1). The eastern parts 

of both lakes are situated in the Precambrian Shield. Its undulating topography with 

bedrock outcrops causes the formation of rounded hills and valleys. The high topography of 

the western Cordillera and low relief of the central and eastern parts of the Mackenzie 

Basin strongly influence the regional climate (e.g. atmospheric circulation pattern and the 

advective heat and moisture fluxes) (Woo et al., 2008). Most of GBL and the 

western/central parts of GSL are located in the flat-lying Interior Plains and underlain by 

thick glacial, fluvial, and lacustrine deposits; in addition, the Plains are dotted with 

numerous wetlands and lakes (Woo et al., 2008). GBL and GSL lie between 60° to 67° N 

and between 109° to 126° W (Figure 4.1), and, respectively, have surface areas of 31.3 × 

10
3
 km

2
 and 28.6 × 10

3
 km

2
, and average depths of 76 m and 88 m (Rouse et al., 2008d; 
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Woo et al., 2008). The northern extent of GBL is influenced by colder temperatures than its 

more southern counterpart (Rouse et al., 2008a). 

 

 
 
Figure 4.1: Map showing location of Great Bear Lake (GBL) and Great Slave Lake (GSL), 

and their meteorological stations (Deline, Yellowknife, and Hay River) within the Mackenzie 

River Basin. Solid squares represent 5.1´ × 5.1´ (9.48 km × 9.48 km) of sampling sites at 18.7 

GHz for the development of the ice phenology algorithm. Arrows indicate river flow direction. 

 

From 2002 to 2009, the period of analysis of this study, the average air temperature 

recorded at the Deline weather station (65° 12' N, 123° 26' W), near the western shore of 

GBL, ranged between -25.4 °C and -20.6 °C for winter (DJF) and from 10.0 °C to 12.1 °C 

for summer (JJA) with 20.2 cm of average annual snowfall (Table 4.2). For GBL, complete 

water turnover occurs at least in some parts of the lake and no break-up occurs until early 

July (Rouse et al., 2008d). 
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Table 4.2:  Seasonal mean air temperature (°C) for winter (DJF), spring (MAM), summer 

(JJA) and autumn (SON), and annual snowfall (cm) recorded at Deline (GBL), Yellowknife 

and Hay River combined (GSL) meteorological stations (2002-2009). M indicates missing 

data. S.D. is standard deviation. 
 

 
DJF MAM JJA SON Annual temp 

Annual 

snowfall (cm) 

GBL GSL GBL GSL GBL GSL GBL GSL GBL GSL GBL GSL 

2002 -23.9 -21.5 -10.6 -9.5 11.1 14.2 -3.1 -1.3 -6.0 -4.0 14.6 15.5 

2003 -22.1 -20.6 -8.2 -4.3 11.6 14.7 -3.8 -0.3 -6.1 -2.9 22.2 16.2 

2004 -24.4 -21.0 -11.7 -7.6 10.4 13.8 -6.9 -2.9 -8.7 -5.1 16.1 16.9 

2005 -24.7 -22.9 -6.0 -3.6 10.0 13.6 -5.4 0.0 -5.6 -2.1 25.7 24.1 

2006 -20.6 -15.9 -7.8 -1.0 12.1 15.9 -4.9 -2.0 -5.5 -0.9 28.8 24.0 

2007 -22.7 -18.7 -9.7 -4.7 11.2 14.6 -5.3 -1.6 -7.0 -3.3 17.0 19.7 

2008 -25.0 -23.5 -8.2 -6.0 10.6 15.4 -4.7 0.0 -7.2 -3.9 16.7 26.9 

2009 -25.4 -23.8 -10.4 -7.1 10.7 14.2 -4.5 0.1 -7.1 -3.7 M 22.2 

Avg -23.5 -21.8 -8.6 -4.9 11.4 14.5 -4.6 -1.6 -6.3 -3.4 20.2 20.7 

S.D. 1.5 2.9 2.0 2.2 0.8 0.9 1.5 1.7 1.1 1.3 5.5 4.2 

 

 

GSL is part of the north-flowing river system in the Mackenzie Basin (Rouse et al., 2008a). 

Situated at a more southern location, the mean air temperature in the GSL area is generally 

warmer than that of GBL, and therefore the GSL open-water period is about four to six 

weeks longer than it is at GBL (Rouse et al., 2008a; Schertzer et al., 2008). GSL is ice-free 

from the beginning of June until mid- to late-December; however, the ice conditions vary 

significantly from year to year on this lake (Blanken et al., 2008). The high spatiotemporal 

variability in air temperature and wind speed over GSL influences the surface water 

temperature and lake heat flux (Rouse et al., 2008a; Schertzer et al., 2008). From 2002 to 

2009, the mean air temperature in winter ranged from -23.8 °C to -15.9 °C and between 

13.6 °C and 15.9 °C in summer, with 20.7 cm of average annual snowfall (Table 4.2). 

Spring and autumn temperatures, which mark the beginning of the break-up and freeze-up 

periods, respectively, in the GSL region (-9.5 °C to -1.0 °C; -2.9 °C to 0.1 °C) are higher 

than near GBL (-11.7 °C to -6.0 °C; -6.9 °C to -3.1 °C) due to the latitudinal difference 

between the two lakes. 
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4.4 Data 

Two data sets were used in this study. Primary data correspond to those utilized to examine 

the sensitivity of passive microwave TB measurements at various frequencies and to 

develop the ice phenology algorithm. They consist of meteorological station (air 

temperature) and AMSR-E data. The secondary, auxiliary, data correspond to ice products 

or images from other sources. They are used for comparison with the AMSR-E derived ice 

phenology variables. 

 

4.4.1 Primary data 

4.4.1.1 AMSR-E 

AMSR-E TB data were obtained for the period 2002-2009. AMSR-E (fixed incident angle: 

54.8 degree) is a conically-scanning, twelve-channel passive microwave radiometer system, 

measuring horizontally and vertically polarized microwave radiation from 6.9 GHz to 89.0 

GHz (Kelly, 2009). The instantaneous field-of-view (IFOV) for each channel varies from 

76 by 44 km at 6.9 GHz to 6 by 4 km at 89.0 GHz, and the along-track and cross-track 

sampling interval of each channel is 10 km (5 km sampling interval in 89.0 GHz). In this 

study, the AMSR-E/Aqua L2A global swath spatially raw brightness temperature product 

(AE_L2A) was used. 

 

TB at 18.7, 23.8, and 36.5 GHz AMSR-E observations for each day falling within a 5.1´ × 

5.1´ grid for both descending and ascending overpasses were averaged over the areas of 

interest, within the central sections of GBL (66° N, 120° 30´ W) and GSL (61° 19.8´ N, 

115° W and 61° 41.8´ N, 113° 49.5´ W) (Figure 4.1). The 6.9 GHz and 10.7 GHz channels 

were not considered, as they are more subject to land contamination from lakeshores due to 

their larger footprint. The divide-and-conquer method for a Delaunay triangulation and 

inverse distance weighted linear interpolation were applied to the L2A data because the TBs 

in ascending and descending modes did not have matching geographic positions over GBL 
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and GSL due to different orbit overpasses. The sampling intervals at all frequency bands 

are spaced every 10 km (5 km at 89.0 GHz) along and across track in AMSR-E L2A 

products (Kelly, 2009). Therefore, we chose 10 km grid spacing for the linear interpolation, 

except for 89 GHz, for which we chose a 5 km grid spacing. 

4.4.1.2 Meteorological station data 

Meteorological data from the National Climate Data and Information Archive of 

Environment Canada (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html) 

were acquired from three stations located in the vicinity of GBL and GSL. The stations 

selected include Deline (YWJ, 65° 12' N, 123° 26' W) to provide climate information on 

GBL, and Yellowknife (YZF, 62° 27.6' N, 114° 26.4' W) and Hay River (YHY, 60° 50.4' N, 

115° 46.8' W) to characterize the climate in the GSL area (Figure 4.1). Time series of 

maximum and mean air temperatures from 2002 to 2009 were used for comparison with 

AMSR-E TB measurements as supporting data for the development of the ice phenology 

algorithm. 

 

4.4.2 Auxiliary data 

Auxiliary data used for comparison with AMSR-E derived ice phenology variables 

consisted of NOAA Interactive Multisensor Snow and Ice Mapping System (NOAA/IMS) 

ice products, weekly ice observations from the Canadian Ice Service (CIS) during freeze-up 

and break-up period, and MODIS images acquired during the break-up period (not 

examined during freeze-up due to polar darkness). FO, MO, and ice-off dates derived from 

the QuikSCAT Scatterometer Image Reconstruction eggs product at the pixel scale by 

Howell et al. (2009) are compared with the same ice phenology variables derived from 

AMSR-E for the period 2002-2006. 

 

The NOAA/IMS (http://www.natice.noaa.gov/ims/) 24 km and 4 km resolution grid 

products (Helfrich et al., 2007) were also available for comparison. The IMS 4 km product 

is available since 2004. Ice-on and ice-off dates (binary value: ice vs open water) at the 

pixel level as well as CFO dates (all pixels coded as ice) and WCI dates (all pixels coded as 

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
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open water) on both GBL and GSL were derived for the period 2004-2009. The 4 km IMS 

product was used for comparison with AMSR-E derived ice phenology events. 

 

CIS weekly observations of GBL and GSL ice cover were obtained from 2002-2009. 

Analysts at the CIS determine a single lake-wide ice fraction value in tenths ranging from 0 

(open water) to 10 (complete ice cover) every Friday from the visual interpretation of 

NOAA AVHRR (1 km pixels) and Radarsat ScanSAR images (100 m pixels) compiled 

over a full week for many lakes across Canada, including GBL and GSL. CFO and WCI 

dates can be derived from this product with about a one-week accuracy. CFO was 

determined as the date when the ice fraction changes from 9 to 10 and remains at this value 

for the winter period, while WCI was determined as the date when the lake-ice fraction 

passes from 1 to 0. Lake-wide CFO and WCI dates were derived for all ice seasons 

corresponding to the AMSR-E (2002-2009) observations. 

 

Finally MODIS quick-look images of GBL and GSL (2002-2009) were downloaded from 

the Geographic Information Network of Alaska (http://www.gina.alaska.edu) for general 

visual comparison with AMSR-E derived ice products during spring break-up. No suitable 

images were available during fall freeze-up due to long periods of extensive cloud cover 

and polar darkness. The MODIS quick-look images are provided as true-color composites 

(Bands 1, 4, 3 in RGB) - Band 1 (250-m, 620-670 nm), Band 4 (500-m, 545-565 nm), and 

Band 3 (500-m, 459-479 nm). 

 

 

4.5 Ice phenology algorithm 

4.5.1 Examination of TB evolution during ice-cover and ice-free seasons 

The development of a new algorithm for determining various ice phenology variables 

through ice seasons required the seasonal evolution of horizontally and vertically polarized 

TB at different frequencies be examined first. The sensitivity of TB at 18.7, 23.8, 36.5, and 

89 GHz to ice phenology was examined by selecting one pixel located in the central section 

http://www.gina.alaska.edu/
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of GBL (66° N, 120° 30´ W) and two in the main basin of GSL (61° 19.8´ N, 115° W and 

61° 41.8´ N, 113° 49.5´ W) (see Figure 4.1). Air temperature data from the meteorological 

stations were used in support of the analysis of the temporal evolution of the AMSR-E TB 

to detect ice phenology events during the freeze-up and break-up periods at the three 

sampling sites (pixels) that could then guide the development of the ice phenology 

algorithm. Although the temporal evolution was examined at the three sites and for all 

years (2002-2009), for sake of brevity, one site on GBL from 2003-2004 is used to 

illustrate the general sensitivity of TB during the freeze-up and break-up periods (Figure 

4.2). Changes in TB are interpreted separately below for the freeze-up and the break-up 

periods. 

 

  



 

 43 

 

 
Figure 4.2: Temporal evolution of horizontal (top) and vertical (middle) polarized brightness 

temperature at 18.7 (light violet), 23.8 (middle violet), 36.5 (dark violet), 89.0 (dark grey) GHz 

(2003 – 2004) for sampling site on GBL (see Fig. 1). The time series of maximum (Max_T, red) 

and mean (Mean_T, blue) air temperatures obtained at Deline meteorological station is shown 

in the bottom panel of the figure, with snow depth as grey shaded area. Numbers after both 

“Ice Season” and “Ice-free Season” indicate number of days. 
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4.5.1.1 Freeze-up period 

Using the sampling site on GBL as an example (see Figure 4.1), when surface air 

temperature falls below the freezing point (Figure 4.2), the expected increase in TB with the 

onset of ice cover formation lags due to the large heat capacity causing delayed ice 

formation of GBL. This is also observed over GSL (not shown). As shown in Figure 4.2, it 

takes about four to six weeks for the central part of GBL to show the beginning of the 

freeze-up process. TB then starts to increase rapidly in association with an increase in 

fractional ice coverage (FO to ice-on). The distinct increase of TB is more strongly apparent 

at horizontal polarization (Figure 4.2, upper) for which TB increases by approximately 70-

80 K from open water (ice-free season) to ice-on conditions, compared to vertical 

polarization (Figure 4.2, middle) for each frequency. 

 

From the ice-on date near mid-December to the onset of melt (MO), the increase in TB is 

due to ice growth and thickening until lake ice reaches its maximum thickness around mid-

April. An increase in TB is expected during the ice growth season since thicker ice reduces 

the influence of the lower emissivity (radiometrically cold) liquid water below the ice 

(Kang et al., 2010).  The slope (rate of change) of TB with time is steeper at 18.7 GHz than 

at 23.8, 36.5 and 89 GHz during ice growth due to greater penetration depth at lower 

frequencies. The rate of increase in TB with ice thickening slows down more quickly at the 

higher frequencies as the ice becomes thicker (Figure 4.2). The oscillating behavior of TB 

at H-pol and V-pol during the ice growth period depends greatly on the imaginary part of 

the index of refraction of ice (Chang et al., 1997; Kang et al., 2010). Differences in TB 

among different frequencies are negligible once the lake ice/snow on ice surface becomes 

wet during warm winter episodes and starting with MO. 

 

4.5.1.2 Break-up period 

Once the mean air temperature begins to exceed 0 C, TB increases rapidly as a result of the 

higher air temperature and increasing shortwave radiation absorption (decreasing albedo) at 
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the ice/snow surface signalling the start of MO. The wetter the snow cover becomes, the 

more the observed TB also increases due to snow’s high emissivity during the break-up 

period (Jeffries et al., 2005).As shown in Figure 4.2, during the break-up period on GBL, 

melt-refreeze events lead to fluctuations in TB at 18.7-89 GHz along the general spring melt 

trajectory starting with MO. A similar pattern is noticeable from TB values analyzed over 

GSL (not shown). The existence of clear ice causes a rapid break-up process, resulting in 

decreasing TB. The snow or snow ice (if any), and finally black ice melt sequentially due to 

higher albedo of snow ice and more absorption of black ice; the H-pol and V-pol TB drop 

rapidly until the ice-off date (Figure 4.2). The definition of black ice (or clear ice) and 

snow ice are described in Kang et al. (2010). During the middle of July, TB, which is 

affected by the radiometrically cold (low emissivity) freshwater, significantly decreases by 

about 100-140 K from ice-covered to ice-free (open water) conditions. 

 

4.5.2 Justification of choice of frequency and polarization for algorithm 

Based on the overall examination of the evolution of TB during the ice and ice-free seasons 

on GBL and GSL at different frequencies and polarizations, 18.7 GHz H-pol measurements 

appear to be the most suitable for the development of an ice phenology algorithm. Although 

H-pol is more sensitive than V-pol to wind-induced open water surface roughness, it also 

shows a larger rise in TB from open water to ice cover during the later freeze-up and earlier 

break-up periods. Thus, it is easier to determine TB thresholds (described in the section 

below) related to ice phenology variables at H-pol than at V-pol during those periods. 

Second, 89 GHz is known to be more sensitive to atmospheric contamination (Kelly, 2009) 

and is also strongly affected by open water surface roughness from wind, particularly at H-

pol. This later effect is also apparent at 23.8 and 36.5 GHz. Occasionally high TB values at 

23.8 and 36.5 GHz during the open water season make it difficult to detect the timing of FO 

and ice-off dates. Although 89.0 GHz (3.5  5.9 km) from AMSR-E can be good for 

estimating sea ice concentration due to its finer spatial resolution, AMSR-E 18.7 GHz is 

better for defining ice phenology variables such as freeze-onset and melt-onset because this 

frequency has longer penetration depth, allowing less lake ice surface scattering. In 
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addition, brightness temperatures (TB) at 89.0 GHz are much more sensitive to surface 

roughness induced by winds during the open water period compared to the lower frequency 

channels. As clearly shown in Figure 4.2, variations in TB at 89 GHz are large during this 

period. This makes the estimation of FO and ice-off dates, in particular, difficult with the 

thresholding approach presented in this paper. Overall, 18.7 GHz H-pol shows less 

limitations for detecting a broader range of ice phenology variables (FO, ice-on, MO, and 

ice-off) than the other channels. 

 

4.5.3 Determining thresholds for retrieval of ice phenology variables 

A flowchart showing the processing steps for determining the ice phenology variables is 

given in Figure 4.3. Based on the analysis of TB values at the three test sites on GBL/GSL 

over seven ice seasons, a suite of criteria (minimum and maximum thresholds, averages of 

preceding and succeeding days, and threshold value of number of days to the maximum TB  

in the time series, DistM) was devised to detect FO, ice-on, MO, and ice-off dates. 

4.5.3.1 Freeze-up period 

The FO date is detected during the upturn of TB from an open water surface. A maximum 

TB threshold value of 180 K is high enough to avoid confusion with fluctuating TB values 

influenced by wind-induced roughness of the open water surface. Then, in order to 

discriminate TB under open water conditions from the starting point of FO, the average 

taken from the succeeding twenty days for each individual day of the time series is 

calculated. This average value must fall within the range of 110 K and 140 K. The last 

criterion consists of finding the maximum TB value in the time series, which is reached late 

during the ice season. Once found, the number of days from each day to that of the 

maximum TB (DistM in Figure 4.3) is calculated. DistM must be less than 250 days, in 

addition to falling within the threshold TB values given above, for the algorithm to be able 

to detect FO. For detecting the ice-on date, first maximum and minimum threshold values 

of 195 K and 160 K are used. Then, as an extra criterion to distinguish between the FO date 

and ice-on date, the average TB value of the 15 days preceding each individual day in the 

time series has to fall between 100 and 155 K. Lastly, DistM must be less than 220 days. 
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Figure 4.3: Flowchart of ice phenology algorithm based on AMSR-E 18.7 GHz horizontal 

polarization (H-pol) brightness temperature (TB). All threshold values are explained in section 

4.5.3. 

 

4.5.3.2 Break-up period 

For the determination of the MO date, maximum and minimum threshold values are set to 

240 K and 160 K. Then, for discriminating the starting point of MO from other days during 

the ice growth/thickening season, the average TB calculated from the previous fifteen days 

of each individual day in the time series must fall between 165 K and 225 K threshold and 

with a DistM of less than 70 days. The ice-off date is detected from a sharp drop in TB from 

that of the melt period that starts with MO (Figure 4.2). For this last phenology variable, 

the maximum and minimum thresholds are set to 140 K and 210 K. To ensure 

discrimination of this first day of the ice-free season from those of later days, the average 

TB value of the preceding five days is fixed to 160 K and with DistM less than 60 days. 
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4.6 Results and Discussion 

4.6.1 Spatio-temporal variability of lake ice phenology variables 

The algorithm described above was applied to all interpolated 10 km pixels on GBL and 

GSL for every day during the period 2002-2009 to produce maps of FO, ice-on, MO and 

ice-off dates, as well as freeze duration (FD), melt duration (MD), and ice cover duration 

(ICD) averaged over all years and for individual years (Figures 4.4-4.17). Recognizing that 

the relatively coarse spatial resolution of the product leads to a certain level of land 

contamination in TB values along lakeshores and where a high concentration of islands 

exists (e.g. eastern arm of GSL), confidence regions were drawn on the two lakes with an 

outer buffer zone of 10 km. Average dates and duration of the ice phenology variables 

calculated from all pixels over the greatest extent as possible for the lakes as well as within 

the confidence regions are included in Tables 4.3-4.5. Interestingly, in these tables one can 

see that the standard deviations of ice phenology variables are almost always larger for 

GSL than for GBL, indicating that ice phenology processes are generally more variable 

spatially (i.e. between pixels) on GSL which is located at a more southern latitude. 

 

4.6.1.1 Freeze-up period 

Once water cools to the freezing point, ice begins to form first in shallow near shore areas. 

Freeze-up is influenced primarily by air temperature and to a lesser extent by wind, in 

addition to lake depth. On average, the date of FO occurs approximately one week earlier 

on GBL than on its southern counterpart, GSL (Table 4.3). For GBL, the latest FO date 

over the study period occurred during ice season 2008-2009 (Day of Year or DY 330, late 

November) followed by 2003-2004 (DY 322). The earliest FO date happened in 2004-2005 

(DY 308, early November). For GSL, both the 2005-2006 and 2008-2009 ice seasons 

experienced the latest FO dates of DY 332 and 342, respectively. The earliest FO date 

occurred in 2006-2007 on DY 316, closely followed by 2004-2005 (DY 322). In addition to 

the effect of fall temperature in explaining earlier/later FO dates, an early ice break-up 
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(longer period of solar radiation absorption by water) and warmer summer of the preceding 

months can result in the late onset of freeze-up for the two large, deep, lakes that store a 

considerable amount of heat during the open water season (Brown and Duguay, 2010). The 

latter process may be the case for ice season 2008-2009. Noteworthy is the fact that, in 

contrast to GBL, GSL’s timing of ice formation is somewhat influenced by river inflow 

from the Slave River in its southeast section (Howell et al., 2009). A slight delay in FO is 

noticeable during most years at its mouth (see Figures 4.1 and 4.4). GBL’s ice regime is 

not affected by such inflow (Figure 4.4). 

 

 

Table 4.3: Summary of ice phenology variables during the freeze-up period (average day of 

freeze-onset (FO) and ice-on, and number of days of freeze duration (FD)) for GBL and GSL 

(2002-2009). Values within confidence regions in bold. Standard deviation in parentheses. 

 

Year 
FO Ice-On FD 

GBL GSL GBL GSL GBL GSL 

2002-03 311/320 (14/7) 318/331 (18/4) 328/333 (11/7) 334/345 (17/7) 32/28 (11/5) 31/19 (17/10) 

2003-04 313/322 (11/5) 319/329 (14/5) 332/337 (8/5) 338/345 (11/5) 31/28 (7/5) 27/15 (15/7) 

2004-05 303/308 (9/4) 313/322 (13/3) 321/323 (6/4) 331/338 (12/4) 26/22 (9/3) 24/12 (13/6) 

2005-06 309/314 (9/4) 320/332 (15/4) 326/330 (8/4) 337/344 (12/4) 28/26 (11/7)  30/27 (18/20) 

2006-07 312/317 (9/3) 310/316 (9/5) 331/335 (7/3) 328/332 (8/3) 26/24 (5/2) 24/19 (9/7) 

2007-08 311/316 (8/3) 318/326 (10/4) 329/333 (8/4) 338/343 (9/4) 27/26 (4/2) 24/16 (10/6) 

2008-09 320/330 (13/6) 330/342 (15/6) 334/340(8/4) 344/352 (12/3) 12/10 (4/3) 15/9 (8/5) 

Average 311/318 (11/4) 318/328 (11/3) 329/333 (6/4) 336/343 (9/4) 26/23 (9/3) 25/17 (11/7) 
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Figure 4.4: Freeze-onset (FO) over seven ice seasons (2002-2009) and average (top left panel) 

for GBL. Legend is day of year. 
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Figure 4.5: Freeze-onset (FO) over seven ice seasons (2002-2009) and average (top left panel) 

for GSL. Legend is day of year. 
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Similar to FO, ice-on occurs approximately one week later on GSL than on GBL. The 

average ice-on date occurs on DY 333 and 343 for GBL and GSL, respectively (Table 4.3). 

Schertzer et al. (2008) and Walker et al. (2000) estimated average CFO in the main basin of 

the GSL to occur on DY 342 for the period 1988-2003. Spatially, for GBL (Figure 4.4 and 

Table 4.3), the ice-on dates take place in the Central Basin around early December and for 

GSL, the ice-on dates occur in mid-December. From FO to ice-on, it takes two to three 

weeks on both lakes. For GBL, the longest FD over the study period happened during ice 

season 2003-2004 (28 days), closely followed by 2005-2006 and 2007-2008 (26 days). The 

shortest FD occurred in 2008-2009 (10 days) (Table 4.3). For GSL, the longest FD took 

place during ice season 2005-2006 (27 days), while the shortest FD happened in 2008-2009 

(9 days) (Table 4.3). FD in GBL usually takes about 1-2 weeks longer than that in GSL, 

likely due to the fact that water depths in the confidence region of GBL range from 50 and 

200 m, while they vary between 20 m and 80 m in GSL; GBL therefore takes longer to lose 

its heat. Furthermore, FD mainly depends on air temperature variability after fall 

overturning which occurs at +4 
o
C.  

Freezing Degree Days (FDD), calculated as the sum of mean daily air temperatures below 0 

o
C measured at a meteorological station, and given in the bottom left of Figure 4.4 provide 

some indication of the effect of colder/warmer temperatures on FD. FDD calculated here 

between FO and ice-on date in each ice season. One should bear in mind, however, that 

heat storage during the preceding open water season will also have an impact on FD.  After 

the overturning, however, the whole water column has the same temperature and FD will 

depend only on air temperature variability no matter what previous open water season was 

warmer or colder summer. Due to these, the relation between FDD and FD is not always 

consistent from year to year for the two lakes.  
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Figure 4.6: Ice-on over seven ice seasons (2002-2009) and average (top left panel) for GBL. 

Legend is day of year. 
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Figure 4.7: Ice-on over seven ice seasons (2002-2009) and average (top left panel) for GSL. 

Legend is day of year. 
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Figure 4.8: Freeze duration (FD) over seven ice seasons (2002-2009) and average (top left 

panel) for GBL. Legend is in number of days. Freezing Degree Days (FDD) in bottom left of 

each panel. 



 

 56 

  

Figure 4.9: Freeze duration (FD) over seven ice seasons (2002-2009) and average (top left 

panel) for GSL. Legend is in number of days. Freezing Degree Days (FDD) in bottom left of 

each panel. Y: Yellowknife and H: Hay River. 
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4.6.1.2 Break-up period 

The break-up process is primarily influenced by air temperature variability, causing earlier 

or later MO dates on the two lakes. The MO dates mark the beginning of melt of snow on 

the ice surface or the initiation of melt of ice in the case when a bare ice surface is 

encountered. Differences in the timing of MO between GBL and GSL can largely be 

explained due to spring air temperature differences (Table 4.2). MO dates occur 

approximately one week earlier on GSL than on GBL (Table 4.4). The average MO date 

occurs on DY 143 (end May) on GBL and DY 135 (mid May) on GBL (see Figure 4.5). 

For GBL, the earliest MO dates happened on DY 127 (2002-2003) and the latest MO dates 

occurred in 2003-2004 (DY 155, early June) (Table 4.4). For GSL, the earliest MO date 

occurred on DY 122 (early May) in 2005-2006 and the latest date took place in 2003-2004 

(DY 150, early June). Earlier (later) MO dates appears to be related to warm (cool) spring 

air temperature (Table 4.2). The warmer average spring air temperature (-7.8 
o
C and -1.0 

o
C for GBL and GSL, respectively) caused earlier MO dates to occur in ice season 2005-

2006, while the colder spring of ice season 2003-2004 (-11.7 
o
C and -7.6 

o
C for GBL and 

GSL, respectively) resulted in later MO dates. 

 

 
Table 4.4: Summary of ice phenology variables during the break-up period (average day of 

melt-onset (MO) and ice-off, and number of days of melt duration (MD)) for GBL and GSL 

(2002-2009). Values within confidence regions in bold. Standard deviation in parentheses. 

Year 
MO Ice-Off MD 

GBL GSL GBL GSL GBL GSL 

2002-03 133/127 (14/12) 132/137 (14/5) 193/183 (14/7) 172/157 (19/2) 61/55 (15/12) 41/19 (21/4) 

2003-04 156/155 (3/2) 147/150 (16/6) 203/198 (7/4) 186/169 (20/4) 47/43 (7/4) 39/19 (19/7) 

2004-05 133/132 (11/7) 124/131 (21/17) 193/186 (11/4) 168/155 (19/4) 60/54 (13/9) 44/24 (20/17) 

2005-06 129/128 (7/4) 119/122 (9/5) 182/169 (16/5) 161/140 (21/6) 53/41 (16/7) 42/17 (22/7) 

2006-07 142/141 (10/6) 124/129 (17/6) 197/187 (12/6) 166/153 (19/5) 55/46 (13/10) 42/24 (18/6) 

2007-08 149/152 (9/9) 133/135 (16/10) 187/183 (10/4) 170/156 (20/2) 38/31 (13/8) 37/20 (20/9) 

2008-09 167/168 (8/7) 135/137 (18/14) 200/197 (6/3) 177/167 (16/3) 33/28 (10/8) 42/30 (16/12) 

Average 144/143 (6/3) 131/134 (12/5) 194/186 (9/3) 171/157 (17/3) 50/43 (10/5) 41/22 (17/4) 
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Figure 4.10: Melt-onset (MO) over seven ice seasons (2002-2009) and average (top left panel) 

for GBL. Legend is day of year. 
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Figure 4.11: Melt-onset (MO) over seven ice seasons (2002-2009) and average (top left panel) 

for GSL. Legend is day of year. 
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In contrast to MO, the average ice-off dates on GSL are about four weeks earlier (DY 157 – 

early June) than on GBL (DY 183 – early July) (see Figures 4.12 and 13). For GBL, the 

latest ice-off date occurred during ice season 2003-2004 on DY 198 (mid July). The earliest 

ice-off date occurred in 2005-2006 on DY 169 (mid June) (Table 4.4). For GSL, the 2003-

2004 ice season experienced the latest ice-off dates of DY 169 (mid June). The earliest ice-

off date for this lake happened in 2005-2006 on DY 140 (mid May) (Table 4.4). Early ice-

off dates lengthen the open water season during the high solar period in spring/summer, 

resulting in a longer period of solar radiation absorption by the lakes and, subsequently, 

higher lake temperatures in late summer/early fall due to larger heat storage. Looking at 

specific ice cover seasons, the colder spring/early summer climate conditions of 2004 and 

2009 contributed to later break-up, while the warmest conditions of 2006 influenced earlier 

break-up (Table 4.4). On GSL, ice-off dates are earlier in the majority of years at the 

mouth of the Slave River which brings warmer water as this river flows from the south into 

the lake (see Figure 4.5). For GBL, however, ice-off dates are not influenced by similar 

river inflow such that melt generally proceeds gradually from the more southern (warmer) 

to the northern sections of the lake. Unlike MO, the larger difference in ice-off dates 

between the two lakes (about four weeks) can be explained by a combination of thicker ice 

and colder spring/early summer conditions at GBL which, as a result, requires a greater 

number of days above 0 
o
C to completely melt the ice. 
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Figure 4.12: Ice-off over seven ice seasons (2002-2009) and average (top left panel) for GBL. 

Legend is day of year. 
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Figure 4.13: Ice-off over seven ice seasons (2002-2009) and average (top left panel) for GSL. 

Legend is day of year. 
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The average melt duration (MD), which encompasses the period from MO to ice-off, takes 

two to five weeks longer on GBL than on GSL Table 4.4.  For GBL, the longest MD was 

55 days in 2002-2003 but was only 28 days in 2008-2009 (Table 4.4). For GSL, the longest 

MD lasted 30 days in 2008-2009, whereas the shortest MD took 17 days in 2005-2006 

(Table 4.4). The length of the MD is mainly controlled by the combination of end-of-

winter maximum ice thicknesses and spring/early summer temperatures. In general, the 

thinner the ice is before melt begins and the warmer the temperature conditions are between 

MO and ice-off, the shorter the MD lasts. One exception is the central basin of GSL, where 

MD is also influenced by the inflow of water from Slave River which helps to accelerate 

the break-up process in this lake. Melting Degree Days (MDD), calculated as the sum of 

mean daily air temperatures above 0 
o
C at a meteorological station from MO until ice-off, 

provide some indication of the effect of colder/warmer temperatures in spring/early 

summer on MD for each ice season (see bottom left corner of Figures 4.14 and 4.15). 

Visually, a relation appears to exist between long/short MD and low/high MDD for GBL. 

Such a relation does not seem to be present for GSL, likely as a result of the inflow of water 

from Slave River. 
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Figure 4.14: Melt duration (MD) over seven ice seasons (2002-2009) and average (top left 

panel) for GBL. Legend is in number of days. Melting Degree Days (MDD) in bottom left of 

each panel. 
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Figure 4.15:  Melt duration (MD) over seven ice seasons (2002-2009) and average (top left 

panel) for GSL. Legend is in number of days. Melting Degree Days (MDD) in bottom left of 

each panel. Y: Yellowknife and H: Hay River. 
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4.6.1.3 Ice cover duration 

The average ice cover duration (ICD), which is calculated as the number of days between 

ice-on and ice-off dates, is one week shorter for GSL than for GBL over the full period of 

analysis (DY 218 and 211 on average, respectively). However, the length of the ICD can 

differ by as much as four to five weeks between the two lakes in some years. For GBL, the 

longest ICD was 229 days in 2004-2005, while the shortest lasted 203 days (2005-2006). 

For GSL, the longest ICD lasted 223 days (2003-2004), while the shortest was 193 days 

(2007-2008) (Table 4.5). In GBL’s Smith Arm and Dease Arm (northern section of lake), 

lake ice stays longer than in the other arms, up until the middle (or end) of July, particularly 

during the two cold winter seasons of 2003-2004 and 2008-2009 (Figure 4.16). For GSL, 

shorter ICD occurs at the mouth of Slave River and near Yellowknife compared to the east 

arm of the lake (Figure 4.17). ICD is influenced by river inflow from Slave River for the 

full period of study (2002-2009), as it has a particularly large influence on ice-off dates (see 

Figure 4.13). 

 

 
Table 4.5: Summary of ice cover duration (ICDp) and open water season (OWS) (average 

number of days) for GBL and GSL (2002-2009). Values within confidence regions in bold. 

Standard deviation in parentheses. Note that OWS was not calculated for 2009 since it 

requires ice-on date to be known for fall freeze-up period 2009, which was not determined in 

this study. 

  

Year 
ICDp 

Year 
 OWS 

GBL GSL  GBL GSL 

2002-03 224/215 (19/11) 195/220 (28/29) 2003  123/116(23/22) 151/172 (28/5) 

2003-04 233/226 (12/7) 203/223 (22/22) 2004  102/97(13/13) 130/154 (28/6) 

2004-05 232/229 (10/7) 195/218 (20/22) 2005  119/112(16/16) 155/176 (27/6) 

2005-06 210/203 (15/7) 176/201 (26/26) 2006  136/132(21/21) 156/177 (26/7) 

2006-07 225/217 (14/8) 195/214 (17/21) 2007  117/113 (17/16) 155/172 (24/7) 

2007-08 219/215 (10/6) 184/193 (12/14) 2008  134/125 (20/20) 162/186 (30/6) 

2008-09 230/223 (11/5) 193/208 (18/19)     

Average 225/218 (9/6) 192/211 (16/18) Average  122/116 (15/14) 152/173 (32/5) 
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Figure 4.16: Ice cover duration (ICD) over seven ice seasons (2002-2009) and average (top left 

panel) for GBL. Legend is in number of days. 
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Figure 4.17: Ice cover duration (ICD) over seven ice seasons (2002-2009) and average (top left 

panel) for GSL. Legend is in number of days. 
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4.6.2 Comparison of AMSR-E ice phenology variables with other satellite-derived 

ice products 

While the AMSR-E retrieval algorithm captures well the spatial patterns and seasonal 

evolution of ice cover on GBL and GSL over several ice seasons, estimated dates of the 

various ice phenology variables should be compared to those determined from other 

approaches and with different satellite sensors whenever possible, as to provide at least a 

qualitative assessment of the level of agreement with existing products. A detailed 

quantification of uncertainty (biases) of the various ice products is, however, beyond the 

scope of this paper. This is a topic that merits investigation in a follow-up study 

encompassing a larger number of lakes. 

 

4.6.2.1 Comparison with other pixel-based products 

Tables 4.6-4.8 present summary statistics of ice phenology variables estimated at the pixel 

level from AMSR-E TB (2002-2009) against those obtained with daily QuikSCAT (2002-

2006; Howell et al., 2009a) and NOAA/IMS products (2004-2009). Values in these tables 

are the averages and standard deviations calculated from all pixels over the complete lakes 

and their main basin (confidence regions). IMS ice variables consist of ice-on/ice-off dates 

and ICDp, while QuikSCAT-derived variables are comprised of FO/MO/ice-off dates and 

ICDp calculated from FO to ice-off dates. The complex nature of the freeze-up process has 

been reported to make the distinction between FO and ice-on dates difficult from analysis 

of the temporal evolution of backscatter (σ) from QuikSCAT (Howell et al., 2009a). This 

can be explained by the fact that QuikSCAT-derived ice phenology variables are influenced 

by deformation features such as ice rafts, wind-roughened water in cracks, and ridge 

formation during the freeze-up period, acting to increase σ. However, time series of 

AMSR-E TB at 18.7 GHz (H-pol) can differentiate FO from ice-on dates (see Figure 4.2) as 

TB is largely controlled by changes in emissivity progressively from the radiometrically 

cold open water to the warmer ice-covered lake surface, and not as much by lake ice 

surface roughness, during the freeze-up period. 
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FO dates as determined from AMSR-E are about one week earlier on average (7-11 days 

for GBL; 1-8 days for GSL) than those derived with QuikSCAT when considering the two 

lakes over the five years available for comparison (Table 4.6). AMSR-E TB may be more 

sensitive to within-pixel fractional presence of ice and less to wind-induced surface 

roughness over open water areas than σ from QuikSCAT. Regarding ice-on dates, AMSR-

E (from DY 323 to 352) and IMS (from DY 319 to 338) show a difference of about one 

week on average, with AMSR-E detecting ice-on later. In fact, and as illustrated in Figures 

4.18-4.19, NOAA/IMS ice-on patterns follow AMSR-E FO more closely than ice-on. 

Interestingly, IMS ice-on remains the same between DY 324 and DY 335 on GSL (Figure 

4.19) while FO evolves over the same period in AMSR-E. This indicates that extensive 

cloud cover during this period may have been a limiting factor in determining the presence 

of ice and open water on GSL by ice analysts who largely rely on the use of optical satellite 

data in preparing the IMS product. 

 
Table 4.6: Comparison of ice phenology variables for freeze-up period (FO and Ice-On) daily-

derived from AMSR-E (AME), QuikSCAT (QUT) and NOAA/IMS (IMS) products for GBL 

and GSL (2002-2009). Values within confidence regions in bold. Standard deviation in 

parentheses.   

 

Pixel  

Level   

FO    Ice-On   

GBL  GSL  GBL  GSL  

YEAR AME QUT AME QUT AME IMS AME IMS 

0203 
311/320  

(14/7) 
330 

(8) 

318/331  

(18/4) 
335 

(8) 

328/333  

(11/7) 
 

334/345  

(17/7) 
 

0304 
313/322  
(11/5) 

309 

(9) 

319/329  

(14/5) 
332 

(8) 

332/337 
(8/5) 

 
338/345  

(11/5) 
 

0405 
303/308 

(9/4) 
314 

(6) 

313/322  

(13/3) 
325 

(8) 

321/323 

(6/4) 

316/322 

(9/8) 

331/338  

(12/4) 

315/319 

(9/8) 

0506 
309/314 

(9/4) 
321 

(9) 

320/332  

(15/4) 
333 

(6) 

326/330 

(8/4) 

319/322 

(11/10) 

337/344  

(12/4) 

327/330 

(10/10) 

0607 
312/317 
(9/3) 

325  

(6) 

310/316 

(9/5) 
324 

(5) 

331/335 
(7/3) 

327/332 
(14/7) 

328/332  

(8/3) 
327/331 

(10/9) 

0708 
311/316 

(8/3) 
 

318/326  

(10/4) 
 

329/333 

(8/4) 

325/329 

(13/9) 

338/343  

(9/4) 

328/338 

(16/15) 

0809 
320/330  

(13/6) 
 

330/342  

(15/6) 
 

334/ 340 

(8/4) 

323/329 

(12/12) 

344/352  

(12/3) 

328/338 

(14/11) 

AVG 
311/318  

(11/4) 
 

318/328  

(11/3) 
 

329/333 

(6/4) 

322/327 

(12/9) 

336/343  

(9/4) 

325/331 

(12/11) 
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Figure 4.18: Comparison of AMSR-E freeze-onset (left), ice-on (center), and NOAA/IMS ice-

on (right) (day of year) during the freeze-up period of ice season 2005-2006 on GBL. 
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Figure 4.19: Comparison of AMSR-E freeze-onset (left), ice-on (center), and NOAA/IMS ice-

on (right) (day of year) during the freeze-up period of ice season 2005-2006 on GSL. 
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The difference in MO dates is very variable between AMSR-E and QuikSCAT, ranging 

anywhere between a single day to four weeks (Table 4.7). During the break-up period, σ 

seems more sensitive to initial surface melt than TB with QuikSCAT providing in all but 

one case earlier MO. AMSR-E (from DY 140 to 198) and QuikSCAT ice-off dates (from 

DY 151 to 205) show similar inter-annual variability with a difference of about one week 

(Table 4.7). Average ice-off dates are also quite similar between AMSR-E and IMS with a 

difference of approximately five days. They also follow the same variability (later and 

earlier dates) between years. Although the number of years in this comparison between 

products is somewhat limited, these initial results suggest that ice-on is the most consistent 

ice phenology variable across products examined. This point is further supported by the 

similar spatial patterns in ice-on/ice-off determined from AMSR-E, IMS, and MODIS 

imagery over the break-up period of ice season 2005-2006 (Figures 4.20 and 4.21). 

 
Table 4.7: Comparison of ice phenology variables for break-up period (MO and Ice-Off) 

daily-derived from AMSR-E (AME), QuikSCAT (QUT) and NOAA/IMS (IMS) products for 

GBL and GSL (2002-2009). Values within confidence regions in bold. Standard deviation in 

parentheses. 
 

Pixel  

Level   

MO    Ice-Off       

GBL  GSL  GBL   GSL   

YEAR AME QUT AME QUT AME QUT IMS AME QUT IMS 

0203 
133/127 

(14/12) 
117 

(8) 

132/137 

(14/5) 
112 

(5) 

193/183 

(14/7) 
189 

(6) 
 

172/157 

(19/2) 
163 

(6) 
 

0304 
156/155 

(3/2) 
149 

(2) 

147/150 

(16/6) 
143 

(8) 

203/198 

(7/4) 
205 

(3) 

202/204 

(8/6) 

186/169 

(20/4) 
178 

(5) 

176/174 

(17/14) 

0405 
133/132 
(11/7) 

152 

(14) 

124/131 

(21/17) 
100 

(1) 

193/186 
(11/4) 

193 

(5) 

188/188 

(12/7) 
168/155 

(19/4) 
164 

 (7) 

166/160 

(12/10) 

0506 
129/128 

(7/4) 
127 

(10) 

119/122 

(9/5) 
118 

(16) 

182/169 

(16/5) 
174 

(5) 

171/172 

(12/10) 

161/140 

(21/6) 
151 

(11) 

148/145 

(13/10) 

0607 
142/141 

(10/6) 
 

124/129 

(17/6) 
 

197/187 

(12/6) 
 

187/187 

(13/9) 

166/153 

(19/5) 
 

159/158 

(14/6) 

0708 
149/152 
(9/9) 

 
133/135 

(16/10) 
 

187/183 
(10/4) 

 
185/188 
(9/7) 

170/156 

(20/2) 
 

161/159 

(13/5) 

0809 
167/168 
(8/7) 

 
135/137 

(18/14) 
 

200/197 
(6/3) 

 
198/200 

(12/5) 
177/167 

(16/3) 
 

175/174 
(19/7) 

AVG 
144/143 

(6/3) 
 

131/134 

(12/5) 
 

194/186 

(9/3) 
 

189/190 

(11/7) 

171/157 

(17/3) 
 

164/162 

(15/9) 
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Figure 4.20: Comparison of AMSR-E (left) and NOAA/IMS (center) ice-off, and 

MODIS/Terra image (right) acquired on the same day during the break-up period of ice 

season 2005-2006 on GBL. 
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Figure 4.21: Comparison of AMSR-E (left) and NOAA/IMS (center) ice-off, and 

MODIS/Terra image (right) acquired on the same day during the break-up period of ice 

season 2005-2006 on GSL. 
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AMSR-E ICDp differs by one week on average from IMS (Table 4.8). Ice cover is 

estimated to remain longer with IMS when examining the full extent of GBL and GSL. 

This is expected since IMS is a finer resolution product (4 km) that can resolve ice in areas 

of the lakes where AMSR-E suffers from land contamination (along lake shore and areas 

with small islands as in the east arm of GSL). When considering only the main basin 

sections of GBL and GSL (confidence regions), AMSR-E ICDp estimates are slightly 

shorter for GBL and longer for GSL than IMS (Table 4.8). Since ICDp is calculated from 

ice-on to ice-off dates such differences between the two products are possible. As indicated 

earlier, ice-on dates from IMS tend to fall between FO and ice-on dates from AMSR-E, but 

closer to FO. Differences in ICDp tend to be larger between AMSR-E and QuikSCAT 

estimates over two lakes, the main reason being that ICDp from QuikSCAT was calculated 

from FO, instead of ice-on to ice-off dates by Howell et al. (2009a). This makes the 

comparison a bit more tentative than with the IMS product. 

 

 
 

Table 4.8: Comparison of daily-derived ICDp from AMSR-E (AME), QuikSCAT (QUT) and 

NOAA/IMS (IMS) products for GBL and GSL (2002-2009). Values within confidence regions 

in bold. Standard deviation in parentheses. Note that QUT* indicates that ICDp was 

calculated from FO to ice-off since ice-on was not determined in Howell et al. (2009). 
 

Pixel 

Level   

ICDp     

GBL   GSL   

YEAR AME QUT* IMS AME QUT* IMS 

0203 
224/215  
(19/11) 

224 

(13) 
 

195/220  

(28/29) 
193 

(12) 
 

0304 
233/226  

(12/7) 
260 

(11) 
 

203/223  

(22/22) 

211 

(12) 
 

0405 
232/229  

(10/7) 
245 

(9) 

238/232 

(11/7.5) 

195/218  

(20/22) 

205 

(14) 

217/207 

(11/9) 

0506 
210/203  
(15/7) 

218 

(13) 

217/216 
(12/10) 

176/201  

(26/26) 

183 

(16) 

186/181 
(12/10) 

0607 
225/217  

(14/8) 
 

225/221 

(14/8) 

195/214  

(17/21) 
 

197/193 

(12/7.5) 

0708 
219/215  

(10/6) 
 

225/225 

(11/8) 

184/193  

(12/14) 
 

198/187 

(15/10) 

0809 
230/223  
(11/5) 

 
241/237 
(12/8.5) 

193/208  

(18/19) 
 

213/202 
(17/9) 

AVG 
225/218  

(9/6) 
 

229/226 

(12/8.3) 

192/211  

(16/18) 
 

202/194 

(13/9.6) 
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4.6.2.2 Lake-wide comparison  

Table 4.9 shows summary statistics of CFO, WCI and ICDe estimated with AMSR-E 

compared to those determined from NOAA/IMS and by CIS. CFO corresponds to the date 

when all pixels within a lake or lake section become totally ice-covered (i.e. 100% ice 

fraction), while WCI is the date when all pixels become ice-free (i.e. 100% open water). 

ICDe is calculated as the number of days between CFO and WCI. In Table 4.9, 

CFO/WCI/ICDe estimates from IMS and CIS are for the entire extent of GBL and GSL. 

Acknowledging that estimates of the same variables are derived at a coarser spatial 

resolution with AMSR-E, estimates are provided for both the entire lake surfaces and main 

basins only (confidence regions) of GBL and GSL. Also noteworthy is the fact that CIS is a 

weekly product, unlike the IMS and AMSR-E products that are derived daily. Therefore, 

some of the differences between estimated dates may be attributed to the temporal 

resolution of the products. AMSR-E/CFO (from DY 330 to 356) dates compare well with 

CIS/CFO (from DY 324 to 354) and IMS/CFO (from DY 326 to 348), as do AMSR-E/WCI 

(from DY 158 to 210) with IMS/WCI (from DY 175 to 209) and CIS/WCI (from DY 165 

to 219). Overall, these results are very encouraging since CFO/WCI/ICDe estimated with 

the new automated AMSR-E ice phenology retrieval algorithm are within about one week 

of those determined by ice analysts (IMS and CIS) through visual interpretation of imagery 

from various sources (optical and SAR). Some of the variability in estimates between years 

(earlier/later dates) should, however, be examined more closely in a follow-up study.  

  



 

 78 

Table 4.9: Comparison of ice phenology variables (CFO, WCI, and ICDe) daily derived from 

AMSR-E (AME) and NOAA/IMS (IMS) products, as well as weekly-derived from Canada Ice 

Service (CIS) product for GBL and GSL (2002-2009). Values within confidence regions in 

bold. Standard deviation in parentheses. 

 

Entire 

Lake   

   

CFO     WCI     ICDe       

GBL GSL   GBL GSL   GBL  GSL    

YEAR AME IMS CIS AME IMS CIS AME IMS CIS AME IMS CIS AME IMS CIS  AME IMS CIS  

0203 
346 

/346 
 354 

351 

/351 
 354 

210/ 

210 
 199 

210 

/160 
 178 

229/ 

229 
 203  

224 

/174 
 182  

0304 
344 

/344 
 339 

350 

/350 
 346 

210 

/210 

 

208 219 
210 

/194 
202 198 

231 

/231 
 238  

225 

/209 
 210  

0405 
330 

/330 
326 324 

344 

/344 
326 338 

210 

/210 
209 203 

210 

/166 
186 196 

246 

/246 
249 237  

232 

/188 
226 216  

0506 
336 

/336 
334 336 

349 

/349 
340 343 

210 

/202 

 

187 188 
207 

/168 
183 165 

239 

/231 
218 210  

223 

/184 
208 182  

0607 
339 

/339 
336 335 

337 

/337 
337 335 

210 

/208 
202 201 

210 

/164 
175 187 

236 

/234 
231 224  

238 

/192 
203 210  

0708 
339 

/339 
345 341 

346 

/346 
342 341 

210 

/193 

 

195 200 
210 

/158 
189 200 

236 

/219 
215 217  

230 

/178 
212 217  

0809 
348 

/348 
331 333 

356 

/356 
348 347 

210 

/204 
208 212 

210 

/172 
199 191 

228 

/222 
243 237  

219 

/181 
217 202  

AVG 

340 

/340 

(6/6) 

334 

(7) 

337 

(9) 

348 

/347 

(6/6) 

339 

(8) 

343 

(6) 

210 

/203 

(0/6) 

202 

(9) 

203 

(10) 

210 

/164 

(1/11) 

189 

(10) 

188 

(13) 

234 

/230 

(6/9) 

231 

(15) 

224 

(14) 
 

227 

/187 

(6/12) 

213 

(9) 

203 

(15) 
 

 

 

4.7 Conclusion 

The 18.7 GHz (H-pol) was found to be the most suitable AMSR-E channel for estimating 

ice phenology dates. It is less sensitive than the other frequencies examined to wind effects 

over open water and H-pol is better than V-pol for discriminating open water from ice. As a 

result, an ice phenology retrieval algorithm which makes use of AMSR-E 18.7 GHz H-pol 

TB data was developed and applied to map the evolution of freeze-onset/melt-onset and ice-

on/ice-off dates, as well as melt/freeze/ice cover duration on GBL and GSL over seven ice 

seasons (2002-2009). Through this, much was learned about the temporal and spatial 

evolution of ice cover within and between the two large lakes in relation to regional climate, 

latitudinal position, spring and summer temperature (for break-up), lake depth and, in the 

case of GSL, the influence of water inflow from Slave River. In addition, freeze duration is 

mainly dependent on air temperature variability after fall overturning. Results revealed that 

during the freeze-up period both freeze-onset and ice-on dates occur about one week earlier, 

and freeze duration lasts approximately one week longer on GBL than on GSL. During the 

break-up period, melt-onset and ice-off dates happen on average one week and 
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approximately four weeks later, respectively, on GBL. Located in a colder climate region, 

melt duration lasts about three weeks longer on this lake compared to its southern 

counterpart. The net effect is that ice cover duration is usually three to four weeks longer, 

depending on the ice season, on GBL compared to GSL. These results add to our 

knowledge of ice phenology on the two lakes which had not been fully documented and 

contrasted in previous investigations. 

 

Results from an initial comparison between AMSR-E estimated ice phenology variables 

and those estimated by QuikSCAT, as well as those obtained from NOAA IMS and CIS 

show that relatively coarse resolution AMSR-E 18.7 GHz H-pol TB data are suitable for 

monitoring of ice phenology on the two lakes, at least in their main basins in a consistent 

manner. The ice phenology algorithm described in this paper may be applicable to other 

large lakes of the Northern Hemisphere and also to longer time series of passive microwave 

satellite data from SMMR-SSM/I (circa 32-year historical record). Furthermore, there is 

likely the potential to estimate ice concentration during freeze-up and break-up from 

AMSR-E measurements. These are three lines of research that we are actively pursuing. 
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Chapter 5: Sensitivity of AMSR-E 
Brightness Temperatures to the 
Seasonal Evolution of Lake Ice 
Thickness  
In this chapter, the sensitivity of brightness temperature (TB) at 6.9, 10.7, and 18.7 GHz 

from Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E) 

observations was investigated over five winter seasons (2002-2007) on Great Bear Lake 

(GBL) and Great Slave Lake (GSL), Northwest Territories, Canada. The TB measurements 

were compared to ice thicknesses obtained with a previously validated thermodynamic lake 

ice model. Lake ice thickness was found to explain much of the increase of TB at 10.7 and 

18.7 GHz. TB acquired at 18.7 GHz (V-pol) and 10.7 GHz (H-pol) showed the strongest 

relation with simulated lake ice thickness over the period of study (R
2
 > 0.90). A 

comparison of the seasonal evolution of TB for a cold winter (2003-2004) and a warm 

winter (2005-2006) revealed that the relationship between TB and ice growth was stronger 

in the cold winter (2003-2004). Overall, this chapter shows the high sensitivity of TB to ice 

growth and thus the potential of AMSR-E mid-frequency channels to estimate ice thickness 

on large northern lakes.  

5.1 Introduction 

Lake ice grows steadily between the end of the freeze-up period and the onset of the break-

up period as a result of the thermodynamics of freezing water and dynamic ice motion on 

the surface. Lake ice thickens as a result of two fundamental formation processes i) black 

ice (congelation ice) is created by the heat transfer of freezing water at the ice-water 

interface, and ii) snow ice is created by the freezing of slush at the snow-ice interface. 

 

 Negative temperature gradients in the ice and snow (for black ice) and snow alone (for 

snow ice) cause conductive heat flow through the insulating ice layer into the subzero 
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atmosphere (Jeffries et al., 2006). In thermodynamic thickening, this conductive heat flow 

controls the ice growth rate and the ice thickness (Jeffries et al., 2006), and the ice thickens 

downward as a result of heat loss at the top of the ice/snow cover.  

 

The timing of ice formation and decay, ice cover duration, and ice growth play an 

important role in the surface energy/water budget as well as greenhouse gas budgets at 

regional scales where lakes occupy a significant fraction of the landscape. In particular, 

total conductive heat loss resulting from wintertime ice growth has been shown to play a 

significant role in the energy balance of the lake-rich area of the North Slope of Alaska, and 

areas occupied by large, deep, lakes (e.g. Great Slave Lake) relative to other lakes in their 

immediate surrounding (Jeffries et al., 2005, 2006). In addition to their role in regional 

climate, mid-to high latitude lakes are also sensitive indicators of changing climate 

conditions. Recent studies using ice phenological observations from a historical Canadian 

database have shown the sensitivity of lake ice cover during the second half of the 20
th

 

century to climate warming as well as to large-scale atmospheric teleconnection patterns 

(Bonsal et al., 2006). Unfortunately, Canada’s historical ground-based observational 

network which has provided much of the evidence for the documented changes and links to 

atmospheric forcings, and which included weekly/bi-weekly ice thickness measurements, 

has almost totally disappeared over the last two decades (Lenormand et al., 2002). Satellite 

remote sensing, particularly those sensors operating at microwave frequencies, provides a 

potential means for obtaining frequent ice thickness estimates from space. 

 

A few studies have shown the potential of spaceborne passive microwave radiometry, alone 

or in combination with radar altimetry, for the retrieval of information regarding lake ice 

phenology such as ice-on and ice-off dates, and ice cover duration (Kouraev et al., 2007ab; 

Walker et al., 1993). There has also been some demonstration of the utility of brightness 

temperature (TB) from passive microwave airborne radiometers to estimate ice thickness 

(Hall et al., 1981, 1993; Chang et al., 1997). In particular, a previous study by Hall et al. 

(1981) showed, though with only four days of airborne/field measurements during an entire 

winter period, a strong positive relationship between TB at low frequency (5-6 GHz) and 
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lake ice thickness. The availability of frequent (twice-daily) TB measurements from the 

Advanced Microwave Scanning Radiometer – Earth Observation System (EOS) (AMSR-E) 

satellite sensor provides an opportunity to more thoroughly examine the strength of this 

relationship. 

 

In this Chapter 4, we present the first results of its kind on the sensitivity of AMSR-E TB to 

estimate the seasonal evolution of ice thickness from two large lakes in northern Canada, 

Great Bear Lake (GBL) and Great Slave Lake (GSL). The two lakes have the advantage of 

being big enough to permit the examination of the sensitivity of the low and medium 

frequency channels (6.9-18.7 GHz) of AMSR-E to ice thickness within homogenous 

satellite footprints (76, 49, and 28 km, respectively; see Figure 5.1) over these two lakes, 

thus eliminating the possible effect of land contamination. 

 

5.2 Data and method 

GBL and GSL are located in the Mackenzie River Basin (MRB; Figure 5.1) and rank 

among the ten largest freshwater lakes in the world. GBL and GSL lie between 60° and 67° 

N and 109° to 126° W (Figure 5.1), with surface areas (average depths) of 31,153 km
2
 (76 

m) and 28,450 km
2 

(88 m), respectively (Rouse et al., 2008a). A summary of January and 

July temperature and snow precipitation measured at coastal weather stations is provided in 

Table 5.1 for the 2002 to 2007 period of analysis described in this chapter. The mean air 

temperature in the GSL area is generally warmer than that of GBL, and therefore, GSL has 

an open-water season about four to six weeks longer than GBL (Schertzer et al., 2008). The 

lake is ice-free from the beginning of June until mid- to late-December, and lake ice 

conditions on this lake have been reported to exhibit greater inter-annual variability than on 

GBL (Blanken et al., 2008). 
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Table 5.1: Mean temperature (°C) in January (July), and total annual snowfall (cm), recorded 

at Deline (Great Bear Lake), Yellowknife and Hay River (Great Slave Lake) meteorological 

stations 

 

 

 

 

 

 

 

 

 

 

 

The evolution of TB (horizontal and vertical polarizations; 55
o
 incidence angle) derived 

from AMSR-E/Aqua level 2A global swath spatially-resampled brightness temperatures 

product (AE_L2A) was compared to ice thickness obtained with the Canadian Lake Ice 

Model (CLIMo) (Duguay et al., 2003b) for the period 2002-2007 at both GBL and GSL, 

since insufficient ground-based measurements are available for a suitable comparison. The 

one-dimensional thermodynamic lake ice model has been shown to provide good estimates 

of ice thickness on a daily basis as well as the freeze-up and break-up dates on shallow 

lakes near Fairbanks (Alaska), and Churchill (Manitoba) (Duguay et al., 2003b), and on 

large lakes such as GSL (Ménard et al., 2002). TB data was acquired from the AMSR-E 

sensor for both descending and ascending overpasses. To examine the sensitivity of TB at 

6.9, 10.7, and 18.7 GHz (horizontal and vertical polarizations) to ice thickness, all AMSR-

E observations for each day falling within a 5.1´ × 5.1´ grid overlapping area between 

descending and ascending modes in AMSR-E were averaged over the areas of interest, 

within the central sections of GBL (66° N, 120° 30´ W) and GSL (61° 19.8' N, 115° W and 

61° 41.8' N, 113° 49.5' W) (Figure 5.1).  

 

Year Great Bear Lake 

(Deline) 

Great Slave Lake 

(Yellowknife) 

Great Slave Lake 

(Hay River) 

 

Mean Temp 

Jan (July) 

Total 

Snow 

Mean Temp 

Jan (July) 

Total 

Snow 

Mean Temp 

Jan (July) 

Total 

Snow 

2002 -24.3 (12.7) 116.4 -25.3 (16.4) 130.2 -21.5 (15.6) 131.6 

2003 -26.5 (14.2) 177.7 -26.0 (17.8) 137.0 -21.3 (17.0) 137.2 

2004 -28.3 (12.0) 145.3 -29.4 (17.5) 160.2 -25.4 (16.6) 144.7 

2005 -24.8 (11.0) 205.4 -26.4 (15.8) 192.1 -22.6 (15.7) 169.4 

2006 -27.4 (13.6) 172.8 -22.0 (16.7) 176.6 -19.6 (15.9) 182.9 

2007 -22.0 (14.0) 164.9 -21.4 (18.7) 207.3 -17.9 (18.0) 146.2 

AVG -25.5 (12.9) 163.8 -25.1 (17.1) 167.2 -22.1(16.4) 152.0 
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Figure 5.1: Map showing location of Great Bear Lake and Great Slave Lake, and nearby 

meteorological stations (Deline, Yellowknife, and Hay River) within the Mackenzie River 

Basin. Solid black squares represent 5.1´ × 5.1´ of sampling area on both GBL and GSL. 

Black, dark-grey, and bright-grey open circles indicate the diameter of different footprints at 

6.9 GHz (black, 76 km), 10.65 GHz (dark grey, 49 km), and 18.7 GHz (bright grey, 28 km), 

respectively. 

 

During the data collection, any TB that was recorded when the maximum daily air 

temperatures were above 0 °C for more than four consecutive days at the nearby 

meteorological stations, was excluded to eliminate days possibly influenced by surface 

melt, which affect TB values. During surface melt events TB values are not representative of 

the seasonal evolution of ice thickness. 

 

To examine the relation between TB and ice thickness, daily ice thicknesses were simulated 

from CLIMo on both lakes by performing a simulation over the period 2002-2007. The 

model was forced with mean daily air temperature, wind speed, relative humidity, cloud 

cover, and snowfall measurements available from the Deline (65° 12' N, 123° 26' W) 
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meteorological station for GBL, and using station data from Yellowknife (62° 27.6' N, 114° 

26.4' W) and Hay River (60° 50.4' N, 115° 46.8' W) for GSL (see Figure 5.1). For 

simulating ice thickness on GBL and GSL with CLIMo, a 40-m mean mixing depth and 25 

(%) snow scenario were selected because previous research indicates that GSL has a 40-m 

mixing layer depth at the onset of ice formation (Schertzer et al., 2008) which is also likely 

similar over GBL. The scenario of 25 % snow cover over lake ice, which corresponds to 

25% of the snow depth measured at the closest meteorological station, was applied to 

provide a more realistic representation of snow accumulation on the ice surface of the 

lakes, as snow is strongly redistributed by winds on these lakes during the course of a 

typical winter season (Duguay et al., 2003b). This scenario has been shown to provide good 

estimates of ice thickness with CLIMo in a previous investigation on GSL (Ménard et al., 

2002). 

 

Simple linear regression was applied to determine the frequencies and polarizations 

(significance at p < 0.05) most sensitive to ice thickness over the five winter seasons (2002-

2007). The coefficient of determination (R
2
) was also calculated to quantify the variability 

of TB explained by seasonal ice thickening. 

 

5.3 Results and Discussion 

5.3.1 General Evolution of TB From Initial Ice Formation to Melt  

Lake ice formation, growth, and decay on GBL and GSL encompass fall freeze-up; a long 

winter period of ice growth and thickening; a short period of ice melting and thinning, and 

eventually, spring break-up and the complete disappearance of the ice cover. Ice growth 

(thickening) is influenced mainly by air temperature and the presence of snow on the ice 

surface. At the frequencies examined in this study, the effect of the atmosphere can largely 

be ignored such that variations in TB are determined by emissivity and physical temperature 

changes of the medium. In addition to the properties of the medium under investigation, 

emissivity, and thus TB, also vary with frequency and polarization (the incidence angle 

being fixed at 55
o
 for AMSR-E).  
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As shown in Figure 5.2, using the footprint centered on GBL as an example, when air 

temperature drops below 0 °C and solar radiation decreases, the expected change of TB in 

response to lake ice formation is delayed due to the heat capacity in large lakes. Four to six 

weeks after air temperature started to decrease below 0 °C, the TB over the lake starts to 

increase due to the increase in ice fraction. From the first appearance of ice, it takes three to 

five weeks for complete freeze over (CFO) to occur (i.e. full sheet of ice to form within the 

footprint of interest). This process is more strongly apparent at H-polarization (top graphic 

of Figure 5.2) where TB increases by about 70 K from open water to CFO conditions. Ice 

then starts to thicken (mid-December on GBL; late-December on GSL, not shown) and 

reaches its maximum thickness (thick grey curve in bottom graphic of Figure 5.2) just 

before the beginning of melt-onset (MO), when the mean air temperature starts to exceed 0 

°C. When this temperature is reached, TB increases rapidly due to the higher air temperature 

and increasing shortwave flux absorption on the lake ice/snow surface from melt. During 

this period, melt/refreeze (day/night) events cause fluctuations in TB along the general 

springmelt trajectory (from MO onward). A similar process occurs over GSL (not shown). 

5.3.2 Relation Between TB and Lake Ice Thickness 

For freshwater ice with few scatterers (e.g. trapped air bubbles created during freezing), the 

emissivity is predominately affected by the ice/air interface, the ice/water interface, and the 

ice thickness. Early studies have shown that a uniform bubble-free slab of lake ice emits 

microwave radiation in a quantity proportional to its thickness (Hall et al., 1981; 1993, 

Chang et al., 1997). The depth of emission in freshwater ice is well known to decrease with 

increasing frequency. Also, the temperature dependence of the imaginary part of the 

dielectric constant causes the depth of emission to decrease with increasing temperature. 

For example, for ice without impurities, depth of emissions at 6.6/10.7/18/37 GHz have 

been reported to be in the order of 19/8/2.8/0.7 m at -8.15 
o
C and 34/12/4.5/0.9 m at -43.15 

o
C (Surdyk et al., 2002). Given this, the low to mid-frequency channels available on the 

AMSR-E platform (6.9, 10.7, 18.7 GHz) possess depth of emissions sufficient to interact 

with ice and water mediums, and to show the influence of increasing ice thickness on TB. 
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Figure 5.2: The time series of horizontal (top) and vertical (middle) polarizations brightness 

temperatures at 6.9, 10.7, and 18.7 GHz on GBL from the 2003-2004 winter period. The time 

series of maximum (Max_T, red) and mean (Mean_T, blue) air temperatures obtained at 

Deline is shown at the bottom of the figure, with snow depth (grey). Simulated ice thicknesses 

in the winter of 2003-2004 obtained with CLIMo (details given in the text) are represented by 

the thick grey curve. The two red circles overlaid on the ice thickness curve correspond to in-

situ measurements made during field visits on GBL (65°15' N, 122°51.5 'W). 

 

Over the winter ice growth period, between CFO and MO in as shown in Figure 5.2, TB 

increases as expected since thicker ice reduces the influence of the lower emissivity 

(radiometrically cold) liquid water below the ice and emits its own microwave energy. 
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(Lemmetyinen et al., 2009). In  previous study (Hewison et al., 1999), the near-nadir mid-

winter emissivity of lake ice was estimated to be around 0.9 at 18.0 GHz near Pudäsjarvi, 

Finland, which is much  higher than that of open water (0.4-0.5). As shown in Figure 5.2, 

between CFO and MO, TB is about 20-30 K higher at vertical polarization compared to 

horizontal polarization at all frequencies. TB values are smaller by about 20-30 K at the 

lower frequencies (6.9-10.7 GHz) in contrast to the higher 18.7 GHz frequency over the full 

extent of the ice growth season. Since 18.7 GHz has a shorter depth of emission than 10.7 

GHz and 6.9 GHz, it is affected by the underlying radiometrically cold water only in the 

early period of winter. 

 

 

 

Figure 5.3: Boxplots of R
2
 values between simulated ice thickness (with 40 m mixing depth 

and 25 percent snow cover scenario) and brightness temperature at 6.9, 10.7, and 18.7 GHz 

from the sampled AMSR-E footprints showed in Figure 5.1 (averaged over five winter 

seasons, 2002-2007), showing the median (center line), the first and third quartiles ranges (the 

box), and the maximum and minimum limits (whiskers). 

 

The temperature-vulnerable absorption length of ice causes a wavy pattern in the time 

series of TB for both lakes, as depicted in Figure 5.2 and Figure 5.3. These oscillating 

characteristics of TB depend greatly on the imaginary part of the index of refraction of ice. 
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This is more noticeable during the warmer winter season (2005-2006), which experienced 

greater air temperature variability during the course of the ice growth season. 

 

5.3.2.1 Strength of Relation over Full Study Period (2002-2007) 

The statistics summarized in Table 5.2 (average 2002-2007) and the box plots presented in 

Figure 5.3 clearly reveal the strong relation between ice simulated thickness and TB for all 

three frequencies examined herein. When all three sites and years are grouped together, the 

strongest relation is found at the 10.7 and 18.7 GHz frequencies with over 90% of the 

variations in TB explained by variations in ice thickness. The R2 values are slightly higher 

at the vertical polarization for 18.7 GHz and at horizontal polarization for the 10.7 GHz 

frequency. Contrary to the results obtained by Hall et al. (1981) with airborne 

measurements, the relation between TB and ice thickness is weaker, though still significant 

(p < 0.05), at the lower frequency (6.9 GHz). 

 

Two factors may explain this discrepancy. First, the footprint at 6.9 GHz (75 km × 43 km) 

is larger than that of 10.7 GHz and even more than at 18.7 GHz (27 km × 16 km), hence 

encompassing a larger area on GBL and GSL. The lake ice model provides a single value 

of ice thickness over the large footprint on any day, while TB values from AMSR-E are 

influenced by the spatial variability in ice thickness which is known to vary across lakes. 

Therefore, the larger footprint at 6.9 GHz may include a greater range of ice thicknesses 

than given by the ice model. A second factor that may also explain the lower R
2
 values at 

6.9 GHz is that the footprints of the three sites may somewhat be influenced by land 

contamination, although every effort was made to exclude such an effect. Nonetheless, the 

strong relations found at 10.7 and 18.7 GHz are very promising for future investigations on 

the estimation of lake ice thickness from AMSR-E. 

 

5.3.2.2 Cold Winter (2003-2004) Versus Warm Winter (2005-2006) 

Although a strong relation was found to exist between TB and ice thickness when data from 

all sites and years are grouped together, it is also worth examining how this relation differs, 
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if at all, when comparing a cold winter with a warm winter. Table 5.2 and Figure 5.4 

reveal that inter-annual variability of climate affects ice growth and thus both the strength 

of the relation between TB and ice thickness, and to a lesser extent the slope of the relation 

between the two variables. Three specific observations can be drawn from Table 5.2 

regarding the R
2
 values. First, the strength of the relation is weaker (i.e. smaller R

2
 values) 

for the warmer winter compared to the colder winter. This is particularly evident with 

January 2004 and January 2006 temperatures at GSL sites (Table 5.1) where TB values 

exhibit greater inter-seasonal variability in winter 2005-2006 compared to 2003-2004 

(Figure 5.4) due to larger fluctuations in air temperature during ice growth. 

 

Figure 5.4: Linear regression plots between simulated lake ice thickness and brightness 

temperature at 6.9, 10.7, and 18.7 GHz for GBL_D (Deline), GSL_Y (Yellowknife) and 

GSL_H (Hay River) for a cold winter (2003-2004) and a warm winter (2005-2006). Values (n) 

in brackets indicate the number of paired ice-thickness and TB observations. 
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Second, the strength of the relation is always stronger at V-polarization for the 18 GHz 

channel, regardless of site, while at 10.7 and 6.9 GHz the strongest R
2
 values are obtained 

at either V- or H-polarization depending on site and season (cold versus warm winter). This 

effect is the subject of ongoing investigation. Third, the regression slopes shown in Table 

5.2  provide useful information regarding the rate of change of TB with ice thickness (K cm
-

1
). Steeper slopes are found at H-polarization for all three frequencies. Also, as frequency 

increases from 6.9 to 18.7 GHz, the slopes become steeper. For example, the slope at 

GBL_D (2003-2004) is 0.26 K cm
-1

 at 18.7(V) GHz and 0.10 K cm
-1

 at 6.9(V) GHz. Given 

the strong proportion of the variations in TB explained by ice thickness growth, this relation 

could potentially be inverted to determine winter ice growth rates (cm K
-1

) and thus 

estimate ice thickness on these large lakes. 

 

Table 5.2: Coefficient of determination (R
2
) and regression slope of relation between TB and 

ice thickness for a cold winter (2003-2004), a warm winter (2005-2006), and average 

conditions (2002-2007) for sampling FOOTPRINTS AT GBL_D (Deline), GSL_Y 

(Yellowknife) and GSL_H (Hay River). Regression slopes (K cm
-1

) are in brackets 

 

5.4 Conclusions 

This study has revealed the strong sensitivity of TB from the low and middle frequency 

channels (6.9 - 18.7 GHz) of AMSR-E to the seasonal evolution of ice thickness on two 

large northern lakes.  Using data from five winter seasons (2002 - 2007), it was found that 

Year 

 
6.9 H 6.9V 10.7H 10.7V 18.7H 18.7V 

2
0

0
3
_

0
4
 GBL_D 0.86 (0.12) 0.89 (0.10) 0.92 (0.21) 0.95 (0.19) 0.91 (0.30) 0.96 (0.26) 

GSL_Y 0.88 (0.14) 0.88 (0.11) 0.96 (0.23) 0.96 (0.19) 0.93 (0.31) 0.97 (0.27) 

GSL_H 0.68 (0.13) 0.71 (0.10) 0.92 (0.22) 0.89 (0.18) 0.91 (0.31) 0.93 (0.25) 

2
0

0
5
_

0
6
 GBL_D 0.78 (0.09) 0.80 (0.09) 0.84 (0.16) 0.89 (0.16) 0.85 (0.21) 0.90 (0.19) 

GSL_Y 0.65 (0.15) 0.52 (0.10) 0.78 (0.27) 0.70 (0.19) 0.82 (0.41) 0.84 (0.29) 

GSL_H 0.61 (0.12) 0.58 (0.09) 0.89 (0.23) 0.77 (0.16) 0.81 (0.35) 0.81 (0.23) 

Average 

(2002-2007) 
0.78 (0.13) 0.74 (0.10) 0.90 (0.22) 0.87 (0.17) 0.86 (0.29) 0.91 (0.23) 
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TB at the 10.7 and 18.7 GHz frequencies were highly correlated with ice thickness; R
2
 

values were in the order of 0.9 when data from both lakes and for all years were pooled 

together. Some differences in the strength of the relation were observed when comparing TB 

and ice thickness estimates from a cold versus a warm winter. The strength of the relation 

between TB at the 10.7 and 18.7 GHz frequencies and ice thickness was higher for the 

colder winter, when less inter-seasonal variability in air temperature was observed at 

meteorological stations located in the vicinity of the lake sites. 

 

The results presented in this paper are consistent with results from earlier work based on 

airborne passive microwave measurements coincident with limited ice thickness 

observations (4-6 measurement campaigns during a full winter from Walden Reservoir, 

north-central Colorado), which also found a strong relation between TB and ice thickness at 

frequencies between about 5 to 22 GHz (Hall et al., 1981; 1993, Chang et al., 1997). 

However, these previous studies showed the higher sensitivity of TB at 5 GHz (R
2
=0.98) to 

ice thickness, compared to the 18.7 GHz (R
2
=0.67). In contrast, using daily AMSR-E TB 

measurements at similar frequencies, the present study shows a stronger relation with ice 

thickness at 18 GHz frequency (R
2
= 0.86-0.91) and 10 GHz (R

2
= 0.87-0.90) than at 6 GHz 

(R
2
= 0.74-0.78). These results indicate that TB measurements obtained from AMSR-E offer 

a high potential for estimating ice thickness on large northern lakes on a regular basis.  
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Chapter 6: Estimation of ice 
thickness on large northern lakes from 
AMSR-E brightness temperature 
measurements 
In this chapter, an ice thickness retrieval algorithm utilizing data from the Advanced 

Microwave Scanning Radiometer – Earth Observing System (AMSR-E) was developed and 

applied to Great Bear Lake (GBL) and Great Slave Lake (GSL) for the period 2002-2009. 

The temporal evolution of vertically polarized AMSR-E brightness temperature (TB) at 18.7 

GHz was explored to estimate ice thickness between the late freeze-up (ice-on) and early 

break-up (melt-onset) periods. The sensitivity of AMSR-E TB at H and V polarizations to 

the seasonal evolution of ice thickness was examined statistically and with forward 

simulations of TB using the most recent version of the Helsinki University of Technology 

(HUT) model which incorporates a freshwater ice layer. The stronger relation found 

between TB at 18.7 GHz V-pol and ice growth was exploited for the development of a 

regression-based ice thickness retrieval algorithm. Simple linear regression equations, one 

that combines both GBL and GSL (global equation) and two other specific to each lake 

(regional equations), allow for the estimation of ice thickness on a monthly basis from 

January to April. Estimated late-winter ice thicknesses on GBL were determined to be on 

average 5-15 cm thicker than on GSL with the exception of ice season 2005-2006 when it 

was estimated to be 10 cm thicker on GSL. For both lakes the 2004-2005 and 2008-2009 

ice seasons experienced the thickest end-of-winter ice thicknesses, ranging from 146 to 150 

cm on GBL and GSL. The thinnest end-of-winter ice thicknesses were on average 134 cm 

on GBL (2005-2006) and 140 cm on GSL (2007-2008). Variability in air temperature, 

snowfall and subsequent redistribution by wind, and lake depth explain ice thickness 

variations within and between lakes over the seven winter seasons analyzed. Estimated ice 

thicknesses from AMSR-E compare well with coincident in situ measurements collected on 

GBL and GSL over a limited number of ice seasons and sites within the large passive 

microwave footprints (MBE = 8 cm and RMSE = 19 cm). 
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6.1 Introduction 

Lake ice cover is a sensitive indicator of climate variability and change (Brown et al., 2010; 

Duguay et al., 2006). It is also important for studying the role of lakes in high-latitude 

weather and climate as the presence/absence of seasonal floating ice has an effect on heat 

and energy transfers across the lake-atmosphere interface (Brown et al., 2010; Kheyrollah 

Pour et al., 2012). Ice growth/thickening occurs between the onset of ice formation and 

melt-onset in response to energy loss through conductive heat flow to the atmosphere above 

from the freshwater under the lake ice to the ice/snow boundary (Jeffries and Morris, 2006). 

Monitoring and modeling of ice thickness therefore provides insight into the 

thermodynamics of lake ice at northern latitudes in response to climate. Measurements of 

ice thickness are also important to northern communities that depend on winter ice roads 

for the transportation of goods, access to resources, and for recreational purposes. A 

reduction in both the duration of ice cover and its thickness with climate warming will 

create problems of accessibility to food by reducing the reliability of traditional hunting 

ice-based routes and safety of ice-based travel.  

 

The variability and change of ice thickness has been studied using historical ground-based 

observations and numerical one-dimensional (1-D) thermodynamic models (Ashton, 2011; 

Brown et al., 2011; Duguay et al., 2003; Gough et al., 2004; Ménard et al., 2002; Morris et 

al., 2005; Vuglinsky et al., 2002; Zaier et al., 2010). However, ground-based measurements 

present limited area (point) coverage and lake ice models usually provide 1-D estimates of 

ice thickness for a single lake depth at a time. Both methods do not represent the spatial 

distribution of ice thickness over an entire lake surface. In addition, ground-based 

observational networks that have provided historical evidence for changes in ice phenology 

(freeze-up and break-up dates, and ice duration) and thickness during the second half of the 

20
th

 century have been diminished to the point where they can no longer provide the quality 
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of observations necessary for climate monitoring (Duguay et al., in press). Satellite remote 

sensing is the most logical alternative for lake ice observing (Duguay et al., 2011; Kang et 

al., 2012).  

 

Previous active microwave remote sensing studies using altimetry and scatterometry have 

focused on monitoring the temporal evolution of seasonal ice cover from initial ice 

formation through the decay period on large lakes (Howell et al., 2009; Kouraev et al., 

2007). Other studies have suggested that C-band synthetic aperture radar (SAR) could be 

used to determine ice thickness in northern shallow lakes when combined with optical data 

that can provide estimates of lake depth (Duguay et al., 2002; Duguay and Lafleur, 2003). 

Furthermore, the potential to estimate lake ice thickness from passive microwave brightness 

temperature (TB) measurements obtained at low frequencies (1-10 GHz) has been 

demonstrated with a limited number of airborne radiometric measurements coincident with 

ground-based ice thickness observations (Swift et al., 1980; Hall et al., 1981, 1993; Chang 

et al., 1997). More recently, Kang et al. (2010) have shown in a preliminary manner that the 

temporal evolution of TB measurements from the Advanced Microwave Scanning 

Radiometer–Earth Observing System (AMSR-E) 10.7 GHz and 18.7 GHz frequency 

channels during the ice growth season on Great Bear Lake (GBL) and Great Slave Lake 

(GSL), Canada, is strongly correlated with ice thickness as estimated with a numerical lake 

ice model (Duguay et al., 2003). There is a need to examine more closely the strength of the 

relation between ice thickness and passive microwave TB measurements, and how it can be 

further exploited to estimate ice thickness and map its spatiotemporal evolution on large 

northern lakes such as GBL and GSL.  

 

The primary objective of this research was to develop an ice thickness retrieval algorithm 

from AMSR-E TB measurements and subsequently map the spatiotemporal variability of ice 

thickness on GBL and GSL. In this paper, we first examine the sensitivity of TB to the 

seasonal evolution of ice thickness through a statistical comparison with estimates obtained 

from the Canadian Lake Ice Model (CLIMo; Duguay et al., 2003), and with forward 
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simulations of TB using the most recent version of the Helsinki University of Technology 

(HUT) emission model, which incorporates a freshwater ice layer. Three linear regression 

equations using AMSR-E TB data, one for each GBL and GSL and one that combines both 

lakes, are then developed and validated against independent ice thickness estimates from 

CLIMo and a limited number of ground-based measurements. The three regression 

equations are then applied to produce monthly ice thickness maps of GBL and GSL, and to 

analyze intra- and inter-lake variability in thickness for the period 2002-2009. The paper 

concludes with a summary of key findings and suggestions where future enhancements are 

needed.  

 

6.2 Study Area 

GBL and GSL are the largest freshwater lakes of northern Canada (Figure 6.1), lying 

between 60° to 67° N and between 109° to 126° W. Surface areas range from 31,000 km
2
 

and 28,000 km
2
 and average depths from 76 m and 88 m for GBL and GSL, respectively 

(Figure 6.2) (Kang et al., 2010, 2012). The different hydrological systems and energy 

balance of GBL and GSL result in distinctive thermodynamics, hydrodynamic, and surface 

climatic cycles (Rouse et al., 2008a). These lakes are known to have large seasonal lags in 

temperature and fluxes compared to other contiguous land cover in their adjacent regions 

(León et al., 2007). No complete disappearance of ice occurs until the middle (end) of July 

on GBL. Situated at a more southern location, GSL is generally influenced by warmer 

mean air temperature and a longer open-water period by about three to four weeks 

compared to GBL (Kang et al., 2012). GSL is ice-free from the beginning of June until 

mid- to late-December, and lake ice conditions on this lake have been reported to exhibit 

larger inter-annual variability than those on GBL (Blanken et al., 2008; Kang et al., 2010). 

In contrast to GBL, the discharge from the Slave River contributes to earlier ice break-up 

on GSL. 
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Figure 6.1: Map showing location of Great Bear Lake and Great Slave Lake, and nearby 

meteorological stations (Deline, Yellowknife, and Hay River) within the Mackenzie River 

Basin. Solid black squares represent 5.1´ × 5.1´ of sampling area on both GBL and GSL. 

Black, dark-grey, and bright-grey open circles indicate the diameter of different footprints at 

6.9 GHz (black, 76 km), 10.65 GHz (dark grey, 49 km), and 18.7 GHz (bright grey, 28 km), 

respectively. 

 

 

 

Figure 6.2: Bathymetry of Great Bear Lake (left) and Great Slave Lake (right) with the 

location of Deline, Yellowknife, and Hay River. Lake depth contours are in meter (Rouse et al., 

2008a). 
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For the period of analysis (2002-2009), the average annual air temperature recorded at the 

Deline weather station, near the western shore of GBL, was -6.3 °C with 18.1 cm of 

average annual snowfall while the average annual air temperature and snowfall, which are 

recorded at the lakeshore of GSL (at Yellowknife and Hay River), were -3.4 °C and 17.7 

cm, respectively (Table 6.1). In situ ice thickness measurements are very limited on GBL 

and GSL, particularly over the period of this study. For GBL values of 137 cm and 89 cm 

have been reported in March 2004 and 2005, respectively (Woo et al., 2007). A few 

additional ice thickness observations with precise geographical locations have been 

recorded on both GBL and GSL. These are described in a later section and were used as 

one source for the validation of the ice thickness retrieval algorithm from passive 

microwave satellite data. 

 

Table 6.1: Seasonal mean air temperature (°C) for winter (December, January, and February; 

DJF), spring (March, April, and May; MAM), summer (June, July, and August; JJA), 

autumn (September, October, and November; SON), and annual snowfall (cm) recorded at 

Deline (Great Bear Lake), Yellowknife and Hay River (Great Slave Lake) meteorological 

stations (2002-2009). M is missing snowfall data. 

 
DJF MAM JJA SON Annual temp 

Annual 

snowfall (cm) 

GBL GSL GBL GSL GBL GSL GBL GSL GBL GSL GBL GSL 

2002 -23.9 -21.5 -10.6 -9.5 11.1 14.2 -3.1 -1.3 -6.0 -4.0 14.55 15.46 

2003 -22.1 -20.6 -8.2 -4.3 11.6 14.7 -3.8 -0.3 -6.1 -2.9 22.21 16.18 

2004 -24.4 -21.0 -11.7 -7.6 10.4 13.8 -6.9 -2.9 -8.7 -5.1 16.14 16.94 

2005 -24.7 -22.9 -6.0 -3.6 10.0 13.6 -5.4 0.0 -5.6 -2.1 25.68 24.11 

2006 -20.6 -15.9 -7.8 -1.0 12.1 15.9 -4.9 -2.0 -5.5 -0.9 28.80 23.97 

2007 -22.7 -18.7 -9.7 -4.7 11.2 14.6 -5.3 -1.6 -7.0 -3.3 16.99 19.74 

2008 -25.0 -23.5 -8.2 -6.0 10.6 15.4 -4.7 0.0 -7.2 -3.9 16.73 26.89 

2009 -25.4 -23.8 -10.4 -7.1 10.7 14.2 -4.5 0.1 -7.1 -3.7 M 22.23 

Avg -23.5 -21.8 -8.6 -4.9 11.4 14.5 -4.6 -1.6 -6.3 -3.4 18.1 17.7 

STD 1.5 2.9 2.0 2.2 0.8 0.9 1.5 1.7 1.1 1.3 5.4 3.7 

 

 

6.3 Data and methods 

Data from three sources and two models were used in this research. The data comprised 

AMSR-E TB measurements, meteorological station data, and in situ ice thickness 

measurements. Models consisted of the 1-D thermodynamic lake ice model, CLIMo 
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(Duguay et al., 2003), and the most recent version of the HUT emission model 

(Lemmetyinen et al., 2010). The data and models, and their intended use, as well as the 

approach to estimate ice thickness from AMSR-E and its evaluation are described next.  

 

6.3.1 Data 

6.3.1.1 AMSR-E data 

AMSR-E TB data were obtained for the period of 2002-2009. AMSR-E (fixed incident 

angle: 54.8 degree) is a conically-scanning, twelve-channel passive microwave radiometer 

system, measuring horizontally and vertically polarized microwave radiation from 6.9 GHz 

to 89.0 GHz (Kang et al., 2011). The instantaneous field-of-view (IFOV) for each channel 

varies from 76 by 44 km at 6.9 GHz to 6 by 4 km at 89.0 GHz, and the sampling interval of 

each channel is 10 km (5 km sampling interval in 89.0 GHz). In this study, the AMSR-

E/Aqua L2A global swath spatially raw brightness temperature product (AE_L2A) was 

used. AMSR-E TB measurements for each day falling within a 5.1´ × 5.1´ (9.48 km × 9.48 

km) grid using both descending and ascending overpasses were averaged over the areas of 

interest, within the central sections of GBL (66° N, 120° 30´ W) and GSL (61° 19.8´ N, 

115° W and 61° 41.8´ N, 113° 49.5´ W) (Figure 6.1). The divide-and-conquer method of 

the Delaunay triangulation and the inverse distance weighted (IDW) linear interpolation 

were applied to the L2A TB data because the TB measurements in ascending and descending 

modes did not match the exact same position over GBL and GSL due to different orbit 

overpasses of AMSR-E. Since the sampling intervals at the frequencies of interest to 

estimate ice thickness (6.9 to 18.7 GHz; Kang et al., 2010) are spaced every 10 km along 

and across a track in AMSR-E L2A products, we chose 10 km grid spacing for the linear 

interpolation. 
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6.3.1.2 Meteorological station data 

Meteorological data from the National Climate Data and Information Archive of 

Environment Canada (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html) 

were acquired from three stations located in the vicinity of GBL and GSL. The stations 

selected include Deline (YWJ, 65° 12' N, 123° 26' W) to provide climate information on 

GBL, and Yellowknife (YZF, 62° 27.6' N, 114° 26.4' W) and Hay River (YHY, 60° 50.4' N, 

115° 46.8' W) to characterize the climate in the GSL area. Time series of maximum and 

mean daily air temperatures for seven winter seasons (from 2002-2009) were used for 

determining ice-on and melt-onset dates with AMSR-E TB at 18.7 GHz measurements, as 

described in Kang et al. (2012). Daily mean values of air temperature, relative humidity, 

wind speed, cloud cover and snow depth from the meteorological stations were also utilized 

as forcing data for CLIMo ice thickness simulations (described in 3.2.1). In addition, some 

of this data was used in the HUT model forward simulations (described in 3.2.2).  

 

6.3.1.3 Ice thickness measurements  

The Canadian Ice Service (CIS) provides near weekly in situ ice thickness measurements 

(1952-2010) for Back Bay, GSL, near Yellowknife (Environment Canada, 2010; 

Lenormand et al., 2002), with the exception of a few years without reported observations 

(May 1996 to November 2002). According to Ménard et al. (2002), the average maximum 

ice thickness in Back Bay was 1.33 ± 0.19 m (1960-1991). CIS ice thickness measurements 

for the period 2002-2009 were compared with AMSR-E ice thickness estimates retrieved 

from the regressions equation developed in section 3.3. A more limited number of ice 

thickness measurements (11 in total) made on GBL during winters 2003-2004 and 2006-

2007 were also available for the evaluation of ice thickness equations. 
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6.3.2 Model simulations 

6.3.2.1 Thermodynamic lake ice model simulations 

Lake ice thickness simulations were performed with CLIMo (Duguay et al., 2003) for two 

purposes: 1) to assess the sensitivity of AMSR-E TB data to the seasonal evolution of ice 

thickness through forward simulations with the HUT model using CLIMo output as forcing 

data and 2) to develop and evaluate the ice thickness retrieval algorithm (regression 

equations) from AMSR-E TB observations. Ground-based measurements of lake ice 

thickness are sparse. Therefore, we used independent estimations of ice thickness from 

CLIMo (details given in 3.3) to evaluate the AMSR-E lake ice thickness regression 

equations. Ice models like CLIMo present a viable alternative in providing independent 

estimations of ice when well validated over specific sites. Such is the case for the Back Bay 

and Hay River sites on GSL, and to a more limited extent near Deline on GBL (e.g. Ménard 

et al., 2002; Kheyrollah Pour et al., 2012). Similar independent model estimations of ice 

thickness have recently been used for the evaluation of a thin sea ice thickness retrieval 

algorithm from SMOS brightness temperatures (Kaleschke et al., 2012).  

 

Daily ice thicknesses were simulated with CLIMo on both GBL and GSL using mean daily 

air temperature, wind speed, relative humidity, cloud cover, and snow depth measurements 

from the Deline, Yellowknife, and Hay River meteorological stations as forcing data over 

the period 2002-2009. CLIMo is based on the 1-D unsteady heat conduction equation with 

penetrating solar radiation (Duguay et al., 2003; Brown et al., 2011). The surface energy 

budget can then be derived by the following: 

 

           
  (   )   (   )(     )                 (6.1) 

 

where    (Wm
-2

) is the net downward heat flux absorbed at the surface,   is the surface 

emissivity,   is the Stefan-Boltzmann constant (5.67  10
-8

 Wm
-2

 K
-4

),    is surface 

temperature,     (Wm
-2

) is the downwelling longwave radiative energy flux,      (Wm
-2

) 

and       (Wm
-2

) are the downward latent heat flux and sensible heat flux, respectively 
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(Brown et al., 2011; Ménard et al., 2002). Growth at the ice underside is determined by the 

difference between the conductive heat flux into the ice and the heat flux out of the upper 

surface of the mixed layer (Brown et al., 2011). In order to provide a more realistic 

representation of the depth of the mixed layer just before the beginning of ice formation 

and of snow accumulation on the surface of ice cover due to the redistribution of snow by 

winds, a mean mixed layer depth of 40 m and 25 % snow scenario were selected for 

simulations over the AMSR-E footprints shown in Figure 6.1 (Kang et al., 2010). CLIMo 

has previously been shown to provide good estimates of ice thickness on a daily basis, as 

well as the timing of freeze-up and break-up dates on lakes of various depths (Brown and 

Duguay, 2011a,b; Duguay et al., 2003; Ménard et al., 2002). 

6.3.2.2 Helsinki University of Technology (HUT) model forward simulations 

Kang et al. (2010) recently showed a strong statistical relation between ice thickness 

simulated with CLIMo and AMSR-E TB on a daily basis, particularly at 18.7 GHz V-pol. In 

Figure 6.3, the site on GBL (2003-2004) is used to illustrate the general sensitivity of TB 

during the period of ice growth/thickening. This figure shows the evolution of TB at 6.9, 

10.7, and 18.7 GHz and two polarizations (H-pol and V-pol) for the same time period (top 

and middle panels) and the time series of maximum/mean air temperatures and snow depth 

from the Deline meteorological station, and simulated ice thickness from CLIMo (bottom 

panel). From the ice-on date near mid-December to the onset of melt (MO) in May, the 

increase in TB is due to ice growth until it reaches its maximum thickness around mid-April. 

An increase in TB is expected during the ice growth season since thicker ice reduces the 

influence of the lower emissivity of liquid water (radiometrically cold) below the ice cover 

(Kang et al., 2010). The oscillating behavior of TB at H-pol and V-pol during the ice growth 

period depends greatly on the (temperature-dependent) imaginary part of the index of 

refraction of ice (Chang et al., 1997; Kang et al., 2010). 

Emission models such as HUT allow for forward simulations of TB at frequencies and 

polarizations (H and V) that can be compared to that of passive microwave sensors. The 

newest version of the HUT model (Lemmetyinen et al., 2010; 2011) was used to further 
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demonstrate the sensitivity of AMSR-E TB at 18.7 GHz to ice growth/thickening and to 

seasonal air temperature variability on GBL and GSL. 

 

 

 

Figure 6.3: Time series of H-pol (top panel) and V-pol (middle panel) brightness temperatures 

at 6.9, 10.7, and 18.7 GHz for GBL site during ice season 2003-2004. The time series of 

maximum (Max_T, red) and mean (Mean_T, blue) air temperatures obtained at the Deline 

meteorological station is shown in the bottom panel along with snow depth (grey). Simulated 

ice thicknesses obtained with CLIMo are represented by the thick grey curve. The two red 

circles overlaid on the ice thickness curve correspond to in situ measurements made during 

field visits on GBL (65°15' N, 122°51.5 'W). 
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The multiple layer adaptation of the modified HUT emission model takes into consideration 

the influence of multiple reflections between layer boundaries at which transmission, 

reflection and refraction are calculated by the Fresnel equations (Lemmetyinen et al., 2010). 

The HUT model expansion for multiple layers also presents the inclusion of ice layers 

within the simulated snowpack, describing the ice as a simple non-scattering layer of 

absorptive media (Lemmetyinen et al., 2011). Emission from the medium under the stacked 

snow and ice layers is determined from the calculated dielectric constant of the medium and 

the roughness of ice/water interface (Gunn et al., 2010). For snow layers, the HUT model 

applies the delta-Eddington approximation to the radiative transfer equation (absorption, 

scattering and extinction coefficients), which applies an empirical constant to determine the 

forward scattered intensity through the medium (Lemmetyinen et al., 2009; 2010). The 

emission of a medium with thickness    can be obtained from: 

  

        
  

      
(  

 

 
)             (6.2)      

      
  

      
(      ((        )            ))            (6.3) 

 

where       is the physical temperature, 1/L is the attenuation,    is absorption coefficient, 

which is determined from complex dielectric constant of dry snow,    is scattering 

coefficient,    is extinction coefficient, θ is the incidence angle from nadir and q is an 

empirical constant defining the total forward scattered incoherent intensity in the snowpack 

(Lemmetyinen et al., 2010). For snow, the empirical parameter (q) in equation (6.2) has 

been estimated as q = 0.96 by fitting the HUT model to experimental snow slab emission 

data (Gunn et al., 2010). By simplifying equation (6.2), the emission from a layer 

consisting of pure ice (q = 1) can be obtained from  

 

          (      ((   )·   ·sec θ))     (6.4) 

 

where      is the physical ice temperature (Lemmetyinen et al., 2010).  
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Forward simulations of TB at 18.7 GHz (H-pol and V-pol) were performed at the three lake 

ice sites falling within the footprints of AMSR-E. Mean daily air temperature from 

meteorological stations, and ice thickness and snow depth estimated with CLIMo were used 

as forcing variables in HUT simulations for seven winters (2002-2009). All other 

parameters required by HUT, except the root-mean-square (RMS) roughness of ice, were 

kept constant (e.g. snow density = 0.3 g/cm
3
, ice density = 0.916 g/cm

3
, snow grain size = 1 

mm). Forward simulations were carried out by setting the RMS roughness of ice at 0 mm 

first and then 1 mm to account for possible roughness effects at the ice/water interface. An 

additional simulation was performed by keeping the daily air temperature constant at -5
 o
C 

for the full length of the ice seasons to examine if the oscillating behavior of TB is indeed 

related to the temperature-dependent imaginary part of the index of refraction of ice (Chang 

et al., 1997). To minimize the possibility of wet snow which affects TB, only days where the 

maximum air temperature was below -1
o
C were considered for comparison between HUT 

forward simulations and AMSR-E TB. 

 

6.3.3 Development and evaluation of ice thickness retrieval algorithm 

The ice thickness retrieval algorithm was developed and evaluated using simple linear 

regression where the independent (predictor) variable consists of AMSR-E TB data. Since 

much of the general trajectory and variability in TB during the ice season can be explained 

by ice thickening and the temperature-dependent oscillatory pattern (see Figure 6.3), as 

demonstrated by Kang et al. (2010) and forward simulation results with the HUT model 

(described in section 6.4), two sets of regression equations were developed; one that 

combines AMSR-E TB data from both GBL and GSL sites, referred to as Global, and the 

other one called Regional which consists of two separate equations (one for GBL and one 

for GSL). The later were derived to account for possible differences due to the latitudinal 

position of the lakes and the corresponding temperature differences. 

When ground-based measurements are few or non-existent, lake ice models such as CLIMo 

provide a means to develop and evaluate predictive equations of ice thickness from space-
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borne TB measurements. We used ice thickness estimates from CLIMo along with AMSR-E 

TB data at three sites/pixels (see Figure 6.1) on a daily basis and over seven ice seasons 

(2002-2009) for this purpose. The approach is based on the use of “training” paired 

observations to develop the predictive regression equations and independent paired 

observations at AMSR-E pixels to evaluate the equations. Two sampling strategies were 

considered for the selection of paired observations.  First, the AMSR-E pixels from each 

GBL and GSL site were randomly selected from all days available over the seven ice 

seasons as “training” pixels (70 percent) to develop the predictive equations of ice 

thickness from TB, and another set of pixels (30 percent) was chosen for evaluating the 

equations. The 70/30 percent random sampling was repeated 10 times to better assess the 

predictive capabilities of the equations. Second, the paired observations of AMSR-E pixels 

and CLIMo from the first six of the seven ice seasons (i.e. 2002-2003 to 2007-2008) were 

chosen as “training” years and those from the seventh year (2008-2009) to evaluate out-of-

sample prediction. This was repeated seven times by iterating between the six “training” 

years and the out-of-sample year. 

Three statistical indices were then calculated as measures of performance of the predictive 

(regression) equations, including their validation against the in situ ice thickness 

measurements, and also for comparison between HUT forward simulation results and 

AMSR-E TB values. The indices include the refined version of the index of agreement (dr) 

(Willmott et al., 2011), the root mean square error (RMSE) and the mean bias error (MBE). 

dr is intended to be a descriptive measure in the evaluation of model performance, ranging 

from -1 (worst performance) and 1 (best possible performance). 
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Pi and Oi are the predicted (modeled) and observed values, respectively. Ō is the average 

observed value, N is the number of paired data used for model evaluation, and c = 2. The dr 

statistics expresses the sum of the magnitudes of the differences between the model-

predicted and observed deviations about the observed mean relative to the sum of the 

magnitudes of the perfect-model (Pi = Oi, for all i) and observed deviations about the 

observed mean (Willmott et al., 2011). 
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The RMSE is a measure of non-systematic error; for example, if there is no deviation 

between the simulated and observed values, the RMSE value will be zero. The MBE 

provides a measure of systematic error, indicating whether a model under-predicts 
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(negative value) or over-predicts (positive value). Both the RMSE and MBE values are 

reported in the units of the variable of interest (either in cm for ice thickness or K for TB in 

this study). Following development and evaluation of the linear regression equations 

(Global and Regional) they were applied to map ice thickness on a monthly basis (January-

April) on both GBL and GSL.  

 

6.4 Results and discussion 

6.4.1 General Sensitivity of AMSR-E TB to ice thickness 

The AMSR-E TB measurements from the three frequencies (6.9, 10.7, and 18.7 GHz) and 

two polarizations (H-pol and V-pol), along with corresponding CLIMo simulated lake ice 

thicknesses, are presented in Figure 6.4 and Table 6.2. Coefficient of determination (R
2
) 

values found in Table 6.2 indicate that a large proportion of the variations in AMSR-E TB 

can be explained by ice thickness, particularly at the 18.7 and 10.7 frequencies. R
2
 values 

are moderately lower (0.52-0.93; average 0.77-0.79) and the slope of the relation smaller 

(0.08-0.18 K • cm
-1

; average 0.10-0.13 K • cm
-1

) at 6.9 GHz compared to the higher 

frequencies. R
2
 values are generally of the same order of magnitude at 10.7 GHz and 18.7 

GHz. At 10.7 GHz, R
2
 values are overall larger (0.77-0.98; average 0.90) and with steeper 

slopes (0.16-0.28; average 0.22) at H compared to V polarization (R
2
: 0.70-0.96; average 

0.88 – Slopes: 0.10-23; average 0.17 K • cm
-1

). In the case of the 18.7 GHz frequency, the 

slopes also tend to be steeper at H polarization (0.17-0.41; average 0.30 K • cm
-1

) but the 

R
2
 values larger at V polarization (0.81-0.98; average 0.92). A tentative explanation for the 

lower R
2
 values at 6.9 GHz may be due to the fact that the AMSR-E footprint at this 

frequency covers a larger area (74 km x 43 km) than at 10.7 GHz (51 km x 30 km) and 18.7 

GHz (27 km x 16 km), such that it encompasses a greater range of ice thicknesses for the TB 

value recorded by the sensor compared to the single ice thickness values simulated with the 

1-D lake ice model on the corresponding days. 
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Figure 6.4: Plots of AMSR-E TB and simulated ice thickness from CLIMo between ice-on and 

melt-onset dates for seven ice seasons (2002 to 2009; top to bottom graphs). Blue symbols are 

for H-pol (GBL_D: dark blue; GSL_Y: medium blue; GSL_H: light blue) and red symbols for 

V-pol (GBL_D: dark red; GSL_Y: medium red; GSL_H: light red). Coefficient of 

determination (R
2
) and slope of relation values for each plot are given in Table 6.2. 
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Interestingly, the strength of the relation between TB and ice thickness (simulated with 

CLIMo) is somewhat stronger for colder (e.g. 2003-2004) than for warmer winters (e.g. 

2005-2006) at any of the frequencies and polarizations examined (i.e. higher R
2
 values; see 

Table 6.2, Figures 6.4 and 6.5), showing the influence of inter-annual climate variability 

on the strength of the relation (although still very high in most cases). As an example, TB 

values exhibit greater intra-seasonal variability during winter 2005-2006 (warmer) 

compared to 2003-2004 (colder) (see Figure 6.5) due to larger fluctuations in air 

temperature during the later ice season. Looking at the three sampling sites in the two large 

lakes, the GBL site generally shows the strongest relation between TB and ice 

growth/thickening at the frequencies examined (Table 6.2). Plots of 18.7 GHz V-pol for ice 

season 2003-2004 (Figure 6.5a to Figure 6.5c) show relatively less intra-seasonal 

variability of TB with ice growth than during 2005-2006 (Figure 6.5d to Figure 6.5f). In 

addition, the higher R
2
 values for GBL (Figures 6.5a and 6.5d) reveal somewhat less 

variability in TB with ice thickness than at the two sites in GSL. 

 

Given the strength of the relation between AMSR-E TB at 18.7 GHz and simulated ice 

thickness as illustrated above, and in the perspective of developing long time series of ice 

thickness estimates from passive microwave satellite sensors operating in the 18-19 GHz 

range (e.g. SSM/I and SMMR, 1978-present) as a climate data record, this frequency is of 

particular interest to form the basis of a retrieval algorithm. 
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Table 6.2: Coefficient of determination (R
2
) and slope of relation between AMSR-E TB and ice 

thickness from CLIMo (2002-2009) for sampling footprints at GBL_D (Deline), GSL_Y 

(Yellowknife), and GSL_H (Hay River). Slopes (K cm
-1

) are in brackets 

GBL-D 6.9V 6.9H 10.7V 10.7H 18.7V 18.7H 

0203 0.73(0.08) 0.76(0.11) 0.86(0.15) 0.86(0.19) 0.91(0.21) 0.89(0.27) 

0304 0.89(0.10) 0.86(0.12) 0.95(0.19) 0.92(0.21) 0.96(0.26) 0.91(0.30) 

0405 0.91(0.14) 0.93(0.18) 0.94(0.22) 0.96(0.28) 0.97(0.29) 0.96(0.36) 

0506 0.80(0.09) 0.78(0.09) 0.89(0.16) 0.84(0.16) 0.90(0.19) 0.85(0.21) 

0607 0.87(0.08) 0.84(0.10) 0.91(0.13) 0.88(0.17) 0.93(0.15) 0.88(0.19) 

0708 0.92(0.09) 0.91(0.11) 0.96(0.16) 0.93(0.19) 0.95(0.21) 0.90(0.25) 

0809 0.87(0.08) 0.92(0.13) 0.94(0.14) 0.95(0.20) 0.97(0.18) 0.95(0.26) 

GSL-Y 6.9V 6.9H 10.7V 10.7H 18.7V 18.7H 

0203 0.72(0.09) 0.74(0.14) 0.86(0.16) 0.82(0.23) 0.93(0.23) 0.83(0.32) 

0304 0.88(0.11) 0.88(0.14) 0.96(0.19) 0.96(0.23) 0.97(0.27) 0.93(0.31) 

0405 0.90(0.15) 0.92(0.18) 0.95(0.23) 0.96(0.28) 0.98(0.32) 0.92(0.37) 

0506 0.52(0.10) 0.65(0.15) 0.70(0.19) 0.78(0.27) 0.84(0.29) 0.82(0.41) 

0607 0.68(0.09) 0.90(0.12) 0.80(0.15) 0.93(0.17) 0.88(0.17) 0.60(0.17) 

0708 0.86(0.12) 0.84(0.14) 0.93(0.20) 0.93(0.23) 0.95 (0.28) 0.91(0.33) 

0809 0.85(0.14) 0.88(0.16) 0.91(0.22) 0.93(0.26) 0.95(0.30) 0.94(0.34) 

GSL-H 6.9V 6.9H 10.7V 10.7H 18.7V 18.7H 

0203 0.60(0.08) 0.55(0.10) 0.78(0.14) 0.77(0.17) 0.84(0.18) 0.74(0.27) 

0304 0.71(0.10) 0.68(0.13) 0.89(0.18) 0.92(0.22) 0.93(0.25) 0.91(0.31) 

0405 0.75(0.13) 0.81(0.17) 0.88(0.23) 0.95(0.28) 0.92(0.28) 0.93(0.36) 

0506 0.58(0.09) 0.61(0.12) 0.77(0.16) 0.89(0.23) 0.81(0.23) 0.81(0.35) 

0607 0.60(0.06) 0.79(0.11) 0.86(0.10) 0.98(0.18) 0.89(0.14) 0.96(0.24) 

0708 0.71(0.10) 0.63(0.11) 0.89(0.17) 0.89(0.19) 0.92(0.22) 0.88(0.27) 

0809 0.82(0.12) 0.78(0.14) 0.93(0.19) 0.91(0.23) 0.94(0.26) 0.92(0.33) 

AVG 

(02-09) 0.77(0.10) 0.79(0.13) 0.88(0.17) 0.90(0.22) 0.92(0.23) 0.88(0.30) 
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Figure 6.5: Plots of AMSR-E TB at 18.7 GHz (V-pol) and simulated ice thickness with CLIMo 

for a cold (2003-2004; top) and a warm (2005-2006; bottom) winter season at GBL_D (left), 

GSL-Y (center), and GSL_H (right) sampling footprints. The blue and red symbols represent 

the daily mean and maximum air temperature, respectively (with scale on secondary y axis, 

right hand side of figure). 

  

6.4.2 AMSR-E TB versus HUT forward simulations  

In Figure 6.6, the temporal evolution TB at 18.7 GHz from AMSR-E at horizontal (upper) 

and vertical (middle) polarizations is compared to that from HUT forward simulations (0 

and 1 mm RMS, and constant -5
o
C with 0 mm RMS) over the same period for GBL. 

Similar to the AMSR-E time series, TB values derived with HUT forward simulations also 

show the oscillatory pattern earlier attributed to the temperature-vulnerable absorption 

length of ice. In support of this explanation, a HUT simulation under a constant rather than 

variable wintertime air temperature of -5
o
C (with 0 mm RMS) was performed. Results from 

this simulation reveal a constant increase in TB with ice growth at both H and V 

polarizations without the oscillatory pattern due to air temperature variability as observed 

during the ice season. While AMSR-E observations at 18.7 GHz (H-pol) match relatively 

well HUT derived TBs for GBL (2003-2004), those at V-pol are about 15-20 K higher than 

HUT simulations with a RMS roughness of ice 0 mm (middle, Figure 6.6). HUT simulated 



 

 113 

TB values with a RMS of 1 mm tend to match those of AMSR-E quite well at V-pol during 

the middle/late ice growth/thickening season. A tentative explanation for the differences is 

that roughness effects represented with a 1 mm RMS are more prominent later in the ice 

season while they are less so earlier in the winter and, therefore, more closely match the 0 

mm RMS at the GBL site. 

 

The temporal evolution of AMSR-E TB values is compared in more details with that of 

HUT at 18.7 GHz (H-pol and V-pol; 0 mm and 1 mm RMS) for all three sites (GBL_D, 

GSL_Y, and GSL_H) during the seven ice growth seasons (2002-2009) (Figure 6.7). Both 

the time series of AMSR-E and HUT TB illustrate the oscillatory pattern from the 

temperature-vulnerable absorption length of ice. Overall, HUT simulated TB values at H-pol 

with 0 mm RMS and at V-pol with 1 mm RMS provide the closest match with AMSR-E 

TBs. The H-pol TBs (with 0 mm) over the entire ice growth season and V-pol TBs (with 1 

mm) during the middle/late ice growth/thickening season show the closest correspondence 

between AMSR-E and HUT simulations (Figures 6.7). The dr statistics indicates better 

performance of HUT model simulations at 18.7 GHz (V-pol) with 1 mm RMS (dr = 0.47-

0.60) than at H-pol (dr = 0.25-0.44), while with 0 mm RMS H-pol (dr = 0.40-0.63) provides 

superior performance than V-pol (dr = -0.22-0.17) (Table 6.3). The RMSE and MBE 

statistical measures indicate that HUT simulations with a 0 mm RMS are closer to AMSR-

E at H-pol (MBE: -6.44 to -10.84 K; RMSE: 8.30 to 11.90 K). For V-pol, smaller biases are 

found with a 1 mm RMS (MBE: -7.05 to -9.35 K; RMSE: 8.57 to 11.16 K). 
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Figure 6.6: Temporal evolution of AMSR-E TB at 18.7 GHz (light purple) in comparison 

with HUT simulated TB at 18.7 GHz with RMS roughness of ice 0 mm (dark circle red) 

and 1 mm (dark circle blue) at both horizontal (top panel) and vertical (middle panel) 

polarizations at sampling site nearby Deline at GBL (2003-2004). HUT simulated TB using 

a constant air temperature (-5oC) is shown in blue (top and middle panels). The time 

series of maximum (Max_T, red) and mean (Mean_T, blue) air temperatures obtained at 

the Deline meteorological station is shown in the bottom panel along with snow depth 

(grey). Simulated ice thicknesses obtained with CLIMo are represented by the thick black 

curve. 
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The HUT forward simulations indicate that results at H and V polarizations are comparable. 

Without intensive field measurement campaigns that would allow for characterization of 

variable ice thickness and ice type (Gunn et al., 2010) within the AMSR-E footprints, it is 

difficult to clearly show through HUT simulations performed in this study that V-pol is 

more sensitive to ice thickness than H-pol as it was suggested from the statistical analysis 

described in the previous section. It is clear, however, that the 18.7 GHz frequency is 

sensitive to the seasonal evolution of ice thickness on the two larger northern lakes. This is 

supported by both the statistical analysis and HUT forward simulation results. Also, V-pol 

is known to be less sensitive to surface roughness than H-pol suggesting that V-pol is better 

suited for the estimation of ice thickness. 

 

 

Table 6.3: Comparison of HUT simulated and AMSR-E TB at 18.7 GHz (H- and V-pol) for 

sampling footprints at GBL_D (Deline), GSL_Y (Yellowknife), and GSL_H (Hay River). The 

top and bottom tables show results with RMS roughness of 0 mm and 1 mm. 

0mm  

 roughness 

GBL-D GSL-Y GSL-H 

18.7H 18.7V 18.7H 18.7V 18.7H 18.7V 

RMSE 

(cm) 
8.56 13.74 8.30 13.88 11.90 17.19 

MBE 

(cm) 
-6.93 -13.05 -6.44 -13.49 -10.84 -16.72 

Ia 0.56 0.02 0.63 0.17 0.40 -0.22 

1mm 

roughness 

GBL-D GSL-Y GSL-H 

18.7H 18.7V 18.7H 18.7V 18.7H 18.7V 

RMSE 

(cm) 
16.54 9.91 18.69 11.16 15.75 8.57 

MBE 

(cm) 
-15.08 -8.46 -16.77 -9.35 -13.58 -7.05 

Ia 0.26 0.47 0.25 0.48 0.44 0.60 
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Figure 6.7: Comparison between AMSR-E TB (red dots) and HUT simulated TB (blue dots) at 

18.7 GHz (H-pol and V-pol) from 2002-2009 with RMS roughness of ice 0 mm (light blue) and 

1 mm (blue) for all three sites, GBL_D (Deline, top) and GSL_Y (Yellowknife, middle) and 

GSL_H (Hay River, bottom). 
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6.4.3 Ice thickness equations and their evaluation 

The AMSR-E TB at 18.7 GHz V-pol is the predictor variable that forms the basis of the ice 

thickness retrieval equations. Three regression-based equations of ice thickness are 

proposed based on available paired observations (AMSR-E TB and CLIMo simulated ice 

thickness data at three sampling footprints) from all seven ice seasons; one that combines 

GBL and GSL into a single equation (ICTGlobal) and one for each GBL (ICTGBL) and GSL 

(ICTGSL): 

 

                      ICTGlobal = 3.75  TB - 790.308          (6.8) 

             ICTGBL = 4.13  TB - 869.906      (6.9) 

                       ICTGSL = 3.22  TB - 672.048      (6.10) 

 

Equations 6.8-6.10 were developed by averaging TB values of the same Julian day for the 

seven ice seasons (lower panels of Figure 6.8), therefore reducing the oscillatory behavior 

of brightness temperatures observed in each individual year due to air temperature 

variability (upper panels of Figure 6.8). The reasoning behind the three separate equations 

is due to the fact that the slope of the relation between TB and simulated ice thickness with 

CLIMo is different for GBL than for GSL. The rate of change for GBL (4.13 cm per 

Kelvin) is slightly greater than that for GSL (3.22 cm per Kelvin) due to differences in 

regional climate (the middle and right lower panels of Figure 6.8). Combining data from 

both lakes (ICTGlobal) results in a slope of 3.75 cm per Kelvin. Equation 6.8 may therefore 

be more applicable for a first guess prediction of ice thickness on other large lakes found at 

high latitudes where no previous equations have been developed, while equations 6.9 and 

6.10 present a refinement for the specific lakes. 
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Figure 6.8: Linear regression plots between simulated lake ice thickness (y-axis) from CLIMo 

and AMSR-E TB (upper x-axis) at 18.7 GHz (V-pol) from 2002-2009 are shown in the upper 

panels for all three lake sites combined (top left), GBL_D (Deline, top middle), GSL_YH 

(Yellowknife and Hay River, top right). Daily TB values averaged from seven years are shown 

in the bottom panels. Predictive equations, coefficient of determination (R
2
) and standard 

deviation () values, as well as the number of paired TB observations and simulated ice 

thicknesses, and maximum (minimum) TB values are also shown on the plots. 

 

Figure 6.9 presents a comparison between ice thickness predicted with the global (top 

panel) and regional (lower panel) regression equations and in situ measurements from a 

limited number of sites and years (described earlier in 3.1.3). Results from the application 

of regional equations to GBL and GSL show slightly better estimates (RMSE = 19.33 cm, 

MBE = 7.94 cm, and dr = 0.67) than using the global equation (RMSE = 23.33 cm, MBE = 

13.42 cm, and dr = 0.59). In both cases the equations over-predict ice thicknesses, although 

the issue of AMSR-E footprint size versus limited-area in situ sampling must be kept in 

mind when interpreting these results. 
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Figure 6.9: Comparison between estimated ice thicknesses from linear regression equations 

applied to AMSR-E 18.7 GHz V-pol TB and in-situ measurements for Great Bear Lake (five 

measurements in 2007, in red) and Great Slave Lake (Back Bay, 2002-2009, in black). The top 

panel shows results using the global equation (GBL and GSL combined) and the lower panel 

using two regional equations (GBL and GSL separately). 
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Table 6.4: Comparison of ice thickness from regression-based on 18.7 GHz V-pol TB and 

independent estimates from CLIMo for GBL_D, GSL_Y, and GSL_H sites (2002-2009). The 

upper section of the table presents average statistical indices calculated from 

training/validation (70%/30%) while the lower section shows those from out-of-sample 

prediction (6 years/7
th

 year). 

 

 

 

 

TB 

70%/30% 

GBL_D  GSL_Y  

 

GSL_H  

 

18.7V 18.7V 18.7V 

 

RMSE (cm) 
15.41 12.61 14.78 

MBE (cm) -0.22 0.08 -0.13 

dr 0.81 0.83 0.77 

6yrs/7th 18.7V 18.7V 18.7V 

 

RMSE (cm) 
18.12 14.41 16.12 

MBE (cm) 1.87 1.34 3.50 

dr 0.77 0.80 0.74 

 

Since in situ measurements of ice thickness are limited for the period of study (n=91), a 

second verification of the performance of the linear regression equations was performed 

where AMSR-E TB measurements on all dates over the seven ice seasons (2002-2009) from 

the three sampling footprints on GBL and GSL were randomly selected 10 times with 70 

percent training pixels to develop predictive equations of ice thickness from TB (10 

equations for each of GBL_D, GSL_Y and GSL_H, not shown) and the remaining 30 

percent of pixels used for validation (see details in 3.3). This was also verified using the 

out-of-sample approach where six years of TB measurements were used to develop the 

predictive equations (seven equations for each of GBL_D, GSL_Y and GSL_H, not shown) 

and the seventh year used for validation (repeated seven times by changing the out-of-

sample year from Year 1 to Year 7). Results from this evaluation are reported in Table 6.4 

as the median values of the statistics calculated from the 10 random selections of 70% 

training/30% validation (top portion of table) and seventh out-of-sample year strategy 

(bottom portion of table) for GBL_D, GSL-Y, and GSL_H. The index of agreement (dr) 

indicates that the linear regression equations perform very well at predicting ice thickness 
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on both GBL and GSL with dr = 0.77-0.83 (70%/30% strategy) and dr = 0.74-0.80 (out-of-

sample strategy). The MBE (1.34-3.50 cm) and RMSE (14.41-18.12 cm) values are slightly 

larger for predictions using out-of-sample years. A better performance is achieved with ice 

thickness predictions from the 70% training/30% validation approach (MBE: -0.22-0.08 

cm, RMSE: 12.61-15.41 cm). The above results strongly justify the use of simple linear 

regression equations for mapping ice thickness on GBL and GSL. 

 

6.4.4 Monthly ice thickness mapping 

One advantage of the regression-based equations developed in this study is that they can be 

applied to map spatial patterns of ice thickness across large lakes throughout the winter 

period using a single predictor variable (e.g. satellite-based passive microwave TB data). 

This is in comparison to 1-D thermodynamic ice models such as CLIMo that require 

meteorological forcing variables and information on lake depth that are often not available 

for high-latitude regions. The regression equations (Eq. 6.8, 6.9, and 6.10) were applied to 

map monthly ice thickness on GBL and GSL (Figures 6.10 and 6.11). The maps show the 

gradual increase of ice thickness from January to April (averages calculated from all ice 

seasons) due to increasing emissivity with ice growth (thickening). The maps on the left-

hand side of Figures 6.10 and 6.11 were produced using the global equation while those on 

the right-hand side using the regional equations. Application of the global equation results 

in 10-15 cm thinner ice on GBL and 10-15 cm thicker ice estimates on GSL for each 

month, compared to the application of the lake-specific (regional) equations. In general, 

monthly ice thicknesses are on average 5-15 cm thicker for GBL than for GSL. Also 

noteworthy is that the spatial variability of ice thickness across both lakes diminishes once 

lake ice growth slows down (less conductive heat loss with thicker ice) in March and April. 

 

Other than the important role of air temperature (see Table 6.1) as a controlling factor on 

ice growth, spatial patterns in ice thickness observable for each month on both GBL and 

GSL (Figures 6.10 and 6.11) can be explained by the combination of at least two other 

factors, lake depth and on-ice snow depth. The influence of lake depth is particular evident 

during the early ice growth period (January and to a lesser extent February). For the same 
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time period, thicker ice forms in the shallower sections of the lakes. Thinner ice can 

generally be found in the deeper sections of both lakes that form an ice sheet later in the 

late fall to early winter period (Kang et al., 2012). The bathymetry maps of GBL and GSL 

(see Figure 6.2) provide support for this observation. Thinner ice can be seen for the 

deepest sections of GBL (e.g. McTavish Arm, Keith Arm), and the eastern part of the main 

body of GSL. Due to its insulating role the presence of snow on ice is also known to 

influence the seasonal evolution of ice thickness (e,g Brown and Duguay, 2010). Rouse et 

al. (2008b) report that the end-of-winter maximum ice thickness can vary by as much as 50-

60 cm across GBL and GSL, and perhaps even more, just due to the variable snow depth 

conditions which are strongly controlled by redistribution by wind on the ice surface. Late 

winter (April) ice thickness maps generated with the regional equations show thicker ice in 

the central basin of GSL and a section of McTavish Arm in GBL that is likely related to the 

presence of thinner snow on ice in these areas of the lakes. The reason for this suggestion is 

that for these same areas of GBL and GSL the ice was relatively thinner during the early 

period of ice growth, but has grown thicker by the end of the ice season. 

  

A statistical summary of estimated monthly ice thicknesses for all ice seasons (2002-2009) 

is provided in Table 6.5. Maximum, minimum, and mean estimated ice thickness increase 

gradually from January to April on both GBL and GSL. The standard deviation of 

estimated ice thickness is generally higher in January (8.2-17.9 cm) than in other months 

because ice growth rates are more important and variable across the lakes early in the ice 

cover period. Estimated ice thicknesses during a warmer winter season (e.g. 2005-2006) are 

somewhat smaller than in other winter seasons due to later freeze-up in the two lakes (Kang 

et al., 2012). Otherwise late winter ice thicknesses are found to be somewhat larger in April 

2004, 2005 and 2009, which is likely due to the particularly colder conditions during the 

early ice seasons of these years. As indicated earlier, snow is also an important controlling 

factor of ice growth such that it is at times difficult to determine with certainty which of air 

temperature or snow is the main variable responsible for the observed ice thickness 

variations between years. 
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Table 6.5: Monthly estimates of ice thickness from global and regional (in brackets) equations 

for GBL and GSL. Indicated are maximum (Max), minimum (Min), average (Average), and 

standard deviation (STDEV) of ice thickness from January to April, 2003-2009. 
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Figure 6.10: AMSR-E derived estimated lake ice thickness monthly maps (from January to 

April) on average for Great Bear Lake from global equation (left panel) and from regional 

equation (right panel). The legend is in centimeter (from 30-160 cm). 
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Figure 6.11: AMSR-E derived estimated lake ice thickness monthly maps (from January to 

April) on average for Great Slave Lake from global equation (left panel) and from regional 

equation (right panel). The legend is in centimeter (from 30-160 cm). 
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6.5 Conclusion 

The 18.7 GHz (V-pol) was shown to be the most useful AMSR-E channel for estimating 

ice thickness on GBL and GSL. A statistical analysis revealed that this frequency is 

sensitive to lake ice growth as a result of the increase in emissivity, and by extension TB, 

from the radiometrically colder (thinner) ice to thicker ice later in the ice season. The 

strength of this relation was demonstrated by comparing AMSR-E TB data with simulated 

ice thicknesses obtained with CLIMo on a daily basis over several ice seasons (2002-2009). 

This was supported by results obtained with HUT forward model simulations that 

reproduced well the oscillatory pattern observed in AMSR-E TB time series. HUT 

simulations of TB provided further evidence of the sensitivity of the 18.7 GHz frequency to 

ice thickness, although experiments conducted by setting the RMS roughness of ice to 0 

mm and 1 mm did not allow to clearly determine, as was shown from the statistical (R
2
) 

analysis, whether V or H should be the preferred polarization for estimating ice thickness. 

 

Using paired daily AMSR-E TB measurements and simulated ice thickness obtained with 

CLIMo for three sampling sites, simple linear regression-based ice thickness prediction 

equations were developed with the purpose of producing monthly lake ice thickness maps 

between ice-on and melt-onset dates. Overall, the estimated lake ice thickness was found to 

be thicker by 5-15 cm on GBL compared to GSL. Since the general ice growth rate on GSL 

is slower than on GBL, due to the influences of climatic controls (mostly air temperature), 

regional equations were proposed that are specific to the two lakes. These equations 

provide slightly better estimates of ice thickness compared to the global equation when 

compared against in situ measurements. 

 

Ice thickness mapped on a monthly basis from January to April revealed that, in addition to 

air temperature, lake depth and snow depth on ice are two other key variables that influence 

ice growth rates on different sections of GBL and GSL. Monthly estimates of ice thickness 

determined for all ice seasons between 2002 and 2009 showed that colder winter seasons 

(e.g. 2003-2004) display, as expected, higher ice thickness than warmer winter seasons  (e.g. 
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2005-2006). For ice season 2005-2006, in particular, the warmer fall conditions resulted in 

later freeze-up (Kang et al., 2012), thus delaying ice growth/thickening in both lakes 

compared to other ice seasons.  

 

In conclusion, the AMSR-E ice thickness retrieval equations developed in this study offer 

the advantage over traditional in situ measurements and 1-D ice model in that they can be 

applied to estimate ice thickness at the pixel level on large northern lakes. This allows for 

the analysis of intra-seasonal and inter-annual variability in ice thickness on such lakes in 

response to climate conditions. The global and regional ice thickness regression equations 

proposed should be tested on other large lakes in the future (i.e. Lake Baikal, Lake Ladoga, 

and Lake Onega) to be determined if the equations are transferrable to other large lakes of 

the Northern Hemisphere found in other climate regions. In addition, a more thorough 

investigation of forward simulations with the HUT emission model than performed herein 

should be conducted by examining more closely the effect of different lake ice types (e.g. 

clear ice without and with bubble inclusions that act as scatterers) as well as roughness at 

the ice/water interface. This will require field deployments and the use of coincident 

synthetic aperture radar (SAR) such as TerraSAR-X to characterize ice types, as recently 

suggested by Gunn et al. (2010). These are two lines of inquiry that we are actively 

pursuing. 
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Chapter 7: General conclusions 

7.1 Summary 

In this thesis, we have presented for the first time the potential AMSR-E brightness 

temperature measurements to determine ice growth/thickening and timing of freeze-up and 

break-up on large northern lakes. The poor spatial (point) and temporal coverage of ground-

based observations in most countries of the Northern Hemisphere makes passive remote 

sensing a desirable tool for examining both the role and response of ice cover in climate-

lake interactions. The ice cover retrieval algorithms specifically developed for lake ice 

thickness and ice phenological events will help to analyze the response of ice cover on 

GBL and GSL to climate variability and change in a consistent manner since passive 

microwave satellite sensors provide daily acquisitions year round over the entire lake 

surfaces. 

 

In addition to introductory and background material covered in Chapters 1-2, Chapter 4 

showed that the temporal evolution of TBs at 18.7 GHz (H-pol) and its sensitivity to ice 

cover permits to distinguish between the timing and duration of ice phenological events (i.e. 

freeze-onset/melt-onset; ice-on/ice-off dates; freeze/melt duration; ice cover duration) over 

large lakes over seven ice seasons (2002-2009). The spatio-temporal variability of these ice 

phenology events is related to regional climate, latitudinal influence, lake depth, and, in 

particular, the influence of incoming water from Slave River for GSL. Located in a colder 

climate region, during the freeze-up period, both freeze-onset and ice-on dates happen 

about one week earlier while freeze duration lasts approximately one week longer on GBL 

than on GSL. Results revealed that during the break-up period melt-onset and ice-off dates 

occur on average one week and approximately four weeks later, respectively, on GBL 

while melt duration lasts about three weeks longer on this lake compared to GSL. Earlier 

melt over two lakes are influenced by air temperature variability and ice thickness, which 

can result in later freeze-onset in following winter seasons (due to greater summer heat 

storage). In general, ice cover duration is usually three to four weeks longer, depending on 
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the ice season, on GBL than GSL. Like melt-onset and ice-off date, ice cover duration is to 

some extent influenced by river inflow from Slave River into GSL. Results from an initial 

comparison between AMSR-E estimated ice phenological parameters and those from 

QuikSCAT, NOAA/IMS and CIS products showed that relatively coarse resolution AMSR-

E 18.7 GHz H-pol TB data are suitable for observing ice phenology on the two lakes, at 

least in their main basins on a regular basis. 

 

In Chapter 5, the key finding to emerge from this thesis is that the temporal evolution of TB 

at both 10.65 GHz (H-pol) and 18.7 (V-pol) in AMSR-E is associated with ice growth and 

thickening, corresponding to significant changes in emissivity from open water through 

maximum end-of-winter ice thickness. Results showed a stronger relation with ice 

thickness at 18.7 GHz frequency (V-pol) and 10.65 GHz (H-pol) than at 6.9 GHz. This may 

be due to the coarser spatial resolution of the lower frequency channel as a previous study 

(Hall et al., 1981), using airborne data correlated with a limited number of ground survey 

measurements, showed a greater sensitivity of 5-6 GHz measurements to ice thickness. In 

this thesis, some differences in the strength of the relation were observed when comparing 

TB and ice thickness estimates from a cold versus a warm winter. The strength of the 

relation between TB at the 10.7 (H-pol) and 18.7 (V-pol) GHz frequencies and ice thickness 

was higher for the colder winter, when less inter-seasonal variability in air temperature was 

detected at meteorological stations located in the vicinity of the lake sites. These results 

suggest that TB measurements obtained from AMSR-E offer a high potential for estimating 

ice thickness on large northern lakes. 

 

In Chapter 6, another major objective was to develop a retrieval algorithm to estimate ice 

thickness from TB measurements obtained from AMSR-E 18.7 GHz (V-pol) over GBL and 

GSL. HUT emission model results reproduced the wavy pattern observable in the temporal 

evolution of TB measurements from AMSR-E during the ice growth season and further 

reinforced the suggestion brought forward in Chapter 5, in that 18.7 GHz (V-pol) is a 

suitable channel for estimating ice thickness. The ice thickness retrieval algorithm was then 

used to generate monthly lake ice thickness products. The estimated lake ice thickness on 

GBL was found to be on average 5-15 cm thicker than on GSL. Furthermore, ice growth 
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rate on GSL is slower than on GBL due to the influences of regional climatic controls (i.e. 

air temperature), and non-climatic controls (i.e. lake bathymetry and incoming water from 

river). The different spatial ice thickness distribution in monthly ice thickness products can 

be explained by the variability of lake depth, lake currents, and on-ice snow distribution. 

 

Overall, the main contributions of this thesis are: 1) the development of an ice phenological 

retrieval algorithm that allows to detect all stages of ice phenology (FO, ice-on and FD; 

MO, ice-on and MD; and ICD); 2) the development of an ice thickness retrieval algorithm 

applicable from ice-on until MO dates; 3) documenting and deepening our understanding of 

the intra-seasonal and inter-annual variability in ice cover phenology and thickness on GBL 

and GSL in relation to climatic (e.g. air temperature) and non-climatic factors (e.g. lake 

depth, river inflow), and 4) the first comparison between AMSR-E derived ice phenology 

parameters with those obtainable from other existing lake ice products (NOAA/IMS and 

CIS). Thus, AMSR-E brightness temperature measurements present an invaluable 

opportunity to estimate ice phenology parameters and ice thickness on a regular basis. 

 

7.2 Limitations  

There are a few limitations identified with this study, and these were alluded to some extent 

in the Chapters 4 and 6 related to the development and application of retrieval algorithms 

on GBL and GSL. First, the relatively coarse spatial resolution of AMSR-E input the 

product results in a certain level of land contamination in TB measurements along 

lakeshores and where a high concentration of islands exists. All ice phenological 

parameters reported herein were therefore also derived within confidence regions (i.e. main 

basins of the lakes). Compared to AMSR-E WCI dates, for example, those derived from the 

CIS and NOAA/IMS are considerably later in GSL as ice cover is estimated to remain 

longer with these two products when examining the full extent of GBL and GSL. Second, 

for the investigation of ice phenological events in other large lakes (i.e. Lake Ladoga and 

Lake Baikal), the suite of criteria developed for GBL and GSL (i.e. minimum and 

maximum thresholds, averages of preceding and succeeding days in the time series) may 
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need to be adjusted because those lakes are situated in different climate regions. Third, for 

the ice thickness retrieval algorithm, it was found that ice growth rates are influenced by air 

temperature such that the slope of the relation between TB and ice thickness is not the same 

between a cold and a warm winter. The effect of inter-annual variability in air temperature 

should be examined more closely in future enhancements of the ice thickness product, 

especially if the algorithm is to be applied to other large lakes of the northern hemisphere 

such as Baikal and Ladoga. 

 

7.3 Recommendations for Future work 

The synergistic use of spaceborne instruments operating at a different wavelength is an 

effective means for monitoring lake ice phenological events and to improve ice 

phenological retrieval accuracy, particularly the timing of ice-on and ice-off over large 

northern lakes. For example, ice phenological events derived from the Quick Scatterometer 

(QuikSCAT), the Advanced Microwave Scanning Radiometer (AMSR-E), and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) instruments (MODIS Lake 

Surface Temperature (LST) and the Normalized Difference Snow Index (NDSI)) over large 

northern lakes should be analyzed together and possibly blended to document the spatial 

and interannual variability in lake ice cover such a high latitude. Similar to the study of 

Kouraev et al. (2007), the combination of wide spatial coverage and good temporal 

resolution for passive microwave satellite (i.e. AMSR-E and SSM/I) and high radiometric 

sensitivity and along-track spatial resolution of recent altimetric satellites (i.e. Jason-2, 

ENVISAT, ICESat/GLAS, and CryoSat-2) could be tested on GBL and GSL, not only to 

derive ice phenology but also potentially for ice thickness. For example, the evolution of 

vertically polarized TB derived from AMSR-E level 2A raw brightness temperature could 

be compared with ice thicknesses obtained with recent estimates from the Jason-2 Ku-band 

radar altimeter data (since 2008).  

 

Long time series of passive microwave TB measurements (over 30 years) from the SMMR 

and the SSM/I are seen as a valuable data source for examining the historical response of 
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GBL and GSL ice cover to climate conditions. New ice phenology and ice thickness 

retrieval algorithms (H-pol: phenology and V-pol: thickness) could be developed using 

19.35 GHz TB data (1987-2009) from SSM/I as well as 18 GHz TB data (1979-1987) from 

SMMR over the two lakes in their main basin. The response of ice cover phenology and 

thickness would be substantiated by climate data from the GBL and GSL regions, and a 

limited number of ground-based observations over the period of study (e.g. Back Bay in 

GSL). The presence of first-order trends in ice phenological parameters and maximum ice 

thickness would be tested for statistical significance using the non-parametric Mann-

Kendall test and the magnitude (slope) of the trends (number of days change per year) with 

Sen’s method. 

 

Another research topic relates to examining the polarization difference at 36.5 GHz (37.0 

GHz), which is the difference between vertical and horizontal polarized brightness 

temperatures, derived from AMSR-E and SSM/I to determine fractional ice coverage (0 to 

100 percent) during freeze-up (from freeze-onset to ice-on date) and break-up (from melt-

onset to ice-off date). This ice fraction information could be evaluated from MODIS/Aqua 

LST and NOAA/IMS 4 km snow and ice products as well as Canadian Ice Service (CIS) 

lake ice fraction database. Furthermore, Arctic Radiation and Turbulence Interaction Study 

Sea Ice (ASI) algorithms which have developed such a product from TB at AMSR-E 89.0 

GHz (Spreen et al., 2008) should be compared with fractional ice coverage products from 

AMSR-E 36.5 GHz TB measurements. 

 

Finally, in spite of the ending of the AMSR-E mission due to a problem with the rotation of 

its antenna, work will continue on ice cover algorithms (ice phenology and thickness) using 

data from other satellite platform. SSM/I on DMSP still operate but there are new prospects 

as well. One source of relatively untapped data is from the U.S. Naval Research Lab 

WindSat satellite, which operates in discrete bands at 6.8, 10.7, 23.8, and 37.0 GHz and 

with similar spatial resolutions and incidence angles (50-55) as AMSR-E. Also, passive 

microwave TB data are to be available from AMSR-2 onboard the Global Change 

Observation Mission-Water (GCOM-W1) which is scheduled to launch 2012. In addition, 
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the passive microwave radiometer (1.41 GHz with 40 km resolution) onboard the Soil 

Moisture Active Passive (SMAP) instrument is another exciting prospect that ought to 

expose new lake ice information in large northern lakes. 
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