21 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationNetwork emulation has become an indispensable tool for the conduct of research in networking and distributed systems. It offers more realism than simulation and more control and repeatability than experimentation on a live network. However, emulation testbeds face a number of challenges, most prominently realism and scale. Because emulation allows the creation of arbitrary networks exhibiting a wide range of conditions, there is no guarantee that emulated topologies reflect real networks; the burden of selecting parameters to create a realistic environment is on the experimenter. While there are a number of techniques for measuring the end-to-end properties of real networks, directly importing such properties into an emulation has been a challenge. Similarly, while there exist numerous models for creating realistic network topologies, the lack of addresses on these generated topologies has been a barrier to using them in emulators. Once an experimenter obtains a suitable topology, that topology must be mapped onto the physical resources of the testbed so that it can be instantiated. A number of restrictions make this an interesting problem: testbeds typically have heterogeneous hardware, scarce resources which must be conserved, and bottlenecks that must not be overused. User requests for particular types of nodes or links must also be met. In light of these constraints, the network testbed mapping problem is NP-hard. Though the complexity of the problem increases rapidly with the size of the experimenter's topology and the size of the physical network, the runtime of the mapper must not; long mapping times can hinder the usability of the testbed. This dissertation makes three contributions towards improving realism and scale in emulation testbeds. First, it meets the need for realistic network conditions by creating Flexlab, a hybrid environment that couples an emulation testbed with a live-network testbed, inheriting strengths from each. Second, it attends to the need for realistic topologies by presenting a set of algorithms for automatically annotating generated topologies with realistic IP addresses. Third, it presents a mapper, assign, that is capable of assigning experimenters' requested topologies to testbeds' physical resources in a manner that scales well enough to handle large environments

    DSL-Lab: a Low-power Lightweight Platform to Experiment on Domestic Broadband Internet

    Get PDF
    International audienceThis article presents the design and building of DSL-Lab, a platform to experiment on distributed computing over broadband domestic Internet. Experimental platforms such as PlanetLab and Grid'5000 are promising methodological approaches to study distributed systems. However, both platforms focus on high-end service and network deployments only available on a restricted part of the Internet, leaving aside the possibility for researchers to experiment in conditions close to what is usually available with domestic connection to the Internet. DSL-Lab is a complementary approach to PlanetLab and Grid'5000 to experiment with distributed computing in an environment closer to how Internet appears, when applications are run on end-user PCs. DSL-Lab is a set of 40 low-power and low-noise nodes, which are hosted by participants, using the participants' xDSL or cable access to the Internet. The objective is to provide a validation and experimentation platform for new protocols, services, simulators and emulators for these systems. In this paper, we report on the software design (security, resources allocation, power management) as well as on the first experiments achieved

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    Inventory of full scale test facilities for evaluation of building energy performances

    Get PDF
    The aim of the first subtask of IEA EBC Annex 58 was to give an overview and evaluation of previous and ongoing in situ test activities based on a literature review and existing reports. An inventory was made of full scale test facilities for the evaluation of energy performances of building components and systems, available at different institutes all over the world. The book gives a description of 25 existing test facilities or test sites according to their main functionalities: objectives, lay-out of the infrastructure, typical equipment and operation, examples of measuring campaigns and analysis methods. The descriptions were provided by the participants of IEA-Annex 58. The inventory provides examples and background to building researchers responsible for the design and construction of new test facilities or for the management of existing ones

    Making broadband access networks transparent to researchers, developers, and users

    Get PDF
    Broadband networks are used by hundreds of millions of users to connect to the Internet today. However, most ISPs are hesitant to reveal details about their network deployments,and as a result the characteristics of broadband networks are often not known to users,developers, and researchers. In this thesis, we make progress towards mitigating this lack of transparency in broadband access networks in two ways. First, using novel measurement tools we performed the first large-scale study of thecharacteristics of broadband networks. We found that broadband networks have very different characteristics than academic networks. We also developed Glasnost, a system that enables users to test their Internet access links for traffic differentiation. Glasnost has been used by more than 350,000 users worldwide and allowed us to study ISPs' traffic management practices. We found that ISPs increasingly throttle or even block traffic from popular applications such as BitTorrent. Second, we developed two new approaches to enable realistic evaluation of networked systems in broadband networks. We developed Monarch, a tool that enables researchers to study and compare the performance of new and existing transport protocols at large scale in broadband environments. Furthermore, we designed SatelliteLab, a novel testbed that can easily add arbitrary end nodes, including broadband nodes and even smartphones, to existing testbeds like PlanetLab.Breitbandanschlüsse werden heute von hunderten Millionen Nutzern als Internetzugang verwendet. Jedoch geben die meisten ISPs nur ungern über Details ihrer Netze Auskunft und infolgedessen sind Nutzern, Anwendungsentwicklern und Forschern oft deren Eigenheiten nicht bekannt. Ziel dieser Dissertation ist es daher Breitbandnetze transparenter zu machen. Mit Hilfe neuartiger Messwerkzeuge konnte ich die erste groß angelegte Studie über die Besonderheiten von Breitbandnetzen durchführen. Dabei stellte sich heraus, dass Breitbandnetze und Forschungsnetze sehr unterschiedlich sind. Mit Glasnost habe ich ein System entwickelt, das mehr als 350.000 Nutzern weltweit ermöglichte ihren Internetanschluss auf den Einsatz von Verkehrsmanagement zu testen. Ich konnte dabei zeigen, dass ISPs zunehmend BitTorrent Verkehr drosseln oder gar blockieren. Meine Studien zeigten dar überhinaus, dass existierende Verfahren zum Testen von Internetsystemen nicht die typischen Eigenschaften von Breitbandnetzen berücksichtigen. Ich ging dieses Problem auf zwei Arten an: Zum einen entwickelte ich Monarch, ein Werkzeug mit dem das Verhalten von Transport-Protokollen über eine große Anzahl von Breitbandanschlüssen untersucht und verglichen werden kann. Zum anderen habe ich SatelliteLab entworfen, eine neuartige Testumgebung, die, anders als zuvor, beliebige Internetknoten, einschließlich Breitbandknoten und sogar Handys, in bestehende Testumgebungen wie PlanetLab einbinden kann

    Une approche générique pour l'automatisation des expériences sur les réseaux informatiques

    Get PDF
    This thesis proposes a generic approach to automate network experiments for scenarios involving any networking technology on any type of network evaluation platform. The proposed approach is based on abstracting the experiment life cycle of the evaluation platforms into generic steps from which a generic experiment model and experimentation primitives are derived. A generic experimentation architecture is proposed, composed of an experiment model, a programmable experiment interface and an orchestration algorithm that can be adapted to network simulators, emulators and testbeds alike. The feasibility of the approach is demonstrated through the implementation of a framework capable of automating experiments using any combination of these platforms. Three main aspects of the framework are evaluated: its extensibility to support any type of platform, its efficiency to orchestrate experiments and its flexibility to support diverse use cases including education, platform management and experimentation with multiple platforms. The results show that the proposed approach can be used to efficiently automate experimentation on diverse platforms for a wide range of scenarios.Cette thèse propose une approche générique pour automatiser des expériences sur des réseaux quelle que soit la technologie utilisée ou le type de plate-forme d'évaluation. L'approche proposée est basée sur l'abstraction du cycle de vie de l'expérience en étapes génériques à partir desquelles un modèle d'expérience et des primitives d'expérimentation sont dérivés. Une architecture générique d'expérimentation est proposée, composée d'un modèle d'expérience générique, d'une interface pour programmer des expériences et d'un algorithme d'orchestration qui peux être adapté aux simulateurs, émulateurs et bancs d'essai de réseaux. La faisabilité de cette approche est démontrée par la mise en œuvre d'un framework capable d'automatiser des expériences sur toute combinaison de ces plateformes. Trois aspects principaux du framework sont évalués : son extensibilité pour s'adapter à tout type de plate-forme, son efficacité pour orchestrer des expériences et sa flexibilité pour permettre des cas d'utilisation divers, y compris l'enseignement, la gestion des plate-formes et l'expérimentation avec des plates-formes multiples. Les résultats montrent que l'approche proposée peut être utilisée pour automatiser efficacement l'expérimentation sur les plates-formes d'évaluation hétérogènes et pour un éventail de scénarios variés

    Toward Automated Network Management and Operations.

    Full text link
    Network management plays a fundamental role in the operation and well-being of today's networks. Despite the best effort of existing support systems and tools, management operations in large service provider and enterprise networks remain mostly manual. Due to the larger scale of modern networks, more complex network functionalities, and higher network dynamics, human operators are increasingly short-handed. As a result, network misconfigurations are frequent, and can result in violated service-level agreements and degraded user experience. In this dissertation, we develop various tools and systems to understand, automate, augment, and evaluate network management operations. Our thesis is that by introducing formal abstractions, like deterministic finite automata, Petri-Nets and databases, we can build new support systems that systematically capture domain knowledge, automate network management operations, enforce network-wide properties to prevent misconfigurations, and simultaneously reduce manual effort. The theme for our systems is to build a knowledge plane based on the proposed abstractions, allowing network-wide reasoning and guidance for network operations. More importantly, the proposed systems require no modification to the existing Internet infrastructure and network devices, simplifying adoption. We show that our systems improve both timeliness and correctness in performing realistic and large-scale network operations. Finally, to address the current limitations and difficulty of evaluating novel network management systems, we have designed a distributed network testing platform that relies on network and device virtualization to provide realistic environments and isolation to production networks.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/78837/1/chenxu_1.pd
    corecore