1,259 research outputs found

    Contributions of formal language theory to the study of dialogues

    Get PDF
    For more than 30 years, the problem of providing a formal framework for modeling dialogues has been a topic of great interest for the scientific areas of Linguistics, Philosophy, Cognitive Science, Formal Languages, Software Engineering and Artificial Intelligence. In the beginning the goal was to develop a "conversational computer", an automated system that could engage in a conversation in the same way as humans do. After studies showed the difficulties of achieving this goal Formal Language Theory and Artificial Intelligence have contributed to Dialogue Theory with the study and simulation of machine to machine and human to machine dialogues inspired by Linguistic studies of human interactions. The aim of our thesis is to propose a formal approach for the study of dialogues. Our work is an interdisciplinary one that connects theories and results in Dialogue Theory mainly from Formal Language Theory, but also from another areas like Artificial Intelligence, Linguistics and Multiprogramming. We contribute to Dialogue Theory by introducing a hierarchy of formal frameworks for the definition of protocols for dialogue interaction. Each framework defines a transition system in which dialogue protocols might be uniformly expressed and compared. The frameworks we propose are based on finite state transition systems and Grammar systems from Formal Language Theory and a multi-agent language for the specification of dialogue protocols from Artificial Intelligence. Grammar System Theory is a subfield of Formal Language Theory that studies how several (a finite number) of language defining devices (language processors or grammars) jointly develop a common symbolic environment (a string or a finite set of strings) by the application of language operations (for instance rewriting rules). For the frameworks we propose we study some of their formal properties, we compare their expressiveness, we investigate their practical application in Dialogue Theory and we analyze their connection with theories of human-like conversation from Linguistics. In addition we contribute to Grammar System Theory by proposing a new approach for the verification and derivation of Grammar systems. We analyze possible advantages of interpreting grammars as multiprograms that are susceptible of verification and derivation using the Owicki-Gries logic, a Hoare-based logic from the Multiprogramming field

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Acta Cybernetica : Volume 22. Number 3.

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Foundations for Safety-Critical on-Demand Medical Systems

    Get PDF
    In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both burdensome on clinicians and error prone. Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability\u27\u27 would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs, and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow clinicians to attach devices to a local network and then run software applications to create a new medical system ``on-demand\u27\u27 which automates clinical workflows by automatically coordinating those devices via the network. Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety is not considered a compositional property in general. For example, two independently ``safe\u27\u27 devices may interact in unsafe ways. Indeed, even the definition of ``safe\u27\u27 may differ between two device types. In this dissertation we propose a framework and define some conditions that permit reasoning about the safety of plug & play medical systems. The framework includes a logical formalism that permits formal reasoning about the safety of many device combinations at once, as well as a platform that actively prevents unintended timing interactions between devices or applications via a shared resource such as a network or CPU. We describe the various pieces of the framework, report some experimental results, and show how the pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies

    Acta Cybernetica : Volume 16. Number 3.

    Get PDF

    Central Washington University 2013-2014 Undergraduate Catalog

    Get PDF
    https://digitalcommons.cwu.edu/catalogs/1171/thumbnail.jp

    Maintaining consistency in networks of models: bidirectional transformations in the large

    Get PDF
    • …
    corecore