

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Hypermedia-Based Discovery for Source Selection Using Low-Cost Linked Data Interfaces

Miel Vander Sande, Ruben Verborgh, Anastasia Dimou, Pieter Colpaert, and Erik Mannens

In: International Journal on Semantic Web and Information Systems (IJSWIS), 12 (3), 79–110, 2016.

To refer to or to cite this work, please use the citation to the published version:

Vander Sande, M., Verborgh, R., Dimou, A., Colpaert, P., and Mannens, E. (2016). Hypermedia-
Based Discovery for Source Selection Using Low-Cost Linked Data Interfaces. International Journal
on Semantic Web and Information Systems (IJSWIS) 12(3) 79–110.

DOI: 10.4018/IJSWIS.2016070103

Copyright © 2016, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

Hypermedia-Based Discovery
for Source Selection Using Low-
Cost Linked Data Interfaces
Miel Vander Sande, Data Science Lab, Ghent University - iMinds, Ghent, Belgium

Ruben Verborgh, Data Science Lab, Ghent University - iMinds, Ghent, Belgium

Anastasia Dimou, Data Science Lab, Ghent University - iMinds, Ghent, Belgium

Pieter Colpaert, Data Science Lab, Ghent University - iMinds, Ghent, Belgium

Erik Mannens, Data Science Lab, Ghent University - iMinds, Ghent, Belgium

ABSTRACT

Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before
a client can execute queries, it must discover data sources, and determine which ones are relevant.
Federated query execution research focuses on the actual execution, while data source discovery is
often marginally discussed—even though it has a strong impact on selecting sources that contribute
to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces
based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern
Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach.
This article describes generic evaluation measures and results for their concrete approach. With low-
cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within
7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution
time, but demands algorithms that visit a higher number of interfaces to improve result completeness.

Keywords
Discovery, Hypermedia, Linked Data, Query Federation, REST, Semantic Web, SPARQL

INTRODUCTION

The Web is a fully distributed system—and thus so is the Web of Data. Within this enormous collection,
each data source specializes in its very own part of the truth. Some of them, like DBpedia1, contain
essential facts about a broad range of subjects; others, like Drugbank2, offer a comprehensive corpus
of triples about highly select topics. As a result, in order to answer any non-trivial query over the
Web of Data, we likely need to consult multiple data sources. The need for such federated queries
intensifies as the Linked Open Data cloud is trending toward a more decentralized graph structure,
with additional linking hubs besides DBpedia arising (Schmachtenberg et al., 2014). Federation is thus
necessary to achieve the Web of Data vision (Heath & Bizer, 2011): a global, machine-understandable
dataspace with web-scale integration and interoperability.

In literature, the story of federated query evaluation is typically told from source selection onwards:
given a fixed set of available data sources, a client determines which of these are necessary to obtain
results. After that, the actual query processing against the selected sources happens. However, before
any of this can take place, candidate data sources need to be located first. This process preceding

79

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

80

source selection has hardly received rigorous scientific study so far. In general, discovery is the process
of finding available Linked Data sources that are relevant to a certain task, for specific definitions
of “relevance” and “task”. Although the description of dataset or endpoint characteristics has been
covered, the act of finding, accessing, and processing such documents is still in its infancy. With the
emerging Web Of Data, studying autonomous Linked Data discovery becomes a need, with a special
focus on the impact on client-side tasks such as querying. For federated query execution in particular,
discovery can assist in a more complete selection of accessed data sources.

Therefore, this article studies the impact of Linked Data interface discovery on federated
querying. We consider any that provides client access to Linked Data sources. In total, we present
three contributions.

First, we propose a discovery technique, which leverages hypermedia between Linked Data
interfaces. Hypermedia allows such interfaces to function similarly to a webpage, providing the user
with guidance on what type of content they can retrieve, or what actions they can perform, as well
as the appropriate links to do so. Since the beginning of the Web, this has been the crucial aspect
to the Web’s scalability. Existing discovery works have greatly progressed in closed, custom p2p
networks using custom discovery protocols, or centralized repositories that crawl metadata from
different sources. However, with a scale-free network at our disposal, little of its benefits have been
exploited for Linked Data querying. The novelty of our approach lies in strictly reusing hypermedia
and Linked Data principles to a) discover one another, aided by links in a dataset; and b) inform
the client at run-time about their discoveries through hypermedia. Furthermore, clients and servers
distribute the processing cost fairly, resulting in a sustainable and scalable solution.

Second, to appropriately evaluate discovery approaches, we introduce a methodology to quantify
its parameters. This includes metrics to express the functional and non-functional characteristics of
one discovery approach relative to others.

Third, we implement and evaluate the approach against the lightweight Triple Pattern Fragments
interface (Verborgh et al., 2014; 2016), and measure to what extent our discovery method facilitates
source selection in federated query execution. We intend to enable querying multiple sources on the
client while obtaining far less information than heuristics or dataset profiles.

The remainder of this paper is structured as follows. We first list a number of research questions
with corresponding hypotheses and discuss related work. Then, we propose the metrics for evaluating
discovery approaches. Next, we introduce a hypermedia-based discovery method applied to Triple
Pattern Fragments and discuss how clients can use the outcome in federated query execution. After
that, we evaluate our approach and analyze the results to assess its viability. Finally, we end with an
overall conclusion and discuss future work.

PROBLEM STATEMENT

This paper tackles the practical problem of discovering Linked Data interfaces in service of federated
query execution. Since such interfaces are scattered across the Web, which is connected through
hyperlinks, we pose the following research question:

Question 1: Can we effectively discover distributed Linked Data interfaces by relying solely on
hypermedia and Linked Data principles?

As a result, we will investigate an approach where Linked Data interfaces locate each other by
a) actively following links to others, and b) reacting accordingly when being discovered. We cover
several aspects of Question 1 with the following subquestions.

Question 1.1: How does the proposed discovery approach impact client and server load?

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

81

Question 1.2: Is the discovery method able to discover all relevant interfaces?
Question 1.3: Does the execution time of the discovery process scale with the size of the dataset?

In addition, we also study the effects of source discovery on federated query processing, since
both processes are not necessarily independent. An effective discovery approach benefits the source
selection stage it precedes. Hence, we pose the following research question.

Question 2: To what extent can the discovery of Linked Data interfaces through hypermedia facilitate
source selection in federated query processing?

Source selection can be impacted on several aspects. Common are completeness, accuracy, and
execution time. However, we are also interested in the load imposed on the server, i.e. the response
times of requests used during query execution. Thereby, to accurately answer Question 2, we formulate
three additional subquestions:

Question 2.1: Does hypermedia-based source selection retain recall compared to a naive baseline?
Question 2.2: How does hypermedia-based source selection impact the server’s responsiveness?
Question 2.3: Does hypermedia-based source selection lower query execution time compared to a

naive client-side approach?

Corresponding hypotheses and experiments for these questions are stated in the evaluation section,
after introducing the metrics and the proposed approach.

RELATED WORK

In this section, we discuss work related to Linked Data discovery. First, we investigate the different
methods to publish Linked Data on the Web. Next, we zoom in on how existing discovery approaches
work and what description methods they use. Then, we look at how federated query processing, the
most common application of discovery, performs source selection on the output of the discovery
process. Finally, we briefly consider the discovery of services, which has so far been studied more
deeply than the discovery of Linked Data.

Publishing Linked Data on the Web
When aiming to discover Linked Data on the Web, we need to be aware of possible publication
methods, which need to be understood in the context of the Web’s design. The Web is a distributed
hypermedia system, characterised by the architectural properties derived by Fielding (2000). Its core
differentiating feature is the uniform interface, implemented on the Web through the following four
constraints:

1. 	 Resources are identified by http uris.
2. 	 Each resource can be accessed as zero or more representations (in formats such as html or rdf).
3. 	 All exchanged messages are self-descriptive.
4. 	 Navigation between resources happens through hypermedia controls such as links or forms.

Each publication method has its own way of partitioning a dataset in resources, as we will discuss
in the following.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

82

Data Dump
Conceptually, the simplest way to publish a dataset is a data dump: all triples in the dataset are
serialized in one or more representations, which are possibly compressed into an archive. These
archives are then made available from a specific http uri, often organized by version, to which other
resources can link. In order to query this data, it must be downloaded (or streamed) in its entirety and
processed by a local query processor. The rest resource here is thus the whole dataset; for discovery,
this means we need to identify this one resource.

Linked Data Documents
Discovery changes when datasets are published in a more granular way according to the four Linked
Data principles by Berners-Lee (2006):

1. 	 Use uris as names for things.
2. 	 Use http uris so that people can look up those names.
3. 	 When someone looks up a uri, provide useful information, using Web standards.
4. 	 Include links to other uris so that they can discover more things.

Note the parallels between these principles and the rest architectural constraints listed above: the
Linked Data principles are a specific instance of the rest constraints with representation formats and
its uris as hypermedia links. In particular, dereferencing is important: if a certain resource mentions a
concept, we can discover more information about this concept by following its url. The rest notion of
a “resource” thus coincides with the rdf notion of a “resource”. For example, data about the resource
http://dbpedia.org/resource/Walt_Disney is available through the rest resource with that same url.

Note that dereferencing allows a discovery process to find related data from one particular
authoritative source only. For instance, the aforementioned url allows to discover information about
Walt Disney from the DBpedia dataset, but not from any other sources with information about the
same concept. Furthermore, discovery of one resource comes down to merely retrieving its entire
representation, and does not directly give access to all resources in the dataset.

SPARQL Endpoints
The sparql query language (Harris & Seaborne, 2013) allows a much more fine-grained selection
of rdf data through highly specific and flexible custom queries. The sparql protocol (Feigenbaum et
al., 2013) exposes result resources of such queries through http. For example, the result of the query
SELECT DISTINCT ?t { ?s rdf:type ?t } executed on a dataset could be available as the resource
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%
7D. Discovery of the endpoint consists of finding its base url, in this example http://dbpedia.org/sparql.

In contrast to the interfaces discussed earlier, sparql endpoints expose an infinite number of
resources, which are determined by the clients’ choice of a query. Due to this offered choice in query
complexity, many such resources are expensive to compute for servers. This makes hosting a public
endpoint a costly and thus relatively rare practice. Furthermore, it contributes to endpoint availability
being magnitudes lower than that of regular servers (Buil-Aranda et al., 2013). So even though public
endpoints are easily explored because of their extended query capabilities, their lower availability
might make them less useful for subsequent tasks.

Triple Pattern Fragments
A Triple Pattern Fragments (tpf) interface (Verborgh et al., 2014; 2016) is a rest interface that
extends the Linked Data principles to use forms in addition as hypermedia controls to links. Its
forms consist of three fields (subject, predicate, object), such that the server offers a finite number
of resources that correspond to triple-pattern queries. For instance, the result of a query for (?s, ?p,

http://dbpedia.org/resource/Walt_Disney
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%7D
http://dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%7D
http://dbpedia.org/sparql

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

83

foaf:Person) on a given dataset could be available as the resource http://fragments.dbpedia.org/2014/
en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson. Complex queries against
interfaces are executed on the client side, to counter the availability issues of public endpoints. Like
sparql endpoints, discovering the url of a single fragment is sufficient for access to the entire dataset;
however, the server-side interface is more limited, so detailed summaries cannot be obtained directly.

tpf interfaces mitigate the dereferencing authority issue of Linked Data documents, since their
hypermedia form allows clients to inquire about any uri, regardless of whether it resides in the server’s
dataspace. Therefore, we can discover information about a given subject in different interfaces. At
the same time, the interface remains fully compatible with dereferencing. For instance, dereferencing
the url http://example.org/Walt_Disney could result in an 303 redirect to the fragment resource http://
example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney, which contains all
triples with this particular url as a subject.

Discovery of Linked Datasets
In the following, we describe existing work on Linked Data discovery in terms of description and
strategies.

Dataset Vocabularies
Dataset vocabularies allow discovering datasets without having to access their actual interfaces.
This work does not propose any new direction in this field, but employs a specific selected custom
vocabulary discussed later on. Thus, we discuss the alternatives and their limitations below.

Several vocabularies exist to describe and locate datasets, and some of them are w3c
recommendations. The void vocabulary (Alexander & Hausenblas, 2009) enables descriptions of an
rdf dataset’s characteristics. It contains concepts to describe general metadata (e.g., licenses, name,
author), access metadata (e.g., sparql endpoint, data dump uri, lookup uris), and structural metadata
(e.g., patterns, partitioning, vocabularies statistics). In addition, one can describe the relations with
other datasets using a linkset. A void description is applicable to many fields, including query
federation, data catalogs and faceted search applications. Unfortunately, applications requiring
efficiency, e.g., federated query algorithms, require more fine-grained data summaries, as discussed
later on. A more interface-oriented vocabulary is the sparql Service Description (Williams, 2013),
which is part of the w3c sparql 1.1 recommendation. It covers a high level description of supported
features by the endpoint and other characteristics useful to clients, i.e., default graph, entailment
regime and so on. As its name suggests, this vocabulary only applies to interfaces, not to the other
interfaces discussed above.

Next, the dcat vocabulary is used for the description of data catalogs. Data catalogs are centralized
indexes or repositories that contain dataset metadata. dcat contains high-level metadata for such
catalogs (e.g., title, licenses, version, etc.) and datasets (e.g., keywords, language, etc.). Querying
the indexes for certain characteristics in this metadata, followed by extracting their location from
the results, can discover Datasets. Popular examples are DataHub3 (which uses dcat), lov (for
vocabularies)4, re3data5 (Registry of Research Data Repositories), and datacatalogs.org, a catalogue
for catalogs. Despite its conception as a generic vocabulary, specific elements like dcat:byteSize make
dcat mostly targeted toward data dumps, and not queryable Web interfaces. Furthermore, discovery
becomes a two-step process, as it only contains detailed catalog information.

Dedicated Discovery Strategies
Vocabularies describe what can be discovered, but not how this happens. void suggests two methods for
discovering descriptions: a) via backlinks from dataset documents using the void:inDataset predicate or
b) by deriving to void descriptions canonically with a /.well-known/ uri. Paulheim & Hertling (2013)
surveyed the state of void descriptions. The /.well-known/ mechanism has the best coverage (74% of
uris), but only 14% resulted in a usable description. Using dataset catalogs results in a higher precision

http://fragments.dbpedia.org/2014/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://fragments.dbpedia.org/2014/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://example.org/Walt_Disney
http://example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney
http://example.org/dataset?subject=http%3A%2F%2Fexample.org%2FWalt_Disney

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

84

for retrieving an endpoint—0.48 compared to 0.19 for /.well-known/—but they are not adopted on a
large scale, suffer from practical adoption issues, and depend on the implementation of redirection.

The idea behind sparql Service Description is to return the description of an endpoint on a lookup
of its base (typically /sparql/). A study by Buil-Aranda et al. (2013) observed that only 35.4% of
endpoints responded with 200 OK, and only 11.9% returned rdf. This low uptake prevents effective
usage for discovery purposes.

In this paper, we tackle this by relying on the widely adopted fundamental components of the
Web, i.e. hypermedia and http, rather than introducing a predefined complex contract that needs to
be implemented by both sides.

Discovery During Querying
Other strategies can be found in link-traversal-based querying, where discovery is integrated in the
query execution. Hartig (2013) identifies the live exploration method, which starts from a certain
seed, i.e. from the given query or given parameter, and recursively looks up based on links. This
follow-your-nose discovery is able to query priorly unknown sources and can potentially explore
the entire Web of Data (assuming sufficient connectedness). However, its recursive nature causes
discovery and query execution to be slow. To improve performance, live exploration is augmented
with indexes that can provide seed values for the live exploration, or guide the exploration process.
For instance, Ladwig & Tran (2010) added a ranked list of uris that is retrieved from an index. Other
related techniques are found in focused Web crawling (Diligenti et al., 2000), where context graphs
guide link traversal based on topics.

This work is based on similar principles, but deliberately separates part of the discovery from
query execution. Thereby, it improves efficiency by a) supporting a range of more complex interfaces
such as tpf, and b) exploiting reuse between clients by prefetching relevant interfaces in advance.

Source Selection for Federated Query Processing
Source selection determines which interfaces can potentially contribute to the result set of a
particular query, and happens after the available dataset interfaces have been discovered (manually
or automatically). A client evaluates a federated sparql query by decomposing it in subqueries that
retrieve and join partial results. Therefore, this process is known to be an important performance
factor (Saleem et al., 2015): an overestimation of candidate sources can increase execution time, an
underestimation can decrease the recall of results. The exact impact on query performance (e.g.,
execution time), however, depends on several aspects, such as the number of sources, the amount of
empty results, source response time, and parallel execution.

In this work, we study whether more detailed results of discovery can influence the efficiency of
source selection, and if this reflects on the query performance. Therefore, it is important to understand
its mechanics in order to design discovery for federated query processing.

Rakhmawati et al. (2013) identified three types of federation frameworks: a) federation over
endpoints, b) federation using Linked Data traversal, and c) federation over custom repository
apis. The first type expects all data sources to be exposed using endpoints. The second type relies
on dereferenceable Linked Data documents, exposed by data providers that apply the Linked Data
principles; query results are constructed by following links and looking up uris . In most federation
frameworks, source selection happens triple pattern-wise, i.e. sources are selected for each triple
pattern in the query, using the four source-selection strategies discussed below separately or jointly.

ASK Queries
Schwarte et al. (2011) presented FedX, which sends ASK queries to a predefined list of sources to
check whether they contain triples matching a given pattern. Despite the many http requests this
requires, it is one of the best performing systems in terms of execution time.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

85

Dataset Profiling
To capture important meta-information about a dataset, compact descriptions (e.g., in void) are
automatically generated. This includes statistical properties (e.g., average number of values, co-
occurences), patterns (e.g., topics, clusters) (Böhm et al., 2012; Fetahu et al., 2014), and content
information (e.g., present classes and properties). Some works have studied scalable methods to profile
huge datasets using MapReduce (Böhm et al., 2011; Forchhammer et al., 2014), employable on heavy
infrastructure such as cloud systems. Works in this area target a very broad spectrum of applications
by generating as much descriptive information as possible. In contrast, our work has a very specific
task, namely discovering other Linked Data interfaces in a sustainable way. Furthermore, we need
to put infrastructural constraints on discovering Linked Data servers, so it can sufficiently scale on
the Web. Limited loads, as well as minimal size of the description are preferred to expressiveness.

Data Indexing
Before or during query execution, the federation system gathers statistics about sources. One approach
is to build a source model on a schema-level. Paret et al. (2011) and Li et al. (2014) construct a Web
of Linked Classes based on classes and their relations, optionally augmented with instance statistics.
Umbrich et al. (2011) published an extensive report on data summaries for live Linked Data querying.
Harth et al. (2010) construct QTree indexes, which summarize instance- and schema-level elements
of a dataset in a hierarchical structure combining R-trees (Guttman, 1984) and histograms. Quilitz &
Leser (2008) presented the early system darq, where an index of distinct predicates is first composed
to select candidate sources. The extension (Montoya et al., 2012) to the anapsid system (Acosta et al.,
2011) gathers information about the distinct predicates of data sources and applies smart heuristics
to estimate the source selection and improve query planning. Recently, more lightweight summaries
are used in hibiscus (Saleem & Ngomo, 2014). For each distinct predicate, this approach gathers
authorities for the subjects and predicates.

Cached data can also increase efficiency for future (partial) re-execution of queries. Although
not using data indexing as such, Schwarte et al. (2011) extensively cache prior source selection FedX
for this purpose.

Discovery of Services
The discovery of Web service functionality is different from Linked Data discovery: a Web service
typically offers a handful of operations, whereas Linked Data interfaces can contain millions or even
billions of triples. The process of (Semantic) Web service discovery was defined by Klusch (2014)
as locating existing services that are relevant for a given request based on the description of their
functional and non-functional semantics. Below are four categories of service discovery approaches,
as identified by Klusch (2014).

Directory-Based Service Discovery
Directory-based discovery can be centralized and decentralized. Centralized discovery depends
on registries containing descriptions. Sousuo (Klusch & Zhing, 2008) collects descriptions using
meta-search in existing search engines combined with focused topic crawling, to offer free text and
keyword search. Decentralized approaches use a structured peer-to-peer (p2p) network and query
routing protocol. For instance, agora-p2p (Khan & Matskin, 2010) exploits a Chord ring to distribute
the storage and location of services. An example from federated query processing is Atlas (Kaoudi
et al., 2010), which uses Distributed Hash Table (dht) to improve source selection.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

86

Directory-Less Service Discovery
Directory-less service discovery approaches in p2p networks include algorithms such as flooding
and k-random walks, and probabilistic adaptive search. rs2d (Basters & Klusch, 2006) combines
probabilistic adaptive search with owl-s, such that each peer maintains a local view of the network’s
semantic overlay. Directory-less approaches mostly focus on popular services and provide incomplete
recall.

Hybrid Approaches
Finally, hybrid approaches work both in structured and unstructured p2p networks. meteor-s by Verma
et al. (2005) uses a set of service providing and consuming peers, which are grouped on a certain
topic and domain, with a central matchmaking super-peer, which maintains a global registry with
the service registry concept taxonomies of all peers.

QUANTIFYING THE DISCOVERY PROCESS

In order to study our discovery process, we need to determine what parameters can and should be
measured. This then allows comparing them in a qualitative and quantitative way. In particular, it allows
us to identify those parameters whose optimization can or should be the focus of algorithmic design.

Preliminaries
First, we define some concepts used throughout this section and the remainder of the paper. The Web
of Data can be considered a collection of interconnected datasets. Each dataset is typically modeled
in rdf, which contains links between concepts and adds machine-readable semantics. We call such a
dataset a Linked Dataset, defined as follows (based on Alexander & Hausenblas, 2009):

Definition 1 (Linked Dataset): A Linked Dataset D is a set of triples published, maintained or
aggregated by a single provider, with UD = {u1, …, un} the set of distinct uris that identify
Linked Data resources in D.

Since we can transform blank nodes into uris and back via skolemization (Cyganiak et al., 2014),
we can assume in general that a Linked Dataset does not contain blank nodes. http uris are native to
the Web and, thus, directly accessible through http methods. For instance, one can perform a simple
http request and expect a response. A successful response is a retrieved Linked Data document,
defined by Hartig (2012):

Definition 2 (Linked Data document): A Linked Data document d describes the entity identified by
a uri u if there exists (s, p, o) ∈ data(d) such that s = u or o = u.

Note that there might be multiple Linked Data documents that describe an entity identified by u.
However, according to the Linked Data principles (Berners-Lee, 2006), the uri u may also serve as
a reference to a specific Linked Data document which is considered an authoritative source of data
about the entity identified by u. The retrieval process of this document is called dereferencing the uri u.

Retrieving a Linked Data document is thus a possible way to obtain a fraction of a Linked Dataset
over http. It is an example of a restricted Linked Data interface that only allows access to fragments
about that particular uri. Other examples include data dumps, or endpoints. These interfaces differ
in their expressiveness, namely all data, simple queries or complex queries.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

87

Definition 3 (Linked Data interface): A Linked Data interface iD ∈ Ι provides access to a Linked
dataset D on the Web through interface-specific operations, with Ι as the set of all interfaces.

Defining Discovery
On the Web of Documents, hyperlinks connect documents into a single global information space. The
target consumers are humans, who interact with these documents through a browser. They answer
queries by using search engines, following links, and interpreting text. This process always has a clear
starting point, i.e. the first url typed in the browser (e.g., google.com), but no predefined end point.
Humans discover relevant locations during the query solving process, while seamlessly transitioning
between different Web interfaces.

Linked Data similarly connects different data sources into a single global data space, and its
intended consumers are human and machine agents based on Web standards and the common data
model. On the Web, the location of all possible data sources cannot be known beforehand, let alone
stored in one place. Since “anyone can say anything about anything” (Berners-Lee, 1997), a specialized
discovery method is necessary to find sources to answer to queries on a Web scale. We call such a
method a Link Data Interface Discovery process.

Definition 4 (Linked Data Interface Discovery). Given a set of Linked Data interfaces I, Linked
Data Interface Discovery LDID(I, T) is the automated process of locating the set of Linked Data
interfaces I′⊆I, whose datasets contain triples that potentially contribute to the results of a task T.

Practically speaking, the output of an LDID process is a set of uris that identify Linked Data
interfaces in a Web-like environment, as well as a certain list of characteristics for each of those
interfaces. Note that on the Web, the complete set of interfaces I is not known before, during, nor
after the discovery process. However, results gathered in closed large-scale simulated environments,
where I is known, can be generalized to a subweb, i.e. Web of interfaces used by a certain application,
or provide indications for the entire Web.

In the context of federated query processing, the task T is the execution of a set of queries Q.
Ideally, a query application also requires only one starting point, even though several servers might
be required to find the desired answer to a query. A federated query algorithm then applies source
selection to the output of a discovery process in order to select the relevant interfaces for a particular
query. In contrast to discovery, source selection is typically repeated for each query.

Measuring Discovery
To conclude this section, we define several parameters to measure to what extent the discovery method
has succeeded. We discuss metrics for the functional requirements, the discovery outcome, and the
non-functional requirements, the discovery process.

Measuring Outcome
A discovery process ideally strives for completeness: finding all interfaces that can contribute to
the results of a certain task. Thus, there is a direct dependency of the task result completeness on
the completeness of a discovery process. For instance, in federated query processing, the more
interfaces we are able to discover, the higher our chances of finding all possible answers, i.e. reaching
completeness. Interfaces can be called relevant to the executed queries, if they provide access to data
that contributed to the result.

Definition 5 (Relevant Linked Data Interface): A Linked Data Interface i ∈ I, publishing a dataset
D, is relevant to the query Q if a subset of D is used to compose a result of Q.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

88

The completeness and accuracy of the discovery outcome can be measured with the default
recall and precision metrics in closed-world experiments. However, in an open world such as the
Web, the total number of relevant interfaces is unknown, since a) data is distributed over a huge scale-
free network, where counting datasets is infeasible; b) this network is subject to constant change.
Therefore, closed-world experiments performed on different scales should provide an indication on
Web-scale performance.

Measuring the Process
The performance marks of an LDID process are evaluated according to the objective of a task and the
process characteristics, as defined earlier. This creates a different optimal trade-off mix of parameters
for each process. As a result, they are incomparable with a single global performance metric. Instead,
we discuss the metric space of non-functional requirements of LDID in three quantifiable aspects.

•	 Bandwidth Usage: Discovery processes need to communicate with Web resources over http.
Depending on their greediness, they can fundamentally differ in the amount of used bandwidth.
This is measured in number of requests sent to complete the discovery.

•	 Discovery Execution Time: Depending on the task at hand, a discovery process can be fast or
slow. For example, in live exploration querying, the query execution time is directly dependent
on the amount of time it took to gather the set relevant sources. In contrast, data analysis is
often performed offline, after the data is discovered and gathered. Discovery execution time is
measured in the amount of time until the completion of the discovery process.

•	 Server Response Overhead: When a task is executed, a client relies on servers to retrieve data
or to provide a service. Depending on the discovery process, the impact on the default server
behavior will be different. For instance, if the client handles the complete discovery, the server
overhead will be zero. However, if the server is part of the process, e.g., Web crawling, a certain
percentage can be added to its response time. This is measured in the difference in time between
server responses with and without discovery.

HYPERMEDIA-BASED DISCOVERY APPROACH

In this section, we introduce a hypermedia-based discovery approach to benefit federated query clients
during execution. Servers discover relevant interfaces using two methods:

1. 	 Active Discovery: servers dereference links from the interface data to discover relevant interfaces.
2. 	 Reactive Discovery: servers react to being accessed by clients, i.e. other discovering servers or

querying clients.

This combination allows the discovery of outgoing links (active), as well as incoming links
(reactive). Both methods rely on three foundations: data summaries, publishing data through a Triple
Pattern Fragments server and applying the Linked Data principles. They make two assumptions:
a dataset has one main domain authority (e.g., http://dbpedia.org/ for DBpedia), and the owner of
that domain handles the dereferencing of its uris (e.g., the DBpedia pages). Both of which can be
considered a result of ownership: data providers are unlikely to adopt external due to control concerns.

In the following, we first describe dataset summarization, and then discuss both active and
reactive discovery methods in more detail.

Creating Data Summaries
The discovery process is performed by an application hosting a Linked Data interface, which publishes
the dataset d. Our approach uses a dataset’s uris as a seed. Thereby, the application will first create

http://dbpedia.org/

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

89

a dataset summary from d in order to access these required uris efficiently. The motivation for this
is twofold: as Linked Datasets are potentially huge, efficiently scanning an rdf dataset for uris is
fundamental, and metadata about datasets is exchanged between servers.

Such summaries are a lightweight form of dataset profiling and represent crucial dataset
information in a compact manner. As discussed in related work, they are common in federated query
processors. Given the constraints above, the desired characteristics are therefore:

•	 A high summarization rate for decreasing scan time and exchange time over http;
•	 A low complexity for little server load and fast computation;
•	 Quick and accurate matching of triple patterns for the hypermedia construction discussed later on.

Based on these requirements, we reuse the approach from the query federation system HiBISCuS.
Saleem & Ngomo (2014) propose lightweight summaries based on grouping authorities of subjects
and objects per distinct predicate. In contrast to their work, we will not use the summaries for query
optimization on the client, but instead to let the server a) iterate over foreign domains in the datasets,
and b) generate specific hypermedia to other interfaces to inform the client.

Definition 6 (Authority Function): An authority function extracts the authority part, standardized by
Dürst & Suignard (2005), of an rdf term, and is defined as:

authority u
protocol u hostname u if isUri u

nil
() = ()+ () ()� � ,�� �

,��ootherwise








	

The HiBISCuS summaries show a very high summarization ratio (≈99% for all FedBench
datasets6). Furthermore, they contain information about all terms of a triple, which makes them
candidates for efficient and accurate triple pattern matching.

A data summary ds is defined as a set of capabilities {cap1, …, capn}. For a source d, a capability
capx is a triple (p, SA, OA) for a specific predicate p. Herein, SA is the set of distinct subject authorities
of p in d, and OA the set of distinct object authorities of p in d. When p = rdf:type, an exception
is made where OA is the set of distinct object (instead of their authorities). We can attach a data
summary to the metadata of a fragment. An example for the Jamendo dataset (from FedBench) is
given in Listing 1.

Active Discovery with Dereferencing
This subsection details an algorithm in which a server discovers others through uris from its own
dataset.

Phase 1: Identify External Servers
The discovering server actively tries to identify other servers based on data summaries, the Linked
Data principles, and hypermedia. This process is data-driven; it exploits the links to external datasets,
which are possibly hosted by other servers. Therefore, we start by identifying a set of foreign uris
Ρ = {r1, …, rn}⊆UD in the dataset. They are uris that differ in hostname with the interface, and whose
lookup is handled by other servers. We rely on the data summary generation process to populate UD
with one sample per authority. For instance, the Jamendo dataset (Table 1) contains 776,611 distinct
subjects and objects, but is covered by 655 samples because there are only 655 unique authorities.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

90

Phase 2: Dereference Entities on External Servers
The discovering server acts as a client and discovers other servers by dereferencing each rx ∈ R. In
these responses, it looks for triples (rx, rdfs:isDefinedBy,ufx), see Figure 1 (a). The uri ufx possibly
identifies a tpf fx of the dataset that contains rx. If no such triple is found, rx does not support this
discovery approach, and the discovery for this ends here.

Continuing our previous example, the Jamendo server on domain dbtune.org could dereference
the foreign http://sws.geonames.org/660013/. This lookup is subsequently answered by the server

Listing 1. The fragment http://dbtune.org/fragments# dataset extended with dataset demo summary metadata
1. @base <http://dbtune.org/fragments>.
2. @prefix void: <http://rdfs.org/ns/void#>.
3. @prefix hydra: <http://www.w3.org/ns/hydra/core#>.
4. @prefix ds: <http://semweb.mmlab.be/ns/summaries#>.
5. @prefix mo: <http://purl.org/ontology/mo/>.
6. @prefix foaf: <http://xmlns.com/foaf/0.1/>.
7.
8. <> hydra:member <#dataset>.
9. <#dataset> a void:DataSet, hydra:Collection;
10. ds:capability [
11. ds:predicate foaf:based_near;
12. ds:sbjAuthority <http://dbtune.org/>;
13. ds:objAuthority <http://sws.geonames.org/>
14.];
15. ds:capability [
16. ds:predicate rdf:type;
17. ds:sbjAuthority <http://dbtune.org/>;
18. ds:objAuthority foaf:Document, mo:MusicArtist
19.];
20. ds:capability [
21. ds:predicate foaf:name;
22. ds:sbjAuthority <http://dbtune.org/>;
23.].

Table 1. The FedBench datasets

dataset # triples # distinct subjects # distinct predicates # distinct objects

DBPedia subset 42,849,609 9,495,865 1,063 13,620,028

NY Times 335,206 21,666 36 191,538

LinkedMDB 6,147,996 694,400 222 2,052,959

Jamendo 1,049,647 335,925 26 440,686

Geonames 107,950,085 7,479,714 26 35,799,392

SW Dog Food 103,465 11,974 118 37,547

KEGG 1,090,830 34,260 21 939,258

Drugbank 517,023 19,693 119 276,142

ChEBI 4,772,706 50,477 28 772,138

SP2B-10M 10,000,457 1,730,250 77 4,690,662

http://sws.geonames.org/660013/
http://dbtune.org/fragments#
http://dbtune.org/fragments
http://rdfs.org/ns/void#
http://www.w3.org/ns/hydra/core#
http://semweb.mmlab.be/ns/summaries#
http://purl.org/ontology/mo/
http://xmlns.com/foaf/0.1/
http://dbtune.org/
http://sws.geonames.org/
http://dbtune.org/
http://dbtune.org/

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

91

on sws.geonames.org, which hosts the Geonames dataset as Linked Data documents. The response
contains the triple (http://sws.geonames.org/660013/, rdfs:isDefinedBy, http://sws.geonames.org/
fragments/), where the object identifies a tpf of the Geonames dataset.

Phase 3: Identify Controls and Summaries
The server requests fx and looks for hypermedia controls Cx and a data summary dsx in the response,
see Figure 1 (b). The hypermedia controls reveal whether the resource is a tpf, and if so, allow
requesting other tpfs of the dataset. The data summary informs the discoverer about the data that
can be found in the interface, which is used later on to construct hypermedia to this server. For the
fragment http://sws.geonames.org/fragments, an extract of the request cycle is shown in Listing 2.
The data summary starts at line 12 and the controls at line 18.

Figure 1. Active discovery discovers Linked Data interfaces by dereferencing foreign URIs in the dataset and retrieving the linked
Triple Pattern Fragment

http://sws.geonames.org/660013/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

92

Phase 4: Index Storage
The tuple {dsx, Cx} is stored in an index Ids with ufx as key. To prevent the same fragments to be
requested multiple times, the presence of fx is looked up first in the set of keys. Note that in some
cases, e.g., a cache expiry, it is desirable to re-request a fragment to update its summary and controls.

Active discovery ends when all sample uris have been dereferenced, so Ids contains of list of
discovered summaries.

Reactive Discovery with the Referer Header
Since active discovery is limited by the foreign uris present in the dataset, its reach is insufficient
for two reasons. First, queries that require knowledge about backlinks cannot be answered, leading
to low result recall. Since hyperlinks are unidirectional, servers can only discover interfaces that
host their outgoing links. Second, when a dataset changes, its summary in the index of other servers
will be outdated. Therefore, a server needs to notify those who have discovered it about this change.

Reactive discovery tackles both issues by using the Referer header from incoming requests,
inspired by the work of Mühleisen & Jentzsch (2011), to automatically create new links in the cloud.
Referer is standardized in RFC2616,7 which states:

The Referer request-header field allows the client to specify, for the server’s benefit, the address
(uri) of the resource from which the Request-URI was obtained.

In this approach, two actors are equipped with this header:

Listing 2. A fragment of the discovered interface returns hypermedia controls and a data summary.
1. GET http://sws.geonames.org/fragments HTTP/1.1
2. Accept: text/turtle
3. Referer: http://dbtune.org/fragments
4. --
5. HTTP/1.1 200 OK
6.
7. <http://sws.geonames.org/fragments>
8. hydra:member
9. <http://sws.geonames.org/fragments#dataset>.
10. <http://sws.geonames.org/fragments#dataset>
11. a void:Dataset, hydra:Collection;
12. ds:capability [
13. ds:predicate gn:parentFeature;
14. ds:sbjAuthority <http://sws.geonames.org/>;
15. ds:objAuthority <http://sws.geonames.org/>
16.];
17. ...
18. hydra:search _:triplePattern.
19. _:triplePattern hydra:template
20. “/fragments{?subject,predicate,object}”;
21. hydra:mapping _:subject, _:predicate, _:object.
22. _:subject hydra:variable “subject”;
23. hydra:property rdf:subject.
24. _:predicate hydra:variable “predicate”;
25. hydra:property rdf:predicate.
26. _:object hydra:variable “object”;
27. hydra:property rdf:object.

http://sws.geonames.org/fragments
http://dbtune.org/fragments
http://sws.geonames.org/fragments
http://sws.geonames.org/fragments#dataset
http://sws.geonames.org/fragments#dataset
http://sws.geonames.org/
http://sws.geonames.org/

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

93

•	 Querying clients a query execution application supplies the last accessed fragment, enabling
discovery of servers with no explicit link in the datasets.

•	 Discovering servers a server doing active discovery supplies a random fragment (in practice the
index fragment) on which it can be discovered in turn.

The process happens as follows, illustrated in Figure 2.

Phase 1: Header Inspection
When a server receives a request by client C, it checks whether a Referer header is present. If it is, it
should be a uri ufx. Possibly, ufx identifies a Triple Pattern Fragment fx.

Phase 2: Dereference the Referrer
The server verifies that ufx is a foreign uri with an authority it has not (recently) visited before. If
so, the server dereferences ufx to obtain the resource fx.

Phase 3: Identify Controls and Summaries
The server inspects fx in order to find the summary ds and controls Cx, analogous as in Phase 3 of
the active discovery process. For example, given the request in Listing 2, the Geonames server can
react by requesting the Referer http://dbtune.org/fragments given in line 3. As a result, it retrieves
the summary and controls for the Jamendo server.

Figure 2. Reactive discovery discovers interfaces by retrieving fragments from the Referer header

http://dbtune.org/fragments

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

94

Phase 4: Index Storage
If both are correctly extracted from the response, the tuple {dsx, Cx} is stored in an index Ids as
well, with ufx as key.

Since http caches can intercept the Referer header, they could prevent reactive discovery—and
caching is a crucial scalability factor for Triple Pattern Fragments (Verborgh et al., 2014). However,
the cache could maintain a list of referers (for instance, in server logs), which are then passed to the
server at a later stage.

FEDERATED QUERY PROCESSING

Through Hypermedia
In this section, we describe how clients consume the result of a discovery process for the execution
of queries. Clients rely on hateoas (hypermedia as engine of application state), where they react
autonomously to links included in http responses. First, we discuss how the hypermedia is constructed
on the server. Second, we describe how the client consumes the links to retrieve more relevant
fragments on the fly. As a running example, we discuss the evaluation of the query in Query 3 over
the Geonames and Jamendo data sources mentioned in the previous section.

Building the Server-side Hypermedia Interface
When a fragment is requested, the server informs the client about the interfaces it has discovered
in the response. Instead of sending all known interfaces, it pre-selects the ones most relevant to
the requested fragment in order to aid with source selection. This reduces the chance of source
overestimation on the client.

When handling a request, the server has the following data at its disposal:

1. 	 The requested triple pattern tp = (s, p, o), extracted from the request;
2. 	 An indexed set of data summaries Ids = {uf1 ⇒ {ds1, C1},…,ufn ⇒ {dsn, Cn}}.

Based on their summaries, the server looks for servers that can possibly answer the requested
triple pattern as well. Therefore, a server iterates over all summaries in Ids. For each summary, it
checks for a match using Figure 3.

First, we select the summaries to iterate over [line 1]. If the predicate is a variable, we select all
summaries in the index. If the predicate is a uri, we look up its entry. Next, we iterate over the selected
set of capabilities. If no entry is found, the summary does not match [line 3]. For each summary, if
the subject or object is a uri, we extract its authority [line 4,5]. If it is not a uri, it’s either a variable,
blank node or literal, which always match. Finally, a server with a data summary only has a chance
of matching the requested triple pattern if

1. 	 The predicate is rdf:type, which is an exception in the data summary, and the object in the patterns
is an exact match of a in the object authority [line 9]; or

2. 	 The subject is a variable or its subject authority is equal to the authority of the pattern’s subject,
and the same holds for the object [line 11].

For instance, when the Jamendo server receives a request for the tp on line 5 of Listing 3, it
returns zero triples, as the dataset does not contain gn:parentFeature. Before responding, it scans the
index for a match, which contains the summary for http://sws.geonames.org/fragments. As shown in
line 13 of Listing 2, the Geonames summary does contain gn:parentFeature and is a match, since the
subject and object of tp are variables. Similarly, when the tp on line 7 of Listing 3 is requested from

http://sws.geonames.org/fragments

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

95

the server, it returns triples, because foaf:name is present in the dataset. However, the Geonames
summary does not match, since foaf:name is not present.

For each fragment ufx that matches the requested triple pattern (m(dsx, tp)=true), we create a
direct link uri uf’x. This link points to the fragment for the same triple pattern on a remote server.
The resulting set of links H = {uf′m, …, uf′n} are the hypermedia controls of the response, i.e. we
add zero or more rdfs:seeAlso links8 to inform the client about the other servers. For instance, if the
Geonames summary matches the triple pattern in Listing 3, line 7, the hypermedia triple in Listing 4

Listing 3. An example query combining the Geonames and Jamendo datasets
1. PREFIX foaf:<http://xmlns.com/foaf/0.1/>
2. PREFIX gn:<http://www.geonames.org/ontology#>
3.
4. SELECT ?name ?location ?news WHERE {
5. ?artist foaf:name ?name .
6. ?artist foaf:based_near ?location .
7. ?location gn:parentFeature ?germany .
8. ?germany gn:name “Federal Republic of Germany”
9. }

Figure 3. Determine if a given triple pattern matches a data summary, and possibly its dataset

http://xmlns.com/foaf/0.1/
http://www.geonames.org/ontology#

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

96

will be added to the fragment’s response. Then, the client can follow this rdfs:seeAlso link to collect
(more) matching triples.

sparql queries can be federated over multiple Triple Pattern Fragments servers by extending the
existing querying algorithm (Verborgh et al., 2016). Query federation systems are client applications
that decompose queries, send partial queries to endpoints, and join the results. As the interface aims
at pushing intelligence to the client and way from the server, the tasks above are far more native to
the client-server set-up. As a result, aggregating multiple requests already allows a naive, but effective
query federation system.

The algorithm by Verborgh et al. (2014) constructs a dynamic iterator pipeline to solve queries
over one server. A Basic Graph Pattern B = {tp1, …, tpn} is evaluated by a bgp iterator, which
recursively decomposes it into smaller iterators. For each triple pattern tp in B, the first page is fetched
from the corresponding tpf. Its response tells us how many matches (cnttp1) the dataset has for each
triple pattern. The pattern is then decomposed by evaluating it using a) a triple pattern iterator or the
triple pattern with the smallest number of matches, and b) a new bgp iterator for the remainder of the
pattern. This results in a dynamic pipeline for each of the mappings of its predecessor. Each pipeline
is optimized for a specific mapping, reducing the number of requests for each path.

In this work, the client also starts with one fragment uri, but accesses more during execution.
We extended the existing algorithm with an extra abstraction when fetching a tpf. Multiple fragments
from different servers are aggregated and exposed as a single fragment with the following two steps:

1. 	 Following links included in the response of the first fragment;
2. 	 Merging the results and metadata according to an aggregation function.

The first step calls a recursive function based on rdfs:seeAlso links present in the fragments’
responses. The second step aggregates both the data and the metadata from all fragments. The data
are appended to a single stream as the responses come in. When all fragments have arrived and their
data stream has ended, the aggregated stream ends. The count metadata are combined into a single
value using an aggregation function ϑ, which is a cost function that can be optimized to the type of
interface. For example, ϑ can be a weighted sum, taking into account practical differences between
servers like response time, page size and so on. In our implementation, as we discuss later on, we

chose a sum ϑ =
=
∑
i

N

icnt
1

 for simplicity.

For example, the query in Listing 3 is executed against the Jamendo server from earlier. For each
triple pattern, the corresponding fragment is retrieved from the server which results in:
?artist foaf:name ?name. # 3,505 matches
?artist foaf:based_near ?location. # 3,244 matches ?location
gn:parentFeature ?germany. # 0 matches
?germany gn:name “Federal Republic of Germany”. # 0 matches

Typically, the algorithm would stop the execution here, as the last two patterns have no matching
triples, leading to an empty resultset. However, the response for both patterns does include a link to
a corresponding fragment on the Geonames server. This retrieves each link, appends the result to

Listing 4: Although the Jamendo server returned no triples for the pattern tp = (?x,gn:parentFeature,?y), it contains a
hypermedia control to the corresponding fragment in the Geonames dataset.
1. <http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.
org%2Fontology%23parentFeature> rdfs:seeAlso <http://sws.geonames.
org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23p
arentFeature>.
Client-Side Query Execution

http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature
http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23parentFeature

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

97

the original fragment resultset and sums the count metadata with ϑ. Now, both fragments do return
matches, which updates the previous results:
?artist foaf:name ?name. # 3,505 matches
?artist foaf:based_near ?location. # 3,244 matches
?location gn:parentFeature ?germany. # 0 + 7,479,713
= 7,479,713 matches
 ?germany gn:name “Federal Republic of Germany”.# 0 + 1 = 1 match

After aggregation, the last triple pattern has the lowest number of matches, namely 1. Thus, the
algorithm continues with the single matching triple for this pattern and binds the value http://sws.
geonames.org/2921044/ to the variable ?germany. Finally, the process is repeated for the remaining
three triple patterns.

EVALUATION

The experimental results presented in this section aim to provide insight in the performance of the
hypermedia-based discovery approach and its impact on federated query execution. We describe the
implementation, test setup and performed tests as follows.

Experimental Setup
We implemented our approach in Node.js as a plugin for the existing Triple Pattern Fragments server.9
This plugin is called the Explorer and runs in a separate single-threaded process, asynchronous to
the server application, indexing data summaries as they arrive. The server communicates with the
Explorer using three methods for a) starting the active discovery; b) passing a Referer header if
detected in a request; and c) passing a triple pattern from the request to retrieve a set of rdfs:seeAlso
links, i.e. the hypermedia controls.

To test the query execution, we selected the Fedbench (Schmidt et al., 2011) benchmark and its
corresponding collection of datasets. FedBench relies on real world authoritative datasets that are
prominent in the Web of Data and provides a federated query mix.10 We selected the Cross Domain
(CD), Life Science (LS), and Linked Data (LD) queries from the list of pre-defined queries, as they
make use of multiple servers. Queries LS7 and CD6 are not supported by our implementation, and
are therefore excluded from the results. An overview of the used datasets is given in Table 1.

In total, we allocated 9 virtual machines as servers in an Amazon EC2 Virtual Private Cloud,
one for each dataset. Each virtual machine has the equivalent of a dual-core Intel Xeon E5-2670 v2
CPU, 7.5 GB of RAM and 32 GB of SSD storage. The datasets KEGG and ChEBI were merged to
avoid dereferencing conflicts, as they share the same authoritative hostname. On each server, we
edited the /etc/hosts file to simulate the different domain names.

In addition, a server was provided with an active NGINX11 http cache and a Triple Pattern
Fragments server including the Explorer module, both handling the dereferencing and the Triple
Pattern Fragments interface. The data was loaded into the server as a compressed file. An extra
virtual machine was created to run the FedBench client and gather server logs. A plugin for a Triple
Pattern Fragments client supporting both hypermedia-based and naive federation was added to the
FedBench client.

Experiment 1: Feasibility of the Discovery Approach
In the following, we assess Question 1 and test to what extent a discovery approach is feasible by
using hypermedia. We list the objectives and discuss the experimental results.

http://sws.geonames.org/2921044/
http://sws.geonames.org/2921044/

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

98

Objectives
This experiment tests the five hypotheses stated below. First, to assess Question 1.1, we inspect the
data summary construction, which has the biggest impact on the server. As this process solely relies
on string operations, we foresee the following:

Hypothesis 1: The data summaries can be computed in a reasonable time, which scales linearly with
the size and anatomy of the dataset.

Hypothesis 2: The data summaries are highly compact compared to the original dataset size.

Next, in terms of Question 1.3, we expect the number of required requests to have a major impact
on the discovery execution time. Fortunately, this number is directly dependent on the amount of
links (indicated by a triple’s object) to other datasets, which is only a small fraction of all uris present.
Therefore, the discovery execution time should scale well with the size of the dataset, and bandwidth
usage should be limited:

Hypothesis 3: The discovery execution time scales linearly with the bandwidth usage.
Hypothesis 4: The discovery execution time scales linearly with the size of the dataset.
Hypothesis 5: The amount of requests is minimal compared to the total amount of triples in the dataset.

Finally, we assess the completeness of our discovery approach with Question 1.2. The active
discovery is data-driven, which should cover all outgoing links, while reactive discovery should cover
all incoming links. Hence, all directly relevant interfaces should be discovered:

Hypothesis 6: The discovery approach is able to reach full completeness in a closed-world environment.

Summary Complexity
We measured the summary generation time for each dataset. Each summary was constructed from
its corresponding file. The results shown in Table 2 confirm that the summaries are lightweight in
terms of complexity and size.

The largest dataset, i.e. Geonames with 108k triples, was summarized in only 10.85 minutes,
while the smallest dataset, i.e., Semantic Web Dog Food, was summarized in less than a second. These
low computation times can partially be explained by the highly efficient format, which offers a highly
compressed browsable read-only index. However, the alternative interface of servers does allow these
highly specialized data sources. Furthermore, no multi-threading was used during generation, which
can still be fully exploited and compensate slower data sources, e.g., writeable indexes like x-rdf-3x
(Neumann & Weikum, 2010) or sparql endpoints. Another factor is likely the sole use of authorities,
which can be derived with a highly efficient regular expression operation.

Next, we look at the correlation between the generation time and the number of distinct subject,
predicates, and objects. No clear impact can be observed of the number of distinct predicates on
the generation time (Pearson’s r = 0.315 and Spearman’s ρ = 0.043). This is likely because the
distinct subjects and objects highly outnumber the distinct predicates. For instance, Geonames and
DBpedia have the highest generation times, while DBpedia has 30 times more distinct predicates than
Geonames. As shown in Figure 4, we do observe a linear correlation with coefficient of determination
R2 = 0.998 and p = 0.000 (α = 0.05) between the total number of distinct subjects and distinct
objects (r = 0.999 and ρ = 0.988). The dataset size, i.e. the total number of triples, shows a slightly
weaker correlation with R2 = 0.987 and p < 0.001 (r = 0.993 and ρ = 1.000; α = 0.05), but still
indicates a clear linear relationship between size and execution time.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

99

The correlation findings above in combination with the overall low execution times, allow us
to accept Hypothesis 1.

Summary Size
In terms of the summary size, the fourth column in Table 2 shows a summarization ratio above 99%
compared to the already compact binary file. We consider a summary significantly compact above
85% (α = 0.05). Thereby, Hypothesis 2 can be validated with single-value T-value of 46.655 and
p < 0.001. Because of the authorities, summarizing the dataset creates a lot of redundancy, which
allows us to greatly compress the result. The created redundancy decreases according to the number
of distinct authorities present in the dataset. This potentially leads to a low summarization ratio for
highly variable datasets, like sameAs.org. However, as previously pointed out, this is rare because of
uri ownership, where data publishers tend to base their uris around a single domain name.

In term of absolute size, the summaries remain below a few hundred kilobytes. The largest
summary DBpedia, responsible for roughly 40 million triples, results in only 85 kB. Although this
size increases slightly when loaded into memory, we can conclude that they are sufficiently compact.
The server can load many summaries in memory without introducing large overhead. Furthermore,
the current implementation only applies a simple dictionary, thus, a more extensive compression can
still massively reduce space.

Discovery Execution Time and Bandwidth Usage
To evaluate the performance of our hypermedia-based discovery approach, we deployed 8 servers,
one for each dataset. We excluded the SP2B dataset since it uses local and is not linked to any dataset.
Each server was provisioned with a pre-computed data summary and the server application. The active
discovery process was executed on all machines simultaneously, also triggering the reactive discovery.

Table 3 shows the results for the active discovery phase. All servers were able to discover their
direct neighbours, of which three (DBpedia, LinkedMDB, Drugbank) in less than 10s, four (NY
Times, Jamendo, Geonames, SW Dog Food) in less than 7min and one outlier (KEGG–ChEBI) in only
5ms. This outlier is due to the absence of external uris in the KEGG–ChEBI dataset, which requires
no requests. The difference between the two other clusters also correlates with their differences in
request count. Thus, higher bandwidth usage reflects on a higher execution time. The highest execution
time was measured for the SW Dogfood dataset. Although it has the lowest number of triples, the
maximum of 771 requests was sent. Its high number of links to personal author websites, resulting in

Table 2. The compression rate of data summaries is very high (99%) with acceptable creation time (11 min)

dataset generation
time (ms)

json
size (kB)

ratio (%) original hdt size
(kB)

DBPedia subset 339,598 85.68 99.9853 584,679

NY Times 2,237 25.12 99.7786 11,344

LinkedMDB 37,840 26.10 99.9502 52,413

Jamendo 7,390 53.69 99.7059 18,258

Geonames 651,102 26.01 99.9975 1,035,674

SW Dog Food 667 83.17 96.8084 2,606

KEGG 7,755 1.62 99.9863 11,850

Drugbank 3,650 13.27 99.9217 16,942

ChEBI 28,233 1.87 99.9920 23,502

SP2B-10M 72,482 6.38 99.9980 320,662

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

100

a high number of unique samples, can explain this. In general, the low number of requests is a result
of using a data summary as seed. Despite the large number of triples in a dataset, e.g., DBpedia, the
request count can be very low (e.g., 16 requests), due to low authority variance in its uris.

Table 4 shows the results of the reactive discovery phase. Each server has discovered the interfaces
that were connected through a backlink. Reactive discovery is cheap in terms of bandwidth usage, as
it only needs one requests per discovery. As a result, its execution time is mostly determined by time
taken to reconstruct the summary from the response, as shown in the last two columns.

To conclude, we can validate Hypothesis 3, as execution time is directly related to the number of
requests. We observe a linear correlation (α = 0.05) with R2 = 0.889 and p = 0.002 (r = 0.943 and
ρ = 0.952). Also, we can validate Hypothesis 5, since the number of requests sent, is only a fraction
(μ = 0.1% with σ = 0.001) of the total number of triples. However, we falsify Hypothesis 4, because
no relation is shown between a dataset size and the discovery execution time. No correlation can be
observed since R2 = 0.082 (r = −0.287 and ρ = 0.698) and p = 0.245.

Figure 4. The data summary generation time increases linearly with the number of distinct subjects and objects

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

101

Completeness of the Discovery Outcome
In terms of completeness, the combination of active and reactive discovery result in a recall of 1.0,
as all interfaces relevant to the discovery task are found (μ = 1.0). Here, a relevant interface provides
access to a dataset to which a link is included in the discoverer’s dataset. Therefore, these results
validate Hypothesis 6.

If the number of stored summaries deviates in Table 3, it was already discovered by reactive
discovery, or visa versa. During active discovery, both DBpedia and SW Dog Food found links to
OWL or RDFS, but were detected as not being fragments. Completeness in context of a query task
is discussed in the next section.

Experiment 2: Impact on Federation Query Execution
In this second experiment, we measure the impact of our discovery approach on client-side federated
query execution to assess Question 2. We ran FedBench on different set-ups, combining a client
variant and a specific index. Two variants of clients were implemented: a) a naive client that sends
every request to every server, without consuming hypermedia, and b) a hypermedia-based client
which implements the query execution algorithm described in this paper. The naive client will act
as a baseline to measure the impact of the hypermedia-based client. It mimics existing federation
systems that solely rely on triple pattern to do both source selection and query execution. We do
not use other state-of-the-art federation systems as baseline, since the comparison would be unfair.
Such systems are highly tailored to the efficient, but computationally heavy sparql interface, which
enables very low execution times. Our efforts aim at a sustainable solution for both client and server,
thus using the slower, but lightweight interface. We aim at investigating the role of hypermedia in
source-selection, rather than optimizing execution speed.

In addition, we prepared two distinct index provisions: a) populated with all summaries of
the other datasets (full index), and b) populated with the summaries from its discovery outcome
(discovery index). The full index setup provides insight on the general performance of hypermedia-
based source selection. It creates the ideal scenario where each interface is able to provide a link to
any other interface. This isolates the query execution from any limitations of the discovery approach,
i.e., incomplete indexes. The discovery index setup provides insight in the relation between discovery
outcome and the query algorithm. Here, each interface has a different, more selective index, which
enables studying the impact on query completeness and execution time.

Table 3. Active discovery is able to find interfaces for all links. No links are found for KEGG–Chebi, since it does not contain
any outgoing links. (#L=number of links, #F=number of fragments, #S=number of fragments stored in index, #Req=number of
sent requests, SCT=Summary construction time, ET=Execution time)

Dataset Links Found #L #F #S #Req SCT
(ms)

ET
(ms)

DBpedia OWL, NY Times 2 1 1 16 41 1,073

NY Times DBpedia, Geonames 2 2 1 240 13 30,666

LinkedMDB DBpedia, Geonames 2 2 2 15 118 6,704

Jamendo Geonames 1 1 1 655 31 218,549

Geonames DBpedia 1 1 1 261 129 24,853

SW Dog Food OWL, DBpedia, Geonames,
Drugbank

4 3 3 771 211 382,787

Drugbank RDFS, DBpedia, KEGG–
ChEBI, OWL

4 2 2 22 126 7,609

KEGG–ChEBI – 0 0 0 0 – 5

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

102

First, we list the objectives of this experiment. Next, we discuss the results in terms of query
result completeness, server overhead and query execution time.

Objectives
This second experiment tests the three following hypotheses. First, we address the recall of query
results from Question 2.1. Since we expect the recall of the discovery outcome to be high, the
hypermedia controls should be sufficient to produce high result recall as well (> 0.75). Therefore,
we state the following:

Hypothesis 7: The query results sustain the high recall reached by the naive baseline.

Second, in correspondence to 2.2, we expect a limited impact of the hypermedia control generation
process on the server. The summaries are very compact, directly available in the main memory,
and contain all information for efficiently producing the links, given the algorithm described in the
previous section.

Hypothesis 8: The addition of generating hypermedia introduces a minimal computational overhead
on the server.

Third, given that hypermedia can be generated at low-cost, sending hypermedia to the client
should result in a more selective source selection. These benefits are unlikely to outweigh the extra
overhead. Thus, in correspondence with Question 2.3, we hypothesize the following:

Hypothesis 9: A hypermedia-based source selection decreases average query execution time drastically
compared to the naive triple pattern-wise source selection on all sources.

Query Result Completeness
In the following, we study the completeness and accuracy of the discovery outcome from Table 3
and Table 4.

Table 4. Reactive appends the backlinked interfaces to the active discovery results. (#F=number of fragments, #S=number of
fragments stored in index, #Req=number of sent requests, ASCT=Avg. Summary construction time, AET=Avg. Execution time)

Dataset Links Found #F #S #Req ASCT
(ms)

AET
(ms)

DBPedia Geonames, Drugbank, SW Dog Food,
LinkedMDB, NY Times

4 4 1 56 73

NY Times DBpedia 1 1 1 123 142

LinkedMDB – 0 0 – – –

Jamendo – 0 0 – – –

Geonames LinkedMDB, NY Times, SW Dog Food,
Jamendo

4 4 1 49 53

SW Dog Food – 0 0 – – –

Drugbank – 1 1 1 36 76

KEGG -ChEBI Drugbank 1 1 – 30 48

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

103

A FedBench run was performed with each server as starting point. In terms of completeness,
Table 5 shows the measured recall of each query for each run, with the number of results from the
naive client run as baseline. In general, many queries returned no results, which results in zero or
undefined recall (naive client returned 0 results, marked with “–”). Empty result sets are likely caused
by the limitations of the current client, which only consumes the hypermedia controls of one fragment
response, i.e. the direct neighbors of that particular server. Therefore, the client cannot retrieve data
from interfaces that are more than one link away from the starting point. Given these findings, we
can only falsify Hypothesis 7, which clearly needs a more powerful execution algorithm to reach a
better coverage in recall.

Using DBpedia as starting point reaches 1.0 recall for most of the queries, because its index also
contains summaries for most datasets. Moreover, queries LD5 and LD10 contain predicates from
DBpedia, and, thus can be answered by using starting points with links to the DBpedia summary.
However, this means the DBpedia server itself should also be a good starting point, but this is not
reflected in the results. This likely caused by an error during execution, e.g., a failed request.

The low recall scores demand a more intelligent client algorithm that can deal with multiple hops,
while keeping query execution scalable. Another first enhancement would be to define heuristics to
estimate the levels of neighboring links to traverse. While it is unfeasible to blindly traverse interfaces,
this would potentially consume the whole Web, a possible improvement is a dynamic hop count based
on, for instance, the number of joins in a query. The client could also rely on link traversal during
execution to reach non-indexed interfaces that are out of immediate reach.

Server Response Overhead
We tested the impact of our discovery approach on a server responding to a querying client. As stated
above, a client solves complex queries by retrieving a series of fragments from a server. Hypermedia
is added to each response, thus the overhead is measured in hypermedia construction time.

Figure 5 shows the average http response time per server. An overhead below 10% is considered
acceptable (α = 0.05). All servers respond within 3ms on average, confirming the lightweight
character of Triple Pattern Fragments servers in combination with an hdt data source. Hypermedia
control construction takes up a steady 5% of the total response time, which is negligible. The T-value
is -16.927192 with p < 0.001. Therefore, we can validate Hypothesis 8, as response time increase
fits our expectations.

Note that the construction time can increase with the amount of summaries in the index, which
is for the current set-up a maximum of 7. However, the current index is implemented as a simple
compact JavaScript object, which can be replaced with a more efficient lookup index as well.

Query Execution Time
We measure the impact of using summary indexes and hypermedia on the average execution
time. Figure 6 shows the average execution time for the naive client on index-free servers and the
hypermedia-based client on servers with a full index. The results achieved a recall value of 1.0, and
are ordered descending according to the number of results. We note a one-tailed T-value of 1.2 with
a corresponding p = 0.122, which can be considered insignificant (α = 0.10). For most queries, we
notice a small performance increase for the hypermedia-based client, caused by its more selective
nature. However, the queries LS3, CD3, and LD4 show an increase of 50% or more, which indicates
impact. They contain a triple pattern with a bound to the object, which is very selective. This enables
the indexes to be very selective for one or more generic patterns, i.e. ?x rdf:type ?y, ?x owl:sameAs
?y, or ?x foaf:type ?y. This strictly reduces the amount of requests sent, in contrast to the naive client,
which keeps accessing all servers. The query CD6 shows a slight decrease in performance. Since its
only bounded object is a literal, the index cannot be selective at first, as literals are not included in
the summaries. Thus, the hypermedia overhead outweighs the gain on future iterations of the query
algorithm.

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

104

Next, we compared the execution time for the discovery index set-up with the full index set-up.
We selected the queries that were answered with 1.0 recall by at least one starting point. If there are
multiple starting point for one query, we chose the one with the highest execution time. The results are
shown in Figure 7. We noted a one-tailed T-value of 1.866 with a corresponding p = 0.042 (α = 0.10).

There is an insignificant decrease for most queries, with the exception of LS3, CD4 and CD2.
These queries clearly benefit from the smaller index, which only gives a few links to check.

In general, the findings above are insufficient to accept Hypothesis 9. However, the results
indicate potential for hypermedia in source selection, in particular when using more targeted indexes
created by discovery. A more thorough evaluation is advised with a larger number of datasets and a
more extensive query mix.

CONCLUSION

This paper discussed the impact of Linked Data discovery on source selection for query federation.
This is a crucial aspect for evolving the Web towards a global, machine understandable data space.

Table 5. The recall of each query’s results depends on the starting dataset. Due to only using links one level deep, only
interfaces with the relevant interfaces as direct neighbours contribute to recall

DBP NYT LMD JMD GN SDF DB KC

CD1 1.00 0.86 0.86 0.00 ERR 0.86 0.86 0.00

CD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD3 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD5 0.00 0.00 ERR 0.00 ERR 0.00 0.00 0.00

CD6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

CD7 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LS1 1.00 0.00 0.00 0.00 ERR 0.00 1.00 1.00

LS2 1.00 0.00 0.00 0.00 ERR 0.00 0.96 0.96

LS3 – – – 0.00 ERR – – –

LS4 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LS5 – – – 0.00 ERR – – –

LS6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD1 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD3 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD5 0.00 1.00 1.00 ERR ERR 1.00 1.00 0.00

LD7 0.32 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD8 – – – 0.00 ERR – – –

LD9 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00

LD10 0.00 1.00 1.00 0.00 ERR 1.00 1.00 0.00

(DBP=DBpedia,NYT=NY Times,LMD=LinkedMDB,JMD=Jamendo, GN=Geonames,SDF=SW Dog Food,DB=Drugbank,KC=KEGG–ChEBI)

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

105

Figure 5. Hypermedia construction time is negligible compared to the total response time

Figure 6. Hypermedia-based querying with full-index servers decrease the average execution time with 50% compared to the
naive federation approach

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

106

Therefore, we proposed a hypermedia-based approach to benefit federated query processors. In
addition, we defined a framework to evaluate this approach, covering the quantitative aspects of a
discovery process. These quantitative aspects cover the non-functional requirements completeness
and accuracy, and the functional requirements bandwidth usage, execution time, and server overhead.
Existing processes using discovery can thus be formalized, enabling comparability between approaches
and the development of proper methodology. However, the categorization and metrics are high-level,
and need to be studied in-depth in the future.

Just like hyperlinks fade the boundaries between different Web interfaces for humans, a discovery
process should fade the distinction between query execution and federated query execution. The
experimental results are promising in terms of server overhead and completeness in the pre-query
phase. When executing federated queries, our approach shows a general decrease in execution time, but
very poor recall. We conclude that the link traversal has been simplified, but still requires algorithms
that intelligently consume hypermedia. For future work, we imagine use cases that do not need 100%
completeness, in favor of speeding up query execution time. One direct improvement is taking into
account practical differences between Linked Data interfaces, such as response times or page size.
Also, query efficiency can be improved further by integrating existing source selection methods. The
query algorithm itself can take advantage of the data summaries currently used for discovery. Finally,
future work may research whether preprocessing the data server-side introduces benefits both for the
discovery mechanism as for query execution as such.

Figure 7. Hypermedia-based querying with a discovery index is slightly faster compared to full-index servers, and for some
queries up to 50% faster

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

107

REFERENCES

Acosta, M., Vidal, M. E., Lampo, T., Castillo, J., & Ruckhaus, E. (2011). ANAPSID: An Adaptive Query
Processing Engine for SPARQL Endpoints. In The Semantic Web–ISWC 2011 (pp. 18–34). Berlin, Germany:
Springer-Verlag. doi:10.1007/978-3-642-25073-6_2

Alexander, K., & Hausenblas, M. (2009). Describing Linked datasets–On the design and usage of VoID, the
Vocabulary of Interlinked Datasets. Proceedings of the Linked Data on the Web Workshop (LDOW 09), Madrid,
Spain: CEUR.

Basters, U., & Klusch, M. (2006). RS2D: fast adaptive search for semantic web services in unstructured P2P
networks. In The Semantic Web-ISWC 2006 (pp. 87-100). Berlin, Germany: Springer-Verlag.

Berners-Lee, T. (1997, January 6). Axioms of Web architecture: Metadata. Retrieved from https://www.w3.org/
DesignIssues/Metadata.html

Berners-Lee, T. (2006, July 27). Linked Data – Design issues. Retrieved from http://www.w3.org/DesignIssues/
LinkedData.html

Böhm, C., Kasneci, G., & Naumann, F. (2012). Latent topics in graph-structured data.Proceedings of the 21st
ACM international conference on Information and knowledge management (pp. 2663-2666). Maui, HI: ACM.

Böhm, C., Lorey, J., & Naumann, F. (2011). Creating VoID descriptions for Web-scale data. Web Semantics:
Science, Services, and Agents on the World Wide Web, 9(3), 339–345. doi:10.1016/j.websem.2011.06.001

Buil-Aranda, C., Hogan, A., Umbrich, J., & Vandenbussche, P. Y. (2013). Sparql web-querying infrastructure:
Ready for action? In The Semantic Web–ISWC 2013 (pp. 277–293). Berlin, Germany: Springer-Verlag.
doi:10.1007/978-3-642-41338-4_18

Cyganiak, R., Wood, D., & Lanthaler, M. (2014, February 25). RDF 1.1 Concepts and Abstract syntax (W3C
Recommendation). Retrieved from http://www.w3.org/TR/rdf11-concepts/

Datahub. (n. d.). Retrieved from http://datahub.io/

Datasets. (n. d.). Retrieved from http://fedbench.fluidops.net/resource/Datasets

DBpedia. (n. d.). Retrieved from http://dbpedia.org/

Diligenti, M., Coetzee, F., Lawrence, S., Giles, C. L., & Gori, M. (2000). Focused Crawling Using Context Graphs.
Proceedings of the 26th International Conference on Very Large Data Bases (pp. 527-534). Cairo, Egypt: ACM.

DrugBank. (n. d.). Retrieved from http://www.drugbank.ca/

Dürst, M., & Suignard, M. (2004). Internationalized resource identifiers (IRIs) (No. RFC 3987). Retrieved from
http://www.rfc-editor.org/info/rfc3987

Feigenbaum, L., Williams, G. T., Clark, K. G., & Torres, E. (2013, March). SPARQL 1.1 protocol (W3C
Recommendation). Retrieved from http://www.w3.org/TR/sparql11-protocol/

Fetahu, B., Dietze, S., Nunes, B. P., Casanova, M. A., Taibi, D., & Nejdl, W. (2014). A scalable approach
for efficiently generating structured dataset topic profiles. In The Semantic Web: Trends and Challenges (pp.
519–534). Basel, Switzerland: Springer International Publishing. doi:10.1007/978-3-319-07443-6_35

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures (Doctoral
dissertation).

Forchhammer, B., Jentzsch, A., & Naumann, F. (2014). LODOP-Multi-Query Optimization for Linked Data
Profiling Queries. In International Workshop on Dataset PROFIling and fEderated Search for Linked Data
(PROFILES). Anissaras, Greece: CEUR.

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching.Proceedings of the 1984 ACM
SIGMOD international conference on Management of data (Vol. 14, No. 2, pp. 47-57). New York, NY: ACM.
doi:10.1145/602259.602266

http://dx.doi.org/10.1007/978-3-642-25073-6_2
https://www.w3.org/DesignIssues/Metadata.html
https://www.w3.org/DesignIssues/Metadata.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://dx.doi.org/10.1016/j.websem.2011.06.001
http://dx.doi.org/10.1007/978-3-642-41338-4_18
http://www.w3.org/TR/rdf11-concepts/
http://fedbench.fluidops.net/resource/Datasets
http://dbpedia.org/
http://www.drugbank.ca/
http://www.rfc-editor.org/info/rfc3987
http://www.w3.org/TR/sparql11-protocol/
http://dx.doi.org/10.1007/978-3-319-07443-6_35
http://dx.doi.org/10.1145/602259.602266

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

108

Harris, S., & Seaborne, A. (2013, March 21). SPARQL 1.1 query language (W3C Recommendation). Retrieved
from http://www.w3.org/TR/sparql11-query/

Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K. U., & Umbrich, J. (2010). Data summaries for on-
demand queries over linked data.Proceedings of the 19th international conference on World Wide Web (pp.
411-420). Raleigh, NC: ACM. doi:10.1145/1772690.1772733

Hartig, O. (2012). SPARQL for a Web of Linked Data: Semantics and computability. In The Semantic Web:
Research and Applications (pp. 8–23). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-642-30284-8_8

Hartig, O. (2013). An overview on execution strategies for Linked Data queries. Datenbank-Spektrum, 13(2),
89–99. doi:10.1007/s13222-013-0122-1

Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space (1st ed.). Morgan &
Claypool.

Hypertext transfer Protocol HTTP/1.1. (1999). The Internet Society. Retrieved from http://tools.ietf.org/html/
rfc2616#\page-140

Kaoudi, Z., Kyzirakos, K., & Koubarakis, M. (2010). SPARQL query optimization on top of DHTs. In The
Semantic Web–ISWC 2010 (pp. 418–435). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-642-17746-0_27

Khan, A. B., & Matskin, M. (2010). Agora framework for service discovery and resource allocation. Proceedings
of the Internet and Web Applications and Services (ICIW 2010) (pp. 438–444). Barcelona, Spain: IEEE.
doi:10.1109/ICIW.2010.72

Klusch, M. (2014). Service discovery. In Encyclopedia of Social Network Analysis and Mining (pp. 1707–1717).
New York, NY: Springer.

Klusch, M., & Zhing, X. (2008). Deployed semantic services for the common user of the web: A reality check.
Proceedings of the IEEE International Conference on Semantic Computing (pp. 347-353). Santa Clara, CA:
IEEE. doi:10.1109/ICSC.2008.12

Ladwig, G., & Tran, T. (2010). Linked data query processing strategies. In P. Patel-Schneider et al. (Eds.), The
Semantic Web–ISWC 2010 (pp. 453–469). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-642-17746-0_29

Li, X., Niu, Z., & Zhang, C. (2014). Towards efficient distributed SPARQL queries on linked data. In X.-h. Sun
et al. (Eds.), Algorithms and architectures for parallel processing (pp. 259–272). Basel, Switzerland: Springer
International Publishing. doi:10.1007/978-3-319-11194-0_20

Linked Open Vocabularies. (n. d.). Retrieved from http://lov.okfn.org/

Montoya, G., Vidal, M.-E., & Acosta, M. (2012). A Heuristic-Based Approach for Planning Federated SPARQL
queries. In Consuming Linked Data (COLD 2012). Boston, MA: CEUR.

Mühleisen, H., & Jentzsch, A. (2011). Augmenting the Web of data using referers. Proceedings of the Linked
Data on the Web workshop (LDOW 2011). Hyderabad, India: CEUR.

Neumann, T., & Weikum, G. (2010). x-RDF-3X: Fast querying, high update rates, and consistency for RDF
databases. Proceedings of the VLDB Endowment, 3(1-2), 256–263. doi:10.14778/1920841.1920877

Nginx. (n. d.). Retrieved from http://nginx.org/

Paret, E., Woensel, W. V., Casteleyn, S., Signer, B., & Troyer, O. D. (2011). Efficient querying of distributed
RDF sources in mobile settings based on a source index model. Procedia Computer Science, 5, 554–561.
doi:10.1016/j.procs.2011.07.072

Paulheim, H., & Hertling, S. (2013). Discoverability of SPARQL endpoints in Linked Open Data.Proceedings
of the ISWC 2013 Posters & Demonstrations Track. Sydney, Australia: CEUR.

Queries#classification. (n. d.). Fluidops.net. Retrieved from http://fedbench.fluidops.net/resource/
Queries#Classification

Quilitz, B., & Leser, U. (2008). Querying distributed RDF data sources with SPARQL. In S. Bechhofer, M.
Hauswirth, J. Hoffmann, & M. Koubarakis (Eds.), The Semantic Web: Research and Applications (Vol. 5021,
pp. 524–538). Berlin, Germany: Springer-Verlag. doi:10.1007/978-3-540-68234-9_39

http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1007/978-3-642-30284-8_8
http://dx.doi.org/10.1007/s13222-013-0122-1
http://tools.ietf.org/html/rfc2616#
http://tools.ietf.org/html/rfc2616#
http://dx.doi.org/10.1007/978-3-642-17746-0_27
http://dx.doi.org/10.1109/ICIW.2010.72
http://dx.doi.org/10.1109/ICSC.2008.12
http://dx.doi.org/10.1007/978-3-642-17746-0_29
http://dx.doi.org/10.1007/978-3-319-11194-0_20
http://dx.doi.org/10.14778/1920841.1920877
http://nginx.org/
http://dx.doi.org/10.1016/j.procs.2011.07.072
http://fedbench.fluidops.net/resource/Queries#Classification
http://fedbench.fluidops.net/resource/Queries#Classification
http://dx.doi.org/10.1007/978-3-540-68234-9_39

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

109

Re3data.org. (n. d.). Retrieved from http://www.re3data.org/

Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., & Hausenblas, M. (2013). Querying over federated
SPARQL endpoints—a state of the art survey. In Knowledge Engineering and the Semantic Web. Berlin,
Germany: Springer-Verlag.

Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., & Ngonga Ngomo, A. C. (2015). A fine-grained evaluation of
SPARQL endpoint federation systems. Semantic Web, (Preprint), 1-26.

Saleem, M., & Ngomo, A.-C. N. (2014). Hibiscus: Hypergraph-based source selection for SPARQL endpoint
federation. In The Semantic Web: Trends and Challenges (pp. 176–191). Berlin, Germany: Springer-Verlag.
doi:10.1007/978-3-319-07443-6_13

Schmachtenberg, M., Bizer, C., & Paulheim, H. (2014). Adoption of the linked data best practices in different
topical domains. In The Semantic Web–ISWC 2014 (pp. 245–260). Basel, Switzerland: Springer International
Publishing. doi:10.1007/978-3-319-11964-9_16

Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., & Tran, T. (2011). Fedbench: A benchmark suite
for federated semantic data query processing. In The Semantic Web–ISWC 2011 (pp. 585–600). Berlin, Germany:
Springer-Verlag. doi:10.1007/978-3-642-25073-6_37

Schwarte, A., Haase, P., Hose, K., Schenkel, R., & Schmidt, M. (2011). FedX: a federation layer for distributed
query processing on linked open data. In The Semantic Web: Research and Applications (pp. 481–486). Berlin,
Germany: Springer-Verlag. doi:10.1007/978-3-642-21064-8_39

Server.js linked Data fragments. (n. d.). Retrieved from https://github.com/LinkedDataFragments/Server.js

Umbrich, J., Hose, K., Karnstedt, M., Harth, A., & Polleres, A. (2011). Comparing data summaries for processing
live queries over Linked Data. World Wide Web (Bussum), 14(5-6), 495–544. doi:10.1007/s11280-010-0107-z

Using Seealso. (n. d.). W3C. Retrieved from http://www.w3.org/wiki/UsingSeeAlso

Verborgh, R., Hartig, O., De Meester, B., Haesendonck, G., De Vocht, L., & Vander Sande, M. Van de Walle,
R. (2014). Querying datasets on the Web with high availability. In P. Mika et al. (Eds.), Proceedings of the 13th
International Semantic Web Conference (Vol. 8796, pp. 180–196). Berlin, Germany: Springer-Verlag.

Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., & De Meester, B. … Colpaert, P.
(2016). Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. Journal of Web Semantics.
doi:10.1016/j.websem.2016.03.003

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., & Miller, J. (2005). METEOR-S WSDI:
A scalable P2P infrastructure of registries for semantic publication and discovery of web services. Information
Technology Management, 6(1), 17–39. doi:10.1007/s10799-004-7773-4

Williams, G. (2013). SPARQL 1.1 service description (W3C Recommendation). Retrieved from http://www.
w3.org/TR/sparql11-service-description/

http://dx.doi.org/10.1007/978-3-319-07443-6_13
http://dx.doi.org/10.1007/978-3-319-11964-9_16
http://dx.doi.org/10.1007/978-3-642-25073-6_37
http://dx.doi.org/10.1007/978-3-642-21064-8_39
https://github.com/LinkedDataFragments/Server.js
http://dx.doi.org/10.1007/s11280-010-0107-z
http://www.w3.org/wiki/UsingSeeAlso
http://dx.doi.org/10.1016/j.websem.2016.03.003
http://dx.doi.org/10.1007/s10799-004-7773-4

International Journal on Semantic Web and Information Systems
Volume 12 • Issue 3 • July-September 2016

110

Miel Vander Sande graduated cum laude as Bachelor in Multimedia and Communication technology at the University
College of West-Flanders, Belgium in 2008. He continued his studies with in Industrial Sciences at the University
College of Ghent, specializing in Information and Communication technology. In 2010 he researched low cost
interfaces for indoor human activity tracking, based on RFID and WIFI technology as his Master thesis for the
Polytechnic University of Valencia in Spain. He received his MSc in Industrial Science degree cum laude that same
year. Finally, he finished his education with an additional year of teacher studies in Informatics. In September 2011,
Miel joined Data Science Lab (http://datasciencelab.ugent.be) of Ghent University as a full-time researcher. His
main interests and expertise are (Linked Open) Data publishing, Read-Write Web, technological support for open
data legislation, ontology mapping and data transformation. Miel was involved in several Flemish and European
research projects involving Semantic Web technologies and Linked Open Data

Ruben Verborgh is a researcher in semantic hypermedia at Ghent University – iMinds, Belgium and a postdoctoral
fellow of the Research Foundation Flanders. He explores the connection between Semantic Web technologies
and the Web’s architectural properties, with the ultimate goal of building more intelligent clients. Along the way, he
became fascinated by Linked Data, REST/hypermedia, Web APIs, and related technologies. He’s a co-author of
two books on Linked Data, and has contributed to more than 150 publications for international conferences and
journals on Web-related topics.

Anastasia Dimou holds an MSc in e-Government technologies from University of Trento, Italy and an MSc in Web
Science from Aristotle University, Greece. Since 2013 she has served as a researcher in Semantic Web and
Linked Open Data technologies. Anastasia has been involved in different research projects. Her main interest
and expertise is related to Linked Data Generation and Publication, Data Quality and Integration, and Knowledge
Representation and Management.

Pieter Colpaert is a researcher at DataScience Lab - Ghent university - iMinds. He holds a master degree in
engineering from College Ghent since 2012. Before starting his research position at DataScience Lab, he was
running a digital signage start-up called FlatTurtle (http://flatturtle.com) which focuses on data visualisation, co-
founded a not-for profit organisation to promote Open Knowledge in Belgium (http://okfn.be), and started The
DataTank (http://thedatatank), an open-source tool for smart cities which enables them to open up their data in a
machine-readable fashion.

Erik Mannens has served as Professor at Data Science Lab / CTO Data Science at iMinds / Research Manager
at Ghent University since 2005 where he has successfully managed +50 projects. He received his PhD degree in
Computer Science Engineering (2011) at UGent, his Master’s degree in Computer Science (1995) at K.U. Leuven
University, and his Master’s degree in Electro-Mechanical Engineering (1992) at KAHO Ghent. Before joining iMinds-
Ghent University-DataScienceLab in 2005 as research manager, he was a software engineering consultant and
Java architect for over a decade. His major expertise is centered around big data analytics, metadata modeling,
semantic web technologies, broadcasting workflows, iDTV and web development in general. He is involved in
several projects as senior researcher and finished up his PhD on Semantic News Production; he was co-chair of
the W3C Media Fragments Working Group and actively participating in other W3C’s semantic web standardization
activities (Media Annotations, Provenance, Hydra, Linked Data Platform, and eGovernment). Since 2008 Erik is
paving the Open Data path in Flanders. He stood at the cradle of the first Hackatons and is a founding member of
the Open Knowledge Foundation. (Belgian Chapter). Since then, he is frequently invited as Open Data evangelist
at national and international events. He currently actively participates in W3C’s eGov and Data On The Web
working groups. Furthermore, his team is owner of the Open Sourced Linked Open Data Publishing frameworks
TheDataTank, R&Wbase, RML, and Linked Data Fragments. On all of these subjects he has published +180
papers and book chapters. He is also member of the technical committee and/or organizing committee of several
high level journals and conferences. His full curriculum can be found on LinkedIn.

http://datasciencelab.ugent.be
http://flatturtle.com
http://okfn.be

