1,024,014 research outputs found

    A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System

    Full text link
    [EN] The use of geographic data from early maps is a common approach to understanding urban geography as well as to study the evolution of cities over time. The specific goal of this paper is to provide a means for the integration of the first 1:500 urban map of the city of Valencia (Spain) on a tile-based geospatial system. We developed a workflow consisting of three stages: the digitization of the original 421 map sheets, the transformation to the European Terrestrial Reference System of 1989 (ETRS89), and the conversion to a tile-based file format, where the second stage is clearly the most mathematically involved. The second stage actually consists of two steps, one transformation from the pixel reference system to the 1929 local reference system followed by a second transformation from the 1929 local to the ETRS89 system. The last stage comprises a map reprojection to adapt to tile-based geospatial standards. The paper describes a pilot study of one map sheet and results showed that the affine and bilinear transformations performed well in both transformations with average residuals under 6 and 3 cm respectively. The online viewer developed in this study shows that the derived tile-based map conforms to common standards and lines up well with other raster and vector datasets.Villar-Cano, M.; JimĂ©nez-MartĂ­nez, MJ.; MarquĂ©s-Mateu, Á. (2019). A Practical Procedure to Integrate the First 1:500 Urban Map of Valencia into a Tile-Based Geospatial Information System. ISPRS International Journal of Geo-Information. 8(9). https://doi.org/10.3390/ijgi809037837889Bitelli, G., & Gatta, G. (2011). Digital Processing and 3D Modelling of an 18th Century Scenographic Map of Bologna. Advances in Cartography and GIScience. Volume 2, 129-146. doi:10.1007/978-3-642-19214-2_9Brovelli, M. A., Minghini, M., Giori, G., & Beretta, M. (2012). Web Geoservices and Ancient Cadastral Maps: The Web C.A.R.T.E. Project. Transactions in GIS, 16(2), 125-142. doi:10.1111/j.1467-9671.2012.01311.xBitelli, G., Cremonini, S., & Gatta, G. (2014). Cartographic heritage: Toward unconventional methods for quantitative analysis of pre-geodetic maps. Journal of Cultural Heritage, 15(2), 183-195. doi:10.1016/j.culher.2013.04.003CardesĂ­n DĂ­az, J. M., & Araujo, J. M. (2016). Historic Urbanization Process in Spain (1746–2013). Journal of Urban History, 43(1), 33-52. doi:10.1177/0096144215583481Villar-Cano, M., MarquĂ©s-Mateu, Á., & JimĂ©nez-MartĂ­nez, M. J. (2019). Triangulation network of 1929–1944 of the first 1:500 urban map of ValĂšncia. Survey Review, 52(373), 317-329. doi:10.1080/00396265.2018.1564599Chen, W., & Hill, C. (2005). Evaluation Procedure for Coordinate Transformation. Journal of Surveying Engineering, 131(2), 43-49. doi:10.1061/(asce)0733-9453(2005)131:2(43)ISO 19157:2013: Geographic Information—Data Qualityhttps://www.iso.org/standard/32575.htmlASPRS Positional Accuracy Standards for Digital Geospatial Datahttps://www.asprs.org/news-resources/asprs-positional-accuracy-standards-for-digital-geospatial-dataEven-Tzur, G. (2018). Coordinate transformation with variable number of parameters. Survey Review, 52(370), 62-68. doi:10.1080/00396265.2018.1517477Yuanxi, Y., & Tianhe, X. (2002). Combined method of datum transformation between different coordinate systems. Geo-spatial Information Science, 5(4), 5-9. doi:10.1007/bf02826467Lehmann, R. (2014). Transformation model selection by multiple hypotheses testing. Journal of Geodesy, 88(12), 1117-1130. doi:10.1007/s00190-014-0747-

    Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks

    Full text link
    [EN] In this paper, we present an approach to Spanish talk shows summarization. Our approach is based on the use of Siamese Neural Networks on the transcription of the show audios. Specifically, we propose to use Hierarchical Attention Networks to select the most relevant sentences for each speaker about a given topic in the show, in order to summarize his opinion about the topic. We train these networks in a siamese way to determine whether a summary is appropriate or not. Previous evaluation of this approach on summarization task of English newspapers achieved performances similar to other state-of-the-art systems. In the absence of enough transcribed or recognized speech data to train our system for talk show summarization in Spanish, we acquire a large corpus of document-summary pairs from Spanish newspapers and we use it to train our system. We choose this newspapers domain due to its high similarity with the topics addressed in talk shows. A preliminary evaluation of our summarization system on Spanish TV programs shows the adequacy of the proposal.This work has been partially supported by the Spanish MINECO and FEDER founds under project AMIC (TIN2017-85854-C4-2-R). Work of Jose-Angel Gonzalez is financed by Universitat Politecnica de Valencia under grant PAID-01-17.González-Barba, JÁ.; Hurtado Oliver, LF.; Segarra Soriano, E.; García-Granada, F.; Sanchís Arnal, E. (2019). Summarization of Spanish Talk Shows with Siamese Hierarchical Attention Networks. Applied Sciences. 9(18):1-13. https://doi.org/10.3390/app9183836S113918Carbonell, J., & Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’98. doi:10.1145/290941.291025Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience in Text Summarization. Journal of Artificial Intelligence Research, 22, 457-479. doi:10.1613/jair.1523Lloret, E., & Palomar, M. (2011). Text summarisation in progress: a literature review. Artificial Intelligence Review, 37(1), 1-41. doi:10.1007/s10462-011-9216-zSee, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/p17-1099Narayan, S., Cohen, S. B., & Lapata, M. (2018). Ranking Sentences for Extractive Summarization with Reinforcement Learning. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). doi:10.18653/v1/n18-1158González, J.-Á., Segarra, E., García-Granada, F., Sanchis, E., & Hurtado, L.-F. (2019). Siamese hierarchical attention networks for extractive summarization. Journal of Intelligent & Fuzzy Systems, 36(5), 4599-4607. doi:10.3233/jifs-179011Furui, S., Kikuchi, T., Shinnaka, Y., & Hori, C. (2004). Speech-to-Text and Speech-to-Speech Summarization of Spontaneous Speech. IEEE Transactions on Speech and Audio Processing, 12(4), 401-408. doi:10.1109/tsa.2004.828699Shih-Hung Liu, Kuan-Yu Chen, Chen, B., Hsin-Min Wang, Hsu-Chun Yen, & Wen-Lian Hsu. (2015). Combining Relevance Language Modeling and Clarity Measure for Extractive Speech Summarization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(6), 957-969. doi:10.1109/taslp.2015.2414820Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical Attention Networks for Document Classification. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. doi:10.18653/v1/n16-1174Conneau, A., Kiela, D., Schwenk, H., Barrault, L., & Bordes, A. (2017). Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1070Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391-407. doi:10.1002/(sici)1097-4571(199009)41:63.0.co;2-

    On environment difficulty and discriminating power

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-014-9257-1This paper presents a way to estimate the difficulty and discriminating power of any task instance. We focus on a very general setting for tasks: interactive (possibly multiagent) environments where an agent acts upon observations and rewards. Instead of analysing the complexity of the environment, the state space or the actions that are performed by the agent, we analyse the performance of a population of agent policies against the task, leading to a distribution that is examined in terms of policy complexity. This distribution is then sliced by the algorithmic complexity of the policy and analysed through several diagrams and indicators. The notion of environment response curve is also introduced, by inverting the performance results into an ability scale. We apply all these concepts, diagrams and indicators to two illustrative problems: a class of agent-populated elementary cellular automata, showing how the difficulty and discriminating power may vary for several environments, and a multiagent system, where agents can become predators or preys, and may need to coordinate. Finally, we discuss how these tools can be applied to characterise (interactive) tasks and (multi-agent) environments. These characterisations can then be used to get more insight about agent performance and to facilitate the development of adaptive tests for the evaluation of agent abilities.I thank the reviewers for their comments, especially those aiming at a clearer connection with the field of multi-agent systems and the suggestion of better approximations for the calculation of the response curves. The implementation of the elementary cellular automata used in the environments is based on the library 'CellularAutomaton' by John Hughes for R [58]. I am grateful to Fernando Soler-Toscano for letting me know about their work [65] on the complexity of 2D objects generated by elementary cellular automata. I would also like to thank David L. Dowe for his comments on a previous version of this paper. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project, granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).JosĂ© HernĂĄndez-Orallo (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems. 29(3):402-454. https://doi.org/10.1007/s10458-014-9257-1S402454293Anderson, J., Baltes, J., & Cheng, C. T. (2011). Robotics competitions as benchmarks for ai research. The Knowledge Engineering Review, 26(01), 11–17.Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement learning agents. In Proceedings of the National Conference on Artificial Intelligence (pp. 119–125). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Antunes, L., Fortnow, L., van Melkebeek, D., & Vinodchandran, N. V. (2006). Computational depth: Concept and applications. Theoretical Computer Science, 354(3), 391–404. Foundations of Computation Theory (FCT 2003), 14th Symposium on Fundamentals of Computation Theory 2003.Arai, K., Kaminka, G. A., Frank, I., & Tanaka-Ishii, K. (2003). Performance competitions as research infrastructure: Large scale comparative studies of multi-agent teams. Autonomous Agents and Multi-Agent Systems, 7(1–2), 121–144.Ashcraft, M. H., Donley, R. D., Halas, M. A., & Vakali, M. (1992). Chapter 8 working memory, automaticity, and problem difficulty. In Jamie I.D. Campbell (Ed.), The nature and origins of mathematical skills, volume 91 of advances in psychology (pp. 301–329). North-Holland.Ay, N., MĂŒller, M., & Szkola, A. (2010). Effective complexity and its relation to logical depth. IEEE Transactions on Information Theory, 56(9), 4593–4607.Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.Bordini, R. H., HĂŒbner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. London: Wiley. com.Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S. et al. (2000). Decision-theoretic, high-level agent programming in the situation calculus. In Proceedings of the National Conference on Artificial Intelligence (pp. 355–362). Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 38(2), 156–172.Chaitin, G. J. (1977). Algorithmic information theory. IBM Journal of Research and Development, 21, 350–359.Chedid, F. B. (2010). Sophistication and logical depth revisited. In 2010 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA) (pp. 1–4). IEEE.Cheeseman, P., Kanefsky, B. & Taylor, W. M. (1991). Where the really hard problems are. In Proceedings of IJCAI-1991 (pp. 331–337).Dastani, M. (2008). 2APL: A practical agent programming language. Autonomous Agents and Multi-agent Systems, 16(3), 214–248.Delahaye, J. P. & Zenil, H. (2011). Numerical evaluation of algorithmic complexity for short strings: A glance into the innermost structure of randomness. Applied Mathematics and Computation, 219(1), 63–77Dowe, D. L. (2008). Foreword re C. S. Wallace. Computer Journal, 51(5), 523–560. Christopher Stewart WALLACE (1933–2004) memorial special issue.Dowe, D. L., & HernĂĄndez-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81.Du, D. Z., & Ko, K. I. (2011). Theory of computational complexity (Vol. 58). London: Wiley-Interscience.Elo, A. E. (1978). The rating of chessplayers, past and present (Vol. 3). London: Batsford.Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. London: Lawrence Erlbaum.FatĂšs, N. & Chevrier, V. (2010). How important are updating schemes in multi-agent systems? an illustration on a multi-turmite model. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1 (pp. 533–540). International Foundation for Autonomous Agents and Multiagent Systems.Ferber, J. & MĂŒller, J. P. (1996). Influences and reaction: A model of situated multiagent systems. In Proceedings of Second International Conference on Multi-Agent Systems (ICMAS-96) (pp. 72–79).Ferrando, P. J. (2009). Difficulty, discrimination, and information indices in the linear factor analysis model for continuous item responses. Applied Psychological Measurement, 33(1), 9–24.Ferrando, P. J. (2012). Assessing the discriminating power of item and test scores in the linear factor-analysis model. PsicolĂłgica, 33, 111–139.Gent, I. P., & Walsh, T. (1994). Easy problems are sometimes hard. Artificial Intelligence, 70(1), 335–345.Gershenson, C. & Fernandez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.Gruner, S. (2010). Mobile agent systems and cellular automata. Autonomous Agents and Multi-agent Systems, 20(2), 198–233.Hardman, D. K., & Payne, S. J. (1995). Problem difficulty and response format in syllogistic reasoning. The Quarterly Journal of Experimental Psychology, 48(4), 945–975.He, J., Reeves, C., Witt, C., & Yao, X. (2007). A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evolutionary Computation, 15(4), 435–443.HernĂĄndez-Orallo, J. (2000). Beyond the turing test. Journal of Logic Language & Information, 9(4), 447–466.HernĂĄndez-Orallo, J. (2000). On the computational measurement of intelligence factors. In A. Meystel (Ed.), Performance metrics for intelligent systems workshop (pp. 1–8). Gaithersburg, MD: National Institute of Standards and Technology.HernĂĄndez-Orallo, J. (2000). Thesis: Computational measures of information gain and reinforcement in inference processes. AI Communications, 13(1), 49–50.HernĂĄndez-Orallo, J. (2010). A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In M. Hutter et al. (Ed.), 3rd International Conference on Artificial General Intelligence (pp. 182–183). Atlantis Press Extended report at http://users.dsic.upv.es/proy/anynt/unbiased.pdf .HernĂĄndez-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539.HernĂĄndez-Orallo, J., Dowe, D. L., España-Cubillo, S., HernĂĄndez-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. R. ThĂłrisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 82–91). Berlin: Springer.HernĂĄndez-Orallo, J., Dowe, D. L., & HernĂĄndez-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74.HernĂĄndez-Orallo, J., Insa, J., Dowe, D. L. & Hibbard, B. (2012). Turing tests with turing machines. In A. Voronkov (Ed.), The Alan Turing Centenary Conference, Turing-100, Manchester, 2012, volume 10 of EPiC Series (pp. 140–156).HernĂĄndez-Orallo, J. & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of International Symposium of Engineering of Intelligent Systems (EIS’98) (pp. 146–163). ICSC Press.Hibbard, B. (2009). Bias and no free lunch in formal measures of intelligence. Journal of Artificial General Intelligence, 1(1), 54–61.Hoos, H. H. (1999). Sat-encodings, search space structure, and local search performance. In 1999 International Joint Conference on Artificial Intelligence (Vol. 16, pp. 296–303).Insa-Cabrera, J., Benacloch-Ayuso, J. L., & HernĂĄndez-Orallo, J. (2012). On measuring social intelligence: Experiments on competition and cooperation. In J. Bach, B. Goertzel, & M. IklĂ© (Eds.), AGI, volume 7716 of lecture notes in computer science (pp. 126–135). Berlin: Springer.Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., HernĂĄndez-Lloreda, M. V., & HernĂĄndez-Orallo, J. (2011). Comparing humans and AI agents. In J. Schmidhuber, K. R. ThĂłrisson, & M. Looks (Eds.), LNAI series on artificial general intelligence 2011 (Vol. 6830, pp. 122–132). Berlin: Springer.Knuth, D. E. (1973). Sorting and searching, volume 3 of the art of computer programming. Reading, MA: Addison-Wesley.Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22(2), 143–183.Legg, S. (2008). Machine super intelligence. PhD thesis, Department of Informatics, University of Lugano, June 2008.Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.Leonetti, M. & Iocchi, L. (2010). Improving the performance of complex agent plans through reinforcement learning. In Proceedings of the 2010 International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 723–730). International Foundation for Autonomous Agents and Multiagent Systems.Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266.Levin, L. A. (1986). Average case complete problems. SIAM Journal on Computing, 15, 285.Li, M., & VitĂĄnyi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). Berlin: Springer.Low, C. K., Chen, T. Y., & RĂłnnquist, R. (1999). Automated test case generation for bdi agents. Autonomous Agents and Multi-agent Systems, 2(4), 311–332.Madden, M. G., & Howley, T. (2004). Transfer of experience between reinforcement learning environments with progressive difficulty. Artificial Intelligence Review, 21(3), 375–398.Mellenbergh, G. J. (1994). Generalized linear item response theory. Psychological Bulletin, 115(2), 300.Michel, F. (2004). Formalisme, outils et Ă©lĂ©ments mĂ©thodologiques pour la modĂ©lisation et la simulation multi-agents. PhD thesis, UniversitĂ© des sciences et techniques du Languedoc, Montpellier.Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.Orponen, P., Ko, K. I., Schöning, U., & Watanabe, O. (1994). Instance complexity. Journal of the ACM (JACM), 41(1), 96–121.Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for sequential patterns. Psychological Review, 70(6), 534.Team, R., et al. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Whiteson, S., Tanner, B., & White, A. (2010). The reinforcement learning competitions. The AI Magazine, 31(2), 81–94.Wiering, M., & van Otterlo, M. (Eds.). (2012). Reinforcement learning: State-of-the-art. Berlin: Springer.Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Zatuchna, Z., & Bagnall, A. (2009). Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior, 17(1), 28–57.Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1–28.Zenil, H. (2011). Une approche expĂ©rimentale Ă  la thĂ©orie algorithmique de la complexitĂ©. PhD thesis, Dissertation in fulfilment of the degree of Doctor in Computer Science, UniversitĂ© de Lille.Zenil, H., Soler-Toscano, F., Delahaye, J. P. & Gauvrit, N. (2012). Two-dimensional kolmogorov complexity and validation of the coding theorem method by compressibility. arXiv, preprint arXiv:1212.6745

    Cross-Language Plagiarism Detection

    Full text link
    Cross-language plagiarism detection deals with the automatic identification and extraction of plagiarism in a multilingual setting. In this setting, a suspicious document is given, and the task is to retrieve all sections from the document that originate from a large, multilingual document collection. Our contributions in this field are as follows: (1) a comprehensive retrieval process for cross-language plagiarism detection is introduced, highlighting the differences to monolingual plagiarism detection, (2) state-of-the-art solutions for two important subtasks are reviewed, (3) retrieval models for the assessment of cross-language similarity are surveyed, and, (4) the three models CL-CNG, CL-ESA and CL-ASA are compared. Our evaluation is of realistic scale: it relies on 120,000 test documents which are selected from the corpora JRC-Acquis and Wikipedia, so that for each test document highly similar documents are available in all of the six languages English, German, Spanish, French, Dutch, and Polish. The models are employed in a series of ranking tasks, and more than 100 million similarities are computed with each model. The results of our evaluation indicate that CL-CNG, despite its simple approach, is the best choice to rank and compare texts across languages if they are syntactically related. CL-ESA almost matches the performance of CL-CNG, but on arbitrary pairs of languages. CL-ASA works best on "exact" translations but does not generalize well.This work was partially supported by the TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 project and the CONACyT-Mexico 192021 grant.Potthast, M.; BarrĂłn Cedeño, LA.; Stein, B.; Rosso, P. (2011). Cross-Language Plagiarism Detection. Language Resources and Evaluation. 45(1):45-62. https://doi.org/10.1007/s10579-009-9114-zS4562451Ballesteros, L. A. (2001). Resolving ambiguity for cross-language information retrieval: A dictionary approach. PhD thesis, University of Massachusetts Amherst, USA, Bruce Croft.BarrĂłn-Cedeño, A., Rosso, P., Pinto, D., & Juan A. (2008). On cross-lingual plagiarism analysis using a statistical model. In S. Benno, S. Efstathios, & K. Moshe (Eds.), ECAI 2008 workshop on uncovering plagiarism, authorship, and social software misuse (PAN 08) (pp. 9–13). Patras, Greece.Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3, 1–8.Berger, A., & Lafferty, J. (1999). Information retrieval as statistical translation. In SIGIR’99: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (vol. 4629, pp. 222–229). Berkeley, California, United States: ACM.Brin, S., Davis, J., & Garcia-Molina, H. (1995). Copy detection mechanisms for digital documents. In SIGMOD ’95 (pp. 398–409). New York, NY, USA: ACM Press.Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mercer R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–311.Ceska, Z., Toman, M., & Jezek, K. (2008). Multilingual plagiarism detection. In AIMSA’08: Proceedings of the 13th international conference on artificial intelligence (pp. 83–92). Berlin, Heidelberg: Springer.Clough, P. (2003). Old and new challenges in automatic plagiarism detection. National UK Plagiarism Advisory Service, http://www.ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf .Dempster A. P., Laird N. M., Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.Dumais, S. T., Letsche, T. A., Littman, M. L., & Landauer, T. K. (1997). Automatic cross-language retrieval using latent semantic indexing. In D. Hull & D. Oard (Eds.), AAAI-97 spring symposium series: Cross-language text and speech retrieval (pp. 18–24). Stanford University, American Association for Artificial Intelligence.Gabrilovich, E., & Markovitch, S. (2007). Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In Proceedings of the 20th international joint conference for artificial intelligence, Hyderabad, India.Hoad T. C., & Zobel, J. (2003). Methods for identifying versioned and plagiarised documents. American Society for Information Science and Technology, 54(3), 203–215.Levow, G.-A., Oard, D. W., & Resnik, P. (2005). Dictionary-based techniques for cross-language information retrieval. Information Processing & Management, 41(3), 523–547.Littman, M., Dumais, S. T., & Landauer, T. K. (1998). Automatic cross-language information retrieval using latent semantic indexing. In Cross-language information retrieval, chap. 5 (pp. 51–62). Kluwer.Maurer, H., Kappe, F., & Zaka, B. (2006). Plagiarism—a survey. Journal of Universal Computer Science, 12(8), 1050–1084.McCabe, D. (2005). Research report of the Center for Academic Integrity. http://www.academicintegrity.org .Mcnamee, P., & Mayfield, J. (2004). Character N-gram tokenization for European language text retrieval. Information Retrieval, 7(1–2), 73–97.Meyer zu Eissen, S., & Stein, B. (2006). Intrinsic plagiarism detection. In M. Lalmas, A. MacFarlane, S. M. RĂŒger, A. Tombros, T. Tsikrika, & A. Yavlinsky (Eds.), Proceedings of the European conference on information retrieval (ECIR 2006), volume 3936 of Lecture Notes in Computer Science (pp. 565–569). Springer.Meyer zu Eissen, S., Stein, B., & Kulig, M. (2007). Plagiarism detection without reference collections. In R. Decker & H. J. Lenz (Eds.), Advances in data analysis (pp. 359–366), Springer.Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computational Linguistics, 29(1), 19–51.Pinto, D., Juan, A., & Rosso, P. (2007). Using query-relevant documents pairs for cross-lingual information retrieval. In V. Matousek & P. Mautner (Eds.), Lecture Notes in Artificial Intelligence (pp. 630–637). Pilsen, Czech Republic.Pinto, D., Civera, J., BarrĂłn-Cedeño, A., Juan, A., & Rosso, P. (2009). A statistical approach to cross-lingual natural language tasks. Journal of Algorithms, 64(1), 51–60.Potthast, M. (2007). Wikipedia in the pocket-indexing technology for near-duplicate detection and high similarity search. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 909–909). ACM.Potthast, M., Stein, B., & Anderka, M. (2008). A Wikipedia-based multilingual retrieval model. In C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven, & R. W. White (Eds.), 30th European conference on IR research, ECIR 2008, Glasgow , volume 4956 LNCS of Lecture Notes in Computer Science (pp. 522–530). Berlin: Springer.Pouliquen, B., Steinberger, R., & Ignat, C. (2003a). Automatic annotation of multilingual text collections with a conceptual thesaurus. In Proceedings of the workshop ’ontologies and information extraction’ at the Summer School ’The Semantic Web and Language Technology—its potential and practicalities’ (EUROLAN’2003) (pp. 9–28), Bucharest, Romania.Pouliquen, B., Steinberger, R., & Ignat, C. (2003b). Automatic identification of document translations in large multilingual document collections. In Proceedings of the international conference recent advances in natural language processing (RANLP’2003) (pp. 401–408). Borovets, Bulgaria.Stein, B. (2007). Principles of hash-based text retrieval. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 527–534). ACM.Stein, B. (2005). Fuzzy-fingerprints for text-based information retrieval. In K. Tochtermann & H. Maurer (Eds.), Proceedings of the 5th international conference on knowledge management (I-KNOW 05), Graz, Journal of Universal Computer Science. (pp. 572–579). Know-Center.Stein, B., & Anderka, M. (2009). Collection-relative representations: A unifying view to retrieval models. In A. M. Tjoa & R. R. Wagner (Eds.), 20th International conference on database and expert systems applications (DEXA 09) (pp. 383–387). IEEE.Stein, B., & Meyer zu Eissen, S. (2007). Intrinsic plagiarism analysis with meta learning. In B. Stein, M. Koppel, & E. Stamatatos (Eds.), SIGIR workshop on plagiarism analysis, authorship identification, and near-duplicate detection (PAN 07) (pp. 45–50). CEUR-WS.org.Stein, B., & Potthast, M. (2007). Construction of compact retrieval models. In S. Dominich & F. Kiss (Eds.), Studies in theory of information retrieval (pp. 85–93). Foundation for Information Society.Stein, B., Meyer zu Eissen, S., & Potthast, M. (2007). Strategies for retrieving plagiarized documents. In C. Clarke, N. Fuhr, N. Kando, W. Kraaij, & A. de Vries (Eds.), 30th Annual international ACM SIGIR conference (pp. 825–826). ACM.Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D., & Varga, D. (2006). The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the 5th international conference on language resources and evaluation (LREC’2006).Steinberger, R., Pouliquen, B., & Ignat, C. (2004). Exploiting multilingual nomenclatures and language-independent text features as an interlingua for cross-lingual text analysis applications. In Proceedings of the 4th Slovenian language technology conference. Information Society 2004 (IS’2004).Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. (2003). Inferring a semantic representation of text via cross-language correlation analysis. In S. Becker, S. Thrun, & K. Obermayer (Eds.), NIPS-02: Advances in neural information processing systems (pp. 1473–1480). MIT Press.Yang, Y., Carbonell, J. G., Brown, R. D., & Frederking, R. E. (1998). Translingual information retrieval: Learning from bilingual corpora. Artificial Intelligence, 103(1–2), 323–345

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • 

    corecore