1,142 research outputs found

    Strategies for Enriching Variant Coverage in Candidate Disease Loci on a Multiethnic Genotyping Array

    Get PDF
    Investigating genetic architecture of complex traits in ancestrally diverse populations is imperative to understand the etiology of disease. However, the current paucity of genetic research in people of African and Latin American ancestry, Hispanic and indigenous peoples in the United States is likely to exacerbate existing health disparities for many common diseases. The Population Architecture using Genomics and Epidemiology, Phase II (PAGE II), Study was initiated in 2013 by the National Human Genome Research Institute to expand our understanding of complex trait loci in ethnically diverse and well characterized study populations. To meet this goal, the Multi-Ethnic Genotyping Array (MEGA) was designed to substantially improve fine-mapping and functional discovery by increasing variant coverage across multiple ethnicities at known loci for metabolic, cardiovascular, renal, inflammatory, anthropometric, and a variety of lifestyle traits. Studying the frequency distribution of clinically relevant mutations, putative risk alleles, and known functional variants across multiple populations will provide important insight into the genetic architecture of complex diseases and facilitate the discovery of novel, sometimes population-specific, disease associations. DNA samples from 51,650 self-identified African ancestry (17,328), Hispanic/Latino (22,379), Asian/Pacific Islander (8,640), and American Indian (653) and an additional 2,650 participants of either South Asian or European ancestry, and other reference panels have been genotyped on MEGA by PAGE II. MEGA was designed as a new resource for studying ancestrally diverse populations. Here, we describe the methodology for selecting trait-specific content for use in multi-ethnic populations and how enriching MEGA for this content may contribute to deeper biological understanding of the genetic etiology of complex disease

    The MR-Base platform supports systematic causal inference across the human phenome.

    Get PDF
    Results from genome-wide association studies (GWAS) can be used to infer causal relationships between phenotypes, using a strategy known as 2-sample Mendelian randomization (2SMR) and bypassing the need for individual-level data. However, 2SMR methods are evolving rapidly and GWAS results are often insufficiently curated, undermining efficient implementation of the approach. We therefore developed MR-Base (http://www.mrbase.org): a platform that integrates a curated database of complete GWAS results (no restrictions according to statistical significance) with an application programming interface, web app and R packages that automate 2SMR. The software includes several sensitivity analyses for assessing the impact of horizontal pleiotropy and other violations of assumptions. The database currently comprises 11 billion single nucleotide polymorphism-trait associations from 1673 GWAS and is updated on a regular basis. Integrating data with software ensures more rigorous application of hypothesis-driven analyses and allows millions of potential causal relationships to be efficiently evaluated in phenome-wide association studies.Supported by Cancer Research UK grant C18281/A19169 (the Integrative Cancer Epidemiology Programme) and the Roy Castle Lung Cancer Foundation (2013/18/Relton). The Medical Research Council Integrative Epidemiology Unit is supported by grants MC_UU_12013/1, MC_UU_12013/2 and MC_UU_12013/8. PCH is supported by a Cancer Research UK Population Research Postdoctoral Fellowship (C52724/A20138). Jack Bowden is supported by a MRC Methodology Research Fellowship (grant MR/N501906/1). DME supported by the NHMRC APP1125200, APP1137714. GH is supported by Wellcome (208806/Z/17/Z)

    The Type 2 Diabetes Knowledge Portal: an open access genetic resource dedicated to type 2 diabetes and related traits

    Get PDF
    Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results

    GWASdb: a database for human genetic variants identified by genome-wide association studies

    Get PDF
    Recent advances in genome-wide association studies (GWAS) have enabled us to identify thousands of genetic variants (GVs) that are associated with human diseases. As next-generation sequencing technologies become less expensive, more GVs will be discovered in the near future. Existing databases, such as NHGRI GWAS Catalog, collect GVs with only genome-wide level significance. However, many true disease susceptibility loci have relatively moderate P values and are not included in these databases. We have developed GWASdb that contains 20 times more data than the GWAS Catalog and includes less significant GVs (P < 1.0 × 10−3) manually curated from the literature. In addition, GWASdb provides comprehensive functional annotations for each GV, including genomic mapping information, regulatory effects (transcription factor binding sites, microRNA target sites and splicing sites), amino acid substitutions, evolution, gene expression and disease associations. Furthermore, GWASdb classifies these GVs according to diseases using Disease-Ontology Lite and Human Phenotype Ontology. It can conduct pathway enrichment and PPI network association analysis for these diseases. GWASdb provides an intuitive, multifunctional database for biologists and clinicians to explore GVs and their functional inferences. It is freely available at http://jjwanglab.org/gwasdb and will be updated frequently

    The Type 2 Diabetes Knowledge Portal: an Open access Genetic Resource Dedicated to Type 2 Diabetes and Related Traits

    Get PDF
    Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP\u27s comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results

    Machine Learning Approaches for the Prediction of Obesity using Publicly Available Genetic Profiles

    Get PDF
    This paper presents a novel approach based on the analysis of genetic variants from publicly available genetic profiles and the manually curated database, the National Human Genome Research Institute Catalog. Using data science techniques, genetic variants are identified in the collected participant profiles then indexed as risk variants in the National Human Genome Research Institute Catalog. Indexed genetic variants or Single Nucleotide Polymorphisms are used as inputs in various machine learning algorithms for the prediction of obesity. Body mass index status of participants is divided into two classes, Normal Class and Risk Class. Dimensionality reduction tasks are performed to generate a set of principal variables - 13 SNPs - for the application of various machine learning methods. The models are evaluated using receiver operator characteristic curves and the area under the curve. Machine learning techniques including gradient boosting, generalized linear model, classification and regression trees, K-nearest neighbours, support vector machines, random forest and multilayer neural network are comparatively assessed in terms of their ability to identify the most important factors among the initial 6622 variables describing genetic variants, age and gender, to classify a subject into one of the body mass index related classes defined in this study. Our simulation results indicated that support vector machine generated high accuracy value of 90.5%

    A Genetic Analytics Approach for Risk Variant Identification to Support Intervention Strategies for People Susceptible to Polygenic Obesity and Overweigh

    Get PDF
    Obesity is a growing epidemic that has increased steadily over the past several decades. It affects significant parts of the global population and this has resulted in obesity being high on the political agenda in many countries. It represents one of the most difficult clinical and public health challenges worldwide. While eating healthy and exercising regularly are obvious ways to combat obesity, there is a need to understand the underlying genetic constructs and pathways that lead to the manifestation of obesity and their susceptibility metrics in specific individuals. In particular, the interpretation of genetic profiles will allow for the identification of Deoxyribonucleic Acid variations, known as Single Nucleotide Polymorphism, associated with traits directly linked to obesity and validated with Genome-Wide Association Studies. Using a robust data science methodology, this paper uses a subset of the TwinsUK dataset that contains genetic data from extremely obese individuals with a BMI≥40, to identify significant obesity traits for potential use in genetic screening for disease risk prediction. The approach posits a framework for methodical risk variant identification to support intervention strategies that will help mitigate long-term adverse health outcomes in people susceptible to obesity and overweight

    Processing genome-wide association studies within a repository of heterogeneous genomic datasets

    Get PDF
    Background Genome Wide Association Studies (GWAS) are based on the observation of genome-wide sets of genetic variants – typically single-nucleotide polymorphisms (SNPs) – in different individuals that are associated with phenotypic traits. Research efforts have so far been directed to improving GWAS techniques rather than on making the results of GWAS interoperable with other genomic signals; this is currently hindered by the use of heterogeneous formats and uncoordinated experiment descriptions. Results To practically facilitate integrative use, we propose to include GWAS datasets within the META-BASE repository, exploiting an integration pipeline previously studied for other genomic datasets that includes several heterogeneous data types in the same format, queryable from the same systems. We represent GWAS SNPs and metadata by means of the Genomic Data Model and include metadata within a relational representation by extending the Genomic Conceptual Model with a dedicated view. To further reduce the gap with the descriptions of other signals in the repository of genomic datasets, we perform a semantic annotation of phenotypic traits. Our pipeline is demonstrated using two important data sources, initially organized according to different data models: the NHGRI-EBI GWAS Catalog and FinnGen (University of Helsinki). The integration effort finally allows us to use these datasets within multisample processing queries that respond to important biological questions. These are then made usable for multi-omic studies together with, e.g., somatic and reference mutation data, genomic annotations, epigenetic signals. Conclusions As a result of our work on GWAS datasets, we enable 1) their interoperable use with several other homogenized and processed genomic datasets in the context of the META-BASE repository; 2) their big data processing by means of the GenoMetric Query Language and associated system. Future large-scale tertiary data analysis may extensively benefit from the addition of GWAS results to inform several different downstream analysis workflows

    DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences.

    Get PDF
    Modeling the properties and functions of DNA sequences is an important, but challenging task in the broad field of genomics. This task is particularly difficult for non-coding DNA, the vast majority of which is still poorly understood in terms of function. A powerful predictive model for the function of non-coding DNA can have enormous benefit for both basic science and translational research because over 98% of the human genome is non-coding and 93% of disease-associated variants lie in these regions. To address this need, we propose DanQ, a novel hybrid convolutional and bi-directional long short-term memory recurrent neural network framework for predicting non-coding function de novo from sequence. In the DanQ model, the convolution layer captures regulatory motifs, while the recurrent layer captures long-term dependencies between the motifs in order to learn a regulatory 'grammar' to improve predictions. DanQ improves considerably upon other models across several metrics. For some regulatory markers, DanQ can achieve over a 50% relative improvement in the area under the precision-recall curve metric compared to related models. We have made the source code available at the github repository http://github.com/uci-cbcl/DanQ

    Extensive Association of Common Disease Variants with Regulatory Sequence

    Get PDF
    Overlap between non-coding DNA regulatory sequences and common variant associations can help to identify specific cell and tissue types that are relevant for particular diseases. In a systematic manner, we analyzed variants from 94 genome-wide association studies (reporting at least 12 loci at p<5x10-8) by projecting them onto 466 epigenetic datasets (characterizing DNase I hypersensitive sites; DHSs) derived from various adult and fetal tissue samples and cell lines including many biological replicates. We were able to confirm many expected associations, such as the involvement of specific immune cell types in immune-related diseases and tissue types in diseases that affect specific organs, for example, inflammatory bowel disease and coronary artery disease. Other notable associations include adrenal glands in coronary artery disease, the immune system in Alzheimer's disease, and the kidney for bone marrow density. The association signals for some GWAS (for example, myopia or age at menarche) did not show a clear pattern with any of the cell or tissue types studied. In general, the identified variants from GWAS tend to be located outside coding regions. Altogether, we have performed an extensive characterization of GWAS signals in relation to cell and tissue-specific DHSs, demonstrating a key role for regulatory mechanisms in common diseases and complex traits
    corecore