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ABSTRACT

Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before 
a client can execute queries, it must discover data sources, and determine which ones are relevant. 
Federated query execution research focuses on the actual execution, while data source discovery is 
often marginally discussed—even though it has a strong impact on selecting sources that contribute 
to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces 
based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern 
Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. 
This article describes generic evaluation measures and results for their concrete approach. With low-
cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 
7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution 
time, but demands algorithms that visit a higher number of interfaces to improve result completeness.
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INTRODUCTION

The Web is a fully distributed system—and thus so is the Web of Data. Within this enormous collection, 
each data source specializes in its very own part of the truth. Some of them, like DBpedia1, contain 
essential facts about a broad range of subjects; others, like Drugbank2, offer a comprehensive corpus 
of triples about highly select topics. As a result, in order to answer any non-trivial query over the 
Web of Data, we likely need to consult multiple data sources. The need for such federated queries 
intensifies as the Linked Open Data cloud is trending toward a more decentralized graph structure, 
with additional linking hubs besides DBpedia arising (Schmachtenberg et al., 2014). Federation is thus 
necessary to achieve the Web of Data vision (Heath & Bizer, 2011): a global, machine-understandable 
dataspace with web-scale integration and interoperability.

In literature, the story of federated query evaluation is typically told from source selection onwards: 
given a fixed set of available data sources, a client determines which of these are necessary to obtain 
results. After that, the actual query processing against the selected sources happens. However, before 
any of this can take place, candidate data sources need to be located first. This process preceding 
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source selection has hardly received rigorous scientific study so far. In general, discovery is the process 
of finding available Linked Data sources that are relevant to a certain task, for specific definitions 
of “relevance” and “task”. Although the description of dataset or endpoint characteristics has been 
covered, the act of finding, accessing, and processing such documents is still in its infancy. With the 
emerging Web Of Data, studying autonomous Linked Data discovery becomes a need, with a special 
focus on the impact on client-side tasks such as querying. For federated query execution in particular, 
discovery can assist in a more complete selection of accessed data sources.

Therefore, this article studies the impact of Linked Data interface discovery on federated 
querying. We consider any that provides client access to Linked Data sources. In total, we present 
three contributions.

First, we propose a discovery technique, which leverages hypermedia between Linked Data 
interfaces. Hypermedia allows such interfaces to function similarly to a webpage, providing the user 
with guidance on what type of content they can retrieve, or what actions they can perform, as well 
as the appropriate links to do so. Since the beginning of the Web, this has been the crucial aspect 
to the Web’s scalability. Existing discovery works have greatly progressed in closed, custom p2p 
networks using custom discovery protocols, or centralized repositories that crawl metadata from 
different sources. However, with a scale-free network at our disposal, little of its benefits have been 
exploited for Linked Data querying. The novelty of our approach lies in strictly reusing hypermedia 
and Linked Data principles to a) discover one another, aided by links in a dataset; and b) inform 
the client at run-time about their discoveries through hypermedia. Furthermore, clients and servers 
distribute the processing cost fairly, resulting in a sustainable and scalable solution.

Second, to appropriately evaluate discovery approaches, we introduce a methodology to quantify 
its parameters. This includes metrics to express the functional and non-functional characteristics of 
one discovery approach relative to others.

Third, we implement and evaluate the approach against the lightweight Triple Pattern Fragments 
interface (Verborgh et al., 2014; 2016), and measure to what extent our discovery method facilitates 
source selection in federated query execution. We intend to enable querying multiple sources on the 
client while obtaining far less information than heuristics or dataset profiles.

The remainder of this paper is structured as follows. We first list a number of research questions 
with corresponding hypotheses and discuss related work. Then, we propose the metrics for evaluating 
discovery approaches. Next, we introduce a hypermedia-based discovery method applied to Triple 
Pattern Fragments and discuss how clients can use the outcome in federated query execution. After 
that, we evaluate our approach and analyze the results to assess its viability. Finally, we end with an 
overall conclusion and discuss future work.

PROBLEM STATEMENT

This paper tackles the practical problem of discovering Linked Data interfaces in service of federated 
query execution. Since such interfaces are scattered across the Web, which is connected through 
hyperlinks, we pose the following research question:

Question 1: Can we effectively discover distributed Linked Data interfaces by relying solely on 
hypermedia and Linked Data principles?

As a result, we will investigate an approach where Linked Data interfaces locate each other by 
a) actively following links to others, and b) reacting accordingly when being discovered. We cover 
several aspects of Question 1 with the following subquestions.

Question 1.1: How does the proposed discovery approach impact client and server load?
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Question 1.2: Is the discovery method able to discover all relevant interfaces?
Question 1.3: Does the execution time of the discovery process scale with the size of the dataset?

In addition, we also study the effects of source discovery on federated query processing, since 
both processes are not necessarily independent. An effective discovery approach benefits the source 
selection stage it precedes. Hence, we pose the following research question.

Question 2: To what extent can the discovery of Linked Data interfaces through hypermedia facilitate 
source selection in federated query processing?

Source selection can be impacted on several aspects. Common are completeness, accuracy, and 
execution time. However, we are also interested in the load imposed on the server, i.e. the response 
times of requests used during query execution. Thereby, to accurately answer Question 2, we formulate 
three additional subquestions:

Question 2.1: Does hypermedia-based source selection retain recall compared to a naive baseline?
Question 2.2: How does hypermedia-based source selection impact the server’s responsiveness?
Question 2.3: Does hypermedia-based source selection lower query execution time compared to a 

naive client-side approach?

Corresponding hypotheses and experiments for these questions are stated in the evaluation section, 
after introducing the metrics and the proposed approach.

RELATED WORK

In this section, we discuss work related to Linked Data discovery. First, we investigate the different 
methods to publish Linked Data on the Web. Next, we zoom in on how existing discovery approaches 
work and what description methods they use. Then, we look at how federated query processing, the 
most common application of discovery, performs source selection on the output of the discovery 
process. Finally, we briefly consider the discovery of services, which has so far been studied more 
deeply than the discovery of Linked Data.

Publishing Linked Data on the Web
When aiming to discover Linked Data on the Web, we need to be aware of possible publication 
methods, which need to be understood in the context of the Web’s design. The Web is a distributed 
hypermedia system, characterised by the architectural properties derived by Fielding (2000). Its core 
differentiating feature is the uniform interface, implemented on the Web through the following four 
constraints:

1. 	 Resources are identified by http uris.
2. 	 Each resource can be accessed as zero or more representations (in formats such as html or rdf).
3. 	 All exchanged messages are self-descriptive.
4. 	 Navigation between resources happens through hypermedia controls such as links or forms.

Each publication method has its own way of partitioning a dataset in resources, as we will discuss 
in the following.
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Data Dump
Conceptually, the simplest way to publish a dataset is a data dump: all triples in the dataset are 
serialized in one or more representations, which are possibly compressed into an archive. These 
archives are then made available from a specific http uri, often organized by version, to which other 
resources can link. In order to query this data, it must be downloaded (or streamed) in its entirety and 
processed by a local query processor. The rest resource here is thus the whole dataset; for discovery, 
this means we need to identify this one resource.

Linked Data Documents
Discovery changes when datasets are published in a more granular way according to the four Linked 
Data principles by Berners-Lee (2006):

1. 	 Use uris as names for things.
2. 	 Use http uris so that people can look up those names.
3. 	 When someone looks up a uri, provide useful information, using Web standards.
4. 	 Include links to other uris so that they can discover more things.

Note the parallels between these principles and the rest architectural constraints listed above: the 
Linked Data principles are a specific instance of the rest constraints with representation formats and 
its uris as hypermedia links. In particular, dereferencing is important: if a certain resource mentions a 
concept, we can discover more information about this concept by following its url. The rest notion of 
a “resource” thus coincides with the rdf notion of a “resource”. For example, data about the resource 
http://dbpedia.org/resource/Walt_Disney is available through the rest resource with that same url.

Note that dereferencing allows a discovery process to find related data from one particular 
authoritative source only. For instance, the aforementioned url allows to discover information about 
Walt Disney from the DBpedia dataset, but not from any other sources with information about the 
same concept. Furthermore, discovery of one resource comes down to merely retrieving its entire 
representation, and does not directly give access to all resources in the dataset.

SPARQL Endpoints
The sparql query language (Harris & Seaborne, 2013) allows a much more fine-grained selection 
of rdf data through highly specific and flexible custom queries. The sparql protocol (Feigenbaum et 
al., 2013) exposes result resources of such queries through http. For example, the result of the query 
SELECT DISTINCT ?t { ?s rdf:type ?t } executed on a dataset could be available as the resource 
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%
7D. Discovery of the endpoint consists of finding its base url, in this example http://dbpedia.org/sparql.

In contrast to the interfaces discussed earlier, sparql endpoints expose an infinite number of 
resources, which are determined by the clients’ choice of a query. Due to this offered choice in query 
complexity, many such resources are expensive to compute for servers. This makes hosting a public 
endpoint a costly and thus relatively rare practice. Furthermore, it contributes to endpoint availability 
being magnitudes lower than that of regular servers (Buil-Aranda et al., 2013). So even though public 
endpoints are easily explored because of their extended query capabilities, their lower availability 
might make them less useful for subsequent tasks.

Triple Pattern Fragments
A Triple Pattern Fragments (tpf) interface (Verborgh et al., 2014; 2016) is a rest interface that 
extends the Linked Data principles to use forms in addition as hypermedia controls to links. Its 
forms consist of three fields (subject, predicate, object), such that the server offers a finite number 
of resources that correspond to triple-pattern queries. For instance, the result of a query for (?s, ?p, 

http://dbpedia.org/resource/Walt_Disney
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%7D
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%7D
http://dbpedia.org/sparql
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foaf:Person) on a given dataset could be available as the resource http://fragments.dbpedia.org/2014/
en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson. Complex queries against 
interfaces are executed on the client side, to counter the availability issues of public endpoints. Like 
sparql endpoints, discovering the url of a single fragment is sufficient for access to the entire dataset; 
however, the server-side interface is more limited, so detailed summaries cannot be obtained directly.

tpf interfaces mitigate the dereferencing authority issue of Linked Data documents, since their 
hypermedia form allows clients to inquire about any uri, regardless of whether it resides in the server’s 
dataspace. Therefore, we can discover information about a given subject in different interfaces. At 
the same time, the interface remains fully compatible with dereferencing. For instance, dereferencing 
the url http://example.org/Walt_Disney could result in an 303 redirect to the fragment resource http://
example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney, which contains all 
triples with this particular url as a subject.

Discovery of Linked Datasets
In the following, we describe existing work on Linked Data discovery in terms of description and 
strategies.

Dataset Vocabularies
Dataset vocabularies allow discovering datasets without having to access their actual interfaces. 
This work does not propose any new direction in this field, but employs a specific selected custom 
vocabulary discussed later on. Thus, we discuss the alternatives and their limitations below.

Several vocabularies exist to describe and locate datasets, and some of them are w3c 
recommendations. The void vocabulary (Alexander & Hausenblas, 2009) enables descriptions of an 
rdf dataset’s characteristics. It contains concepts to describe general metadata (e.g., licenses, name, 
author), access metadata (e.g., sparql endpoint, data dump uri, lookup uris), and structural metadata 
(e.g., patterns, partitioning, vocabularies statistics). In addition, one can describe the relations with 
other datasets using a linkset. A void description is applicable to many fields, including query 
federation, data catalogs and faceted search applications. Unfortunately, applications requiring 
efficiency, e.g., federated query algorithms, require more fine-grained data summaries, as discussed 
later on. A more interface-oriented vocabulary is the sparql Service Description (Williams, 2013), 
which is part of the w3c sparql 1.1 recommendation. It covers a high level description of supported 
features by the endpoint and other characteristics useful to clients, i.e., default graph, entailment 
regime and so on. As its name suggests, this vocabulary only applies to interfaces, not to the other 
interfaces discussed above.

Next, the dcat vocabulary is used for the description of data catalogs. Data catalogs are centralized 
indexes or repositories that contain dataset metadata. dcat contains high-level metadata for such 
catalogs (e.g., title, licenses, version, etc.) and datasets (e.g., keywords, language, etc.). Querying 
the indexes for certain characteristics in this metadata, followed by extracting their location from 
the results, can discover Datasets. Popular examples are DataHub3 (which uses dcat), lov (for 
vocabularies)4, re3data5 (Registry of Research Data Repositories), and datacatalogs.org, a catalogue 
for catalogs. Despite its conception as a generic vocabulary, specific elements like dcat:byteSize make 
dcat mostly targeted toward data dumps, and not queryable Web interfaces. Furthermore, discovery 
becomes a two-step process, as it only contains detailed catalog information.

Dedicated Discovery Strategies
Vocabularies describe what can be discovered, but not how this happens. void suggests two methods for 
discovering descriptions: a) via backlinks from dataset documents using the void:inDataset predicate or 
b) by deriving to void descriptions canonically with a /.well-known/ uri. Paulheim & Hertling (2013) 
surveyed the state of void descriptions. The /.well-known/ mechanism has the best coverage (74% of 
uris), but only 14% resulted in a usable description. Using dataset catalogs results in a higher precision 

http://fragments.dbpedia.org/2014/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://fragments.dbpedia.org/2014/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://example.org/Walt_Disney
http://example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney
http://example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney
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for retrieving an endpoint—0.48 compared to 0.19 for /.well-known/—but they are not adopted on a 
large scale, suffer from practical adoption issues, and depend on the implementation of redirection.

The idea behind sparql Service Description is to return the description of an endpoint on a lookup 
of its base (typically /sparql/). A study by Buil-Aranda et al. (2013) observed that only 35.4% of 
endpoints responded with 200 OK, and only 11.9% returned rdf. This low uptake prevents effective 
usage for discovery purposes.

In this paper, we tackle this by relying on the widely adopted fundamental components of the 
Web, i.e. hypermedia and http, rather than introducing a predefined complex contract that needs to 
be implemented by both sides.

Discovery During Querying
Other strategies can be found in link-traversal-based querying, where discovery is integrated in the 
query execution. Hartig (2013) identifies the live exploration method, which starts from a certain 
seed, i.e. from the given query or given parameter, and recursively looks up based on links. This 
follow-your-nose discovery is able to query priorly unknown sources and can potentially explore 
the entire Web of Data (assuming sufficient connectedness). However, its recursive nature causes 
discovery and query execution to be slow. To improve performance, live exploration is augmented 
with indexes that can provide seed values for the live exploration, or guide the exploration process. 
For instance, Ladwig & Tran (2010) added a ranked list of uris that is retrieved from an index. Other 
related techniques are found in focused Web crawling (Diligenti et al., 2000), where context graphs 
guide link traversal based on topics.

This work is based on similar principles, but deliberately separates part of the discovery from 
query execution. Thereby, it improves efficiency by a) supporting a range of more complex interfaces 
such as tpf, and b) exploiting reuse between clients by prefetching relevant interfaces in advance.

Source Selection for Federated Query Processing
Source selection determines which interfaces can potentially contribute to the result set of a 
particular query, and happens after the available dataset interfaces have been discovered (manually 
or automatically). A client evaluates a federated sparql query by decomposing it in subqueries that 
retrieve and join partial results. Therefore, this process is known to be an important performance 
factor (Saleem et al., 2015): an overestimation of candidate sources can increase execution time, an 
underestimation can decrease the recall of results. The exact impact on query performance (e.g., 
execution time), however, depends on several aspects, such as the number of sources, the amount of 
empty results, source response time, and parallel execution.

In this work, we study whether more detailed results of discovery can influence the efficiency of 
source selection, and if this reflects on the query performance. Therefore, it is important to understand 
its mechanics in order to design discovery for federated query processing.

Rakhmawati et al. (2013) identified three types of federation frameworks: a) federation over 
endpoints, b) federation using Linked Data traversal, and c) federation over custom repository 
apis. The first type expects all data sources to be exposed using endpoints. The second type relies 
on dereferenceable Linked Data documents, exposed by data providers that apply the Linked Data 
principles; query results are constructed by following links and looking up uris . In most federation 
frameworks, source selection happens triple pattern-wise, i.e. sources are selected for each triple 
pattern in the query, using the four source-selection strategies discussed below separately or jointly.

ASK Queries
Schwarte et al. (2011) presented FedX, which sends ASK queries to a predefined list of sources to 
check whether they contain triples matching a given pattern. Despite the many http requests this 
requires, it is one of the best performing systems in terms of execution time.
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Dataset Profiling
To capture important meta-information about a dataset, compact descriptions (e.g., in void) are 
automatically generated. This includes statistical properties (e.g., average number of values, co-
occurences), patterns (e.g., topics, clusters) (Böhm et al., 2012; Fetahu et al., 2014), and content 
information (e.g., present classes and properties). Some works have studied scalable methods to profile 
huge datasets using MapReduce (Böhm et al., 2011; Forchhammer et al., 2014), employable on heavy 
infrastructure such as cloud systems. Works in this area target a very broad spectrum of applications 
by generating as much descriptive information as possible. In contrast, our work has a very specific 
task, namely discovering other Linked Data interfaces in a sustainable way. Furthermore, we need 
to put infrastructural constraints on discovering Linked Data servers, so it can sufficiently scale on 
the Web. Limited loads, as well as minimal size of the description are preferred to expressiveness.

Data Indexing
Before or during query execution, the federation system gathers statistics about sources. One approach 
is to build a source model on a schema-level. Paret et al. (2011) and Li et al. (2014) construct a Web 
of Linked Classes based on classes and their relations, optionally augmented with instance statistics. 
Umbrich et al. (2011) published an extensive report on data summaries for live Linked Data querying. 
Harth et al. (2010) construct QTree indexes, which summarize instance- and schema-level elements 
of a dataset in a hierarchical structure combining R-trees (Guttman, 1984) and histograms. Quilitz & 
Leser (2008) presented the early system darq, where an index of distinct predicates is first composed 
to select candidate sources. The extension (Montoya et al., 2012) to the anapsid system (Acosta et al., 
2011) gathers information about the distinct predicates of data sources and applies smart heuristics 
to estimate the source selection and improve query planning. Recently, more lightweight summaries 
are used in hibiscus (Saleem & Ngomo, 2014). For each distinct predicate, this approach gathers 
authorities for the subjects and predicates.

Cached data can also increase efficiency for future (partial) re-execution of queries. Although 
not using data indexing as such, Schwarte et al. (2011) extensively cache prior source selection FedX 
for this purpose.

Discovery of Services
The discovery of Web service functionality is different from Linked Data discovery: a Web service 
typically offers a handful of operations, whereas Linked Data interfaces can contain millions or even 
billions of triples. The process of (Semantic) Web service discovery was defined by Klusch (2014) 
as locating existing services that are relevant for a given request based on the description of their 
functional and non-functional semantics. Below are four categories of service discovery approaches, 
as identified by Klusch (2014).

Directory-Based Service Discovery
Directory-based discovery can be centralized and decentralized. Centralized discovery depends 
on registries containing descriptions. Sousuo (Klusch & Zhing, 2008) collects descriptions using 
meta-search in existing search engines combined with focused topic crawling, to offer free text and 
keyword search. Decentralized approaches use a structured peer-to-peer (p2p) network and query 
routing protocol. For instance, agora-p2p (Khan & Matskin, 2010) exploits a Chord ring to distribute 
the storage and location of services. An example from federated query processing is Atlas (Kaoudi 
et al., 2010), which uses Distributed Hash Table (dht) to improve source selection.
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Directory-Less Service Discovery
Directory-less service discovery approaches in p2p networks include algorithms such as flooding 
and k-random walks, and probabilistic adaptive search. rs2d (Basters & Klusch, 2006) combines 
probabilistic adaptive search with owl-s, such that each peer maintains a local view of the network’s 
semantic overlay. Directory-less approaches mostly focus on popular services and provide incomplete 
recall.

Hybrid Approaches
Finally, hybrid approaches work both in structured and unstructured p2p networks. meteor-s by Verma 
et al. (2005) uses a set of service providing and consuming peers, which are grouped on a certain 
topic and domain, with a central matchmaking super-peer, which maintains a global registry with 
the service registry concept taxonomies of all peers.

QUANTIFYING THE DISCOVERY PROCESS

In order to study our discovery process, we need to determine what parameters can and should be 
measured. This then allows comparing them in a qualitative and quantitative way. In particular, it allows 
us to identify those parameters whose optimization can or should be the focus of algorithmic design.

Preliminaries
First, we define some concepts used throughout this section and the remainder of the paper. The Web 
of Data can be considered a collection of interconnected datasets. Each dataset is typically modeled 
in rdf, which contains links between concepts and adds machine-readable semantics. We call such a 
dataset a Linked Dataset, defined as follows (based on Alexander & Hausenblas, 2009):

Definition 1 (Linked Dataset): A Linked Dataset D is a set of triples published, maintained or 
aggregated by a single provider, with UD = {u1, …, un} the set of distinct uris that identify 
Linked Data resources in D.

Since we can transform blank nodes into uris and back via skolemization (Cyganiak et al., 2014), 
we can assume in general that a Linked Dataset does not contain blank nodes. http uris are native to 
the Web and, thus, directly accessible through http methods. For instance, one can perform a simple 
http request and expect a response. A successful response is a retrieved Linked Data document, 
defined by Hartig (2012):

Definition 2 (Linked Data document): A Linked Data document d describes the entity identified by 
a uri u if there exists (s, p, o) ∈ data(d) such that s = u or o = u.

Note that there might be multiple Linked Data documents that describe an entity identified by u. 
However, according to the Linked Data principles (Berners-Lee, 2006), the uri u may also serve as 
a reference to a specific Linked Data document which is considered an authoritative source of data 
about the entity identified by u. The retrieval process of this document is called dereferencing the uri u.

Retrieving a Linked Data document is thus a possible way to obtain a fraction of a Linked Dataset 
over http. It is an example of a restricted Linked Data interface that only allows access to fragments 
about that particular uri. Other examples include data dumps, or endpoints. These interfaces differ 
in their expressiveness, namely all data, simple queries or complex queries.
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Definition 3 (Linked Data interface): A Linked Data interface iD ∈ Ι provides access to a Linked 
dataset D on the Web through interface-specific operations, with Ι as the set of all interfaces.

Defining Discovery
On the Web of Documents, hyperlinks connect documents into a single global information space. The 
target consumers are humans, who interact with these documents through a browser. They answer 
queries by using search engines, following links, and interpreting text. This process always has a clear 
starting point, i.e. the first url typed in the browser (e.g., google.com), but no predefined end point. 
Humans discover relevant locations during the query solving process, while seamlessly transitioning 
between different Web interfaces.

Linked Data similarly connects different data sources into a single global data space, and its 
intended consumers are human and machine agents based on Web standards and the common data 
model. On the Web, the location of all possible data sources cannot be known beforehand, let alone 
stored in one place. Since “anyone can say anything about anything” (Berners-Lee, 1997), a specialized 
discovery method is necessary to find sources to answer to queries on a Web scale. We call such a 
method a Link Data Interface Discovery process.

Definition 4 (Linked Data Interface Discovery). Given a set of Linked Data interfaces I, Linked 
Data Interface Discovery LDID(I, T) is the automated process of locating the set of Linked Data 
interfaces I′⊆I, whose datasets contain triples that potentially contribute to the results of a task T.

Practically speaking, the output of an LDID process is a set of uris that identify Linked Data 
interfaces in a Web-like environment, as well as a certain list of characteristics for each of those 
interfaces. Note that on the Web, the complete set of interfaces I is not known before, during, nor 
after the discovery process. However, results gathered in closed large-scale simulated environments, 
where I is known, can be generalized to a subweb, i.e. Web of interfaces used by a certain application, 
or provide indications for the entire Web.

In the context of federated query processing, the task T is the execution of a set of queries Q. 
Ideally, a query application also requires only one starting point, even though several servers might 
be required to find the desired answer to a query. A federated query algorithm then applies source 
selection to the output of a discovery process in order to select the relevant interfaces for a particular 
query. In contrast to discovery, source selection is typically repeated for each query.

Measuring Discovery
To conclude this section, we define several parameters to measure to what extent the discovery method 
has succeeded. We discuss metrics for the functional requirements, the discovery outcome, and the 
non-functional requirements, the discovery process.

Measuring Outcome
A discovery process ideally strives for completeness: finding all interfaces that can contribute to 
the results of a certain task. Thus, there is a direct dependency of the task result completeness on 
the completeness of a discovery process. For instance, in federated query processing, the more 
interfaces we are able to discover, the higher our chances of finding all possible answers, i.e. reaching 
completeness. Interfaces can be called relevant to the executed queries, if they provide access to data 
that contributed to the result.

Definition 5 (Relevant Linked Data Interface): A Linked Data Interface i ∈ I, publishing a dataset 
D, is relevant to the query Q if a subset of D is used to compose a result of Q.
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The completeness and accuracy of the discovery outcome can be measured with the default 
recall and precision metrics in closed-world experiments. However, in an open world such as the 
Web, the total number of relevant interfaces is unknown, since a) data is distributed over a huge scale-
free network, where counting datasets is infeasible; b) this network is subject to constant change. 
Therefore, closed-world experiments performed on different scales should provide an indication on 
Web-scale performance.

Measuring the Process
The performance marks of an LDID process are evaluated according to the objective of a task and the 
process characteristics, as defined earlier. This creates a different optimal trade-off mix of parameters 
for each process. As a result, they are incomparable with a single global performance metric. Instead, 
we discuss the metric space of non-functional requirements of LDID in three quantifiable aspects.

•	 Bandwidth Usage: Discovery processes need to communicate with Web resources over http. 
Depending on their greediness, they can fundamentally differ in the amount of used bandwidth. 
This is measured in number of requests sent to complete the discovery.

•	 Discovery Execution Time: Depending on the task at hand, a discovery process can be fast or 
slow. For example, in live exploration querying, the query execution time is directly dependent 
on the amount of time it took to gather the set relevant sources. In contrast, data analysis is 
often performed offline, after the data is discovered and gathered. Discovery execution time is 
measured in the amount of time until the completion of the discovery process.

•	 Server Response Overhead: When a task is executed, a client relies on servers to retrieve data 
or to provide a service. Depending on the discovery process, the impact on the default server 
behavior will be different. For instance, if the client handles the complete discovery, the server 
overhead will be zero. However, if the server is part of the process, e.g., Web crawling, a certain 
percentage can be added to its response time. This is measured in the difference in time between 
server responses with and without discovery.

HYPERMEDIA-BASED DISCOVERY APPROACH

In this section, we introduce a hypermedia-based discovery approach to benefit federated query clients 
during execution. Servers discover relevant interfaces using two methods:

1. 	 Active Discovery: servers dereference links from the interface data to discover relevant interfaces.
2. 	 Reactive Discovery: servers react to being accessed by clients, i.e. other discovering servers or 

querying clients.

This combination allows the discovery of outgoing links (active), as well as incoming links 
(reactive). Both methods rely on three foundations: data summaries, publishing data through a Triple 
Pattern Fragments server and applying the Linked Data principles. They make two assumptions: 
a dataset has one main domain authority (e.g., http://dbpedia.org/ for DBpedia), and the owner of 
that domain handles the dereferencing of its uris (e.g., the DBpedia pages). Both of which can be 
considered a result of ownership: data providers are unlikely to adopt external due to control concerns.

In the following, we first describe dataset summarization, and then discuss both active and 
reactive discovery methods in more detail.

Creating Data Summaries
The discovery process is performed by an application hosting a Linked Data interface, which publishes 
the dataset d. Our approach uses a dataset’s uris as a seed. Thereby, the application will first create 

http://dbpedia.org/
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a dataset summary from d in order to access these required uris efficiently. The motivation for this 
is twofold: as Linked Datasets are potentially huge, efficiently scanning an rdf dataset for uris is 
fundamental, and metadata about datasets is exchanged between servers.

Such summaries are a lightweight form of dataset profiling and represent crucial dataset 
information in a compact manner. As discussed in related work, they are common in federated query 
processors. Given the constraints above, the desired characteristics are therefore:

•	 A high summarization rate for decreasing scan time and exchange time over http;
•	 A low complexity for little server load and fast computation;
•	 Quick and accurate matching of triple patterns for the hypermedia construction discussed later on.

Based on these requirements, we reuse the approach from the query federation system HiBISCuS. 
Saleem & Ngomo (2014) propose lightweight summaries based on grouping authorities of subjects 
and objects per distinct predicate. In contrast to their work, we will not use the summaries for query 
optimization on the client, but instead to let the server a) iterate over foreign domains in the datasets, 
and b) generate specific hypermedia to other interfaces to inform the client.

Definition 6 (Authority Function): An authority function extracts the authority part, standardized by 
Dürst & Suignard (2005), of an rdf term, and is defined as:

authority u
protocol u hostname u if isUri u

nil
( ) = ( )+ ( ) ( )� � ,�� �

,��ootherwise








	

The HiBISCuS summaries show a very high summarization ratio (≈99% for all FedBench 
datasets6). Furthermore, they contain information about all terms of a triple, which makes them 
candidates for efficient and accurate triple pattern matching.

A data summary ds is defined as a set of capabilities {cap1, …, capn}. For a source d, a capability 
capx is a triple (p, SA, OA) for a specific predicate p. Herein, SA is the set of distinct subject authorities 
of p in d, and OA the set of distinct object authorities of p in d. When p = rdf:type, an exception 
is made where OA is the set of distinct object (instead of their authorities). We can attach a data 
summary to the metadata of a fragment. An example for the Jamendo dataset (from FedBench) is 
given in Listing 1.

Active Discovery with Dereferencing
This subsection details an algorithm in which a server discovers others through uris from its own 
dataset.

Phase 1: Identify External Servers
The discovering server actively tries to identify other servers based on data summaries, the Linked 
Data principles, and hypermedia. This process is data-driven; it exploits the links to external datasets, 
which are possibly hosted by other servers. Therefore, we start by identifying a set of foreign uris 
Ρ = {r1, …, rn}⊆UD in the dataset. They are uris that differ in hostname with the interface, and whose 
lookup is handled by other servers. We rely on the data summary generation process to populate UD 
with one sample per authority. For instance, the Jamendo dataset (Table 1) contains 776,611 distinct 
subjects and objects, but is covered by 655 samples because there are only 655 unique authorities.
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Phase 2: Dereference Entities on External Servers
The discovering server acts as a client and discovers other servers by dereferencing each rx ∈ R. In 
these responses, it looks for triples (rx, rdfs:isDefinedBy,ufx), see Figure 1 (a). The uri ufx possibly 
identifies a tpf fx of the dataset that contains rx. If no such triple is found, rx does not support this 
discovery approach, and the discovery for this ends here.

Continuing our previous example, the Jamendo server on domain dbtune.org could dereference 
the foreign http://sws.geonames.org/660013/. This lookup is subsequently answered by the server 

Listing 1. The fragment http://dbtune.org/fragments# dataset extended with dataset demo summary metadata
1. @base <http://dbtune.org/fragments>.
2. @prefix void: <http://rdfs.org/ns/void#>.
3. @prefix hydra: <http://www.w3.org/ns/hydra/core#>.
4. @prefix ds: <http://semweb.mmlab.be/ns/summaries#>.
5. @prefix mo: <http://purl.org/ontology/mo/>.
6. @prefix foaf: <http://xmlns.com/foaf/0.1/>.
7.
8. <> hydra:member <#dataset>.
9. <#dataset> a void:DataSet, hydra:Collection;
10. ds:capability [
11. ds:predicate foaf:based_near;
12. ds:sbjAuthority <http://dbtune.org/>;
13. ds:objAuthority <http://sws.geonames.org/>
14. ];
15. ds:capability [
16. ds:predicate rdf:type;
17. ds:sbjAuthority <http://dbtune.org/>;
18. ds:objAuthority foaf:Document, mo:MusicArtist
19. ];
20. ds:capability [
21. ds:predicate foaf:name;
22. ds:sbjAuthority <http://dbtune.org/>;
23. ].

Table 1. The FedBench datasets

dataset # triples # distinct subjects # distinct predicates # distinct objects

DBPedia subset 42,849,609 9,495,865 1,063 13,620,028

NY Times 335,206 21,666 36 191,538

LinkedMDB 6,147,996 694,400 222 2,052,959

Jamendo 1,049,647 335,925 26 440,686

Geonames 107,950,085 7,479,714 26 35,799,392

SW Dog Food 103,465 11,974 118 37,547

KEGG 1,090,830 34,260 21 939,258

Drugbank 517,023 19,693 119 276,142

ChEBI 4,772,706 50,477 28 772,138

SP2B-10M 10,000,457 1,730,250 77 4,690,662

http://sws.geonames.org/660013/
http://dbtune.org/fragments#
http://dbtune.org/fragments
http://rdfs.org/ns/void#
http://www.w3.org/ns/hydra/core#
http://semweb.mmlab.be/ns/summaries#
http://purl.org/ontology/mo/
http://xmlns.com/foaf/0.1/
http://dbtune.org/
http://sws.geonames.org/
http://dbtune.org/
http://dbtune.org/
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on sws.geonames.org, which hosts the Geonames dataset as Linked Data documents. The response 
contains the triple (http://sws.geonames.org/660013/, rdfs:isDefinedBy, http://sws.geonames.org/
fragments/), where the object identifies a tpf of the Geonames dataset.

Phase 3: Identify Controls and Summaries
The server requests fx and looks for hypermedia controls Cx and a data summary dsx in the response, 
see Figure 1 (b). The hypermedia controls reveal whether the resource is a tpf, and if so, allow 
requesting other tpfs of the dataset. The data summary informs the discoverer about the data that 
can be found in the interface, which is used later on to construct hypermedia to this server. For the 
fragment http://sws.geonames.org/fragments, an extract of the request cycle is shown in Listing 2. 
The data summary starts at line 12 and the controls at line 18.

Figure 1. Active discovery discovers Linked Data interfaces by dereferencing foreign URIs in the dataset and retrieving the linked 
Triple Pattern Fragment

http://sws.geonames.org/660013/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments
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Phase 4: Index Storage
The tuple {dsx, Cx} is stored in an index Ids with ufx as key. To prevent the same fragments to be 
requested multiple times, the presence of fx is looked up first in the set of keys. Note that in some 
cases, e.g., a cache expiry, it is desirable to re-request a fragment to update its summary and controls.

Active discovery ends when all sample uris have been dereferenced, so Ids contains of list of 
discovered summaries.

Reactive Discovery with the Referer Header
Since active discovery is limited by the foreign uris present in the dataset, its reach is insufficient 
for two reasons. First, queries that require knowledge about backlinks cannot be answered, leading 
to low result recall. Since hyperlinks are unidirectional, servers can only discover interfaces that 
host their outgoing links. Second, when a dataset changes, its summary in the index of other servers 
will be outdated. Therefore, a server needs to notify those who have discovered it about this change.

Reactive discovery tackles both issues by using the Referer header from incoming requests, 
inspired by the work of Mühleisen & Jentzsch (2011), to automatically create new links in the cloud. 
Referer is standardized in RFC2616,7 which states:

The Referer request-header field allows the client to specify, for the server’s benefit, the address 
(uri) of the resource from which the Request-URI was obtained.

In this approach, two actors are equipped with this header:

Listing 2. A fragment of the discovered interface returns hypermedia controls and a data summary.
1. GET http://sws.geonames.org/fragments HTTP/1.1
2. Accept: text/turtle
3. Referer: http://dbtune.org/fragments
4. ----------------------------------------------
5. HTTP/1.1 200 OK
6.
7. <http://sws.geonames.org/fragments>
8. hydra:member
9. <http://sws.geonames.org/fragments#dataset>.
10. <http://sws.geonames.org/fragments#dataset>
11. a void:Dataset, hydra:Collection;
12. ds:capability [
13. ds:predicate gn:parentFeature;
14. ds:sbjAuthority <http://sws.geonames.org/>;
15. ds:objAuthority <http://sws.geonames.org/>
16. ];
17. ...
18. hydra:search _:triplePattern.
19. _:triplePattern hydra:template
20. “/fragments{?subject,predicate,object}”;
21. hydra:mapping _:subject, _:predicate, _:object.
22. _:subject hydra:variable “subject”;
23. hydra:property rdf:subject.
24. _:predicate hydra:variable “predicate”;
25. hydra:property rdf:predicate.
26. _:object hydra:variable “object”;
27. hydra:property rdf:object.

http://sws.geonames.org/fragments
http://dbtune.org/fragments
http://sws.geonames.org/fragments
http://sws.geonames.org/fragments#dataset
http://sws.geonames.org/fragments#dataset
http://sws.geonames.org/
http://sws.geonames.org/
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•	 Querying clients a query execution application supplies the last accessed fragment, enabling 
discovery of servers with no explicit link in the datasets.

•	 Discovering servers a server doing active discovery supplies a random fragment (in practice the 
index fragment) on which it can be discovered in turn.

The process happens as follows, illustrated in Figure 2.

Phase 1: Header Inspection
When a server receives a request by client C, it checks whether a Referer header is present. If it is, it 
should be a uri ufx. Possibly, ufx identifies a Triple Pattern Fragment fx.

Phase 2: Dereference the Referrer
The server verifies that ufx is a foreign uri with an authority it has not (recently) visited before. If 
so, the server dereferences ufx to obtain the resource fx.

Phase 3: Identify Controls and Summaries
The server inspects fx in order to find the summary ds and controls Cx, analogous as in Phase 3 of 
the active discovery process. For example, given the request in Listing 2, the Geonames server can 
react by requesting the Referer http://dbtune.org/fragments given in line 3. As a result, it retrieves 
the summary and controls for the Jamendo server.

Figure 2. Reactive discovery discovers interfaces by retrieving fragments from the Referer header

http://dbtune.org/fragments
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Phase 4: Index Storage
If both are correctly extracted from the response, the tuple {dsx, Cx} is stored in an index Ids as 
well, with ufx as key.

Since http caches can intercept the Referer header, they could prevent reactive discovery—and 
caching is a crucial scalability factor for Triple Pattern Fragments (Verborgh et al., 2014). However, 
the cache could maintain a list of referers (for instance, in server logs), which are then passed to the 
server at a later stage.

FEDERATED QUERY PROCESSING

Through Hypermedia
In this section, we describe how clients consume the result of a discovery process for the execution 
of queries. Clients rely on hateoas (hypermedia as engine of application state), where they react 
autonomously to links included in http responses. First, we discuss how the hypermedia is constructed 
on the server. Second, we describe how the client consumes the links to retrieve more relevant 
fragments on the fly. As a running example, we discuss the evaluation of the query in Query 3 over 
the Geonames and Jamendo data sources mentioned in the previous section.

Building the Server-side Hypermedia Interface
When a fragment is requested, the server informs the client about the interfaces it has discovered 
in the response. Instead of sending all known interfaces, it pre-selects the ones most relevant to 
the requested fragment in order to aid with source selection. This reduces the chance of source 
overestimation on the client.

When handling a request, the server has the following data at its disposal:

1. 	 The requested triple pattern tp = (s, p, o), extracted from the request;
2. 	 An indexed set of data summaries Ids = {uf1 ⇒ {ds1, C1},…,ufn ⇒ {dsn, Cn}}.

Based on their summaries, the server looks for servers that can possibly answer the requested 
triple pattern as well. Therefore, a server iterates over all summaries in Ids. For each summary, it 
checks for a match using Figure 3.

First, we select the summaries to iterate over [line 1]. If the predicate is a variable, we select all 
summaries in the index. If the predicate is a uri, we look up its entry. Next, we iterate over the selected 
set of capabilities. If no entry is found, the summary does not match [line 3]. For each summary, if 
the subject or object is a uri, we extract its authority [line 4,5]. If it is not a uri, it’s either a variable, 
blank node or literal, which always match. Finally, a server with a data summary only has a chance 
of matching the requested triple pattern if

1. 	 The predicate is rdf:type, which is an exception in the data summary, and the object in the patterns 
is an exact match of a in the object authority [line 9]; or

2. 	 The subject is a variable or its subject authority is equal to the authority of the pattern’s subject, 
and the same holds for the object [line 11].

For instance, when the Jamendo server receives a request for the tp on line 5 of Listing 3, it 
returns zero triples, as the dataset does not contain gn:parentFeature. Before responding, it scans the 
index for a match, which contains the summary for http://sws.geonames.org/fragments. As shown in 
line 13 of Listing 2, the Geonames summary does contain gn:parentFeature and is a match, since the 
subject and object of tp are variables. Similarly, when the tp on line 7 of Listing 3 is requested from 

http://sws.geonames.org/fragments
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the server, it returns triples, because foaf:name is present in the dataset. However, the Geonames 
summary does not match, since foaf:name is not present.

For each fragment ufx that matches the requested triple pattern (m(dsx, tp)=true), we create a 
direct link uri uf’x. This link points to the fragment for the same triple pattern on a remote server. 
The resulting set of links H = {uf′m, …, uf′n} are the hypermedia controls of the response, i.e. we 
add zero or more rdfs:seeAlso links8 to inform the client about the other servers. For instance, if the 
Geonames summary matches the triple pattern in Listing 3, line 7, the hypermedia triple in Listing 4 

Listing 3. An example query combining the Geonames and Jamendo datasets
1. PREFIX foaf:<http://xmlns.com/foaf/0.1/>
2. PREFIX gn:<http://www.geonames.org/ontology#>
3.
4. SELECT ?name ?location ?news WHERE {
5. ?artist foaf:name ?name .
6. ?artist foaf:based_near ?location .
7. ?location gn:parentFeature ?germany .
8. ?germany gn:name “Federal Republic of Germany”
9. }

Figure 3. Determine if a given triple pattern matches a data summary, and possibly its dataset

http://xmlns.com/foaf/0.1/
http://www.geonames.org/ontology#
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will be added to the fragment’s response. Then, the client can follow this rdfs:seeAlso link to collect 
(more) matching triples.

sparql queries can be federated over multiple Triple Pattern Fragments servers by extending the 
existing querying algorithm (Verborgh et al., 2016). Query federation systems are client applications 
that decompose queries, send partial queries to endpoints, and join the results. As the interface aims 
at pushing intelligence to the client and way from the server, the tasks above are far more native to 
the client-server set-up. As a result, aggregating multiple requests already allows a naive, but effective 
query federation system.

The algorithm by Verborgh et al. (2014) constructs a dynamic iterator pipeline to solve queries 
over one server. A Basic Graph Pattern B = {tp1, …, tpn} is evaluated by a bgp iterator, which 
recursively decomposes it into smaller iterators. For each triple pattern tp in B, the first page is fetched 
from the corresponding tpf. Its response tells us how many matches (cnttp1) the dataset has for each 
triple pattern. The pattern is then decomposed by evaluating it using a) a triple pattern iterator or the 
triple pattern with the smallest number of matches, and b) a new bgp iterator for the remainder of the 
pattern. This results in a dynamic pipeline for each of the mappings of its predecessor. Each pipeline 
is optimized for a specific mapping, reducing the number of requests for each path.

In this work, the client also starts with one fragment uri, but accesses more during execution. 
We extended the existing algorithm with an extra abstraction when fetching a tpf. Multiple fragments 
from different servers are aggregated and exposed as a single fragment with the following two steps:

1. 	 Following links included in the response of the first fragment;
2. 	 Merging the results and metadata according to an aggregation function.

The first step calls a recursive function based on rdfs:seeAlso links present in the fragments’ 
responses. The second step aggregates both the data and the metadata from all fragments. The data 
are appended to a single stream as the responses come in. When all fragments have arrived and their 
data stream has ended, the aggregated stream ends. The count metadata are combined into a single 
value using an aggregation function ϑ, which is a cost function that can be optimized to the type of 
interface. For example, ϑ can be a weighted sum, taking into account practical differences between 
servers like response time, page size and so on. In our implementation, as we discuss later on, we 

chose a sum ϑ =
=
∑
i

N

icnt
1

 for simplicity.

For example, the query in Listing 3 is executed against the Jamendo server from earlier. For each 
triple pattern, the corresponding fragment is retrieved from the server which results in:
?artist foaf:name ?name. # 3,505 matches  
?artist foaf:based_near ?location. # 3,244 matches ?location 
gn:parentFeature ?germany. # 0 matches  
?germany gn:name “Federal Republic of Germany”. # 0 matches

Typically, the algorithm would stop the execution here, as the last two patterns have no matching 
triples, leading to an empty resultset. However, the response for both patterns does include a link to 
a corresponding fragment on the Geonames server. This retrieves each link, appends the result to 

Listing 4: Although the Jamendo server returned no triples for the pattern tp = (?x,gn:parentFeature,?y), it contains a 
hypermedia control to the corresponding fragment in the Geonames dataset.
1. <http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.
org%2Fontology%23parentFeature> rdfs:seeAlso <http://sws.geonames.
org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23p
arentFeature>.
Client-Side Query Execution

http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
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the original fragment resultset and sums the count metadata with ϑ. Now, both fragments do return 
matches, which updates the previous results:
?artist foaf:name ?name. # 3,505 matches  
?artist foaf:based_near ?location. # 3,244 matches 
?location gn:parentFeature ?germany. # 0 + 7,479,713 
# = 7,479,713 matches 
 ?germany gn:name “Federal Republic of Germany”.# 0 + 1 = 1 match

After aggregation, the last triple pattern has the lowest number of matches, namely 1. Thus, the 
algorithm continues with the single matching triple for this pattern and binds the value http://sws.
geonames.org/2921044/ to the variable ?germany. Finally, the process is repeated for the remaining 
three triple patterns.

EVALUATION

The experimental results presented in this section aim to provide insight in the performance of the 
hypermedia-based discovery approach and its impact on federated query execution. We describe the 
implementation, test setup and performed tests as follows.

Experimental Setup
We implemented our approach in Node.js as a plugin for the existing Triple Pattern Fragments server.9 
This plugin is called the Explorer and runs in a separate single-threaded process, asynchronous to 
the server application, indexing data summaries as they arrive. The server communicates with the 
Explorer using three methods for a) starting the active discovery; b) passing a Referer header if 
detected in a request; and c) passing a triple pattern from the request to retrieve a set of rdfs:seeAlso 
links, i.e. the hypermedia controls.

To test the query execution, we selected the Fedbench (Schmidt et al., 2011) benchmark and its 
corresponding collection of datasets. FedBench relies on real world authoritative datasets that are 
prominent in the Web of Data and provides a federated query mix.10 We selected the Cross Domain 
(CD), Life Science (LS), and Linked Data (LD) queries from the list of pre-defined queries, as they 
make use of multiple servers. Queries LS7 and CD6 are not supported by our implementation, and 
are therefore excluded from the results. An overview of the used datasets is given in Table 1.

In total, we allocated 9 virtual machines as servers in an Amazon EC2 Virtual Private Cloud, 
one for each dataset. Each virtual machine has the equivalent of a dual-core Intel Xeon E5-2670 v2 
CPU, 7.5 GB of RAM and 32 GB of SSD storage. The datasets KEGG and ChEBI were merged to 
avoid dereferencing conflicts, as they share the same authoritative hostname. On each server, we 
edited the /etc/hosts file to simulate the different domain names.

In addition, a server was provided with an active NGINX11 http cache and a Triple Pattern 
Fragments server including the Explorer module, both handling the dereferencing and the Triple 
Pattern Fragments interface. The data was loaded into the server as a compressed file. An extra 
virtual machine was created to run the FedBench client and gather server logs. A plugin for a Triple 
Pattern Fragments client supporting both hypermedia-based and naive federation was added to the 
FedBench client.

Experiment 1: Feasibility of the Discovery Approach
In the following, we assess Question 1 and test to what extent a discovery approach is feasible by 
using hypermedia. We list the objectives and discuss the experimental results.

http://sws.geonames.org/2921044/
http://sws.geonames.org/2921044/
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Objectives
This experiment tests the five hypotheses stated below. First, to assess Question 1.1, we inspect the 
data summary construction, which has the biggest impact on the server. As this process solely relies 
on string operations, we foresee the following:

Hypothesis 1: The data summaries can be computed in a reasonable time, which scales linearly with 
the size and anatomy of the dataset.

Hypothesis 2: The data summaries are highly compact compared to the original dataset size.

Next, in terms of Question 1.3, we expect the number of required requests to have a major impact 
on the discovery execution time. Fortunately, this number is directly dependent on the amount of 
links (indicated by a triple’s object) to other datasets, which is only a small fraction of all uris present. 
Therefore, the discovery execution time should scale well with the size of the dataset, and bandwidth 
usage should be limited:

Hypothesis 3: The discovery execution time scales linearly with the bandwidth usage.
Hypothesis 4: The discovery execution time scales linearly with the size of the dataset.
Hypothesis 5: The amount of requests is minimal compared to the total amount of triples in the dataset.

Finally, we assess the completeness of our discovery approach with Question 1.2. The active 
discovery is data-driven, which should cover all outgoing links, while reactive discovery should cover 
all incoming links. Hence, all directly relevant interfaces should be discovered:

Hypothesis 6: The discovery approach is able to reach full completeness in a closed-world environment.

Summary Complexity
We measured the summary generation time for each dataset. Each summary was constructed from 
its corresponding file. The results shown in Table 2 confirm that the summaries are lightweight in 
terms of complexity and size.

The largest dataset, i.e. Geonames with 108k triples, was summarized in only 10.85 minutes, 
while the smallest dataset, i.e., Semantic Web Dog Food, was summarized in less than a second. These 
low computation times can partially be explained by the highly efficient format, which offers a highly 
compressed browsable read-only index. However, the alternative interface of servers does allow these 
highly specialized data sources. Furthermore, no multi-threading was used during generation, which 
can still be fully exploited and compensate slower data sources, e.g., writeable indexes like x-rdf-3x 
(Neumann & Weikum, 2010) or sparql endpoints. Another factor is likely the sole use of authorities, 
which can be derived with a highly efficient regular expression operation.

Next, we look at the correlation between the generation time and the number of distinct subject, 
predicates, and objects. No clear impact can be observed of the number of distinct predicates on 
the generation time (Pearson’s r = 0.315 and Spearman’s ρ = 0.043). This is likely because the 
distinct subjects and objects highly outnumber the distinct predicates. For instance, Geonames and 
DBpedia have the highest generation times, while DBpedia has 30 times more distinct predicates than 
Geonames. As shown in Figure 4, we do observe a linear correlation with coefficient of determination 
R2 = 0.998 and p = 0.000 (α = 0.05) between the total number of distinct subjects and distinct 
objects (r = 0.999 and ρ = 0.988). The dataset size, i.e. the total number of triples, shows a slightly 
weaker correlation with R2 = 0.987 and p < 0.001 (r = 0.993 and ρ = 1.000; α = 0.05), but still 
indicates a clear linear relationship between size and execution time.
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The correlation findings above in combination with the overall low execution times, allow us 
to accept Hypothesis 1.

Summary Size
In terms of the summary size, the fourth column in Table 2 shows a summarization ratio above 99% 
compared to the already compact binary file. We consider a summary significantly compact above 
85% (α = 0.05). Thereby, Hypothesis 2 can be validated with single-value T-value of 46.655 and 
p < 0.001. Because of the authorities, summarizing the dataset creates a lot of redundancy, which 
allows us to greatly compress the result. The created redundancy decreases according to the number 
of distinct authorities present in the dataset. This potentially leads to a low summarization ratio for 
highly variable datasets, like sameAs.org. However, as previously pointed out, this is rare because of 
uri ownership, where data publishers tend to base their uris around a single domain name.

In term of absolute size, the summaries remain below a few hundred kilobytes. The largest 
summary DBpedia, responsible for roughly 40 million triples, results in only 85 kB. Although this 
size increases slightly when loaded into memory, we can conclude that they are sufficiently compact. 
The server can load many summaries in memory without introducing large overhead. Furthermore, 
the current implementation only applies a simple dictionary, thus, a more extensive compression can 
still massively reduce space.

Discovery Execution Time and Bandwidth Usage
To evaluate the performance of our hypermedia-based discovery approach, we deployed 8 servers, 
one for each dataset. We excluded the SP2B dataset since it uses local and is not linked to any dataset. 
Each server was provisioned with a pre-computed data summary and the server application. The active 
discovery process was executed on all machines simultaneously, also triggering the reactive discovery.

Table 3 shows the results for the active discovery phase. All servers were able to discover their 
direct neighbours, of which three (DBpedia, LinkedMDB, Drugbank) in less than 10s, four (NY 
Times, Jamendo, Geonames, SW Dog Food) in less than 7min and one outlier (KEGG–ChEBI) in only 
5ms. This outlier is due to the absence of external uris in the KEGG–ChEBI dataset, which requires 
no requests. The difference between the two other clusters also correlates with their differences in 
request count. Thus, higher bandwidth usage reflects on a higher execution time. The highest execution 
time was measured for the SW Dogfood dataset. Although it has the lowest number of triples, the 
maximum of 771 requests was sent. Its high number of links to personal author websites, resulting in 

Table 2. The compression rate of data summaries is very high (99%) with acceptable creation time (11 min)

dataset generation 
time (ms)

json 
size (kB)

ratio (%) original hdt size 
(kB)

DBPedia subset 339,598 85.68 99.9853 584,679

NY Times 2,237 25.12 99.7786 11,344

LinkedMDB 37,840 26.10 99.9502 52,413

Jamendo 7,390 53.69 99.7059 18,258

Geonames 651,102 26.01 99.9975 1,035,674

SW Dog Food 667 83.17 96.8084 2,606

KEGG 7,755 1.62 99.9863 11,850

Drugbank 3,650 13.27 99.9217 16,942

ChEBI 28,233 1.87 99.9920 23,502

SP2B-10M 72,482 6.38 99.9980 320,662
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a high number of unique samples, can explain this. In general, the low number of requests is a result 
of using a data summary as seed. Despite the large number of triples in a dataset, e.g., DBpedia, the 
request count can be very low (e.g., 16 requests), due to low authority variance in its uris.

Table 4 shows the results of the reactive discovery phase. Each server has discovered the interfaces 
that were connected through a backlink. Reactive discovery is cheap in terms of bandwidth usage, as 
it only needs one requests per discovery. As a result, its execution time is mostly determined by time 
taken to reconstruct the summary from the response, as shown in the last two columns.

To conclude, we can validate Hypothesis 3, as execution time is directly related to the number of 
requests. We observe a linear correlation (α = 0.05) with R2 = 0.889 and p = 0.002 (r = 0.943 and 
ρ = 0.952). Also, we can validate Hypothesis 5, since the number of requests sent, is only a fraction 
(μ = 0.1% with σ = 0.001) of the total number of triples. However, we falsify Hypothesis 4, because 
no relation is shown between a dataset size and the discovery execution time. No correlation can be 
observed since R2 = 0.082 (r = −0.287 and ρ = 0.698) and p = 0.245.

Figure 4. The data summary generation time increases linearly with the number of distinct subjects and objects
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Completeness of the Discovery Outcome
In terms of completeness, the combination of active and reactive discovery result in a recall of 1.0, 
as all interfaces relevant to the discovery task are found (μ = 1.0). Here, a relevant interface provides 
access to a dataset to which a link is included in the discoverer’s dataset. Therefore, these results 
validate Hypothesis 6.

If the number of stored summaries deviates in Table 3, it was already discovered by reactive 
discovery, or visa versa. During active discovery, both DBpedia and SW Dog Food found links to 
OWL or RDFS, but were detected as not being fragments. Completeness in context of a query task 
is discussed in the next section.

Experiment 2: Impact on Federation Query Execution
In this second experiment, we measure the impact of our discovery approach on client-side federated 
query execution to assess Question 2. We ran FedBench on different set-ups, combining a client 
variant and a specific index. Two variants of clients were implemented: a) a naive client that sends 
every request to every server, without consuming hypermedia, and b) a hypermedia-based client 
which implements the query execution algorithm described in this paper. The naive client will act 
as a baseline to measure the impact of the hypermedia-based client. It mimics existing federation 
systems that solely rely on triple pattern to do both source selection and query execution. We do 
not use other state-of-the-art federation systems as baseline, since the comparison would be unfair. 
Such systems are highly tailored to the efficient, but computationally heavy sparql interface, which 
enables very low execution times. Our efforts aim at a sustainable solution for both client and server, 
thus using the slower, but lightweight interface. We aim at investigating the role of hypermedia in 
source-selection, rather than optimizing execution speed.

In addition, we prepared two distinct index provisions: a) populated with all summaries of 
the other datasets (full index), and b) populated with the summaries from its discovery outcome 
(discovery index). The full index setup provides insight on the general performance of hypermedia-
based source selection. It creates the ideal scenario where each interface is able to provide a link to 
any other interface. This isolates the query execution from any limitations of the discovery approach, 
i.e., incomplete indexes. The discovery index setup provides insight in the relation between discovery 
outcome and the query algorithm. Here, each interface has a different, more selective index, which 
enables studying the impact on query completeness and execution time.

Table 3. Active discovery is able to find interfaces for all links. No links are found for KEGG–Chebi, since it does not contain 
any outgoing links. (#L=number of links, #F=number of fragments, #S=number of fragments stored in index, #Req=number of 
sent requests, SCT=Summary construction time, ET=Execution time)

Dataset Links Found #L #F #S #Req SCT 
(ms)

ET 
(ms)

DBpedia OWL, NY Times 2 1 1 16 41 1,073

NY Times DBpedia, Geonames 2 2 1 240 13 30,666

LinkedMDB DBpedia, Geonames 2 2 2 15 118 6,704

Jamendo Geonames 1 1 1 655 31 218,549

Geonames DBpedia 1 1 1 261 129 24,853

SW Dog Food OWL, DBpedia, Geonames, 
Drugbank

4 3 3 771 211 382,787

Drugbank RDFS, DBpedia, KEGG–
ChEBI, OWL

4 2 2 22 126 7,609

KEGG–ChEBI – 0 0 0 0 – 5
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First, we list the objectives of this experiment. Next, we discuss the results in terms of query 
result completeness, server overhead and query execution time.

Objectives
This second experiment tests the three following hypotheses. First, we address the recall of query 
results from Question 2.1. Since we expect the recall of the discovery outcome to be high, the 
hypermedia controls should be sufficient to produce high result recall as well (> 0.75). Therefore, 
we state the following:

Hypothesis 7: The query results sustain the high recall reached by the naive baseline.

Second, in correspondence to 2.2, we expect a limited impact of the hypermedia control generation 
process on the server. The summaries are very compact, directly available in the main memory, 
and contain all information for efficiently producing the links, given the algorithm described in the 
previous section.

Hypothesis 8: The addition of generating hypermedia introduces a minimal computational overhead 
on the server.

Third, given that hypermedia can be generated at low-cost, sending hypermedia to the client 
should result in a more selective source selection. These benefits are unlikely to outweigh the extra 
overhead. Thus, in correspondence with Question 2.3, we hypothesize the following:

Hypothesis 9: A hypermedia-based source selection decreases average query execution time drastically 
compared to the naive triple pattern-wise source selection on all sources.

Query Result Completeness
In the following, we study the completeness and accuracy of the discovery outcome from Table 3 
and Table 4.

Table 4. Reactive appends the backlinked interfaces to the active discovery results. (#F=number of fragments, #S=number of 
fragments stored in index, #Req=number of sent requests, ASCT=Avg. Summary construction time, AET=Avg. Execution time)

Dataset Links Found #F #S #Req ASCT 
(ms)

AET 
(ms)

DBPedia Geonames, Drugbank, SW Dog Food, 
LinkedMDB, NY Times

4 4 1 56 73

NY Times DBpedia 1 1 1 123 142

LinkedMDB – 0 0 – – –

Jamendo – 0 0 – – –

Geonames LinkedMDB, NY Times, SW Dog Food, 
Jamendo

4 4 1 49 53

SW Dog Food – 0 0 – – –

Drugbank – 1 1 1 36 76

KEGG -ChEBI Drugbank 1 1 – 30 48
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A FedBench run was performed with each server as starting point. In terms of completeness, 
Table 5 shows the measured recall of each query for each run, with the number of results from the 
naive client run as baseline. In general, many queries returned no results, which results in zero or 
undefined recall (naive client returned 0 results, marked with “–”). Empty result sets are likely caused 
by the limitations of the current client, which only consumes the hypermedia controls of one fragment 
response, i.e. the direct neighbors of that particular server. Therefore, the client cannot retrieve data 
from interfaces that are more than one link away from the starting point. Given these findings, we 
can only falsify Hypothesis 7, which clearly needs a more powerful execution algorithm to reach a 
better coverage in recall.

Using DBpedia as starting point reaches 1.0 recall for most of the queries, because its index also 
contains summaries for most datasets. Moreover, queries LD5 and LD10 contain predicates from 
DBpedia, and, thus can be answered by using starting points with links to the DBpedia summary. 
However, this means the DBpedia server itself should also be a good starting point, but this is not 
reflected in the results. This likely caused by an error during execution, e.g., a failed request.

The low recall scores demand a more intelligent client algorithm that can deal with multiple hops, 
while keeping query execution scalable. Another first enhancement would be to define heuristics to 
estimate the levels of neighboring links to traverse. While it is unfeasible to blindly traverse interfaces, 
this would potentially consume the whole Web, a possible improvement is a dynamic hop count based 
on, for instance, the number of joins in a query. The client could also rely on link traversal during 
execution to reach non-indexed interfaces that are out of immediate reach.

Server Response Overhead
We tested the impact of our discovery approach on a server responding to a querying client. As stated 
above, a client solves complex queries by retrieving a series of fragments from a server. Hypermedia 
is added to each response, thus the overhead is measured in hypermedia construction time.

Figure 5 shows the average http response time per server. An overhead below 10% is considered 
acceptable (α = 0.05). All servers respond within 3ms on average, confirming the lightweight 
character of Triple Pattern Fragments servers in combination with an hdt data source. Hypermedia 
control construction takes up a steady 5% of the total response time, which is negligible. The T-value 
is -16.927192 with p < 0.001. Therefore, we can validate Hypothesis 8, as response time increase 
fits our expectations.

Note that the construction time can increase with the amount of summaries in the index, which 
is for the current set-up a maximum of 7. However, the current index is implemented as a simple 
compact JavaScript object, which can be replaced with a more efficient lookup index as well.

Query Execution Time
We measure the impact of using summary indexes and hypermedia on the average execution 
time. Figure 6 shows the average execution time for the naive client on index-free servers and the 
hypermedia-based client on servers with a full index. The results achieved a recall value of 1.0, and 
are ordered descending according to the number of results. We note a one-tailed T-value of 1.2 with 
a corresponding p = 0.122, which can be considered insignificant (α = 0.10). For most queries, we 
notice a small performance increase for the hypermedia-based client, caused by its more selective 
nature. However, the queries LS3, CD3, and LD4 show an increase of 50% or more, which indicates 
impact. They contain a triple pattern with a bound to the object, which is very selective. This enables 
the indexes to be very selective for one or more generic patterns, i.e. ?x rdf:type ?y, ?x owl:sameAs 
?y, or ?x foaf:type ?y. This strictly reduces the amount of requests sent, in contrast to the naive client, 
which keeps accessing all servers. The query CD6 shows a slight decrease in performance. Since its 
only bounded object is a literal, the index cannot be selective at first, as literals are not included in 
the summaries. Thus, the hypermedia overhead outweighs the gain on future iterations of the query 
algorithm.
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Next, we compared the execution time for the discovery index set-up with the full index set-up. 
We selected the queries that were answered with 1.0 recall by at least one starting point. If there are 
multiple starting point for one query, we chose the one with the highest execution time. The results are 
shown in Figure 7. We noted a one-tailed T-value of 1.866 with a corresponding p = 0.042 (α = 0.10).

There is an insignificant decrease for most queries, with the exception of LS3, CD4 and CD2. 
These queries clearly benefit from the smaller index, which only gives a few links to check.

In general, the findings above are insufficient to accept Hypothesis 9. However, the results 
indicate potential for hypermedia in source selection, in particular when using more targeted indexes 
created by discovery. A more thorough evaluation is advised with a larger number of datasets and a 
more extensive query mix.

CONCLUSION

This paper discussed the impact of Linked Data discovery on source selection for query federation. 
This is a crucial aspect for evolving the Web towards a global, machine understandable data space.

Table 5. The recall of each query’s results depends on the starting dataset. Due to only using links one level deep, only 
interfaces with the relevant interfaces as direct neighbours contribute to recall

DBP NYT LMD JMD GN SDF DB KC

CD1 1.00 0.86 0.86 0.00 ERR 0.86 0.86 0.00

CD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD3 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD5 0.00 0.00 ERR 0.00 ERR 0.00 0.00 0.00

CD6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD7 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LS1 1.00 0.00 0.00 0.00 ERR 0.00 1.00 1.00

LS2 1.00 0.00 0.00 0.00 ERR 0.00 0.96 0.96

LS3 – – – 0.00 ERR – – –

LS4 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LS5 – – – 0.00 ERR – – –

LS6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD1 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD3 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD5 0.00 1.00 1.00 ERR ERR 1.00 1.00 0.00

LD7 0.32 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD8 – – – 0.00 ERR – – –

LD9 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD10 0.00 1.00 1.00 0.00 ERR 1.00 1.00 0.00

(DBP=DBpedia,NYT=NY Times,LMD=LinkedMDB,JMD=Jamendo, GN=Geonames,SDF=SW Dog Food,DB=Drugbank,KC=KEGG–ChEBI)
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Figure 5. Hypermedia construction time is negligible compared to the total response time

Figure 6. Hypermedia-based querying with full-index servers decrease the average execution time with 50% compared to the 
naive federation approach
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Therefore, we proposed a hypermedia-based approach to benefit federated query processors. In 
addition, we defined a framework to evaluate this approach, covering the quantitative aspects of a 
discovery process. These quantitative aspects cover the non-functional requirements completeness 
and accuracy, and the functional requirements bandwidth usage, execution time, and server overhead. 
Existing processes using discovery can thus be formalized, enabling comparability between approaches 
and the development of proper methodology. However, the categorization and metrics are high-level, 
and need to be studied in-depth in the future.

Just like hyperlinks fade the boundaries between different Web interfaces for humans, a discovery 
process should fade the distinction between query execution and federated query execution. The 
experimental results are promising in terms of server overhead and completeness in the pre-query 
phase. When executing federated queries, our approach shows a general decrease in execution time, but 
very poor recall. We conclude that the link traversal has been simplified, but still requires algorithms 
that intelligently consume hypermedia. For future work, we imagine use cases that do not need 100% 
completeness, in favor of speeding up query execution time. One direct improvement is taking into 
account practical differences between Linked Data interfaces, such as response times or page size. 
Also, query efficiency can be improved further by integrating existing source selection methods. The 
query algorithm itself can take advantage of the data summaries currently used for discovery. Finally, 
future work may research whether preprocessing the data server-side introduces benefits both for the 
discovery mechanism as for query execution as such.

Figure 7. Hypermedia-based querying with a discovery index is slightly faster compared to full-index servers, and for some 
queries up to 50% faster
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