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Preface 

Luqi 

The 2001 Monterey Workshop on Engineering Automation for Software Intensive 
System Integration was sponsored by the Office of Naval Research, Air Force Office of 
Scientific Research, Army Research Office and the Defense Advance Research Projects 
Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of 
a principled engineering solution for software and for their many-year tireless effort in 
supporting a series of workshops to bring everyone together. 

This workshop is the 8 in a series of International workshops. The workshop was held in 
Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general 
theme of the workshop has been to present and discuss research works that aims at 
increasing the practical impact of formal methods for software and systems engineering. 
The particular focus of this workshop was "Engineering Automation for Software 
Intensive System Integration". Previous workshops have been focused on issues 
including, "Real-time & Concurrent Systems", "Software Merging and Slicing", 
"Software Evolution", "Software Architecture", "Requirements Targeting Software" and 
"Modeling Software System Structures in a fastly moving scenario". 

A major goal for this series of workshops is to encourage the software engineering 
community in general to improve interaction between researchers and engineering 
practitioners. The workshop has long established itself as a summit where researchers 
from academics and industries can exchange recent results, assess their significance and 
earn motivation for transferring the relevant results to practice. This indeed is a forum 
where software engineers may communicate current problems in engineering practice to 
researchers and help focus to bridge the gap between the theoretical and practical sides of 
the subject. 

It is no longer the case that theoretical foundations for computing are lacking. However, 
keeping in mind the challenge to put these results to work, the formal aspects of 
computing cannot be studied in isolation in the context of software engineering. The need 
to ensure that the assumptions on which formal models are based are consistent with the 
situations encountered in practical applications puts interdisciplinary requirements on 
researchers and lends importance to interactions between experts from heterogeneous 
backgrounds. 

This year, apart from the distinguished panel of invited speakers, we have accepted 
contributed papers mainly to encourage the emerging researchers in software 
engineering. This has widened the scope of discussion and the sessions were highly 
interactive and rich with intellectual frictions in opinion from a broad range of experts. 
Members of the academic, government, military and commercial world exchanged their 
vision, insight and concerns on many important issues. I hope that the workshop has 
made another step to reduce the gap between theory and practice of software engineering. 

VI 



Content 
Preface vi 
Luqi, Naval Postgraduate School, Monterey, CA. 

1. Little Languages & Their Programming Environments 1 
John Clements, Paul Graunke, Dept. of Computer Science, Rice 
University, Houston, TX; Shriram Krishnamurthi, Computer Science 
Dept., Brown University, Providence, RI; and Matthias Felleisen, Dept. of 
Computer Science, Rice University, TX. 

2. XML-Based Integration of Interface Definition Language Extensions 19 
Bernd Kramer, Dept. of Electrical and Information Engineering, Fern 
University, Hagen, Germany; and H. Arno Jacobsen, Dept. of Computer 
Science, University of Toronto, Toronto, Ontario, Canada. 

3. Subclassing errors, OOP & Practically Checkable Rules to Prevent Them 33 
Oleg Kiselyov, Software Engineering, Naval Postgraduate School, 
Monterey, CA. 

4. Change-Merging ofPSDL Abstract Data Types 43 
David A. Dampier and Vineet Chadha, Dept. of Computer Science, 
Mississippi State University, MS. 

5. Formal Verification of Embedded Distributed Systems in a Prototyping 53 
Approach 
Fabrice Kordon, LIP6-SRC, University P.&M, Curie, Paris, France. 

6. A Model Checking Framework for Layered Command & Control Software 63 
Kathi Fisler, Dept. of Computer Science, Worcester Polytechnic Institute; 
Shriram Krishnamurthi, Computer Science Dept., Brown University; Don 
Batory andJia Liu, Dept. of Computer Science, University of Texas at 
Austin. 

7. A Framework for Knowledge Management & Automated Constraint 77 
Monitoring 
Ann Q. Gates and Steve Roach, Dept. of Computer Science, The University 
of Texas at El Paso, El Paso, Texas. 

8. The Use of Computer-Aided Prototyping for Reengineering Legacy 89 
Software 
Man-Tak Shing, Luqi and Valdis Berzins, Dept. of Computer Science, 
Naval Postgraduate School, Monterey, CA. 

Vll 



9. Modeling Constraints as Methods in Object Oriented Data Model 101 
Samiran Chattopadhyay, Dept. of Comp. Science & Engineering, Jadavpur 
University, Calcutta, India; Chanda Roy, RCC Inst. of Information 
Technology, Calcutta, India; and Swapan Bhattacharya, Indian Institute of 
Information Technology, Calcutta, India. 

10. A Unified Approach for the Integration of Distributed Heterogeneous 109 
Software Components 
Rajeev Raje, Dept. of Computer and Information Science, Indiana 
University Purdue University Indianapolis; Mikhail Auguston, Barrett R. 
Bryant, Computer Science Dept., Naval Postgraduate School, Monterey, 
CA; Andrew Olson, Dept. of Computer and Information Science, Indiana 
University Purdue University Indianapolis; and Carol Burt, AB Inc., 
Calera, AL. 

11. Enhancements & Extensions of Formal Models for Risk Assessment in 120 
Software Projects 
Mike Murrah, Craig Johnson and Luqi, Dept. of Computer Science, Naval 
Postgraduate School, Monterey, CA. 

12. Visual Meta-Programming Notation 128 
Mikhail Auguston Dept. of Computer Science, Naval Postgraduate School, 
Monterey, CA. 

13. Optimization of Distributed Object-Oriented Servers 140 
William Ray and Valdis Benins, Dept. of Computer Science, Naval 
Postgraduate School, Monterey, CA. 

14. Formalizing Software Architecture for Embedded Systems 150 
Pam Binns and Steve Vesta , Honeywell technologies Center, MN 

15. Design Models for Components in Distributed Object Software 160 
X. Xie and Sol Shatz, University of Illinois at Chicago. 

16. Use of Object Oriented Model for Interoperability in Wrapper-Based 170 
Translator for Resolving Representational Differences between 
Heterogeneous Systems 
Paul Young, Valdis Benins, Jun Ge and Luqi, Dept. of Computer Science, 
Naval Postgraduate School, Monterey, CA. 

17. Intelligent Software Decoys 178 
James Bret Michael and Richard Riehle, Naval Postgraduate School, Dept. 
of Computer Science, Monterey, C A. 

V1I1 



18. S oftware Requirements Risk and Reliability 18 8 
Norman Schneidewind, Naval Postgraduate School, Monterey, CA. 

19. Design for Independent Composition & Evaluation of High-Confidence 198 
Embedded Software Systems 
F.B. Bastani, I.-L. Yen, University of Texas at Dallas; J. Linn, Texas 
Instruments; K. Rao, Alcatel USA; and V.L. Winter, Sandia National Labs. 

20. OCL Component Invariants 208 
Hubert Baumeister, RolfHennicker, Alexander Knapp and Martin Wirsing 
Ludwig-Maximilians-Universit" at M" unchen 

21. XML Types are Parsers 216 
Peter T. Breuer, Carlos Delgado Kloos, Luis Sanchez Fernandez, Ma. 
Carmen Fernandez Panadero and Andres Marin Lopez, Depto. Ingenieria 
Telematica, Universidad Carlos III de Madrid, Spain. 

22. Automatic Test Generation from Specifications for Control-Flow & Data- 230 
Flow Coverege Criteria 
Hyoung Seok Hong and Insup Lee, Dept. of Computer and Information 
Science, University of Pennsylvania, PA. 

23. A C-Interface to the Concurrency Workbench 247 
Daniel C. DuVarney, Dept. of Computer Science, North Carolina State 
University, Raleigh, NC; W. Ranee Cleaveland, Dept. of Computer 
Science, State University of New York at Stony Brook, Stony Brook, NY; 
and S. Purushothaman Iyer, Dept. of Computer Science, North Carolina 
State University, Raleigh, NC. 

24. Specification of a Parallelizing SequenceL Compiler 257 
Daniel E. Cooke and Per Andersen, Computer Science Dept, Texas Tech 
University, TX 

25. Extending FLA VERS to Check Properties on Infinite Executions of 267 
Concurrent Software Systems 
Gleb Naumovich, Polytechnic University, Brooklyn, Dept. of Computer 
and Info Science, Brooklyn, NY; and Lori A. Clarke, Computer Science 
Dept., University of Massachusetts, Amherst, MA. 

26. Qualitative Modeling of Hybrid Systems 277 
Oleg Sokolsky and Hyoung Seok Hong, Dept. of Computer and Information 
Science, University of Pennsylvania, PA. 

IX 



Little Languages and their Programming Environments 
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Summary 

Programmers constantly design, implement, and program in little languages. Two different ap- 
proaches to the implementation of little languages have evolved. One emphasizes the design of 
little languages from scratch, using conventional technology to implement interpreters and compil- 
ers. The other advances the idea of extending a general-purpose host language; that is, the little 
language shares the host language's features (variables, data, loops, functions) where possible; its 
interpreters and compilers; and even its type soundness theorem. The second approach is often 

called a language embedding. 
This paper directs the attention of little language designers to a badly neglected area: the pro- 

gramming environments of little languages. We argue that an embedded little language should 
inherit not only the host language's syntactic and semantic structure, but also its programming en- 

vironment. 
We illustrate the idea with our DrScheme programming environment and S-XML, a little trans- 

formation language for XML trees. DrScheme provides a host of tools for Scheme: a syntax analysis 
tool, a static debugger, an algebraic stepper, a portable plugin system, and an interactive evaluator. 
S-XML supports the definition of XML languages using a simple form of Schemas, the convenient 
creation of XML data, and the definition of XML transformations. 

The S-XML embedding consists of two parts: a library of functions and a set of syntactic 
extensions. The elaboration of a syntactic extension into core Scheme preserves the information 
necessary to report the results of an analysis or of a program evaluation at the source level. As a 
result, all of DrScheme's tools are naturally extended to the embedded language. The process of 
embedding the S-XML language into Scheme directly creates a full-fledged S-XML environment. 

We believe that this method of language implementation may be generalized to other languages 
and other environments, and represents a substantial improvement upon current practice. 



1   Reusing Language Technology 

Programmers constantly design little programming languages. Many of these languages die a quick 
death or disappear under many layers of software; network protocols, GUI layout declarations, and 
scripting tools are examples. Others evolve and survive to fill a niche; AWK, Make, Perl, and Tel 
come to mind. 

Once a programmer understands that some problem is best solved by designing a new little 
language, he must make an implementation choice. One possibility is to build the little language 
from scratch. This option involves the tasks of specifying a (typically formal) syntax, a (semi- 
formal) system of context-sensitive constraints, and an (informal) semantics; and of implementing 
the required software: a lexer, a parser, a type checker, a code generator and/or an evaluator. 

The other option is to extend an existing general-purpose language with just those constructs 
that the task requires. In this case, the little language shares the host language's syntax (variables, 
data, loops, functions) where possible; its interpreters and compilers; and even its type soundness 
theorem. This kind of extension is often called a language embedding. 

The following table summarizes the salient differences between strategy of implementing a 
language "from scratch" in a language A and the strategy of embedding a little language into a 
language B. 

designing a little language "from scratch" 
variables, loops, etc. are designed explicitly 
safety/type-soundness may not exist 
lexer is implemented in A 
parser is implemented in A 
validity checker is implemented in A 
interpreter is implemented in A 

embedding a little language 
variables, loops, etc. are those of B 
safety/type-soundness is that of B 
the lexer is an extension of B's 
the parser is an extension of B's 
the validity checker is B's 
the interpreter is B's 

Succinctly put, the "implement from scratch" strategy uses technologies; an embedding shares, and 
thus truly reuses, technology for the construction of a little language. 

This paper illustrates that a language embedding can reuse more of the host's technology than 
just the evaluator. Specifically, we argue that if a programming environment for a host language is 
properly constructed and if we use a well-designed embedding technology, the mere act of construct- 
ing the embedding also creates a full-fledged programming environment for the little languages. 

In support of our argument we construct an embedded little language, called S-XML, and derive 
its environment from DrScheme, our Scheme programming environment [7]. S-XML permits pro- 
grammers to create and manipulate XML-like data. More precisely, they can use a set of constructs 
to specify XML trees in a natural manner, and they can define tree transformations on the data with 
an easy-to-use pattern-matching construct. DrScheme provides a host of tools for Scheme: a syntax 
analysis tool that includes a variable binding display and a variable renaming mechanism; a static 
debugger; an algebraic stepper; a portable library system; and an evaluator that correlates run-time 
exceptions with the program source, the S-XML programming environment inherits all of these. 

The S-XML embedding consists of several language extensions. Some can be defined as func- 
tions, some cannot. The implementation of the latter exploits DrScheme's syntax definition mech- 
anism, which, in turn, is based on Scheme's macro technology. DrScheme's syntax extensions are 
completely transparent to DrScheme's tools. At the same time, the elaboration of a syntactic exten- 
sion into core Scheme preserves all necessary information to report the results of an analysis or of 



<article> 
<header> 
<title>Not an Article</title> 
<author> John Clements </author> 

</header> 
<text> 
This is not a newspaper article. 
But if it was, this is where the 
article's text would be. 

</text> 
</article> 

chars 

chars   chars 

Figure 1: Correspondence between concrete and abstract syntaxes 

a program evaluation at the source level. By adding two small extensions that undo the elaboration 
at certain strategic places, we thus ensure that DrScheme's syntax checker checks the syntax and 
context-sensitive properties of S-XML transformations; the static debugger turns into an XML va- 
lidity checker; the stepper shows how the transformations rewrite XML trees at the level of XML 
data constructors; and the interpreter prints XML results and reports errors in terms of S-XML trans- 
formations. In short, the process of embedding the S-XML language into Scheme directly creates a 
full-fledged S-XML environment. 

The following section introduces XML and S-XML; the third section discusses the S-XML 
embedding in Scheme. The fourth and fifth section present DrScheme and the little language envi- 
ronment created with the embedding. The underlying technology is explained in the sixth section. 
The seventh section relates our work to the relevant areas. The last section summarizes our ideas 
and suggest topics for future extensions. 

2   A Running Example: S-XML 

To Illustrate our ideas, we develop a little language - 
ment — for operating on XML documents. 

■ and an accompanying programming environ- 

2.1   XML 

XML (for "extensible Markup Language") is a proposed standard for a family of languages. It was 
designed to provide a middle ground between the universally accepted but inconsistent and seman- 
tically rigid HTML language and the extensible but overly complex SGML family of languages. To 
a first approximation, an XML element may be either character data or a tag pair annotated with 
an optional attribute association list and enclosing a list of zero or more XML elements [3]. In this 
regard, HTML and XML are similar. 

On a deeper level, XML consists of two related parts: a concrete syntax and an abstract syntax. 
Figure 1 shows an example of the concrete syntax and a corresponding abstract syntax tree. 

Specific languages within the XML domain are specified using "schemas". A schema defines 
the set of valid tags, their possible attributes, and constraints upon the XML elements appearing 
between a pair of tags. A schema for the newspaper article language from figure 1 appears in figure 



<schema> 
<element name="header"> 
<sequence> <element-ref name="title"/> 

<element-ref name="author"/> 
</sequence> 

</element> 
<element name="body"> 
<mixed> <pcdata/> <mixed/> 

</element> 
<element name="article"> 

<sequence> <element-ref name="header"/> 
<element-ref name="body"/> 

</sequence> 
</element> 

</schema> 

Figure 2: A simple schema for newspaper articles 

2.1 This schema specifies, among other things, that the header field must contain a title and an 
©author®. The ability to specify XML languages explicitly using Schemas is what most clearly 
separates XML and HTML. 

XML documents are data; in order to use this data, programmers must write programs that 
accept and manipulate it. Walsh [27], a member of the XML design team, states: 

... [I]t ought to take about two weeks for a competent computer science graduate 
student to build a program that can process XML documents. 

The implication is that processing XML data is a tedious and time-consuming process, involving 
the design and implementation of a project-specific package of I/O routines. 

Below the surface syntax, XML expressions are purely trees. Each node is either character data 
or a tagged node containing a set of attributes and a set of subtrees. A program that processes XML 
data will be a tree-processing program. Given the complexity of the defined syntax, it makes sense 
to abstract away from that concrete syntax into a purely tree-based paradigm. 

Once the work of parsing concrete syntax is moved out of the programmer's domain, processing 
XML trees becomes a more manageable task. Many if not most XML programs will consist of a 
small set of tree transformations, taking the data from one XML language into another. For instance, 
a newspaper's web site might be designed to transform an article stored in an XML-structured 
database (as shown in figure 1) into a web page shown to a reader. An HTML document produced 
by such a transformation is shown in figure 3. 

2.2 S-XML 

The simple and specialized nature of XML transformations makes them an ideal candidate for an 
embedded language solution. The language should include special forms for creating and validat- 

'The W3C has not yet settled on a schema standard. The schema shown here is written in a simple illustrative schema 
language designed to be read easily. Also, the trivial Schemas for author and title are omitted. 



<html> 
<headxtitle>Not an Article</titlex/head> 
<body> 
<centerxhl>Not an Article</hl>by John Clements</center> 
<spacer type="vertical" size="20"> 
<p>This is not a newspaper article. But if it was, this 
is where the article's text would be.</p> 

</body> 
</html> 

Figure 3: The result of a simple XML transformation 

ing XML elements, and a mechanism for expressing tree transformations easily. On the other hand, 
a language for XML processing should not preclude the production of more complex programs. 
Rather, it should allow programmers to work with the full power of the general-purpose host lan- 
guage, if they so choose. 

We call our language S-XML. It uses S-expressions to match the tree-based structure of XML 
elements. It provides the xml and lmx forms for creating XML elements and embedding computa- 
tion; the xml-match form to state pattern-based transformations on these elements; and a language 
of Schemas to express language restrictions. We explain these constructs below. 

2.2.1    xml 

The little language must provide language forms for constructing XML elements conveniently, be- 
cause any program that transforms XML data needs to construct XML elements. In other words, 
we must choose a concrete syntax for these elements in the embedded language. 

To take a simple example, a HTML footer might contain a horizontal line and a page number. 
A naive approach would be to directly embed XML's concrete syntax into Scheme strings: 

" <center>page number <em>3</emx/center>" 

The obvious shortcoming of the string representation is its lack of structure; every procedure that 
operates on this data must parse the string all over again. This is wasteful and time-consuming. A 
better way is to specify this data in a structured form. Our language should provide a straightforward 
way to create such "parsed" structures, independent of the representation of these data. Ideally, the 
program text that creates an XML element should closely resemble the XML text itself, less the end 
tag. In the S-XML language, this datum is therefore represented with the following program text: 

(xml {center " page number " (em 3))) 

Within the form (xml...), each nested subexpression is taken to describe an XML element. Just 
as double-quotes and backslashes are used in many languages to denote literal data, xml is used to 
denote XML literals. 

XML elements may also contain attributes. The xml form permits the addition of attributes to 
elements. These attributes appear as an optional (parenthesized) list immediately following the tag 
name. Thus, an HTML body tag with the bgcolor attribute might be written as: 



(define (format-article xml-article) 
(xml-match xml-article {title-string author-string body-text T)       ; keywords 

[(article (header (title title-string) (author author-string)) ; pattern 
(text body-text...)) 

(xml (html (head (title title-string)) ; result 
(body (center (hi title-string) " by " author-string) 

(spacer ((type "vertical") (we "20"))) 
body-text...)))] 

[(page _) ; pattern 
(error 'format-page " badly formatted xml-article")])) ; result 

Figure 4: A simple transformer 

(xml (body ((bgcolor " BLUE"))...)) 

2.2.2 Imx 

With the xml construct, programmers can conveniently specify large XML constants. But pro- 
grammers may also wish to abstract such tree constructions over certain parameters. For example, 
a programmer may wish to specify the footer of a page relative to a page number. To allow an 
"escape" into the parent language, S-XML includes the lmx construct: 

(Imx expression) 

An lmx expression may only occur as a sub-expression of some xml expression. It evaluates 
its subexpression; the result is spliced into the XML tree in place of the Imx-expression. Using a 
combination of lmx and xml forms, a programmer can now easily define a function that produces a 
page footer: 

(define (make-footer page-number) 
(xml (center "page number: " (em (lmxpage-number))))) 

2.2.3 xml-match 

The programmer now has the tools needed to build elements of the desired XML language. Next, 
he needs a mechanism to manipulate these elements in a simple way. The most convenient method 
is to use pattern-matching; our S-XML language provides the xml-match form, to perform pattern- 
matching and tree-processing on XML elements. 

To evaluate an xml-match expression, each pattern is matched against the input. Once a match 
is found, the result expression is evaluated, with the bindings introduced by the pattern-match. 

Figure 4 shows the definition of the HTML-producing transformer illustrated earlier. Note that 
both input and output patterns are specified in the same way that xml elements are. 



(schema 
(element ((name "header")) 

(sequence (element-ref ((name "title"))) 
(element-ref ((name "author"))))) 

(element ((name "body")) 
(mixed (pcdata))) 

(element ((name "article")) 
(sequence (element-ref ((name "header"))) 

(element-ref ((name "body")))))) 

Figure 5: A S-XML Schema for an Article Language 

2.2.4   schema 

One of the most important features of XML is the ability to define and restrict XML languages, us- 
ing formal specifications. Several standards have been proposed for this; S-XML uses our version 
of schemas. A schema describes the set of valid XML elements for a specific XML language. A 
schema is also itself an XML element, and may therefore be described using the same S-XML con- 
ventions. Figure 5 shows the S-XML representation of the schema shown in figure 2. A comparison 
with the XML specification of this schema reveals the similarity between the two. 

3   Building a Little Language 

On the one hand, much of the functionality of a little language may be established by building a 
library of functions and constants. In fact, for some tasks a domain-specific library serves as a 
complete solution to the embedding problem. 

On the other hand, there are language forms that cannot be implemented as ordinary functions. 
Among these are shortcuts for creating structured data (e.g. xml and Imx), language forms that 
introduce variable bindings (e.g. xml-match), and language forms that affect the flow of control in 
non-standard ways (xml-match again). 

These new language forms may be added using macros. Macros are tree-rewriting rules that are 
applied to syntax trees during compilation. They elaborate the language forms of the little language 
into the forms of the host language. In our case, the host language is Scheme. 

3.1   Scheme Macros 

The notion of syntactic abstraction is not a new one. Nearly every general-purpose programming 
language has some facility for declaring and invoking macros. However, the vast majority of these 
are deeply flawed. Macro systems like C's gained a well-deserved reputation as dangerous and 
inelegant. Their ill-considered use often leads to problems for novices and experts alike. Embedding 
a little language in C using these macros would be difficult at best. 

Fortunately, languages like Scheme offer more controlled and useful macro mechanisms. These 
systems operate on expressions, rather than tokens, and they have a well-defined semantics as tree 



transformations. As a simple example, consider the let form of Scheme. The let form binds values 
to variable names. In many languages, this type of operation is built into the language. In Scheme, 
it need not be. Instead, Scheme may implement let with a macro that elaborates each use of the 
form into the application of a procedure. Here is the rewriting rule for let: 

(let ((<var> <exp>)...) <body> ...))    H->    ((lambda(<var> ...) <body> ...) <exp> ...) 

The ellipses are not a notational shorthand but are an integral part of the macro language described 
in the Revised5 Report on Scheme [14]. On the left-hand-side of the macro, they indicate that the 
prior pattern will occur zero or more times, as in a BNF grammar. This input pattern is matched 
against the input, and where ellipses occur, bindings of lists are created. The right-hand-side pattern 
uses ellipses to generate sequences of output patterns drawn from these bindings. The components 
of the matched patterns may be split from each other, as illustrated by the let macro shown here. 

3.2   Building S-XML 

S-XML is implemented as an embedding within Scheme. The embedding (comprising the forms 
enumerated in section 2.2) is constructed as a combination of a small functional library and a set of 
macros. 

The xml form is implemented as a single macro. This macro transforms uses of the xml form 
into expressions that construct Scheme data. The form also permits the omission of empty attribute 
fields; it is this kind of syntactic shorthand that gives the little language one of its true advantages 
over the unmodified general-purpose language. The action of the xml macro is shown in this exam- 
ple, where an xml form is translated into Scheme code that creates a structure: 

(xml (center "Text: " (Imx (get-text)))) i-> (make-center (list) (list "Text: " (get-text))) 

Each use of the schema form elaborates into a structure declaration and a type declaration.2 An 
example of this macro's translation is shown here: 

(schema .,    . 
(element ((name " elt")) *-*        .   (define-struct elt (attrs elements)) 

/ , *,, ,,       ...... (define-type elt (cons other null))) 
(element-ref ((name "Other")))))) v   J       /y 

Note that adopting a richer schema language is simply a matter of modifying a single macro; no 
other code needs to change. 

The xml-match form is implemented using a macro in conjunction with a library function. 
The macro delays the evaluation of the patterns and their matching expressions. It also provides 
bindings for any pattern variables that occur in the expressions. The function accepts a value and 
these pattern-expression pairs, and evaluates the first expression whose pattern matches the input 
value. 

2DrScheme uses a type inference system called MrSpidey, described in more detail in section 4. 



A transformer that takes centered text to italicized text is elaborated like this: 

(xml-match-fii (xml (center 3)) 
(xml-match (xml (center 3)) (list 'text) 

(text) ^ (list 
((xml (center text)) (list' (center text) 
(xml (italic text)))) (lambda (text) 

(xml (italic text)))))) 

The xml-match-fn procedure is a part of S-XML's runtime library. 
With the addition of these three forms, Scheme becomes S-XML, a little language ideal for con- 

structing and manipulating XML-like data, along with the full gamut of Scheme values. Variables 
and functions are inherited from Scheme. As a result, first-semester undergraduates can program 
using XML in a matter of days, rather than the weeks of work that are supposedly required. 

4   DrScheme 

Building an S-XML evaluator using macros and functions is not enough. This is the lesson that we 
as programmers have learned in the course of implementing many languages, both little and large. 
In fact, for a "from scratch" little language implementation, the execution framework is a small 
fraction of the total work required to make the language usable. To use a language productively, 
programmers need a host of related tools: editors, checkers (syntax and semantic), debuggers, li- 
braries, and the like. We demonstrate these ideas with the DrScheme programming environment [7]. 

DrScheme is a programming environment for the Scheme language. It is a graphical, cross- 
platform environment for developing programs. It includes a syntax-sensitive editor, a read-eval- 
print loop, a syntax checker, a stepper, and a static type checker. The challenge is to reuse these 
tools in the design and execution of an embedded language. 

Scheme programs are composed entirely of S-expressions, and DrScheme's editor takes ad- 
vantage of this in many ways. It provides a set of S-expression-directed movement and editing 
functions. It supports dynamic parenthesis-matching, as well as static highlighting of S-expressions 
adjacent to the cursor. DrScheme automatically indents lines, and unmatched parentheses are high- 
lighted in red. 

Another of the tools DrScheme provides is a syntax-checker. This tool performs a number of 
tasks: 

1. it identifies and highlights syntax errors; 

2. it highlights unbound identifiers; 

3. it draws arrows from bound identifiers to their binding occurrences; and 

4. it permits alpha-renaming, whereby all occurrences of an identifier in a given declaration 
scope may be renamed consistently. 

The syntax checker is useful for beginners, as it helps them to understand the syntax of the 
source language. The checker is also useful for experienced programmers, who generally make 
more syntactic mistakes than they would like to admit. 



DrScheme also features a symbolic algebraic stepper, which can display a program's execution 
as an algebraic calculation, according to a standard reduction semantics for Scheme. The step- 
per shows each step of the execution as a rewriting step; the "before" and "after" expressions are 
displayed, and the difference is highlighted. The stepper is useful both in debugging and in under- 
standing the details of the language semantics. 

DrScheme provides static type-checking through MrSpidey [8]. MrSpidey performs type infer- 
ence by using set-based analysis [10, 2] to associate a set of values with each program location. 
When MrSpidey cannot guarantee that the application of a primitive will not cause an error, it flags 
the location of the primitive's application. Furthermore, MrSpidey provides useful information to 
the user in the form of graphical inference chains. If an inappropriate argument might reach a prim- 
itive, MrSpidey visually depicts the execution path whereby this argument arrives at the erroneous 
application. 

MrSpidey also has an explicit assertion mechanism, of the form (: expression type). Using this 
form, the user may force MrSpidey to check whether an expression is guaranteed to evaluate to a 
given type. So, for instance, the assertion (: (+ 3 5) str) fails, because the result of evaluating (+ 3 
5) is a number rather than a string. 

DrScheme supports plugins, called Teachpacks for historical reasons. Any DrScheme pro- 
gram may be evaluated with one or more plugins enabled. These plugins are encapsulated using 
DrScheme's unit system [9], which guarantees that only the intended plugin's functions are ex- 
posed, and also that the plugin's meaning will not be affected by the user's code. 

5   Building a Little Language Environment 

In order to deliver a useful programming environment to the programmer, DrScheme's tools must 
work seamlessly with the new forms of S-XML. In the following sections, we examine several of 
DrScheme's tools and how their behavior must change to accommodate the embedded language. 

5.1 Editing 

Since the little language consists entirely of tree-structured expressions, the editor's features are 
inherited immediately; editing programs in the little language is as convenient as editing Scheme. 
The only modification required to the programming environment is the addition of the xml-match 
keyword to the list of specially indented keywords in DrScheme's preference panel. 

5.2 Check Syntax 

The Check Syntax tool is designed to work transparently through macros. No modification whatso- 
ever is required to extend the syntax checker for an embedded language. 

The syntax checker is particularly useful for embedded languages, where the language's syntax 
is often described informally. For instance, even an experienced programmer might be surprised 
when using an embedded language to discover that certain identifiers are unbound, or are bound to 
locations other than expected. 

For an example of this, see figure 6, an example using the S-XML language. In particular, 
this example shows the definition of a simple web page, using the xml and Imx forms. The bind- 
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Figure 6: Check Syntax works through macros 

ing arrows show how make-home-link and home-link-text are bound, and the red highlighting3 on 
backgronud-color indicate that this identifier is unbound (in this case, because of a simple typo). 
Finally, the 'rename ... to' box shows how users can rename all occurrences of a specific binding in 
an S-XML transformation. 

5.3   The Stepper 

When a programmer embeds a little language within Scheme, the stepper should be transparent with 
respect to the macros and libraries introduced by the embedded language. In other words, it must 
"step" in a manner that corresponds to the reductions of the embedded language, rather than the 
host language. 

S-XML embeds several forms within Scheme; each has a natural reduction sequence. The xml 
form must simply be transparent; xml values are displayed as such, and computation within these 
terms (using the lmx form) are properly embedded. The schema form is trivial, as it contains no 
runtime computation. The xml-match form shows steps corresponding to the location of the proper 
pattern, and those within the corresponding pattern. 

Figure 7, shows a step in the evaluation of a simple HTML construction. The stepper highlights 
the reducible subexpression in green, and the resulting subexpression in purple. The call to make- 
page-footer is replaced by the body of the procedure, and the value of the argument is substituted in 
the bound location in the body. 

3On a grayscale printer, this will appear gray. 
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Figure 7: The stepper works through macros 

5.4 Validity Checking 

MrSpidey provides an assertion mechanism to enable programmers to check statically that certain 
variables may only be bound to values of a given type. The natural extension of this assertion ability 
in the S-XML language is to use the assertion operator for validity checking. In S-XML, a schema 
expands into a MrSpidey type definition. 

This type definition may then be used to implement S-XML validity checking, as shown in 
figure 8. Rather than a body, this article has simply a string. This is illegal, by the schema that 
appears above. Therefore, MrSpidey highlights the offending assertion in red. The path from the 
string to its use in the xml form is indicated by a series of arrows. 

5.5 Plugins 

DrScheme's plugin system also proves useful in the S-XML language embedding. For instance, 
the "simple-cgi" plugin permits users to build and test cgi scripts. Using this plugin, programmers 
can write programs which interact directly with a web browser, either by using a simple "question 
& answer" interface, or by sending a complete HTML form. The S-XML language provides the 
needed forms to easily construct these HTML forms. 

In figure 9, the simple-cgi Teachpack is used to interact with the user directly. Note that in this 
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Figure 8: MrSpidey catches validity errors 

case, we may also use the stepper to trace the execution of the script. 

6   How It All Works 

The extension of DrScheme's programming tools to S-XML is largely automatic. The key tech- 
nologies required are source correlation and rectifiers. 

In DrScheme, source elaboration of macros is performed by McMicMac [19]. McMicMac 
transforms a source file (a character stream) into an abstract syntax tree. Each term in the tree has a 
reference to some position of the source file. These references are preserved by McMicMac's sub- 
sequent macro elaboration, so that each term in the fully elaborated program has a direct reference 
to a source location. This elaborated program goes to the evaluator for execution. 

As a consequence, the static tools (including the syntax-checker and MrSpidey) operate trans- 
parently with respect to macros. These tools draw conclusions about the elaborated program, and 
display the results using source-correlation indirection. Hence, they require no modification what- 
soever to accommodate the embedded language. 

The interpreter and the stepper draw heavily on source correlation as well. However, since these 
tools are not static, they must also display the runtime values and expressions of the embedded 
language. DrScheme employs rectifiers to perform these back-translations. There are two types of 
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Figure 9: Using Plugins to Test CGI Scripts 

rectifiers: value rectifiers, and expression rectifiers. 
A little language that enriches the value set of the host language must include a way to display its 

values to the user. Value rectifiers perform this translation. That is, if the little language introduces 
new language forms for the creation of data, the programming tools should display the resulting 
values using the same forms that the programmer employed to create the data. In S-XML, the 
following interaction4 illustrates this: 

> (xml (center " page number" (em (Imx (+ 1 2))))) 
(xml (center " page number " (em 3))) 

Rather than displaying the value in an internal format, the printer uses the concrete syntax asso- 
ciated with the little language. Since value rectifiers deal exclusively with runtime values, they 
have no need of source correlation. A value rectifier provides a mapping from values to displayed 
information. 

The second category of rectifier comprises the expression rectifiers. These arise in the operation 
of the stepper, which must reconstruct each step within the host language's evaluator as a step within 
the embedded language. In some cases, the elaborated forms may have been partially evaluated. 
For instance, the evaluation of the xml-match form may proceed through many reductions. Each 

4Value rectifiers are currently implemented for the stepper, but not for the read-eval-print loop. 
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of these must be displayed as an xml-match term. Expression rectifiers make heavy use of source 
correlation information, as they must reconstruct source terms based upon the history of macro 
elaboration imposed upon the source. 

For the S-XML language, we have constructed these rectifiers explicitly. Future work includes 
generating them automatically from the macros and libraries that make up the language embedding. 

7   Related Work 

Our work relates to four distinct areas of research. They are, in descending order of relevance: the 
construction of programming environments; the embedding of little languages in host languages; 
the problem of debugging optimized code; and transformation languages for XML. EMACS is 
by far the most prominent effort to produce an extensible and customizable programming envi- 
ronment [23]. With a few hundred lines of EMACS code, a programmer can create an EMACS 
mode that assists with some syntactic problems (indentation, syntax coloring) or with a read-eval- 
print loop (source correlation of run-time environment). But, the EMACS extensions have to be 
produced manually; they are not connected or derived from the little language embedding. 

Most other work on the construction of programming environments focuses on the creation of 
tools from language specifications. For example, Teitelbaum, Reps, and others have created the 
Cornell Synthesizer Generator [21], which permits programmers to use attribute grammar technol- 
ogy to define syntax-directed editors. The ASF+SDF research effort [16] has similar, but more 
comprehensive goals. A programmer who specifies an algebraic-denotational semantics for a little 
language can create several interesting tools in this framework. In contrast, our work concentrates 
on the pragmatic problem of creating or prototyping language tools rapidly. In particular, we accom- 
modate an existing implementation without any modifications. Given that most implementations are 
not derived formally, our work has greater potential to be applied to other environments. 

Second, our most interesting technical problem concerns the relationship between the execution 
of elaborated code and the source text. At first glance, this suggests a commonality between our 
work and the work on debugging optimized object code. More specifically, code optimizations are 
problematic for debuggers and our algebraic stepper. Both need to cope with code transformations 
when they interrupt the execution of a program. Hennessy [11], Adl-Tabatabai and Gross [1], 
and Cooper, Kennedy and Torczon [4] describe solutions to the problem of debugging optimized 
code. We believe, however, that the two communities apply different techniques for the backwards 
translations due to the radically different levels of languages. We are currently studying whether 
the techniques carry over from the debugging to the stepping problem and whether the adaptation 
of these techniques has any advantages. 

Third, although our paper is not about techniques for language embeddings, it heavily draws 
on ideas in that area. The history of language embeddings starts with LISP [24] and Mcllroy, who 
introduced the notion of macro transformations in 1962 [20]. Over the past decade, the Scheme pro- 
gramming language introduced three important innovations in macro systems. First, Kohlbecker, et 
al. [ 17] showed how to render macro expanders hygienic, that is, make them compatible with the lex- 
ical structure of a host language. Second, Kohlbecker and Wand introduced the macros-by-example 
specification method [18]. Last, but not least, Dybvig, Hieb and Bruggeman [5] implemented the 
first source-correlating macro system; our work is based on the more powerful McMicMac program 
elaborator[19]. 
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More recently, other language communities have rediscovered the idea of embedding languages 
for reuse. Fairbairn [6], Hudak [12], Wallace and Runciman [26] use Haskell's infix operators and 
higher-order functions to embed little languages,5 including a little language for XML; Kamin and 
Harrison [13] are working along similar lines, using SML. More recently, Oleg Kiselyov [15] has 
also worked to embed XML within Scheme. All of these efforts focus on embedding techniques; 
none has paid attention to the programming environments of little languages. 

Fourth, our paper, like that of Wallace and Runciman [26] and Thiemann[25] address the prob- 
lem of transforming XML elements. Our solution solves a problem from which both of the other 
approaches suffer. Specifically, using S-XML programmers can specify XML trees in a generic 
manner yet they still get the benefits of XML validity checking. 

8   Conclusion 

We must learn to re-use all levels of language technology in the construction of little languages. 
The potential benefits are enormous. Shivers [22] reports that his version of AWK, which is more 
powerful than the original, is one tenth of the original's size. A small implementation is also easy 
to manage and to change. Hence, an embedded language is easier to extend than a stand-alone 
language. An improvement to the host language generally improves the embedded language(s) 
immediately. Finally, if one language plays host to several embedded languages, programs in the 
latter can easily exchange structured forms of data, e.g., lists, trees, arrays. In contrast, stand- 
alone implementations must employ the operating system's tool box, which often means that "little 
language programmers" must write parsers and unparsers. 

With this paper we wish to contribute to the argument for language embeddings, and we hope 
to direct the attention of researchers to the programming environments of little languages. More 
centrally, we illustrate how an embedding also creates a powerful programming environment for 
little languages. The construction hinges on three properties of the host language and environment. 
First, the host language must have a mechanism for defining new language constructs. Otherwise 
the user of a little language must immediately know everything about the host language. Second, the 
mechanism must translate instances of the new constructs in such a manner that the tools can report 
results in terms of the surface syntax. Finally, the tools must not contain hard-wired assumptions 
about the source language. 

For our example, we had to add two small functions to two environment tools: one for translating 
Scheme values back into S-XML syntax, and another one for reconstructing an S-XML construct 
that has a multi-step algebraic reduction semantics. Based on our experience, we conjecture that 
this effort can be automated and we plan to tackle the problem in the future. 

References 

[1] Adl-Tabatabai, A.-R. and T Gross.   Source-level debugging of scalar optimized code.   In 
Programming Language Design and Implementation, May 1996. 

5These efforts use higher-order functions to express little language programs because the chosen host languages do 
not provide facilities for defining new language constructs that declare variables. A detailed discussion of this distinction 
is irrelevant to the topic of our paper. 

16 



[2] Aiken, A. Introduction to set constraint-based program analysis. Science of Computer Pro- 
gramming, 1999. 

[3] Bray, T., J. Paoli and C. Sperberg-McQueen. Extensible markup language XML. Technical 
report, World Wide Web Consortium, Feburary 1998. Version 1.0. 

[4] Cooper, K. D., K. Kennedy, L. Torczon, A. Weingarten and M. Wolcott. Editing and compiling 
whole programs. In Software Engineering Symposium on Practical Software Development 
Environments, December 1986. 

[5] Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme. Lisp and Sym- 
bolic Computation, 5(4):295-326, December 1993. 

[6] Fairbairn, J. Making form follow function: An exercise in functional programming style. 
Software—Practice and Experience, 17(6):379—386, June 1987. 

[7] Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen. DrScheme: A ped- 
agogic programming environment for Scheme. In International Symposium on Programming 
Languages: Implementations, Logics, and Programs, number 1292 in Lecture Notes in Com- 
puter Science, pages 369-388,1997. 

[8] Flanagan, C, M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Catching bugs in the 
web of program invariants. In ACM SIGPLAN Conference on Programming Language Design 
and Implementation, pages 23-32, May 1996. 

[9] Flatt, M. and M. Felleisen. Cool modules for HOT languages. In ACM SIGPLAN Conference 
on Programming Language Design and Implementation, 1998. 

[10] Heintze, N. Set Based Program Analysis. PhD thesis, Carnegie Mellon University, October 
1992. 

[11] Hennessy, J.  Symbolic debugging of optimized code.   Transactions on Programming Lan- 
guages and Systems, 4(3):323-344,1982. 

[12] Hudak, R   Modular domain specific languages and tools.   In International Conference on 
Software Reuse, 1998. 

[13] Kamin, S. and D. Hyatt. A special-purpose language for picture-drawing. In USENLX Confer- 
ence on Domain-Specific Languages, 1997. 

[14] Kelsey, R., W Clinger and J. Rees. Revised5 report on the algorithmic language Scheme. ACM 
SIGPLAN Notices, 33(9), October 1998. 

[15] Kiselyov, O.    Scheme and XML.    Unpublished Manuscript. Available on the web at: 
http://pobox.com/oleg/ftp/Scheme/xml.html. 

[16] Klint, R A meta-environment for generating programming environments. ACM Transactions 
on Software Engineering and Methodology, 2(2): 176-201,1993. 

[17] Kohlbecker, E. E., D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro expansion. 
In ACM Symposium on Lisp and Functional Programming, pages 151-161,1986. 

17 



[18] Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic transformations from 
their specifications. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming 
Languages, pages 77-84, 1987. 

[19] Krishnamurthi, S., M. Felleisen and B. F. Duba. From macros to reusable generative program- 
ming. In International Symposium on Generative and Component-Based Software Engineer- 
ing, September 1999. To appear in Springer-Verlag Lecture Notes in Computer Science. 

[20] Mcllroy, M. D. Macro instruction extensions of compiler languages. Communications of the 
ACM, 3(4):214-220,1960. 

[21] Reps, T. W. and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag, 1989. 

[22] Shivers, O. A universal scripting framework or, Lambda: the ultimate "little language". In 
Jaffar, J. and R. H. C. Yap, editors, Concurrency and Parallelism: Programming, Networking 
and Security, pages 254-265. Springer-Verlag, 1996. LNCS 1179. 

[23] Stallman, R. EMACS: the extensible, customizable, self-documenting display editor. In Sym- 
posiumon Text Manipulation, pages 147-156,1981. 

[24] Steele, G. L., Jr. and R. P. Gabriel. The evolution of Lisp. In Bergin, T. J., Jr. and R. G. Gibson, 
Jr., editors, History of Programming Languages—II, pages 233-308, 1996. 

[25] Thiemann, P. Modeling HTML in Haskell. In Practical Applications of Declarative Lan- 
guages, January 2000. 

[26] Wallace, M. and C. Runciman. Haskell and XML: Generic document processing combina- 
tors vs. type-based translation. In ACM SIGPLAN International Conference on Functional 
Programming, September 1999. 

[27] Walsh, N. A technical introduction to XML. World Wide Web Journal, Winter 1997. 

18 



XML-Based Integration of Interface Definition 
Language Extensions 

Bernd J. Krämer 
Department of Electrical and Information Engineering 

FernUniversität 
58084 Hagen, Germany 

bernd. kraemer@fernuni-hagen. de 

H.-Arno Jacobsen       ,    . 
Department of Electrical and Computer Engineering and 

Department of Computer Science 
University of Toronto 

Toronto, Ontario, Canada 
jacobsen@eecg. toronto. edu 

1   Introduction 

Standard middleware platforms offer interface definition languages (IDLs) to sup- 
port component reuse and interoperability in a heterogeneous computing context. 
IDLs typically allow the specification of component and interface names, the sig- 
nature of operations a component can perform, and possible exceptions that might 
be raised during operation execution. This limitation to syntactic aspects ensures 
that IDLs are applicable to a wide range of application domains, can be mapped to 
a variety of implementation languages, and are easy to learn. 

When components are used in mission critical applications, however, more 
documented information is needed about essential properties of a. component to 
determine how it will behave in the intended context. In [3] Beugnard et al. dis- 
tinguished four levels of abstraction to organize the specification of a component's 
properties: 

• a syntactic level, which is covered, e.g., by OMGIDL, ODL, DCEIDL, or 
M-IDL, 

• a behavioral level addressing functional properties of operations, e.g., in 
terms of pre- and post-conditions, 

• a synchronization level taking into account that a component might be oper- 
ating in a concurrent environment, and 
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• a quality of service (QoS) level at which timing requirements, throughput, or 
precision attributes can be formally documented. 

In the literature, we can find a range of proposals for extending IDLs with behav- 
ioral specifications [31], synchronization constraints [16], real-time requirements 
[25,29], or quality of service specifications [32]. In essence, such extensions break 
through the abstractions provided by the middleware platform at hand and allow 
users to specify aspects of an application normally hidden in code and behind trans- 
parency mechanisms of the actual middleware. 

A crucial issue of all these proposals is, however, the question how they are 
implemented. A straight-forward attitude is to wait for the proper extension of the 
proposer's preferred middleware standard and its implementation by a vendor. But 
standardization endeavors take time and sometimes never materialize. Conversely, 
applications that would exploit such IDL extensions prior to standardization are 
not portable as long as they depend on proprietary platform extensions. 

To escape this trap, we proposed in [12] to leave IDL untouched and rather 
include synchronization constraints as comments in IDL interface definitions. The 
IDL file is then processed as usual with a standard IDL compiler, while the an- 
notated IDL specification is compiled separately with a dedicated tool into code 
implementing proper sanity checks. In [13] this idea was carried further to the 
presentation of a collection of design patterns proposing ways to integrate code 
fragments implementing IDL extensions transparently with the skeleton code gen- 
erated by standard IDL compilers. The price for this approach was the need for a 
disciplined use of comments in the IDL specification to avoid that the tool process- 
ing the synchronization constraints gets confused by informal comments. 

In this paper we further explore this idea by using the extensible Markup Lan- 
guage XML [4] as a meta grammar to specify the syntax of the IDL and the given 
specification extension uniformly. A first design of this idea was published in [14]. 
The structured XML document provides an adequate basis for a semantic process- 
ing of extended component specifications. We sketch the design of a tool that re- 
lies on emerging XML technology such as XLS (extensible Stylesheet Language) 
Transformations (XSLT) to process the extended interface definition language. Al- 
though originally designed for presentation purposes, XLST can also be used to tra- 
verse an XML document and transform it into programming language code, in our 
case code that implements functional specifications, synchronization constraints, 
or QoS requirements. This concept builds on the old idea of syntax-directed trans- 
lation schemes [1]. 

The remainder of this paper is organized as follows. Section 2 surveys some 
interface definition language extensions described in the literature. Section 3 devel- 
ops the framework for specifying IDL extensions and demonstrates how to express 
IDL with XML and codify IDL extensions with XML. Section 4 sketches the de- 
sign of a language processing tool based on syntax-directed translation schemes. 
In the appendix we include the full XML DTD for OMG IDL. 
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2   Survey on IDL Extensions 

IDLs have been designed to provide interfaces to components, while keeping 
the interface independent of the choice of the actual component implementation 
language The design of an IDL is also constrained by the set of intended target 
languages. For OMG IDL, for instance, this set includes languages as diverse as 

C, C++, Java, Cobol, Ada, and Lisp. 

2.1   IDL Extensions 

Much research work has focused on annotating IDL with behavioral extensions, 
such as pre- and post-conditions, invariants, abstract operation semantics, data in- 
tegrity conditions, and Horn clauses [24,23, 6]. 

Synchronization level specifications state legal partial orderings of operation 
invocations at a component's interface. They reflect causal dependencies between 
services provided by a component and give rise to static and dynamic checking of 
a client-server interaction. Path-expressions [27], IPDL (Interaction Protocol Defi- 
nition Language) [5], and regular types for active objects [19] were proposed to en- 
force the sequencing of operation executions, while Petri nets [8] and other mecha- 
nisms for expressing richer synchronization constraints are presented in [7,26,16]. 
They address additional properties such as mutual exclusion, synchronization dis- 
tance and fairness for protecting shared resources in concurrent environments. 

Specification notations and implementation concepts for handling real-time 
constraints (such priorities, deadlines, or execution time) and QoS attributes (such 
as allowed response delay, required bandwidth, resource needs, or precision ot re- 
sponse) have been proposed in [25,2,29, 32]. 

Other IDL extensions include object co-location constraints and coordination 
constraints [10], data parallelism [15], security annotations [9], and component 
definition language extensions [18,20]. 

2.2   Processing Extended IDL 

In CORBA DCE, DCOM, and many RPC systems, an IDL specification is pro- 
cessed by a stub compiler that generates stub code for client and server side use. 
This stub code enables communication between components across address spaces 
and machine boundaries according to the mechanisms of the underlying nuddle- 
ware standard. The stub code manages the packaging and marshaling of service 
invocations on the client side and provides corresponding reverse operations (un- 
marshaling, unpackaging) on the server side. 

For the implementation of IDL extensions various solutions have been pre- 
sented in the literature. Many of the above listed language extensions directly 
modify the IDL syntax by including additional keywords (e.g., [24,30]). This ap- 
proach is tied to the particular platform used and the resulting application code is 
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not portable. 
In previous work we have proposed to extend IDL by embedding synchroniza- 

tion annotations as comments [16]. This has the advantage that extension unaware 
IDL compilers are still able to process the specification, whereas extension aware 
compilers may fully exploit the annotations. The drawback of this approach that an 
undisciplined provision of comments may confuse the extension aware compiler. 

A third alternative relies on programming conventions. Interface attributes and 
operation arguments are used to encode specifications of real-time constraints as 
proposed in [25,29]. The programmer has to obey naming conventions that are en- 
forced by a specialized language processor, which is also responsible for providing 
the proper stub code. This solution is constrained by the same portability argument 
as the first approach. 

In [13] we have developed the extension adapter design pattern that allows ap- 
plication developers to integrate the code implementing his IDL extensions with 
the server side skeleton code generated from the standard stub compiler. This 
approach is applicable to all IDL extensions that operate on a component's state 
across multiple operation invocations. 

In contrast to this category of extensions, some of the QoS notations discussed 
in the literature require support from lower middleware layers. As this support 
is not available in standard platforms, a portable approach for these extensions is 
feasible by now. 

3   XML Based Framework for Extended IDL 

XML has become a popular language for describing structured documents. Al- 
though often stated, XML languages have no predefined application-level process- 
ing semantics and XML processors have no inherent understanding of document 
semantics. XML just captures a document's syntactic structure. But a growing 
number of XML related languages and tools for processing XML specifications 
are becoming available. Examples include: XSL, the style sheet language; XSLT, 
the XML transformation language, which uses XSL, and XPath, a language for 
addressing parts of an XML document. 

The integration of XML technology with middleware platforms is an emerg- 
ing paradigm [28]. Compilers for translating IDL specifications into XML, for 
instance, exist [22]. Most major database management systems support XML. It 
is therefore straightforward to create a repository for the extended interface defini- 
tion language. Most middleware products implement their own repositories, which 
cannot be extended, to also manage the proposed IDL extensions. 

In the sequel we use OMG IDL and the features of the CORBA middleware 
platform to illustrate our ideas. However, our approach extends to other middle- 
ware platforms, such as DCOM (Distributed Component Model) with the M-IDL 
(Microsoft Interface Definition Language), as well. 
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3.1   ADTDforOMGIDL 

We start from a document type definition (DTD) for IDL, which is compliant to the 
OMG CORBA standard [21] (see the Appendix for a full reference DTD of OMG 
IDL). Then we show how to model and integrate IDL extensions in terms of DTDs. 
Figures 1 and 2 illustrate the tree structure spanned by the IDL constructs inter- 
face and one of its constituents, namely operation. (We avoid presenting the 
textual form of an XML specification as its readability is limited.) 

Figure 1: Structure of the DTD for the IDL interface construct 

A component interface in IDL has a name, a possibly empty list of names of 
interfaces, zero or more attributes, operations and type signatures, 
exceptions, and few other elements. The details of an operation signature 
are depicted in Fig. 2. 

An IDL operation consists of a return type (typeref), an operation name, an 
optional qualifier oneway that, when available, indicates a non-blocking operation 
invocation, a parameter list whose elements are qualified as in, out or inout 
parameters, a clause for raising an exception (RAISES), and a context clause. 
Fig. 3 shows an example of an IDL interface including two operations and two 
attributes. The corresponding XML code is given in Fig. 4. 

Assuming an XML-capable editor, the specification of a component interface 
in XML is not much different from the specification of the interface in IDL. The 
XML specification can be easily processed to yield the tag-free interface specifica- 
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NAMEg      A • ONEWAY, 
string J [string 

Figure 2: Structure of the DTD for an IDL operation 

Interface BankAccount { 
void deposit (in Euro amount); 
void withdraw (in Euro amount); 
Euro balance (); 
Euro overdraftLimit (); } 

Figure 3: IDL specification of the interface of a simple bank account 
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<?xml version = "1.0" encoding = "ISO-8859-l"?> 
<!DOCTYPE IDL SYSTEM "idl.dtd"> 
<IDL> 

<INTERFACE NAME = "BankAccount"> 
<OPERATION NAME = "deposit"> 

<TYPEREF NAME = "void"/> 
<IN NAME = "amount"> 

<TYPEREF NAME = "Euro"/> 
</lN> 

</OPERATION> 
<OPERATION NAME = "withdraw"> 

<TYPEREF NAME = "VOid"/> 
<IN NAME = "amount"> 

<TYPEREF NAME = "Euro"/> 
</lN> 

</OPERATION> 
<ATTRIBUTE NAME = "balance"> 

<TYPEREF NAME = "Euro"/> 
</ATTRIBUTE> 
<ATTRIBUTE NAME = "overdraftLimit"> 

<TYPEREF NAME = "Euro"/> 
</ATTRIBUTE> 

</INTERFACE> 
</lDL> 

Figure 4: IDL specification of the interface BankAccount 
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tion satisfying the OMG standard. 

3.2   Adding a DTD for Synchronization constraints 

We specify IDL extensions in the same way as we did with standard IDL but take 
into account that both DTDs can be merged and the new DTD becomes a new el- 
ement of the bare IDL DTD (i.e., the merged DTD replaces the "old" IDL DTD). 
Figure 5 presents the tree representation of an incomplete DTD for specifying syn- 
chronization constraints as proposed first in [16]. (Element other is just an ab- 
breviation for other constraint operators, which are of no interest here.) 

♦ SYNC CONSTRAINT, 

Figure 5: Structure of the DTD for synchronization constraints 

Merging this DTD and the IDL DTD introduced in the previous subsection 
yields a new DTD in which sync_constraint is a new alternative in the list of 
elements of an interface. The annotated IDL specification in Fig. 6 illustrates 
both the inclusion of synchronization constraints and behavior specifications in- 
spired by [3]. The DTD defining the syntax of the behavioral specification, which 
uses relational operators and boolean and arithmetic expressions on operation and 
attribute names, is not shown here. 

Interface BankAccount { 
void deposit (in Euro amount); 
// {pre: amount > 0} 
// {post: balance() = balance()©pre + amount} 
void withdraw (in Euro amount); 
// ... 
// {invariant: balance() >= overdraftLimit() 
// {syncc: mutex (deposit, withdraw) 

Figure 6: BankAccount interface enhanced with behavioral specifications and syn- 
chronization constraints 

The mutex constraint serves to ensure that invocations of deposit and with- 
draw operations may not overlap. In [12] we have shown how such specifications 
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of synchronization constraints can be mapped into code. This code maintains two 
state variables for each operation affected by such constraints. The state variables 
keep track of two types of events: the start of an operation execution and its ter- 
mination. The code observes guards in such a way that an operation execution is 
deferred or rejected unless the guard is true. A guard simply relates the numbers 
of occurrences of these events to implement the semantics of the mutex and other 
synchronization operators. 

4   Design of an extended IDL Processor 

The design of a processor for extended IDL was inspired by previous work on a 
language definition environment that supported complex structure driven compu- 
tations and object transformations [17]. This work relied on the old idea of syntax- 
directed translation schemes that were developed in the framework of parsing and 
compilation theory to specify mappings from one language to another. Following 
the structure of a language, syntax-directed translation schemes are "generation 
techniques ... interspersed with parsing operations" [1]. 

Syntax-directed translation schemes (SDTS) associate the nonterminals and 
production rules of two context free grammars G\ and G2. An SDTS defines a 
mapping which, given a parse tree built according to the rules of grammar Q,, de- 
termines a tree according to the rules of grammar Gi and hence a text written in the 
second language. In the simplest case an implementation of a translation scheme is 
a pure tree manipulation. More complex implementations have interspersed pars- 
ing and unparsing operations that interpret the output terminal symbols of GQ as 
calls to output actions. 

The processing environment sketched in Fig. 7 is based on XPath, XSLT, and 
XSL. A preliminary design has been published in [14]. XPath operates on an XML 
document represented internally as a tree. XSL and XSLT serve to specify trans- 
lation rules and output actions. XSLT provides template rules with patterns. The 
pattern serves to identify the XML nodes to which the template applies. 

In Fig. 7 we denote the extended interface definition language by XIDL and 
bare IDL simply by IDL, whose XML format is defined through a DTD, denoted 
by IDL. dtd as discussed in Section 3.1. The IDL extension is captured in a sep- 
arate DTD extension.dtd, which substitutes or extends selected elements in 
IDL. dtd. The merge of both DTDs constitutes the DTD of the extended inter- 
face definition language denoted by XIDL.dtd. The latter corresponds to G\, 
while the syntax G% of the target programming language is implicitly defined in 
the XLST definition of translation rules and output actions. The XIDL processing 
tool transforms the input language XIDL to a suitable output format, such as Java 
stubs and skeletons, via XSLT transformation rules. 

The support code implementing the IDL extensions is integrated with the stub 
and skeleton code according to the extension adapter design pattern defined in 
[13].  Stubs and skeletons must either be based on the dynamic invocation and 
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< Xinterface.xml > stubs skeletons support code 

Figure 7: XML DTD processing stages to synthesize XIDL processor. 

the dynamic skeleton interface or they must exploit the Java portability layer as 
the stub or skeleton ORB interfaces, respectively, are not specified in the CORBA 
standard (cf., e.g., [11] for implications and limitations). 

5    Conclusion 

In this paper we have introduced a framework to specify IDL and IDL extensions 
in a combined specification language based on XML document type definitions. 
We have demonstrated how this framework can be used to model different IDL 
extensions. Moreover, we have sketched a design of a processor for extensible 
IDL (XIDL). 

We are currently working on an implementation of this framework based on 
standard XSLT processing tools. As outlined above, our implementation will only 
be able to exploit the less performant dynamic interfaces of current ORBs. An- 
other alternative is the Java portability interface, which is only available for ORBs 
conformant to the standard Java language mapping. This limited range of choices 
is due to limitations in the openness and extensibility of the CORBA standard [11]. 

We intend to base our approach on the XML Schema standard1 by replacing 
the IDL DTD by an XML schema definition of IDL. This will allow us to include 
more rigorous type information in interfaces and thus improve type checking of 
service interfaces expressed in XML. 

Appendix: Full DTD for OMG IDL 

The following constitutes a complete XML DTD for OMG IDL, compliant to 
CORBA 2.2 [21]. This DTD does not include the recently added language identi- 

'See http://www.w3.org/XML/Schema 
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fiers, such as object-by-value argument passing, which could easily be added. 
<?xml version="1.0" encoding="iso-8859-l"?> 

<!-- --> 
<!-- A DTD for OMG IDL, compliant to CORBA 2.2 --> 
<!-- --> 

<! ELEMENT IDL ( COMMENT | DECLARATION | MODULE | INTERFACE )* > 

<!ELEMENT COMMENT (#PCDATA) > 

<! ELEMENT DECLARATION      ( CONSTRUCTEDJTYPE | CONSTANT | EXCEPTION | 
FWD_REFRENCE )* > 

<! ELEMENT CONSTRUCTEDJTYPE ( STRUCTURED_TYPE | TYPEDEFED_TYPE )* > 

<! ELEMENT STRUCTUREDJTYPE  ( STRUCT | UNION | ENUM ) > 

<! ELEMENT TYPEDEFEDJTYPE   ( ARRAY | BND_SEQUENCE | 'UNBND_SEQUENCE | STRING | 
TYPEDEF ) > 

<!ELEMENT FWD_REFRENCE EMPTY > 
<!ATTLIST FWD_REFRENCE 

name  CDATA  #REQUIRED > 

<!ELEMENT EXCEPTION (MEMBER*) > 
<!ATTLIST EXCEPTION 

name  CDATA  #REQUIRED > 
<!ELEMENT MEMBER EMPTY > 
<!ATTLIST MEMBER 

name  CDATA  «REQUIRED 
type  CDATA  «REQUIRED > 

<! ELEMENT CONSTANT EMPTY > 
<!ATTLIST CONSTANT 

name  CDATA  «REQUIRED 
type  CDATA  «REQUIRED 
value  CDATA  «REQUIRED > 

<!ELEMENT STRUCT (MEMBER*) > 
<!ATTLIST STRUCT 

name   CDATA  «REQUIRED > 

<!ELEMENT UNION (MEMBER*) > 
<!ATTLIST UNION 

name   CDATA «REQUIRED 
sw_type CDATA «REQUIRED > 

<!ELEMENT ENUM (ELEMENT+) > 
<!ATTLIST ENUM 

name   CDATA  «REQUIRED > 
<<ELEMENT ELEMENT EMPTY > 
<!ATTLIST ELEMENT 

value    CDATA  «REQUIRED > 

<!ELEMENT ARRAY (DIMENSION)-) > 
<!ATTLIST ARRAY 

name  CDATA  «REQUIRED 
type  CDATA  «REQUIRED > 

<!ELEMENT DIMENSION EMPTY > 
<!ATTLIST ARRAY 

value  CDATA  «REQUIRED > 
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<!ELEMENT BND_SEQUENCE EMPTY > 
<!ATTLIST BND_SEQUENCE 

name  CDATA  «REQUIRED 
type  CDATA   «REQUIRED 
bound CDATA   «REQUIRED > 

<! ELEMENT UNBND_SEQUENCE EMPTY > 
<!ATTLIST UNBND_SEQUENCE 

name  CDATA   «REQUIRED 
type  CDATA   «REQUIRED > 

<lELEMENT STRING EMPTY> 
<!ATTLIST STRING 

name    CDATA  «REQUIRED 
lenght  CDATA  «REQUIRED > 

<!ELEMENT TYPEDEF EMPTY > 
<1ATTLIST TYPEDEF 

typename CDATA  «REQUIRED 
name     CDATA  «REQUIRED > 

<!ELEMENT MODULE  ( DECLARATION | INTERFACE )* > 
<!ATTLIST MODULE 

name   CDATA  «REQUIRED > 

<!ELEMENT INTERFACE  ( INHERITANCE*, ( DECLARATION | ATTRIBUTE | SIGNATURE )* ) > 
<!ATTLIST INTERFACE 

name   CDATA  «REQUIRED > 

<!ELEMENT INHERITANCE EMPTY > 
<!ATTLIST INHERITANCE 

ancestor  CDATA  «REQUIRED > 

<1ELEMENT ATTRIBUTE EMPTY > 
<!ATTLIST ATTRIBUTE 

mode   ( readonly |  readwrite )  "readwrite" 
name   CDATA  «REQUIRED 
type    CDATA  «REQUIRED  > 

<! ELEMENT SIGNATURE  ( ARGUMENT*, ( RAISES? ), (CONTEXT? ) ) > 
<!ATTLIST SIGNATURE 

mode   ( oneway  |  twoway )  "twoway" 
name   CDATA  «REQUIRED 
rtype   CDATA   «REQUIRED  > 

< I ELEMENT ARGUMENT   EMPTY > 
<!ATTLIST ARGUMENT 

mode    ( in | out | inout ) «REQUIRED 
name     CDATA «REQUIRED 
type     CDATA «REQUIRED > 

<1ELEMENT RAISES (EXCEPTIONJTYPE+) > 
<!ELEMENT EXCEPTIONJTYPE EMPTY > 
<!ATTLIST EXCEPTIONJTYPE 

exception     CDATA «REQUIRED > 

<! ELEMENT CONTEXT (CONTEXT_ELEMENT+) > 
<! ELEMENT CONTEXT_ELEMENT EMPTY > 
<1ATTLIST CONTEXT_ELEMENT 

name    CDATA «REQUIRED > 
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Abstract 

This paper considers an example of Object-Oriented Programming (OOP) leading to subtle errors that break separation of 
interface and implementations. A comprehensive principle that guards against such errors is undecidable. The paper introduces 
a set of mechanically verifiable rules that prevent these insidious problems. Although the rules seem restrictive, they are 
powerful and expressive, as we show on several familiar examples. The rules contradict both the spirit and the letter of the 
OOP. The present examples as well as available theoretical and experimental results pose a question if OOP is conducive to 
software development at all. 

Keywords: object-oriented programming, subtyping, subclassing, implementation inheritance, C++, functional program- 
ming 

1   Introduction 
Decoupling of abstraction from implementation is one of the holy grails of good design. Object-oriented programming is 
claimed to be conducive to such a separation, and therefore to more reliable code. In the end, productivity and quality are the 
only true merits a programming methodology is to be judged upon. This article will discuss a simple example that questions if 
Object-Oriented Programming (OOP) indeed helps separate interface from implementation. First we demonstrate how easily 
subclassing errors arise and how difficult (in general, undecidable) it is to prevent them. We later introduce a set of expressive 
rules that preclude the subclassing errors, and can be mechanically verified. Incidentally the rules run contrary to the OOP 
precepts. 

We take a rather familiar example that illustrates the difference between subclassing and subtyping: the example of Sets 
and Bags. The example is isomorphic to that of circles vs. ellipses or squares vs. rectangles. Section 2 introduces the example 
and carries it one step further, to a rather unsettling result: a "transparent" change in an implementation suddenly breaks client 
code that was written according to public interfaces. We set out to follow good software engineering practices; this makes the 
resulting failure even more ominous. Section 3 brings up a subclassing vs. subtyping dichotomy and the Liskov principle of 
behavioral substitutability. We show that Sets and Bags viewed as mutable or immutable objects are not subtypes of each other. 
The indiscriminate use of implementation inheritance indeed prevents separation of interface and implementation. In Section 
4 we take a contrary point of view, of bags and sets as values without a hidden state and whose responses to external messages 
cannot be overridden. We prove that a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as 
a bag, a set maintains every invariant of a bag - and it is still a set. The section also shows that if we abide by practically 
checkable rules we obtain a guarantee that the subtle subclassing errors cannot occur in principle. We will also show that the 
rules do not diminish the power of a language. 

Inheritance and encapsulation, two staples of OOP, make checking of the Liskov Substitution Principle (LSP) for derived 
objects generally undecidable. On the other hand, the proposed rules, which can be checked at compile time, make derived 
values satisfy LSP. 

The article aims to give a more-or-less "real" example, which we can run and see the result for ourselves. By necessity 
the example had to be implemented in some language. The present article uses C++. It appears however that similar code and 
similar conclusions can be carried on in many other object-oriented languages (e.g., Java, Python, etc). 
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2   Coupling of interface and implementation 

Suppose I was given a task to implement a Bag - an unordered collection of possibly duplicate items (integers in this example). 
I chose the following interface: 

typedef int const * Colllterator;    // Primitive but will do 
class CBag { 
public: 
int size(void) const; 
int count(const int elem) const; 
virtual void put(const int elem); 
virtual bool del(const int elem); 
Colllterator begin(void) const; 
Colllterator end (void) const; 

CBag(void); 
virtual CBag * clone(void) const; 

private: ...      // implementation details elided 

}; 

The class CBag defines usual methods to determine the number of all elements in a bag, to count the number of occurrences 
of a specific element, to put a new element into a bag and to remove one. The latter function returns false if the element to 
delete did not exist. We also define the standard enumerator interface [11] - methods begin () and end () - and a method to 
make a copy of the bag. Other operations of the CBag package are implemented without the knowledge of CBag's internals: 
the print-on operator < <, the union (merge) operator +=, and operators to compare CBags and to determine their structural 
equivalence. These functions use only the public interface of the CBag class: 

void operator += (CBags to, const CBag& from); 
bool operator <= (const CBag& a, const CBagfc b); 
inline bool operator >= (const CBag& a, const CBag& b) 
{ return b <= a; } 
inline bool operator == (const CBag& a, const CBag& b) 
{ return a <= b && a >= b; } 

The complete code of the whole example is available in [7]. It has to be stressed that the package was designed to minimize 
the number of functions that need to know details of CBag's implementation. Following good practice, I wrote validation code 
(file vCBag. cc [7]) that tests all the functions and methods of the CBag package and verifies common invariants. 

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each 
element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my CBag 
package and realized that it can be used with few additional changes. The definition of a Set as a Bag, with some constraints, 
made the decision to reuse the CBag code even easier. 

class CSet   :  public CBag { 
public: 
bool memberof(const int  elem)   const 
{  return count(elem)   > 0;   } 

// Overriding of CBag::put 
void put(const int elem) 
{  if(Imemberof(elem))  CBag::put(elem) ;   } 

CSet  * clone(void)   const 
{  CSet  * new_set = new CSet(); 

*new_set +=  *this;  return new_set;   } 
CSet(void)   {} 

>; 

The definition of a CSet makes it possible to mix CSets and CBags, as in set += bag; or bag += set; These operations 
are well-defined, keeping in mind that a set is a bag that happens to have the count of all members exactly one. For example, 
set += bag; adds all elements from a bag to a set, unless they are already present. On the other hand, bag += set; is 
no different than merging a bag with any other bag. You too wrote a validation suite to test all CSet methods (newly defined 
as well as inherited from a bag) and to verify common expected properties, e.g., a+=a = a. 
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In my package, I have defined and implemented a function that, given three bags a, b, and c, decides if a+b is a subbag of 
c: 

bool foo(const CBag& a, const CBagS b, const CBagk c) 
{ // Clone a to avoid clobbering it 
CBag & ab = *(a.clone()); 
ab += b; // ab is now the union of a and b 
bool result = ab <= c; 
delete &ab; 
return result; 

} 

It was verified in the test suite. You have tried this function on sets, and found it satisfactory. 
Later on, I revisited my code and found my implementation of foo () inefficient. Memory for the ab object is unneces- 

sarily allocated on heap. I rewrote the function as 

bool foo(const CBag& a, const CBagfc b, const CBag& c) 

{ 
CBag ab; 
ab += a;        // Clone a to avoid clobbering it 
ab += b;        // ab is now the union of a and b 
bool result = ab <= c; 
return result; 

} 

It has exactly the same interface as the original f oo (). The code hardly changed. The behavior of the new implementation is 
also the same - as far as I and the package CBag are concerned. Remember, I have no idea that you are re-using my package. 
I re-ran the validation test suite with the new foo (): everything tested fine. 

However, when you run your code with the new implementation of foo (), you notice that something has changed! The 
complete source code [7] contains tests that make this point obvious: Commands make vCBagl and make vCBag2 run 
validation tests with the first and the second implementations of f oo (). Both tests complete successfully, with the identical 
results. Commands make vCSetl and make vCSet2 test the CSet package. The tests - other than those of foo () - all 
succeed. Function foo () however yields markedly different results. It is debatable which implementation of foo () gives 
truer results for CSets. In any case, changing internal algorithms of a pure function foo () while keeping the same interfaces 
is not supposed to break your code. What happened? 

What makes this problem more unsettling is that both you and I tried to do everything by the book. We wrote a safe, 
typechecked code. We eschewed casts. g++ (2.95.2) compiler with flags -W and -Wal 1 issued not a single warning. Normally 
these flags cause g++ to become very annoying. You did not try to override methods of CBag to deliberately break the CBag 
package. You attempted to preserve CBag's invariants (weakening a few as needed). Real-life classes usually have far more 
obscure algebraic properties. We both wrote validation tests for our implementations of a CBag and a CSet, and they passed. 
And yet, despite all my efforts to separate interface and implementation, I failed. Should a programming language or the 
methodology take at least a part of the blame? [10,4,1] 

3   Subtyping vs. Subclassing 
The breach of separation between CBag's implementation and interface is caused by CSet design's violating the Liskov Substi- 
tution Principle (LSP) [9]. CSet has been declared a subclass of CBag. Therefore, C++ compiler's typechecker permits passing 
a CSet object or a CSet reference to a function that expects a CBag object or reference. However, it is well known [3] that a 
CSet is not a subtype of a CBag. The next few paragraphs give a simple proof of this fact, for the sake of reference. 

The previous section considered bags and sets from the OOP perspective - as objects that encapsulate state and behavior. 
Behavior means an object can accept a message, send a reply and possibly change its state. From this point of view, bags 
and sets are not subtypes of each other. Indeed, let us define a Bag as an object that accepts two messages: (send a- 
Bag 'put x) puts an element x into the Bag, and (send a-Bag ' count x) gives the occurrence count for x in 
the Bag (without changing a-Bag's state). Likewise, a Set is defined as an object that accepts two messages: (send a- 
Set 'put x) puts an element x into a-Set unless it was already there, (send a-Set 'count x) gives the count of 
occurrences of x in a-Set (which is always either 0 or 1). Throughout this section we use a different, concise notation to 
emphasize the general nature of the argument. 
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Let us consider a function 

(define (fnb bag) (send bag 'put 5) (send bag 'put 5) (send bag 'count 5)) 

The behavior of this function, its contract, can be summed as follows: given a Bag, the function adds two elements into it and 
returns (+ 2 (send orig-bag 'count 5)). Technically you can pass to fnb a Set object as well. Just as a Bag, a Set 
object accepts messages ' put and ' count. However applying fnb to a Set object will break the function's post-condition 
stated above. Therefore, passing a set object where a bag was expected changes the behavior of a program. According to the 
LSP, a Set is not substitutable for a Bag - a Set cannot be a subtype of a Bag. 

Let us consider another function 

(define (fns set) (send set 'put 5) (send set 'count 5)) 

The behavior of this function is: given a Set, the function adds an element into it and returns 1. If you pass to this function a 
bag (which -just as a set - replies to messages ' put and ' count), the function fns may return a number greater than 1. 
This will break f ns's contract, which promised always to return 1. 

One may claim that "A Set is not a Bag, but an ImmutableSet is an ImmutableBag." This is not correct either. An im- 
mutability per se does not confer subtyping to "derived" classes of data, as a variation of the previous argument shows [8]. C++ 
objects are record-based. Subclassing is a way of extending records, with possibly altering some slots in the parent record. 
Those slots must be designated as modifiable by a keyword virtual. In this context, prohibiting mutation and overriding 
makes subclassing imply subtyping. This is the reasoning behind BRules introduced below. However merely declaring the 
state of an object immutable is not enough to guarantee that derivation leads to subtyping: An object can override parent's 
behavior without altering the parent. This is easy to do when an object is implemented as a functional closure, when a handler 
for an incoming message is located with the help of some kind of reflexive facilities, or in prototype-based 00 systems [8]. 
Incidently, if we do permit a derived object to alter its base object, we implicitly allow behavior overriding. For example, an 
object A can react to a message M by forwarding the message to an object B stored in A's slot. If an object C derived from A 
alters that slot it hence overrides A's behavior with respect to M. 

The OOP point of view thus leads to a conclusion that neither a Bag nor a Set are subtypes of the other. The interface or an 
implementation of a Bag and a Set appear to invite subclassing of a Set from a Bag, or vice versa. Doing so however will violate 
the LSP - and we have to brace for strikingly subtle errors. The previous section intentionally broke the LSP to demonstrate 
how insidious the errors are and how difficult it may be to find them. Sets and Bags are very simple types, far simpler than the 
ones that typically appear in a production code. Since LSP when considered from an OOP point of view is undecidable, we 
cannot count on a compiler for help in pointing out an error. As Section 2 showed, we cannot rely on validation tests either. 
We have to see the problem [4,10, 1]. 

4   Mechanically preventing subclassing errors 

Bags and sets - as objects - indeed are not subtypes. Subclassing them violates LSP, which leads to insidious errors. Bags 
and sets however do not have to be viewed as objects. We can take them as pure values, without any state or intrinsic behavior 
-just like the numbers are. In Section 2, CBag and CSet objects encapsulated a hidden state - a collection of integers. The 
objects had an ability to react to messages, e.g., put and del, by altering their state. In this section we re-do the example of 
Section 2 using a different approach. Bags and sets no longer have a state that is distinct from their identity and that can be 
altered. Equally important we do not allow any changes to the behavior of bags and sets with respect to applicable operations, 
by overriding or otherwise. In other words, every post-condition of a bag or a set constructor holds throughout the lifespan of 
the constructed values. This approach makes the subclassing problems and breach of encapsulation disappear. It turns out that 
a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as a bag, a set maintains every invariant of 
a bag - and it is still a set. 

The LSP says, "If for each object ol of type S there is another object o2 of type T such that for all programs P defined in 
terms of T, the behavior of P is unchanged when ol is substituted for o2, then S is a subtype of T." If type T denotes a set of 
values that carry their own behavior, and if values of type S can override some of T values behavior, the LSP is undecidable. 
Indeed, a mechanical application of LSP must at least be able to verify that all methods overridden in S terminate whenever 
the corresponding methods in T terminate. This is generally impossible. On the other hand, if T denotes a set of (structured) 
data values, and S is a subset of these values - e.g., restricted by range, parity, etc. - the LSP is trivially satisfied. 

This section also shows that if one abides by mechanically verifiable rules he obtains a guarantee that the subtle subclassing 
errors cannot occur in principle. The rules do not reduce the power of a language. 
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4.1 BRules 

Suppose I was given a task to implement a Bag - an unordered collection of possibly duplicate items (integers in this example). 
This time my boss laid out the rules, which we will refer to as BRules: 

• no virtual methods or virtual inheritance 
• no visible members or methods in any public data structure (that is, in any class declared in an . h file) 
• no mutations to public data structures 

- a strict form: no assignments or mutations whatsoever 
- a less strict form: no function may alter, directly or indirectly, any data it receives as arguments 

The rules break the major tenets of OOP: for example, values no longer have a state that is separate from their identity. Prohibi- 
tions on virtual methods and on modifications of public objects are severe. It appears that not much of C++ is left. Surprisingly 
I still can implement my assignment without losing expressiveness - and perhaps even gaining some. The exercise will also 
illustrate that C++ does indeed have a pure functional subset [12], and that you can program in C++ without assignments. 

4.2 Interface and implementation of a FBag 
class FBag { 
public: 
FBag (void) ; 
FBag(const FBagfc another);   // Copy-constructor 
-FBag(void); 

private: 
class Cell; // Opaque type 
const Cell * const head; 
FBag(const Cell * const cell); // Private constructor 

// Declaration of three friends elided 

}; 

Indeed, there are no virtual functions, no methods or public members. We also declare functions that take a FBag as (one 
of the) arguments and return the count of all elements or a specific element in the bag, print the bag, fold [5] over the bag, 
compare two bags for structural equivalence, verify bag's invariants, merge two bags, add or delete an element. The latter three 
functions do not modify their arguments; they return a new FBag as their result. It must be stressed that the functions that 
operate on a FBag are not FBag's methods; in particular, they are not a part of the class FBag, they are not inherited and they 
cannot be overridden. The implementation is also written in a functional style. FBag's elements are held in a linked list of 
cells, which are allocated from a pre-defined pool. The pool implements a mark-and-sweep garbage collection, in C++. 

Forgoing assignments does not reduce expressiveness as the following snippet from the FBag code shows; the snippet 
implements the union of two FBags: 

struct union_f { 
FBag operator!) (const int elem, const FBag seed) const { 
return put(seed,elem); 

} 
}; 
FBag operator + (const FBag& bagl, const FBag& bag2) 

( 
return fold (bagl, union_f () , bag2) ,- 

} 

Following good practice, I wrote a validation code (file vFBag. cc [7]) that tests all the functions of the FBag package and 
verifies common invariants. 

4.3 Implementation of a FSet. FSet is a subtype of a FBag 

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each 
element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my FBag 
package and realized that it can be used with few additional changes. The definition of a Set as a Bag (with some constraints) 
made the decision to reuse the FBag code even easier. 
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class FSet : public FBag { 
public: 
FSet(void) {} 
FSet(const FBag& bag) : FBag(remove_duplicates (bag)) {} 

}; 

bool memberof(const FSetfc set, const int elem) 
{ return count(set,elem) > 0; } 

Surprisingly, this is the whole implementation of a FSet. A set is fully a bag. Because FSet constructors eventually call FBag 
constructors and do no alter the latter's result, every post-condition of a FSet constructor implies a post-condition of a FBag 
constructor. Since FBag and FSet values are immutable, the post-conditions that hold at their birth remain true through their 
lifespan. Because all FSet values are created by an FBag constructor, all FBag operations automatically apply to an FSet value. 
This concludes the proof that an FSet is a subtype of a FBag. 

.  The FBag. cc package [7] has a function verify (const FBag&) that checks to make sure its argument is indeed a 
bag. The function tests FBag's invariants, for example: 

const FBag bagnew = put(put(bag,5),5); 
assert! count(bagnew,5)   == 2 + count(bag,5)   && 

size(bagnew)   == 2  + size(bag)   ); 
assert( count(del(bagnew,5),5)  == 1 + count(bag,5)   ); 

Your validation code passes a non-empty set to this function to verify the set is indeed a bag. You can run the validation code 
vFSet. cc [7] to see for yourself that the test passes. On the other hand, FSets do behave like Sets: 

const FSet all2 = put(put(put(FSet(),1),1),2); 
assert ( count (all2,l) == 1 ) ,- 

const FSet donee = FSetO + all2; 
const FSet dtwice = donee + all2; 
assert ( dtwice == all2 ); 

where a 112 is a non-empty set. The validation code vFSet. cc you wrote contains many more tests like the above. The code 
shows that a FSet is able to pass all of FBag's tests as well as its own. The implementation of FSets makes it possible to take a 
union of a set and a bag; the result is always a bag, which can be made a set if desired. There are corresponding test cases as 
well. 

To clarify how an FSet may be an FBag at the same time, let us consider one example in more detail: 

// An illustration that an FSet is an FBag 
int cntb(const FBag v)   { 

FBag bl   =  put(v,   5);     FBag b2  = put(bl,   5); 
FBag b3  = del(b2,   5); 
return count(b3,   5);   } 

const  int cbl  = cntb(FBag()) ,-   // cbl has the value of  1 
const  int cb2  «= cntb(FSet ());   // cb2 has the value of  1 

// An illustration that an FSet does act as a set- 
int cnts(const FSet v)   { 

FSet  si  = put(v,   5);   FSet  s2  = put(si,   5); 
FSet  s3  = del(s2,   5); 
return count(s3,   5);   } 

const int cs = cnts(FSet ());  // cs has the value of  0 

This example is one of the test cases in vFSet. cc [7]. You can run it and check the results for yourself. Yet it is puzzling: 
how come cs has the value different from that of cbl if there is no custom del {) function for FSets? The statement FSet 
s2 = put (si, 5); is the most illuminating. On the right-hand side is an expression: putting an element 5 to a FBag/FSet 
that already has this element in it. The result ofthat expression is a FBag {5,5}, with two instances of element 5. The statement 
then constructs a FSet s2 from that bag. A FSet constructor is invoked. The constructor takes the bag {5,5}, removes the 
duplicate element 5 from it, and "blesses" the resulting FBag to be a FSet as well. Thus s2 will be a FBag and a FSet, with 
one instance of element 5. In fact, si and s2 are identical. A FSet constructor guarantees that a FBag it constructs contains 
no duplicates. As objects are immutable, this invariant holds forever. 
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4.4   Discussion 

Surprising as it may be, assertions "a Set is a Bag with no duplicates" and "a Set always acts as a Bag" do not contradict each 
other, as the following two examples illustrate: 

Let uf-integer denote a natural number whose prime fac- 
tors are unique. Let us consider the following values: 
vA:\,vB: 42, vC : 43, vD : 1806, vE : 75852 
vA is not an integer; vB, vC, vD, and vE are integers. 
vB, vC, and vD are also uf-integers. vE is not a uf- 
integer as it is a product 2*2*3*3*7*7* 43 with 
factors 2, 3, and 7 occurring several times. Every uf- 
integer is an integer but not every integer is a uf-integer. 

Let {value   . . .} be an unordered collection of val- 
ues: a Bag. Let us consider the following values: 
vA : 42, vB : {42}, vC : {43}, vD : {4243}, vE : 
{424342} 
vA is not a collection; vB, vC, vD, and vE are bags. 
vB, vC, and vD are also Sets: unordered collections 
without duplicates. vE is not a Set. Every Set is a Bag 
but not every Bag is a Set.  
We introduce operations merge (infix +) and subtract 
(infix -). Both operations take two Bags and return a 
Bag. Either of the operands, or both, may also be a Set. 
The result, a Bag, may or may not be a Set. For example, 

vB + vC => vD Both of the operands and the result are 
also Sets 

vB + vD => vE The argument Bags are also Sets, but 
the resulting Bag is not a Set 

vE + vE=> {424342424342} None   of the   Bags 
here are Sets 

vD -vC => vB The argument Bags are also Sets, so is 
the result. 

vE -vC => {42 42} One of the arguments is a Set, the 
resulting Bag is not a Set. 

vE -vE => {} The argument Bags are not Sets, but 
the resulting Bag is. 

We introduce operations multiply (infix *) and reduce 
(infix %): o%6 = a/gcd(a, b). Both operations take two 
integers and return an integer. Either of the operands, 
or both, may also be a uf-integer. The result, an integer, 
may or may not be a uf-integer. For example, 

vB * vC =>• vD Both of the operands and the result are 
also uf-integers 

vB * vD => vE The argument integers are also uf- 
integers, but the resulting integer is not a uf- 
integer 

vE*vE => 5753525904 None of the integers here are 
uf-integers 

vD%vC => vB The argument integers are also uf- 
integers, so is the result 

vE%vC =$• 1764 One of the arguments is a uf-integer, 
the resulting integer is not a uf-integer 

vE%vE => 1 The argument integers are not uf- 
integers, but the resulting integer is. 
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Bags are closed under operation merge but subsets of 
Bags - Sets - are not not closed under merge. On 
the other hand, both Bags and Sets are closed under 
subtract. 
We may wish for a merge-like operation that, being ap- 
plied to Sets, always yields a Set. We can introduce a 
new operation: merge — if — not — there. We can de- 
fine it specifically for Sets. Alternatively, the operation 
can be defined on Bags; it would apply to Sets by the 
virtue of inclusion polymorphism as every Set is a Bag. 
Sets are closed with respect to merge -if- not - there. 
On the other hand, to achieve closure of Sets under 
merge we can project - coerce - the result ofmerging of 
two Sets back into Sets, a subset of Bags. The FBag/FSet 
package took this approach. If we merge two FSets 
and want to get an FSet in result we have to specifi- 
cally say so, by applying a projection (coercion) oper- 
ator: FSet::FSet (const FBagfc bag). That oper- 
ator creates a new FBag without duplicates. This fact 
makes the latter a FSet. Thus FSet{vB + vD) => vD, 
an FSet. 

Integers are closed under operation multiply but sub- 
sets of integers - uf-integers - are not closed under 
multiply. On the other hand, both integers and uf- 
integers are closed under reduce. 
We may wish for a multiply-like operation that, being 
applied to uf-integers, always yields a uf-integer. We can 
introduce a new operation: lern, the least common mul- 
tiple. This operation is well-defined on integers; it would 
apply to uf-integers by the virtue of inclusion polymor- 
phism as every uf-integer is an integer, uf-integers are 
closed with respect to the lern operation. 
On the other hand, to achieve closure of uf-integers un- 
der multiply we can project - coerce - the product of 
two uf-integers back into uf-integers, a subset of inte- 
gers. If we multiply two uf-integers and want to get 
a uf-integer in result we have to specifically say so, by 
applying a projection (coercion) operator: remove - 
duplicate — factors. That operator creates .a new inte- 
ger without duplicate factors. This fact makes the result- 
ing integer a uf-integer. Thusuf—integer(vB*vD) =► 
vD, a uf-integer 

It has to be stressed that the two columns of the above table are not merely similar: they are isomorphic. Indeed, the right 
column is derived from the left column by the following substitution of words that preserves meaning: Bag <+ integer, Set 
f> uf-integer, merge«-» multiply, subtract«-» reduce. The right column sounds more "natural" - so should the left column as 
integers and uf-integers are representations for resp. FBags and FSets. 

From an extensional point of view [2], a type denotes a set of values. By definition of a FSet, it is a particular kind of FBag. 
Therefore, a set of all FSets is a subset of all FBags: FSet is a subtype of FBag. A FBag or a FSet do not have any "embedded" 
behavior-just as integers do not have an embedded behavior. Behavior of numbers is defined by operations, mapping from 
numbers to numbers. Any function that claims to accept every member of a set of values identified by a type T will also accept 
any value in a subset of T. Frequently a value can participate in several sets of operations: a value can have several types at 
the same time. For example, a collection { 42 } is both a Bag and a Set. This fact should not be surprising. In C++, a value 
typically denoted by a numeral 0 can be considered to have a character type, an integer type, a float type, a complex number 
type, or a pointer type, for any declared or yet to be declared pointer type. This lack of behavior is what puts FBag and FSet 
apart from CBag and CSet discussed in the previous article. FSet is indeed a subtype of FBag, while CSet is not a subtype of 
a CBag as CSet has a different behavior. Incidentally LSP is trivially satisfied for values that do not carry their own behavior. 
FBags and FSets are close to so-called predicate classes. Since instances of FSets are immutable, the predicate needs to be 
checked only at a value construction time. 

4.5   Polymorphic programming with BRules 

The FSet/FBag example above showed BRules in the context of subtypes formed by a restriction on a base type. As it turns 
out, BRules work equally well with existential (abstract) types. To illustrate this point, the source code accompanying this 
article [7] contains three implementations of a collection of polymorphic values. The collection is populated by Rectangles and 
Ellipses, which are instances of concrete classes implementing a common abstract base class Shape. A Shape is an existential 
type that knows how to draw, move and resize itself. A file Shapes-oop.cc gives the conventional, OOP-like implementation, 
with virtual functions and such. A file Shapes-no-oop.cc is another implementation, also in C++. The latter follows BRules, 
has no assignments or virtual functions. Any particular Shape value is created by a Shape constructor and is not altered after 
that. Shapes-no-oop.cc achieves polymorphic programming with the full separation of interface and implementation: If an 
implementation of a concrete Shape is changed, the code that constructs and uses Shapes does not even have to be recompiled! 
The file defines two concrete instances of the Shape: a Square and a Rectangle. The absence of mutations and virtual functions 
guarantees that any post-condition of a Square or a Rectangle constructor implies the post-condition of a Shape. Both particular 
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shapes can be passed to a function set_dim (const Shapes shape, const float width, const float 
height) ; Depending on the new dimensions, a square can become a rectangle or a rectangle square. You can compile 
Shapes-no-oop.cc and run it to see that fact for yourself. 

It is instructive to compare Shapes-no-oop.cc with Shapes-h.hs, which implements the same problem in a purely functional, 
strongly-typed language Haskell. All three code files in the Shapes directory solve the same problem the same way. Two C++ 
code files - Shapes-oop.cc and Shapes-no-oop.cc - look rather different. On the other hand, the purely functional Shapes-no- 
oop.cc and the Haskell code Shapes-h.hs are uncanny similar - in some places, frighteningly similar. This exercise shows that 
BRules do not constrain the power of a language even when abstract data types are involved. 

5   Conclusions 

It is known, albeit not so well, that following the OOP letter and practice may lead to insidious errors [10, 1]. Section 2 of 
this article showed how subtle the errors can be even in simple cases. In theory, there are rules - LSP - that could prevent the 
errors. Alas, the rules are in general undecidable and not practically reinforceable. 

In contrast, BRules introduced in this article can be statically checked at compile time. The rules outlaw certain syntactic 
constructions (for example, assignments in some contexts, and non-private methods) and keywords (e.g., virtual). It is 
quite straightforward to write a lint-like application that scans source code files and reports if they conform to the rales. When 
BRules are in effect, subtle subclassing errors like the ones shown in Section 2 become impossible. To be more precise, 
with BRules, subclassing implies subtyping. Subclassing by definition is a way of creating (derived) values by extending, 
restricting, or otherwise specializing other, parent values. A derived value constructor must invoke a parent value constructor 
to produce the parent value. The former constructor often has a chance to alter the parent constructor's result before it is cast 
or incorporated into the derived value. If this chance is taken away, the post-condition of a derived value constructor implies 
the post-condition of the parent value. Disallowing any further mutations guarantees the behavioral substitutability of derived 
values for parent values at all times. 

As the examples in this article showed, following BRules does not diminish the power of the language. We can still benefit 
from polymorphism, we can still develop practically relevant code. Yet BRules blur the distinction between the identity and the 
state, a characteristic of objects. BRules are at odds with the practice if not the very mentality of OOP. This begs the question: 
Is OOP indeed conducive to software development? 

One can argue that OOP - as every powerful technique - requires extreme care: knives are sharp. Likewise, goto is 
expressive, and assembler- or microcode-level programming are very efficient. All of them can lead to bugs that are very 
difficult, statically impossible, to find. On the other hand, if you program, for example, in Scheme, you never have to deal with 
an "invalid opcode" exception. That error becomes simply impossible. Furthermore, "while opinions concerning the benefits 
of OOSD [Object-Oriented Software Development] abound in 00 literature, there is little empirical proof of its superiority" 
[6]. 
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Abstract 

Software development as an enterprise is at a critical place in history. We are now developing needs for 
software faster than we can develop solutions. The future of software engineering is in providing computer-aided 
tools for automating as much of the evolution process as possible, so we can hope to meet the software needs of the 
future Our argument is that software should not be built and then maintained, but should be evolved, from the first 
requirements analysis, to system retirement. If we build software for evolution, it is generally easier to make 
changes to that software, whether they are corrective, adaptive, or perfective. This paper outlines a method of 
applying changes to abstract types that extends a previous change-merging method for executable prototypes 
written in the Prototype System Description Language (PSDL) [19]. PSDL prototypes consist of a set of operators 
and a set of abstract data types. Previous work focused on merging changes to PSDL prototypes consisting of only 
operators Our current work is aimed at providing a model for merging changes to PSDL types as well, thus 
completing the change merging method for complete prototypes. This paper contains a model for change-merging 
PSDL abstract data types, as well as a consistency theorem that demonstrates the model's correctness. 

KEYWORDS: Change Merging, Program Integration, Abstract Data Types, Classes, Software Evolution, Software 

Automation, Multiple Inheritance. 

1.   INTRODUCTION 

Since the first computer program was written, software developers have been looking for innovations in 
software development. Some of the areas focused on are: programming languages, computer-aided tools, object- 
orientation, and process improvement. None of these innovations has been the elusive "silver bullet that some are 
tooking for^ [8] Everyone agrees that there has to be a way to make software development better but few can agree 
on how. What is commonly accepted today is a need for developers to focus on building software that can evolve. 

Software systems are becoming increasingly huge and complex. In order to keep up with growing software 
needs and take advantage of increasing hardware capabilities, software must be designed, built, and delivered in less 
than twelve months. Additionally, this software must be evolvable, so when technology innovations occur changes 
can be made more rapidly to the software to take advantage of these innovations. Research into computer-aided 
prototyping, where systems are built with executable specifications is showing some promise of providing a way to 
Zdlfbufld software systems that more accurately satisfy the user's needs. However, all of the «V*?*»"^ 
yet available to provide continuing evolution support to those same systems, once they are delivered. Incorporating 
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changes into those systems requires reworking the original specification, and regenerating the executable code. 
Where this is often efficient, and allows maintenance of only the specification level code, it discounts the need for 
maintaining adaptive changes unique to particular environments. 

Any software, modified after development, is very difficult to maintain. Changes made to any software system 
can be of three types: corrective, perfective or adaptive. Whenever an evolutionary change is made to the base 
version of a program, and the new version of the program is customized for a customer, perfective or adaptive 
changes made to the previous version of the software must be re-applied to the new version. This can produce 
inconsistencies in the existing version of the software. The answer is to build the software initially with the 
knowledge that it will change, and that the base version will evolve. In this way, the software can be built for 
evolution. To do this effectively, computer-aided tools are needed that will allow changes made to the base version 
of the system to be integrated automatically into each unique version. The first substantive work done in this area by 
Berzins in [2] provided models for understanding how two different enhancements made to the same software 
artifacts can be merged to produce a version with the characteristics of both enhancements. This pioneering work 
provided the basis for several follow on efforts in merging and integration. These follow on efforts include the work 
of Horwitz, Reps and others at the University of Wisconsin-Madison on integrating different versions of while 
programs [7, 18, 22] and Berzins and Dampier at the Naval Postgraduate School on merging changes to data flow 
programs in the form of PSDL prototypes. [3,4, 5, 6, 14, 15] 

Dampier did the first substantive work on change-merging PSDL programs [14, 15]. He constructed a model 
and method for automatically combining different versions of a prototype written in the PSDL. Prototypes written 
in PSDL consist of a set of PSDL data types and a set of PSDL operators. Dampier's work was limited to 
semantics-based change-merging of PSDL operators [14, 15]. The focus of this paper is the exploration of 
semantics-based change-merging of PSDL types. This is a part of the prototype change-merging problem that has 
not yet been explored. The next section will review the PSDL change-merging problem, and provide a context for 
the work outlined in this paper. 

2.    CHANGE-MERGING OF PSDL PROTOTYPES 

Change merging is a process that allows different changes to a software product to be combined using 
computer-aided tools. Change merging can be done in two fundamental ways: semantics-based and syntax-based. 
Syntax-based change merging is performed on the source code of the input versions with respect to the differences 
in the syntax of each version. Semantics-based change merging is performed on the functions computed by the 
software product with respect to the behavior associated with each input version. Semantics-based change merging 
requires a solid mathematical foundation to provide some guarantee of the correctness and engender confidence in a 
working change-merging system [15]. 

PSDL is the language used to build prototypes in the Computer-Aided Prototyping System (CAPS) [20]. CAPS 
provides the designer with a set of computer-aided tools to quickly build a specification for a software system using 
PSDL, retrieve or build required primitive software components, and generate an executable prototype of the 
system. This prototype is then demonstrated to the customer, and based on the customer's comments, is updated to 
satisfy the customer's updated requirements. A graphic of a prototyping paradigm similar to that used in CAPS is 
shown in Figure 1. 

PSDL prototypes are constructed as sets of operators and data types, where each of the components can be 
either composite (constructed from collections of other PSDL components) or atomic (implemented in a high level 
programming language, like Ada or C++). The operators implement either functions or state machines and the PSDL 
types are abstract data types (ADTs) containing both data and methods to operate on those data. 

During construction of a sufficiently large prototype, it may be necessary to distribute different pieces of the 
design effort to different designers, and ultimately integrate their individual efforts into a cohesive prototype. This 
integration effort generated a need to provide automated tools that would provide the capability to integrate these 
individual efforts in a safe way without the need for extensive human intervention. Our initial efforts on this 
problem were very successful. [4, 14, 15] Unfortunately, our efforts until now have been limited to merging changes 
to prototypes with only operators, without regard to the data types that will doubtless be required in large prototypes. 
In [13], an approximate method for merging changes made to PSDL operators was provided. In [14, 15], a slicing 
method was provided that used the approximate method for completing the change-merge, but validated the results 
through the use of prototype slicing. 
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The existing model and method for change-merging PSDL prototypes consists of a model for change-merging 
operator specifications and a method of slicing prototype implementation graphs that provides a mechanism for 
guaranteeing semantic correctness of a syntactic merge of the implementation graphs. The basis for this guarantee is 
the Slicing Theorem that states that the behavior of any slice of a prototype will remain precisely the same in any 
prototype, as long as the slice is precisely the same. [15] The benefit of this theorem is that we can show that as long 
as the behavior of a slice with respect to an affected part of a modified prototype remains the same in the change- 
merged version, then the significant change in that modification is preserved through the change-merge operation. 
The rest of the model uses lattice theory, along with Boolean and Browerian algebras to construct the change- 
merged specifications. The focus of the rest of this paper is on merging changes to PSDL types. 
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Figure 1: Rapid Prototyping in CAPS [15] 

3.    PSDL TYPES 

PSDL prototypes consist of both types and operators. PSDL types are abstract data types. Their basic structure 
is the same as any abstract data type, with a set of attributes and a set of methods. All declared types in PSDL 
prototypes are PSDL types. The structure of the type specification for these types is the same, whether the 
implementation is in PSDL or some high-level implementation language. As already stated, PSDL types consist of 
both data and operators to affect those data. The basic structure of a PSDL type contains both specification and an 
implementation. The specification consists of a set of attribute definitions, as well as specifications for the methods 
or operators to operate on those attributes. An example of a PSDL Type specification is shown in Figure 2. PSDL 
keywords are shown in boldface. This is the specification for a basic class of Person containing simple data like 
their name. 

The implementation part of the PSDL type, as was stated earlier, can either be in PSDL or in some high level 
language like Ada or C++. For simplicity, and because our current version of CAPS uses Ada exclusively, all 
examples of non-PSDL implementations will be shown in Ada. The alternate structures of the implementation part 
of the PSDL type for both PSDL implementations and Ada implementations are shown in Figure 3. Again, PSDL 
keywords are shown in boldface text. Even in a PSDL implementation, some operators may be implemented in a 
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high-level language instead of PSDL. This mixed implementation structure may seem complicated, but as you will 
see, does not affect our change-merging method at all. 

Type Person 
specification 

name: string 

operator create 
specification 

input name: string 
end 

operator getname 
specification 

output name: string 
end 

end 

Figure 2: Example of a PSDL Type Specification for Person 

Type Person 
specification 

• • • 
end 

implementation ada PersonPackage end 

or 

Type Person 
specification 

• • • 
end 

implementation Person 

operator create 
implementation ada create_person end 

operator getname 
implementation 

get_name       ) name » 

end 

end 

Figure 3: Example of different PSDL Type Implementations for Person 
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4.    CHANGE MERGING OF PSDL TYPES 

We started our research by searching for accomplished work on merging changes to abstract data types. 
Finding none, we took the view that the merging of changes made to abstract data types is similar to multiple 
inheritance, As it turns out, there is considerable research to support this notion. We will start our look at change- 
merging PSDL types with a look at some of this research. 

4.1 Inheritance Models 

In [10], the author discussed efficient handling of class hierarchies. He argues that a lattice structure was 
suitable for class hierarchies for the following reasons: 

• Lattices allow resolution of multiple inheritance conflicts exactly. They also help to reduce the 
complexity of implementing conflict resolution strategies. 

• Lattices help in writing typing inference algorithms. 
• It is easier to represent large complex software systems in terms of small lattice structures. 
• Lattices support compact encoding techniques. 

Figure 4 shows an inheritance lattice from [10]. It is easy to see how the multiple inheritance from both 
Student and Employee could cause problems in StudentEmployee. One example of a conflict is in the department to 
which each of the persons is assigned. Certainly students are assigned to a department that they are studying in, and 
Employee are assigned to a department in which they work, but what happens when an employee in the Math 
department is a student in the Computer Science department. This is an example of the kind of conflicts that can be 
caused by this kind of inheritance. 

Person 

Student Employee 

StudentEmployee 

Undergraduate 
Student 

Graduate 
Student 

Teaching 
Assistant 

Research 
Assistant Instructor 

Assistant 
Professor 

Figure 4: An Inheritance Lattice [10]. 

In [12], the author described inheritance as a mechanism for incremental programming. Based on Cook's 
inheritance mechanism, Benattou and Lakhal presented an incremental formal model of both single and multiple 
inheritance [1]. Their model allows a new class to be defined by incremental modification of existing classes. The 
authors also address the automatic conflict solving in multiple inheritance using two operators: ©c a combination 
operator on structures with conflict resolution, and Ac a multiple inheritance operator. Their paper addressed name 
and value conflicts and possible ways of solving those conflicts. They suggested solving name conflicts by explicit 
designation and value conflicts by a process called linearizing. Ducournau et al also addressed conflict resolution 
mechanisms for inheritance. According to them, there can be two possible kinds of conflicts: value conflicts, and 
name conflicts. Value conflicts are due to having different values for the same attribute. Name conflicts are due to 
different attributes having the same name [16]. 
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In [9], the authors addressed conflicts between methods of the same name in superclasses. Consider the 
following example: 

Student Employee 
Superclass: Person Superclass: Person 
Methods:    CardNumber() Methods:   CardNumber() 

ValidateCardO ValidateCard() 

Consider these two as base classes in a class hierarchy diagram. We can get a StudentEmployee as an 
inherited class, much in the same way as show in Figure 4. According to the author, a class must inherit all of the 
characteristics of their superclasses. The authors considered two kinds of strategies for solving conflicts: linear 
strategies and graph-oriented strategies. 

4.1.1 Linear Strategies: 

Languages such as CommonLoops follow linear strategies. These strategies are based on a common 
principle, "flatten the inheritance graph to a linear chain without duplicates, and then treat the results as single 
inheritance" [9]. It converts the partial ordering of classes into a total one by using relative ordering of classes within 
the list of the direct superclasses of each class. These strategies oppose the tenets of object-orientation such as 
reusability, incremental design and modularity. 

4.1.2 Graph-Oriented Strategies: 

Graph-oriented strategies deal with complete hierarchical class diagrams. When a conflict arises, 
they can specify the superclass from which they wish to inherit. In [17], the authors proposed a formal method that 
produces a lattice structure called a Galois lattice from a given set of classes. This method of building lattice 
structures from a given set of classes has the following advantages: 

• It supports an efficient incremental update algorithm. 
• It does not depend on input ordering. 

In [21], the authors consider an approach for the extension and merging of a base system in a library 
or existing application. The authors suggested that successive extensions can be combined using an extension 
operator and parallel extensions can be combined using a merge operator. Conflicts should be resolved in the merge 
operation. 

4.2 Possible Conflicts in Abstract Data Type Merging and the methods for Resolving Them 

Based on our research, we have identified several types of conflicts that have to be resolved when merging 
two PSDL ADTs. The different conflicts fall into the following basic categories: types, attributes, and methods. 

4.2.1 Type Set Merging 

Type Set conflicts arise when two prototypes are being merged that contain new types with different 
names, or have removed types from the base still used by the other modification. These conflicts can occur when 
two independent changes are made to the same prototype, where new type definitions are required for the change, or 
old type definitions are no longer required. Since all PSDL prototypes contain a set of data types, the correct 
solution to this problem can be found through the use of a Powerset lattice, or Boolean algebra. Both modified 
versions of the prototype contain a different set of types than the base version of the prototype. The minimal merged 
version of the set of types can be constructed through the use of the following change-merge equation: 

Merge = (A - Base) u (A n B) u (B - Base) [3] 

This equation chooses the types that have been added in A and B, along with the types that have 
been preserved from the Base version in both A and B. The only possible problem that could occur as a result of 
this change-merge, is if a type that has been removed in one modification is needed for a new method or attribute in 
the other modification. In this case, that type can be added back into the prototype as needed. This set of types can 
contain more than the minimal set without conflict. Additionally, each of the modified versions can contain a new 
type by the same name, but with different specifications and implementations. In this case, the solution is simple, 
these two types should be renamed, perhaps by adding the version number of the modification, and treated 
appropriately as different types. 
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4.2.2 Merging A ttributes 

Now, we consider the case where different changes have been made to the same PSDL type in each 
of the modified versions. At the top level, the set of attributes in the merged version of the type can be combined 
using much the same method as described in the previous section for the sets of types in a prototype. Obviously, if 
an attribute is removed in the first modification, and not in the second, then its removal was significant to the 
designer of the first modification, so that change should be preserved. Since any method that operated on that 
attribute would also have had to be removed in the first modification, its removal would also be significant and must 
be preserved in the merged version. Any use ofthat type by a new method in the second modification would cause a 
conflict, but this is a conflict that would have to be resolved by the designer. 

Similarly, added attributes in each of the modified versions of the PSDL type would be included in 
the merged version. Let us look at some examples of these conflicts and their resolutions (See Figure 5), borrowing 
from the Student and Employee problem seen earlier. 

type Person 
specification 

name: string 
SSN: string, 
age: string 

end 
type Person (Student) 

specification 
name: string, 
class: integer, 
department: string, 
stu_id_num: string, 
age: natural 

type Person (Employee) 
specification 

name: string, 
department: string, 
socsecnum: string, 
age: integer 

end 
end 

type Person (StudentEmployee) 
specification 

name: string 
class: integer, 
student_department: string, 
employeedepartment: string, 
stu_id_num: string, 
socsecnum: string, 
age:T 

end 

Figure 5: An Example of Attribute Merging 

As can be seen from this example, in the case where new attributes were added in each of the 
modified versions, those new attributes appear unchanged in the merged version (stu_id_num, socsecnum, class). In 
the case where attributes in the base version were removed in one or both of the modified versions, it does not 
appear in the merged version. In the case where new attributes were added to both of the modified versions with the 
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same name, but with different meanings, they were both renamed and included in the merged version. This example 
does bring to light a possible problem we have not yet discussed. Age appears in all three input versions, but with 
three different type declarations: string, integer, and natural. Rightly, we have included the definition of the age 
attribute in the merged version, but with the type identifying a conflict. This is the safest way to include the 
attribute, but it may not be the only way. Consider this particular example. In the Student version of the ADT, age 
is defined as a natural number, and in the Employee version, it is defined as an integer. Since both of these are 
different from the Base version, it is indeed a conflict, but since the set of naturals is a subtype of the set of 
integers, it may be possible to take the most restrictive version and resolve the conflict automatically. We are still 
exploring this possibility and hope to have an extension to this model soon. 

4.2.3 Merging of Methods 

For merging the sets of methods, a Boolean algebra based merging operation similar to those 
described in the two previous sections is also applicable. However, in addition to the merging of sets by name, we 
have some additional concerns with methods. First, let us say that in the case where we have three different versions 
of the same method being included where the three methods are PSDL operators, previous results from [4, 14, 15] 
can be applied to effectively produce the merged version of the operator. Likewise, if the three implementations are 
Ada implementations (or some other high level programming language), we must defer to an as yet undiscovered 
method for merging changes to operators in those-languages. The following cases refer to different problems we 
have been able to enumerate in our study of the ADT merging problem. 

4.2.3.1 Return Parameters are Different 

When the methods are the same, and the return parameters are different in one of the modified 
versions, include the modified version in the merged type. If the return parameters are different in all three versions, 
there is only one feasible option, report a conflict. If we try to choose between the two modifications, we may 
produce a version that is not safe. 

4.2.3.2 Arguments are Different 

When the methods are the same, but the input arguments are different, there are three possible 
options: 

• Include one of the methods: this is not safe unless the method in one of the modified 
versions is the same as the base version, as it doesn't take into consideration why they 
are different. 

• Report a Conflict: this is maximally safe, but provides no benefit other than safety. 

• Include both of the methods: this too is safe, but is similar to function overloading 
available in most object-oriented programming languages. 

4.2.3.3 Arguments are the Same but Listed in Different Order 

When the methods are the same, but the input arguments appear in a different order, we have 
the same three options as if the arguments are different. The most appropriate choice for resolving this conflict is to 
include both of the modified versions of the method. 

5.    CONSISTENCY THEOREM 
In [11], we provide a model and method for merging abstract data types in the general case. Mathematical 

equations are also provided to describe each of the above operations on generic abstract data types. Also in [11], a 
theorem is provided that shows that the result of merging two different modifications of a base abstract data type 
results in a set of attributes and methods which are consistent. This theorem is based on the following definitions: 

SA is the set of attributes in an abstract data type, A. 

MA is the set of methods in an abstract data type, A. 

PA is the set of input parameters to the methods contained in MA. 
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Y( SA> MA) is a consistency predicate that is TRUE if and only if the methods contained in MA are consistent 

with the attributes contained in SA . This consistency is shown by the relation PA c SA. Based on this consistency 

predicate, y, the following theorem is stated: (The proof of this theorem is provided in [11]) 

Consistency Theorem 

If Base, A, and B are three versions of an Abstract Data Type, and 

Y( Sßase, Mßase)      ^ Pßase £ Sßase 

Y(SAMA) <*        PACSA 

Y(SB,MB <=>        PBGSB 

then Y( SA[Base]B, MA[Base]B )• 

6.   CONCLUSION 

Change merging of abstract data types in general is applicable to many software evolution activities. It also has 
some potential in the areas of software reuse and reengineering. Today, due to the increased complexity of software 
systems, a primary focus is component-based development and reusable software. Abstract data type change 
merging can help in the integration of two concurrent developments of an object or the automatic integration of two 
or more changed versions with respect to the base version they are created from. We have explored a basic change- 
merging problem as it applies to the prototype-merging problem and have described our results. This is a 
complicated research problem, and although the results described in this paper are very encouraging, much work in 
still necessary to provide a working change-merging tool for PSDL. 
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Abstract: This paper presents an evolutionary prototyping 
methodology dedicated to the design, verification and 
implementation of embedded systems. This methodology 
relies on LfP: a formalism combining UML-like structu- 
ring capabilities and a precise semantic suitable for both 
code generation and formal verification based on colored 
Petri nets. We apply this methodology on a small example 
and show how it enables system designers to detect non- 
trivial problems on the system. 
Keywords: Prototyping, Formal verification, Petri Nets, 
UML. 

1.      INTRODUCTION 

Design and implementation of industrial systems is get- 
ting more and more complex [9J. This is a problem for em- 
bedded distributed systems for which a high quality is 
required. Several problems can be identified: 

• Standard notation, such as UML [15] can be considered 
as an important contribution to describe a solution. 
However, it is more suitable at an early stage of applica- 
tion design and implementation. Thus, UML specifica- 
tions are difficult to check due to their semi-formal 
semantics (dynamic aspects are not formally defined). A 
typical illustration is the interaction between compo- 
nents of a system. This information is dispatched into 
several diagrams: interaction, sequence and state. 

• Once the specification of the system is completed, 
implementation need to be done, then, developers may 
interpret these specifications and we can get a program 
which is not exactly the image of the corresponding 
specification. 

• Tests of the system are usually performed on the pro- 
gram. Then, when debugging the program, the initial 
specification tends to disappear: modifications on the 
program are not reported to the specification. Security of 
such modification usually decreases in the maintenance 
phase of the system. 
Evolutionary prototyping [13J is a good solution to these 

problems since it enhance the definition of a model serving 
äs a basis for both the description of the system and auto- 
matic code generation. By reducing the production cost of 
an executable program, it promotes the model to be the cen- 
ter of the development process. Then, a system is elaborat- 
ed by successive refinements of the following operations: 

• design/refinement of the model, 
• evaluation of the model, 
• code generation,. 
• evaluation of the prototype, 

In evolutionary prototyping, a strong correspondence 
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between the model, programs and documentation may be 
maintained. However, evaluation of the system still rely on 
«traditional» testing techniques based on large bench- 
marks. 

This paper presents an evolutionary prototyping tech- 
nique. Our methodology relies on L/P (Language for Pro- 
totyping), a formalism dedicated to the description of 
embedded distributed systems [18]. L/P combines high lev- 
el modeling facilities such as the one of UML and a precise 
semantics suitable for both code generation and system ver- 
ification by means of formal methods (instead of bench- 
marks-based testing). 

Section 2. presents our prototyping methodology. Then, 
L/P is described in Section 3. Section 4. details an example 
of system specification using L/P and states some proper- 
ties to be checked on this system. Finally, Section 5. shows 
how a formal specification can be generated from the L/P 
model and used to detect non-trivial errors. 

2.  METHODOLOGY 
Our methodology is a model-based development in the 

sense of [17]: the model describes the system and serves as 
a basis for validation (in our case, formal verification) and 
code generation. Our methodological approach aims to im- 
plement evolutionary prototyping capabilities based on: 

• An integrative design approach. L/P acts as a glue pro- 
totyping language [2] between state of the art specifica- 
tion formalisms (e.g. UML for system modeling, ODP 
as a distributed component framework [8], Petri nets for 
formal verification). 

• An aspect oriented design framework. L/P is based on a 
multi views approach to system prototyping [7]. Views 
are dedicated to a given prototyping aspect: software 
architecture, system implementation and formal prop- 
erty description. 

• A formalized development approach to system behavior 
modeling and verification [19]. L/P relies on well 
formed Petri nets semantics [3] for formal verification. 

• A hierarchical, structured and modular approach to 
system modeling [4]. L/P uses a component based 
approach allowing hierarchical specification and behav- 
ior refinement. 
The main objective of L/P is to formalize relations be- 

tween system modelling, formal verification and code gen- 
eration of embedded distributed systems. Thus, we provide: 

• transparent formal verification to enable its use in an 
industrial context without requiring specific training and 
skills [12], 

• strong correspondences between the detailed descrip- 
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tion of a system, its proofs and its implementation. In 
other words: «what you check and what you implement 
is what you describe». 
Figure 1 presents our methodology. It takes in input an 

UML specification of a system. UML is not suitable for di- 
rect verification as noticed in the vUML project [10]. This 
is also true for distributed code generation from UML as 
mentioned in [14]. So, extensions to UML have to be con- 
sidered. L/P has been elaborated for this purpose and can be 
seen as an additional UML diagram. 

;UML model   I reformulation 
formal debug ■   enrichment I 

*#' 
;Eormai;      ^ synthesis 

ispejiiiScätiöns ^-J   ^* 

Ä       j AröKiteCturaT       I        . 
.description 

verification 
>sj generation 

Programs^ 

Figure 1: Our evolutionary prototyping methodology. 
The L/P model can be partially generated from UML 

standard diagrams. However, it contains enriched informa- 
tion compared to other UML diagrams: centralized descrip- 
tion of components behavior by means of finite state 
machines (FSM), identification of properties to be verified 
and implementation directives. All this information is locat- 
ed in L/P and can be checked without being concerned with 
coherence problems between several diagrams. 

Once the L/P model is produced, Petri nets synthesis can 
be performed. In Figure 1, «synthesis» corresponds to a set 
of transformations from L/P to Petri nets. Each one is ded- 
icated to the verification of a given property according to a 
given strategy. This reduces the complexity of the proof: 
non relevant information can be discarded and thus, gener- 
ated Petri nets are optimized. 

Once all properties stated in the L/P model are verified 
(which may require some modification and several refine- 
ment son the diagram itself), code generation produces 
pieces of programs to be compiled and deployed in the tar- 
get execution environment. 

As shown in Figure 1, the main interest of evolutionary 
prototyping is to enhance the role of a model which en- 
ables: 1) several refinement of the system since production 
of the corresponding executable version is performed at 
low cost, 2) formal verification manageable by engineers 
since most of the process is hidden and performed automat- 
ically, 3) use of the L/P model, even during the mainte- 
nance phase. 

To operate our methodology, we use a set of languages 
dedicated to each prototyping phase: 

• UML for system specification and modelling, 
• L/P diagram to centralize informations and to enable 
code generation as well as formal verification, 

• Petri nets to apply formal verification procedures, 
• Programming languages to implement the system. 

3.      THE LFP FORMALISM 

This section summarizes the main features of L/P. De- 

tailed information and rationale can be found in [18]. 
L/P is a graphical Architecture Description Language 

with coordination facilities. It is dedicated to the rapid pro- 
totyping of embedded concurrent systems. L/P enhances an 
existing UML model with information enabling automatic 
code generation of concurrent programs and formal verifi- 
cation. 

To do so, L/P uses three orthogonal views adapted to 
some specification aspects: 

• the functional view (implemented as a diagram), 
• the implementation view (textual annotations on the dia- 
gram), 

• the property view (textual annotations on the diagram). 
The functional view describes the system behavior in 

terms of execution workflow of connected components and 
the coordination between component instances. It also de- 
scribes the system software architecture. 

The implementation view describes the system imple- 
mentation constraints (target executive, used programming 
language, communication infrastructure) and the deploy- 
ment topology. 

The property view specifies properties to be verified by 
the system (similar to the B proof-assertions [1]). Such 
properties are stated by means of invariants (for example, to 
check mutual exclusion), temporal logic formulas (for ex- 
ample, to check availability or fairness of a service) or other 
statements that can be converted to a given formal method. 
This view can be exploited to perform computer-assisted 
formal verification but also introduces relevant information 
for code generation (i.e. rutime checks). 

3.1.    The L/P Structure 

The L/P functional diagram contains: 
• a declarative part defining management information 
(e.g. model name, author, version number, comments 
and the associated UML model if any) and formal decla- 
rations: types or constants. Elementary types are: integer 
range, ordered enumerations or the opaque type. The 
opaque type denotes variables which only support the 
affectation operation and, thus, cannot influence the exe- 
cution workflow. 

• a list of entities: classes and media. 
A L/P class corresponds to a complete UML instancia- 

ble class. Thus, abstract or virtual UML classes have no 
correspondence in L/P. 

A media is used to connect classes. It specifies both in- 
teraction contract and communication semantics. It corre- 
sponds to an UML association, aggregation or composition. 

Table 1 presents the graphical representation for classes 
and media. 

L/P Class 

Class 
name 

L/P Media 

Media 
name 

Table 1: Graphical representation of classes and media 

3.2.    L/P entities 

As mentioned in Section 3.1., the L/P functional dia- 
gram contains classes and media. Their description strongly 
relies on L/P-FSM (Finite State Machine) supporting vari- 
ous elements of a class or media specification. Thus, we 
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present the L/P-FSM structure prior to classes and media. 

3.2.1. L/P-FSM 

L/P-FSM uses a notation similar to the one of Petri nets 
and provides some modelling facilities. They are used in 
various parts of a specification; the main difference consists 
in the signification of transition labels. L/P-FSM contains: 

• a declarative part specifying a list of variables repre- 
senting the execution context. 

• the FSM itself. It specifies the execution workflow of a 
class, a class role, a method or a media. A L/P-FSM 
contains basic elements (or nodes) «wired» together 
using connection links. 
Variables of a L/P-FSM context are either local to a 

class or media instance or shared between all of them. Vari- 
ables are typed (according to a visible defined type) and 
may hold a default value. As mentioned in Section 3.1., 
opaque variables only support the affectation operation. 

Symbol name 

State 

Transition 

S-Transition 

H-Transition 

Barrier 

Protector 

Binder 

Constructor 

Icon 

O BEGIN | FINAL 

LOOP ■*- 

D i++; 
[i   >  0] 

3> 
transition name 
 guard condition 
       statement 
  safety condition 

■LOOP 

block 

SYNC 

transition name alias 

sub-net name 

barrier name 

[01 variable.lock- 

M(4)     -  
  protector name 

protector cardinality 

SC.channel.server 
binder name 

reference to a binder | 

target 
ConveyerControler ■*—     class 

Table 2: Graphical representation of L/P-FSM basic elements 
Table 2 summarizes nodes to be found in an L/P-FSM: 

• States are execution steps. Two special states are distin- 
guished: BEGIN and FINAL corresponding to the initial 
and final execution states. L/P-FSM has only one initial 
state. 

• Transitions express potentially guarded actions. Guard 
conditions specify activation rules to be satisfied when 
firing a transition. The transition name may reference 
class role name (Section 3.2.2.), or a class method name. 
A statement is executed after the firing, it modifies state 
variables of the L/P-FSM visible at this level. These 
have an atomic execution semantics. Safety conditions 
express invariants useful for formal verification, debug- 
ging and testing 
Transitions may be linked to sequential code written 
using any programming language, to be inserted in the 
distributed application at code generation time. This 
code may change opaque variables values only and thus, 
cannot change the execution workflow. 

• Shadow Transitions (S-Transitions) are graphical 
aliases to existing transitions proposed to simplify L/P- 

FSM. 
• Hierarchical Transitions (H-Transitions) abstract sub- 
L/P-FSM to increase readability. Sub-L/P-FSM have 
one initial state and one terminal state. These are bound 
to the H-Transition input state and output state. 

• Barriers are special shared transitions corresponding to 
a synchronization point between all concurrent instances 
of a L/P-FSM. 

• Protectors are shared locks (multi-level semaphores or 
groups of semaphores) used to provide restricted access 
to a shared resource. They are used to define critical sec- 
tions between concurrent instances of a L/P-FSM. A 
protector can be standalone or associated to one variable 
or group of variables. The protector cardinality specifies 
how many concurrent L/P-FSM instances may simulta- 
neously get into the critical section. 

• Binders are access points to media. L/P-FSM communi- 
cate through binders by means of messages. A message 
consists of three fields: 1) a message name known by the 
media, 2) message discriminants that can be modified by 
the media, 3) message arguments that must be opaque 
for the media. Binders are declared in media and refer- 
enced in classes. 

• Constructors are used to create new class instances. An 
initialization context has to be specified for created 
instances. 
Table 3 presents connectors to be used in a L/P-FSM. 

Arc Protector link 

-O 

Media link 

-*»- 
■«- 

■«- -»► 
Table 3: Graphical representation of LfP-FSM connectors 

• Arcs are used to link a State to a Transition, S-Transi- 
tions, H-Transition or Barrier and vice versa. An arc 
express the execution sequence. L/P-FSM are sequential 
finite state machines. Thus, the number of input and out- 
put arcs of a Transition (S-Transition, H-Transition, or 
Barrier) is of exactly one. 

• Protector Links connect Protector to Transitions or S- 
Transitions and vice versa to define critical sections. 

• Media Links are used to connect Binders or Construc- 
tors with Transitions or S-Transitions. Media Links 
specify the connection direction (in, out or inout). A 
Media Link specifies the binding contract between local 
context variables and messages (discriminant, name and 
arguments). 

3.2.2. L/P Classes 

A L/P Class corresponds to an UML implementation 
class and expresses some functional aspects of a system. It 
consists of: 

• a declarative part specifying: 1) the class identifier, 2) 
for each binder, potential messages and their parameters 
(some of these messages correspond to public methods), 
3) a list of private methods and their parameters, 4) 
defintion of sequential code to be linked to transitions. 

• a list of FSM denning : 1) the execution contract (main 
FSM), 2) class roles (optional), 3) methods. 
Definition of the main FSM is mandatory. It represents 

the execution workflow of a class instance. Transitions in 
the main FSM may reference class roles (if any) or class 
methods. 
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Class roles correspond to alternative class behaviors; 
their definition is optional. Each role is described using a 
L/P-FSM. Transitions in a role may reference methods. 

Class methods are also described by means of a L/P- 
FSM defining the execution workflow (i.e. the method ex- 
ecution contract). 

Table 2 summarizes the graphical representation of the 
class main L/P-FSM, a class role or of a class method. 

the main L/P-FSM        a class role a class method 

Main FSM 

o-*o—O 
Role name Method name 

Figure 2: Graphical representation of class components. 

3.2.3. L/P Media 

Media connect instances of L/P Classes. It is possible to 
use them as basic components or to assemble them into 
more sophisticated communication patterns. Media con- 
necting two or more L/P classes correspond to an UML as- 
sociation, aggregation or composition. Media can also be 
used to implement shared resources (list, FIFO, stack, etc.). 

A media specifies binding constraints and communica- 
tion protocol semantics. We base our approach on the ODP 
contract definition [8]. A media consists of: 

• a declarative part defining : 1) new types declaration 2) 
media variables which are similar to class variables, 3) 
the interaction contract consisting of several binding 
constraints. 

• the main FSM representing the communication contract 
(communication protocol semantics). 
The binding constraints specify: 1) a reference to the 

connected binding point, 2) the communication mode 
(synchronous or asynchronous), 3) the accepted messag- 
es and their arguments, 4) the binding multiplicity (one, 
all or any): one means that the binder is connected to only 
one class or media instance; all specifies that the binder is 
shared by all the connected classes instances; any leave this 
unspecified. 

A media cannot play various roles, has no methods nor 
associated constructors. Media carry on information on 
classes request. 

4.      AN EXAMPLE 

Let us consider a set of conveyers circulating on a path 
divided in N segments as shown in Figure 3. A segment 
may contain only one conveyer. Conveyers may cross be- 
tween segments where a crossing zone is defined (noted Z 
in the Figure). When two conveyer cross, the first one get 
into a special path in the crossing zone and let the other one 
get out before entering in the segment. 

Z] Z2 ZN.i 
Figure 3: The conveyer system. 

4.1.    Conveyer Behavior in the System 

Conveyers, segments and crossing zones are locally 
driven by an embedded Control application. Command 
centers drive conveyers movements (using the MOVE mes- 

sage). However, these are not part of the system but corre- 
spond to an «external» component (e.g. a piece of code that 
already exists and has to be linked to the generated pro- 
grams). 

Therefore, the system contains three classes: Segment- 
Control (noted sc), ConveyerControl (noted cc) and Cross- 
ingZoneControl (noted czc). Interactions between classes 
are defined using the following rules: 

1) Upon receiving a MOVE command, a cc has to require 
(using DEM message) an authorization provided by the 
SC of the segment it wants to get in (if different from the 
current one). When it gets a positive answer (AUT mes- 
sage), it may come in. 

2) This authorization may be refused (REF message), 
then, the conveyer must get into the crossing zone. 

3) A conveyer stopped in a crossing zone is not consid- 
ered to be in any segment. 

4) The SC replies AUT when it is empty. 
5) The SC replies REF when it contains a conveyer. It 
then store the query in a local FIFO to reactivate the 
demanding conveyer when it is empty. 

6) The CC sends DEM when it wants to leave a segment, 
just before entering in a new one. 

7) The CC leaves the crossing zone when it gets a GO 
message from the SC. This message is sent when the 
conveyer occupying the segment leaves it. 

8) When a cc leaves a segment (to get into another one 
or to get into a crossing zone), it notifies the correspond- 
ing SC by means of a OUT message. This message is also 
sent when a cc leaves a czc. 

9) To increase security, cc checks (message EMPTY) if a 
czc is empty when entrance in a segment is refused. 

10) The czc answers to EMPTY using OK (it is empty) or PB 
(it already contains a conveyer). 

11) When PB is sent by a czc, the cc sends ALARM to other 
conveyers and the entire system stops in an error state. 
Figure 4 presents the static structure of the system as an 

UML class diagram. 

_S£_ 
3EM() 
«oneway» OUT() 

Command 

client 1..» 

server 1..* 

_L 
SC_channel       client 

.        , EMPTY!) 
channeLcommand   «oneway» OUT() 

CC 
«oneway» MOVE() 
«oneway» GO() 
«oneway» ALARMQ 

sender 
CC channel 

~CZC~ 

17 

client CZchannel 

Figure 4 : The UML class diagram of the conveyer system. 
Let us illustrate the rules exposed in Section 4.1. with 

UML sequence diagrams. The one of Figure 5 corresponds 
to a first scenario. Conveyer «c» located in segment «1» 
wants to get into segment «2». It sends DEM and gets AUT, 
enters in segment «2» and sends OUT to segment «1». 

c:CC 

DEM 

2:SC 

OUT 

1:SC 

1 

AUT I 

I 

1 

Figure 5 : Sequence diagram of scenario 1. 
The UML sequence diagram of Figure 6 corresponds to 

a second scenario. A conveyer «cl», located in segment 
«1», wants to get into segment «2» where another conveyer 
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«c2» is located. When «2» refuses entrance, «cl» gets into 
the crossing zone «z» after having checked if it is empty. 
When «c2» leaves «2», «cl» is waken up by «2» and leaves 
«z». 

cl:CC c2:CC 1:SC 2:SC z:CZC 

I DEM ' 1 

L REF  : i 

!    EMPTY   ! 
• 
i 

OK i 

•      OUT     • i 

1                                        1 OUT   ; 
i                               T 

GO 

OUT 

/ Igu re 6 • Sequence diagram of scenario 2. 

4.2.   The L/P Specification 

In order to build the L/P diagrams we reuse information 
found in the UML models. 

4.2.1. Description of the System 

Figure 7 presents the main L/P diagram. The static 
structure of this is derived from the UML class diagram 
(Figure 4). It declares three classes (corresponding to the 
UML ones) and four media. The first three media corre- 
spond to the three UML associations and specify the com- 
munication protocol between classes as well as their 
interaction contract with media. The last media is a local 
FIFO used by SC instances to store unsatisfied queries. 

model_name ;= 'conveyeurs'; 
author := 'Dan Regep'; 
version := 0.0.1; 
comments := "; 
UML_model := 'conveyers.mdl'; 
const NBC := 2; 
const NBS := 4; 
constNBZ:=3; 
type station is integer range 1..NBS; 
type start_bound is integer (1,2,3); 
type endjxmnd is integer (1,2,3); 

static instances: 
CC with HID in range 1.. NBC; 
SC with HID in range 1..NBS ; 
CZC with HID in range 1..NBZ; 

properties: 

SC CC CZC 

SC_channel 

CCchannel 

CZC_channel | 

FIFO_channel I 

of: 

Figure 7: The L/P main diagram of the conveyer example. 
The declarative part of the L/P main diagram consists 

• general model information. Model name, author, ver- 
sion, associated UML model. 

• declaration of constants and new data types. NBC, NBS 
and NBZ constants respectively define the number of 
conveyers, segments and crossing zones. A new type 
(station) defining valid station identifiers. Two enu- 
merated types (start_bound and end_bound) repre- 
senting valid bounds of a segment in terms of stations 
(stations are numbered). We assume here that there is 
only one station per segment. This may be changed 
without modifying the structure of the L/P model. 

• declaration of static class instances with their initial 
context. We find two conveyer instances, four segment 
instances and three crossing zone instances. 

• a list of properties to be verified for the system. These 

Main FSM 

O-tr-O 

DEM 

A10-U- 

OUT 

/UO-v- 

declarations belong to the property view of the system. 
We provide some interesting properties in Section 4.3. 

4.2.2. Description of the SC Class 

Figure 8 presents the SC class. The declarative part 
specifies for each connected media binder, the list of ac- 
cepted messages (marked as in) and possible outgoing 
messages (marked with out). According to the sequence di- 
agrams of the two scenarios (Figure 5 and 6), a SC class in- 
stance may receive an entrance demand (DEM) or a 
notification message (OUT). A segment controller may reply 
to the demanding conveyer controller using two alternative 
messages: entrance authorization (AUT) or entrance reject 
(REF). It also sends GO to let a waiting conveyer come in 
from a crossing zone. 

messages: 
fromSC channel.server 
in DEMO; 
inOUTO; 
out AUT(); 
outREFO 
out GOO; 

from FIFO_channel.in 
out WRITE (in opaque data); 

from FIFO_channel.out 
in READ (out opaque data); 

internal_methods: 
procedures: 

Figure 8: The SC (Segment Control) class. 
The main L/P-FSM (Figure 9) specifies the execution 

contract of the sc class. Its purpose is to merge together the 
two alternative behaviors corresponding to the execution 
scenarios from Figure 5 and Figure 6. 

The main L/P-FSM states that DEM and OUT methods 
should be mutually exclusive. Moreover, OUT can be exe- 
cuted only if the segment contains a conveyer (segment 
state is full). 

The main L/P-FSM declares three local variables (dupli- 
cated in any class instance): status represents the execu- 
tion state of a class instance (empty or full); index stores 
the number of pending demands; HID represents the class 
instance identifier, HID corresponds to a unique instance 
identifier. 

When constructing new class instances, all context vari- 
ables have to be initialized. 

context: 
local status is ('empty', 'full'); 
local index := 0 is integer range 0..NBC: 
local HID is integer range 1 ..NBS; . L     «status -  'full'. 

DEM DdX_)d^tZI0UT 

FULL_OR_EMPTY 

Figure 9: The main LfP-FSM of the SC class. 
Figure 10 presents the DEM method L/P-FSM. It defines 

conveyer_lD, a local variable used to store the identifier of 
a demanding conveyer. 

The DEM execution contract has two branches: 
• When the segment is empty, access is granted and the 
segment state changes to full. 

• When the segment is full, the query is stored in a FIFO 
media for further process and the index of pending 
demands is incremented. Then, a negative response 
(REF) is sent back to the conveyer. 
Communication with the FIFO has oneway asynchro- 

nous message passing semantics. 
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context: local conveyerJD := 0 is integer range 0..NBC; the message destination should be identical to client_lD. 

SC_channel. server 
I <msg ■   'DEM': 

BEGIN 

conveyer_ID  :« 
mflg.discriminator.BOurcelDi 

SC channel.sarver 

mag !■ 'AUT' 
msg.dineriminator.deBtinationID: 

conveyer ID; 

FIFO_chann«l.in 

mag !■  'WRITE'; 
mag.data   i» conveyer ID  , 

SC.channel.server 

mag I« 'REP'; 
mug.discriminator.destinationlDn 

Figure 10: LfP-FSMofthe DEM method. 
Figure 11 presents the L/P-FSM of the OUT method. As 

for DEM, it also contains a local variable to store conveyer 
identities. Behavior of the OUT method consist of two alter- 
native branches: 

• If there is no pending request (index = 0) then status 
of the segment is changed to empty. 

• If there is at least one pending requests, the oldest 
demand is retrieved from the FIFO and a GO message is 
forwarded to the corresponding conveyer. 

context: local conveyerJD :=0 is integer range 0..NBC; 

SC_channel.server 
■      <msg ■ • OUT' > 

<index - 0> 

status :- 'empty; 

SCchannel. server 

1 msg : ■ ' GO' ; 
msg. discriminator. destinat ionID 

conveyer_ID; 

BEGIN 

<index > 0> 
index --,-     FIFO_channel.out 

msg   :■   'READ; 
conveyer_ID  :■ msg.data; 

FINAL 

Figure 11: LfP-FSMofthe OUT method. 
Due to space reasons the L/P representations of cc and 

czc classes are not presented in this paper. 

4.2.3. Description of the SC_channel media 

The structure of the sc_channel media is presented be- 
low in Figure 12. Its context consists of two local variables: 
client_lD represents the identifier of the connected cc 
class and message is used to encapsulate the contents of an 
incoming message. 

SC_channel has two binders (client and server) 
through which it is connected to a client (a cc class in- 
stance) and to all server instances together (all cs class in- 
stances). The connected conveyer is the client (client 
multiplicity is one) and all connected segments are servers 
(multiplicity of the server binder is marked as all). 

The media may transport several messages. Possible 
messages and their parameters are enumerated for each 
binder. The communication is asynchronous through both 
binders. 

When receiving a message through the client binder, the 
media dispatches it to the concerned server. This is 
achieved using a simple copy of the message contents from 
the incoming binder to the output one. 

In order to match an incoming message from a server, 

context: 
local clientJD is integer range 1 ..NBC; 
local message is opaque; 

binders: 
client: asynchronous; 

multiplicity := 1; 
messages: in DEM (); 

in OUT(); 
out AUTO; 

client 

server: asynchronous; 
multiplicity := all; 
messages: out DEM (); 

out OUT (); 
In AUTO; 

essage   :- mag.#all; 

server 

-A 
msg.#all   t- message; 

BEGIN i 

client 

'msg.Hall :■ message; 

kmsg.discriminator.deatinationID * client_ID> 
h<  

message :■ mag.Vail; 

Figure 12: LfP-FSM of the SC_channel media. 

4.3.   Properties to be Verified 
Two kinds of properties may be considered with regards 

to modular specification: 
• properties local to a module, 
• properties global to the complete specification. 

Local properties concern the internal behavior of a com- 
ponent independently from its environment. If we consider 
the SegmentControl class, local properties express the link 
between the demand of a conveyer and the answer of the 
segment, such as: 

i.   if SegmentControl gets request to enter an empty seg- 
ment, it answers "OK" to the conveyer, 

ii.  if SegmentControl gets request to enter a full seg- 
ment, it answers "REF" to the conveyer. 
Global properties concern the behavior of the complete 

system; verification thus requires the specification of the 
entire system. An example of such a property is : 

iii. the system is deadlock free. 

5.      FORMAL VERIFICATION 

L/P specifications cannot be used «as is» to perform for- 
mal verification. Thus, a translation into a verification lan- 
guage is necessary. The generated formal specification is 
not as easy to read as the one in L/P, but handles automated 
formal verification. 

It is usually impossible to perform formal verification 
without abstraction and reduction of the system at the for- 
mal level. However, as most abstractions and reductions 
rely on the semantics of the property to be verified, we pro- 
duce one formal specification per property to verify. Thus, 
the obtained formal specification is equivalent to the L/P 
one regarding the considered property. 

We choose well formed colored Petri net [3] because, in 
addition of excellent capabilities for the description of con- 
current systems, they support both structural and behavioral 
verification methods. 

Let us use the conveyers example to illustrate validation 
of the behavioral property stated in Section 4.3. To validate 
this system, we used CPN-AMI, a Petri net based CASE en- 
vironment [11]. 

5.1.    Colored Petri Nets 

This section informally presents colored Petri nets. 
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A colored Petri net is a 5-uple <P, T, Pre, Post, Types, 
MQ> where: 

• P is a set of places (depicted by circles). 
• T is a set of transitions (depicted by rectangles). 
• Pre[t] is the precondition function for transition t. 
• Post[t] is the postcondition function for transition t. 
• Types is the set of basic types. A basic type is a finite 
set. 

• M0 is the initial marking. 
Figure 13 depicts a simple colored Petri net with 3 plac- 

es (PI, P2 and P3) and 2 transitions (t and tl). 
class 

PI DPI V2DP2 ,Id!sV?;,  ,n 9,-^ Valuel is 1..10; 
2*<1, 3>    Q <1, 5>, <2, 7> Value2 is4..15; 

yS    I domain 
<i, vl> <i V2> <i, v2> DPI is <W, Valuel>; 

1 y I DP2 is <Id, Value2>; 
t c^T[i<j]        cbtl DP3 is <Id, Valuel, Value2>; 

<i, vl++l, v2> var 
6i, j in Id; 

vl in Valuel; 
v2inValue2; 

DPS   p3 

Figure 13: Simple colored Petri net example. 
To each place p, a domain Dom(p) is associated: Dom(p) 

is the cartesian product of some basic types. In Figure 13, 
basic classes are id, Valuel and Value2. The domain of PI 
is the cartesian product of Id and Valuel, the one of P2 is 
the cartesian product of Id and Value2 and the one of P3 is 
the cartesian product of Id, Valuel and Value2 

A marking M(p) is associated to each place p: M(p) is a 
multi-set over Dom(p). Therefore, a marking M is the func- 
tion that associates a marking to each place p of P. An ele- 
ment of a marking in a place is called a token. In Figure 13, 
the initial marking associates: 

• two tokens having the <1, 3> profile to PI, 
• tokens <1, 5> and <2, 7> to P2, 
• the empty multi-set to P3. 

Pre and Post functions describe how a marking is modi- 
fied when an action is performed. Since actions are associ- 
ated to transitions, instead of «an action is performed» we 
say: «a transition is fired». 

To each transition, a set of variables Var(t) is associated. 
Each variable is defined over a basic type. In Figure 13, 
Var(t) = {i, j, vl, v2} and Var(tl) = {i, v2}. Variables i and 
j are defined over the basic class Id, variable vl is defined 
over Valuel and variable v2 is defined over Value2 

Let us call a binding of t the association of a value to 
each variable of Var(t). Let x a binding oft, Pre[t][p, x] re- 
turns a multi-set over Dom(p). A transition t can be fired for 
a marking M iff: 

• constraints over the binding are satisfied (they are called 
guards), 

• Pre[t][p, x] is included in M(p) for all p of P, 
Post[t][p, x] also returns a multi-set over Dom(p). If t 

can be fired for binding x, then a new marking M' can be 
computed: M'(p) = M(p) - Pre[t][p, x] + Post[t][p, x]. Since 
a variable may appear in many post or preconditions, it is 
useful to define the successor (++n) and the predecessor (- 
-n) functions. 

In Figure 13, many bindings can be found for transition 
t, like i = 3, j = 5, vl = 7, v2 = 6. However, t cannot be fired 
for this binding since <3,7> is not a token in PI for the ini- 
tial marking. The following binding allows t to be fired : i 

= 1, j = 2, vl = 3, v2 = 7 (token <1, 3> belongs to PI and 
token <2,7> belongs to P2, there is no precondition for P3 
and the guard is satisfied since i < j). When t has been fired 
a new marking Mj is computed: 

• PI contains the token <1, 3>, 
• P2 contains the token <1, 5>, 
• P3 contains the token <1,4, 7>. 

From this new marking no binding can be found for t to 
be fired (the only possible binding would be i = 1, j = 1, v 1 
= 3, v2 = 5 and it does not satisfy the guard i < j). Figure 14 
shows the reachability graph of the net figure Figure 13. 
The double circled state corresponds to the initial marking 
(M0) of the net. 

{2*<1,3>),P2={<I,5>,<2,7>},P3 = 0 

P1 = {2*<1,3>},P2 = (<1,5>},P3 = 0 

tl (2, 7)  —»Q 

t (1, 2, 3, 7) 
PI = {2»<1,3>), P2 = (<2,7>}, P3 = 0 

tl (1, 5) - 
P1 = (<1,3>),P2 = {<1,5>),P3 = {<1,4,7>} tl (1, 5) 

-t (1,2,3,7) 
PI = {<1,3>), P2 = 0, P3 = (<2,7>}        PI = {2*<1,3>}, P2 = 0, P3 = 0 

Figure 14: Reachability graph of the simple colored Petri net. 

5.2.   From L/P to Colored Petri Nets 

We have to ensure that results computed at the Petri net 
can be translated into L/P terms. Therefore, the translation 
process has to preserve the component structure of L/P 
models. This strategy also enables modular verification 
when it is possible (e.g. for local properties). 

Therefore, we work at the module level (modules are de- 
duced from L/P classes). We then compose them to produce 
a complete Petri net of the system.This procedure has two 
main steps: 

• Generation of Petri net modules from L/P-FSMs. 
• Composition of Petri net modules 

To illustrate the translation procedure, we consider the 
specification of the SegmentControl. 

5.2.1. Generation of Petri Net Modules 

Structure of the Petri net To obtain the structure of the 
Petri net, we consider L/P-FSM of the input model: 

• In the Main-FSM, transitions corresponding to methods 
are replaced by the corresponding L/P-FSM. 

• Places initiating methods are identified with the BEGIN 
place in the corresponding L/P-FSM 

• Method output places are identified with FINAL places 
in the corresponding L/P-FSM. 

• We preserve at the Petri net level, names of L/P places 
and transitions. Unnamed L/P places and transitions are 
given an arbitrary name in the Petri net. Naming is 
requested by some verification tools. 
If we consider the SegmentControl class, we obtain the 

Petri net of Figure 15. Black places and transitions are the 
one of the Main-FSM. Transitions DEM, tl, t2, t3 and plac- 
es Pi, P2 describe the method DEM. Transitions OUT, t4, t5 
and place P3 describe the behavior of method OUT. Tran- 
sition DEM (respectively our) are shared by the Main-FSM 
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and the method DEM (respectively OUT). 
Channel_SC_server and FIFO_channel_out correspond 
to media. 

The verification we consider does not matter with the 
implementation of communication channels. We may thus 
abstract their specification with a single place. However it 
requires their implementation to respect the following prop- 
erty: channels are deadlock and loss free. This assertion 
has to be inserted as an implementation note used by code 
generators. 

Color-domains, valuations and initial marking. Once 
the structure of the Petri net obtained, it is necessary to de- 
fine variables management using color classes and do- 
mains, variables, valuations and guards. A color domain 
representing the information required to determine the state 
of the system is associated to places in the Petri net model. 

We thus consider the variables identified in FSMs: 
• Information depicted by variables declared in the main 
FSM is associated to place, 

• Places derived from methods are enriched by local vari- 
ables. 

• Information in a channel contains three parts : the 
source, the destination and the value of the message. 

<ftill, 1,1,0>,<cmply,2,0>.<filll,2,3,0>,<empty,4,0> 

FULL_EMFTY 

[msg_chanel a DEM ] 

ID.index > 

StatusSegmentLocal 

<status,conveyer!D, 
WD,index+-H > 

StatusSegmentLocal \J 

a 
<status,conveyerID, 
HID.index > 

DEM method 

FIFO_ch«nelj 
T_channel_FIFO 

<REF,conveyerlD,HID> 

Figure IS: Petri net of the SC (SegmentControl) class. 
Let us illustrate this on the Petri net in Figure 15 and the 

corresponding declarative part in Figure 16. Places of the 
main FSM carry: status of a segment (empty or full), iden- 
tity of the segment (integer between 1 and 4) and an index 
that indicates the number of conveyer waiting for segment 
release. This information is represented by the statusSeg- 
ment domain. Places derived from methods also contain the 
identity of the conveyer willing to enter the segment. 
Therefore the new domain, statusSegmentLocal, is de- 
fined. Each of the two communication channels has its own 
domain (T_channel_SC and T_channel_FIFO). 

The following declaration contains the classes, domains 

and variables that are necessary for the description of the 
SegmentControl class. 
CLASS 
Tstatus is [empty,full]; 
TCC is 1. . 2; 
TSC_CZC is 1. .4; 
Tindex is 0..2; 
Tmsg_channel_SC is [OUT,DEM,AUT,REF,GO,VIDE,OK,PB] ; 
Tmsg_FIFO_charmel is [ WRITE,READ ]; 

DOMAIN 
StatusSegment is <Tstatus,TSC_CZC,Tindex>; 
StatusSegmentLocal is <Tstatus,TCC,TSC_CZC,Tindex>; 
T_channel_SC is <Tmsg_channel_SC,TCC,TSC_CZC>; 
T_channel_FIFO is <Tmsg_FIFO_channel,TCC,TSC_CZC>; 

VAR 
status in Tstatus; 
conveyerID2 in TCC; 
conveyerlD in TCC; 
HID in TSC_CZC; 
index in Tindex; 
msg_channel in Tmsg_channel_SC; 
msg_FIFO in Tmsg_FIFO_channel; 

Figure 16 : declarative part of the SC (SegmentControl) class. 
Arcs valuation and transitions guards are also deduced 

from the L/P specification.Let us consider transition DEM in 
Figure 15. 

To be fired it requires one token from place 
FULL_OR_EMPTY (domain StatusSegment) and one token 
from channel_SC_server (domain T_channel_SC). The 
arc from place FULL_OR_EMPTY to DEM is valuated by the tu- 
ple <status,HID,index>; the one from 
channel_sc_server to DEM is valuated by the tuple 
<msg_channel, conveyerID,HID>. 

So, to fire DEM, a message must be sent to a segment 
identified as full or empty (this segment is not responding 
to a request) and HID variables must be the same in both val- 
uation. The token stored in the DEM output place is a combi- 
nation the input: <status,conveyerID,HID,index>. 

Transition t3 authorizes (t2 refuses) the entrance in the 
segment; t3 has the following guard [status = empty] (re- 
spectively [status = full] for t2). These guards corre- 
spond to the preconditions defined in the L/P-FSM 
(Figure 10). 

This way, places domain, arcs valuation and transitions 
guard are computed from the L/P specification. Petri net of 
Figure 15 and declaration in Figure 16 represent the com- 
plete Petri net specification of SegmentControl Class. 

The initial marking of the Petri net corresponds to the 
static instantiation of classes. For SegmentControl, we in- 
dicate which are the full segments; for ConveyerControl 
we indicate the segment identifier where each conveyer is 
and, for we indicate that all CrossingZoneControl in- 
stances are empty. 

Petri net reduction. As the Petri net is automatically 
synthesized from the L/P specification, its structure may be 
not optimized. Some reductions are possible regarding the 
class of properties to verify. These reductions concern the 
Petri net structure. Therefore, combinatorial explosion of 
the corresponding state graph is reduced and verification 
becomes easier. 

If we consider deadlock freeness, reduction techniques 
presented in [6] can be applied. If we consider verification 
of temporal properties, reduction techniques presented in 
[16] are necessary. 

The first technique is compatible with deadlock freeness 
property (property iii.), the second one is compatible with 
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Properties i. and ii. Some reductions, as the following one, 
belong to the two techniques. The rule we apply aims to 
identify two transitions (ta and tb) where the bindings of ta 
depends only on the bindings of tb. Such a reduction is pos- 
sible between transitions DEM and (ti and t3). 

Figure 17 shows the reduced Petri net. Black transitions 
replace the three ones that have been reduced. The place be- 
tween DEM, ti and t3 has been suppressed. 

BEGIN  Q 

StatusSegment 
<full,l,0>,<emply,2,0>,<ftill,3,0>,<emply,4,0> 

Figure 17: Reduced Petri net of the SC (SegmentControl) class. 

5.2.2. Composition of Petri Net Modules 

Composition. The composition of modular Petri nets is 
obtained by identification of channel binding points. In our 
case, as each channel is represented by a single place, we 
perform the fusion of all the places representing the same 
channel. 

Abstraction of system environment.To verify our sys- 
tem, we need a representation of its environment. At the 
verification level, this environment consists of the Com- 
mand class (Figure 4) and channel_command. 

Due to possible communications between Command and 
cc classes, this environment can be represented a generator 
of messages coming from the communication channel. 
Command sends all possible messages since we have no con- 
straints on it. Therefore, even if we consider a particular ini- 
tial configuration, the evolution of the system leads to all 
possible configurations. 

The complete model.The assembled model, obtained by 
composition of reduced modules, contains 20 places, 28 
transitions and 92 arcs. 

5.3.    Verification of properties 

We consider two types of properties: local and global. 

5.3.1. Local properties 

Let us consider SegmentControl with properties i. and 

ii. The formal language we use to express such properties is 
a temporal logic [5], properties i. and ii. are interpreted as: 

• L: if transition DEM is fired with the binding (status = 
empty, conveyerlD, HID, index, msg_channel = DEM) 
then place channel_SC_server will eventually contain 
the token <AUT,conveyerID,HID>, 

• ii: if transition DEM is fired with the binding (status = 
full, conveyerlD, HID, index, msg_channel = DEM) 
then place channel_SC_server will eventually contain 
the token <REF,conveyerID,HID> 
To verify such a property, it is not necessary to consider 

the entire system specification. The Petri net of ControlSeg- 
ment class associated to an abstraction of its environment 
with an adapted initial marking is sufficient. 

We use PROD [20], a model checker dedicated to col- 
ored Petri nets and integrated as a component in CPN-AMI 
[11] to verify the temporal logic specification of these por- 
perties. 

These properties are verified. Once all classes individu- 
ally verified, we can consider global properties. 

5.3.2. Global Properties 

We now want to verify property iii. Theorem provers are 
able to check such a property without considering a specific 
instantiation of the system (e.g. a given number of segments 
and conveyers). However, such proofs cannot be automat- 
ed. 

To enable automated proofs based on the reachability 
graph, we have to instantiate the system. Such instantia- 
tions can be deduced from the expected size of the system. 
A well accepted strategy is to start with a small number of 
resources and components to check if the property is cor- 
rect. Then we use realistic dimensions of the system for a 
safer verification. 

So, let us start with two conveyers and four segments.. 
We first compute the reachability graph of the complete 
Petri net and look for terminal nodes (i.e. specification deal- 
docks). We also used PROD to evaluate this property. 

The computed reachability graph holds 3072 nodes, 
6209 arrows and 33 terminal nodes. Thus, our specification 
is not correct. PROD helped us to extract a path between the 
initial state and one of the terminal nodes. This path builds 
a scenario explaining why our specification is not deadlock 
free.The scenario is the following: 

• Initially conveyer 1 is in segment 1 and conveyer 2 is in 
segment 3, 

• Conveyer 2 asks for segment 2 and enters in it. 
• Conveyer 1 then asks for segment 2 and is not allowed 
to enter it. 

• Conveyer 1 therefore asks to enter in crossing zone 1. 
• It is allowed to enter this crossing zone which is imme- 
diately set to occupied even if conveyer 1 has not yet left 
segment 1. 

• Conveyer 2 then asks for segment 1, it is not allowed to 
enter since conveyer 1 has not yet left the place. 

• Therefore it asks to enter crossing zone 1. This raises a 
problem and the system stops. 
This deadlock is due to asynchronous communication 

between classes : conveyer 1 has not yet considered the au- 
thorization from the crossing zone since the crossing zone 
considers it is already in. Then, our specification does not 
ensure that the number of occupied segments and crossing 
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zones remain equal to the number of conveyers. The verifi- 
cation process shows an implicit property that should be ex- 
plicitly expressed in the L/P verification view. 

To solve this problem, a communication protocol be- 
tween classes has to ensure that when a crossing zone (or a 
segment) accepts a conveyer's demand, this conveyer is no 
more considered as being in the crossing zone (or segment) 
it is leaving. Transactions ensure such a property. THus, the 
systems designer should update the L/P specification ac- 
cording to this observation. Such an operation corresponds 
to what we called «formal debug» in Figure 1. 

6. CONCLUSION 
In this paper, we have presented an evolutionary proto- 

typing methodology that promotes formal verification and 
debugging of a specification as well as code generation of 
distributed programs. 

This methodology relies on L/P: a formalism offering 
structuration capabilities and having a precise semantics 
suitable for the description of interaction between compo- 
nents of an embedded distributed system. The strong se- 
mantical definition of L/P aims to eliminate problems 
observed on a standard notation such as UML when it 
comes to code generation and formal verification. Howev- 
er, L/P remains connected to UML since we consider it as 
an additional diagram. Some parts of this diagram may be 
deduced from classical UML diagrams but system design- 
ers have to provide new information regarding cooperation 
between classes in the system. 

We illustrated our methodology on a small example: a 
conveyer system. This example showed that non-trivial er- 
rors can be detected on a system that appears to be correctly 
described. The detected problem deals with sophisticated 
behavioral aspects of the system which are due to some un- 
specified aspects on the system (here, some communication 
issues were not properly stated). 

Based on the study presented in this paper, it appears 
that our methodology has some «nice» capabilities when 
designing a system: 

• It is connected to a standard UML-based approach. In 
our methodology, UML design fits the early conception. 

• L/P is used as a basis for detailed description of the sys- 
tem and a basis for code generation and formal verifica- 
tion. 

• Our transformation techniques preserve a strong corre- 
spondence between the model level (L/P), the formal 
level and the program level. 

• The use of formal methods to check properties may be 
hidden to the end user. Then, it can be used by engineers 
having a low knowledge on formal methods. 

• Formal verification techniques enable formal debug at 
the model level. Then, if we assume that no bug is intro- 
duced by code generators, system implementation 
should behave according to the verified properties. 
Our methodology is partially implemented in CPN- 

AMI, a Petri net based CASE environment. 
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Abstract 

Most existing modular model checking techniques betray their hardware roots: they assume that modules com- 
pose in parallel. In contrast, layered software systems, which have proven successful in many domains, are really 
quasi-sequential compositions of parallel compositions. Most such systems demand and inspire new modular veri- 
fication techniques. This paper presents algorithms that exploit a layered (or feature-based) decomposition to drive 
verification. Our technique can verify most properties locally within a layer; we also characterize when a global 
state space construction is unavoidable. This work is motivated by our efforts to verify a military fire simulation and 
support software system called FSATS. 

1   Introduction 

Today's software applications are modularized around objects that collaboratively interact to provide the functionality 
of an application. This is the fundamental starting-point for contemporary object-oriented design as well as contem- 
porary modular model checking techniques [15,19,23, 27]. 

An alternate form of modularity centers around features rather than objects. Programmers design and construct 
applications by introducing one feature at a time. Each feature adds new capabilities and responsibilities to previously 
existing objects and introduces new objects to a design. A characteristic of features is that they are largely independent: 
this substantially reduces application complexity (because the concerns and implementation details of one feature are 
separable from those of others) and increases application extensibility (because new features can be easily added and 
unwanted features removed). Feature-oriented design is a form of step-wise refinement in which the refinements are 
entire features, rather than low-level changes to individual statements. 

Many research efforts now approach design through features, including layers [5], collaborations [26], aspects [22] 
and units [14]. In this paper, we call them layers to evoke the visual imagery of feature-based refinement. Layers have 
been particularly successful in software product-lines, where each application of a product-line is defined by a unique 
combination of features. A brief sampling of successful designs in this vein includes a military command-and-control 
scenario simulator [4], a programming environment [13], network protocols and database systems [5, 6, 33], and 
verification tools [16, 30]. 

The success of layered designs at implementing software product-lines suggests a tantalizing prospect: they may 
also assist in validating product-lines. Layers have well-defined interfaces that permit their composition to build larger 
systems. Layers tend, at least in principle, to obey the characteristics of components [17, 20, 31], such as separate 
compilation, multiple instantiability and external linkage. Perhaps we can verify each layer individually, and perform 
cross-layer verification when composing layers. 
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As a case study, we are especially interested in a layered system called FSATS, which implements a military 
command-and-control scenario simulator [4]. In particular, we wish to apply model checking to FSATS. FSATS is 
a particularly good candidate for model checking for two reasons. First, the design includes specifications of state 
machines [4], which eliminates the problem of deriving such state machines from the software. Second, the system 
has several temporal properties (for instance, every accepted mission eventually results in a weapon firing) that are 
especially amenable to model checking. 

FSATS is a complex collection of over 19 layers that can be composed independently to form scenario simulators. 
This immediately makes the straightforward application of model checking impossible, due the combinatorial number 
of possible systems, and the sizes of the larger compositions. FSATS has thus inspired our research into new forms of 
modular algorithmic verification. As FSATS is too complex to serve as a running example in this paper, we discuss 
it briefly to elicit its key characteristics, then illustrate our development on two simple examples that distill these 
characteristics. 

The rest of this paper is organized as follows. Section 2 discusses prior work on modular verification and its 
relationship to our work. Section 3 discusses FSATS and presents our methodology. Section 4 presents conclusions 
and discusses avenues for future work. 

2   Background and Related Work 

Model checking is a technique for proving logical properties of systems [9]. Its successful application to hardware 
makes its use on software systems an attractive proposition. In a canonical model checker, a design is represented 
as a (finite) state machine, while properties are usually expressed in variants of temporal logic. Model checkers 
handle designs consisting of several machines running in parallel by automatically computing the cross-product of the 
machines, then applying their algorithms to the resulting single machine; we exploit this feature in section 3. For an 
extensive survey of model checking, we refer the reader to the book by Clarke, Grumberg and Peled [9]. In the rest of 
this paper, we assume a basic familiarity with model checking. 

Model checking algorithms vary with the logic of properties. Our work extracts properties of layers by examining 
the labels on interface states. This assumes the model checker uses state labeling, which is the technique employed 
for branching-time temporal logics such as CTL. To simplify the development, we present our algorithms assuming an 
explicit representation of the state space of a system. In practice, many model checkers represent state symbolically 
rather than explicitly [25]. Our algorithms are insensitive to this difference; indeed, we performed the verification 
tasks in this paper on a model checker employing symbolic representations [32], 

Several researchers have described techniques for modular verification of designs [15, 19, 23, 27]. These tech- 
niques are based on a hardware-oriented notion of modularity, in which modules are composed in parallel. For 
instance, one module might be a CPU, while another module represents a floating-point co-processor. The research 
then shows how to ensure the preservation of individual properties about the CPU or floating-point processor; using 
these techniques to prove properties involving both devices requires substantial experience, and is not always possible. 
These results do not apply to most software systems, where control flows sequentially between modules. 

Some preliminary research [2, 10, 24] has begun to consider modular verification with sequential, rather than 
parallel, control flow. The original work [24] handles systems with only one state machine; it also lacks a design 
framework, such as layered design, that drives the decomposition of the system. Subsequent work uses hierarchical 
state machines [2] and StateCharts [10] to provide this decomposition, but the resulting systems are still monolithic. 
In contrast, we analyze systems with three key distinguishing features: 

• Each layer introduces a feature that was not previously present in the system; the layer does not simply refine 
existing features. 

• 

• 

Layers are developed without knowledge about all the other layers that may exist in a final, composed system. 

Each layers (unit of sequential composition) encapsulates simultaneous extensions to multiple state machines. 

The work by these other authors does not even admit these design possibilities. Alur and Yannakakis cite the problem 
of sequential verification over multiple state machines as open for future work [2]. Furthermore, they do not discuss 
how to handle systems that involve quasi-sequential composition of parallel compositions, such as exist in FSATS. 
Alur et al. discuss analysis techniques for sequential refinements within modules that are composed in parallel (this 
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Forward Observer Field Officer 

Figure 1: A sample of layered state machines from FSATS. The top layer is the base system, the second adds missions 
that fire mortars, and the third adds missions that fire artillery. The full design contains state machine hierarchies for 
the artillery as well as for other personnel in the command hierarchy. 

work uses the term "behavioral hierarchy" for refinements within modules and "architectural hierarchy" for parallel 
compositions of modules) [1]. The critical difference between their work and ours is that theirs does not support 
coordination between sequential refinements across modules. Our work, in contrast, considers verification for layers 
that gather related sequential refinements into modules. Encapsulating related refinements in layers allows us to verify 
properties of entire features in isolation from other features, even when those features cross-cut several actors (i.e., 
objects). Without a layered architecture, isolating this information from across parallel modules is difficult if not 
impossible. 

3   Verifying Layered Software Systems 

3.1   FSATS: An Example of Layered Design 
FSATS is a command and control simulator. At core, it consists of a series of protocols for selecting weapons to fire 
at potential targets. The actors in FSATS are various military personnel (forward observers, field officers, brigade 
commanders, etc) arranged in a command hierarchy and the weapons at their disposal. Observers repeatedly iden- 
tify potential targets and send messages along the command hierarchy to initiate missions against the targets. The 
personnel in the hierarchy accept or forward missions depending upon the weapons at their disposal. In the FSATS 
implementation, each potential target spawns a new thread in which to execute the protocol for handling that target. 

Batory et al. have presented a layered design of FSATS, written largely as a set of layered state machines [4]. 
Figure 1 shows a sample of the layered state machines that comprise FSATS. A careful look at the machines and the 
code shows several characteristics that are potentially interesting from a model checking perspective: 

• Each layer's (extension) state machines compose sequentially with their corresponding base machines. 

• Each layer (extension) attaches to a common start and end point from the base layer. 

• The conditions under which control enters a particular layer are similar across all actors and are closely coordi- 
nated through message passing. 

• The state machines essentially synchronize at the end of a mission (on the EndMsg messages) right before the 
involved actor threads terminate. 

These four observations drive the methodology and algorithms presented in this paper. The combination of these 
characteristics enable a powerful, modular approach to verification in which we verify layers individually and reason 
about property preservation under layer composition. 
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Figure 2: Composition of a base system B with an extension E via an interface. 

3.2   A Model of Layered Design 

We view a design as a set of classes, roughly one per actor in the system. A layer consists of a set of class extensions 
(mixins [7, 18, 28, 29, 34]) for the actor classes. The set of mixins in a layer relate to a common task, or feature, in 
the overall system (in FSATS, the features generally represent missions that utilize different weapons). This definition 
permits actor classes and mixins of arbitrary complexity. To make the problem of verification more tractable, we 
assume each actor class can be described as a state machine, and that each mixin extends an existing (base) state 
machine by adding nodes, edges, and/or paths between states in the base machine. State machine models of software 
arise from one of two sources: either the software is written in terms of state machines, as is true for many embedded 
software applications, or abstraction techniques derive state machines from the source code [11, 12]. FSATS is of 
the former flavor. Our work could adapt to the latter if the abstractions produce machines for which we could define 
meaningful interfaces between layers; accordingly, we regard the work on state machine abstractions as orthogonal to 
this paper. 

Each base or composed system specifies interfaces, in terms of states, at which clients may attach extensions. We 
define interfaces formally below. In our experience, new features generally attach to the base system at common or 
predictable points, as Figure 1 illustrates; the set of interfaces is therefore small. This is important, as the interface 
states will indicate information that we must gather about a system in order to perform compositional verification of 
layers; a large number of interfaces might require too much overhead in our methodology. 

Figures 3 and 6 show examples of base systems, layers, extensions, and interfaces; Sections 3.4 and 3.5 explain 
the examples in detail. The following formal definition makes our model of layered designs precise. The definitions 
match the intuition in the figures, so a casual reader may wish to skip the formal definition. 

Definition 1 A state machine is a tuple (5,E,A,j0,Ä,Z,), where S is a set of states, £ is the input alphabet, A is the 
output alphabet, s0 € S is the initial state, RCSx PL(V) x S is the transition relation (where PL(L) denotes the set of 
prepositional logic expressions over £), and Z,: S ->• 2A indicates which output symbols are true in each state. 

Definition 2 A base system consists of a tuple (M\,...,Mk) of state machines and a set of interfaces. We denote 
the elements of machine M, as (SMi,^Mi,^Mi,sounRMi,LMi)- An interface contains a sequence of pairs of states 
({exiti, reentry i),..., {exitk, reentryk)) Each exitj and reentryy is a state in machine M,. State exitj is a state from which 
control can enter an extension machine, and reentryy is a state from which control returns to the base system. Interfaces 
also contain a set of properties and other information which are derived from the base system during verification; we 
describe these properties in detail in later sections. 

Definition 3 An extension is a tuple (E\,...,E„) of state machines. Each Et must induce a connected graph, must 
have a single initial state with in-degree zero, and must have a single state with out-degree zero. For each Et, we refer 
to the initial state as in, and the state with out-degree zero as out,. States /«,• and outt serve as placeholders for the 
states to which the layer will connect when composed with a base system. Neither of these states is in the domain of 
the labeling function L,. 

Given a base system B, one of its interfaces I, and an extension E, we can form a new system by connecting the 
machines in E to those in B through the states in I, as shown in Figure 2. For purposes of this paper, we assume that B 
and E contain the same number of state machines. This restriction is easily relaxed; the relaxed form allows actors to 
not participate in each new feature, or to allow new actors as required by new features. The mortar mission in FSATS 
(Figure 1, first extension layer), for example, does not augment the protocol of field officers. We also assume that the 
states in the constituent machines of base systems and extensions are distinct. 

66 



Definition 4 The composition of base system B = {M\,...,Mk) and extension E = (E\,...,Ek) via an interface 
I=((exit\,reentry\),...,(exitk,reentryk)) isatuple (Ci,...,Q) of state machines. EachC, = {Sa,Tci,&a,SQc.,Ra,Lci} 
is defined fromM,- = (SM,^Mi,Am,soMi,Rm,Lm)'andE{ = {SEi,ZEi,&EhSoEI,REi,LEi) as follows: Sa = SMiUSEi- 
{irii,out(}; soa = soMi; Ra is formed by replacing all references to z'»,- and outj in REI with exit/ and reenttjt, respec- 
tively, and unioning it with R^i- All other components are the union of the corresponding pieces from M; and E\. We 
will refer to the cross-product of C\,... ,Q as the global composed state machine. Composed systems may serve as 
subsequent base systems by creating additional interfaces as necessary. 

3.3 Verification Methodology 

Our methodology is designed to support compositional verification of layered designs. Specifically, our methodology 
supports the following activities: 

1. Proving a CTL property of an individual layer or composition of layers. This is easily done in the base system 
with existing techniques, but becomes more complicated in extension layers. 

2. Deriving a set of constraints on the exit and reentry states of a layer that are sufficient to preserve a particular 
property after composition (thepreservation constraints). 

3. Proving that a layer satisfies the preservation constraints of another layer (or existing system). This activity 
is only meaningful if the preservation constraints were generated for the exit and reentry states to which the 
new layer will attach. We establish preservation by analyzing only the extension, not the composition of the 
extension and the existing system. 

These activities correspond to a kind of modular verification, where the layers are modules. As in standard approaches 
to modular verification, we are interested in proving properties of modules and in preserving those properties upon 
composition with other modules. 

We illustrate our methodology using two examples: a sportswatch and a communication protocol. The sportswatch 
design consists of a single actor; each collaboration therefore contains and extends only one state machine. This ex- 
ample motivates our interfaces and high-level approach to sequential layer composition. The communication protocol 
captures the key characteristics of FSATS identified in Section 3.1 and shows how our methodology extends to designs 
with multiple state machines in each collaboration. We have performed all verification runs cited in these sections us- 
ing the described methodology and the VIS model checker [32]. Section 3.6 discusses pragmatic issues behind these 
runs. 

3.4 Single-Machine Designs 

Figure 3 shows a layered design of a sportswatch with timer and alarm features. The base system contains four display 
nodes: clock display, alarm time display, date display, and an alarm status display that supports toggling the alarm 
status. The first extension adds a timer which the user can reset, resume, and stop. The timer layer also supports a 
split timer for capturing time instantaneously. The second extension supports setting the alarm time; we omit layers 
for setting the clock time due to space constraints. Although both, extensions add core functions, rather than optional 
features, we implement them as layers to allow a designer to include any of several possible implementations of these 
features in a final watch (as in a product-line architecture). The watch is controlled through two buttons (Bl and B2) 
and a mode switch that can be in the forward (ms-f) or back (ms-b) positions. 

The base system should satisfy the property that one can always get to the display-clock state (written as AG EF 
display .dock in CTL). This property is easy to verify using a model checker. The base layer publishes one interface: 
(dispclock,dispclock), meaning that all extensions will start from and return to the dispclock state. Once we extend 
the base system with the timer, we must prove that adding the timer will not cause the display-clock property — which 
has already been proven of the base layer — to fail. We could compose the base system and timer layers and re-verify 
the property on the composed system. This approach, however, wastes the work that we have already done proving the 
property of the base layer; worse still, on a larger example, the composed design could be too large to model check. 
We therefore want to verify that the timer layer will preserve the property already proven of the base system without 
using the entire base system. 
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Figure 3: A collaborative design for a sportswatch. 
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Figure 4: The timer extension with marking assumptions on the out state. 

The classic CTL model checking algorithm [8] checks a property by marking each state with the subformulas of 
the property that are true in that state. After marking is complete, the formula is true of the design if its initial state is 
marked with the full property formula. If we can prove that an extension does not alter the markings of the base system 
states for a given property, then that property will hold in the composition of the base system with the extension as 
well. It suffices to show that the markings of the exit states in the base system interfaces are not altered, as all states 
which reach layer states do so through the exit state. 

Given the base system interface {{dispclock,dispclock) in this case) and a property to preserve (AG EF dis- 
play.clock), we use a model checker to extract the set of subformulas of the property that mark each state in the 
interface; these markings can be stored with the interface, and need not be re-computed on each extension. The 
following three formulas mark dispclock: 

• E(TRUE U display.clock) 

• display jzlock (this implies the previous formula) 

• !(E(TRUE U !(E(TRUE U display.clock)))) (equivalent to AGfEFdisplayxlock))\ 

We must prove that the extension will preserve the markings on the exit state from the base system. The CTL 
model checking algorithm marks states based on the markings of its successor states. As some extension states have 
transitions to the reentry state (in the base system), we need the reentry state's markings to compute the markings on 
the extension states. Our verification algorithm consists of assuming that the out state of the extension has the same 
markings as the reentry state, deriving the markings on the in state, and checking that those markings are the same as 
on the original reentry state; this approach is consistent with the standard backwards-reachability approach to model 
checking. We derive the markings on the in state by checking a property of the form AG(in -> ty for each subformula 
4> of the property to be preserved. Figure 4 shows the sportswatch timer layer with the marking assumptions on out 
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Model checking confirms that in retains the original markings of dispclock, so the property will be preserved upon 
composition. 

In addition to the display-clock property, we can also verify that the timer layer (without the base layer attached) 
satisfies the property "once started, the timer can always be stopped" (AG(start-timer -¥ EF stop-timer)). We view the 
timer layer as the base system and the base as the extension to verify that the base layer would preserve this property 
upon composition. 

We also construct a composed system from the base layer and the timer extension, with interface (dispclock, reset). 
The interface states change after composition because the watch requires switching between modes to be deterministic; 
satisfying this constraint requires new layers to be entered from the timer layer, rather than the original base system. 
For both states in the interface, we record the markings necessary to satisfy the two properties already proven of the 
system. These markings arise from both verifying the properties of each layer and from verifying the preservation of 
the other layer's properties. For dispclock, the new set of interface markings is: 

• !(E(TRUE U !(E(TRUE U displayjclock)))); 

• E(TRUE U display jclock); 

• display Mock; 

• !(E(TRUE U '((starttimer -> E(TRUE U stoptimer))))); 

• (starttimer —> E(TRUE U stoptimer)); 

• EfTRUE U stoptimer) 

Using these markings, we verify that adding the alarm layer preserves the existing properties (displaying the clock and 
stopping the timer). 

3.4.1    Summary of Algorithm on Single State Machines 

In summary, the verification algorithm for the single state machine case is as follows: 

1. Write the model for the extension, including the placeholder states in and out. 

2. Assign the subformulas that marked the actual reentry state in the base system as labels of the placeholder 
reentry state (out). 

3. Model check all of the subformulas of the original property in the placeholder reentry state (in). Ifin has exactly 
the same markings (restricted to subformulas of the property) as it did before the extension, the property will 
hold in the composed system. 

This algorithm, whose correctness proof we defer to a forthcoming technical report, was independently derived by 
Laster and Grumberg for reasoning about sequential decomposition of finite state machines [24]. Its correctness 
depends in part on all reachable states in the composed design lying in either the base system or the extension (an 
obvious point in the single-machine case, but one which becomes interesting in the multiple-machine case). For 
checking preservation of purely existential properties, this algorithm is unnecessary because sequential composition 
trivially preserves such properties (a simple observation, but one which Laster and Grumberg [24] did not note). 

For our experiments, we simulated this algorithm using the VIS model checker. VIS does not support this algorithm 
directly, as there is no way to seed out with the assumed marking. Instead, we were forced to include a transition from 
out to the entire base system model; we did not include transitions from the base system to in. We verified that the 
markings on the actual reentry state (dispclock) did not change under this operation. As in was not attached to the base 
system, this approach is sufficient to argue that the verification would have gone through with the seeded markings 
(and no base system) had VIS supported that operation. Section 3.6 summarizes the issues that arose trying to use 
conventional model checkers for this sort of modular verification. 
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Figure 5: Two approaches to constructing composed systems. 
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Figure 6: A collaborative design for a track-operator communication protocol. 

3.5   Multiple-Machine Designs 

The algorithm in Section 3.4.1, as well as prior research into verification under sequential composition, does not apply 
to FSATS because FSATS has multiple state machines in each layer. In practice, almost all interesting collaborative 
designs, by their very nature, will employ multiple state machines extensions per layer. When each layer contains a 
single state machine, extending a system with a layer corresponds to sequential composition of state machines. When 
layers contain multiple state machines, extending a system with a layer corresponds to a hybrid of sequential and 
parallel composition: the machines within a layer are composed in parallel (because they run together to implement 
a particular feature), but the layers themselves are composed in a quasi-sequential manner. The actual composition is 
not strictly sequential: this detail is at the crux of the verification problem for systems like FSATS. 

Constructing a design by sequential composition is appealing because, as Section 3.4 shows, it supports indepen- 
dent verification of layers. Figure 5(left) shows a layered system constructed in this fashion. The construction provided 
in the formal model (the global composed state machine, Definition 4), however, is different. As Figure 5(right) il- 
lustrates, the construction first extends each base machine with its corresponding mixin, then composes the resulting 
machines in parallel. Clearly, we would prefer to compose systems according to the first construction because it sup- 
ports layered verification. In order to do this, however, the first construction must produce the same global composed 
state machine (upto reachability of states) as the second! This relationship captures the crucial challenge in layered 
verification of designs with multiple state machines per layer. We must construct the parallel compositions represent- 
ing each layer in such a way that composing them sequentially yields the state machine arising from Definition 4. This 
is possible only because most cross-product states in the composite system arise from cross-products within layers; 
this section notes the exceptions and how our methodology handles them. 

This section motivates our algorithm for constructing parallel, compositions within layers. Our algorithm is de- 
signed to create parallel compositions that can in turn be composed sequentially with other layers. We describe the 
algorithm by illustrating its behavior on a small example. We also evaluate this algorithm's ability to verify prop- 
erties of layers in isolation. While many layers (including the FSATS layers) can be verified in isolation under this 
construction, our motivating example illustrates a case where independent verification may fail. A property for which 
verification may fail must be verified in the composed system, rather than compositionally through the layers. We pro- 
vide a characterization of these cases and a model-checking-based algorithm to determine whether properties can be 
verified compositionally. Section 3.5.1 presents our new example, which captures the salient characteristics of FSATS 
without necessitating as much explanation of the domain. 

3.5.1    The Clayton Tunnel Protocol 

We consider a layered design of a communications protocol between operators at either end of a train tunnel (see 
Figure 6). This protocol, taken from Holzmann's book [21], should already be familiar to those versed in the model 
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Figure 7: The cross-product state machine for the tunnel base layer. The exit subgraph for an interface containing both 
train states as exit states is enclosed in the solid box. The dashed box encloses the exit subgraph extended with an 
escape state for capturing the conditions under which control would leave the exit subgraph. The portion in the dashed 
box is part of the interface of the base system with both train states as exit states. 

checking literature. Our design is derived from an actual communication protocol that was in use (and contributed 
to an accident!) in England in 1861. The two state machines model the human operators on either end of long train 
tunnel covering a one-way track. Unable to see one another, the operators communicate messages about the status of 
the tunnel. In the base layer, the operators communicate when trains are entering and exiting the tunnel. The inbound 
operator sends a train-in message to the outbound operator when a train enters the tunnel. The outbound operator sends 
a train-clear message to the inbound operator when a train exits the tunnel. The base layer consists of the protocol for 
exchanging these two messages. 

The full protocol was designed to prevent two trains from ever being in the tunnel simultaneously (we omit the 
specific details from the model is this paper because they are irrelevant for our purposes). The accident that occurred 
arose because a second train entered the tunnel (in the same direction as the first train) before the first one left; although 
the inbound operator suspected the problem, the communication protocol was too weak to convey the situation to the 
outbound operator. One solution is to add messages to the protocol that convey this information accurately. The 
extension adds a two-in message from the inbound to the outbound operator; it also adds states to both operator 
machines so that the outbound operator does not send the train-clear message until both trains have left the tunnel. 

Verifying this protocol requires a model of the trains that can enter and exit the tunnel. A model of the events 
that drive a protocol, but are not part of its definition, is called an environment model. The environment model for the 
tunnel protocol must generate reasonable train data; for example, no train should ever leave the tunnel before it enters 
the tunnel. For simplicity, we use an environment model containing two trains. Their only constraints are that the first 
train enters the tunnel before the second, and that both trains enter the tunnel before they exit the tunnel. This model 
is reasonable because the original protocol was such that at most two trains could be in the tunnel at once if the train 
drivers obeyed the rules of using the tunnel. We implement environment models as state machines. For the tunnel 
protocol, the model generates signals intrain and outtrain to indicate trains entering and leaving the tunnel. 

Depending upon when trains enter and leave the tunnel, the operators may be inconsistent on their views as to 
whether there is a train in the tunnel. Given the base layer, we would like to prove that the inbound operator never 
livelocks thinking that there is a train in the tunnel (AG(EF(inbb.state=notrain)); this property requires all trains in 
the tunnel to eventually exit the tunnel, which we handle with a fairness constraint [9]. We can easily discharge this 
property of the base system; the challenge is to verify that the extension preserves it. For the extension, we wish to 
prove that once the inbound operator warns that there are two trains in the tunnel, it does not exit the extension until it 
receives a tunnel-clear message (AG ((inbmsg^two-in) -> k(!(instate=out) U (outbmsg=tunnel-clear)))). 

3.5.2   Composing the Extension in Parallel 

The extension consists of the two state machines in the dashed box in Figure 6 (though with in and out states, as 
in Figure 4). We could form a nai've parallel composition of these two machines using a standard cross-product 
procedure [9]. This construction assumes that both machines start in their initial states (the in states) simultaneously. 
This assumption, however, is not necessarily valid. For example, the inbound operator may notice the second train 
before the outbound operator has registered that there is a train in the tunnel (this synchronization problem arises in 
FSATS). Our parallel composition therefore needs additional information about the synchronization of the in states 
in the extension in order to construct a valid composition. Fortunately, we can derive this information from the base 
system. Given a set of exit states that form an interface in the base system, we can compute the subgraph of the base 
system that involves only the exit states; we then use this subgraph (which we call the exit subgraph, defined formally 
below) to drive transitions between the in states in the parallel composition. Figure 7 shows the exit subgraph for the 
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tunnel protocol. To verify preservation of properties under sequential composition, the exit subgraph includes a state 
that indicates when a transition would have left the exit subgraph; this state is labeled escape in Figure 7. While in 
practice this subgraph could be large, these graphs are small in FSATS (and presumably similar systems) because the 
actors decide to enter a particular extension at roughly the same time based on a tight sequence of message passing. 
Section 3.5.3 discusses a similar problem on the reentry states. 

The following steps construct the exit subgraph: 

1. Construct the cross-product of the base system machines. 

2. Restrict the cross-product states and transition relation to those states that contain at least one exit state from 
some state machine in the cross product. 

3. Add a new state escape to the resulting graph. From every state in the exit subgraph, add a transition to escape 
enabled on each condition that causes a transition outside of the exit subgraph. There are no transitions out of 
escape. 

4. Identify all states (other than escape) with no incoming edges as initial states of the exit subgraph. 

In the general case, the exit subgraph might not be connected. In designs such as FSATS, this subgraph is connected 
and has no transitions to escape. This is because the subgraph captures delays due to message passing before all actors 
enter an extension layer. In such cases, it can be used to sequentially compose a base system and an extension. Every 
state of the subgraph that contains exit state exit, enables transitions to in,- Details appear in the full technical report. 

Given the parallel composition of the extension machines constructed using the exit subgraph, we can attempt to 
verify the layer property using the environment model to generate the trains. This effort fails. The inbound operator 
sends the two-in message as soon as the environment model sends the first train into the tunnel; this is wrong, however, 
because the inbound operator should only enter the multiple train state when the second train enters the tunnel before 
the first train exits. This happens because some history between the in states and the environment is lost. Specifically, 
the environment model must have the first train in the tunnel and the second train approaching the tunnel at the in states 
of the extension; the normal environment model starts with both trains approaching the tunnel. We can synchronize the 
environment model with the extension by composing the environment model with the base system before computing 
the exit subgraph. The initial states of the exit subgraph now contain states of the environment model; those states 
should be used as the initial states of the environment when verifying properties of the layer. This construction 
indicates that the tunnel environment should start with the first train already in the tunnel. 

Although generating restricted initial states of the environment model appears to be an overhead of formal verifi- 
cation, the problem of generating these models is similar to the problem of generating a testing harness for a layered 
design. Layered designs offer the hope of testing layers in isolation. That testing, however, requires knowledge about 
the environment that will drive the layer. Our approach' merely formalizes the problem of obtaining a restricted testing 
harness for layered designs. In FSATS, the environment model problem arises because each extension corresponds to 
a new type of mission which is initiated only if the environment has generated a target of a particular type. 

3.5.3    Verifying Properties Compositionally 

The preceding section identified two key issues in supporting verification of layers independently from their base 
systems: synchronizing initial states and restricting environment models. Applying both techniques allows us to 
verify that an extension satisfies a given property relative to an interface to a base system. This does not address our 
entire problem, however, as we still must characterize when the properties of the composition of this layer with a base 
system can be verified via sequential composition, rather than on the global composed state machine. 

The algorithm for checking property preservation under sequential composition requires that all states that are 
reachable in the composed system are contained in one of the layers being composed. For compositional verification 
to work, we must characterize when the reachable states of the composed system are contained in the reachable states 
of the union of the base system and the extension. In the general case, the desired result seems unlikely. Just as the 
actors do not enter an extension simultaneously, they do not exit from the layer simultaneously. The asynchronous 
exits may create reachable states in the composed system that are not contained in the extension. Worse still, these 
states may lead to states that become reachable in the base system only after composition. Either case would break 
our proposed layered verification methodology. 
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Fortunately, the collaborative designs that we have studied, including FSATS, tend to have a characteristic that 
addresses this problem: the reentry states eventually synchronize after executing an extension. Thus, with appropriate 
modeling of the reentry states in the extension, the sequential composition of the base system and the extension 
could capture the full global state space, as required for layered verification. We capture this model with a reentry 
subgraph that is computed in similar fashion to the exit subgraph; transitions to reentry states enable transitions in the 
reentry subgraph. Using the exit and reentry subgraphs, we can offer a CTL characterization of the cases in which our 
methodology is insufficient. When our methodology does not suffice, we will have to check the properties in the full 
composed system.1 

The constraints that indicate when a property preservation can be confirmed (using a similar strategy as in the 
single state machine case) in layered fashion are as follows: 

1. The escape state in the exit subgraph is not reachable under the restricted environment model. 

2. The reentry states eventually synchronize: that is, once one layer machine reaches its reentry state, it remains 
there until all layer machines have reached their reentry states. This constraint is easily expressed as a series of 
CTL formulas to check of the model, one for each state machine in the extension: 

AG {reentryi —>■ k[reentryi U reentry\ A... A reentry^) 

We omit the proof that these conditions are sufficient to prove a correspondence between the two constructions of 
the global composed state space due to space constraints; the technical report will contain the full details. Intuitively, 
the proof consists of an argument that, under the above constraints, all reachable states under the first construction are 
reachable states in either the extension or the base system under the second construction. The interesting cases of this 
proof involve global states with some components in the base system and some in the extension. The conditions listed 
above restrict all such states to lie in the extension including the exit subgraph. 

3.6   Implementation 
We have conducted all the model checking tasks described in this paper. For this, we used the symbolic model checker 
VIS [32]. We modified VIS slightly to display all sub-formulas of properties generated during the marking phases; we 
used these sub-formulas for verifying the preservation of properties in other layers. For the paper's examples, the time 
and space usage are negligible. 

Section 3 describes how we simulated the modular verification scenario while in fact attaching extensions to, po- 
tentially, the entire base system. This is because existing model checkers do not appear to be designed for extension 
to verifying open systems. For instance, they do not provide a way to query and assert properties on specific states. 
Expressing our extension layers in Verilog (VIS's input language) required manual insertion of additional design vari- 
ables because we could not easily unify states in the underlying symbolic transition system. Finally, building the exit 
and reentry subgraphs was difficult in VIS's symbolic framework. Computing the core subgraphs is straightforward 
(by adding routines to the VIS source code); adding the escape state is difficult because it requires us to essentially 
reverse-engineer the symbolic state encoding to find an unused boolean representation for the escape state. A front- 
end for supporting layered design languages could work around the limitations of Verilog, but the limitations of the 
symbolic framework are harder to surmount. 

Some properties can be verified in layers without the full power of model checking. For instance, simple properties 
that ensure a system always reaches a consistent state may not need extensive verification in an extension: simply 
showing reachability between the extension's in and out states often suffices (this relates to checking the requirement 
in our fonnal model that extensions yield connected graphs). These properties arise both in the examples presented in 
this paper and in FSATS. Therefore, there is clearly potential for applying more light-weight verification tools. 

4   Conclusion and Future Work 

Layered designs, which concentrate on the step-wise refinement of a system's features, offer an alternative to tra- 
ditional object-based designs. They have arisen in several contexts, methodologies and applications, and appear to 

'When we need to verify in the full composed system, we can apply existing techniques for parallel composition. As these techniques can be 
very difficult to use in practice, applying them effectively remains an open problem. 
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be especially promising in the context of software product-lines.  Layered approaches share many of the software 
construction advantages of more traditional components. 

This paper has explored how layered software designs require a different form of modular verification. We demon- 
strated that object-based decompositions of systems into modules that are concurrently or sequentially composed are 
inappropriate for layered designs. We also showed that layered, feature-based designs are actually quasi-sequential 
compositions of parallel compositions, and explained how certain constraints can make their verification tractable. 
We believe these constraints are reasonable because many applications appear to satisfy them. The resulting verifica- 
tion methodology minimizes the work expended to verify compositions relative to the work done verifying individual 
layers. 

We have concentrated solely on model checking because we want to understand the strengths and limitations 
of algorithmic verification on layered designs. Our experience suggests that extant model checkers have not been 
designed to be extended for such tasks. (Certainly, a custom model checker is necessary to complete the verification 
of the entire suite of FSATS layers.) A related question is how to extend our approach to handle LTL formulas; for 
technical reasons, we have only considered CTL properties. 

Layered designs can benefit from a broader scope of verification techniques. Early work on dependencies between 
layers [3] must be formalized and incorporated into any validation framework. We have encountered some layered 
designs involving complex data invariants that will likely be more amenable to theorem proving. While model check- 
ing captures and can verify the salient properties of the FSATS suite, it can be overkill. Preserving certain properties 
requires only simple results such as freedom from livelock or non-modification of particular variables. In these cases, 
simpler tools such as reachability engines and type systems may suffice. We expect further work with a richer set of 
designs to help us identify when the full power of our current methodology is required. 

References 

[1] Alur, R., R. Grosu and M. McDougall. Efficient reachability analysis of hierarchic reactive machines. In Inter- 
national Conference on Computer-Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages 
280-295. Springer-Verlag, 2000. 

[2] Alur, R. and M. Yannakakis. Model checking of hierarchical state machines. In Symposium on the Foundations 
oj'Software Engineering, pages 175-188,1998. 

[3] Batory, D. and B. J. Geraci. Composition validation and subjectivity in GenVoca generators. IEEE Transactions 
on Software Engineering, pages 67-82, Feburary 1997. 

[4] Batory, D., C. Johnson, B. MacDonald and D. von Heeder. Achieving extensibility through product-lines and 
domain-specific languages: A case study. In International Conference on Software Reuse, June 2000. 

[5] Batory, D. and S. O'Malley. The design and implementation of hierarchical software systems with reusable 
components. ACM Transactions on Software Engineering and Methodology, 1(4):355—398, October 1992. 

[6] Biagioni, E., R. Harper, R Lee and B. G. Milnes. Signatures for a network protocol stack: A systems application 
of Standard ML. In ACM Symposium on Lisp and Functional Programming, 1994. 

[7] Bracha, G. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD thesis, 
University of Utah, March 1992. 

[8] Clarke, E., E. Emerson and A. Sistla. Automatic verification of finite-state concurrent systems using temporal 
logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244-263,1986. 

[9] Clarke, E., O. Grumberg and D. Peled. Model Checking. MIT Press, 2000. 

[10] Clarke, E. M. and W. Heinle. Modular translation of Statecharts to SMV. Technical Report CMU-CS-00-XXX, 
Carnegie-Mellon University School of Computer Science, August 2000. 

[11] Corbett, J. C, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and H. Zheng. Bandera : Extracting 
finite-state models from Java source code. In International Conference on Software Engineering, 2000. 

74 



[12] Dwyer, M. B. and L. A. Clarke. Flow analysis for verifying specifications of concurrent and distributed software. 
Technical Report UM-CS-1999-052, University of Massachusetts, Computer Science Department, August 1999. 

[13] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler and M. Felleisen. DrScheme: A 
programming environment for Scheme. Journal of Functional Programming, 2001. To appear. 

[14] Findler, R. B. and M. Flatt. Modular object-oriented programming with units and mixins. In ACM SIGPLAN 
International Conference on Functional Programming, pages 94-104, 1998. 

[15] Finkbeiner, B., Z. Manna and H. Sipma. Deductive verification of modular systems. In Compositionality: The 
Significant Difference, volume 1536 of Lecture Notes in Computer Science, pages 239-275. Springer-Verlag, 
1998. 

[16] Fisler, K., S. Krishnamurthi and K. E. Gray. Implementing extensible theorem provers. In International Confer- 
ence on Theorem Proving in Higher-Order Logic: Emerging Trends, Research Report, INRIA Sophia Antipolis, 
September 1999. 

[17] Flatt, M. Programming Languages for Reusable Software Components. PhD thesis, Rice University, 1999. 

[18] Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In ACM SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages, pages 171-183, January 1998. 

[19] Grumberg, O. and D. Long. Model checking and modular verification. In International Conference on Concur- 
rency Theory, volume 527 of Lecture Notes in Computer Science. Springer-Verlag, 1991. 

[20] Heineman, G. T and W. T. Councill. Component-Based Software Engineering: Putting the Pieces Together. 
Addison-Wesley, 2001. 

[21] Holzmann, G. Design and Validation of Computer Protocols. Prentice-Hall, 1991. 

[22] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier and J. Irwin. Aspect-oriented 
programming. In European Conference on Object-Oriented Programming, June 1997. 

[23] Kupferman, O. and M. Y. Vardi. Modular model checking. In Compositionality: The Significant Difference, 
volume 1536 of Lecture Notes in Computer Science. Springer-Verlag, 1998. 

[24] Laster, K. and O. Grumberg. Modular model checking of software. In Conference on Tools and Algorithms for 
the Construction and Analysis of Systems, 1998. 

[25] McMillan, K. Symbolic Model Checking. Kluwer Academic Publishers, 1993. 

[26] Mezini, M. and K. Lieberherr. Adaptive plug-and-play components for evolutionary software development. In 
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications, pages 97- 
116, October 1998. 

[27] Pasareanu, C. S., M. B. Dwyer and M. Huth. Assume-guarantee model checking of software: A comparative 
case study. In Theoretical and Practical Aspects of SPIN Model Checking, volume 1680 of Lecture Notes in 
Computer Science. Springer-Verlag, 1999. 

[28] Smaragdakis, Y. and D. Batory. Implementing layered designs and mixin layers. In European Conference on 
Object-Oriented Programming, pages 550-570, July 1998. 

[29] Steele, G. L., Jr., editor. Common Lisp: the Language. Digital Press, Bedford, MA, second edition, 1990. 

[30] Stirewalt, K. and L. Dillon. A component-based approach to building formal-analysis tools. In International 
Conference on Software Engineering, 2001. 

[31] Szyperski, C. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1998. 

75 



[32] The VIS Group. VIS: A system for verification and synthesis. In Alur, R. and T. Henzinger, editors, International 
Conference on Computer-Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 428- 
432. Springer-Verlag, July 1996. 

[33] van Renesse, R., K. Birman, M. Hayden, A. Vaysburd and D. Karr. Building adaptive systems using Ensemble. 
Technical Report 97-1638, Department of Computer Science, Cornell University, July 1997. 

[34] VanHilst, M. and D. Notkin. Using role components to implement collaboration-based designs. InACM SIG- 
PLAN Conference on Object-Oriented Programming Systems, Languages & Applications, 1996. 

76 



A Framework for Knowledge Management and Automated 
Constraint Monitoring 

Ann Q. Gates and Steve Roach 
Department of Computer Science 

The University of Texas at El Paso 
El Paso, Texas 79968 

agates, sroach@cs.utep.edu 

Abstract 
This paper describes an approach called Dynamic Monitoring with Integrity Constraints 

(DynaMICs) that consists of a specification language for defining constraints and tools that 
permit automated instrumentation of constraints, runtime monitoring that minimizes performance 
degradation, and tracing. The goal is to capture domain and system knowledge as constraints and 
to use the constraints to monitor software execution, providing evidence of correctness and 
assistance in identification of error sources. 

The paper presents a framework for managing knowledge and instrumenting programs to test 
the state of programs at runtime. In addition, it discusses the role that temporal logic, model 
checking and program-synthesis systems can play in developing and using DynaMICs. 

1. Introduction 

The successful development of complex software systems typically requires management of 
two types of knowledge: domain knowledge and system knowledge. Domain knowledge is that 
knowledge needed to understand problems and solutions in a particular area of human endeavor. 
For example, in order to construct a program that simulates wind tunnel experiments, system 
developers would need some knowledge of fluid dynamics. 

System knowledge is that knowledge needed to understand the design and implementation of 
a software system that solves a problem from a particular domain. For example, in order to 
implement a module for an information management system, system developers would need to 
understand the structure of data to be processed and how it maps to the application domain. 
Domain knowledge is elicited from domain experts, customers, users, and possibly from written 
reference material. System knowledge comes from designers, implementers, and maintainers. 

The integration of domain and system knowledge is essential for successful software 
development. This includes the capture and communication of such knowledge among team 
members throughout the software lifecycle. In addition, understanding the relations between 
domain and system knowledge can help close the gap between a software failure and the fault that 
leads to that failure. 
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One technique for capturing domain and system knowledge is through the use of integrity 
constraints. Integrity constraints, referred to as constraints in the remainder of this paper, are 
propositions about state of a system. State is defined as a set of program-variable and value pairs 
that captures a snapshot of memory during program execution. Constraints can be used to check 
during runtime that the system is meeting its requirements and that assumptions and limitations, 
which arise from design and implementation decisions, hold. Not only can constraints be used to 
identify errors and assist in debugging, they also can provide evidence of correctness at execution 
time, maintain knowledge about the domain and system, and assist in planning and implementing 
maintenance of the software. 

This paper presents a framework for managing domain and system knowledge and for 
instrumenting programs to test the state of programs at runtime. The ultimate goal of this work is 
to automate the insertion of constraint-checking code in order to facilitate the use of constraints. 
With automated instrumentation, domain experts and system implementers may be more willing 
to expend effort generating the needed constraints to ensure correct execution. 

1.1 DynaMICs 

Dynamic Monitoring with Integrity Constraints (DynaMICs) is an approach that captures 
domain and system knowledge through constraints to ensure the correct functioning of a program 
during its execution (GT99, GTOO, GT01). Fig. 1 presents a high-level view of the DynaMICs 
approach. The main features that differentiate DynaMICs from other software-fault monitoring 
approaches are as follows: constraint specifications are maintained in a repository separate from 
other artifacts, and constraint-checking code is automatically inserted into the code. The 
separation of constraint specifications from code facilitates identification of potential conflicts 
among constraints throughout the software's lifecycle. Algorithms translate propositions into 
constraint-checking code and determine the execution points at which the constraint-checking 
code is to be embedded into the program. 

The tracing mechanism (GM01) provides support for establishing linkages between 
constraints and artifacts, which along with linkages that are created automatically during 
instrumentation, permits the following types of tracing: from application source code to 
constraint, from constraint to application source code, from constraint to 
requirements/artifacts, and from application code to requirements/artifacts. Because the links 
between the application code and constraints are created automatically during the instrumentation 
process, the links are maintainable. In addition, it eliminates the need for physic al links between 
artifacts and application code, which relieves the programmer from managing links in the code 
when code is revised, a tedious task that is prone to error. The approach addresses some of the 
issues that have slowed extensive adoption of tracing. Specifically, DynaMICs targets simplified 
tracing of constraints among documents, reduced overhead for tracing and, in conjunction with 
monitoring, requirements compliance with respect to constraints. 

One of the reasons for the lack of widespread adoption of runtime monitoring is the 
performance degradation that results when constraint checks have been inserted into the program 
code. To address this, several different types of monitors are being investigated, e.g., one in 
which monitoring responsibilities are delegated to a process other than the one executing the 
application program (TM99, SM93). 
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1.2 Impact of DynaMICs 

Prediction of the impact of maintenance is difficult. In particula r, tools are needed to 
facilitate the identification of conflicts when new requirements or code are added. By managing 
domain and system knowledge, DynaMICs provides such support. Formally capturing knowledge 
allows reasoning about the effects of change and reduces the probability of creating errors in the 
software. The types of faults that are detectable through DynaMICs are dependent on the 
constraints specified by the development team. DynaMICs targets requirements faults, in 
particular those resulting from incorrect, inconsistent, and ambiguous requirements (GL98). In 
addition, DynaMICs is effective at detecting when an unpredictable sequence of events results in 
inconsistent data in the system (C01) and when the context of the program's operation changes as 
described in (LC95). 

Communicating information among team members and eliminating conflicts in requirements 
are major concerns during development of complex systems (CK88, DV93). While successful 
software development efforts typically include at least one person who can integrate different 
perspectives on the development process as well as domain and system knowledge, there is an 
inherent risk in such dependence on key personnel. In addition, there is a limit as to how much 
knowledge can be managed by a single person, especially as systems become larger, more 
complex, and cross application domains. The capture of critical knowledge through constraints 
and the separation of constraints from the source program assist information management and 
communication. 

Automated instrumentation of program code provides assurance of constraint coverage, i.e., 
DynaMICs determines the points in the program at which constraints from the repository should 
be checked. It also simplifies maintenance of constraints because changes are made to high-level 
constraint specifications and not to the code itself. This approach reduces the number of errors 
that can be introduced during maintenance because it is not possible for insertion or deletion of 
program code to corrupt previously inserted monitoring code. By establishing relations between 
constraint specifications and supporting documentation, it is also possible to provide justification 
of constraints. This supports resolution of conflicts between specifications and code. 
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An area in which this work can have impact is in creation and execution of test beds. Adding 
constraints during testing typically requires manual instrumentation of checking code and 
removal of the code when the product is deployed. Additionally, because of the large increase in 
code size due to instrumentation, execution times are naturally increased. By automating the 
insertion of constraint-checking code, developers are free from the task of instrumentation and 
can focus instead on improving the knowledge base that indicates correct program execution. 
Defects can be identified earlier in the testing cycle, reducing cost. 

1.3 Organization of Paper 

The remaining sections in this paper examine the constraint specification and automated 
instrumentation components of DynaMICs in which formal methods are critical. The main points 
covered in each section are as follows: 

•    overview of component, including a description of the knowledge needed, where it is 
obtained, and how its used; 

• approach used to realize the component, including a discussion of the technologies that 
have been used to develop a proof-of-concept; and 

integration of formal methods, including a discussion of formal methods that impact 
development of a runtime monitoring system such as DynaMICs. 

2. Constraint Specification 

2.1 Overview 

Initial work on DynaMICs has focused mainly on capturing domain knowledge and limited 
system knowledge through constraints. Domain knowledge includes properties, behaviors, and 
relationships among real-world objects being modeled by the software. System knowledge 
includes assumptions made by developers and limitations imposed by the system design. To have 
a larger impact on system development and maintenance, the knowledge base of DynaMICs must 
be extended to include additional system knowledge, in particular design knowledge derived from 
objects, data structures, operations, relationships among operations, and algorithms. Nevertheless, 
constraint-checking code establishes an implicit relationship between domain knowledge and the 
system. 

Domain experts, clients, users, and members of the development team contribute to constraint 
definition. Other sources of constraints include documentation such as interview transcripts, 
memoranda, reports, and the requirements specification (GK97, DV93). Members of the 
development team contribute constraints by. applying assumptions about the operating 
environment (e.g., acceptable input values) and limitations imposed by the design (e.g., size of a 
data structure). Testers, who are interested in monitoring program behavior under specific testing 
conditions, can add special-purpose constraints. 

80 



Constraint elicitation and identification necessitates analysis of the problem from a 
perspective different than requirements analysis. Requirements answer the question, "What will 
the system do?" while constraints answer the question "What monitored relationships can indicate 
correct program execution?". For example, consider the division of two integers, a and b, that 
yields a quotient, q, and a remainder, r. For this problem, two constraints can be defined: 

r < b and (q x b) + r - a. 

The constraints do not recalculate the division of a and b, rather they check that the division 
is correct. Domain (division) expertise is required to specify constraints such as these. A more 
detailed description of the constraint-definition process can be found in (GM01). 

2.2 Approach 

Constraints specifications consist of three parts: events, conditions, and actions. The event 
directs instrumentation by specifying the state at which the condition must hold. The condition 
expresses the constraint, and the action specifies what must be performed on violation of the 
condition. Each is discussed in the subsections that follow. 

Constraints are captured during the requirements elicitation, requirements analysis, design, 
and implementation phases of software development. As a result, it is necessary to maintain the 
mapping from terms in the constraint specification to variables and storage locations at the 
program-code level. This is done through a data dictionary that maintains information about 
variables used in specifications, called constraint variables. Program development personnel 
maintain the associations of the constraint variables to program variables during program 
construction. 

2.2.1 Event Specification 

The event definition directs program instrumentation and is defined as an ordered five-tuple 
(GT99): 

Event: Variable-setx    Statesx    Transitions     Phase x     Placement 

Variable-set: set-of-tokens 
States : {static, transitional} 
Transition   : {immediate, intermediate, delayed} 
Phase : {input, processing, output} 
Placement   : {before-store, after-store} 

Events are based on stores to variables associated with constraint variables. Variable-set 
maintains the set of constraint-variable names for which state transitions (a change in the values 
held in constraint variables) are observed. States indicates the number of states needed to 
compute the value of the constraint. Static indicates that only the current (or anticipated) state is 
examined, requiring no instrumentation to save state. Transitional indicates that current and 
previous states are examined. 
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Variable -set, Transition, and Phase identify the state transitions to be monitored with respect 
to a specified phase. Valid phases include input, processing, and output. For a specified phase and 
Variable-set, immediate indicates that the constraint must hold after each state transition. Delayed 
denotes that a constraint must hold at the end of a specified phase. For example, a delayed-on- 
input constraint for variables a, b, and c indicates that the associated monitoring code executes 
after all values for these variables have been read. If a program uses an iterative construct to read 
in these values, then the check will occur at the point where the iterative construct terminates. 

In the case of nested iterative constructs, the check will occur outside the outermost construct. 
For the specified phase and Variable-set, an intermediate value designates that the constraint 
must hold after an implied sequence of state transitions. For example, if Variable-set contains 
variables a and b and both variables are updated in a sequence, then the monitoring code executes 
after the sequence completes. 

The types of instructions that cause state transitions within a program and that can be used to 
determine potential points of program instrumentation include input, assignment, and output 
instructions, i.e., instructions that store data to memory. Each is associated with a computation 
phase. Because computed values may not be stored to memory, but instead stored to a device via 
output instructions, it also is necessary to consider output instructions as instructions that cause 
state transitions. An assumption is made that controls of sensitive devices are memory mapped 
and, thus, are accessed using assignments. Constraints on file output, with a format that is clearly 
specified, can be checked (GT01). 

Placement indicates whether a constraint is placed before a store or after a store to a 
constraint variable. In the case of a constraint in- which a violation will cause catastrophic failure 
(referred to as a mission-critical constraint) it is imperative that the constraint is checked before 
the value is stored. A critical constraint is one in which a violation of the constraint indicates a 
hazard condition that could result in catastrophic failure. Constraints for critical and non-critical 
constraints can be checked after a store to a variable. 

2.2.2 Condition Specification 

The condition definition is expressed in a first-order language (G96). In addition to 
specifying relationships between program variables, conditions can determine, for example, 
whether the following hold: the value associated with a program variable is within a range of 
values, the value is a member of a set of values, a program variable has been assigned a value 
(not-null property), two sets of values are disjoint, and a set is a subset of another. Although we 
are using the term "program variables" in this discussion, it is important to note that the main use 
of constraints is to capture domain knowledge about the objects being modeled by the program. 
Because this type of constraint is implementation independent, a data dictionary, as described 
earlier, maps variables used in the constraint to model these objects to program variables. 

2.2.3 Action Specification 

The action specification defines the consequence of a constraint violation. This can include 
such actions as recording state in a history log, saving state for error recovery, performing state 
rollback, and initiating graceful degradation. The latter three actions are currently under study. 
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2.3 Integration of Formal Methods 

Some practitioners may find expressing constraints in a formal temporal logic to be daunting. 
We believe that our specification language is more intuitive; however, it is semantically 
equivalent to a formal temporal logic. Using the language defined in (DV93) event E and 
condition C in a DynaMICs specification can be expressed as: (Es -> Os C), where Es 
denotes an event that occurs in state s, Os C denotes that condition C holds in the state 
immediately following s, and P denotes that P holds in the current and all future states. Clearly, 
the advantage of a formal language is the ability to reason about constraints. This is essential for 
dealing with inconsistencies, one of the main software-development problems addressed by 
DynaMICs. 
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The goals of runtime constraint checking are similar to model checking (H97). Model heckers 
monitor constraints of programs using an exhaustive finite-state search of an abstracted program 
(see Fig.2). Because the state space of complex programs is too large for exhaustive search, a 
common approach is to abstract the program to a model and test properties of the model. 
DynaMICs extends the range of model checking by allowing verification of constraints over a 
larger state space. 

The approach provides runtime assurance that a property holds in a particular execution or 
test suite, i.e., it explores only a subset of the state space that a program visits and not the entire 
state space. Model checking will detect a failure if an error exists in the model. On the other hand, 
DynaMICs will detect a failure if an error exists in the program on a tested execution path. Model 
checking verifies a subset of a real program, and DynaMICs verifies a subset of states of a 
program. 

One of the difficulties in model checking is the correct construction and instrumentation of a 
model from a program. We would like to investigate the possibility of automating model 
instrumentation for verification via model checking. Another area of research is the vertical 
traceability of errors detected by a model checker to code and specifications. One possible 
approach is to identify a failure using a model checker, instrument a source program using 
DynaMICs, then execute the instrumented source code using the state trace from the model 
checker to build a test suite. DynaMICs has the capability to trace to artifacts upon constraint 
violations through the tracing mechanism. 
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3. Instrumentation 

3.1 Overview 

Monitoring code is code that results in the test of a constraint. This can be an in-line sequence 
of instructions, a call to a procedure or function, or a trigger for an instruction sequence executed 
in a separate process (F98, L95). Identifying the points in program execution at which monitoring 
code should be executed requires the event definition of a specification along with analysis of the 
program's control flow. This section examines control-flow graph analysis and code generation. 

3.2 Approach 

3.2.1 Control-Flow Analysis 

Analysis of a program's execution flow is needed in order to automatically determine 
program instrumentation points from constraint specifications (GP01). These points are 
associated with updates to monitored variables. The analysis approach followed by DynaMICS 
focuses on path expressions (T81, BM93, K97), i.e., regular expressions derivable from execution 
control-flow graphs (CFGs), each node of which is a basic block. A basic block (AS 86) is a 
sequence of instructions with a single entry and single exit. Read/write lists are associated with 
each basic block to identify basic blocks of interest, i.e., ones that include accesses to monitored 
variables. Once these basic blocks are identified, the path expressions can be condensed by 
coalescing adjacent basic blocks. 

Using the event definition as a guide, path expressions are analyzed to identify program 
instrumentation points; each of these points is associated with a unique path tag (TM99). Each 
path tag maps to a constraint specification. An algorithm for defining path tags for immediate, 
delayed-on-input, delayed-on-processing, and delayed-on-output constraints can be found in 
(F98, GT99, GP01). Checking immediate constraints is straightforward; the constraint check is 
performed whenever a monitored variable is modified. Placement of a delayed constraint requires 
identifying the best location at which to place a constraint check. For a delayed-on-process 
constraint, this is the point where assignment of the monitored variables is complete. 

Analysis can be done at the intermediate-code or object-code level. In the case of mission- 
critical constraints, object-code analysis is needed to prevent a transition to an unsafe state. In 
memory-mapped 10 systems, it may be necessary to prevent a write to memory prior to testing a 
constraint. For constraints that are not critical, intermediate-code instrumentation is sufficient. 
Because safety-critical systems require assurance that is not provided by current compilers, 
checking of critical and mission-critical constraints requires instrumentation at the object-code 
level. 

3.2.2 Code Generation 

One goal of DynaMICs is to synthesize constraint-checking code automatically from 
constraint specifications. Constraints may require information that is not computed by the 
program. This includes information that can be inferred from state and computed using counters 
and accumulators. The collection of this information is defined using an event-condition-action 
specification, where the event and condition are the same as a constraint specification. The main 

84 



difference is that the action, which computes values to be used by constraints, is triggered when 
the condition is satisfied. 

Consider a constraint that requires that a be less than b after a specified number of updates to 
b. In this case, variable, c is introduced to maintain the count of the number of updates to b. The 
event is an assignment to b (immediate-on-processing), the condition is true, and the action is the 
increment of c. The constraint can be specified as c > threshold ® a < b and is classified as an 
immediate-on-processing constraint on variable b. 

Two classes of code are considered: constraint-checking code which ensures that the 
monitored program is executing correctly, as defined by constraints; and information-generating 
code which computes additional information needed to check constraints. Only the constraint- 
checking code raises violations for handling by the monitor. Neither will alter execution of the 
program except in the case when a violation is detected by constraint-checking code and the 
corresponding action definition requires error recovery. The information collected by 
information-generating code does not affect program execution since the variables used to 
maintain the information cannot be referenced in the source code. 

Because constraint specifications and domain knowledge are implementation independent, 
the code-generation algorithm needs to translate specifications to code, considering possible 
differences between constraint-variable data types and associated program-variable data types 
stored in the data dictionary. 

3.3 Integration of Formal Methods 

Examples of program-synthesis systems that generate concrete -level code from abstract-level 
specifications are known (S91, SW94, SM96, W99). Some of these systems, in particular the 
fully automated deductive systems, suffer from their dependence on automated-theorem-proving 
tools. 

However, it is possible that most of the constraints derived in practice will be classified by 
their structure (G96). In this case, it might be possible to take advantage of proof planning or 
schema-guided synthesis (WB92, BS90). Experiments conducted thus far have shown that the 
code to test a constraint is reasonably small, on the order of tens of lines of high-level code (C01). 
This small size of code enables the use of fully automated tools. 

The aforementioned approaches require complete axiomatization of domain knowledge. If 
such knowledge is not available, inductive techniques for the synthesis of constraint-checking 
code could be useful (F95, MB98). This would allow the collection of examples from which the 
system will be able to generalize. 

4. Summary 

The difficulty in communicating crucial knowledge among team members from specification 
to software deployment, managing change, and formally specifying requirements makes 
verification of software challenging. To address this, it is imperative that developers begin to 
focus on identifying pertinent domain and system knowledge that can be used to determine 
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whether a program is operating correctly during its execution. Successful software projects have 
key personnel who can integrate several knowledge domains as well as system knowledge. The 
aim of the work presented in this paper is to capture such knowledge as constraints and to use the 
constraints to monitor the program during runtime. 

This will facilitate identification of errors by closing the gap between a software failure and 
the fault that leads to failure. The focus of this paper is to describe a framework for an approach 
called DynaMICs that assists in providing evidence of correctness in software systems and 
assistance in identification of error sources. Additionally, the paper describes the practical impact 
of formal methods on development of DynaMICs. 

The DynaMICs approach differs from other monitoring approaches because constraints are 
stored separately from other artifacts and instrumentation of constraint-checking code is 
automated. We believe that the automation provided by the approach, the ability to monitor 
correct behavior of programs, and the ability to trace to artifacts will motivate the capture and use 
of constraints. Because the formal language used by DynaMICs is semantically equivalent to a 
formal temporal logic, a tool that supports reasoning about constraints and detection of potential 
inconsistencies in requirements will make the approach even more attractive. 

The goals of DynaMICs are complementary to model checking. The automated 
instrumentation algorithms of DynaMICs may be applicable to instrumentation of abstract 
programs in model checkers, and model checkers can support the use of DynaMICs. For example, 
model checkers can direct creation of test suites from state traces upon failures and, using these 
test suites, DynaMICs can facilitate the identification of faults in the program and assist in error 
resolution through the tracing mechanism. 

In order for DynaMICs to be applicable to high-assurance systems, it is crucial to generate 
provably correct, executable code. Generation of constraint-checking code from specifications is 
a good candidate for application of program-synthesis systems that take advantage of proof- 
planning or schema-guided synthesis. The main reasons are the simple and concise pieces of code 
that are generated from each constraint and the fact that constraints can be classified based on 
their structure. 
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Abstract 

Re-engineering is typically needed when a system performing a valuable service must change, and its 
current implementation can no longer support cost-effective changes. The process of re-engineering old 
procedural software to a modern object-oriented architecture introduces certain complexities into the 
software analysis process. The direct products of reverse engineering, such as requirements or design 
specifications, are likely to have a functionally based structure. As a result, some transformation of the 
recovered requirements and design specifications is necessary in order to obtain specifications for the new 
structures. It is often very difficult to quickly determine if the transformed specification is a true 
representation of the desired requirements. This paper discusses the effective use of computer-aided 
prototyping techniques for re-engineering legacy software, and presents results of a case study which 
showed that prototyping can be a valuable aid in re-engineering of legacy systems, particularly in cases 
where radical changes to system conceptualization and software structure are needed. 

Keywords: Software re-engineering, Object-oriented architecture, Computer-aided prototyping, Software 
evolution, Combat simulation 

1. Introduction 

Legacy systems embody substantial institutional knowledge, which includes basic and refined 
requirements, design decisions, and invaluable advice and suggestions from domain users that have been 
implemented over the years. To effectively use these assets, it is important to employ a systematic strategy 
for continued evolution of the current system to meet the ever-changing mission, technology and user 
needs. Re-engineering has frequently been proven to be more cost effective than new development and is 
also known to better promote continuous software evolution. 

However, the institutional knowledge implicit in a legacy system is difficult to recover after many 
years of operation, evolution, and personnel change. These software systems were originally written twenty 
or more years ago using what many now view archaic and ad-hoc methods. Such legacy systems usually 
lack accurate documentation, modular structure, and coherent abstractions that correspond to current or 
projected requirements. Past optimizations and design changes have spread design decisions that now must 
be changed over large areas of the code, and may have introduced inconsistencies and faults. 

Software re-engineering can be defined as the systematic transformation of an existing system into a 
new form to realize quality improvements, such as increased or enhanced functionality, better 
maintainability, configurability, reusability, performance, or evolvability at a reduced cost, schedule, or risk 
to the customer. This process involves recovering existing software artifacts from the system and then 
transforming and re-organizing them as a basis for future evolution of the system. Since typical legacy 
systems were originally designed and implemented using a functionally based approach, some 
transformation of the recovered information is necessary in order to obtain an object-oriented model. It is 
often very difficult to obtain a transformed specification that accurately represents the desired 
requirements. 

Since legacy systems are usually re-engineered only when the existing systems need some kind of 
improvement, it is unlikely that the initial version of the reconstructed requirements adequately reflects 

1 This research was supported in part by the U.S. Army Research Office under contract number 350367- 
MAand40473-MA. 
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current user needs. Prototyping provides a means to identify and validate changes to system requirements 
while simultaneously enabling prospective users to get a feel for new aspects of the proposed system. It is 
a well-established approach that can be highly effective in increasing software quality [15]. When used in 
conjunction with conducting a major re-engineering effort, prototyping can be extremely useful in assisting 
in many areas of software modification, validation, risk reduction, and the refinement of new software 
architectures and user requirements. 

This paper describes a case study that illustrates the effective use of computer-aided prototyping 
techniques for re-engineering legacy software [3, 16]. The case study consists of developing an object- 
oriented modular architecture for the existing US Army Janus(A) combat simulation system [19], and 
validating the architecture via an executable prototype using the Computer Aided Prototyping System 
(CAPS), a research tool developed at the Naval Postgraduate School [14]. Janus(A) is a software-based war 
game that simulates ground battles between up to six adversaries [9]. It is an interactive, closed, stochastic, 
ground combat simulation with color graphics. Janus is "interactive" in that command and control functions 
are entered by military analysts who decide what to do in crucial situations during simulated combat. The 
current version of Janus operates on a Hewlett Packard workstation and consists of over 350,000 lines of 
FORTRAN code. The FORTRAN modules are organized as a flat structure and interconnected with one 
another via 129 FORTRAN COMMON blocks, resulting in a software structure that makes modification to 
Janus very costly and error-prone. The Software Engineering group at the Naval Postgraduate School was 
tasked to extract the existing functionality through reverse engineering and to create a base-line object- 
oriented architecture that supports existing and required enhancements to Janus functionality. 

The paper presents the re-architecturing process and the resultant object-oriented architecture, in 
Sections 2. Section 3 describes the use of computer aided prototyping to validate the resultant architecture 
and Section 4 draws some conclusions. 

2. The Re-Architecturing Process 

The re-architecturing process used in the case study consists of 3 major phases: reverse engineering, 
object-oriented design and design validation via prototyping (Figure 1). 

Reverse Engineering 
Object-oriented 
Design jjomain expert 

) feedback 

Design Validation 
via Prototyping 

source code, 
design documents, 

user manual, 
domain experts 

executable 
prototype 

executable 
prototype 

object-oriented 
architecture 

forward to target OO 
system implementation 

Figure 1. The object-oriented re-architecturing process. 
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2.1 Reverse Engineering 

The first phase is reverse engineering. Input to this phase includes the legacy source code, design 
documents, user manuals, and information from domain experts. Since the goal of the initial re-engineering 
effort is to duplicate the functionality of the existing system within a modular, extensible architecture and 
to reuse domain concepts, models and algorithms instead of the existing code, we should avoid including 
any requirements/constraints that are consequences of issues related to FORTRAN implementation. The 
best places to extract domain concepts from the existing system are the user manuals and the database 
management system manuals. These manuals were written using the lingo of the user community and 
should be relatively free of implementation details. We found the JANUS Data Base Management Program 
Manual [10] particularly useful because it contains detailed information on what kind of data are needed to 
model the battlefield and how they are organized (logically) in the database. The top-level structure of the 
database is shown in Figure 2. 
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Figure 2. The top-level structure of the Janus Database. 
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Not shown in Figure 2 are the interdependencies between the data, whereby data entered in one 
category affect directly or indirectly the data in other categories. For example, the barrier delay attributes of 
the Engineer Data depend on specific weather conditions derived from the Weather Data and system 
functional characteristics derived from the System Data. The overall network of interdependencies is highly 
complex and can only be understood through construction and analysis of a functional model of the 
existing Janus software. 

Analysis of the legacy implementation of 350,000 lines of source code is a daunting but inescapable 
part of this step. We recoiled from the magnitude of this effort and analyzed the Janus User's manual [9], 
the Janus Programmer's Manual [7], the Janus Software Design Manual [8], and the Janus Algorithm 
Document [18] instead. These documents helped us get started because they contained higher level 
information and were much shorter than the code. However, they were also older, and it was a constant 
struggle to determine which parts were still accurate, and which were not. In hindsight, avoiding analysis of 
the code was a mistake that slipped the schedule of the project by several months. Understanding a design 
of this complexity requires time for mental digestion, even with tool support and judicious sampling. We 
should have started analysis of the code right away and should have persistently continued this task in 
parallel with all other re-engineering activities. Cross-fertilization between all the tasks would have helped 
us recognize some dead-end directions earlier and would have enabled us to spend meeting time more 
effectively. 

Using manual techniques augmented with the text matching tool grep [1], which takes a regular 
expression and a list of files and lists the lines of those files that match the pattern, we were able to walk 
through the code and get a fairly good idea of what each subroutine was designed to do. We also used the 
Software Programmers' Manual [7] to aid in understanding each subroutine's function. In doing so we were 
able to group the subroutines by functionality to get a better understanding of the major data flows between 
programs and develop functional models from the data flows. We used CAPS to assist in developing the 
abstract models [3]. CAPS allowed us to rapidly graph the gathered data and transform it into a more 
readable and usable format. Additionally, CAPS enabled us to concurrently develop our diagrams, and 
then join them together under the CAPS environment, where they can be used to generate an executable 
model. 

We also had a series of brief meetings with the client, TRAC-Monterey, asking questions and making 
notes on the system's operation and its current functionality. We paid attention to the client's view of the 
system to gather their ideas on its strengths, weaknesses, and desired and undesired functionality. These 
meetings were indispensable because they gave us information that was not present in the code. Since we 
were not familiar with the domain of ground combat simulation, we were using these meetings to determine 
the requirements of this domain, often playing the role of "smart ignoramuses" [4]. Domain analysis has 
been identified as an effective technique for software re-engineering [17]. Our experience suggests that 
competent engineers unfamiliar with the application domain have an essential role in re-engineering as well 
as in requirements elicitation because lack of inessential information about the application domain makes it 
easier to find new, simpler design structures and architectural concepts to guide the re-engineering effort. 

2.2. Object-Oriented Design 

Next, we developed object models and architecture of the Janus System using the aforementioned 
materials and products, to create the modules and associations amongst them. Information modeling is 
needed to support effective re-engineering of complex systems [5]. This was probably the most difficult 
and most important phase. It required a great deal of analysis and focus to transform the currently scattered 
sets of data and functions into small, coherent and realizable objects, each with its own attributes and 
operations. In performing this phase, we used our knowledge of object-oriented analysis and the UML 
notations to create the classes and associated attributes and operations [20]. This was a crucial phase 
because we had to ensure that the classes we created accurately represented the functions and procedures 
currently in the software. 

Restructuring software to identify data abstractions is a difficult part of the process. Transformations 
for meaning-preserving restructuring can be useful if tool support is available [6]. We used the HP-UNIX 
systems at the TRAC-Monterey facility to run the Janus simulation software to aid in verifying and 
supplementing the information we obtained from reviewing the source code and documentation. This step 
enabled us to better analyze the simulation system, gaining insight into its functionality and further 
concentrate on module definition and refinement. 
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The re-engineering team met several times each week for a period of two and a half months to discuss 
the object models for the Janus core data elements and the object-oriented architecture for the Janus 
System. We presented the findings to the Janus domain experts at least once per week to get feedback on 
the models and architectures being constructed. In addition, the re-engineering team also presented the 
findings to members of the OneSAF project, the Combat21 project, and the National Simulation Center 
project. We found that information from these domain experts was essential for understanding the system, 
particularly in cases where the legacy code did not correspond to stakeholder needs. This supports the 
hypothesis advanced in [11] that the involvement of domain experts is critical for nontrivial re-engineering 
tasks. 

Early involvement of the stakeholders in the simulation community also paid off in the long run. Both 
the National Simulation Center and Combat21 projects were able to save time and money by reusing our 
work and came up with designs that look remarkably like ours (although much larger). Now, OneSAF 
developers have been directed to look at the Combat21 class design and reuse as much as possible. So, our 
efforts have directly benefited other simulation developers. 

Based on the feedback from the domain experts, the re-engineering team revised the object models for 
the Janus core elements and developed a 3-tier object-oriented architecture for the Janus System (Figure 3). 
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Figure 3. The resultant 3-tier object-oriented architecture. 
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We extracted most of the data and operations from the existing Combat System DBMS, Scenario 
Management, Janus Combat Simulation, JAAWS and POSTP subsystems and encapsulated them as 
simulation objects in the Core Elements package, leaving only application specific control codes that use 
the simulation objects in each of these five subsystems. Figures 4 and 5 show the top level class structures 
of the object models of the core elements. Details of the associated attributes and operations can be found 
in [3, 22] and are omitted from these diagrams due to space limitations. 
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Figure 4. The top-level structure of the Janus Core Elements Object Model. 
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Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which is the mam event 
scheduler for the simulation. RUNJAN determines the next scheduled event and executes that event. If the 
next scheduled event is a simulation event, RUNJAN will advance the game clock to the scheduled time of 
the event and perform that event. The existing Janus Simulation System uses 17 different categories to 
characterize the events. RUNJAN then handles these 17 events using the event handlers shown in Figure 6. 

1) DOPLAN - Interactive Command and Control activities 
2) MOVEMENT-Update unit positions 
3) DOCLOUD - Create and update smoke and dust clouds 
4) STATEWT - Periodic activity to write unit status to disk 
5) RELOAD - Plan and execute the direct fire events 
6) INTACT-Update the graphics displays 
7) CNTRBAT-Detect artillery fire 
8) SEARCH - Update target acquisitions, choose weapons against potential targets, and 

schedule potential direct fire events 
9) DOCHEM - Create chemical clouds and transition units to different chemical states 
10) FIRING - Evaluate direct fire round impacting and execute indirect fire missions 
11) IMPACT -Evaluate and update the results of an indirect round impacting 
12) RADAR - Update an air defense radar state and schedule direct fire events for "normal" 

radar 
13) COPTER -Update helicopter states 
14) DOARTY - Schedule indirect fire missions 
15) DOHEAT-Update unit's heat status 
16) DOCKPT - Activity to record automatic checkpoints 
17) ENDJAN - Housekeeping activity to end the simulation 

Figure 6. The event handlers for the legacy Janus system. 

Like all typical Fortran programs, the existing event scheduler uses global arrays and matrices to 
maintain the attributes of the objects in the simulation. Hence, one of the major tasks in designing an 
object-oriented architecture for the Janus Combat Simulation Subsystem was to distribute the event 
handling functions to individual objects. However, many of the current event handler categories contained 
redundant code. They did not seem to be independent of each other and were not consistent with the class 
hierarchy we created. For example, the set of event handlers used to simulate the activities of a particular 
unit to search for targets, select weapons, prepare for a direct fire engagement, and then execute that direct 
fire engagement differs depending upon whether the unit has a normal radar, special radar, or no radar at 
all The existing Janus Simulation System uses the RADAR event handler to carry out the entire procedure 
if the unit has normal radar. However, it uses the SEARCH, RADAR and RELOADevent handlersi to 
carry out the procedure if the unit has special radar. Finally the system uses the SEARCH and RELOAU 
event handlers to conduct the procedure if the unit has no radar at all. We conjecture that this lack of 
uniformity is due to a series of software modifications made by different people at different times without 
fall knowledge of the software structure. The example also illustrates another problem: the legacy event 
handlers were not designed to perform independent tasks, and had complicated interactions with each other. 

It was necessary to redefine some event categories in order to reduce interdependences between the 
event handlers, to factor simulation behavior into more coherent modules, to eliminate redundant coding of 
the same or similar functions and to take advantage of dynamic dispatching of event handling functions m 
the object-oriented architecture. Moreover, the Janus system was originally designed to work in isolation, 
and has since been adapted to interact with other simulation systems. Interactions between the simu ation 
engine and the world modeler (the interface to the distributed simulation network) are performed implicitly 
within the various event handlers in the existing Janus. Such interactions are made explicit in the new 
architecture in order to provide a uniform framework to update World Model objects during the simulation. 
The new architecture uses an explicit priority queue of event objects to schedule the simulation events We 
were able to reduce the total number of event handlers needed in the simulation, from 17 to 14, by 
eliminating identified redundant code (Figure 7). 
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Figure 7. The event class hierarchy. 

We tried to make the actions of the new event handlers independent and orthogonal. Independent 
means that one event handler does not invoke or depend on the action of another. Orthogonal means that 
the purpose of one event handler is completely separate from that of another. Although our architecture 
does not completely meet these goals, it comes much closer to them than the legacy design does. We 
believe that these properties of the architecture are desirable because they impose a partitioned structure on 
the system that aids future enhancements and modifications. If an enhancement affects only one kind of 
event, then it becomes relatively easy to isolate the affected part of the code. If suitable naming conventions 
are followed, relatively low-tech tool support will be adequate for helping system maintainers find the parts 
of the code that must be understood and modified to make a future change to the system. 

Every event has an associated simulation object in the new architecture. This associated object is the target of the 
event. Depending on the subclass, to which an event object belongs, the "execute" method of the event will invoke the 
corresponding event handler of the associated simulation object. (See [3] for details.) The new event hierarchy enables 
a very simple realization of the main simulation loop: 

initialization; 
while not_empty(event_queue) loop 

e := remove_event(event_queue); 
e.executef); 

end loop; 
finalization; 

Note that this same code is used to handle all of the event handlers, including those for future 
extensions that have not yet been designed. Event objects with associated simulation objects are created 
and inserted into the event queue by the initialization procedure, the constructors of simulation objects, and 
the actions of other event handlers. Depending on the actual event, events are inserted into an event 
priority queue based on time and priority. 

Our newly designed architecture eliminates the need for the simulation loop to know what kind of 
object it is handling. Thus when adding an object type not yet designed, the simulation loop does not 
require additional code to invoke the new object's event handlers. By localizing all changes to the newly 
added object class, our architecture eliminates the possibility of introducing errors into the existing parts of 
the simulation. 
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3. Design Validation Via Prototyping 

The process of transforming a design developed using the functional approach into an object-oriented 
design introduces risks of unintentionally altering system behavior. In the context of our case study, the 
resultant object oriented architecture and the new event dispatching control structure are areas of high risk 
since they differ significantly from the functional design of the legacy software. UML provides two ways to 
model behavior. One is to capture the behavior of individual objects over time using state machines, and 
the other is to capture the interactions of a set of objects in the system using sequence diagrams and 
collaboration diagrams. While state machines are precise, they only focus on a single object at a time and is 
hard to understand the behavior of the system as a whole. The sequence diagrams and the collaboration 
diagrams, on the other hand, lack a formal semantics for precise description of the system behaviors. 

One way to reduce the risk is to validate the dynamic behavior of the proposed architecture and to refine 
the interfaces of subsystems via prototyping at the early design stage. To be effective, prototypes must be 
constructed and modified rapidly, accurately, and cheaply. Computer aid for constructing and modifying 
prototypes makes this feasible [15]. The CAPS system is an integrated set of software tools that generate 
source programs directly from high-level requirement specifications. 

Due to time and resource limitations, we developed a prototype for only a very small simulation run, 
which consists of a single object (a tank) moving on a two-dimensional plane, three event subclasses 
(move, do_plan, and end_simulatiori), and one kind of post-processing statistics (fuel consumption). 

We developed an executable prototype using CAPS. Figure 8 shows the top-level structure of the 
prototype, which has four subsystems: janus, gui, jaaws and the postprocessor. Among these four 
subsystems, the janus and the gui subsystems (depicted as double circles) are made up of sub-modules 
while the jaaws and the postprocessor subsystems (depicted as single circles) are mapped directly to 
modules in the target language. After entering the prototype design into CAPS, we used the CAPS 
execution support system to generate the code that interconnects and controls these subsystems. In addition, 
a simple user interface was developed using CAPS/TAE [21]. 

Figure 8. Top-level decomposition of the executable prototype. 

The resultant prototype has over 6000 lines of program source code, most of which was automatically 
generated, and contains enough features to exercise all parts of the architecture. The code that handles the 
motion of a generic simulation object was very simple, but it was designed so that it would work in both 
two and three dimensions without modification (currently the initialization and the movement plan of the 
tank object never call for any vertical motion). The code was also designed to be polymorphic, just as was 
the main event loop. This means the same code will handle the motion of all kinds of simulation objects 
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without any modifications, including new types of simulation objects that are part of currently unknown 
future enhancements to Janus and have not yet been designed or implemented. 

Our prototyping experiment showed that the proposed object-oriented architecture allows design issues 
to be localized and provides easy means for future extensions. We started out with a prototype consisting of 
only two event subclasses (move and endjsimulation) and were able to add a third event subclass (do_plan) 
to the prototype without modifying the event control loop of the Janus combat simulator. 

We also demonstrated the use of inheritance and polymorphism to efficiently extend/specialize the 
behavior of combat units. For example, the move_update_object method of a tank subclass uses the 
general-purpose method from its superclass to compute its distance traveled and a specialized algorithm to 
compute its fuel consumption. We simply include one statement to invoke the move_update_object method 
of its superclass followed by three lines of code to update its fuel consumption. Moreover, other combat 
unit subclasses can be added easily to the prototype without the need to modify the event 
scheduling/dispatching code and usually without modifying existing event handlers. 

The issues raised by the design of the prototype also resulted in the following refinements to the 
proposed architecture: 
1. Extend the interface of the Execute_Event operation to return the time at which the next event is to be 

scheduled for the same simulation object, and introduce a special time value "NEVER" to indicate that 
no next event is needed. The proposed change turns the communication between the event dispatcher 
and the simulation objects from a peer-to-peer communication into a client-server communication. 
This change eliminates dependencies of event handlers on event queue details and allows the event 
dispatcher to use a single statement to schedule all recurring events for all event types. 

2. Instead of recording the history of a simulation run in sets of data files, model the simulation history as 
a sequence of events. The proposed change provides a simple and uniform way to handle history 
records for all events, and allows the same modular architecture to be used for real-time simulations as 
well as post-simulation analysis. It also eliminates the need for the write-status event, reducing the 
number of events still further. This approach provides the greatest possible resolution for the event 
histories, which implies that any quantity that could have been calculated during the simulation can 
also be calculated by a post-simulation analysis of the event history, without any loss of accuracy. The 
only constraint imposed by this design refinement is that the simulation objects in the events must be 
copied before being included in the simulation history, to protect them from further changes of state as 
the simulation proceeds. This constraint is easy to meet in a full-scale implementation because the 
process of writing the contents of an event object to a history file will implicitly make the required 
copy. 

3. It is beneficial to allow null events appear in the event queue. A null event is one that does not affect 
the state of the simulation, such as a move event for an object that is currently stationary. The 
prototype version adopted the position that such events should not be put in the event queue, since this 
corresponds to current scheduling policies in Janus, and appears at first glance to improve efficiency. 
Our experience with the development of the prototype suggests that this decision complicates the logic 
and may not in fact improve efficiency. The current design uses the process create_new_events to scan 
all simulation objects once per simulation cycle to determine if any dormant objects have become 
active, and if so, schedules events to handle their new activity. The alternative is to have the 
constructor of each kind of simulation object schedule all of its initial events, and to have each event 
handler specify the time of next instance of the same event even if there is nothing for it to do 
currently. Handlers might still set the time of its next event to NEVER in the case of a catastrophic kill; 
however this is reasonable only if it is impossible to repair or restore the operation of the units that 
have suffered a catastrophic kill. The reasons why this design change may improve efficiency in 
addition to simplifying the code are that: 
(a) the check for whether a dormant object has become active is done less often - once per activity of 

that object, rather than once per simulation cycle, 
(b) executing a null event is very fast - a few instructions at most, so the "unnecessary" null events 

will not have much impact on execution time, and 
(c) the computation to find and test all simulation objects periodically would be eliminated. 
We recommend allowing null events in the event queue, and explicitly scheduling every kind of event 
for every object unless it is known that there cannot be any non-empty events of that type in any 
possible future state of the object. For example, under the proposed scheduling policy, immobile or 
irrecoverably damaged objects would not need to schedule future move events, but those that are 
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currently at their planned positions would need to do so, because a change of plan could cause them to 
move again in the future, even though they are not currently moving. The resulting architecture enables 
a very simple realization of the main simulation. 

4. Conclusion 

Our conclusion is that substantial and useful computer aid for re-engineering is possible at the current 
state of the art. Human analysts and domain experts must also play an important part of the process because 
much of the information needed to do a good job is not present in the software artifacts to be re-engineered. 
Success depends on cooperation between skilled people and appropriate software tools. 

The missing information needed for re-engineering is related to deficiencies of the current system at all 
levels, from requirements through design and implementation. Thorough and accurate knowledge of these 
deficiencies is crucial for success. The clients never want the re-engineered system to have the exactly 
same behavior as the legacy system - if they were satisfied, there would be little motivation to spend time, 
effort, and resources on a re-engineering project. Even if a system is being re-engineered for the ostensible 
goal of porting to different hardware, the desired behavior at the interface to the hardware and systems 
software will be different. 

In practical situations, the requirements for the re-engineered system are different from those for the 
legacy system. Key parts of the requirements for the new system are often missing or incorrect in the 
legacy documents. Some ofthat information is present only in the minds of the clients, often fragmented 
and scattered across members of many different organizations. Communication is a large part of the 
process, and that communication cannot be automated away, although it can be enhanced by appropriate 
use of prototyping. We found that the most important communications were those regarding newly 
recognized requirements issues, and that such recognition were often triggered by discussions between 
people with different areas of expertise. 

Uncertainties about the true requirements play a central role in both re-engineering and the 
development of new systems. We therefore hypothesized that prototyping could play a valuable role in re- 
engineering efforts. Our experience in the case study reported here support that hypothesis. 

We also found that prototyping can contribute substantially to the process of inventing, correcting, and 
refining the conceptual structures on which the architecture of the new system will be based. Most legacy 
systems are too complicated for individuals to understand. 

This maze of details hides potential opportunities for simplifying and regularizing the conceptual 
structure of the system to be re-engineered, and makes it difficult to recognize deficiencies in design and 
architectural structure. The amplification process implicit in constructing skeletal prototypes helps expose 
such opportunities. 

We found that there are fundamental conceptual errors embodied in the legacy structures and 
algorithms. Some of those errors were exposed when structural asymmetries and irregularities are 
discovered in the process of extracting a model of the legacy software. Others were discovered only with 
the help of the oversimplified models that are common in the early stages of prototyping a proposed new 
architecture. Constructing a small and simple instance of the proposed architecture raises many of the main 
design issues, and the simplicity of the model makes it much easier to consider and evaluate alternative 
designs to find improved structures. 

To be effective, prototypes must be constructed and modified rapidly, accurately, and cheaply. The 
UML interaction diagrams lack the preciseness to support automatic code generation for the executable 
prototype. This weakness can be remedied by the use of the prototype language PSDL [12, 13] and the 
CAPS prototyping environment, which provide effective means to model the system's dynamic behavior in 
a form that can be easily validated by user via prototype demonstration. 
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Abstract 

Object-oriented databases are becoming increasingly popular because of their capabilities to provide rich semantic 
constructs to model real world entities and their relations [3, 6]. Modeling of constraints in Object Oriented Data Model 
has been the focus of attention of many researchers in recent times [1,5,9,10]. In this paper, we have attempted to model 
single and multi-attribute constraints as special methods in a class. We have also modeled class constraints as methods in 
a collection class associated with a user-defined class. The syntax and semantics of such modeling is extended to deal 
with constraints in single inheritance. Finally, we have demonstrated the application of our constraint model by exploring 
the possibility of developing a pre-processor that would add validity code in the methods defined by the user. The 
development of such a pre-processor is to be based on a language and platform (such as Java) capable of run-time type 
identification, reflection and introspection. 

Key words: Object Oriented Database, Constraints, UML, Inheritance, Java Reflection 

1. INTRODUCTION 

Object-oriented databases are becoming increasingly popular because of their capabilities to provide rich semantic 
constructs to model real world entities and their relations. In the process, the notions of object, class, inheritance, 
relationships among classes and objects have been thoroughly treated in object oriented database systems. But, a 
complete treatise on constraints is still evolving in the context of Object Oriented Data Model. However, the imperative 
need for integrity maintenance in database systems is a long recognized fact. Constraints are restrictions on properties and 
relations of database objects that ensure the integrity of data according to both the system and the user. Constraints also 
ensure that subsequent updates on data will not violate these restrictions. In recent years, modeling integrity constraints in 
object oriented databases has become an active research topic f 1, 5,9, 10]. In this paper, we have attempted to explore a 
way to statically model constraints as specialized methods by re-defining the model element "Class" and extending the 
meta-model of Object Oriented programming. Our objective in this paper is to clearly bring out the syntax and semantics 
constraints in an object oriented framework involving only single inheritance and usual relationship among classes. We 
have tried to demonstrate that such a modeling approach would enable us to construct a pre-processor that could add code 
to validate integrity constraints in the user-developed methods. 

For more than a decade, specification, design and implementation of "Object Oriented Model" of Database systems has 
been the focus of many research efforts [3, 6]. Object Oriented data model is a logical organization of real world objects 
or entities, constraints on them and relationship among these objects. A core object-oriented data model consists of the 
following basic components, namely, object and object identifier, attributes, methods, class, class hierarchy and 
inheritance. Every object has a state, characterized by the set of values for the attributes of the object and a behavior, 
defined by the set of methods which manipulate the state of the object. Each attribute of a class of objects has an access 
specifier (such as public, private, protected etc.) that limits the visibility of the attribute. The state and behavior 
encapsulated in an object are accessed or invoked from the external world only through explicit message passing. 
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Inheritance is deriving a new class (subclass) form one or more existing classes(super classes). The subclass inherits all 
attributes and methods of existing classes and may have additional attributes and methods. Exact semantics of inheritance 
is, however, dependent on a object oriented language and thus, not universal. A class "Y" is said to be a subclass of class 
"X" (equivalently, class "X" is said to be a super class of class "Y") if and only if every object of class "Y" is necessarily 
an object of class "X" (that is, Y ISA X). Objects of class "Y" then inherits the instance variables and methods of class 
"X". As a consequence, we can always use a "Y" object wherever an "X" object is permitted (that is, as an argument to 
various methods). This is the principle of substitutability, which helps us to take the advantage of code reusability. The 
ability to apply the same methods to different classes, or rather the ability to apply different methods with the same name 
to different classes (a class "X" method might need to be redefined for use with class "Y") is referred to as 
polymorphism. Thus, when a class "Y" inherits from a class "X" then the set of instance variables, and the set of methods 
of Y are a superset of the set of instance variables and the set of methods of "X". The subclass "Y" can override the 
implementation of an inherited method or instance variable by providing an alternative definition or implementation of 
the base class. In this paper, we will deal with single inheritance only. 

A prototype implementation of an Object Oriented Database (OODB) for VLSI designs have been developed in [8]. 
Jasmine, a full-fledged implementation of OODB, has been reported in [4]. [7] deals with an another advanced object 
modeling environment. But these papers do not provide any insight to handle integrity constraints in object oriented 
databases. 

There has also been a good amount of effort to identify, specify, design constraints in an object oriented database [1, 5, 9, 
10]. In relational databases, Date [2] identified four categories of integrity rules, namely domain rules, attributes rules, 
relation rules and database rules. In the context of OODB, integrity rules may also be categorized in four groups - domain 
rules, attributes Rules, class rules and database rules [5]. Class Rules apply to the objects of a given class only, while 
database rules apply to objects form two or more distinct classes. It has been argued in [5], the domain rules and attribute 
rules are represented and maintained in an OODB by the class hierarchy automatically by the virtue of object-orientation. 
Therefore, only class rules and database rules need to be specified. 

In [1], constraints have been modeled by means of exceptions in an object-oriented database. Ou deals with the 
specification of integrity constraints such as key, uniqueness using UML class diagrams [9, 10]. Ou's work proposes two 
ways to specify integrity constraints in a class. One is to use a property string to specify attribute constraints and the other 
is to add a compartment to specify class constraints. Our work differs from Ou in a major way. Class constraints (rules) 
pertain to integrity constraints that may be checked after examining all objects of a class [9]. A non-static method in a 
class is automatically provided with a self-reference to the object on which the method is called. Static methods can 
manipulate only non-static members of objects of a class. Methods for checking class constraints must have access to all 
objects of the class and thus, they can not be methods of the class itself. Class constraints can only be attached to a system 
defined class containing all objects of a particular class. To reduce the number of class constraints for reasons of 
performance, we also have single and multi-attribute constraints. While single attribute constraints are methods attached 
to an attribute, multi-attribute constraints are specified as special methods of a class. We have demonstrated the 
correctness of our model when applied in a class hierarchy involving single inheritance. 

The layout of the paper is as follows. We discuss our approach to model integrity constraints (single attribute, multi- 
attribute and class rules) in Section 2. The modeling approach has been shown to be extended to inheritance in Section 3. 
We have presented a set of user's code and a possible augmentation of constraint validation code by the system by a pre- 
processor that understands the semantics of our model for specifying constraints in Section 4. Finally, we conclude in 
Section 5. 

2. MODELING CONSTRAINTS 

An integrity constraint is a semantic information in an object or a relationship among objects. A constraint specifies a 
condition and a proposition that must be maintained as true. Certain kinds of constraints are predefined; others may be 
user-defined. A user-defined constraint is described in words in a given language, whose syntax and interpretation is a 
tool responsibility. We attempt to model each constraint as a boolean method, which returns either true value or false 
value. If the predicate within a method is satisfied by a model element then the method will return true; otherwise the 
method returns false. These methods are clearly distinguished from the usual methods of a class by their usage and 
therefore, the constraint methods are accommodated differently than usual methods in object-oriented data model. 

In this section, we will consider three different types of constraints present in an object oriented data model. 
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(i) Single Attribute Constraints, 
(ii)        Multiple Attributes Constraints & 
(iii)       Class Constraints. 

Single attribute constraints are applicable to individual attributes of a class; multiple attributes constraints involve more 
than one attributes of a class and class constraints are applicable to individual classes of an object oriented database 
system. For example, suppose that there is a class "Employee" with usual attributes and methods as shown in Figure 1(a). 
A constraint on the attribute "age" of any "Employee" object may be described as "age of an employee must between 20 
& 60". Similarly a constraint on "id" may be described as "id must be greater than 0". 

Employee 

Attributes 
id: integer 
name: string 
dept: string 
age: integer 
experience: integer 
salary: float 
dutyHrs: integer 

Methods 
hire() 
promote () 
demote () 
add ( ) 
delete() 

(a) 

Employee 

Attributes 
name: string 
dept: string 
experience: integer 
salary: float 

Constrained Attributes 
id: integer     idC:[Id >0 ] 
age: integer 
ageC: [ age > 20 && age<=60 ] 
dutyHrs: integer 
dutyHrsCQ [dutyHrs <=8] 

Methods 
hire () 
promote () 
demote () 
add ( ) 
delete() 

Constrained methods 
empCl [experience, salary] 
[if experience is less than 5 years 
then salary must   not be greater 
than $2500 per month] 

empC2[dutyHrs, salary] 
[ if dutyHrs is less than or equal 
to 4 then salary should not be 
greater than $1250 per month] 

(b) 

Figure 1. (a) Class "Employee" (b) Class "Employee" with constraints 

These constraints involve only one attribute of the class and they are called single attribute constraints. Similarly, there 
could be a constraint described as "if experience of an employee is less than 5 years then the salary ofthat employee can 
not be more than $2500". This constraint is an example of a multiple attribute constraint. A constraint, which can be 
checked by considering all objects of a class, is called a class constraint. A typical example of a class constraint in the 
"Employee" class may be described as "id of an employee must be unique". This constraint implies that whenever "id" 
field of an "Employee" object is modified, uniqueness of the updated "id" value must be guaranteed by checking "id" 
values of all other "Employee" objects. 
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The methods for the constraints idC and empCl are shown in the following. 

Boolean idC() 
{ 

} 

if(empid<=0) 
return (false); 

return(true); 

Boolean empCl() 
{ 

} 

if ((salary > 2500) && (experience < 5)) 
return (false); 

return(true); 

In this section, we first deal with single and multi attribute constraints and then take up the class constraints. To handle 
single and multi-value constraints, we propose that the element "Class" be redefined as a 4-tuple <A, CA, M,CM> , 
where, as usual, "A" & "M" represent attributes and methods respectively of the class. And "CA" and "CM" represent 
constrained attributes and constrained methods respectively. A constrained attribute has the name of the attribute, its type 
and a boolean method representing a single attribute constraint. A constrained method represents a multi-attribute 
constraint and contains the names of the attributes involved. 

Methods in a constrained attribute may be public, private or protected depending on the visibility of the individual 
attributes involved with the constraint methods. These constraint methods would be invoked for checking the validity of 
the attribute's value whenever the value of an object changes. If the attribute associated with a particular constraint 
method is private, then the visibility of that particular constraint method would also be private. This is because the value 
of a private attribute can only be changed by a member function or a friend function and a private constraint method can 
be invoked from within members or friends without causing any compilation or runtime error. Similarly, if the attribute 
associated with a particular constraint method is public or protected, then the visibility of the constraint method would 
also be public or protected respectively. 

Employee_ColIection 

Attributes 
Object[] allElements; 
int noOfElements; 

Methods 
getObject() 
add() 
deleteQ 

Constrained Methods 
uniqueld() [ Employee id should be 
unique for all objects of Employee class 
] 

Figure 2. The class "Employee_Collection" 
To represent class constraints, we introduce a singleton collection class associated with each general user-defined class, 
where the singleton collection class would always contain a collection of all objects of the user-defined class. All 
constraints that need to check all objects of a user-defined class for validation become boolean methods of the singleton 
class. Thus, constraints on objects of the user's class can be validated by calling a corresponding method of the collection 
class. For example, suppose that there is a constraint on the class "Employee" which states that "id" of every "Employee" 
object must be unique. For the class "Employee", a collection class "Employee-Collection" is defined (see Figure 2). The 
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class "Employee-Collection" has two attributes, a pointer to the list of all existing "Employee" objects and the number of 
"Employee" objects. The collection class also contains a method "uniqueld" to check the class constraint mentioned for 
the class "Employee". 

Similarly the singleton class which is the collection of all objects of the "Employee" class can be described as shown in 
Figure 2. 

Whenever a new object of the class "Employee" is created, a reference to that object is added to the list "allElements" and 
the integer "noOfElements" is incremented. Similarly, whenever, an "Employee" object is deleted then the reference of 
that object is deleted from the list "allElements" and the integer "noOfElements" is decremented. Whenever the "id" of an 
object is modified by a statement in the user's program, the system must call the class constraint method "uniqueld()" of 
the collection class to check whether the "id" remains unique for all object of the "Employee" class even after the 
modification. 

For linking the only instance of the class "EmployeeCollection " with the class an "Employee" object, the system first 
calls the class level method getobject() of the collection class. After getting the object of the singleton class it would call 
the constraint method of "Employee_Collection" class on that single object. 

3. MODELING CONSTRAINT IN INHERITANCE 

Let us assume that the class "Manager" is derived from the "Employee" class. We can add new constraints into the 
derived classes as we can add new attributes and new methods. Further, constraints specified in the base class 
"Employee" may be modified in the derived classes. Constrained attributes and constrained methods are inherited in the 
derived class. An (not constrained) attribute in the base class can be re-declared as constrained in the derived class. The 
methods in the constrained attributes may also be re-defined. New constrained attribute may be added. Constraint 
methods specified in base classes may be modified in derived classes. New constraint methods may also be added. Let us 
consider the class hierarchy as shown in Figure 3. 

Employee Employee Collection 

i i. 

T 
Manager ManagerCollection 

Attributes 
mgrNo: integer 

Attributes 

Methods 
getObjectO 
add() 
delete() 

Constrained Attributes 
ageC: [ age > 45 && 
age<=60 ] 
experienceC: [experience >= 
5 years] Constrained Methods 

UniqueMgrnoC() 
[mgrNo should be unique for 
all objects of Manager class] 

Methods 

Constrained Methods 

Figure 3. Class Hierarchy in modeling constraints in inheritance 

In the given class hierarchy, we can add a new single attribute constraint method "experienceC()" in the "Manager" class 
as "Experience must be greater than or equal to five years". The base class attribute constrained method "ageC( )" 
["Employee age should be greater than 20 years and less than or equal to 60 years"] may be modified in the derived 
"Manager" class such as " Manager's age should be greater than 45 years". Allowing modification to constraints in a 
derived class which are already specified in the base class poses a difficult logical problem. It is possible that the re- 
definition leads to an inconsistency in the base class. For example, if the method "ageC( )" is modified as "Manager's 
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age should be greater than 45 years and less than 65 years", then instances of "Manager" class would not remain valid the 
instances of "Employee" class. Although this seems to be a serious restriction, if the reference can always be resolved to 
the run-time objects, then the problem may implementionally be overcome. For the time being, we leave it to the database 
designers to take care of the issue of consistency. 

We can further add new class constraints in "Manager" class such as "Manager number should be unique", "Department 
code for each Manager should be unique" etc. These class constraint methods should be added into the singleton class 
"Manager_Collection" class, which contains a collection of all objects of the "Manager" class. If a user modifies 
"mgrNo" attribute of a manager object "ml", the system adds a call to the corresponding class constraint methods of 
"Manager_Collection" class. The class "Manager_Collection" is to be derived from "Employee_Collection " so that class 
constraints in the base class are inherited in the derived class. 

Defining new multiple attribute constraints and class constraints in a derived class poses some problems when the new 
constraints involve attributes in the base class. In such cases, all base class methods that modifies the values of one 
attribute involve in the new constraint must be re-written (re-defined) in the derived class. The re-defined method should 
check the validity of the modified value of the said attribute by invoking appropriate constraint method. 

4. APPLICATION OF CONSTRAINT MODEL 

In this section, we explore the possibility of using the semantics of our constraint model to construct a preprocessor that 
would add constraint validation code to user's programs. We demonstrate that developing such a preprocessor is indeed 
possible by looking at the following example scenarios. The classes that we are considering are the class "Employee" and 
the class "Manager" derived from "Employee". We also have two collection classes, "ManagerCollection" derived from 
"EmployeeCollection". For simplicity, we make the following assumptions. 

• The attributes of any object are not supposed to be directly updated even by a method in the class itself. That is, a 
method has to be invoked to set attributes of an object. 

• An instance of a class is to be created by calling a "factory" method such as "create" present in every class. 
• We further assume that all attributes of the classes "Employee" and "Manager" are constrained. That is, for an 

attribute "A", without constraint, we assume that there is an empty function "AC" representing the constraint for "A" 
making the attribute "A", a constrained attribute. 

• We assume that the preprocessor is developed on a language such as "Java" which has strong run-time type 
identification, reflection and introspection capabilities. Java allows us to perform the following operations at run- 
time: 
(i) find out the methods, attributes, super classes of a class whose name is known at run-time; 
(ii) create an object of a class which is known at run time. 
(iii) accessing modifying the properties of an object where the property names are known at run-time; 
(iv) invoking methods on an object where the method names are known at run-time; 

• The singleton objects of the collection classes "Employee_Collection" and "ManagerCollection" are pre-created 
with appropriate initializations of the array "allElements" present in these objects. That is, the "allElements" array of 
these objects contains references to existing "Employee" and "Manger" objects. 

Next, we take up sample scenarios to explain the working of the preprocessor. 

Scenario 1: Creation of an object through factory methods in a class. 

Suppose that the factory method of the class "Employee" dynamically creates a new "Empolyee" object. 

Employee Create() 
{ 

Employee e = new Employee(); 
return(e); 

} 

The preprocessor modifies the method "Create" in the following manner. 
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Employee Create() 
{ 

Employee e = new Employee(); 
Class c = get the "Class' object of the class whose name is "EmployeeCollection"; 
Object o = invoke the method "getObject" of the Class "C"; 
Invoke "add" method by passing (Object)e on the object "o"; 
c = super class of c; 
while(c is not null) 
{ 

o = invoke the method "getObject" of the Class "C"; 
Invoke "add" method by passing (Object)e on the object "o"; 

} 
} 

Note that whenever an object is added to a collection class, "X", the same object is also added to all super classes of "X". 

Scenario 2: Updation of an attribute which has an attribute-constraint. 

Suppose that "setAge" is a function in the "Employee" class as described in the following. 

void setAge(int x) 
{ 

age = x; 
} 

The code generated by the preprocessor for the above function is shown in the following. 

void setAge(int x) 
{ 

age = x; 
if(ageC() = = false) 

goto errorhandler; 

} 

In case "ageC" is re-defined in the class "Manager' and the object on which "setAge" is called be a "Manager" object 
then automatically "ageC" function as defined in "Manager' class would be called. 

Scenario 3. Updation of an attribute which has a class constraint. 

Suppose that "setld" is a function in the "Employee" class which is as follows. 

void setld(int x) 
{ 

id = x; 
} 

The modified code of the function "setld" as produced by the preprocessor would be as follows. 

void setld(int x) 
{ 

id = x; 
n= get the run-time class name of "this" object; 
nl= construct the class name of the corresponding collection_class; 
o= invoke "getObject" method of the class where name is "nl"; 
invoke the "uniqueld" method of the object "O"; 

} 

107 



Even if "setld" is invoked on a variable "e" which actually refers to a "Manager" object, the preprocessor generated 
version of "setld" would invoke the "uniqueld" method of the appropriate class at execution time. 

5. CONCLUSION 

Modeling of constraints in OODM has been the focus of attention of many researchers in recent times. In this paper, we 
have attempted to model single and multi-attribute constraints as special methods in a class. We have also modeled class 
constraints as methods in a collection class associated with a user-defined class. The syntax and semantics of such 
modeling is extended to deal with constraints in single inheritance. Finally, we have demonstrated the application of our 
constraint model by exploring the possibility of developing a pre-processor that would add validity code in the methods 
defined by the user. The development of such a pre-processor is to be based on a language and platform capable of run- 
time type identification and introspection. 

Modeling constraints as methods have a serious logical problem as methods in the base class may be re-defined in the 
derived class leading to inconsistent situations. We have assumed that it is the responsibility of the database designer to 
ensure that inconsistency is avoided in the overall definition of the system. We have not considered the issue of multiple 
inheritance either. It may be interesting to see how constraints in multiple inheritance may be modeled. Similarly, 
modeling database constraints (like foreign key etc.) would also be challenging task. We are in the process of 
implementing the pre-processor we discussed in our paper, the prototype of which would be ready soon. 
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A Unified Approach for the Integration of 
Distributed Heterogeneous Software Components1 
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Abstract 

Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly 
complex task. One possible approach to developing distributed software is based on the integration of heterogeneous 
software components that are scattered across many machines. In this paper, a comprehensive framework that will allow 
a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a meta- 
model for components and associated hierarchical setup for indicating the contracts and constraints of the components, 
b) an automatic generation of glues and wrappers, based on a designer's specifications, for achieving interoperability, c) 
a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered 
by each component and an ensemble of components. A case study from the domain of distributed information filtering is 
described in the context of this framework. 
Keywords: Distributed systems, Formal methods, Glue and Wrapper technology, Quality of Service 

1    Introduction 
The rapid advances in the processor and networking technologies have changed the computing paradigm from a centralized 
to a distributed one. This change in paradigm is allowing us to develop distributed computing systems (DCS). DCS 
appear in many critical domains and are, typically, characterized by: a) a large number of geographically dispersed and 
interconnected machines, each containing a subset of the required data, b) an open architecture, c) a local autonomy 
over the hardware and software resources, d) a dynamic system configuration and integration, e) a time-sensitivity of the 
expected solution, and f) the quality of service with an appropriate notion of compensation. These characteristics make 
the software design of DCS an extremely difficult task. 

One promising approach to the software design of DCS is based on the principles of distributed component computing. 
Under this paradigm DCS are created by integrating geographically scattered heterogeneous software components. These 
components constantly discover one another, offer/utilize services, and negotiate the cost and the quality of the services. 
Such a view provides a scalable solution and hides the underlying heterogeneity. 

Various distributed component models, each with strengths and weaknesses, are prevalent and widely used. However, 
almost a majority of these models have been designed for 'closed' systems, i.e., systems, although distributed in nature, 
are developed and deployed in a confined setup. In contrast, a direct consequence of the heterogeneity, local autonomy 
and the open architecture is that the software realization of DCS requires combining components that adhere to different 
distributed models. This in turn increases the complexity of the design process of DCS. Hence, a comprehensive framework, 
that provides a seamless access to underlying components and aids in the design of DCS, is needed. 

In this paper, one such framework is described. This framework consists of: a) a meta-model for components and 
associated hierarchical setup for indicating the contracts and constraints of the components, b) an automatic generation of 
glue and wrappers, based on a designer's specifications, for achieving interoperability, c) a formal mechanism for precisely 
describing the meta-model, and d) a formalization of the notion of quality of service offered by each component and an 
ensemble of components. The paper also presents a case study that shows the application of the framework to a specific 
problem domain. 

The rest of the paper is organized as follows. The next section contains a detailed discussion about the meta-model. 
As an application of the meta model, a case study from the domain of distributed information filtering is presented in 
the Section 3. Section 4 deals with the formal specification of the meta model, the automated system integration, and 
evaluation of the approach. Finally, we conclude in Section 5. 
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2Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street, 
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contract/grant number 40473-MA. On leave from Computer Science Department, New Mexico State University, USA. 
6This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office 

under contract/grant number DAAD19-00-1-0350. On leave from Department of Computer and Information Sciences, University at Alabama at 
Birmingham, USA. 

72AB, Inc., 1700 Highway 31, Calera, AL 35040, USA, cburt@2ab.com, +1 205 621 7455 

109 



2    Component Models and a Meta-model 
Many models and projects for the software realization of DCS have been proposed by academia and industry. A few 
prominent ones are: Java™ Remote Method Invocation (RMI) [16], Common Object Request Broker Architecture 
(CORBA ) [16, 20], Distributed Component Object Model (DCOM™) [11, 16], Web-component model/DOM [10] 
Pragmatic component web [5], Hadas [6], Infospheres [4], Legion [22], and Globus [21]. Each of these models/projects has" 
strength and weaknesses. Some of these are language-centric and only assume a uniform way of the world (Java); while 
the others allow a limited interoperability (CORBA - allowing implementations in different languages). Some of these 
are general-purpose, i.e., not concentrating on any particular application domain (DCOM), while others are specifically 
tailored to high-performance computing applications (Legion). However, almost all of these models/projects do not assume 
the presence of other models. Thus, the interoperability which they provide is limited mainly to the underlying hardware 
platform, operating system and/or implementational languages. Also, there are hardly any models which emphasize the 
notion of quality of service offered by the components. Projects, such as Agent TCL [8], etc., based on the principles of 
intelligent agents have imbibed the notion of the quality of service and related compensation. However, the agents are at 
a higher level of abstraction than components and many of the agent projects/frameworks use one or the other existing 
distributed-component models at the low-level. 

2.1    Why a Meta-model? 

Given the above mentioned plethora of component-based models and also noting the fact that components, by their 
definition, are independent of the implementation language, tools and the execution environment; it is necessary to answer 
the questions: why is a meta-model needed for a seamless interoperation of distributed heterogeneous components? and 
how would a meta-model assist in seamlessly integrating distributed heterogeneous software components? The answer to 
these question lies in: a) in any organization, software systems undergo changes and evolutions, b) local autonomy is an 
inherent characteristic of today's geographically (or logically) dispersed organizations, and c) if reliable software needs to 
be created for a DCS by combining components then the quality of service offered by each component needs to become a 
central theme of the software development approach. 

The consequence of constant evolutions and changes is that there is a need to rapidly create prototypes and experiment 
with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic (manual or semi-automatic) 
component-based software development for DCS. However, the solution of decreeing a common COTS environment, in an 
organization, is against the principle of local autonomy. Hence, the development of a DCS in an organization will, most 
certainly, require creating an ensemble of heterogeneous components, each adhering to some model. Also, every DCS is 
designed and developed with a certain goal in mind, and usually that goal is associated with a certain perception of the 
quality (as expected from the system) and related constraints. 

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and future) heterogeneous 
components by capturing their necessary aspects, including the quality of service offered by each component and an 
amalgamation of components. 

2.2    Unified Meta-component Model (UMM) 

In [17] we have proposed a unified meta-component model (UMM) for global-scale systems. The core parts of the UMM 
are: components, service and service guarantees, and infrastructure. The innovative aspects of the UMM are in the 
structure of these parts and their inter-relations. UMM provides an opportunity to bridge gaps that currently exist in the 
standards arena. For example, the CORBA Component Model (CCM™) [13] and Java Enterprise Edition component 
models (J2EE™) are consistent, and yet, because of the absence of a formal meta-model, it is difficult during the evolution 
of each to recognize when the boundaries that maintain the consistency are crossed. Similarly, it has been demonstrated in 
numerous products that the Component Object Model (COM™) [18] and CORBA component models are similar (in an 
abstract sense) enough to allow meaningful bridging. It is, however, not possible to point to a Meta-model that constrains 
the implementations of these technologies. 

For enterprise component solutions, this is an area where significant standards work is now focused. The OMG Meta 
Object Facility (MOF™) [14] provides a common meta-model that allows the interchange of models between tools as well 
as the expression of models in XMI™ (an MOF compliant XML™ (extended Markup Language)) [12]. This work allows 
the generation of interfaces from Unified Modeling Language (UML) [19] models, however, a careful analysis of the resulting 
interface specifications makes it clear that distribution is not a key factor in the algorithms used. For example, quality of 
service requirements for performance, scalability and/or security would dictate the use of iterators, the factoring of interfaces 
to separate "query" and "administrative" operations, and the use of structures and/or objects passed by value. The current 
standards in this tend to focus on data access with accessors and mutators and relationship transversal. This is acceptable 
in a single machine environment, but unacceptable for highly distributed communications and collaborations. The recent 
shift in focus for the Object Management Group to "Model Driven Architecture" (MDA™) [15] is a recognition that 
to create mechanized software for the collaboration and bridging of component architectures will require standardization 
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of Business and Component Meta-Models. The need to support the evolution of component models and to describe the 
capabilities of the models will be key to realizing the full potential of an E-business economy. 

The following sections describe the various aspects of UMM in detail. 

2.2.1 Component 

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each component adheres to 
some distributed-component model and there is no notion of either a centralized controller or a unified implementational 
framework. Each component has a state, an identity and a behavior. Thus, all components have well-defined interfaces 
and private implementations. In addition, each component in UMM has three aspects: 1) a computational aspect, 2) a 
cooperative aspect, and 3) an auxiliary aspect. 

Computational Aspect 

The computational aspect reflects the task(s) carried out by each component. It in turn depends upon: a) the objective(s) 
of the task, b) the techniques used to achieve these objectives, and c) the precise specification of the functionality offered 
by the component. In DCS, components must be able to 'understand' the functionality of other components. Thus, each 
component in UMM supports the concept of introspection, by which it will precisely describe its service to other inquiring 
components. There are various alternatives for a component to indicate its computation - ranging from simple text to 
formal descriptions. Both these extremes have advantages and drawbacks. UMM takes a mixed approach to indicate the 
computational aspect of a component - a simple textual part, called inherent attributes and a formal precise part, called 
functional attributes. 

The functional part is formal and indicates precisely the computation, its associated contracts and the level(s) of service 
offered by the component. Multi-level contracts for components have been proposed by [2], classifying the contracts into 
four levels - syntactic, behavioral, concurrency and quality of service (QoS). UMM integrates this multi-level contract 
concept into the functional part of the computational aspect. As stated earlier, in DCS each component will be offering a 
service and hence, the level related to the QoS is especially critical in UMM. The QoS depends upon many factors such 
as, the algorithm used, the execution model, resources required, time, precision and classes of the results obtained. UMM 
makes an attempt at quantifying the QoS by creating a vocabulary and providing multiple levels of quality, which could 
be negotiated by the components involved in an interaction. The functional part will also be specified by the creator of 
the component. 

Cooperative Aspect 

In UMM, components are always in the process of cooperating with each other. This cooperation may be task-based 
or greed-based. The cooperative aspect depends on many factors: detection of other components, cost of service, inter- 
component negotiations, aggregations, duration, mode, and quality. Informally, the cooperative aspect of a component 
may contain: 1) Expected collaborators - other components that can potentially cooperate with this component, 2) Pre- 
processing collaborators - other components on which this component depends upon, and 3) Post-processing collaborators 
- other components that may depend on this component. 

Auxiliary Aspect 

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features of DCS. The 
auxiliary aspect of a component will address these features. In UMM, each component can be potentially mobile. The 
mobility of the component will be shown as a 'mobility attribute' (a notion similar to the inherent attribute). If a component 
is mobile, then the mobility attribute will contain the necessary information, such as its implementation details and required 
execution environment. Similarly, security in DCS is a critical issue. The security attribute of a component will contain the 
necessary information about its security features. As DCS are prone to frequent failures, full and partial, fault tolerance is 
critical in these systems. Similar to mobility and security, each component contains fault-tolerant attributes in its auxiliary 
aspect. 

2.2.2 Service and Service Guarantees 

The concept of a service is the second part of the UMM. A service could be an intensive computational effort or an access to 
underlying resources. In DCS, it is natural to have several choices for obtaining a specific service. Thus, each component, 
in addition to indicating its functionality, must be able to specify the cost and quality of the service offered. 

The nature of the service offered by each component is dependent upon the computation performed by that component. 
In addition to the algorithm used, expected computational effort and resources required, the cost of each service will be 
decided by the motivation of the owner and the dynamics of supply and demand. In a dynamic environment costs must 
always be accompanied by the duration for which the costs are valid. As the system dynamics undergo constant changes, 
the methodologies used to fix the cost of a service will evolve as time progresses, thereby creating a need to indicate the 
time sensitiveness of the cost. The quality of service is an indication given by an component, on behalf of its owner, about 
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its confidence to carry out the required services in spite of the constantly changing execution environment and a possibility 
of partial failures. The techniques used to determine the cost, the time-validity and the quality of a service will depend 
upon the tasks carried out by the component and the objectives of its owner and will involve principles of distributed 
decision making. 

There are many parameters that a component can use to indicate its quality of service. A few examples are: i) 
Throughput - number of methods executed per second and classification of methods based on their read/write behaviors, 
ii) Parallelism constraints - synchronous or asynchronous, iii) Priority, iv) Latency or End-to-End Delay - turn-around 
time for an invocation, v) Capacity - how many concurrent requests a given component can handle, vi) Availability - 
indication of the reliability of a component, vii) Ordering constraints - can invocations (asynchronous) be executed out 
of order by a component, viii) Quality of the result returned - does the component provide a classification or ranking 
of the result, and ix) Resources available - how many resources (hardware/data) are accessible to the component under 
consideration and what are the types of resources. 

When a component uses certain metrics to indicate its QoS (either all the mentioned criteria or a sub/super set of 
them), three interesting issues need to be addressed: a) how does the component developer decide these parameters?, 
b) how does the developer guarantee the advertised QoS during the execution?, and c) when components are collected 
together as a solution for specific DCS, what happens to the QoS of the combination and how does the combined QoS 
meet the quality requirements of DCS? 

The parameters to be used to describe the QoS of a component are highly context (application) dependent. The 
proposed approach is to create lists of QoS metrics for common application domains. A few examples of such domains 
are: scientific computing, multi-media applications, information filtering, and databases. Once such lists are created, they 
would be used as a template by the component developers while advertising the QoS of their components. 

QoS of Components 

The issue of guaranteeing a particular QoS, for a component, in an ever changing dynamic DCS is extremely critical; 
mainly because of external (e.g., policy matters related to resources) and internal (e.g., changes in algorithms) factors 
that affect a life cycle of a component. In addition, as the software realization of DCS is based on an amalgamation of 
heterogeneous components, a proper guarantee of a QoS offered by a component effectively decides the QoS of the entire 
DCS. The quality metrics are expected to vary from one application domain to another and which metrics to select would 
depend on the intentions of the component developer and the functionality offered by that component. A few examples of 
such QoS metrics are already mentioned in the previous section. Irrespective of the metrics selected, there is a need for 
a well-defined mechanism that will assist the developer to achieve the necessary QoS when that component is deployed. 
Just like any software development process, the process of guaranteeing a certain QoS, as offered by a component, will be 
an incremental and iterative one, as will be discussed later. 

QoS of an Integrated System 

In addition to the QoS of individual components, there is a need to achieve a certain QoS for the ensemble of heterogeneous 
components assembled for a distributed system under discussion. The QoS of such an amalgamation will be decided by 
the design constraints of the system under construction. However, the integral characteristics of such a system typically 
cannot be expressed as a function of individual components but as a property of the whole system behavior. Hence, there 
is a need for a formal model of system behavior, which will integrate the behaviors of each component in the ensemble 
along with its QoS guarantees. 

The proposed approach to address the problem of QoS is as follows. First, build a precise model of systems behavior 
(event trace notion), provide a programming formalism to describe computations over event traces, and then apply these 
in order to define different kinds of QoS metrics. Constructive calculations of QoS metrics on a representative set of test 
cases is one of cornerstones of the proposed iterative approach to system assembly from components meeting user's query 
specifications. 

This approach to the design of a system behavior model assumes that the run time actions performed within the system 
may be observed as detectable events. Each event corresponding to an action is a time interval, with beginning, end, and 
duration. Certain attributes could be associated with the event, e.g. program state, source code fragment, time, etc. There 
are two binary relations defined for the event space: inclusion (one event may be nested within another), and precedence 
(events may be partially ordered accordingly to the semantics of the system under consideration). Hence, when executed, 
a system generates an event trace - set of events structured along the relations above. This event trace actually can be 
considered as a formal behavior model of the system ("lightweight semantics"). This model could be presented as a set of 
axioms about event trace structure called event grammar [1]. 

For example, suppose that the entire system execution is represented by an event of type execute-system. It may 
contain events of the type evaluate-component-A and evaluate-component-B. Event grammar may contain an axiom: 
execute-system:     (evaluate-component-A evaluate-component-B)* 
which states that evaluate-component-A is always followed by the evaluate-component-B event, and these pairs may be 
repeated zero or more times. 

A new concept for specification and validation of target program behavior based on the ideas of event grammars and 
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computations over program execution traces has been developed, and assertion language mechanisms, including event 
patterns and aggregate operations over event traces, to specify expected behavior, to describe typical bugs, and to evalu- 
ate debugging queries to search for failures (e.g. gathering run time statistics, histories of program variables, etc.) have 
been created. An event grammar provides a basis for QoS metrics implementation via target program automatic instru- 
mentation. Since the instrumentation is conditional, it does not deteriorate the efficiency of the final version generated 
code. This mechanism based on independent models of system behavior makes it possible to define QoS metrics as generic 
trace computations, so that the same metric may be applied to different versions of an assembled system (via automatic 
instrumentation). To facilitate use of the event grammar model for the assembled system, the event definitions should be 
consistent through the entire component space. The QoS metrics for components should adhere to this principle. The 
process proposed in Section 4.4 for assembling a distributed system from components in a distributed network offers a 
possible approach to achieving this. 

2.2.3    Infrastructure 

As local autonomy is inherent in open DCS, forcing every component developer to abide by certain rigid rules, although 
attractive, is doomed to fail. UMM tackles the issue of non-uniformity with the assistance of the head-hunter and Internet 
Component Broker. These are responsible for allowing a seamless integration of different component models and sustaining 
a cooperation among heterogeneous (adhering to different models) components. 

Head-hunter Components 

The tasks of head-hunters are to detect the presence of new components in the search space, register their functionalities, 
and attempt at match-making between service producers and consumers. A head-hunter is analogous to a binder or a 
trader in other models, with one difference - a trader is passive, i.e., the onus of registration is on the foreign components 
and not on the trader. In contrast, a headhunter is active, i.e., it discovers other components and makes an attempt to 
register them with itself. There are many approaches possible for the discovery of components. They range from the 
standard search techniques to broadcasts and multi-casts to selected machines. At a conceptual basis, UMM does not tie 
itself to a specific approach but during the prototype development a particular approach will be selected for the discovery 
process. During registration, each component will inform the head hunter about all its aspects. The head hunter will 
use this information during matching. A component may be registered with multiple head-hunters. Head-hunters may 
cooperate with each other in order to serve a large number of components. The functionality of head hunters makes it 
necessary for them to communicate with components belonging to any model, implying that the cooperative aspect of 
head hunters be universal. Considering the heterogeneous nature of the components, it is conceivable that the software 
realization of a distributed system will require an ensemble of components adhering to different models. This requires a 
mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous components. 

Internet Component Broker 

The Internet Component Broker (ICB) acts as a mediator between two components adhering to different component 
models. The broker will utilize adapter technology, each adapter component providing translation capabilities for specific 
component architectures. Thus, a computational aspect of the adapter component will indicate the models for which it 
provides interoperability. It is expected that brokers will be pervasive in an Internet environment thus providing a seamless 
integration of disparate components. Adapter components will register with the ICB and while doing so they will indicate 
their specializations (which component models they can bridge efficiently). During a request from a seeker; the head hunter 
component will not only search for a provider, but it will also supply the necessary details of an ICB. 

The adapter components achieve interoperability using the principles of wrap and glue technology [9]. A reliable, 
flexible and cost-effective development of wrap and glue is realized by the automatic generation of glue and wrappers based 
on component specifications. Wrapper software provides a common message-passing interface for components that frees 
developers from the error prone tasks of implementing interface and data conversion for individual components. The glue 
software schedules time-constrained actions and carries out the actual communication between components. 

The functionality of the ICB is analogous to that of an object request broker (ORB). The ORB provides the capability 
to generate the glue and wrappers necessary for objects written in different programming languages to communicate 
transparently; the ICB provides the capability to generate the glue and wrappers necessary for components implemented in 
diverse component models (and providing service guarantees) to collaborate across the Internet. An ORB defines language 
mappings and object adapters. An ICB must provide component mappings and component model adapters. While the 
ICB conceptually provides the capabilities of existing bridges (COM-CORBA for example), the ICB will provide key 
features that are unique; it is designed to provide the auxiliary aspects of the Internet - collaboration between autonomous 
environments, mobility and security. In addition, the UMM includes quality of service and service guarantees. The ICB, in 
conjunction with head-hunters provide the infrastructure necessary for scalable, reliable, and secure collaborative business 
using the Internet. 
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3    A Case Study 
In order to explain the UMM and the proposed approach, below a case study from the domain of distributed information 
filtering is presented. Although the case study uses a specific domain, the principles can be easily extended to other 
application domains that involve the software realization of a DCS. 

3.1 Distributed Information Filtering 
It is desired to develop a global information filtering system, in which, users will be interested in receiving selected 
information, based on their preferences, from scattered repositories. Usually, a filtering task involves contacting the 
scattered resources, performing an initial search to gather a subset of documents, representing, classifying and presenting 
based on the user profile. Many different methods are employed for the sub-tasks involved in filtering. Thus, it can be easily 
envisioned that different components, each employing a different algorithm to perform these sub-tasks, will be scattered 
across an interconnected system. Each component may belong to a different model, may quote different costs and offer 
different qualities of service. 

Hence, a typical distributed information filtering system consists of the following types of components: a) Domain 
Component (DC), b) Wrapper Component (WC), c) Representer Component (RC), d) Classifier Component (CC), and e) 
User Interaction Component (UIC). In addition to these domain-specific components, headhunter components (HC) and 
the ICB are needed. 

All these components, their aspects and characteristics need to be defined using UMM. For the sake of brevity, only 
the complete description of the domain component (DC) is shown below. 

3.2 Domain Component 
The domain component is responsible for maintaining a repository of URLs of associated information sources for particular 
type (e.g., text, structure, sequence) of information that needs filtering. 

For example, the inherent attributes might consist of Author (name of the component developer), Version (current 
version of the component), Date Deployed, Execution Environment Needed and Component Model (e.g., Java-RMI 1.2.2), 
Validity (e.g., one month from the deployment), Atomic or Complex (indivisible or an amalgamation of other components, 
e.g. atomic), Registrations (with which headhunters this component is registered, e.g., HI - www.cs.iupui.edu/hl and 
H2 - www.cis.uab.edu/h2). 

An informal description of the functional part of a component may contain: 

1. Computational Task Description — e.g.,  searching a selected set of databases over the Internet. 
2. Algorithm Used and its Complexity ~ Webcrawling and 0(n"2), respectively. 
3. Alternative Algorithms — Indexing. 
4. Expected Resources  (best,  average and worst-cases)  — multi-processor, uni-processor  (300MHz 
with an CPU utilization of 50*/,),  and uni-processor  (100MHz with CPU utilization of 99'/.), respectively. 
5. Design Patterns Used (if any)  — Broker. 
6. Known Usages    — for assembling an up-to-date'listing containing addresses of known information 
repositories for a particular domain. 
7. Aliases—    such a component is usually called a Pro-active Agent. 
8. Multi-level contracts: 
e.g., for a function like List getURLs  (Domain inputDomain,  Compensation inputCost),  the behavioral 
contract could specify the pre-condition to be (valid Domain Name and cost), post-condition to be: 
if successful  (activeClientThreads++ and cost+=inputCost) 
else  (raise DomainNotKnownException and InvalidCostException) 
and the invariant could be  (ListOfURLs > 1).    Also,  for the same function,  the concurrency contract 
could specify  (maximum number of active threads allowed = 50). 

The cooperation attributes of the domain component may consist of 1) expected collaborators UIC, WC, HC, TC and 
RC, 2) pre-processing collaborators HC and TC, and 3) post-processing collaborators RC and UIC. 

The auxiliary attributes of the domain component are 1) fault-tolerant attributes, e.g., check-pointing versions, 2) 
security attributes, e.g., simple encryption, and 3) mobility attributes, e.g.. "not mobile." 

For the domain component, the QoS parameters may contain 1) number of available URL's, 2) ranking of URL's, and 
3) average rate of URL collection. 

A component developer may offer several possible levels of QoS, e.g., LI) novice (number of URL's < 50 and no ranking 
of URL's and average rate of URL collection > 1 week and average latency > 2 minutes), L2) intermediate (number of 
URL's < 500 and simple ranking of URL's and average rate of URL collection > 3 days and average latency > 1 minute), 
and L3) expert (number of URL's < 1500 and advanced ranking of URL's and average rate of URL collection > 1 day and 
average latency > 5 seconds). 
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Figure 1: The Component Development and Deployment Process in UMM 

The expected compensations for the above levels in terms of the number of URLs could be 1) LI > 100 and < 200, 2) 
L2 > 200 and < 400, and 3) L3 > 400 and < 600. 

4    Component and System Generation Using UMM Framework 
The development of a software solution, using the UMM approach, for a DCS has two levels: a) component level - in this 
level, different components are created by developers, tested and verified from the point of view of QoS, and then deployed 
on the network, and b) system level - this level concentrates on assembling a collection of components, each with a specific 
functionality and QoS, and semi-automatically generates the software solution for the particular DCS under consideration. 
These two levels and associated processes are described below. 

4.1 Component Development and Deployment Process 
The component development and deployment process is depicted in Figure 1. As seen in the figure, this process starts with 
a UMM specification of a component (from a particular domain). This specification is in a natural-language format, as 
illustrated in the previous section. This informal specification is then refined into a formal specification. The refinement 
is based upon the theory of Two-Level Grammar (TLG) natural language specifications [3, 23], and is achieved by the 
use of conventional natural language processing techniques (e.g. see [7]) and a domain (such as information filtering) 
knowledge base. TLG specifications allow for the generation of the interface (possibly multi-level) for a component. This 
interface incorporates all the aspects of the component, as required by the UMM. The developer provides the necessary 
implementation for the computational, behavioral, and QoS methods. This process is followed by the QoS validation. If the 
results are satisfactory (as required by the QoS criteria) then the component is deployed on the network and eventually, 
it is discovered by one or more headhunters. If the QoS constraints are not met then the developer refines the UMM 
specification and/or the implementation and the cycle repeats. 

4.2 Formal Specification of Components in UMM 
Since the UMM specifications are informally indicated in a natural language like style, our approach is to translate this 
natural language specification into a more formal specification using TLG. TLG is a formal notation based upon natural 
language and the functional, logic, and object-oriented programming paradigms. The name "two-level" in Two-Level 
Grammar comes from the fact that TLG consists of two context-free grammars, one corresponding to a set of type 
declarations and the other a set of function definitions operating on those types. These type and function definitions are 
incorporated into a class which allows for new types to be created. 

The type declarations of a TLG program define the domains of the functions and allow strong typing of identifiers used 
in the function definitions. On the other hand, function definitions may be given without precisely defined domains for 
a more flexible specification approach. This framework consists of a knowledge-base which establishes a context for the 
natural language text to be used in the specification under a particular domain model, in this case information filtering. 
This allows the TLG to be translated into internal representations such as predicate logic, the natural representation for 
TLG, event grammars, or multi-level Java interfaces taking the form of the UMM specification template.  For the case 
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study, we may use a TLG class to describe the component structure and functionality as elaborated in the following 
subsections. 

4.2.1    Component Structure Specification 

Syntactically, TLG type declarations are similar to those in other languages. Types are capitalized whereas constants 
begin with lower case letters. The usual primitive types, such as Integer, Float, Boolean, and String are present as are 
list constructors based upon regular expression notation, e.g. {X}* and {X}+ mean 0 or more and 1 or more occurrences 
of X, respectively. 

The types of the domain component in our information filtering system are defined in the following way in TLG. 

Component :: DomainComponent; WrapperComponent; RepresentationComponent; ClassificationComponent; 
UserlnteractionComponent; HeadhunterComponent; ICB. 

DomainComponent :: Name, InformalDescription, Attributes, Service. 
Name :: dc. 
Attributes :: ComputationalAttributes, CooperationAttributes, AuxiliaryAttributes. 
ComputationalAttributes :: InherentAttributes, FunctionalAttributes. 
InherentAttributes :: Author, Version, DateDeployed, ExecutionEnvironment, 
ComponentModel, Validity, Structure, Registrations. 

FunctionalAttributes :: TaskDescription, AlgorithmAndComplexity, 
Alternatives, Resources, DesignPatterns, Usages, Aliases, FunctionsAndContracts. 

AlgorithmAndComplexity :: webcrawling, n"2; .... 
Alternatives :: -(AlgorithmAndComplexity}*. 
Resource :: Architecture, Speed, Load. 
Architecture :: uni-processor; multi-processor. 
Speed :: Integer. 
Load :: Integer. 
DesignPatterns :: broker; .... 
Aliases :: pro-active agent; .... 
FunctionAndContract :: Function, BehavioralContract, ConcurrencyContract. 
Function :: .... 
BehavioralContract :: Precondition, Invariant, Postcondition. 
ConcurrencyContract :: single threaded; maximum number of active threads allowed = Integer; .... 
CooperationAttributes :: ExpectedCollaborators, PreprocessingCollaborators, PostprocessingCollaborators. 
ExpectedCollaborator :: uic; wc; he; tc; re. 
PreprocessingCollaborator :: he; tc. 
PostprocessingCollaborator :: re; uic. 
AuxiliaryAttribute :: FaultTolerantAttribute; SecurityAttribute; MobilityAttribute. 
FaultTolerantAttribute :: check-pointing versions;   
SecurityAttribute :: simple encryption; .... 
MobilityAttribute :: mobile; not mobile. 
Service :: ExecutionRate, ParallelismConstraint, Priority, Latency, Capacity, Availability, 

OrderingConstraints, QualityOfResultsReturned, ResourcesAvailable, .... 
ExecutionRate :: Float. 
ParallelismConstraint :: synchronous; asynchronous. 
Priority :: Integer. 
Latency :: AverageRateOfURLCollection. 
AverageRateOfURLCollection :: Float. 
Capacity :: NumberOfAvailableURLs. 
NumberOfAvailableURLs :: Integer. 
Availability :: Float. 
OrderingConstraint :: Boolean. 
QualityOfResultsReturned :: {URL}+. 
ResourcesAvailable 
HardwareResources : 
SoftwareResources : 

HardwareResources, SoftwareResources. 

The remaining components (e.g., wrapper, representation, etc.) may be described in a similar manner. All domains not 
specified explicitly in the above example are assumed to be of type String, with the exception of Function which may take 
the form of an interface definition in a programming language such as Java. Using standard natural language processing 
techniques [7], the UMM specification may be automatically refined into this TLG specification, with user assistance as 
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needed to clarify ambiguities. The process is facilitated by the presence of a knowledge base which understands the domain 
of information filtering from the point of view of vocabulary which may be used in making the original UMM specification. 

4.2.2    Component Functionality Specification 

The second level of the TLG specification is for function declarations. These resemble logical rules in logic programming 
with variables coming from the domains established in the type declarations. For the Domain Component example, the 
levels of Quality of Service may be specified as follows. 

number of urls  :  size of QualityOfResultsReturned. 
average latency  :   ... 
no ranking of urls  :   ... 
simple ranking of urls  :   ... 
advanced ranking of urls  :   ... 
average latency  :   ... 
qos level 1 is novice  : number of urls < 50, no ranking of urls, 

AverageRateofURLCollection >= 1 week,  average latency >= 2 minutes, 
qos level 2 is intermediate  : number of urls < 500, simple ranking of urls, 

AverageRateofURLCollection >= 3 days,  average latency >= 1 minute. 
qos level 3 is expert  : number of urls < 1500,  advanced ranking of urls, 

AverageRateofURLCollection >= 1 day,  average latency >= 5 seconds. 

Each rule defines how the particular entity is to be computed. As these rules are normally part of a class definition 
encapsulating a corresponding set of type declarations, each rule has access to the data specified in the type declarations. 
These natural language like rules may be further refined into a more formal specification, e.g. using event grammars. 

4.3 QoS Guarantee of a Domain Component 
For the case study, the event grammar to describe the system behavior is given below. The first part is the set of type 
definitions and the second part is the description of computations over event traces implementing different QoS metrics. 

exec_syst  ::   (request_sent   I response_received)* 
response_received  ::   (URL.detected  I  failed) 

These type definitions describe the types of events which may occur as the system executes. The computations over these 
events include verification that the number of URL's detected is less than 50 and also the latency (e.g., for all requests for 
URL's, every response received occurs within 10 units of time), id is an event attribute which associates a unique identifier 
between query attributes and corresponding responses. Both of these metrics yield Boolean values. 

CARD  [URL.detected from exec_syst]  < 50 

Forall x : request_sent from exec_syst 
Exists y :  response_received from exec_syst 

id (x) = id (y) & begin_time  (y)  - end_time  (x)  < 10 

4.4 Automated System Generation and Evaluation based on QoS 
In general, different developers will provide on the Internet a variety of possibly heterogeneous components oriented 
towards a specific problem domain. Once all the components necessary for implementing a specified distributed system 
are available, then the task is to assemble them. Figure 2 shows a process to accomplish this. The developer of the desired 
distributed system presents to this process a system query, in a structured form of natural language, that describes the 
required characteristics of the distributed system. For example, such a query might be a request to assemble an information 
filtering system. The natural language processor (NLP) processes the query. It does this aided by the domain knowledge 
(such as key concepts in the filtering domain) and a knowledge-base containing the UMM description (in the form of a 
TLG) of the components for that domain. The result is a formal UMM specification that will be used by headhunters 
for component searches and as an input to the system assembly step. This formal UMM specification will be a basis for 
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS. The framework, with the 
help of the infrastructure described in Section 2.2.3, collects a set of potential components for that domain, each of which 
meets the QoS requirement specified by the developer. From these, the developer, or a program acting as a proxy of the 
developer, selects some components. These components along with the component broker and appropriate adapters (if 
needed) form a software implementation of the distributed system. Next this implementation is tested using event traces 
and the set of test cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another 
implementation is chosen from the component collection. This process is repeated until an optimal (with respect to the 
QoS) implementation is found, or until the collection is exhausted. In the latter case, the process may request additional 
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Figure 2: The Iterative System Integration Process in UMM 

components or it may attempt to refine the query by adding more information about the desired solution from the problem 
domain. Once a satisfactory implementation is found, it is ready for deployment. 

5    Conclusion 
This paper has presented a framework that allows an interoperation of heterogeneous and distributed software components. 
The software solutions for future DCS will require either automatic or semi-automatic integration of software components, 
while abiding with the QoS constraints advertised by each component and the collection of components. The result of using 
UMM and the associated tools is a semi-automatic construction of a distributed system. Glue and wrapper technology 
allows a seamless integration of heterogeneous components and the formal specification of all aspects of each component will 
eliminate ambiguity while detecting and using these components. The UMM does not consider network failures or other 
considerations related to the hardware infrastructure, however, these could be integrated into the QoS level of components. 
The UMM approach to validating QoS is to use event grammar to calculate QoS metrics over run-time behavior. The 
QoS metrics are then used as a criteria for an iterative process of assembling the resulting system as shown in Section 4.4. 
UMM also provides an opportunity to bridge gaps that currently exist in the standards arena. Although, the paper has 
only presented a case study from the domain of distributed information filtering, the principles of UMM may be applied 
to other distributed application domains. Future work includes refinement of the UMM feature thesaurus and methods 
for translating UMM specifications into Two-Level Grammar, refining the head-hunter mechanism, developing Quality of 
Service metrics for components and systems, and development of generation mechanisms for domain-specific component 
reuse. 
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Abstract 

Over the past 40 years limited progress has been made to help practitioners estimate the risk and the 
required effort necessary to deliver software solutions. Recent developments improve this outlook, one in 
particular, the research conducted by Juan Carlos Nogueira [1]. Dr. Nogueira developed a formal model 
for risk assessment that can be used to estimate a software project's risk when examined against a desired 
development time-line. This model is based on easily obtainable software metrics. These metrics are 
quantifiable early in the software development process. 

Dr. Nogueira developed his model based on data collected from a series of experiments conducted on the 
Vite'Project simulation [2]. This unique approach provides a starting point towards a proven formal model 
for risk assessment, one that can be applied early in the software development lifecycle. Approaching 
software risk estimation has never previously been successfully accomplished in this manner. 

The proposed research will provide definitive evidence that software risk assessment can be conducted 
early in software development using quantifiable metrics and simple techniques. Enhancements will be 
made to Dr. Nogueira's model, based on calibrations against post-mortem projects. These enhancements 
will result from many threads of research; extension of input metrics, increased number of simulation runs, 
simulation scenarios based on actual projects, and the introduction of a "gearing factor". Ultimately, the 
research will yield an improved risk assessment model, one that has been validated against thousands of 
post-mortem projects, having applicability to any software development activity. 

1. Introduction 

The current state of the art techniques of risk assessment rely on checklists and human expertise. This 
constitutes a weak approach because different people could arrive at different conclusions from the same 
scenario. The difficulty of estimating the duration of projects applying evolutionary software processes 
adds intricacy to the risk assessment problem. 

2. Dr. Nogueira's Risk Assessment Model 

Dr. Nogueira's research introduces a formal method to assess the risk and the duration of software projects 
automatically, based on measurements that can be obtained early in the development process. The method 
has been designed according to the characteristics of evolutionary software processes, and utilizes 
quantifiable indicators such as efficiency, requirement volatility and complexity. The formal model, based 
on these three indicators estimates the duration and risk of evolutionary software processes. The approach 
introduces benefits in two fields: 

a) Automation of risk assessment. 
b) Early estimation methods for evolutionary software processes. 
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Dr. Nogueira developed four software risk estimation models that show great promise in determining a 
software projects' associated risk early in the software development life cycle. The models accomplish 
early estimation by utilizing a set of quantifiable metrics that can be collected from the beginning of project 
development. In actuality, the requirements volatility metric is an estimation during the first development 
cycle and during subsequent development cycles is quantifiable. After each iteration of software 
development, the required input metrics can be applied to the model in order to reduce the error in the 
model's results. 

The minimum required input metrics, to support risk assessment, required for Dr. Nogueira's estimation 
model are the following: 

a. Efficiency (EF> - The efficiency of the organization can be measured observing the fit between people 
and their roles [1]. Dr. Nogueira's research indicates that the efficiency of an organization can be directly 
calculated by computing the ratio of direct time (working and correcting errors) divided by the idle time 
(time spent without work to do). 

b. Requirements Volatility (RV) - Requirements volatility expresses how difficult the requirement 
elicitation process is. The requirements volatility is obtained by the following formula [1]. 

Requirements Volatility = Birth Rate Percentage + Death Rate Percentage 

Birth Rate Percentage (BR%) = the percentage of new requirements incorporated in each cycle of the 
software evolution process as calculated by: 

BR% = (New Requirements / Total Requirements) * 100 percent 

Death Rate Percentage (DR%) = the percentage of requirements that are dropped by the customer in each 
cycle of the evolution process as calculated by: 

DR% = (Deleted Requirements / Total Requirements) * 100 percent 

c. Complexity fCX) - Complexity has a direct impact on quality because the likelihood that a component 
fails is directly related to its complexity [ 1 ]. The complexity metrics can be determined in two forms: large 
granular complexity and fine granular complexity. These two forms of complexity can be directly 
determined from software specifications written in the Prototype System Description Language (PSDL) [3]. 

Large Granular Complexity (LGC) expresses the relational complexity of the system as a function of the 
number of operators (O), data streams (D), and types (T) 

LGC = O + D + T 

Fine Granular Complexity (FGC) expresses the relational complexity of each operator in the system and is 
a function of the fan-in and fan-out data streams related to the operator [1]. For the purposes of the 
completed research and our notion of future research, the FGC metric is too specialized; our efforts 
concentrate on just the representation of the LGC. 

FGC = fan-in + fan-out 

Software developers can utilize Dr. Nogueira's four models to assess either the development time required 
to develop a project or determine the associated probability of completing a software project given the 
project's duration. 
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3. Previous Validation Research 

In this section of the paper we present the results of validation attempts when using Dr. Nogueira's 
estimation models. The first is a result of the research conducted by Dr. Nogueira in his initial research and 
supplies data from simulations and comparisons to one project. The second validation endeavor is the 
results of research conducted on two additional projects [5]. 

3.1 Dr. Nogueira's Validation 

In conducting his research, Dr. Nogueira derived some initial conclusions with the models. The 
simulations showed that the three risk factors observed during the causal analysis (efficiency, requirements 
volatility, and complexity) have compound effects over the three parameters of the Weibull distribution [ 1 ]. 

Dr. Nogueira illustrates the results of the models against 16 simulated projects. Each model derives an 
increasing degree of accuracy based on: metrics from the three risk factors, Weibull cumulative density 
function, and the derivation of the time. 

Models 1 -2. Model 1 can be used when the requirements volatility is small. Model 2 considers the three 
factors (EF, RV, and CX), but neglects the combined effect of EF and RV. 
Figure 1 illustrates the results of the models which were calculated using 95% of confidence (p=0.95). 
Note the errors as vertical segments between the estimated and real values. 
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Figure 1. Scatter Plot of Models 1-2 

Model 3. Model 3, illustrated in Figure 2, considers the three factors as well as the combined effects of EF 
and RV. The analysis of variance shows that the samples obtained from the simulations and the samples 
obtained from the estimates using Model 1,2 or 3 cannot be statistically differentiated. 

Another interesting result is that the errors remain in the range of±15% for all of the scenarios. This result 
is interesting if we compare it with the results of COCOMO (±20% in the best cases). Barry Boehm in 
reference to the validation of COCOMO said, "In terms of our criterion of being able to estimate within 
20% of projects actuals, Basic COCOMO accomplishes this with only 25% of the time, Intermediate 
COCOMO 68% of the time, and Detailed COCOMO 70% of the time." [4]. 

Model 4. Model 4, Figure 2, can be used for any range of complexity and requirements volatility, and 
considers the three factors, their combined effects, and the following a priori assumptions: 

• A project with 0 LGC will take 0 days 
• a, P,andy>0 
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• If RV increases the p(x<=t) decreases 
• If CX increases then p(x<=t) decreases 
• If EF increases then p(x<=t) increases 
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Figure 2. Scatter Plot of Models 3-4 

The scatter plot in Figure 2 compares the simulated times versus the estimated times. Most of the errors are 
overestimations and the duration of the project has no effect over the percentage of error. Model 4 is 
conservative. The maximum overestimation error was less than 16% and the maximum underestimation 
was less than 4%. 

Model 4 gives a good estimation for projects between 4,000 and 20,000 LGC (128 and 640 KLOC of Ada). 
The estimation seems to be too optimistic for projects smaller than 1000 LGC but it is quite good for larger 
projects. To verify the model Dr. Nogueira used a real project consisting of 1836 LGC developed in 1.5 
years by the Uruguayan Navy1. Model 4 predicts 17 months instead of 18 months, the actual development 
time. 

3.2 Additional Project Validation 

Project A [51. We used Nogueira's Model 4 to calculate the probability of completion curve for the 
projects. For consistency, we used working days, defined as 22 days per month, the same as used in the 
original Nogueira model. 

The model predicted that the minimum time, in days, necessary to have a probability of completion of 
100% is approximately 260 working days. When compared to the actual time it took, which was 336 
working days, the model predicted completion sooner. The model predicted 76 working days less, or a 
22.6% delta. 

(1-(260/336)) (100) = 22.6. 

At this point, with 22.6% variability, we decided to investigate and see what the original estimated 
completion date was from project records. The original estimation was 200 working days, with the project 
schedule slipping 136 working days for build 3. The developer missed the original completion estimation 
by 40.5%. 

1 SIMTAS a simulator for war gaming with 75,240 lines of code 
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(1-(200/336)) (100) = 40.5. 

The Nogueira model missed the developer's original estimate by 23.1% 

(l-(200 / 260)) (100) = 23.1 

Does this mean that the Nogueira model is too optimistic as are most developers' estimates, or is it a better 
fit? This data point leaves us with an inconclusive position as to the validation of the model against the 
first project. It appears that there is a difference when using real projects with real data versus simulated 
project data, and this reflects what the real world is - unpredictable. 

Project B [51. We used Dr. Nogueira's Model 4 to calculate the probability of completion curve for Build 
2 using; BR=2.59, DR=3.04, RV=5.63,0=2544, D=4010, T=1003. The model predicted Impossible. 

Actual time for build 2 took from 4/24/00 until 7/10/00 or 68 working days at 22 working days a month. 
We believe this inconsistency is due primarily because the calculation for the LGC count is based on all six 
Computer Software Configuration Items (CSCI). Core functionality on three CSCIs; CSCI-A, CSCI-B, and 
CSCI-C had been previously developed and validated. However, the builds during this period, involved 
addition of functionality to the following CSCIs: CSCI-D, CSCI-E, and CSCI-F. That is, build 2 was 
modifying only a portion of the total software system code, but the LGC data gives a view of all six CSCIs 
combined. 

The available data was not broken down into separate CSCIs, nor does it, post-mortem, identify the code 
that was being worked in a previous software release. We cannot fault the developer for not collecting 
metrics for research concepts that they are not aware of, nor do we believe that this type of data collection 
is a requirement of CMM level 3. 

A finding of this research is the need to adjust the CX when applying the Nogueira model to evolved 
projects that are developing or enhancing only a portion of their CSCIs. 

Additionally, this project did not utilize a lower case tool such as Rational Rose. We believe use of such a 
tool is essential when attempting to apply the Nogueira formal model, as it provides the capability to collect 
detailed information, over the software development lifecycle, that can later be extracted and used for input 
to the Nogueira model metrics. 

4. Issues with Dr. Nogueira's Risk Assessment Model 

Applying Dr. Nogueira's risk assessment model, in its current form, presents a number of issues that must 
be resolved before substantial progress can be achieved validating the model's results. The first issue and 
most notable draw back when using Dr. Nogueira's risk assessment model is limited confidence that the 
model provides valid results. This is due to three factors: the limited amount of time that the model has 
been in existence, the model has not been exercised on a wide base of real world projects (completed or on- 
going), and the fact that the model was developed using simulation techniques. The first factor noted can 
only be dealt with in the passage of time. However, this research will exploit a unique opportunity to 
impact the latter two issues. 

Although Dr. Nogueira's research shows promise in estimating the associated risk when developing 
software systems, the model has not been significantly exercised beyond theoretical simulation. Three 
"real world" projects to date have been applied against the estimation model [1], [5]. It should be noted 
that all three of these projects were exercised post-mortem. Model validity has not been demonstrated in 
the context targeted by the model's original design, estimating risk early in a software project's life cycle. 

A second issue that exist when using Dr. Nogueira's risk assessment model is the required input metrics. 
This issue is a double-edged sword. A major attraction to using Dr. Nogueira's model are these metrics. 
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They are determined in a definitive, quantifiable manner and can be derived extremely early in the software 
development process [ 1 ], [6]. However, these metrics are quite unique. Currently, outside of the academic 
environment, it is not common practice to collect these unique metrics in the required form to utilize Dr. 
Nogueira's risk assessment model. 

In order to establish confidence in the usefulness and accuracy of Dr. Nogueira's risk estimation model, the 
model must be exercised against numerous projects. It would be ideal, and perhaps over time, to exercise 
the model according to it original design; early in the software development cycle. However, the next 
logical step is to continue to exercise the model in a post-mortem basis. Before this can be accomplished, 
two things need to happen: First correlations must be determined between Dr. Nogueira's required metrics 
and metrics that are frequently collected in historical project databases. By establishing metrics 
correlations, the model can be exercised against an additional project base helping address the second 
factor of problem one. And second, a method other than the use of PSDL to generate 0, D and T metrics 
counts must be developed. Dr. Nogueira's model was based on using PSDL to automatically scan and 
generate counts for O, D, and T input to his model. It is unlikely that PSDL was used on any programs that 
we have post-mortem data on. 

The final problem associated with Dr. Nogueira's risk assessment model is the configuration of the 
Vite'Project simulation. Dr. Nogueira developed the configuration of Vite'Project using Organizational 
Consultant expert system. Fictitious software engineering organizations were developed to represent the 
typical software development department. Based on the results of establishing fictitious CMM level 2 and 
level 3 organizations, the Vite'Project was calibrated. Calibrating the simulation in this manner, could 
yield different results than calibrating the simulation with actual information derived from real projects. If 
Dr. Nogueira's model can be verified by reprogramming the Vite'Project configuration this would provide 
additional assessment to the third factor of problem one. 

5. Proposed Research 

The proposed research will expand the efforts of the previous validation effort. Figure 3 outlines the 
research approach. 

,- Masters \ 
i Student j 
■\        Completes        / 
*V_VITE' API ..."' 

Figure 3. Phases of Research 

Phase one: During phase one of the research, post-mortem projects will be identified whose characteristics 
are similar to the characteristics of the three projects previously exercised against Dr. Nogueira's risk 
assessment model. This affords the opportunity to begin with a baseline before proceeding to future 
phases. 
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Phase two: This is the most challenging phase of the research and we hypothesize that this phase will 
consume the majority of the available resources. In this phase, detailed analysis is conducted against the 
available metrics that have been collected on the projects established during phase one. Correlations are 
determined in the available data against the three metrics that are necessary when utilizing Dr. Nogueira's 
model. Upon completion of this phase, when a suitable "metric map" has been developed, research can 
continue to phase three. The intent of the metric map is to provide a common platform to exercise Dr. 
Nogueira's model using metrics that were not originally collected for this purpose. 

Phase three: Once a suitable metric map has been established, research continues by exercising Dr. 
Nogueira's model against the set of post-mortem projects determined in phase one. This phase is essential 
to establish confidence in the results produced when using Dr. Nogueira's model. Additionally during this 
phase, another risk assessment method is introduced, Quantitative Software Management's® (QSM) SLIM, 
to help in the validation process. Essentially, there will be a comparison of three artifacts: the recorded 
project performance, the estimated project performance using Dr. Nogueira's model, and the estimated 
project performance as determined by QSM's SLIM. An assumption during this phase will be the accuracy 
of QSM's SLIM. Of course, if the expected results are not achieved during this phase, additional research 
must be performed to determine the cause of the variance. 

Phase three (a): One potential cause of the variance observed during phase three could be a flaw in the 
metric map determined during phase two. Continued research will be conducted to modify the mapping 
and eventually minimize the chance that the metric map is the source of the deviation. 

Phase three (b): Another factor that can influence deviation between the actual project data, Dr. 
Nogueira's estimation model, and QSM's SLIM estimation model is the original configuration used to 
establish project scenarios in the Vite'Project. Organizational Consultant expert system was used to 
establish fictitious software engineering organizations. Research may indicate that reprogramming the 
Vite'Project with actual information from software development organizations could yield different results 
in the Vite'Project simulation. This was a fundamental factor in the development of Dr. Nogueira's 
research. A substantial change in the simulated results could require extensive rework of Dr. Nogueira's 
model. 

Phase three (c): Finally, after exhausting Phases three (a & b), research may lead to examination of Dr. 
Nogueira's model with closer scrutiny. If deviation continues to present itself when conducting phase 
three, we may have essentially resort to "ground zero" to establish potential conflicts. It should be noted 
that phases three (a, b, & c) should not be considered mutually exclusive. Research could indicate that 
partial modifications are required in all three sub-phases. 

Phase three (d): Dr. Nogueira's risk assessment model is perfectly suited for any evolutionary software 
process because it follows the same philosophy [1]. Dr. Nogueira presents no hypothesis of the model's 
validity when the model is exercised outside of this domain. Once phase three is accomplished and 
confidence has been established against the set of projects determined during phase one, the model can be 
exercised against additional projects, from different industry sectors and different software development 
methodologies. This may require the development of what we are calling a "gearing factor". In this 
research, the use of this term is intended to represent a value that is multiplied by the results determined in 
Dr. Nogueira's model, adjusting the results for the new domain. In some cases the model may provide 
suitable results without the use of a gearing factor, other domains and development methodologies may 
require this adjustment due to the unique nature of the software's development. 

Phase four: Phase four of the proposed research is the culmination of all of the proposed research. This 
phase delivers the improved Nogueira model. A caveat to this phase and all of the sub-phases conducted 
during phase three is the introduction of the Vite'Project API.  This automated tool will improve the 
statistical significance obtained when utilizing the Vite'Project simulation, greatly increasing the number of 
simulation runs provided by the simulation. 
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6. Validation 

We propose to validate our research by conducting controlled experiments against post-mortem projects. 
QSM, founded in 1978 by Larry Putnam, has collected and maintained an extensive database of over 5,000 
software projects [7]. Experiments can be conducted, utilizing the available software metrics from QSM's 
database, that correlate the required metrics in Dr. Nogueira's model. This will afford our research the 
means to evaluate actual projects against Dr. Nogueira's model. 

Another source of validation is obtained by configuring Vite'Project with actual software project 
development information. As previously mentioned, Vite'Project scenario's were originally established by 
the creation of fictitious software development organizations. Different results could be derived from 
simulations configured according to actual projects. 

Finally, we propose to increase the statistical significance of Dr. Nogueira's software risk assessment 
model. We can accomplish this by increasing the simulation runs of each scenario through automation via 
the Vite' API when available. 

7. Conclusion 

This research introduces a research plan to validate a formal risk assessment model for software projects 
based on probabilities and metrics automatically collectable early in the project. The approach enables a 
project manager to evaluate the probability of success of the project very early in the life cycle. For more 
than twenty years the estimation standards (COCOMO 81, COCOMOII, Putnam) have been characterized 
by a common limitation: the requirements should be frozen in order to make estimations. This promising 
model removes this important limitation, facing the reality that requirements are inherently variable. 

The problem of risk assessment for projects has been treated as unstructured. Research shows, and 
experiments will prove, a structured method to solve the problem based on metrics automatically collected 
from the project baselines. This contribution impacts the software engineering state of the art, as well as 
risk management in general. These metrics measure three risk factors identified in the research: complexity, 
requirements volatility, and efficiency. The subjectivity issue characteristic of previous research has been 
eliminated. Any decision-maker will arrive at the same estimates, independently of his or her expertise. 

Finally, current research is based on simulations and a small set of real projects. It is desirable to collect 
and analyze metrics and completion times of a larger set of real software projects to confirm and refine the 
models. Our research will provide the missing elements from the models, validation, enhancements, and 
extensions. 
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Abstract 

This paper describes a draft of visual notation for meta-programming. The main suggestions of this work include special- 
ized data structures (lists, tuples, trees), data item associations that provide for creation of arbitrary graphs, visualization 
of data structures and data flows, graphical notation for pattern matching (list, tuple, and tree patterns, graphical notation 
for context free grammars, streams), encapsulation means for hierarchical rules design, two-dimensional data-flow dia- 
grams for rules , visual control constructs for conditionals and iteration, default mapping rules to reduce real-estate re- 
quirements for diagrams, and dynamic data attributes. 

Two-dimensional data flow diagrams improve readability of a meta-program. The abstract syntax type definitions for 
common programming languages and related default mappings (parsing and de-parsing) provide for a practically feasible 
reuse of those components. 

1     Introduction and objectives 

Meta-programs are programs manipulating other programs. Typical applications include compilers, interpreters, source 
code static analyzers and checkers, program generators, and pretty-printers. Domain-specific language implementation and 
rapidly evolving generative programming [9] are the latest examples of developments in this domain. The complexity and 
sophistication of meta-programs may be quite significant, so the readability and maintainability become an issue. 

Compiler and generator design is a domain that has been studied extensively. There is a pretty good understanding of 
what to do and how to do it, especially for front-end design, and a lot of domain-specific software design templates are ac- 
cumulated in literature. The following domain features are among the most common for language processor design. 

• Use of context-free grammars to specify syntax and serve as a basis for parser design. 

• Intermediate representation of the input in the form of an abstract syntax tree. The importance of different tree data 
structures is recognized in general for this problem domain. 

• Typically, the main components of a language processor are very hierarchical and structured along the structure of data 
(recursive descent parser is an excellent example of this feature). In other words, language processors are heavily data- 
based applications. 

• It appears that the most commonly used data structures include trees, lists, stacks, tables, and strings. 

• The architecture of a language processor in most cases can be represented as a data flow between components (e.g., the 
famous compiler data flow diagram on the page 13 of the "Dragon Book"[l]). 

• The notion of an attribute associated with the data item, and attribute dependency and propagation schemes are of a 
great relevance (the attribute grammar framework captures some of the essential static checking needs; the data flow 
analysis performed for the optimization stage in a compiler may be considered as an attribute propagation over the 
program graph). 
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• Tree (and graph) traversal and transformation is a common template for optimization and code generation tasks. 

• Pattern matching (e.g., with respect to regular expressions or context-free grammars) may be a useful control structure 
for this problem domain. 

These considerations and experience with the compiler writing tools RIGAL[2][3], lex and yacc[l 1], and ELI[10] contrib- 
uted to this work. Data-flow paradigm is quite natural for meta-programming domain since it is heavily data dependent, 
and consequently, the graphical notation for data-flow diagrams could be appropriate. This should be integrated with visu- 
alization of typical data structures, pattern matching, and encapsulation to provide for well-structured, hierarchical pro- 
grams. Data-flow diagrams are most commonly used to represent dependencies between data and processes in visual pro- 
gramming languages, for instance, in LabVTEW[5] and Prograph[8]. 

Two-dimensional diagram notation could significantly improve readability of meta-programs. Some of these ideas have 
been explored in our previous work[4]. 

The main suggestions of this work are as follows: 

specialized data structures (lists, tuples, trees), 

data items associations that provide for creation of arbitrary graphs, 

visualization of data structures and data flows, 

graphical notation for pattern matching (list, tuple, and tree patterns; graphical notation for context free grammars and 
streams), 

encapsulation means for hierarchical rules design, 

two-dimensional data-flow diagrams for rules, 

visual control constructs for conditionals and iteration, 

default mapping rules to reduce screen real-estate requirements for diagrams, 

dynamic ( Last #rule Sattribute) and static (via associations) data attributes, 

data-flow notation that assumes potential parallelism in the data processing, 

abstract syntax type definitions for common programming languages and related default mappings (parsing and de- 
parsing) that provide for a practically feasible reuse of those components. 

2    Constructs 

This paper was not intended to give a complete and precise syntax and semantics of the visual language. At this point it is 
rather a notation that will be upgraded to programming language status after the implementation effort is completed. A 
(simplified) example of a compiler from a small subset of Lisp (called MicroLisp) to the C language will be used to present 
the main ideas. Figures 3- 7 present several annotated parsing and code generation rules of the MicroLisp to C compiler. 
Appendix A contains the MicroLisp context-free grammar and an example of a program. 

2.1     Data flow diagrams 

Detailed rationale for data-flow diagram notation and a survey of related work can be found in a previous paper[4]. 
Briefly, a meta-program is rendered as a two-dimensional data flow diagram that visualizes the dependencies between data 
and processes. Diagrams actually are similar to the notion of procedure in common programming languages. A diagram 
represents a single function called a rule, and rule calls may be recursive. The data-flow diagram supports the possibility of 
parallel execution of threads within the rule. 

The data-flow paradigm is closely related to the functional programming paradigm [7] and shares with that paradigm ref- 
erential transparency and good correspondence between the source code (the diagram) and the order of program execution. 

Each diagram represents a single function with several inputs and outputs. At the top of a diagram a signature of a rule 
provides the rule name and types of its inputs and outputs. Besides data items, the diagram may also contain control struc- 
tures, such as other rule calls, conditional data flow switches, and iterative constructs [4]. AD of those constructs are illus- 
trated in the MicroLisp examples. 
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The rectangular boxes in our notation denote values, and circles and ovals denote patterns, that could be matched with 
data objects. 

2.2 Types 

Type represents a set of values (or objects). Basic predefined types include char (characters) and int (integers). There 
is also a universal type ANY (which is a super type for any type) and the minimal type NULL (which is a subtype of any 
other type and contains a single value Null representing also an empty list or tuple). 

Aggregate types are ordered tuples of heterogeneous objects, which are useful for abstract syntax representation, and lists 
(sequences of homogeneous objects that could be dynamically augmented). Extended BNF notation may be used to define 
tuple types. To a large degree the type system is similar to the type mechanisms in VDM [13] and Refine[12]. 

Example of a tuple type definition. 

prog::= function-def* expression 

This establishes that an object of the type prog is a sequence of zero or more objects of the type function-def followed by 
an object of the type expression. This could be considered as an abstract syntax representation for the MicroLisp program 
level. Notice that ordered sequence of objects of the type function-def is nested within an object of the type prog. 

Example of a list type definition. 

text   ::    [char] 

There is a predefined list type id: :   [char] , which stands for a set of character strings that are valid identifiers. 

Example of a type definition with several alternatives (union type), 
expr   ::   int   |   id   |   simple-expression 

This effectively declares that types int and id are subtypes of expr in the scope of this definition. 

Appendix B presents some of the type definitions for the MicroLisp example. 

2.3 Default mappings 

text 

1 
prog 

/ 

s                 \ 

\ 
C-HeaderFife C-CodeFile 

i ' i ' 
text text 

Figure 1. The top level data flow diagram for MicroLisp to C compiler 

Certain rules may be declared as default mappings. It means that corresponding nil e calls are optional in the diagrams, 
and input and output data boxes may be connected directly. This helps to save some screen real estate and to make diagrams 
less crowded and more readable. Typically default mappings may be introduced for text -to-abstract syntax (parsing) and for 
abstract syntax-to-text mappings (de-parsing, or abstract syntax-to-concrete syntax mappings). 

Yet another kind of default mappings is associated with concatenation operations for tuples and sequences. In fact this is a 
composition of parsing and de-parsing default mappings applied in the context of (visualized) concatenation. See MicroLisp 
generation rules for examples (Figures 6 -7). 
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Definitions of abstract syntax types for common programming languages and related parsing and de -parsing default ma p- 
pings may be valuable assets for reuse. 

Default mappings also open the road for "lightweight" inference. For example, suppose that type A is defined as follows: 

A   ::   B   |   C 

and there are default mappings B -> D and C -> D, then it is possible to derive a default mapping for A -> D. This example 
actually addresses the polymorphism issue in our lightweight type system. Similar inference rules could be developed for 
other aspects of type system based on transitivity of subtype relation. 

2.4    Associations 

Data objects may be associated with other data objects. Each of those objects may have other associations as well. Associa- 
tions are not a necessary part of the type definition (although they could be included in the type definition as well) and ar e 
rather optional named attributes of particular objects. Associations may be used to create arbitrary graphs from objects. The 
following picture on Figure 2 illustrates the creation of a graph structure via associations from three data objects. Ass ocia- 
tion is not symmetric. According to the following diagram object A has been associated with an attribute B via an ass ocia- 
tion named ab, object B with C via be, and C with A via ca. 

Associated objects are retained when the host objects are the source and target in an identical transformation (plain arrow 
connecting data boxes of the same type) or are passed as inputs and outputs of rule calls. A special built -in rule #COPY 
creates a copy of an object but retains only those components declared in the type definition. Associated objects could be 
retrieved by pattern matching. For instance, on the right -hand diagram on Figure 2, object C (belonging to the associations 
established in the previous example) may be passed as input, and an access to objects B and A ca n be obtained via pattern 
matching (circles denote object patterns here). Notice that the direction of association arrow indicates the access path from 
the host object to the attribute object. The association mechanism may be useful to simulate attribute -grammar-like attribute 
propagation in ensembles of objects, to represent collections of objects as graphs, to implement symbol tables (where ident i- 
fiers may be represented as associations names), and so on. 

ab B 

ca 

ca 
be 

ab 

Figure 2. Construction of associations between objects and retrieval of them 
using pattern matching 

2.5    Patterns and streams 

Data object patterns are used to visualize structure of objects in order to provide access to object components and associ- 
ated objects. An object pattern may be placed in any part of the data flow and is matched with the object connected to the 
pattern input. 
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If pattern matching is su ccessful the input object is passed downstream. If pattern matching fails, the entire diagram ex e- 
cution fails, and the diagram sends to its outputs a default value Null, unless the pattern has been provided with  the 
'Failed' output route. See MicroLisp rules in Figures 3 -4 for examples. 

If a rule's input is a list, patterns applied to this input may be chained in a sequence (using thick gray arrows) to be a  p- 
plied consecutively. This pattern sequence consumes as many objects from the stream as it can succes sfully match. The n o- 
tion of stream corresponds to the sequence in RIGAL language [2][3], and semantics of pattern matching is derived from 
RIGAL's pattern matching semantics. See MicroLisp parsing ru les for example (Figures 3 -5). 

Rules can create output streams of objects as well. 

2.6     States and dynamic attributes 

Rule may have states - objects that persist while rule instance is active and can be updated by assignment operators within 
the rule or from other rules called from this rule. This mechanism could be actually considered a macro extension for di  a- 
gram notation when a corresponding state object is passed to the called rules as an additional parameter and returned back 
to the callee as an additional output. States have names starting with the $ symbol, e.g. $X. The reference to the rule's #A 
state $X has a form Last #A $X. When referred within the rule #A, the prefix Last #A can be dropped. See Figures 4 -5 for 
examples. 

3    Examples of MicroLisp to C conpiler rules 

The following diagrams present three top level parsing rules and two top level generation rules for MicroLisp -> C com- 
piler. They illustrate most of the notations discussed above. Additional annotations provide more specific details and discu s- 
sion. Those rules are deployed according to the data flow diagram on Figure 1 and default mappings in Appendix B. 

3.1     Parsing 

The source code of MicroLisp program is represented as a stream of characters. It is assumed that there is a lexical co m- 
ponent that filters out comments, spaces, tabs, end-of-line characters from the stream before it is fed to the parsing rules. 
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#program:   Stream   [char]-> prog,   Stream   [message] 
state $func-list:   [id]      --  updated by #func-def 

message: 
"? expected" 

message: 
"Errors 
detected" 

Sfunc-list 

Syntax err 
Func-tab 

func-def expr 

Figure 3. Parsing rule for the grammar rule 
program  ::= func-def *   '?'   expression 

Annotations for the rule #program 
• This rule has a state $func -list which will be gradually updated by the rule #func -def calls (see Figure 4). At the end of 

parsing, object $func-list will be added as an attribute (via association with the name Func -tab) to the resulting object of 
the type prog. The box containing $func -list has a dummy input of the type ANY, which is activated when the last pa t- 
tern #expr terminates with success. This ensures the timing when the state value is picked up for the association o pera- 
tion. 

• The rules #func-def and #expr are used as patterns. If pattern matching encapsulated in these rules is successful, the 
rules also are successful and return values, which are used to assemble the return value of the rule #program. 

• If pattern matching for the pattern '?' fails, the entire rule #program also fails and returns object Null, but before it 
happens two messages will be sent to the output stream Markers labeled 'Syntax err' are used to prevent a mess with 
arrow intersections. 

• A data flow fork denotes duplication of the data item sent to two or more threads. 

• Nesting boxes and forwarding output of pattern rules of the types func-def and expr inside the resulting box of the type 
prog provide an intuitive visualization for the tuple constructor. 

• The application of pattern #func -def may be repeated zero or more times (indicated by the ellipsis '***'), and it is sy n- 
chronized with the tuple constructor (as the box of the type func-def in the resulting prog box is also accompanied by 
an ellipsis). 
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#func-def: Stream [char]-> Func-def, Stream [message] 
state $param-list: [id]    -- used in #expr 

message 
function 
name 

id 

defined 
twice 

expr 

Figure 4. Parsing rule for a function definition by a grammar rule 
Function-definition ::= '(' DEFINE '(' Name Param * ')' Expression ')' 

Annotations for the rule #fun&def 
• Built-in rule #Ident matches a character string that is an identifier. When successful, this identif  ier (an object of the 

type id) is input to the conditional data flow switch to check whether the function name is already on the list. If true, 
the id item is forwarded to the message output stream. If false, it goes to the resulting tuple constructor. 

• A function name is also sent to update state Sfunc-list in the current instance of rule #program.   |.:= stands for the op- 
eration to append an element to the end of list. This assignment operation updates the state Last #program Sfunc -list. 

• The entire sequence of patterns in this rule consumes part of the input stream delegated from the calling rule #pr ogram. 

• Parameter names are appended to the state variable Sparam -list. All state variables are initialized by Null, which stands 
for empty list in this case. 
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iexpr  :  Stream [char]   -> expr,   Stream [message] 

#Number   )  

V 

Name: 
#Ident 

Name IN Last 
#fiinc-def Sparm-list 

True 

expr 

Figure 5. Parsing rule for MicroLisp e xpression for the grammar rule 
expression::= integer | parameter-name | '(' SimpleExpression ')' 

Annotations for the rule #expr 
• A pattern may have several alternatives. The alternatives are applied in order of appearance, if the first alternative 

fails, the pattern matching backtracks in the input stream and the next alternative is applied until one    of alternatives is 
successful. If all alternatives fail, the entire alternative pattern also fails. 

• The built-in rules #Number and #Ident, when successful, return objects of the types int and id, correspondingly. 
Since the type expr is defined as a supert ype for int and id, the data flow to the resulting object of the type expr is 
consistent. 

3.2    Code generation 

Code generation rules take as input a MicroLisp abstract syntax object and output C abstract syntax objects. Target code 
template representation in the diagrams is based on default mappings for C abstract and concrete syntax and visual repr e- 
sentation of append operation as nested boxes. 

Annotations for the rule #gen-program 
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ttgen-prcgram: prog -> C-HeaderFile, C-OodeFile 

prog: 

/     fimc-def      j_ 

C-HeaderFile: 

include <stdio.h> 

Gfimc-prototype 

C-CodeFile: 
«include "lisp.h" 

C-fiinc-definition 

intmainOI 
printf( "The resultis:%dn", 

C-expr 
);} 

Figure 6. Generation rub fertile McroLisp program level 

The input is of the type prog (abstract syntax object for MicroLisp) and a pattern for this object provides an access 
to the component retrieval. Since func-def components may be repeated zero or more times, the ellipsis in the pa t- 
tern represents the iterative traversal. 

The iteration of the input is synchronized with the iterative ge neration of objects in two outputs. The 
transformations itself are carried by default mappings func-def -> C-f uric-prototype and func-def - 
> C-func-def inition. The rule #gen-function-prototype in the next example gives the algorithm for the first 
of these default mappings. Since the template provides particular concrete syntax for parts of the C code, those text 
segments will be stored with corresponding C abstract syntax objects. The resulting parse tree for include and 
printf will contain objects of the type id and text-string that hold values, such as "int", "printf, and other. These 
concrete syntax values are retrieved by default mappings when pretty -printing corresponding C abstract o bjects. 

The rule #gen-program constructs the target C code in the abstract syntax form. The mapping from abstract syntax 
to the text will be done according to the main diagram in Figure 1 by corresponding de -parsing default mappings 
for the C language. Both the abstract syntax definitions and default parsing and de -parsing mappings for the C 
language may be reused for any other meta -program that uses C as a target. 
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Annotations for the rule #gen-function-prototype 
• This rule provides the flavor of hierarchical structure of generation te mplates. 

• The first appearance of the string "int" in the target object C -func-prototype object will be converted by the C default 
parsing mapping into object C -type and the string "int" will be associated with it as a value. The same is true also for 
the iteration of "int" in the parameter list. 

• Box around the second instance of "int" is needed to indicate the binding with the iteration of id in the source object 
fimc-def. 

#gen-function-prototype: func-def -> C-func-prototype 

( >func- 

int 

prototype: 

»   id ( 

"int" 5   5 
•••    9 

); 

Figure 7. Generation rule for C function prototype. 

•    Parentheses, semicolon, and comma (as a separator between iterated elements; in the graphical interface there should 
be a way to indicate that comma is related to the iteration ellipsis, e.g. by a dashed box) in the target object are optional, 
and if present, will be consumed by corresponding C default parsing mappings. The resulting object is still an abstract 
syntax object. 

4    Preliminary conclusions 

This paper presents very preliminary results on the visual notation for meta -programming. Work continues on the la n- 
guage itself, case studies, and implementation issues. At the moment of this writing the interpreter for the core of da ta-flow 
language is already implemented, and work is in progress on the graphical editor and advanced features like default ma   p- 
pings and tuple pattern matching. In it current form, the concepts presented may be used as a useful supplement to the 
meta-program design documentation. We expect the advantages of this approach to be as fo Hows. 

• Visualization of data and data flow provides for better readability and uncovers parallelism in data processing. 

• The tuple type provides for a precise, disciplined, and f lexible way to define abstract syntax. 

• The simple association mechanism provides a natural way to introduce data attributes and opens the road for pro c- 
essing of arbitrary graphs without cluttering the language with additional means. 
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• Pattern matching notati on covers in a uniform way data objects, rule calls, associations, and extended BNF not a- 
tion for parsing. 

• The language provides for systematic and consistent correspondence between constructors and patterns. 

• The dynamic attributes (states) are actually mac ro extensions of pure functional paradigm (may be considered as 
additional inputs and outputs for diagrams referring to the states), provide for more efficiency, and make the data 
flow diagram simpler and less cluttered. 

• Default mappings may be very conven ient for generation templates, provide basis for lightweight type inference, 
and rule reuse. 

• Data streams and patterns give a flexible and expressive framework for parsing rules supporting extended BNF n o- 
tation, support reasonable and informative parsing e rror messages. 

• Control mechanism, such as data flow switch, iteration and recursion fit well with data -flow notation and provide 
for transparent and expressive language to define different kinds of meta -programming algorithms. 
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Appendix A. Syntax of MicroLisp language and an example of a program 

Program ::= Function-definition* '?' Goal-Expression 

Goal-Expression ::= Expression 

Function-definition ::= ' ('DEFINE' ('Function -name Parameter-name* ') ' Expression ')' 

Expression ::= Integer | Parameter-name |'C SimpleExpression ')' 

SimpleExpression ::= BinOperation Expression Expression | UnOperation Expression | 

Function-name Expression* JCOND Branch + | READ_NUMBER 
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Branch::= '('Expression Expression ')' 

BinOperation ::= ADD | SUB | MULT | DIV | MOD | EQ | LT |GT | AND | OR 

UnOperation ::= MINUS |  NOT 

Function-name  ::= Identifier 

Parameter-name  ::= Identifier 

Example of a MicroLISP program. 

( DEFINE ( gcd x y) 

(COND (EQ x y)  x ) 

( (GT x y) ( gcd (SUB x y) y ) ) 

(  1 ( gcd x (SUB y x)  ) ) )  ) 

?  (gcd  (READ_NUMBER)  (READ_NUMBER) ) 

Appendix B. Type definitions for MicnLisp -> C compiler 

message::  [ char ] 

program:: ( func_def* expr)| NULL 

attribute func_tab: [id] 

func_def:: id id* expr 

expr:: number | id | (op expr expr) | (op expr) |read_num | cond | function-call 

function-call:: id expr* 

cond:: (expr expr)* 

default mappings 

#prog: [ char ] -> prog 

#gen_program: prog -> C-HeaderFile, C-CodeFile 

#gen-function-prototype: Func-def -> C-func-prototype 

#gen-function-def: Func-def -> C-func-definition 

#pretty_print_prog: prog -> [ char ] 

This is a sketch of a (oversimplified version of C abstract syntax. 

C_CodeFile::  include-statement * C-func-definition + 

C_HeaderFile:: include-statement C-func-prototype * 

C_func_prototype:: C-type func-name C-type * 

C-type:: id 

C_func_definition::   

C_expr::   

Default mappings include parsing rules and pretty -printing rules (abstract syntax to text mappings). 
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Abstract - This paper presents a method for deploying distributed object servers to optimize client response time. 
Object-Oriented (00) computing is fast becoming the de-facto standard for software development. Distributed 00 
systems can consist of multiple object servers and client applications on a network of computers, as opposed to a single 
large centralized object server. Optimal deployment strategies for object servers change due to modifications in object 
servers, client applications, operational missions and changes in various other aspects of the environment. 

As multiple distributed object servers replace large centralized servers, there is a growing need to optimize the 
deployment of object servers to best serve the end user's changing needs. A method that automatically generates object 
server deployment strategies would allow users to take full advantage of their network of computers. 

States of the art load balancing techniques schedule a given number of independent tasks on a set of machines. 
However, object servers do not have independent tasks: all methods in an object are related. Also, the number of times 
a method is called is usually dependent on interactions with end users. 

The proposed method profiles object servers, client applications, user inputs and network resources. These profiles 
determine a system of non-linear equations that is solved to produce an optimal deployment strategy. 

Keywords: Distributed Object, Load Balancing, Client Response Time, Optimization, Server Deployment and 
Software Engineering. 

1. INTRODUCTION 
The future of computing is heading for a universe of distributed object servers. The evolution of object servers to 
distributed object servers will parallel the evolution of the relational databases. Over time, object servers will provide 
functionality to more client applications than their original applications, just as relational databases were used by more 
applications than the original application. In both cases, systems optimized for the original application may not perform 
well for the new applications. Tools that allow a programmer to model an object and easily create object servers with all 
the necessary infrastructure code needed to work as a distributed object server are available [12]. This will lead to an 
explosion in the number of object servers available to client applications. 

A user's network of computers will change frequently. Object servers, applications, hardware and user preferences will 
be in a constant state of flux. No static deployment strategy can adequately take advantage of the assets accessible on the 
network in such an environment. 

No system can accurately predict user interaction with a system. Two separate users performing the same job will 
interact with a system differently. The same user may interact differently while performing the same job at different 
times. For these reasons and combinatorial explosion problems, an adaptive software engineering approach is proposed 
instead of a traditional computer science approach. 

Most deployment strategies today are dictated by the system engineer's view of how the systems will be utilized. Of 
course, the system engineer doesn't revisit these strategies every time hardware, software or user interactions change. 
The goal is to allow the user to update hardware and usage profiles. Software developers would supply new profiles 
when their code changes. Any time a profile is updated, the model would be run and an automated reconfiguration of the 
object server deployment could occur. In most cases, the frequency of change will be greatest in the hardware and usage 
pattern profiles. Since many of these changes can take place without the knowledge of a system engineer or the budget to 
employ one, a method that allows the users to update these profiles and initiate the reconfiguration is desired. 
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2. PREVIOUS WORK 
There has been little work on deployment strategies for distributed object servers. The closest relevant research is in the 
fields of load balancing, client/server performance and distributed computing. Most state of the art load balancing 
techniques address scheduling of given set of tasks on a set of given machines. Some techniques only deal with tasks 
that are independent. Others deal with dependent tasks that are usually linked together by temporal logic and mutual 
exclusion constraints. 

Object servers do not have independent tasks. All methods in all object types in a single object server are related at least 
by locality and more often by the interaction between the object types. Also, the number of times a method is called is 
not given, but rather depends on undetermined interactions with end users, very much like the situation in client/server 
performance research. We propose a system that enables optimization of object server deployment to meet changing 
needs. 

3. CURRENT PRACTICES 
Because of the difficulty in producing the infrastructure code necessary to support distributed object computing, many 
developers produce huge monolithic object servers [11]. A powerful machine is usually needed to adequately handle this 
server and successful applications that experience large increases in the number of users may outgrow the capabilities of 
the fastest available single machine. With automated code-generation tools, these servers will be much easier to produce 
and reconfigure [12]. This allows servers to be partitioned by allocating unrelated or loosely related objects types to 
different physical servers that can be deployed across the network to take advantage of the available assets. By taking 
advantage of all the assets on the network, faster response times can be achieved [11]. 

Loosely related object types are defined as object types that contain associations to other object types. When these 
object types reside in different physical object servers, the result is an object server that calls on other object servers. A 
server that calls other servers is a complex server [1]. 

Many networks of computers are installed with a single purpose in mind. Over time, these networks support an evolving 
set of tasks. Even though the original role the network played can change dramatically, rarely does a single system 
engineer revisit the deployment strategy for the entire system. What a user ends up with is usually the product of 
multiple system engineers' choices made based on the latest incremental changes without regard for the system as a 
whole and interactions among its roles. It is infeasible, because of cost, to hire a system engineer to re-assess the whole 
system every time a change occurs. In the end, the user is left with a system whose deployment strategy borders on 
randomness. 

4. OPTIMIZATION OF DISTRIBUTED OBJECT-ORIENTED SYSTEMS 
The goal of this paper is to describe a method that can generate distributed object oriented server deployment 
architectures to take advantage of network resources for the purpose of reducing average client response time. A system 
that carries out this method must be able to reason about deployment strategies of loosely related objects. The proposed 
system maps all of these profiles into equations to minimize average client response time. 

Average client response time was chosen as the optimization criteria over others. In this paper, the goal was to be user 
centric. Criteria that focused on maximizing machine utility were not germane. Average client response time was 
chosen over minimizing the maximum response time of one call because the method takes into account the entire usage 
profile. 

4.1 Optimization Model 
The equations that need to be solved will minimize the sum of all of the response times for a given call pattern over a 
given time interval. Since we want to allow the user the freedom to run client applications from anywhere on the 
network, we will ignore all processing on the client machines and all network delay between client machines and server 
machines. The only factors we will consider for optimizing our server deployment are the processing on the object 
server and the network delay between complex object servers. Therefore, the objective function that we wish to 
minimize is: 

Minimize 
N    M   n      sfePsfcC N     N     T>.. 

<r-i ^-i  Unm ^ Kn ^ Onorm        ^r-i ^-"i  JJij 
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subject to the following four constraints: 

1. Object Servers cannot be split across machines. 

Clnm = i( iff servern is running on machine m 
0, otherwise 

2. Each Server can run on only one machine [no multiple instances of the same server. 

M 

\fn /  i   Clnm    =   1 
m=0 

3.   RAM usage by the object servers cannot pass a set threshold on each machine. 

N 

Vm ^üU*K<7;*£/ 
«=o 

4.    CPU time on a given machine cannot surpass the corresponding real time interval. 

., "^   1    Clnm  ^ J\n ^ tjnorm _, 

n=0 bm 

where 

N = Number of object servers 
M = Number of physical machines 

Clnm = server n is running on machine m 

Rn = Normalized machine load of server n (seconds, s) 

O norm = Speed of the normalizing machine (MHz) 

Sm = Speed of machine m (MHz) 

Bij = Data sent between server i to server j (bits, b) 

Qij = Network Speed between server i to server j (bps) 

Tm = Physical RAM on machine m (bits, b) 

Vn = Memory allocated by server n (bits, b) 

U = Multiple to limit RAM utilization [0.1,3.0] 

C = Time Interval [seconds, s] 

NOTE: All terms are fixed either by measurement or input except for Clnm . The model varies all possible 

combinations for Clnm and finds the minimum based on the above objective function and constraints. 

4.2 Evolution 
Over time, a collection of hardware, software and user requirements will change in a given environment. Common 
hardware changes consist of adding new computers, removing old computers, upgrading CPUs, modifying RAM and 
modifying network bandwidth capacity. Each of these hardware changes will produce an event that would trigger the 
system to re-evaluate its deployment strategy. 
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Software can also be quite dynamic in nature. New object servers and applications can appear. Old ones can be 
removed. Existing object schemata and methods can be changed. Each of these changes would trigger an event to re- 
evaluate the deployment strategy. 

4.3 Loosely Related Objects 
Not all objects types that are related must necessarily be contained in a single object server. There is a point where the 
performance of the system would improve by moving the object type into a different server. This is usually the case 
when none of the application code exercises an inter-server method call or exercises it only very rarely. Large message 
sizes and slow network speeds will push for related object types to be co-located. The approach will be able to reason 
about not only deploying object servers, but also recommend the schema supported by these object servers. 

4.4 Priority Setting 
User requirements can also be in a state of flux. Most computer systems are used to support multiple jobs. Business- 
hour requirements can differ greatly from after-hours computational requirements. A developer's network of computers 
can support multiple projects, but may need to be optimized for a single project for demonstrations. In the military, the 
operational mission being supported can change significantly. For example, a set of distributed object servers could be 
used to support many applications aboard a ship. These applications could handle such tasks as Anti-Submarine Warfare 
(ASW), Anti-Surface Warfare (ASUW), Anti-Air Warfare (AAW), Electronic Warfare (EW), humanitarian missions and 
rescue missions. The relative computational activity of these applications could differ significantly on different missions 
of the ship. 

Optimizing a system of object servers for all possible roles would not be optimal when the system is only performing a 
couple of missions at a time. By profiling each role, the user could choose to re-optimize his deployment to decrease the 
response time when user chosen roles change. In this way, the user could tune his system to give peak performance for 
the task he is currently trying to perform. 

4.5 Profiles 
The tricky part is to figure out what elements are needed in the different profiles, how to map these profiles into 
equations and then model how these profiles interact with each other. The more complex the modeling of the hardware 
becomes the more computationally intensive the approach will become. Initially we demonstrate an approach with 
rather simplistic profiles to demonstrate its capabilities. 

4.5.1 Hardware Profiles 
The aspects being modeled in the hardware profiles include characteristics of each computer such as CPU speed and 
physical RAM size. The hardware profile also models the network speed between each computer. Current hardware 
profiles do not directly support multi-processor computers, but they could be modeled as groups of separate nodes with 
very high "network speeds" between them. 

4.5.2 Object Server Profiles 
Object servers need to be profiled for metrics associated with each method call in each object. The computational time 
of each method call should be captured and normalized to a specific hardware architecture. Since object servers ideally 
run continuously, the RAM of the object server must also be measured and summarized. The hardware profile and the 
object server profile is sufficient to optimize the server deployment for the case where all the functionality contained in 
all the objects is of equal value to the user. Metrics can be collected easily with a small client application that exercises 
each method call and records the data. Thus, actual implementation code for the application isn't needed to estimate the 
object server profiles. 

4.5.3 Client Application Profiles 
Ideally, client applications would be delivered with their profiles. If the code is available, then the source can be parsed 
to find all possible object invocations. Since exact frequencies of method calls are not algorithmically computable in the 
general case, measurement is necessary to reliably estimate frequencies of calls. The system must allow a user to create 
typical scenarios and record the method calls that occur in the scenario. This could be done by simulation or monitoring 
calls to the object servers when the system is in a training mode. The plus side to this method is that the user could 
represent more complex tasks involving many user interactions in a single profile. Numerous tools exist for complex 
event processing in a distributed system [5, 6]. 
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4.5.4      User Profiles 
User profiles or roles indicate how a user interacts with the system over a given period of time. In simplistic terms, it is 
like keeping track of how many times each button is selected over a given time interval. Average button push rates can 
be expressed as number of events per second. The user can collect this data manually or automatically by the system 
with audit trails. Multiple roles can exist for each user. The user could then select a set of roles and have the system 
come up with an optimal deployment strategy to meet these criteria. 

4.6  Profile Mappings 
In order to compute the optimal deployment strategy given a set of profiles, one needs to map these profiles into 
equations that can be solved for minimum response time. To illustrate the mappings, we present an example. The 
example consists of three machines, three object servers and three client applications. The method demonstrates the 
differences in deployment for a system tuned to a users-specific role. Table 1 shows the profile for the computer 
hardware available. 

Table 1. Machine profile for example. 

MACHINE RAM (bits) CPU Speed (MHz) 
SIX 512,000,000 = 64MB 600 
BR733 1,024,000,000= 128MB 733 
GIGA 1,024,000,000= 128MB 1000 

Table 2 shows the network bandwidth available to communicate from each machine to the other. In this example, the 
machines will have equal bandwidth between machines as is the case when all servers are running on' the same local 
LAN. The speed of communications between servers on the same machine is more difficult to predict. These speeds 
usually lie in the interval bounded by the speed of the machines back plane and the speed of the network. It is dependent 
on the operating system, implementation of the middleware, and other factors. For this example, we assume that intra- 
machine communication is twice as fast as inter-machine communication. In the absence of measurements, the system 
can be run with best and worst case scenarios by specifying the boundary values identified above. 

Table 2. Network speed. 

Machine  to  Machine 
Speed (bps) 

SIX BR733 GIGA 

SIX 200,000,000 100,000,000 100,000,000 
BR733 100,000,000 200,000,000 100,000,000 
GIGA 100,000,000 100,000,000 200,000,000 

Besides the hardware profiles, we need to have the server profiles. Table three lists each server's RAM requirements. 

Table 3. Server RAM requirements. 

SERVER RAM Required (bits) 
A 352,000,000 = 44MB 
B 480,000,000 = 60MB 
C 528,000,000 = 66MB 

Additional parts of the object server are the timing of each individual method call available in each server and a list of 
complex method calls. All of these measurements were taken on a single machine to normalize the values. In this 
example, server A has one four methods, server B has two methods, and server C has three methods. 

Table 4. Normalized Server Loads. 

SERVER Method CPU time (s) Average     Size     of 
Message (b) 

A 1 0.5796 112000 
A 2 2.6203 18400 
A 3 1.18175 44800 
A 4 2.0264 176000 
B 1 1.76655 4000000 
B 2 3.70085 2720000 
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c 1 3.0043 320000 
c 2 4.8040 4000000 
c 3 0.48815 400000 

A complex method call is a method call that calls another object server. These method calls require special handling in 
measuring their load on the host server and in the objective function for optimizing the system. Table 5 lists the complex 
method calls in this example. 

Table 5: Complex Method Calls 

Complex Method Exterior Calls 
B.2 C.l 

The last information needed to optimize the system is information about the applications and the users. This step adds 
roles to the list of profiles for the system to optimize. These roles have more realistic use patterns for the different jobs a 
user would actually perform on the system. For this example, we will have three client applications with two buttons, 
nine buttons and three buttons respectively. 

Let's assume that there are three different roles the network of computers.supports for the user and the following is the 
use pattern shown in Table 6, and that the buttons call the following server methods shown in Table 7. Method calls that 
appear in italics in Tables 7 and 8 are complex method calls. They appear in italics to remind us that these methods 
require special handling when figuring out the objective function. 

Table 6. Roles. 

ROLE CALL PATTERN (observation interval is 990 seconds) 
Rolel 50 C1.B1 + 1 C1.B2 + 1 C2.B1 + 1 C2.B6 
Role 2 10 C1.B1 + 40 C1.B2 + 24 C3.B2 
Role 3 50 C2.B5 + 10 C2.B9 + 30 C2.B3 + 1 C2.B2 + 1 C3.B2 

Table 7. User interface calls. 

Button Methods Called 
C1.B1 A.l 
C1.B2 A.2 + B.1 
C2.B1 C.1+C.2 
C2.B2 C.3 
C2.B3 C.2 
C2.B4 C.3 
C2.B5 A.l+5.2 
C2.B6 B.2 
C2.B7 A.4 
C2.B8 C.3 + A3 
C2.B9 A.1+A.2 + A.3+V5.2 
C3.B1 C.l 
C3.B2 B.l+5.2 
C3.B3 C.2 

By substituting the user interface calls into the roles matrix, we get an objective function for optimizing the system 
shown in Table 8. All other method calls will be ignored. 

Table 8. Roles to server calls. 

ROLE Methods Called in Role 
Rolel 50 * (A.1) + 1 * (A.2 + B.l) + 1 * (C.l + C.2) + 1 * (5.2) 
Role 2 10 * (A. 1) + 40 * (A.2 + B. 1) + 24 * (B.l + B.2) 
Role 3 50 * (A.1+ B.2) + 10 * (Al + A.2 + A3 + B.2) + 30 * (C.2) +       1 * (C.3) + 1 

* (B.l+5.2) 
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4.6.1 Filling in the Equation for Role 1 
Role 1 consists of 50 C1.B1 calls, one C1.B2 call, one C2.B1 call, and one C2.B6 call. The first step is to convert all of 
the button calls into method calls by substituting the values for the calls from Table 4. 
50 [A.1] + 1 [A.2 + B.l] + 1 [C.l + C.2] + 1 [B.2] = 
50 [A.1] + 1 [A.2 + B.l] + 1 [C.l + C.2] + 1 [B.2 + C.l] = 
50 A.l + A.2 + B.l + C.l + C.2 + B.2 + C.l = 
50 A.1 + A.2 + B.l + B.2 + 2 C.l + C.2 
This leads to the following values for the array R for the optimization equation. 
R (A) = 50 [A.1 values for CPU] + 1 [A.2 value for CPU] 

= 50 [579.6] + 1 [2620.3] 
= 31600.3 

R (B) = 1 [B.l values for CPU] + 1 [B.2 value for CPU] 
= 1 [1766.55] + 1 [3700.85] 
= 5467.4 

R (C) = 2 [C. 1 values for CPU] + 1 [C.2 value for CPU] 
= 2 [3004.3]+ 1 [4804.0] 
= 10812.6 

There is only one italicized method call prior to substitution, so there is only one network value to deal with. 
BITS[B,C] = 1 [B.2 message in bits] 

= 320000 

4.6.2 Filling in the Equation for Role 2 
Using the same approach as in 4.6.1, we get the following for Role 2: 
R (A) =110608 
R(B) = 201879.6 
R(C) = 72103.2 
There is only one italicized method call prior to substitution, so there is only one network value to deal with. However, 
it is called 24 times. 
BITS[B,C] = 24 [B.2 message in bits] 

= 24 [320000] 
= 7680000 

4.6.3 Filling in the Equation for Role 3 
R (A) = 72796.5 
R(B) = 227518.4 
R(C) = 327870.45 
BITS[B,C] = 19520000 

4.7 Model Solutions 
All of the information above is run through a LINGO model that varies the location of the object servers on the different 
machines to find the a solution set that minimizes the value of the objective function. The model prompts the user for 
inputs bandwidth, RAM percentage and computational time limitations. Changing any of these variables will lead to 
different model outputs [10]. 

4.8 Model outputs 
This method outputs the following deployment strategies for the different roles when setting different RAM limits and 
keeping all other variables the same as in the last example. Solving the optimization problem defined in section 4.1 with 
the parameter values determined in section 4.6 derives these results. 

Table 9. Single user deployment strategies for different roles. RAM limit set to 1.5. 

Machine Role 1 (user) Role 2 (1 user) Role 3 (1 user) 
SIX None None None 
BR733 None None None 
GIGA A,B,C A,B,C A,B,C 
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Table 10. Single user deployment strategies for different roles. RAM limit set to 1.0. 

Machine Role 1 (1 user) Role 2 (1 user) Role 3 (1 user) 
SIX None None None 
BR733 B C A 
GIGA A,C A,B B,C 

Table 11. Multiple concurrent users deployment strategies for different roles. RAM limit set to 1.0. 

Machine Role 1 (28 user) Role 2 (4 user) Role 3 (3 user) 
SIX None A A 
BR733 B,C C B 
GIGA A B C 

From the model output, we can see that when a single user is present and RAM is not a limiting factor, the result is that 
all the servers migrate to the fastest machine. However, when we start to limit RAM, the servers start to spread out. The 
first server to leave the fastest machine turns out to be different in each role. Multiple concurrent users also tend to 
spread the servers across the available machines. The significance of the model is that different roles and different 
numbers of concurrent users lead to different optimal configurations in most cases for this example. No single static 
configuration can outperform the ability to change configurations based on perceived changes in the usage of the system. 

4.8  Experimentation 
We tested the validity of the model by experimental measurement. A testbed was created with Windows 2000 machines 
that match the characteristics of the machines in the above example. Servers were created using JDK 1.3 and RMI as the 
middleware. Software to simulate the three different users was also created. The user was simulated with a random 
choice for button selection that has a uniform distribution similar to the roles. This simulation software was 
instrumented to measure the actual time the software was blocked waiting for an object server method call to response 
[10]. All 27 different configurations were established and the average response time for each configuration was 
measured and recorded. Between each simulation, the testbed machines were rebooted. 

All 27 configurations were tested twice. One tested the configuration with the object servers using much less than the 
stated memory needs. Another tested the configuration with the object servers using all of the stated memory needs. 
Some configurations strained the machines memory limits. These configurations resulted in system failures in the test 
with the object servers using all of the stated memory needs. These system failures are listed as error in the tables of 
results. It should be noted that Windows 2000 did a much better job of swapping when memory utilization exceeded 
100% than a previously tested operating system, Windows NT. 

4.8.1     Experimentation Results 
The below table is a tabulation of experimental results obtained from measuring the outputs of a test system. 

Table 12: Measured Response Times 

PAT A B C ROLE1 ROLE 2 ROLE 3 R1MEM R2MEM R3MEM 

1 GIGA GIGA GIGA 976.331 5150.362 6741.948 977.343 5120.184 6776.846 

2 GIGA GIGA BR733 899.344 5530.329 8266.516 942.984 5580.438 8213.157 

3 GIGA BR733 GIGA 960.811 6417.171 7802.172 887.031 6349.859 7900.562 

4 GIGA BR733 BR733 1079.641 6686.376 9124.938 1041.391 6696.141 9217.953 

5 BR733 GIGA GIGA 1140.796 5953.015 7413.343 1144.672 5874.642 7267.639 

6 BR733 GIGA BR733 1218.875 6233.064 8508.343 1282.643 6204.922 8519.844 

7 BR733 BR733 GIGA 1119.092 6877.968 8142.719 1228.031 6838.001 8232.064 

8 BR733 BR733 BR733 1186.861 7238.876 9428.658 1409.515 7215.576 9373.861 

9 GIGA GIGA SIX 991.531 5958.547 9259.221 1039.298 5916.187 9463.079 

10 GIGA .SIX GIGA 878.782 7176.861 8627.407 962.609 7288.954 8532.983 

11 GIGA SIX SIX 1157.765 7852.795 10712.984 error error error 
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12 SIX GIGA GIGA 1274.376 6375.549 7332.718 1348.828 6424.484 7346.219 

13 SIX GIGA SIX 1402.687 6969.187 9838.221 error error error 

14 SIX SIX GIGA 1413.983 8211.857 8972.002 error error error 

15 SIX SIX SIX 1642.232 8644.362 12131.091 error error error 

16 BR733 BR733 SIX 1197.423 7342.092 10387.125 1262.703 7322.595 10529.611 

17 BR733 SIX BR733 1306.374 7862.331 10360.985 1439.251 8148.969 10123.563 

18 BR733 SIX SIX 1305.296 8514.078 11067.388 error error error 

19 SIX BR733 BR733 1291.719 7601.829 9591.424 1535.657 7742.921 9770.578 

20 SIX BR733 SIX 1467.437 8033.173 10590.126 error error error 

21 SIX SIX BR733 1441.421 8222.031 10185.453 error error error 

22 GIGA BR733 SIX 1114.344 6987.719 10259.391 982.687 6967.624 10193.641 

23 GIGA SIX BR733 1068.765 7423.048 9834.875 1131.969 7343.782 9804.983 

24 BR733 GIGA SIX 1246.361 6515.812 9563.001 1311.905 6613.031 9617.297 

25 BR733 SIX GIGA 1304.703 7783.171 8743.235 1189.655 7548.561 8865.811 

26 SIX GIGA BR733 1355.594 6752.499 8625.439 1390.297' 6772.453 8860.094 

27 SIX BR733 GIGA 1306.687 7380.828 8259.047 1344.611 7457.968 8328.064 

4.8.2     Role 1 
The models chose a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern 3 
when RAM was limited to 100% utilization. Pattern 3 was the third fastest average response time in the minimal 
memory run and the fastest average response time in the stated memory run. The fact that pattern 10 was the fastest 
average response time in the minimal memory run is a result of the variability of the simulation [10]. Pattern 1 was the 
fourth fastest on both runs even though it was the predicted configuration when RAM usage was set to 150% of physical 
RAM in the model. More interesting from a software engineering standpoint was the fact that the model proposed a 
configuration that outperformed most configurations from 10 to 44 percent and that the recommended patterns were free 
from failures. 

4.8.4 Role 2 
The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern 
2 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 2 was the 
second fastest average response time in both runs. Pattern 1 was the fastest average response in both runs, which is the 
predicted configuration when RAM usage is 150% of physical RAM. Again, the configuration chosen by the model 
outperformed most configurations from 10 to 38 percent. 

4.8.5 Role 3 
The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern 
5 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 5 was the 
third fastest average response time in the minimal memory run and the second fastest average response time in the stated 
memory run. Pattern 1, the fastest average response time in both runs, was the predicted configuration when RAM usage 
was set to 150% of physical RAM. The fact that pattern 12 was the second fastest time in the minimal memory run is a 
result of the variability of the simulation [10]. Again, the model proposed configuration outperformed most 
configurations from 10 to 44 percent. 

5. CONCLUSION 
The approach seems to have merit and produce useful results. The system responds in a reasonable way with changes is 
the environment, constraints placed on the system, and different roles that a user might want. Since all of these changes 
take place on a given network of computers, static deployment strategies will never utilize the assets available to better 
support the end user. The strategies chosen by our model were robust in the sense that performance was good even when 
actual loads departed from predicted loads. 

Predicting exactly how a user will interact with a system that supports multiple roles will always be an inexact science. 
This system provides an adaptive software engineering approach to a real world problem that currently does not have a 
better solution. No solution can be exact because of the limitations inherent in modeling users, software, hardware, etc. 
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Perhaps the most significant capability added by our model is the ability to automatically grow to the point where 
machine limits are exceeded and hard failures occur. 

6. FUTURE WORK 
The system needs to be refined to more precisely reflect the workings of the network of computers. These refinements 
include allowances for asymmetric communications, more precise models for computers, operating systems, middleware, 
and queuing delays. Aggregated tuples of these models will be necessary to better evaluate the impact of RAM utility on 
processing speed. 

Tools will also need to be produced to ease the collection of data for the profiles. The initial prototype uses a manual 
process involving LINGO 6 using data from previously collected metrics. The ability to easily collect the necessary 
metrics and automatically solve the problem is desirable. A tool that maintained roles and could start the servers on the 
given machines for that role would also be helpful. In a mature system, the tools should also automate the server code 
generation and reconfiguration processes. 

The approach could also be used to optimize other kinds of systems involving servers, such as web sites and relational 
databases by modeling each server as an object. This would enable better deployment strategies, especially since many 
of these non-object servers could be tightly coupled to object servers. Of course, combinatorial explosion is also an 
issue. Larger systems can cause significant delays in computing deployment strategies. More realistic models as 
mentioned above could also significantly impact the processing time. 
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Abstract 
This paper outlines an approach to embedded com- 

puter system development that is base d on integrate d 
use of multiple domain-specific languages; on in- 
creased use of mathematical analysis methods; and on 
increased integrationbetween domain-specific specifi- 
cation and mathematical modeling and code genera- 
tion. We first outline some general principles of this 
appr ach. We then present a bit more detail about 
the emerging SAE standard Avionics Architecture De- 
scription Language and our supporting MetaH toolset. 
We conclude with a summary of some research chal- 
lenge problems, technic al appoaches, and preliminary 
results uncover ed during our work. 

1    Introduction 
The use of domain-specific languages (4GLs) and 

tools for embedded applications is wide-spread and 
will increase. A number of COTS tools are already 
in wide use for the dev elopmert of feed-back control 
and display applications, for example. In many cases 
the use of domain-specific technologies in preference 
to general-purpose software development technologies 
can result in cost savings and improvements in qual- 
ity factors that justify the additional development and 
acquisition costs of the domain-specific tools. Meta- 
tool tec hnologies are available and have been used for 
low er-cost de«lopment of specialized domain-specific 
tools[5]. 

Three main elements of a domain-specific language 
and toolset are illustrated in Figure 1. There is the 
domain-specific language and editor, which allows con- 
cise and rigorous specification of the structure and 
semantics relev an tto a particular engineering disci- 
pline. There are modeling and analysis methods and 
tools to support design during the early phases of de- 
velopment and verification during the later phases of 

•This work has been supported by DARPA, Army AMCOM, 
AFOSR, and Honeywell Laboratories. 

dev elopmert. There is a code generation or synthesis 
method to produce an implementation from a design 
specification. We believe these elements should be in- 
tegrated and automated as much as is practical. Mod- 
els and code should be generated from a common spec- 
ification, eliminating the hand-development of sepa- 
rate model specifications where possible. The map- 
ping between specification, models and code should 
be structure-preserving, intuitiv e,and easily verified. 
It should be possible to easily trace in any direction 
betw eendesign specification, models, model analysis 
results, and code. 

The construction of complex embedded computer 
systems is an inherently multi-disciplinary effort and 
requires integrated use of multiple domain-specific lan- 
guages and tools. The mix of specification languages 
and tools needed in a particular development environ- 
ment will depend on the mix of embedded functional- 
ity needed in a particular product line. 

Our work has focused on applying the above princi- 
ples in the development of a computer system architec- 
ture specification language and toolset. This language 
and toolset are designed for use by embedded com- 
puter system architects, among whose tasks is the inte- 
gration of various hardware components and softw are 
applications developed by other engineering groups us- 
ing other domain-specific languages and tools. Fig- 
ure 2 illustrates how the outputs of multiple domain- 
specific tools feed into the arc hitecture specification 
toolset, which supports computer system integration 
and modeling and analysis. The output of the toolset, 
in addition to models and analysis results, is softw are 
that integrates the pieces of the system together. 

In addition to supporting embedded system devel- 
opers, the language and toolset also provide a con- 
text and enabler for technology development activi- 
ties. We are using the language and toolset as an 
object of study and a prototyping testbed in research 
activities intended to enable large, dynamically recon- 
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Figure 2: Domain-Specific and AADL Toolsets 

figurable, safety-critical distributed systems that effi- 
ciently host both time-triggered and event-triggered 
w orkloads.We will conclude this paper with a survey 
of some challenge problems, technical approaches, and 
preliminary results in these areas. 

2    MetaH/AADL 
The emerging SAE standard Avionics Architec- 

ture Description Language (AADL) is a language for 
specifying softw are and hardware architectures for 
real-time, safety-critical, scalable, embedded multi- 
processor systems. The AADL allo ws dev elopers 
to specify how a system is composed from soft- 
ware components like processes and pack ages and 
hardware components like processors and memories. 
Our MetaH/AADL toolset performs syntactic and se- 
mantic checks, compliance checksbetw eenspecifica- 
tion and source code, schedulability analysis, relia- 
bility analysis, partition isolation analysis, and gen- 

erates/configures a middleware la yer that can be sub- 
jected to formal analysis using linear hybrid automata 
models. Figure 3 illustrates the current toolset. 

Low-level soft w are constructs of the AADL describe 
source components written in a traditional program- 
ming language like C or Ada. The source components 
themselves come from domain-specific tools, or are 
hand-written, or are re-engineered from existing code. 
Subprogram and pac fege specifications describe im- 
portant attributes of source modules such as the file 
containing the source code, nominal and maximum 
compute times on various kinds of processors, stack 
and heap requirements, mutual exclusion protocol to 
be used for shared pac kages,etc. Even t names and 
data buffer variables used to hold message values can 
appear within source modules and are described in the 
AADL specification. The current toolset will parse 
Ada source modules and check for compliance with 
their AADL interface descriptions. 
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The higher-level soft w are constructs of theAADL 
are processes, macros and modes. Processes group 
together source modules that are to be scheduled as 
either periodic (time-triggered) or aperiodic (event- 
triggered) processes. A process is also the basic unit 
of security and fault con tainmert, and memory pro- 
tection and compute time enforcement may be pro- 
vided if the target RTOS provides the needed support 
features. Macros and modes group processes, define 
connections betw een data and eien t ports, and define 
bindings betw een objects that are to be accessable be- 
tween processes. The difference is that macros run 
in parallel with each other, while modes are mutually 
exclusive. Event connections between modes are used 
to define hierarchical mode transition diagrams, where 
mode changes at run-time can stop or start processes 
or change connections. 

The AADL also allo ws hardware architectures to 
be specified using memory, processor, channel, and 
device components grouped into systems. Hardware 
objects may have data and event ports and pack- 
ages in their interfaces. Soft w are and hardwre data 
and event ports can be connected to softw aredata 
and event ports, and softw are componerts can access 
hardware pac kages(which provide hardware-specific 
APIs). Hardware descriptions iden tify(among other 

things) hardware-dependent source code modules for 
device driv ers, and code to provide a standard in- 
terface betw een automatically composed applications 
and the underlying RTOS. 

Both graphical and textual specification is sup- 
ported. The tw o can be mixed (part of a specifi- 
cation can be maintained textually and part graph- 
ically), and the toolset can translate graphical to tex- 
tual and vice ersa. This is convenient in a soft w are 
and systems integration tool, since different parts of a 
specification may be produced by different groups or 
automatically generated by different domain-specific 
tools. 

A simple softw are/hard\are binding tool assigns to 
hardware those softw are objects in a specification that 
are not explicitly assigned, possibly subject to user- 
specified constraints. 

An executive configuration tool automatically pro- 
duces the "glue" code needed to compose the various 
source modules to form the overall application. The 
resulting tailored middleware is responsible for process 
dispatching, event and message passing, mode chang- 
ing, etc. There is a makeh tool that performs all the 
comples and links needed to produce a loadable image 
for eac h processor specified in the system. 

The design schema for the configured executive is 
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based on preemptive fixed priorit y scheduling the- 
ory. Using AADL specifications of process period, 
preperiod deadline, criticality,and precedence con- 
straints, the executive generator derives priorit y,pe- 
riod transformation, and dispatch and time slice re- 
fill information used in data tables and dispatching 
code[ll]. Data connection specificationand process 
timing information are used to schedule and generate 
code to move data betw een processes' data buffer en- 
ables. Message-passing code includes fault-handling 
constructs and is scheduled to meet hard real-time 
communication deadlines in multi-processor systems. 
Code to vector events to dispatch aperiodics or to trig- 
ger mode changes, and code to manage mode changes, 
is also generated. 

Using information contained irthe AADL specifi- 
cation and produced by the executive generator, the 
schedulability modeler generates a detailed preemp- 
tive fixed priority schedulability model of the applica- 
tion. The model includes middleware scheduling and 
communication overheads as veil as application work- 
loads. In support of traceability, a human-readable 
form of thmodel is written as w ell as the results of 
analyzing the model. The schedulability analysis al- 
gorithm we currently use is an extension of the exact 
characterization algorithm that that can perform cer- 
tain kinds of parametric analysis [21]. 

The executive code generated from a MetaH specifi- 
cation may enforce integrated modular avionics parti- 
tioning (protected address spaces, process criticalities, 
enforced compute time limits, capability lists for run- 
time services). Source objects may be annotated with 
a safety level determined during system safety hazard 
analysisfl] (required application code verification ac- 
tivities and hence the degree of assurance depend on 
the assigned safety lev el). The tool checksto insure 
that correct operation of an object cannot be affected 
by any error in any other object having a lower safety 
level. For example, an object with a high safety level 
should not depend on data from an object with a low 
safety level (unless the connection is explicitly anno- 
tated in the specification to allow this). The deadline 
of a process with high safety level must be guaranteed 
even if processes with low safety levels exceed their 
stated compute times. 

The reliability and linear hybrid automata analysis 
tools will be discussed in later sections that describe 
recen t researc h activities. 

3    Research 
Our long-term goal is a language and computation- 

ally efficient toolset that support the development of 
embedded systems that are distributed, dynamically 

reconfigurable, fault-tolerant, support periodic (time- 
triggered) and aperiodic (even t-triggered) task mod- 
els with complex inter-task interactions, make efficient 
use of resources, and are verifiable to the highest levels 
of system safety and design assurance. In the follow- 
ing sections we will cite some challenging problems in 
these areas and outline some of the approaches we are 
pursuing to deal with them. 

3.1    Decomposition Scheduling 
The distributed scheduling problem for systems 

that host periodic feed-back control applications is 
different than the multi-media scheduling problem. 
Tight end-to-end latencies comparable to task peri- 
ods must be guaranteed. Often no loss of data will 
be tolerated. Solutions may need to be verified to the 
highest levels of assurance, which in practice means 
schedulability analysis must be available. Our no- 
tional set of requirements is 

• high achieveable hardware utilization, e.g.  over 
90% processor and over 75% bus utilizations 

• small end-to-end latencies, e.g. one sampling de- 
lay (one period) 

• high assurance that deadlines will be met, e.g. 
formal schedulability analysis 

• tractability for large systems, e.g. generate sched- 
ules for thousands of tasks and messages on hun- 
dreds of processors in tens of seconds, incremen- 
tally c hange a s<hedule in fractions of a second 

• compatibility with COTS bus/network hardware, 
adaptable to differences in scheduling require- 
ments for individual resources, adaptable to dif- 
ferences in redundancy management techniques 
and interconnect topologies 

We have been exploring an approach we call decom- 
position scheduling, illustrated in Figure 4. The ba- 
sic idea is to decompose the overall system scheduling 
problem into a set of individual resource scheduling 
problems, solve the individual problems, then com- 
bine the results of parametric schedulability analysis 
for the individual resources to obtain a better decom- 
position. Each individual resource scheduling problem 
consists of the tasks or messages allocated to that re- 
source, together with release times and deadlines that 
are selected by the decomposition algorithm. Once 
each resource has been scheduled, the results of para- 
metric schedulability analysis (such as available laxity 
and slack for the various tasks and messages) are used 
to pick a new set of release times and deadlines. The 
new deadlines and release times make the individual 
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Figure 4: Decomposition Scheduling 

scheduling problems easier for previously unschedula- 
ble resources at the expense of previously schedulable 
resources. The approach is iterative and continues un- 
til a solution is found or the solution does not change 
significantly bet w een success & iterations. 

The iterative nature of the approach makes it po- 
ten tially adaptable to incremental resc heduling. Dif- 
feren t resources can potertially be scheduled using dif- 
feren t disciplines, as long as parametric sdiedulability 
analysis is availble for each discipline (our experiments 
used preemptive fixed priority). 

We performed experiments using a highly ab- 
stracted workload from the B777 aircraft information 
management system (113 tasks, 6 processors, 50% bus 
utilization), and an early development workload from 
the Comanche mission equipment pac kage (281 tasks, 
24 processors). We constructed synthetic workloads 
by "connecting" multiple copies until the bus became 
unschedulable. Our prototype was able to schedule 6 
connected Comanche systems (1686 tasks, 144 pro- 
cessors, 57% bus utilization) in 3 seconds of Sparc 
Ultra-2 CPU time. F or comparison, the University 
of Maryland appBedm ulated annealing approach 
to a sanitized B777 problem and required 23 hours of 
CPU time[14]; the carefully tuned production schedul- 
ing tool required a few hours to produce a schedule for 
the fully detailed problem. 

Our approach and preliminary results are similar 
to those of Garci'a and Harbour[15], although we use 
a different decomposition algorithm at each iteration. 
Our prototype also currently only schedules chains of 
length tw o (one task and its outgoing messages, with 
a direct bus available betw een sender and receiver). 

3.2    Slack Stealing 
T raditional con trol applications use periodic task 

and communication models, but many applications 

use even t-triggered irteractiv e task models.lt remains 
a challenge to mix the tw o types of workloads in a 
w ay that guaraAees periodic task deadlines, provides 
quick response times and high throughputs to the ape- 
riodic tasks, and achiev es high processor utilizations. 
Specific examples of such needs are the hosting of a 
message handling application, or a TCP/IP stack, or 
a Real-Time CORBA ORB, on the same system that 
also supports vehicle control applications. 

We have been developing slack stealing methods to 
address this need. Slack stealing, as first proposed 
in [18], is a preemptive processor scheduling algorithm 
that delays the execution of high priorit y periodic 
tasks to improve the response times of aperiodic tasks 
while guaranteeing the periodic task deadlines. An 
on-line slack server determines at each eventarrival 
(each request for slack CPU time) how big o£ time 
slice can be immediately granted at a particular pri- 
ority level without causing any periodic deadlines to 
be missed. 

T able 1 cortains data illustrating the difference be- 
tw een a bac kgroundand (high priorit y) slack server 
when there is a single periodic task with (hyper)period 
H - 10 and compute time C = 6. The subscripts "bg" 
and "ss" refer to a background server and (high pri- 
ority) slack serv er, respectively. The departure time 
of the nth aperiodic task is denoted by dn and the 
response time is r„ = dn — an. Columns rn,bg and 
r„iSS shows the slack server pro viding smaller response 
times. 

The bac kground serv er processes aperiodic tasks 
only when there are no periodic tasks in the sys- 
tem. Suppose an aperiodic task a is in service, hav- 
ing completed x'j of its execution when T„ arrives at 
time (n - 1)H. T aska will bepreempted un til time 
(n-\)H+C while the periodic task executes, at which 
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id On xn On,bg rn,bg "n,ss f"n,ss 

1 1 1 7 6 2 1 
2 3 2 9 6 5 2 
3 6 2 17 11 11 5 
4 8 1 18 10 12 4 

Periodic Task 

High Priority 

Periodic Task 
Low Priority 

T able l:Fig 5 and 6 Sample Data (H = 10, C = 6) 

time it will resume service with a remaining execution 
time requirement of Xj — x'j. The background server 
timeline execution of the data in Table 1 is shown in 
Figure 5. 

Periodic Task 
High Priority 

Aperiodic Task 
Low Priority 

Figure 5: Background Server Timeline 

The slack server processes aperiodic tasks at the 
highest priority as long as a periodic task will not miss 
its deadline. Let C(t) be the amount of compute time 
an executing periodic task has consumed at time t, 
0 < C(t) < min(C,t). When C(t) = C, it remains at 
that v alue uMl t — H, then is reset to 0. C — C(t) is 
the time required by the periodic task to complete by 
its deadline. H — t is the time remaining in the cur- 
rent hyperperiod. The slack remaining in the current 
hyperperiod at time* is then (H — t) — (C — C(t)). In 
other words, an aperiodic task a arriving at time t to 
an empty aperiodic queue would complete without de- 
lay caused by the execution of a periodic task provided 
xj < (H-t)-(C-C(t)). Jixj > {H-t)-{C-C(t)) 
then the aperiodic task w ould bebloc ked durirthe 
interval [t, t + H - (C - C(t))] while the periodic task 
executes and completes exactly at its deadline. The 
slack server timeline execution of the data in Table 1 
is shown in Figure 6. Note that the periodic task is 
bloc king aperiodic tasks in the time hterval [7,10] oth- 
erwise periodic execution occurs only when no aperi- 
odic tasks are in the system. 

When periodic tasks complete in less than their 
w orst case execution time, the mused execution time 

Aperiodic Task 
i   d Execution 
a    4 

Figure 6: Slac k Sener Timeline 

can be reallocated at the priorit y at which it w ould 
have been executed. This form of slack is known 
as reclaimed slack (timeline slack is what is shown 
in Figure 6). Reclaimed slack is particularly im- 
portant when safety-critical applications are present 
because extremely conservative w orst-case compute 
times must normally be used to assure safety-critical 
deadlines. T able 2 is an augmerted v ersion of Ible 1 
for the execution timeline shown in Figure 7, where 
each execution of C actually completes after 4 units 
and 2 units are reclaimed. 

id On xn "n,ss fn,ss 

1 1 1 2 1 
2 3 2 5 2 
3 6 2 9 3 
4 8 1 10 2 
5 13 4 19 6 
6 17 1 20 3 

Table 2: Fig 7 Sample Data (H = 10, C = 6, R = 2) 

Note that w e differentiate betw een aperiodic exe- 
cution on timeline versus reclaimed slack. Aperiodic 
tasks 3 and 4 now execute on reclaimed slack in con- 
trast to Figure 6. Aperiodic taskbfegins its execu- 
tion on timeline slack (in interval [13,16]), and is then 
preempted by the periodic task to ensure its dead- 
line. The periodic task completes early, allowing task 
5 to finish its execution on reclaimed slack (in interval 
[19,20]). 

We have dev eloped a anriet y of slack stealing tech- 
niques that are needed to use this technology in actual 
embedded systems. Our first real-time implementa- 
tion was in MetaH[7]. We later adapted slack algo- 
rithms to support incremental processing[8] and then 
dynamic threads and time partitioning[9] in DEOS, 
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Aperiodic Task 
Timeline Slack 

Figure 7: Recalimed Slack Timeline 

an R TOS contracted for use in six different FAA- 
certified commercial jets.    We w ere able to obtain 
significant performance improvements relative to the 
deferred server algorithm that w as originally used in 
DEOS. For example, the throughput of an FTP stack 
hosted on DEOS improv ed b y a factor of 3 (when slak 
serv ers are used at one or both ends of a communi- 
cation link with a handshaking protocol, throughput 
increases because less time is spent waiting for the 
parties to respond to each other). P erhaps more im- 
portantly, the bandwidth reserved for this application 
w as reduced fy a factor of 7, dramatically increasing 
the available CPU utilization of the overall in tegrated 
system. Slac k stealing has also been used to support 
incremental display tasks, where a minimum tolera- 
ble refresh update rate is guaranteed, with slack being 
used to almost always achiev ea higher refresh rate. 
Our algorithms pro vide the safe co-hosting of Level 
E COTS FTP softw arewith Level A safety critical 
softw are without compromising real-time performance 
measurements or achieveable CPU utilization. 

We are currently investigating the applicability of, 
and extensions to, slack stealing for more complex 
models of task interaction, such as remote procedure 
calls and queueing netw orks; and application of some 
of these concepts to bus/netw ork scheduling in dis- 
tributed systems. 

3.3    Response Time Analysis 
In many application areas, such as telecommunica- 

tions, performance is usually discussed in stochastic 
rather than deterministic terms. Averages alone are 
not sufficient, metrics based on kno wledge ofthe re- 
sponse time distribution are desired (e.g. the expected 
percentage of requests that will be serviced within a 
stated deadline). A challenge problem is to analyti- 
cally predict response time distributions for aperiodic 
tasks when they must share the CPU with periodic 

tasks.   Our goals for analytic modeling of response 
time distributions in the presence of periodic tasks are 

• efficient generation of aperiodic response time dis- 
tribution approximations with confidence bands 

• on-line parameter sensing/estimation for re- 
sponse time model validation, admission control, 
and dynamic reconfiguration 

• analytic models that enable efficient bus/netw ork 
scheduling for blending periodic feed-back control 
messages and even t-triggered messages 

We are in vestigating modelsfor slack seners that 
execute at various priority lev els. Figures 8 and 9 
illustrate the predictions of some different analytic 
models plotted against simulation data for slack and 
bac kground serv ers, respectively[10 ] (H = 64 ms, 
C = 0.75H, aperiodic traffic utilization is 0.2 with 
a mean service rate of 1 ms). We have developed new 
models called the long and intermediate hyperperiod 
models for slack and background servers (labeled LHM 
and IHM). For comparison purposes we also show an 
MM1 slack server model (labeled MM1), a heavy traf- 
fic background server model (labeled HTM), and the 
degraded server model (labeled DSM, which simply 
reduces the server speed by the fraction of the CPU 
taken by the periodic task). The simulation data 
points appear as a heavy line. 

FIFO FG Queue Resp Times; DS:- -; MM1: ..;LHM -; IHM -.; xv»0t=o 

"0 20 40 60 80 100 120 
xttne: mu = 1.000; lambda = 0.200; H * 64.00; C = 48.00;w0 = 0.625; E[B|B>0) = 20.55 

Figure 8: Slack Server Response Time 

The observed aperiodic response time distribution 
for a slack server in Figure 8 lies completely above the 
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DSM response time prediction. In contrast, the ob- 
served aperiodic response time distribution when pro- 
cessed at bac kground priori^ falls completely below 
the DSM response time distribution in Figure 9. For 
both server scheduling disciplines in the configurations 
sho wn, the long and intermediate hyperperiod models 
give estimates closer to the simulation data. Different 
models are better for different system configurations, 
and we have criteria for selecting the best model. 

FIFO BG Queue Resp Times; DSM: HTM:-.;LHM:-;xO = o 

20 40 60 80 100 120 
xttne; mu = 1.000; lambda = 0.200; H = 64.000; C=48.000 

140 160 

Figure 9: Background Server Response Time 

We are also investigating the impact that periodic 
traffic patterns have on the delay distributions of the 
aperiodic traffic. In many commercial bus communi- 
cation protocols with integrated periodic and event- 
triggered traffic, bus traffic is slotted and has desig- 
nated start times for time-driven messages. Event- 
triggered traffic also has dedicated time slots, which 
are usually the remaining gaps not allocated to critical 
periodic messages. There may be no event-triggered 
messages waiting at the start of a preallocated even t 
message time slot, or many messages might have been 
queued for a long time. In many regards, the study of 
these gaps on busses is analogous to the study of even t- 
triggered task response times when run as background 
tasks on a CPU with predefined scheduling times for 
critical time-triggered periodic tasks. We have found 
that the spacing and size of the aperiodic gaps can 
have significant impact on the response delivery time 
distributions, suggesting it is possible to improve bus 
performance by appropriate scheduling of these gaps. 

3.4    Hybrid Automata 
T raditional real-time task models cannot easily 

handle variability and uncertainty in clock and com- 
putation and communication times, synchronizations 
(rendezvous) betw een tasks, remote procedure calls, 
anomalous scheduling in distributed systems, dynamic 
reconfiguration and reallocation, end-to-end dead- 
lines, and timeouts and other error handling behav- 
iors. One of our goals is to analyze the schedulability 
of real-time systems that cannot be easily modeled 
using traditional scheduling theory. For example, we 
w ould life to be able to model and analyze a system 
of tens of tasks on a few processors, where tasks may 
make remote procedure calls to each other, may have 
complex internal behaviors (multiple internal states 
with state transitions dependent on inter-task inter- 
actions), and have hard deadlines betw een specified 
pairs of state transitions. 

A tthe implementation level, task schedulers and 
communication protocols are reactiv e components 
that respond to events like interrupts, message ar- 
rivals, service calls, task completions, error detections, 
etc. Another of our goals is to model and verify im- 
plementations of real-time functions. We would like to 
model important implementation details such as con- 
trol logic and data variables. We would like the map- 
ping betw een model and code to be clear and simple 
to better assure that the model really does describe 
the implementation. For example, w ew ould like to 
be able to model and verify a real-time scheduler or a 
real-time bus driver. 

We have been working with linear hybrid automata 
models of such systems[22]. Our experience suggests 
these are very pow erfuland natural models for very 
complex real-time system behaviors. How ever£om- 
putational intractability is currently a much more se- 
vere problem for hybrid automata model checking 
than it is for finite state model checking. We were 
able to overcome some of these problems by dev el- 
oping our own protot ypereachability tool that uses 
new polynomial-time algorithms to compute hybrid 
state transitions, uses an oracle to concisely encode the 
scheduling semantics for a particular model, and does 
on-the-fly identification of reachable discrete states. 
For example, w e w ere able to solv e some problems 
having 100 times more discrete states than w ecould 
with other tools, although our prototype does not cur- 
ren tly support rate ranges or provide parametric anal- 
ysis. We also show edthat the reachability problem 
becomes decideable under restrictions that are very 
reasonable for this problem domain. 

We demonstrated these technologies by formally 
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verifying key behaviors of the core scheduling and 
time partitioning modules of the MetaH executive. 
The standard executive library modules were modified 
by inserting calls to generate linear hybrid automata 
models of the code that manages basic scheduling and 
time partitioning functions (excluding slack stealing 
and dynamic reconfiguration features). Time-varying 
variables were used to model hardware timers and ac- 
cumulated process compute time. Zero-rate variables 
w ere used to model some mriables in the code. A com- 
plete linear hybrid automata model for this portion of 
the executive (about 1800 SLOC, about half of the 
executive) was automatically generated by executing 
each subprogram independently with test data, then 
subjected to a reachability analysis to verify some ba- 
sic timing properties and assertions in the code. We 
analyzed a set of applications that was sufficient to 
achieve full coverage of the modeled code. 

Our w ork to date suggests the technology has 
passed the threshold of utility for verifying implemen- 
tations of certain real-time functions. How e«r, signif- 
icant improvements in analysis techniques are needed 
in order to analyze and verify the schedulability of 
complex real-time workloads of non-trivial size. 

3.5    System Safety 
Our MetaH toolset supports a construct called an 

error model, which allows users to specify sets of fault 
even ts and error states. An error model includes speci- 
fications of transition functions to define how the error 
states of objects change due to fault, error propaga- 
tion and recovery even ts. An individual object within 
a specification can then be annotated to specify the er- 
ror transition function and fault arrival rates for that 
object. 

We have a prototype reliability modeling tool that 
generates a stochastic concurrent process reliabilit y 
model[17, 20]. Error propagations betw een objects are 
modeled as sync hronizationsor rendezvous betw een 
stochastic concurrert processes. Each sue hpropaga- 
tion synchronization in the model can be controlled us- 
ing an associated consensus expression, which can con- 
ditionally mask propagations depending on the cur- 
ren t error states of selected objects. In the specifi- 
cation, user-supplied consensus expressions describe 
the error detection protocols that are implemented 
by the underlying source modules for a particular 
application. The reliabilit y modeler uses the error 
model specifications and annotations to generate the 
object error state machines, and uses the consen- 
sus expressions and design structure to generate the 
propagation synchronizations betw een these object er- 
ror state machines.  A subset of the reac hable state 

space of this stochastic concurrent process is a Markov 
chain that can be analyzed using existing tools and 
techniques[19j. We selected a stochastic concurrent 
process model because it allowed us to generate a hier- 
archical reliability model whose structure can be easily 
traced back to the original specification and vice versa. 

We believ ethis w ork substantiates the basic con- 
cept of generating a reliabilit y model from a de- 
sign specification, but w ehave identified a number 
of shortcomings that must be addressed for produc- 
tion use[12]. Markov model generation and analysis is 
subject to state space explosion; features in the lan- 
guage to control abstraction in the generated model, 
and state space optimization methods in the analysis 
tool, are needed. Analysis results that are easily trace- 
able back to the specification and include parametric 
sensitivit y data are needed. 

Markov reliabilit yanalysis and partition isolation 
analysis are only two types of analysis used in a com- 
prehensive systensafet y program[23]. The language 
already contains some features for fault tree specifica- 
tion, but features are needed to capture the results of 
hazard analysis and failure modes and effects analysis 
and summary. All these different analyses are syn- 
ergistic and related, and the analysis toolset should 
perform certain consistency checks betw een the differ- 
ent models and results. F or example, basic events in a 
fault tree are assumed to be statistically independent, 
and all common cause analyses (such as partition isola- 
tion analysis) should check for the absence of common 
causes for pairs of basic events. 

We close by noting that softw are safet y standards 
require system safety program activities to be closely 
integrated with development activities, and require 
that safety data and .analyses be clearly traceable 
to dev elopmert w ork products such as designs and 
code[3, 2]. Design assurance standards require re- 
view and analysis in addition to testing, and encourage 
as high a degree of formal analysis as is practical[l]. 
The well-in tegrated and formalized development pro- 
cess and environment that we are pursuing can signif- 
icantly contribute to meeting these requirements. 
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Abstract 

Component-based software development has many potential advantages, including shorter time to market and lower prices, 

making it an attractive approach to both customers and producers. However, component-based development is a new 

technology with many open issues to be resolved. One particular issue is the specification of components as reusable entities, 

especially for distributed object applications. Specification of such components by formal methods can pave the way for a 

more systematic approach for component-based software engineering. This paper discusses an approach for blending Petri net 

concepts and object-oriented features to develop a specification approach for distributed component software systems. In 

particular, a scheme for modeling behavior restriction in the design of object systems is presented. A key result of this work is 

the definition of a "plug-in" structure that can be used to create "subclass" object models, which correspond to customized 

components. 

Keywords: Distributed Software, Modeling, Object Design, Petri Nets 

1. INTRODUCTION AND MOTIVATION 

There is significant interest in using components in software development. Specification and implementation of a 

system in terms of existing and/or derived components can dramatically decrease the time required for system development, 

increase the usability of resulting products, and lower production costs [8]. However, component-based development is still 

immature, with a lack of established procedures and support from formal modeling. 

Reuse principles have typically placed high demands on reusable components. Such components need to sufficiently 

general to cover the different aspects of their use, while also being simple enough to serve a particular requirement in an 

efficient way. This has resulted in a situation where developing a reusable component may require significant effort. Reuse 

can be aided by customization that applies constraints in situations where the functionality of a "base component" is more 

general than is actually needed, or when some base-component features exhibit characteristics not suitable for a particular 

application. Thus, the component's behavior must be restricted before it can be reused in a new design. 

One potentially efficient and natural technique to support constraints is restriction inheritance [2]. Restriction 

inheritance defines a subclass that constrains the behavior of a superclass. This is in contrast to augment inheritance, where a 

subclass augments, or extends, a superclass. Since subclassing by restriction often conflicts with the semantics and intention 

of inheritance, where an instance of a subclass should be an instance of the superclass and should behave like one, some 

researchers have suggested that restriction inheritance be avoided [8]. But, in our own experience, which does involve 

1 This material is based upon work supported by, or in part by, the U.S. Army Research Office under grant number DAAD19- 
99-1-0350 and by NSF under grant number CCR-9988168. 
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development of commercial component-based software, we have observed benefits of restriction inheritance for customizing 

components. 

To develop a systematic design process with the capability for automated simulation and analysis, it is valuable to 

define a design method's syntax and semantics in terms of some formal notation and method. For engineering of distributed 

object systems, it is desirable for the formalization to provide a simple and direct way to describe component relationships 

and capture essential properties like nondeterminism, synchronization and concurrency. Petri nets [5] are one formal 

modeling notation that is in many ways well matched for general concurrent systems. In particular, the standard graphical 

interpretation of Petri net models is appealing as a basis for a design notation. In this paper we introduce a model called a 

State-Based Object Petri Net (SBOPN), which is developed from the basic idea introduced in [6]. Here we extend the basic 

SBOPN model to directly support restriction inheritance modeling for the purposes discussed earlier. SBOPN is most similar 

in spirit to Lakos' Language for Object Oriented Petri Nets, LOOPN [4]. LOOPN's semantics are richer, but SBOPN 

provides a more specific, and thus more intuitive, notation for capturing the behavior of distributed state-based objects. Like 

LOOPN, SBOPN is based on a generalized form of Petri net called colored Petri nets [3]. Another language, CO-OPN/2 [1], 

uses high-level Petri nets that include data structures expressed as algebraic abstract data types and a synchronization 

mechanism for building abstraction hierarchies to describe the concurrency aspects of a system. CO-OPN/2 is a general model 

that focuses on concurrency. SBOPN focuses more on the architectural modeling of state-based systems; thus it is simpler and 

domain-specific. 

2. AN EXAMPLE AND INTRODUCTION TO SBOPN MODELING 

Consider the classic example of a system that uses a bounded buffer to temporarily hold items, such as messages. In 

our example, there exists an operator to enable and disable the buffer, in addition to the standard producer and consumer 

components. The four system components - buffer, producer, consumer and operator - operate asynchronously and only 

interact via messages initiated by the producer (put message), consumer (get message) or operator (enable and disable 

message). At any point in time, the buffer should be in one of four states: Empty, Full, Partial (means Partially Full) or 

Disabled. Depending on its state, the buffer may or may not be able to accept the messages put, get, disable and enable. 

When the buffer is in Empty or Partial state, it can accept the put message and change to Partial or Full state. When it is in 

Partial or Full state, it can accept the get message and change to Empty or Partial state. When it is in any state except the 

Disabled state, it can accept the disable message and change to the Disabled state. Finally, when it is in the Disabled state, it 

can accept the enable message and change to its previous state (before it was disabled): Empty, Partial or Full. To simplify 

the example, we simply assume that after accepting a disable message, the buffer is reset to Empty state. 

To model state-based systems, such as this buffer system, we use State-Based Object Petri Nets (SBOPN) [6]. This 

can be viewed as a special purpose form of (Colored) Petri net. Lack of space prevents us from giving an overview of Petri 

nets here; we refer the reader to a reference like [5] for such information. Figure 1 shows a simple SBOPN model of the 

system we have described above. Notice that there are separate models for the buffer, producer, consumer and operator 

objects. These components are called State-Based Petri Net Objects (SBPNO) and the methods of objects are represented by 

shared transitions. For example, the put method is represented by a shared transition used by the buffer object and the 

producer object. The system model is called a State-Based Object Petri Net (SBOPN). To informally highlight some key 

features of the SBOPN model, let us consider the buffer object. There is an arc from the place pi to the shared transition put. 
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The token labeled D in pi is called a state token, and D is the current state-value of this state token. This represents that the 

current state of the buffer is Disabled. The label {Empty, Partial} for the arc (ph put) shows that the put transition has the 

potential to fire only when the buffer is in the Empty or Partial state. This arc label is called a state filter. When all the input 

places of a transition satisfy the corresponding state filter, that transition is enabled. The arc from the transition put to the 

place pi is also labeled. This arc label (pi, Fl) is called a state-transfer tuple, where/?/ is called a state-transfer place and Fl 

is called a state-transfer function. This tuple determines the possible state(s) the buffer can be in after the put method is 

processed. The input value of a state-transfer function is the state-value of the state token consumed from the associated state- 

transfer place. In this simple example, the buffer can have the following changes due to the put method: from Empty to 

Partial, from Partial to Partial, or from Partial to Full. The state-transfer function F4 indicates that a call to the disable 

method results in the buffer transitioning to the Disabled state, regardless of the state-value of the token consumed from place 

Pi. 

Now, consider a need to customize this general buffer component for use in a more restricted application. First, 

assume the new buffer component should not allow the disable operation. Second, to ensure tighter synchronization on 

producer and consumer components, the new buffer component should behave as a simple capacity-1 buffer. Thus, only when 

the buffer is in the Empty state, instead of both Empty and Partial states, should it accept a put message. We call this new 

buffer a "disable-free synchronous buffer." To model a new system that uses a disable-free synchronous buffer, we could just 

redesign the system in Figure 1 to create a new model. But, there are disadvantages that can result from a "re-design." First, 

creating the new buffer might change the interface of another class, the operator. This conflicts with the basic modularity 

principle of object-design. This is an important issue, especially when it comes to consideration of model synthesis and reuse. 

Second, the redesign might result in a change in the state filter for arc (ph put) in the general buffer class ~ from {Empty, 

Partial} to {Empty}. But, such a change makes it now difficult to directly identify that the new object is actually one of many 

possible behaviorially restricted objects derived from a common object - borrowing from object terminology, we can think of 

these restricted object components as representing subclass objects of a superclass object. We will revisit this issue in Section 

3. 

We propose to model restriction inheritance by the simple addition of a "plug-in" structure to a superclass model. In 

other words, we want to limit the behavior of the superclass object by adding some control structure to the superclass model. 

Actually, this is very natural from the view of control theory since control systems limit the behavior of a system by adding 

some controller logic. For example, [9] describes a method for constructing a Petri net controller for a discrete event system 

modeled by a Petri net. 

3. MODELING RESTRICTION SUBCLASS OBJECTS 

In Section 2 we informally introduced the SBOPN modeling notation via an example. Now we can formally define 

this notation and discuss how to derive design models for subclass objects. 

Definition 1 (SBPNO): A State-Based Petri Net Object is a 7-tuple, SBPNO = (Type, NG, States, sp, ST, SFM, STM), where 

• Type is an identifier for the object's type (or class). 

• NG - (P, T, A) is a net graph, with P as a finite set of nodes, called Places; fas a finite set of nodes, called Transitions, 

disjoint from P, i.e., P n T = <p; and A c (P x T) u (TxP) as a set of arcs, known as the flow relation. 
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• States is a finite set of distinct states that define the possible states of the SBPNO. A token (as in standard, or colored 

Petri nets) may have associated with it a state-value, which is one of the elements of States. 

• sp e Pis called a state place. The value associated with the token in this place indicates the current state of the SBPNO. 

• ST Q T is a set of shared transitions. A shared transition in a SBPNO is a transition that is shared with other SBPNOs. 

Shared transitions model the acceptance of a message from other SBPNOs or the sending of a message to other SBPNOs. 

• SFM: (A n(P xT)) --> f""es is a state-filter mapping, where f""es is the power set of States. This mapping maps each 

place-to-transition arc to a state filter. The basic purpose of the state filter mapping is to ensure that only those tokens that 

have a state-value representing one of the states in the state filter can pass (i.e., be consumed by a transition) via the 

corresponding arc. 

• STM: (A n(TxP)) ->P x STF is a state-transfer mapping, where STF is the set of state-transfer functions, STF = {stf/ 

stf: States -» 2s""es). This mapping maps each transition-to-place arc (t, p) to a state-transfer tuple (p'.stf), where p' e {p/(p, 

t) e A} is called the state-transfer place and stf is called the state-transfer function. The basic purpose of the state-transfer 

mapping is to allow the firing of transition t to map the" state-value of the token consumed from place p' into a set of states, 

which represents the possible state-values that can be associated with the token deposited into the output place via the 

corresponding arc. 

To simplify SBPNO models, implicit (default) state filters and implicit state-transfer tuples are allowed. For an 

implicit state filter, the state-filter is States. Note that in Figure 1, the state filters are implicit in the producer, consumer, and 

operator objects. An implicit state-transfer tuple can be used only when the output place associated with the arc is an input 

place of the transition associated with the arc - the arc is part of a self-loop. The state-transfer place is the place in the self- 

loop. We also require an implicit state-transfer function's output to be the state-value of the token removed from the place in 

the self-loop. Due to the simplicity of the producer, consumer, and operator object models, the state-transfer tuples are also 

implicit. 

Now we can identify properties of a restriction subclass and present the definition of a restriction subclass model, 

i.e., a model for a restriction subclass object. First, the methods of a restriction subclass object should be a subset of the 

methods of the superclass object. Second, the externally observable behavior of a restriction subclass object should be 

observable in the behavior of the superclass object. Thus, any firing sequence of a SBPNO subclass model should be a firing 

sequence of the superclass model when we only consider the shared transitions. A particular restriction subclass model must 

be defined in terms of some particular superclass model and some specific method restrictions. These restrictions are captured 

by a restriction function, as defined next. 

Definition 2 (Restriction Function): Let N, = (Type,, NG,, States,, IS,, Stoken,, ST,, SFM,, STM,) be a SBOPN, and let 

function/ SF, -» 2 , where SF, is the domain of SFM,, and 2 is the power set of States,. The function/is 

called a restriction function for N, if and only if/satisfies: Vsf, e SF,,f(sf,) Qsf,. 

Applying /to the state filters of N, creates a new model, which we denote as N,/f. It can be shown that JVy^is a 

restriction subclass model of N,, but note that N,(f 'features the two disadvantages discussed earlier in Section 2. Our goal is to 
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create a "plug-in" structure that can be added to a superclass model causing it to have the same behavior as Nt/f but avoiding 

these disadvantages. Such a plug-in structure must be able to control the firing of some shared transition t. This is 

accomplished by using a so-called "control place" as the heart of the plug-in structure. The control place must ensure that the 

state-value of a token in the control place "tracks" the state-value of a token in one of the input places/? to the transition /. We 

call such a place/? the "controlled place." 

Definition 3 (Control Place): Let N = (Type, NG, States, ST, SFM, STM) be a SBPNO, and/?; andp2 be two places of N. We 

say that/?^ is a control place for/»; (/?; is a controlled place) if and only if: 

1) (STnpi *0)A(STnp2' Q ST n p') (Note: p' is the set of output transitions of the place/»;). 

2) For any shared transition t e (ST np'), the associated state filter for the arc (p2, t) is a subset of the state filter for 

the corresponding arc (plt t). 

3) For any reachable marking M' from M, which satisfies M(pi) = M(p2), and any transition t e (ST np2*), if t fires 

under M', then the tokens consumed by t from/?; and/?2 should have the same state values. 

3.1 Basic Plug-in Design 

Since our goal is to ensure that the state-marking of a control place "tracks" that of the controlled place, we can copy 

the token of a controlled place into the control place, but we must be sure that this copying occurs before allowing these 

places to enable any shared transition. We call this type of control place a "refreshing place" since it gets refreshed (i.e., the 

state-value of its current state token is updated) each time the state-value of the token in the corresponding controlled place 

changes. Figures 2, 3 and 4 illustrate this idea by a simple example. In Figure 2, we present a SBPNO model for an object Cl. 

Now, suppose that we want to derive a model for a restriction subclass object C2 that has the property that /; can be enabled 

only when the object is in the state a - instead of either state a or b, as in the superclass object Cl. We need t2 to remain 

enabled in the a-state. 

To model this subclass object, we create a new place p2 (see Figure 3) as a control place. Transition t3 is introduced 

for the purpose of copying the state token from/?; top2. The state filter associated with/?/s connection to f; is fa}. However, 

under the general firing rule that controls the behavior of a SBPNO, we cannot guarantee that the tokens in /?; and p2 are of 

the same value when tj is enabled. For example, in Figure 2, suppose /?; has initial state a, then the firing sequence is tt t2tj . 

Now consider Figure 3, where both/?; andp2 have initial state a. Once t2 fires,/?; has state b, whilep2 still has state a. lft3 

does not yet fire, /?; and p2 have different states, but tj is still enabled. As a result, we could get the same firing sequence as 

Cl, t*t2t'. However, C2 is supposed to only allow the restricted firing sequence t't2, where we ignore the internal transition 

t3 in the firing sequence. So the construction in Figure 3 does not yet provide for a proper modeling of the control place. 

The problem is that when t2 fires, the token inp2 remains unchanged and thus is not "tracking" the marking of/?;. To 

solve this problem, we need to force t3 to fire immediately after t2 fires, i.e., to refresh p2 immediately. This is accomplished 

by using a special form of Petri net arc called an activator arc [7]. An activator arc can be used to connect a place to a 

transition. For nets with activator arcs, the transition firing rules are as follows: 1) Those enabled transitions with activator 

arcs have the highest priority, and 2) A transition that has activator arc input(s) cannot fire twice in succession for the same 

input marking, i.e., the net's marking must be modified in some manner before the transition can fire again. For example, in 

Figure 4, /;, t2 and t3 are enabled, but t3 has an activator arc (denoted by the arc with a solid bubble), so it fires first. After 
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firing t3, we get the same marking, so t3 cannot fire again. As a result, only t, or t2 can next fire. Now, if/; fires, because the 

marking remains unchanged, we have the same situation as before t, fires. But if t2 fires, both t, and t3 are enabled. Since the 

marking has changed, only t3 can fire, which copies the token b tiomp, to p2, i.e., p2 is refreshed. This copying of the state- 

value from pi to p2 is due to the state-transfer function F3. Note that t, is not enabled any more after t3 fires. As we can see, 

p2 now serves as a proper control place to ensure we have only one firing sequence t,t2 (again, ignoring the internal transition 

t3 in the firing sequence). 

Algorithm 1: Model a restriction subclass object by use of plug-in structures 

Input:    A SBPNO N, = (Type,, NG,, States,, ST,, SFM,, STMJ. 

A restriction function (see Definition 2),f: SF, -» 2 ""es 

Output: A restriction subclass model N2 of N, {N2 has the same externally observable behavior as the model N,/f 

identifiedearlier). 

1) Make a copy N,. Call this new model N2 and let N2 be the source net for the following step: 

2) For each transition t in ST,: 

For each/?/ e t', let SI be the state filter for the arc (p,, t). If 52 =f(Sl) is a proper subset of SI, i.e., S2 * SI, then 

create a control place/>? of p, by applying the following steps: 

A. Create a refreshing place p2 ofp,. (* An algorithm for creation of a refreshing place is given in [10]. The 

basic idea can be understood by observing that the application of this step to the SBPNO in Figure 2 creates part of 

the SBPNO shown in Figure 4 - all of the model except the arcs (p2, tl) and (tl, p2), and the state-filter {a} for the 

arc (p2, tl). *) 

B. Add an arc r, fmmp2 to /. Use S2 as the state filter for r,. Add an arc r2 from / \op2 

End For 

End For 

The initial marking of a subclass model created by Algorithm 1 is determined by the initial marking of the source 

superclass model. All places except the created control places have the same initial marking as in the superclass model. The 

control places take on the same initial marking as their corresponding controlled places. As an example, applying Algorithm 1 

to the SBPNO in Figure 2 creates the SBPNO shown in Figure 4. In this case, N, is the model shown in Figure 2 and the 

restriction function/is defined asftfa, b}) = {a},f({a}) = {a}. Note that the structure within the dashed box in Figure 4 is the 

plug-in structure. 

3.2 Switchable Plug-in Structures 
One advantage of Algorithm 1 is that the plug-in structures created are potentially controllable. By controllability we 

mean that a switch can be added to the structure to control its activity, i.e., the switch can be used to "turn on" or "turn off' 

the functionality of the plug-in structure. We call such a plug-in a "switchable plug-in." A switchable plug-in offers a key 

advantage: It allows an SBOPN model to represent a family of restriction subclass models, corresponding to a family of 

components. 

165 



To transform a plug-in structure into a switchable plug-in, a new place node must be added. For example, Figure 5 

shows the same model as Figure 4, but with a switchable plug-in. Place p3 serves as this new switch place. When there is a 

token in the switch place p3, the "plug-in" structure is active. In this case, the plug-in behaves as before we introduced the 

switch place, i.e., like Figure 4. But when there is no token inp3, the transition t3 will never be enabled. So, in this case, the 

model behaves as before we introduced the plug-in, i.e., like Figure 2. Notice that we have introduced a new state value called 

internal to the state set. Although it is possible to create the switching capability for this particular example without 

introducing this new internal state, use of this special state is required for creating general-purpose switchable plug-ins. In 

general, to model a restriction subclass using switchable plug-ins, we can use Algorithm 1 with the following two simple 

modifications: 1) For each plug-in, create a switch place (connected to/from the transition for the refreshing place); 2) For 

each plug-in, modify the state filter (for the arc from the control place to the restricted transition) to include the state internal. 

As an example, let us revisit the buffer example from Section 2. Now, the modified algorithm mentioned above can 

be applied to the model in Figure 1 to create a model for a "disable-free synchronous" buffer. The resulting model would 

employ two switchable plug-ins - connected to the method transitions disable and put. The initial marking of all places 

belonging to the plug-ins is internal. For the plug-in associated with the disable method, the state filter is set to {internal}. 

Thus if the plug-in is "turned-on" (by marking its switch place), the disable method will become inactive. For the plug-in 

associated with the put method, the state filter is set to {i, Empty}, so that the put method is only active when the buffer is in 

the empty state. Due to a lack of space, we cannot show this buffer model, but it is given in [10]. Of particular interest is the 

observation that this one subclass model actually represents a family of buffer types. The binding of the model to a specific 

buffer behavior is accomplished by varying the initial markings of the switch places (which we can all the Disable-switch and 

the Put-switch). The following table illustrates the options: 

Disable-switch Put-switch Model 
Marked Marked A "disable-free synchronous" buffer 
Marked Unmarked A "disable-free" buffer 
Unmarked Marked A "synchronous" buffer 
Unmarked Unmarked A general buffer (as in Fig. 1) 

The ability to model a family of components can be very helpful for component-based development. It supports 

flexible analysis of varying configurations of customized components in the design phase, which can reduce the overall cost 

of development. 

As a final comment, we note that we did not explicitly discuss any issues regarding model analysis. But, we can note 

that the SBOPN model, including plug-in structures, can be transformed to standard Colored Petri nets, and then to ordinary 

Petri nets. Thus, the discussed modeling approach can leverage on existing and developing techniques for analysis, including 

work aimed at the state-space explosion problem. Further details are provided in [10]. 

4. CONCLUSION AND FUTURE WORK 

One challenge in component-based software engineering is to find techniques and tools that are effective in aiding 

the specification and design of component-based systems. One way to increase the effectiveness of these design techniques is 

to employ formal methods that provide a well-defined design notation and support design analysis. In this paper, we have 

discussed our research to blend Petri net concepts and object-oriented design in order to develop a design approach for 
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component-based software systems development. A unique feature of this work is the idea of a "plug-in" control structure to 

allow for modeling restricted behavior on the part of object models. We discussed how this can support the modeling of 

customized components. One area for future work is to develop some prototype tools that can be used to automate the 

creation of SBOPN designs for complex systems, including support for synthesis and management of customizing general 

components to particular components. In addition, we plan to investigate capabilities for other forms of inheritance modeling. 

REFERENCES 
[1] Biberstein, 0., Buchs, D. and Guelfi, N. "CO-OPN/2: A Concurrent Object-Oriented Formalism," Proc. Second IFIP 
Conf. on Formal Methods for Open Object-Based Distributed Systems (FMOODS), Canterbury, UK, July 21-23 1997, 
Chapman and Hall, London, 1997, pp. 57-72. 

[2] Booch, G. "Object-Oriented Analysis and Design, with Applications (2 nd ed.)," Benjamin/Cummings, San Mateo, 
California, 1994. 

[3] Jensen, K. "Coloured Petri Nets: A High Level Language for System Design and Analysis," Advances in Petri Nets 1990, 
G. Rozenberg (Editor), in Lecture Notes in Computer Science, 483, Springer-Verlag, 1990. 

[4] Lakos, C.A. "Pragmatic Inheritance Issues for Object Petri Nets," Proceedings of TOOLS Pacific '95 Conference (The 
18th Technology of Object-Oriented Languages and Systems Conference), C. Mingins, R. Duke, and B. Meyer (Eds), 
Prentice-Hall, 1995, pp. 309-322. 

[5] Murata, T. "Petri Nets: Properties, Analysis, and Applications," Proceedings of the IEEE, April 1989, pp. 541-580. 

[6] Newman, A., Shatz, S.M. and Xie, X. "An Approach to Object System Modeling by State-Based Object Petri Nets," 
Journal of Circuits, Systems, and Computers, Vol. 8, No. 1, Feb. 1998, pp. 1-20. 

[7] Ramaswamy, S. and Valavanis, K.P. "Hierarchical Time-Extended Petri Nets (H-EPNs) Based Error Identification and 
Recovery for Hierarchical Systems," IEEE Transactions on Systems, Man and Cybernetics, Feb. 1996. 

[8] Szyperski, W. "Component Software: Beyond Object-Oriented Programming," Addison-Wesley, 1998. 

[9] Yamalidou, K., Moody, J., Lemmon, M. and Antsaklis, P. "Feedback Control of Petri Nets Based on Place Invariants," 
Automatica, Vol. 32, No. 1, pp. 15-28, 1996. 

[10] Xie, X. and Shatz, S.M. "Design Support for State-Based Distributed Software," Technical Report, Concurrent Software 
Systems Laboratory, Dept. of EECS, UIC, 2000. 

167 



Type: Producer 

R = Ready 
States = {Ready} 

from 
Buffer 

put 

to 
Buffer 

Type: Consumer 

R\ 

Pi 

R = Ready 
States = {Ready} 

to 
Buffer 

disable 

from 
Buffer 

Type: Operator 

R = Ready 
States = {Ready} 

from 
Buffer 

from 
Operator 

disable 

to 
Operator 

from    ~~t 
Producer 

to 
Producer 

Type: Buffer 

D = Disabled, E = Empty, P = Partial, F = Full 
States = {E, P, F, D} 

Fl(E)={P}        ¥l(P)={P,F} 
¥2(P) = {E, P}    F2(F) = {P} 
F3(Z>)={£} 
F4(JC) ={D}, if xe States 

from 
Operator 

enable 

get 

to 
Operator 

-'  from 
Consumer 

to 
Consumer 

Figure 1. A SBOPN for the buffer, producer, consumer, and operator system 

168 



Type: Cl 

\~~tb} 
tl     ' Ä       Ja—- 

 —"V a    r —" t2 

-J     (pl.Fl) 
~~                           (pl,F2) " 

States = {a, b} 

Fl(a) = {a} 
F1(*) = {A} 
F2(a) = {Z>} 

Figure 2. A Model for Object Cl 

Type: C2 

^p2 

States = -{a, b} 

Fl(a)- 
Fl(i) = 
F2(a) = 
F3(x) = 

-{a} 
-{b} 
-{b} 
= {x}, if x efa • b) 

Figure 3. A Model for Subclass Object C2 (Incomplete) 

Ja.b} 

Type: C2 

Fl(a)={a} 
Y\{b)={b} 
F2(a)={b) 
F3(x) = {*}, if x e (a, bj 

Figure 4. A Model for Subclass Object C2 Using a Plug-in 

i = internal 
States = {a, b, i} 

Fl(a)={a} 
Fl(b)={b} 
F2(a) = {b} 
F3(;t) = {x}, if x e {a, b, i) 

Figure 5. A Model for Object C2 
Using a Switchable Plug-in 

169 



Use of Object Oriented Model for Interoperability in Wrapper- 
Based Translator for Resolving Representational Differences 

between Heterogeneous Systems+ 

Paul Young, Valdis Berzins, Jun Ge, Luqi 

Department of Computer Science 
Naval Postgraduate School 

Monterey, California 93943, USA 

Email: {young, berzins, gejun, luqi}@cs.nps.navy.mil 

ABSTRACT 

One of the major concerns in the study of software 
interoperability is the inconsistent representation of the 
same real world entity in various legacy software 
products. This paper proposes an object-oriented model 
to provide the architecture to consolidate two legacy 
Schemas in order that corresponding systems may share 
attributes and methods through use of an automated 
translator. A Federation Interoperability Object Model 
(FIOM) is built to capture the information and operations 
shared between different systems. An automatic 
translator generator is discussed that utilizes the model to 
resolve data representation and operation implementation 
differences between heterogeneous distributed systems. 

Key words: interoperability, object-oriented model, 
federation interoperability object model, wrapper 

1. INTRODUCTION 

In contemporary object-oriented modeling, an object is a 
software representation of some real-world entity in the 
problem domain. An object has identity (i.e., it can be 
distinguished from other objects by a unique identifier of 
some kind), state (data associated with it), and behavior 
(things you can do to the object or that it can do to other 
objects). In the Unified Modeling Language (UML) these 
characteristics are captured in the name, attributes, and 
operations of the object, respectively. UML distinguishes 
an individual object from a set of objects that share the 
same attributes, operations, relationships, and semantics- 
termed a class in the UML. [BRJ99] 

This view of objects and classes has proven valuable in 
the development of countless systems in various problem 
domains encompassing all degrees of size and 
complexity.  However, one common characteristic of the 

majority of these object-oriented developments is that a 
development team that shared common objectives and 
had a common view of the real-world entities being 
modeled produced them. Often, the developments also 
involved a common architecture implemented on a 
common target platform, using the same implementation 
language and operating system. As a result a single 
method of representation of an entity's name, attributes, 
and operations is the norm. Even on heterogeneous 
implementations by the same development team, 
consistency in the names, attributes and operations used 
for the same real-world entity is likely across the various 
elements of the architecture. Therefore, capturing the 
representation of these properties has not been an issue. 
The software representation of the real-world entity 
should have the same name, attributes, and operations 
across all elements of the architecture if the development 
team enforces consistency. 

This is not necessarily the case when independently 
developed, heterogeneous systems are targeted for 
integration and interoperation. The different perspectives 
of the real-world entity being modeled by independent 
development teams will most likely result in the use of 
different class names as well as differences in the number, 
definition, and representation of attributes and operations 
for the same real-world entity implemented on two or 
more different systems. It is the same situation for non- 
object-oriented fashioned systems. These differences in 
representation of the same real-world entity on different 
systems must be reconciled if the systems are to 
interoperate. 

This paper proposes an object-oriented model for defining 
the information and operations shared between systems. 
The initial use of the model is targeted for integration of 
legacy systems, which generally have not been developed 
using  the   object-oriented  paradigm.     Defining  the 

This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and 
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interoperation between systems in terms of an object 
model however, provides benefits in terms of the 
visibility and understandability of the shared information 
and provides a foundation for easy extension as new 
systems are added to an existing federation. The object 
model defined in this paper can be easily constructed 
from the external interfaces defined for most legacy 
systems (whether object-oriented or not). 

Section 2 will introduce the Object-Oriented Model for 
Interoperability (OOMI) and its structure. In Section 3, 
an interoperability object model is defined for a specified 
federation of systems. Section 4 presents a overview of 
the use of this Federation Interoperability Object Model 
(FIOM) by a wrapper-based translator for enabling 
•interoperability among legacy systems. 

2. OBJECT-ORIENTED MODEL FOR 
INTEROPERABILITY 

An extension of the contemporary object model class 
diagram, depicted in Figure 1, is proposed to model the 
different possible ways an object might be represented in 
a federation of independently developed heterogeneous 
systems. The proposed extension includes information 
about the different representations that an object's 
attributes and operations may take in different systems in 
the federation. 

Class Name 

Attributes: a, ß, %, 8,0, 

Operations: A, B, X, A, 4>,. 

Figure 1. Contemporary Object Model for Each System 

This alternative object model includes the following 
extensions to the contemporary object model. First, as 
depicted in Figure 2, the object oriented model for 
interoperability (OOMI) class diagram will contain a 
representative of all attributes included in any defined 
representation of the real-world entity modeled by that 
class. In Figure 2 these are depicted as attributes a 
through <|>. Each attribute may have multiple 
representations, resulting from differences in 
interpretation by the component system design teams. 
From Figure 2, each of attributes a through <(> has n 
representations, labeled <xRi through OCR,, for attribute a, 
and similarly for each of the other attributes. A standard 
representation for each attribute is also included, labeled 
OCSTD for attribute a in Figure 2. The standard 
representation is chosen by the interoperability designer 
as an intermediate representation to be used during 
translation. 

For each attribute representation, the interoperability 
object model class diagram will contain information used 
in establishing that the different representations refer to a 
common characteristic of the real-world entity being 
described. This includes information about both the 
syntax of the attribute (attribute type, structure, size, etc.) 
and the semantics of the attribute (attribute role, 
description, etc.). This information is depicted for 
attribute a representation 1 in Figure 2 as aRi Syntax and 
aRi Semantics, respectively. 

In addition, the model will contain one or more 
translations required to convert between different 
representations ofthat attribute. These translations can be 
defined on a pair-wise basis for all possible 
representations- requiring n(n-l) translations for n 
different representations. Alternatively, they can be 
defined using the standard representation as an 
intermediate representation and translation performed in 
two steps (representation 1 to standard to representation 
2), requiring 2n translations. The two-step translation 
method is depicted in Figure 2, with, translation 
(XRJTOSTDO defined to translate an instance of attribute a 
from representation 1 to the standard representation, and 
translation STDToaR20 defined to translate an instance of 
the standard representation of attribute a to representation 
2. 

Similarly, the interoperability object model class diagram 
extends the contemporary object model class diagram to 
include information about different possible 
implementations for each operation. Implementation 
differences may include differences in operation and 
parameter naming, differences in the number and type of 
parameters invoked by the operations, and differences in 
the internal algorithms used by each operation. As long 
as the dynamic behavior of the two implementations is 
equivalent for the same input and output conditions, they 
can be used interchangeably. Thus, the OOMI class 
diagram includes information necessary to determine if 
different implementations of an operation are inter- 
accessible. This includes information about both the 
syntax of the operation (naming, parameters, etc.) and the 
semantics of the operation (operation role, behavior, 
description, etc.). In addition, for each operation, the 
model will contain one or more translations required to 
account for operation name and parameter variations 
found in different operation implementations. Figure 3 
illustrates the operation extension provided in the OOMI 
class diagram. 
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Figure 2. OOMI Class Diagram Attribute Extension 

OPERATIONS 

I 
A 

T 

An(parm,  
pamij) 

... 

Ata(parmi,..., 
pamij) 

AsroCparmi,..., 
parmit) 

An Syntax 
An Semantics 

Ah Syntax 
A|„ Semantics 

ASTD Syntax 
Asm Semantics 

AuToSTD () 
STDToA,, () 

AmToSTDO 

STDToAtaO 

1 
Zn(parmi,..., 

pamip) 

... 

Z]„(parm , 
parniq) 

ZsTt>(parmi,..., 
parm,) 

Zu Syntax 
ZII Semantics 

Zta Syntax 
Zi„ Semantics 

ZSTD Syntax 
ZSTD Semantics 

ZnToSTD () 
STDToZ,, () 

Zi, ToSTD () 

STDToZtaO 

Figure 3. OOMI Class Diagram Operation Extension 

From Figure 3, it can be seen that the depicted class 
diagram contains operations A through Z and that each 
operation has a number of different implementations. For 
example, operation Z has implementations Zu through Z^, 
each with a potentially different set of parameters. For 
each operation, the interoperability designer defines a 
standard implementation for that operation which is used 
as an intermediate representation during translation. For 
each implementation syntactic and semantic information 
is provided in order to establish a correspondence with 
other operation implementations that are equivalent- for 
example ZIn Syntax and ZIn Semantics for operation Z 
implementation n. Finally, translations ZInToSTD0 and 
STDToZj„0 are used to translate operation and parameter 
names from operation Z implementation n to the standard 
representation for operation Z's name and parameters, and 
vice versa. 

In addition to having different representations for the 
same attribute or different implementations for an 
operation, heterogeneous object designers may provide 

different numbers and types of attributes and operations 
for the same real-world entity. One representation ofthat 
real-world entity might include attributes and operations 
that another representation omits. Because of this 
difference, a mechanism must be provided to capture the 
attributes and operations present in the various 
representations of the entity. This is provided through the 
addition of a Class Structure property to the 
interoperability object model class diagram. 

Figure 4 depicts the OOMI class structure property for an 
example class. A representation of this class is found in 
the external interface of a number of systems, as specified 
by the ClassA through ClassX class diagrams that 
comprise the aggregate Class Structure property. For 
each representation, a list of the attributes and operations 
included in that representation is included. In addition, 
the system of origin of the class and whether the class is 
exported (ProducerClass) or imported (ConsumerClass) 
by the system is also included in the class's attribute 
property. As indicated in Figure 4, ClassA contains 
attributes Aattri through Aattr„ and operations Aopi 
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Figure 4. OOMI Class Diagram Class Structure 

through Aopm. Attribute and operation names for Aattri 
through Aattr„ and Aopi through Aopm are the names used 
by system ABC as contained in ABCs external interface. 
In addition to listing the attributes and operations included 
for each representation, the attributes and operations are 
identified in terms of the standard names provided in the 
attribute and operation properties of the class. These 
standard names are used together with the local names to 
locate the translations used to convert the attributes and 
operations to a different representation (to or from a 
standard representation). 

In summary, the Object-Oriented Model for 
Interoperability is an extension of the contemporary 
object model, augmenting the contemporary model class 
diagram with a Class Structure property and extending the 
Attribute and Operation properties to capture the different 
representations possible for those properties in a 
federation of autonomous heterogeneous systems. The 
model is extensible in that adding new representations for 
an attribute or operation or for a class merely adds a class 
to the existing properties while preserving the existing 
representations. The model increases the level of 
abstraction dealt with by the interoperability engineer by 
enabling him to think in terms of the real-world entities 
participating in the interoperation between systems and 
not in terms of the different representations used. And 
finally, by capturing the information needed to represent 
the relationships between entity representations and the 
translators necessary to convert between representations, 
the OOMI supports automated conversion between object 
representations. Figure 5 provides a top-level summary 
of the proposed OOMI Class Diagram. 

«Interoperability Class» 
Name 

Class Structure (Figure 4) 

Extended Attributes (Figure 2) 

Extended Operations (Figure 3) 

Figure 5. OOMI Class Diagram 

3. CONSTRUCTING INTEROPERABILITY 
OBJECT MODEL FOR FEDERATION OF 

HETEROGENEOUS SYSTEMS 

The previously introduced Object Oriented Model for 
Interoperability enables information sharing and 
cooperative task execution among a federation of 
autonomously developed heterogeneous systems. Using 
the information contained in the OOMI class diagrams 
computer aid can be applied to the resolution of data 
representational differences between heterogeneous 
systems. In order to apply computer aid, a model of the 
real-world entities involved in the interoperation, termed a 
Federation Interoperability Object Model (FIOM), is 
constructed for the specified system federation. 
Construction of the FIOM is done prior to run-time by a 
system designer with the assistance of a specialized 
toolset, called the Object Oriented Model for 
Interoperability Integrated Development Environment 
(OOMI IDE). 

The process of constructing a FIOM for a specified 
system federation essentially consists of identifying the 
real-world entities that reflect the shared information and 
tasks and capturing the different representations used by- 
systems in the federation for that entity. Each real-world 
entity is represented in the FIOM as a class, termed a 
Federation Interoperability Class (FIC), constructed from 
the classes contained in the component systems' external 
interface. 

Determination of the real-world entities that define the 
interoperation of a federation is not merely a matter of 
identifying the classes involved in the external interfaces 
of the systems in the federation. Because of the 
independently developed, heterogeneous nature of the 
systems in the federation, each system may have a 
different representation for the real-world entities 
involved. Thus, the classes and objects that realize the 
external interfaces of the component systems must be 
correlated to determine which representations reflect the 
same real-world entity. Correlation software is included 
as part of the OOMI IDE in order to assist the system 
designer by providing a small set of selected 
correspondences to be reviewed by domain experts. 
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4. AUTOMATIC WRAPPER GENERATION 

System interoperability involves both the capability to 
exchange information between systems and the ability for 
joint task execution among different systems. [PIT97] 
Both capabilities involve one or more of the following 
kinds of actions: 

• Send     One   system   transmits   a   piece   of 
information to another 

• Call      One system invokes an operation on 
another 

• Return   Returns a value to the caller 
• Create   Creates an object on the called system 
• Destroy Destroys an object on the called system 

[BRJ99] 

Information exchange is accomplished through means of 
a Send operation, where one system, the producer, exports 
information that another system, the consumer, imports. 
Information transmitted by the producer system can be in 
the form of an object of some class defined for the 
producer, or it can consist of one or more attributes of an 
object defined for the producer. 

Joint task execution is accomplished through the use of a 
Call operation where one system, a client, invokes an 
operation on another, acting as a server for the requested 
action. In invoking an operation on a server, a client 
system must provide the name of the operation requested 
as well as any parameters required by the server to 
perform the operation. Required parameters can be in the 
form of one or more attributes, operations, or objects. In 
addition, in response to a client Call operation, a server 
may return a set of attributes, operations, or objects to a 
client via a Return operation. Create and Destroy actions 
are special instances of a system call. 

When information exchange or joint task execution is 
performed between heterogeneous systems, the 
participating systems must account for differences in 
representation of the transmitted information. The 
interoperability object model constructed during the pre- 
runtime phase for a specified federation of component 
systems is used to resolve differences in representation 
between interoperating systems. A translator that serves 
as an intermediary between component systems 
accomplishes representational difference reconciliation at 
runtime. 

The translation function is anticipated to be implemented 
as part of a software wrapper enveloping a producer or 
consumer system (or both) in a message-based 
architecture, or alternatively as part of the data store 
(actual or virtual) in a publish/subscribe architecture. A 
software wrapper is a piece of software used to alter the 
view provided  by a  component's  external  interface 

without modifying the underlying component code. 
Figure 6 presents an overview of the use of software 
wrappers and the involvement of the Federation 
Interoperability Object Model in the translation process. 

The translations required by the wrapper-resident 
translator for both information exchange and joint task 
execution are similar. For information exchange, the 
source system provides the exported information in the 
form of a set of attributes or objects of a producer class in 
the native format of the producer. In order to be utilized 
by a consumer system, the exported information must be 
converted into the format expected by the destination 
system. For joint task execution, a client system provides 
an operation name and a set of parameter values to a 
server system in the native format of the producer. The 
parameters may be attributes, operations, or objects of a 
client class. Again, this information must be provided to 
the destination system in a format recognized by that 
system. Thus the operation name, operations, and 
parameter values must be converted to the server 
representation. 

As indicated above, the translator must be capable of 
converting instances of a class's attributes and operations 
(or both attributes and operations in the form of an object 
of the class) from one representation to another. The 
information required to effect these translations is 
captured as part of the FIOM during federation design. 
As presented in Figures 2 and 3, each attribute and 
operation of a class representing a real-world entity 
defining the interoperation includes methods to enable the 
translation between attribute and operation 
representations. Then, at run time, the translator accesses 
the information contained in the model to effect the 
translation between representations. 

The first action the translator must perform is to 
determine the class defining the real-world entity 
corresponding to a transmitted object, attribute, or 
operation. This can be accomplished through the use of a 
mapping developed from the FIOM that maps attribute, 
operation, or object representations to the class 
representing the corresponding real-word entity in the 
model. For instance, from the example provided in 
section 2, objects of class ClassA and ConsumerX as well 
as the attributes and operations for these classes would 
map to a real-world entity represented by prototypical 
class instance RealWorldEntityA. Once the class 
corresponding to the transmitted object, attribute, or 
operation is determined, the methods defined for each 
attribute and operation can be used to effect the 
translation between representations. 

If the transmitted entity were set of attributes, such as 
would be the case during information exchange, then for 
each attribute in the set the appropriate translation method 
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Figure 6. FIOM in Automatic Wrapper Generation 

must be selected. The appropriate translation method is 
located by using the Class Structure property to determine 
the standard representation for each attribute and then 
finding the translations for that attribute in the Attributes 
property for the class representing the real-world entity. 
The translation provided would either be in terms of a 
source-to-destination or a source-to-intermediate 
representation conversion depending on the approach 
used by the system designer for the federation. In this 
manner the translator invokes the appropriate translation 
method for each attribute to convert the attribute from the 
source system representation to either the destination 
system or intermediate representation. The translated 
attribute set is then forwarded to the destination system 
for appropriate disposition. If an intermediate 
representation is used in the translation process, this 
process is repeated by the destination system to convert 
from the intermediate to destination system 
representation. 

For instance, continuing our example from section 2, 
suppose System ABC were to transmit the attributes Aattrj 
and Aattr2 from class ClassA to System XYZ. Then 
presuming that the representation used for System ABC is 
not useable by System XYZ, Aattr, and Aattr2 must be 
translated to a form useable by System XYZ. For our 
example a wrapper-based translator on Systems ABC and 
XYZ will conduct the translation with the translation 
performed in two steps using an intermediate 
representation of the real-world entity's attributes. 

As depicted in Figure 7 below, the System ABC wrapper 
would intercept the transmitted attributes from System 
ABC. Then, using the mapping outlined above, the 
wrapper-based translator would first determine that the 
intercepted attributes were of class ClassA that 
corresponds to class RealWorldEntityA representing the 
real-world entity participating in the interoperation. 
Then, for each attribute, the appropriate translation 
method must be determined. This translation method can 
be determined from the Attributes property, given the 
standard representation for the attribute. From 
RealWorldEntityA's Class Structure property (see Figure 
4), it is determined that ClassA attribute Aattrj 
corresponds to RealWorldEntityA's type Attribute_a and 
Aattr2 corresponds to type Attribute_ß. The appropriate 
translation method is then selected- Attribute_a 
translation 1 (Aattr,ToSTDO) for Producer A attribute 
Aattri and Attribute^ translation / (Aattr2ToSTD0) for 
ProducerA attribute Aattr2. The translator would apply 
these translation methods to each attribute as appropriate 
and forward the resultant intermediate representation to 
System XYZ. 

The System XYZ wrapper would intercept the incoming 
transmission and repeat the process outlined above to 
convert the attributes from their intermediate 
representation to the ConsumerX representation as 
depicted in Figure 7. The resultant translated attributes 
would then be forwarded to System XYZ for disposition. 

If the transmitted entity is an operation with a set of 
parameters, such as would be the case during joint task 
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execution, then the translator must enable conversion of 
both the operation name and parameters and translation 
methods for both operation name and parameter set must 
be selected. The appropriate translation method for 
converting the operation name is located by using the 
Class Structure property to determine the standard 
representation for the operation name and then finding the 
translations for that operation name in the Operations 
property for the class representing the real-world entity. 
The translation provided would either be in terms of a 
source-to-destination or a source-to-intermediate 
representation conversion depending on the approach 
used by the system designer for the federation. The 
translator would then invoke the appropriate translation 
method for the operation to convert the operation name 
from the source system representation to either the 
destination system or intermediate representation. 

Operation parameters can either be attributes, objects, 
operations, or their combinations. For attribute 
parameters, translation of each attribute is conducted as 
described in the attribute translation process above. 
Translation of object parameters will be discussed in the 
next paragraph. Operation parameter translation would 
involve both operation name and parameter translation as 
described above. The translated operation name and 
parameter list is then forwarded to the destination system 
for appropriate disposition. As described above for 
attribute translation, if an intermediate representation is 
used in the translation process, this process is repeated by 
the destination system to convert from the intermediate to 
destination system representation. 

As an example of operation translation, suppose System 
ABC wanted to invoke an operation on System XYZ that 
corresponded to System ABC operation Aoph   Such a 

situation might arise if operation Aopi involved a query of 
system ABC's database and an equivalent operation to 
find similar information in System XYZ's database was 
desired. In order for System ABC to perform such a task, 
an equivalent implementation of operation Aopi must 
exist on System XYZ and any differences in representation 
between Aopj's name and parameters must be resolved 
for System XYZ to be able to execute the operation call. 
Resolution of representational differences is 
accomplished by wrapper-based translators on Systems 
ABC and XYZ using an intermediate representation of the 
real-world entity's operations and parameters in a similar 
manner as was previously done for attributes. 

As depicted in Figure 8 below, the System ABC wrapper 
would intercept the transmitted operation from System 
ABC. Then, using the mapping outlined above, the 
wrapper-based translator would first determine that the 
intercepted operations were of class ClassA that 
corresponds to class RealWorldEntityA representing the 
real-world entity participating in the interoperation. 
Then, for each operation name and parameter, the 
appropriate translation method must be determined. For 
the operation name, the translation method can be 
determined from the Operations property, given the 
standard representation for the operation name. From 
RealWorldEntityA 's Class Structure property (see Figure 
4), it is determined that ClassA operation Aop, 
corresponds to RealWorldEntityA Operation_B and 
operation Aop2 corresponds to Operation_A. The 
appropriate translation method is then selected- 
Operation_B translation 1 (AopiToSTD0) for Producer A 
operation Aopi and Operation_A translation 1 
(Aop2_To_STD0) for ProducerA operation Aop2. 

: ProducerA «become» : RealWorldEntitvA «become» : ConsumerX 

Aarhj 
Aarrr2 

Attribute_ct 
Atrribute_ß 

Xattr, 
Xattr2 

Xatrrj 

w w 

V V 
SystemABC 

Wrapper 
SystemXYZ 

Wrapper 

Figure 7. Mapping Translation to Wrapper Architecture 
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Figure 8. Wrapper-based Translator 

In addition to translating the operation name, differences 
in representation of the operation's parameters must also 
be resolved. For our example, converting parameter 
representations would be accomplished in the same 
manner as done previously for converting attribute 
representations. The translator would apply these 
translation methods to each operation name and parameter 
as appropriate and forward the resultant intermediate 
representation for the operation to System ATZ. 

The System XYZ wrapper would intercept the incoming 
transmission and repeat the process outlined above to 
convert the operation names and parameters from their 
intermediate representation to the ConsumerX 
representation as depicted in Figure 8. The resultant 
translated operations would then be forwarded to System 
XYZ for disposition. 

Translation of object representations involves a 
combination of the procedures for attribute and operation 
conversion    outlined    above. First    though,    a 
correspondence between the source and destination 
object's class attributes and operations must be 
determined from the Class Structure property. If an 
intermediate representation is used to effect the 
translation, the correspondence between the source and 
intermediate representation of the object's class must be 
determined. Once the attribute and operation 
correspondence is established between representations, 
the methods for attribute and operation translation 
outlined above are used to convert between 
representations. Again, for translations involving an 
intermediate representation, the process must be repeated 
by the destination system to convert from the intermediate 
to destination system representations. 

5. CONCLUSIONS 

An Object-Oriented Model for Interoperability (OOMI) is 
proposed in this paper to solve the data and operation 
inconsistency problem in legacy systems. A Federation 
Interoperability Object Model (FIOM) is defined for a 
specific federation of systems designated for 
interoperation. The data and operations to be shared 
between systems are captured in a number of Federation 

Interoperability Classes (FICs) used to define the 
interoperation between legacy systems. Software 
wrappers are generated according to the FIOM that enable 
automated translation between different data 
representations and operation implementations. 

At this stage, XML-based message translation is being 
studied for implementation of the proposed model. The 
capability provided by the XML family of tools coincides 
nicely with the requirement for data and operation 
representation capture and translation. 

Some important issues, such as security, real-time, etc., 
are not discussed in this paper. However, the structure of 
the semantic and/or syntactic information integrated in the 
OOMI preserves the capability of being extended to 
address such concerns. 
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Abstract 
We introduce an abstraction known as an intelligent software decoy for protecting objects within a component-based archi- 
tecture from egregious and malicious use by mobile agents. If an agent misuses or tries to circumvent the published interface 
specification of an object, then the object switches from its nominal operating mode to a deception mode. While serving as a 
decoy an object attempts to both deceive the agent into concluding that its violation of the interface specification has been 
successful and assess the nature of the violation. The interface specification is treated as a contract consisting of precondi- 
tions postconditions, and a class invariant. Failure of a precondition triggers the transition between modes. An intelligent 
software decoy is adaptable, autarkic, polymorphic, and self-replicating. The decoy disguises and defends itself by modify- 
ing its contract at run-time through the use of both polymorphism and late binding. The nature and extent of any change to 
an object is governed by its class invariant. 

Keywords: Agent, authentication, buffer overflow, component-based software architecture, contract, deception, decoy, dis- 
tributed systems, encryption, object, polymorphism, security, software 

1.   INTRODUCTION 

Suppose that there exists a distributed system of thousands of sensors, comprising part of an intelligence-gathering infor- 
mation system, in which each sensor is field-programmable via software hooks. An intelligence analyst could broadcast 
messages to the sensors instructing them to either activate or deactivate themselves, change their mode of operation (e.g., 
from filtering to no filtering of sensor inputs), or install and execute new software (e.g., for controlling sensing of phenomena 
or encrypting communication with the data-collectors). In addition, the analyst could query the status of the sensors to assess 
the organization's level of readiness for tracking an enemy's movement of troops and weapons. 

On arriving at the software interface of a sensor, a mobile agent interacts with the sensor to reach the goal assigned to the 
agent by its owner. However, if the mobile agent is poorly designed, its flaws may lead the agent to try to interact with the 
sensor software in a way that was not intended by the creator of the agent; this is an example of an egregious but non-mali- 
cious use of the object. This could include unintentionally triggering a change in the operating mode of the sensor. If the 
software agent is malicious, it may try to sabotage the sensor. For example, it might try to alter the sensor software so that 
the movement of enemy forces will not be detected or reported by the sensor. If the software is written m Java, the agent 
might try to change the behavior of one of the objects or classes. In early versions of the Java Virtual Machine (JVM), such 
an attack was quite easy to effect due to the fact that a rogue process could insert its own class definition using the same 
name as the original predefined Java class [13]. 

The intelligence-gathering example illustrates the need for permitting mobile agents to modify the software-controlled 
behavior of a distributed system or a subset of the objects that comprise the system. On the other side of the com, the object 
needs to be protected from egregious or malicious acts by an agent to misuse the object or modify the object m an unintended 
or unauthorized manner. By egregious, we mean an unintentional or non-malicious use or modification of the object's inter- 
face or behavior, while malicious refers to an attack on the object. 

One approach to protecting the intelligence-gathering system is to both encrypt the messages and authenticate the mobile 
agents to the software objects. However, McHugh and Michael have identified some of the challenges in managing crypto- 
graphic keys in distributed systems, especially when group membership (e.g., subgroups of the sensors) changes frequently 
[14] Moreover, an authenticated mobile agent may have been compromised, or its creator, who at one time was trustworthy, 
may no longer be so. In summary, encryption and authentication do not address the issue of discovering and responding to 
the goals or actions of mobile agents. ...... i 

Another example of an approach to protecting distributed systems from mobile agents is to require that the agents only 
interact with software objects via a formal interface specification known as a software contract, as introduced in Meyer s de- 
sign-by-contract model [16]. However, an agent might try to bypass the contract to modify the behavior of the targeted 
object   Thus, precondition assertions for controlling access to the object may only be effective at thwarting the actions of 
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non-malicious agents, that is, agents whose flawed design induces unintended interactions with objects through the interfaces 
to these objects. This is known in the epigrammatic world as "Locks are intended to keep honest people honest." 

We introduce an abstraction known as an intelligent software decoy for protecting objects within a component-based ar- 
chitecture from egregious and malicious use by mobile agents. If an agent misuses or tries to circumvent the published inter- 
face specification of an object, then the object switches from its nominal operating mode to a deception mode. While serving 
as a decoy, an object attempts to both deceive the agent into concluding that its violation of the interface specification has 
been successful and assess the nature of the violation. The interface specification is treated as a contract consisting of pre- 
conditions, postconditions, and a class invariant. Failure of a precondition triggers the transition between modes. An intelli- 
gent software decoy is adaptable, autarkic, polymorphic, and self-replicating. The decoy disguises and defends itself by 
modifying its contract at run-time through the use of both polymorphism and late binding. The nature and extent of any 
change to an object is governed by its class invariant. 

2. SOFTWARE DECOYS 

A decoy is intended to deceive something or someone into believing it is the object it advertises itself to be. Therefore, 
the creator of a decoy must actualize the decoy as much as possible to complete the deception. The more the external ob- 
server is deceived, the better the decoy is performing its role. Daniel and Herbig define deception as the "deliberate 
misrepresentation of reality done to gain a competitive advantage" [5]. 

When a duck hunter deploys decoys on a lake, those decoys are painted to resemble the species of duck being pursued. If 
the decoys can be made to move about, the deception may be more effective: the real ducks will think that the decoys are 
also real since the decoys appear to be paddling through the water. In this case, the effectiveness of the decoys need only be 
good enough so as to draw the real ducks within shotgun range. 

An intelligent software decoy has some of the same properties as the physical decoy. It certainly has the same objective: 
deception. If the decoy is intelligent, it can continually deceive the target of the deception into action that accomplishes sev- 
eral goals. In the case of an attack or the deployment of countermeasures executed by an attacker, one of the goals of the 
owner of the decoy is to protect the actual entity being shielded from attack and anti-decoy countermeasures. 

Another goal, in the context of an attack, is to ensure that every attack reveals the presence of an attacker. In this way, the 
decoy can use its own intelligence to deploy more decoys and to alert other objects that an attack signature has been identi- 
fied. As more decoys are deployed, their creator can also alter their own characteristics so that the decoys appear to be 
different from the one originally attacked. 

In an ideal situation, the decoys will be able to adopt a chameleon-like character that allows them to appear to be different 
as other decoys and attackers change form. In the context of software decoys, this model of decoys raises the concept of in- 
telligent agents to a new level of sophistication. It requires that both the interfaces and the objects be polymorphic, that is, 
the contract for each object must be polymorphic. Consequently, any message to a decoy can be encrypted, but the decoy will 
have its own knowledge of the encryption scheme based on the parameters of the polymorphic message. Successful execu- 
tion of the decoy will require satisfying the precondition, the invariant, and the postcondition. Since the postcondition is 
internal to the object, it is not easily compromised even with dynamic patching schemes. 

3. PRIOR RESEARCH 

The general notion of a software decoy is not new. For example, the term "decoy" has been used in the context of rea- 
soning with incomplete information in multiagent systems. According to Zlotkin and Rosenshein [27], 

One obvious way in which uncertainty can be exploited can be in misrepresenting an agent's true goal. In a 
task oriented [sic] domain, such misrepresentation might involve hiding tasks, or creating false tasks 
(phantoms, or decoys), all with the intent of improving one's negotiating position. The process of reaching 
an agreement generally depends on agents declaring their individual task sets, and then negotiating over the 
global set of declared tasks. By declaring one's task set falsely, one can in principle (under certain circum- 
stances), change the negotiation outcome to one's benefit. 

This earlier research indirectly addresses the Byzantine Generals problem [12] in that there was an attempt to construct 
incentive-compatible negotiation mechanisms such that "no agent designer [sic] will have any reason to do anything but 
make his agent declare his true goal in a negotiation." In contrast to the work of Zlotkin and Rosenshein, in which interaction 
between agents was investigated, we explore the use of software decoys in the context of the interaction between agents and 
software components. 

Turing introduced the "imitation game" [25], now known as the Turing test, for testing the intelligent behavior of soft- 
ware. The participants in the test consist of a computer, a human, and an interrogator. The goal of the interrogator, who is a 
human subject, is to distinguish between the computer and the human with whom he or she carries on a conversation. The 
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identity of the respondent, that is the computer or human, is hidden from the interrogator. The measure of intelligent behav- 
ior of the software system is the percentage of time that the interrogator cannot correctly distinguish between the response of 
the computer, which simulates a human response, and that of the person typing responses. Thus, the game is one of decep- 
tion: programming a machine to deceive, via impersonation, a human into believing that the machine he or she is conversing 
with is also a human being. 

In contrast to the approach taken by Turing to test for computer intelligence, Goldberg [8] attempts to address questions 
of intelligent reasoning by computers by arguing that a computer cannot deceive itself. His argument relies on a "common- 
sense view of the mind," that is, that a computer cannot possess beliefs or self-knowledge, as can a human. However, 
Goldberg does not address the issue of whether one computer can deceive another. In our own work, we argue that it is pos- 
sible for a software component to deceive an agent by creating a deception based on either direct inspection of the internal 
state of the other agent, or alternatively, assessing the intentions of the agent by monitoring the agent's behavior. In addition, 
we subscribe to the theory posed by Hirstein that self-deception can be due to conflicts other than between beliefs, namely, a 
"conflict between two representations, a 'conceptual one' and an 'analog' one" [9]. Our conception of a decoy is one in 
which a decoy, agent, or other type of software can itself possess conflicting representations. 

In [6], examples are presented of the use of deception in military campaigns dating back thousands of years. In [4], 
Cohen presents a classification of defenses for information systems, in which one of those defenses is deception: 

Defence 98: deceptions. Typical deceptions include concealment, camouflage, false and planted informa- 
tion, reuses [sic], displays, demonstrations, feints, lies, and insight (Dunnigan, 1995). Examples include 
facades used to misdirect attackers as to the content of a system, false claims that a facility or system is 
watched by law enforcement authorities, and Trojan horses planted in software that is downloaded from a 
site. Deceptions are one of the most interestingareas of information protection, but little has been done on 
the specifics of the complexity of carrying out deceptions. Some work has been done on detecting imper- 
fect deceptions. 

Cohen has explored this class of defense for use in protecting computing resources in a distributed system. He refers to 
such protection techniques as "defensive network deceptions" [2], and has attempted to develop formal models of defensive 
deceptions and the types of attackers for which these deceptions are to be used. In one of these models, the attacker is char- 
acterized as an agent "who believes that information systems are vulnerable and [the attacker] has finite resources to attack" 
the systems. In this model, the attacker relies on intelligence reports about the information systems in order to identify and 
choose a specific vulnerability of the system to target, and that the attacker will not attack unless it believes that "there exists 
an exploitable weakness of value." In the other model Cohen presents, the attacker and defender are both assumed to believe 
that all systems of positive non-zero economic worth have at least one exploitable weakness. 

Cohen introduces six goals for defensive network-deceptions [2]; they are to make the following: 

1. Likelihood of any individual intelligence probe encountering a real vulnerability low. 
2. Likelihood of any individual intelligence probe encountering a deception high. 
3. Time to defeat a deception infinite. 
4. Time to detect a vulnerability once a deception is encountered from a given attack location infinite. 
5. Time to detect an intelligence probe against a deception very small. 
6. Time to react to an intelligence probe against a deception very small. 

These goals, to some extent, have been incorporated into the Deception Toolkit (DTK) [3]. Prior to the emergence of the 
DTK, the most widely used type of tool for defensive network deception was the honey pot, which is still used today. A 
honey pot is a decoy that is placed in a highly visible location within an information system so as to draw the attention of 
attackers. According to Cohen, honey pots have not proved to be very effective at influencing the decision making of an at- 
tacker because each honey pot "consumes such a small portion of the overall intelligence space and has little effect on 
altering the characteristics of the typical intelligence probe" [2]. 

The DTK distributes deceptions throughout the network to be protected, with the deceptions utilizing unused network- 
system resources. An example of a deception that can be created using the DTK is to populate the network with IP addresses 
masquerading as addresses of valuable system resources: the fake IP addresses and dummy resources associated with them 
serve as decoys. The DTK has evolved from a simple extension to honey-pot systems to incorporate techniques to both in- 
crease the size of the search space (i.e., for a real versus decoy service) and the sparseness of actual vulnerabilities. Cohen 
has also used the DTK as an experimental apparatus for testing strategies to improve the quality of deceptions. The strategies 
he lists in [2] include the following: injecting synthetic network traffic into the network, reconfiguring the deception network 
over time, injecting synthetic information about the organization and its constituents into the system, and using real systems 
rather than software sandboxes as decoys. 

Moose [17], like Cohen, has tried to model deception from a systems view. He explicitly models the evolution of pairs of 
stimuli and responses between the defenders of a system who are using deception techniques and that of the attackers. The 
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modeling paradigm is intended to capture deception and counter-deception scenarios, the plans of actors (i.e., defender and 
attacker), uncertainty associated with intelligence information, feedback loops, and the risk models of actors. 

The Denial and deception Analyst Workbench (DAWS) [11] is an interactive system used by intelligence analysts to 
maintain denials and deceptions, in other words, cover stories. The workbench consists of a set of integrated tools, managed 
by an expert system. DAWS pre-processes raw intelligence data so that it can be automatically forwarded to analysts based 
on pattern matches on their information-needs profiles. The other tools help the user manage denials and deceptions that are 
perpetuated for a target audience. DAWS and DTK are similar in that they both are designed with the human in the loop. 

The development of counter-deception techniques has been a very active area of research in the information theory com- 
munity. For example, in the 1970s, Gilbert et al. [7] explored the use of codes to detect evidence of deception on the part of 
an opponent that tries to intercept or change messages between a transmitter and its intended receiver. The opponent tries to 
capture message streams on a channel without letting the original transmitter or the intended receiver know that the message 
has been captured. The typical attack scenario involves a rogue process, such as a Trojan horse, that redirects message traffic 
on trusted channels or via a covert channel (i.e., a channel that bypasses the information system's reference monitor). The 
opponent may raise the deception to an even higher level of sophistication by implementing a man-in-the-middle attack. In 
such an attack, the opponent captures a message, m, modifies the captured message, yielding m\ and makes m'looks as 
though it has not been tampered with. The opponent impersonates the original transmitter while forwarding m 'to the receiver 
that the original transmitter had intended m to reach. 

Recent advances in information theory, such as those reported in [10, 15, 22] have produced authentication-coding 
schemes for detecting deception in authentication channels with single or multiple usage (i.e., without changing the key after 
each message is sent). The authentication codes are used to derive the lower bounds on the probability that an opponent will 
successfully deceive the receiver via substitution or impersonation. 

Tognazzini [24] has investigated constructive uses of deception for designing human-computer interfaces. He compares 
the art of illusion, as practiced by magicians, to the illusions created by the designers of graphical user interfaces, that is, the 
virtual reality that the user of the interface perceives. Some of the techniques that he explores are misdirection, attention to 
detail, and the manipulation of time. He concludes his essay with a discourse on the concept of a threshold of believability 
(on the part of the user of a graphical user interface) and the ethics of impersonation, in the form of anthropomorphism (i.e., 
software agents impersonating humans). 

4.    A FRAMEWORK FOR INTELLIGENT SOFTWARE DECOYS 

In this section we characterize the components and connections of the architecture and framework in which the intelligent 
software decoys reside. 

Components, Named Interfaces, and Reuse 

We treat intelligent software decoys as objects within components, following the usage by Szyperski of the terms "com- 
ponent," "object," and "interface" to describe component-based software architectures [23]. 

Definition (Intelligent software decoy): An object with a contract for which a violation of one or more preconditions by an 
agent causes the object to try to both deceive the agent into concluding that its violation of the contract has been successful 
and assess the nature of the violation, while enforcing all postconditions and class invariants. 

The connectors between components are named interfaces. There is no requirement for the name that a decoy-equipped 
object advertises (i.e., the binding of its name to remote object references in the remote object table) to other components to 
be unique. The interface of a decoy consists of an ordered list of arguments. The arguments can be either primitive types or 
object classes. In the latter case, the argument supports polymorphic types. Each class is composed of its own arguments 
and behavior. The arguments are used to access the methods of objects within a component, either through a remote proce- 
dure call (RPC) or remote method invocation (RMI), as shown in Figure 1. All calls to procedures or invocations of methods 
are communicated to the object via the object's interface. 

A software decoy can replicate itself, using the same name for the cloned components. Mobile agents cannot distinguish 
whether an object is operating in its nominal or deception mode. In order for objects to be able to distinguish amongst them- 
selves, one could implement the architecture using a single address space operating system such as Sombrero [21], or 
possibly a distributed operating system that supports object-request brokers, such as StratOSphere [26]. 

An intelligent software decoy can change the form of its contract interface at run-time. The modification of the form of a 
decoy's interface is supported by polymorphism; that is, the component inherits its interface from its parent class. The modi- 
fication of the interface can involve changing one or more of the following: the number of arguments, the order of 
arguments, or the data type or class of arguments. 
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Fig. 1. Interaction between an agent and an object 

The number of possible combinations of input arguments, in theory, is infinite, as is the number of class derivations. The 
permutation of arguments to introduce randomness into a system is not new. For example, Rothstein introduced the idea of 
using permuted arguments as a form of decoy in his work on message opacifiers [20]. 

In addition to permuting the ordering of the arguments and changing the quantity and type of arguments, randomness is 
injected into the interface by padding the input-argument list with one or more dummy arguments. While the total number of 
arguments is held constant, the position of the dummy arguments in the argument list can be changed, as can the data types of 
any of the arguments. The number of permutations, denoted by P, of the input-argument list for this strategy is 

• (m + n)! (Eq. 1) 

where m is the total number of dummy arguments, n is the total number of legitimate arguments, and k is the number of 
unique data types (both primitive and class-based) from which to assign a type to a dummy argument. 

A mobile agent computes an argument list for an object it wants to access and passes that list along with authentication 
information to the interface of the target object. After the agent is authenticated to the object, the object verifies that the ar- 
gument list that the agent passed to it is correct. 

Definition (Correct agent-generated argument list): An agent-generated argument list is correct if and only if the number, 
ordering, and type of these arguments exactly match those of the target object's interface. 

If the agent-generated argument list is correct, then the client where the object resides checks the access control list to 
determine whether the agent holds the permissions to access the method (e.g., execute the method locally or export the 
method for remote execution). 

Protection of Object Behavior from Unauthorized Modification 

Preconditions, postconditions, and class invariants govern the behavior of an intelligent software decoy. If the precondi- 
tions or postconditions fail during an interaction with a mobile agent, then the decoy either aborts the requested call, or raises 
an exception and unwinds to the caller. An alternative policy to raising exceptions is to retry the operation with a new set of 
data. The class invariants protect decoys from having their behavior modified in an unauthorized way. An agent cannot 
modify the behavior beyond the extent to which such modification is permitted by the parent class of the decoy. 

Randomness can also be introduced into the design of the decoys by allowing the preconditions on the invocation of 
methods of a component to vary. 

Pm,n,q=km-(m + n + q)l (Eq.2) 

where q is the number of unique preconditions in the sample space. We do not allow for the class invariant to be permuted. 
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Polymorphic Types 

As mentioned earlier, component interaction is based on a contract that is controlled by assertions (i.e., preconditions) as 
well as by a polymorphic type. The polymorphic type permits a late-binding of the message interaction. The preconditions 
require certain characteristics to be satisfied for each interaction to be carried forward. Preconditions are not a strong enough 
mechanism for all circumstances. They are particularly ineffective at guarding against mischievous action. 

Polymorphic types are a little more interesting. We declare that certain parameters can have different characteristics 
within some accepted range of types. The types themselves may carry a set of encryption features as well as other encoding 
that makes them less likely to be compromised by an attacker. 

An important difference in a software decoy is when the encryption error is rejected. Ordinarily, if a password fails on a 
routine, that routine rejects the attempt at entry. In contrast, the software decoy lets mischief proceed unnoticed by the at- 
tacker. Instead of repelling the attack, the software decoy engages it without revealing that its action is benign. This could 
be called the Venus flytrap model. This pleasant looking little flower lets its prey enter, enjoy the fragrance of its pollen, and 
encloses it for a tasty meal. 

If the precondition is satisfied and the mischief is in the form of a patch, then the intelligent software decoy relies on the 
protection afforded by enforcement of the invariant and postcondition. Once again, if the invariant fails within the decoy, the 
attacker is never notified. If the postcondition fails, we apply a kind of software jiujitsu within that decoy. This means we 
allow the attacker to believe it has been successful in overpowering the defenses while tumbling it harmlessly through the 
code instead of letting it forward any messages to other agents. Our approach to deception is a cross between ambiguity-in- 
creasing (A-type) deception [5], in which the decoy seeks to ensure that the "level of ambiguity always remains high enough 
to protect the secret of the actual operation," and misleading (M-type) deception [5], which entails reducing ambiguity by 
"building up the attractiveness" of a decoy, thus causing the attacker to concentrate its resources on the decoy. 

Exchange of Roles 

An intelligent software decoy can operate in one of two modes: nominal or deception. 

Definition (Anomalous behavior of a mobile agent): An anomalous behavior of a mobile agent is one in which a request 
for access to a legitimate object by a mobile agent fails the test of authentication, test for correctness of the agent-generated 
argument list, or the check for the necessary access permissions. 

Policy 1 (Transition to deception mode): If an object detects anomalous behavior during its interaction with a mobile agent, 
then the object transitions from nominal into deception mode, or remains in deception mode. 

Policy 2 (Transition to nominal mode): An object remains in deception mode until the object or the agent terminates its 
interaction with the other party. 

The purpose of Policy 1 is to free up the object from processing legitimate requests so that it can take on the role of a soft- 
ware decoy, in particular, containing the agent and gathering information about the agent. Policy 2 provides for objects to 
return to operating in a nominal mode. 

Observation-Inference Component 

The software decoy tries to determine the nature of a mobile agent's interaction with it in order to respond appropriately 
to the mobile agent. The software decoy records the messages passed to its interface by the mobile agent. The software de- 
coy has a pattern recognition capability for distinguishing between whether an anomalous behavior exhibited by a mobile 
agent is due to an error in the mobile code or an attack by that agent. 

Antechamber: The Response Component 

The role of design-by-contract [16] is critical. There can be a failure of the precondition, in which case, we must have a 
response policy for precondition violations. In general, failure of a precondition means the agent will not do any of its work. 
The policy question remains for each agent: what action is appropriate when the precondition fails? A bad precondition may 
originate from a benign source or may represent an attempted attack. At the very least, the decoy keeps track of such fail- 
ures. Failure of the invariant or postcondition intuitively represents a higher probability of an attack on the object. In 
particular, the failure of the postcondition should trigger the self-modifying behavior of the decoy. 

The policy for responding to a mobile agent is embedded in the software decoy. The person or organization that owns the 
software decoy might specify the following policies: 

Policy 3 (Containment by decoy): If a mobile agent, due to a software error in its code, passes an incorrect argument list to 
,the software decoy or the real object, then the decoy should activate its containment countermeasure, rather than actively at- 
tack the mobile agent. 
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Policy 4 (Counterattack by decoy): If the mobile agent intended to attack the object, then the object should not under re- 
spond by treating the interaction as being due an egregious use of the object. 

Policy 3 is intended to guard against an active attack on a non-malicious mobile agent; the result of such an attack could 
trigger a counterattack by the mobile agent or the mobile agent's coordinating agent owned by the same enterprise—a form 
of "friendly fire" due to an error in assessing the true nature of the violation of the contract. In contrast, Policy 4 dictates that 
the containment should include countermeasures that involve an active attack against not only the mobile agent, but also the 
applet that generated the agent, or even the process that invoked the applet. 

The rules that dictate the responses of the object while it is in the deception mode are enforced within the decoy's ante- 
chamber. The antechamber serves as a waiting area for the requests initiated by an agent, that is, while the decoy assesses the 
nature of the contract violations and generates responses. 

Testing for the failure of preconditions is not unlike acceptance testing performed by recovery blocks as part of a fault- 
tolerance strategy. Communicating recovery blocks (CRB), as introduced by Randell [19], provide for propagation of state 
recovery among recovery blocks. Likewise, the results of checking by the decoys of the preconditions for each of the 
chained procedure calls or method invocations (i.e., a procedure call resulting in another procedure call, or one method invo- 
cation resulting in another method invocation) are passed back to the object from which the calling procedure or method 
invocation originated. 

5.    LANGUAGE SUPPORT FOR INTELLIGENT SOFTWARE DECOYS 

We believe that Eiffel is a natural choice of programming languages for implementing intelligent software decoys, at least 
for the purposes of initial experimentation with such decoys. In contrast to Ada95, Java, and other programming languages 
for which extensions have been implemented or proposed to permit the specification and use of contracts, Ejffel provides 
explicit support for design-by-contract in the form of built-in language constructs for specifying preconditions, postcondi- 
tions, and class invariants. In addition, Eiffel's semantics provide for the checking of preconditions and postconditions at the 
object interface, rather than only when a method is invoked or exited. 

In the example of software-controlled sensors, one could wrap the methods (e.g., activate_sensor) in the class 
named INTELLIGENCE_GATHERING_SENSOR with a contract as outlined in Figure 2. 

class   INTELLIGENCE_GATHERING_SENSOR 
-- A sensor with an identification number and a status   (on,   off,   unavailable) 
feature 

definitions 
activate_sensor(parameter list)   is 
-- routine for activating or reactivating a sensor 
require 

preconditions 
do 

operations 
ensure 

postconditions 
invariant 

invariants 
rescue -- enter antechamber 

enter_antechamber(args) 
end 

Fig. 2. Outline of a contract for the class INTELLIGENCE_GATHERING_SENSOR 

For example, a precondition could be that the sensor must already be deactivated before it can be activated, while the 
postcondition could be that the results of the reactivation tests performed on the sensor are not transferred to the collector in 
the clear (i.e., the data must be encrypted). One of the operations associated with activation of a sensor could be the genera- 
tion of an encryption key. An example of an invariant is that the sensor-based data-filtering methods remain unchanged. 
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Moreover, Eiffel provides for inheritance of the assertions from ancestor classes by a descendant class, which is needed to 
preserve the integrity of the software contracts for the software decoys that are generated by a software component. How- 
ever, not all Eiffel systems support the full range of the levels of run-time monitoring of assertions. 

An exception will be raised when one or more of the object's assertions are violated; program control is transferred to the 
rescue clause. The decoy-specific Rescue clause shown in Figure 2 could be used to invoke the logic program contained in 
the decoy's antechamber; we are exploring the technical feasibility and efficacy of this approach. The Rescue clause, which 
is part of the Eiffel language, is used here to maintain the object in a safe state, in this case a decoy state, rather than termi- 
nate the current routine within INTELLIGENCE_GATHERING_SENSOR. 

6. DISCUSSION 

The use of intelligent software decoys within real-world systems would mark a major shift in the design of survivable 
systems. A decoy is not a honey pot. Instead, every object within a distributed system can be designed or wrapped with the 
functionality of an intelligent software decoy: there is no need to set aside a subset of all of the objects within a system as 
tempting bait. Further, the intelligent software decoy is founded upon the integration of formal methods (i.e., design-by-con- 
tract), deception techniques, and defensive-programming techniques. Moreover, the intelligent software decoy attempts to 
distinguish between egregious and malicious uses of an object's interface while also building and acting on stored and current 
signatures of agent-interface interaction: this is a departure from treating all violations of policy to be malicious in nature. 

Intelligent software decoys can be introduced into information systems in an evolutionary manner. The owner of an in- 
formation system can introduce intelligent software decoys into legacy systems without resorting to redesigning or repro- 
gramming the existing objects in their entirety. Instead, objects in legacy systems, especially those that are necessary for the 
survivability of mission-critical systems (e.g., a military command-and-control system, including its infrastructure compo- 
nents) can be wrapped with contracts. As resources for making major modifications to the legacy systems or building new 
information systems become available, the owners of these systems can gradually develop reusable components containing 
contracts. For example, an enterprise could use Eiffel to wrap the current version of its proprietary implementation in the C 
programming language of the MPEG-2 compression protocol, and then completely rewrite the protocol in Eiffel with native 
support for contracts when the resources are available to do so. 

The use of wrappers to implement contracts for commercial-off-the-shelf (COTS) software applications is also appealing 
because the users of such applications typically do not have access to the source code of those applications. Even if the users 
had access to the source code, the costs might outweigh the benefits of making changes directly to the source code because 
the software vendor may not support user-modified software or might change the functionality of the tool on a frequent basis. 
By treating an object as a black box, the user only invests in wrapping each new version of an application, rather than the 
potentially costly modification of the internals of the application. For example, the U.S. Department of Defense would likely 
benefit from the use of contract wrappers because that organization makes extensive use of COTS software applications to 
build information systems, some of which need to be trusted or are mission-critical. 

Irrespective of whether an intelligent software decoy represents a component within the middleware or application of a 
system, the decoy relies on a strong foundation: the local network operating system or the distributed operating system. If 
the operating system cannot be trusted, then it is likely that a malicious agent will attack the weak operating system rather 
than directly attack the intelligent software decoys, especially in the case in which the attacker knows that the objects can 
operate in a deception mode. Therefore, it may be necessary to incorporate intelligent software decoys into the design of the 
operating system itself. For example, decoys could be introduced in an incremental manner into the Linux, Windows2000, 
StratOSphere, and Sombrero operating systems, starting with the objects in the kernels of the operating systems. 

Furthermore, intelligent software decoys can be used to complement other approaches to protecting the components of an 
information system, such as the development of compilers that check for conditions that could trigger a buffer overflow. A 
buffer overflow is typified by the failure to specify and enforce contracts for methods that write data to buffer arrays. In es- 
sence, the calling object (or agent) is allowed to write past the bound of the target data structure, resulting in the overwriting 
of adjacent data structures in the same stack frame. The Return Address Defender (RAD) [1] is a patch to some existing 
compilers for both creating a safe area to maintain a copy of return addresses and wrapping applications with code to protect 
against buffer-overflow attacks. However, Chiueh and Hsu admit that RAD itself is susceptible to buffer-overflow attacks. 
The components of RAD and the compiler themselves could be implemented using intelligent software decoys, thus making 
those components more robust to buffer-overflow attacks. 

7. CONCLUSION 

Our approach to deception is different from that proposed in [2] in that we introduce the use of software contracts and 
polymorphism to create and manage intelligent software decoys. The software contracts are used to specify security policy 
and mediate the interaction under policy between the intelligent software decoy and agent: the postcondition and invariant 
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place fail-safe constraints on the behavior of the decoy, thus permitting the decoy to allow the attacking mobile agent to in- 
teract with the decoy while containing the agent. The class invariant makes it impossible for the attacker to modify the be- 
havior of a decoy, while polymorphism permits the decoy to change its appearance, in the form of preconditions, to the 
attacker. Moreover, the intelligent software decoys populate the entire system space; that is, every software component can 
switch modes at run-time—from nominal to deception mode, and vice versa—and replicate itself. In addition, the decoys can 
operate in an autonomous manner, due to their autarkic nature, or they can communicate their intentions to other software 
components to coordinate their actions to either deceive attackers or trace the source and nature of the attack. 

8.    FUTURE WORK 

We are in the process of refining the mathematical formulation of intelligent software decoys, in addition to extending the 
typing of decoys, such as distinguishing between "volunteer" and "drafted" decoys. As a first step toward demonstrating the 
technical feasibility of using intelligent software decoys to protect objects from the effects of egregious or malicious uses of 
the object or its interface, we are using the Eiffel programming language to instrument objects with the functionality of de- 
coys. 

Moreover, we are designing a commitment protocol to address the issue of transitive closure for chains of method invo- 
cations, that is, methods calling other methods. At each invocation of a method, the object determines whether the 
preconditions are satisfied. However, with a chain of method invocations, it is necessary to evaluate the conformance to the 
contract at each invocation. We are designing a data structure akin to a sandbox in order to store the intermediate results 
generated by each invocation within the chain of methods. As an integral part of the antechamber, the commitment protocol 
is used to decide whether to commit or abort the transaction; the transaction consists of the entire chain of invocations of 
methods. We chose to test the protocol against buffer overflows stemming from the egregious use of an object's interface 
specification, in addition to the malicious use of software contracts. Buffer overflows have been used in many successful 
attacks on distributed systems and involve chains of method invocations. We also will address challenges in distinguishing 
between egregious and malicious attacks, such as false positives resulting from errors in reasoning about the temporal valid- 
ity of the signatures of agent-object interaction. It is important that the decoy be able to distinguish between the types of 
agent-object interaction in order to minimize the likelihood of denying service to legitimate non-malicious agents. 

In addition, we are exploring ways to apply intelligent software decoys in distributed databases in which lightweight ob- 
jects perform queries on multidatabases. For instance, we are exploring how intelligent software decoys can be used in the 
DBMS-aglet framework proposed by Papastavrou, Samaras, and Pitoura [18]. For this case study, we would like to deter- 
mine, for example, whether the aglets could create a successful denial-of-service attack by causing objects to replicate 
themselves as decoys. We are investigating this and other issues related to object persistence and garbage collection. 
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Abstract 

In order to continue to make progress in software measurement, as it pertains to reliability, we must shift the emphasis 
from design and code metrics to metrics that characterize the risk of making requirements changes. By doing so we can 
improve the quality of delivered software, because defects related to problems in requirements specifications will be 
identified early in the life cycle. We developed an approach for identifying requirements change risk factors as predictors of 
reliability problems. Our case example consists of twenty-four Space Shuttle change requests, nineteen risk factors, and the 
associated failures and software metrics. The approach can be generalized to other applications with numerical results that 
would vary according to application. 
Keywords: software requirements analysis, reliability risk, software metrics. 

1. INTRODUCTION 

While software design and code metrics have enjoyed some success as predictors of software quality attributes such as 
reliability [5, 6, 7, 8, 11, 13, 14], the measurement field is stuck at this level of achievement. If measurement is to advance to 
a higher level, we must shift our attention to the front-end of the development process, because it is during system 
conceptualization that errors in specifying requirements are inserted into the process and adversely affect our ability to 
develop the software. A requirements change may induce ambiguity and uncertainty in the development process that cause 
errors in implementing the changes. Subsequently, these errors propagate through later phases of development. These errors 
may result in significant risks associated with implementing the requirements. For example, reliability risk (i.e., risk of faults 
and failures induced by changes in requirements) may be incurred by deficiencies in the process (e.g., lack of precision in 
requirements). Although requirements may be specified correctly in terms of meeting user expectations, there could be 
significant risks associated with their implementation. For example, correctly implementing user requirements could lead to 
excessive system size and complexity with adverse effects on reliability or there could be a demand for project resources that 
exceeds the available funds, time, and personnel skills. Interestingly, there has been considerable discussion of project risk 
(e.g., the consequences of cost overrun and schedule slippage) in the literature [1] but not a corresponding attention to 
reliability risk. 

Risk in the Webster's New Universal Unabridged Dictionary is defined as "the chance of injury; damage, or loss" [21]. 
Some authors have extended the dictionary definition as follows: "Risk Exposure=Probability of an Unsatisfactory 
Outcome*Loss if the Outcome is Unsatisfactory" [1]. Such a definition is frequently applied to the risks in managing 
software projects such as budget and schedule slippage. In contrast, our application of the dictionary definition pertains to the 
risk of executing the software of a system where there is the chance of injury (e.g., crew injury or fatality), damage (e.g., 
destruction of the vehicle), or loss (e.g., loss of the mission) if a serious software failure occurs during a mission. We use risk 
factors to indicate the degree of risk associated with such an occurrence. 

The generation of requirements is not a one-time activity. Indeed, changes to requirements can occur during 
maintenance. When new software is developed or existing software is changed in response to new and changed requirements, 
respectively, there is the potential to incur reliability risk. Therefore, in assessing the effects of requirements on reliability, we 
should deal with changes in requirements throughout the life cycle. 

In addition to the relationship between requirements and reliability, there are the intermediate relationships between 
requirements and software metrics (e.g., size, complexity) and between metrics and reliability. These relationships may 
interact to put the reliability of the software at risk because the requirements changes may result in increases in the size and 
complexity of the software that may adversely affect reliability. We studied these interactions for the Space Shuttle. For 
example, assume that the number of iterations of a requirements change ~ the "mod level" - is inversely related to reliability. 
That is, if many revisions of a requirement are necessary before it is approved, this is indicative of a requirement that is hard 
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to understand and implement safely — a risk that directly affects reliability. At the same time, this complex requirement will 
affect the size and complexity of the code that will, in turn, have deleterious effects on reliability. 

2. OBJECTIVES 

Given the lack of emphasis in measurement research on the critical role of requirements, we were motivated to 
investigate the following issues: 

- What is the relationship between requirements attributes and reliability? That is, are there requirements attributes that 
are strongly related to the occurrence of defects and failures in the software? 

- What is the relationship between requirements attributes and software attributes like complexity and size? That is, are 
there requirements attributes that are strongly related to the complexity and size of software? 

- Is it feasible to use requirements attributes as predictors of reliability? That is, can static requirements change attributes 
like the size of the change be used to predict reliability in execution (e.g., failure occurrence) of this code? 

- Which requirements attributes pose the greatest risk to reliability? 

2.1 Contribution 

This research makes a contribution to the quantification of the above relationships, but we also point out three major 
problems in this type of research: 1) small sample sizes, incomplete data, and inconsistencies in the data, 2) subjective nature 
of some risk factors, and 3) measurement scales that for some risk factors are at most ordinal. 

3. RELATED RESEARCH 

A number of useful related reliability and maintenance measurement projects have been reported in the literature. Much 
of the research and literature in software metrics concerns the measurement of code characteristics [10, 12]. This is 
satisfactory for evaluating product quality and process effectiveness once the code is written. However, if organizations use 
measurement plans that are limited to measuring code, these plans will be deficient in the following ways: incomplete, lack 
coverage (e.g., no requirements analysis and design), and start too late in the process. For a measurement plan to be effective, 
it must start with requirements and continue through to operation and maintenance. Since requirements characteristics 
directly affect code characteristics and hence reliability and maintainability, it is important to assess their impact when 
requirements are specified. Briand, et al, developed a process to characterize software maintenance projects [2]. They present 
a qualitative and inductive methodology for performing objective project characterizations to identify maintenance problems 
and needs. This methodology aids in determining causal links between maintenance problems and flaws in the maintenance 
organization and process. Although the authors have related ineffective maintenance practices to organizational and process 
problems, they have not made a linkage to risk assessment. 

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C source code before and after 
maintenance activities [15]. This technique allowed the project engineers to track the "health" of the code as it was being 
maintained. Maintainability is assessed but not in terms of risk assessment. 

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals, staffing, and trouble report 
and change proposal completion times [17]. A major benefit of this project was the use of trends to identify the relationship 
between the productivity of the maintenance organization and staffing levels. Although productivity was addressed, risk 
assessment was not considered. 

Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1291, Standard for Software 
Maintenance [19]. This project is a good example of how a standard can provide a basic framework for a process and can be 
tailored to the characteristics of the project environment. Although applying a standard is an appropriate element of a good 
process, risk assessment was not addressed. 

Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule with the objective of 
focusing management's attention on improvement areas and tracking improvements over time [20]. This approach aided 
management in deciding whether to include changes in the current release, with possible schedule slippage, or include the 
changes in the next release. However, the author did not relate these metrics to risk assessment. 

An indication of the back seat that software risk assessment takes to hardware, Fragola reports on probabilistic risk 
management for the Space Shuttle. Interestingly, he says: "The shuttle risk is embodied in the performance of its hardware, 
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the careful preparation activities that its ground support staff take between flights to ensure this performance during a flight, 
and the procedural and management constraints in place to control their activities." [4]. There is not a word in this statement 
or in his article about software! Another hardware-only risk assessment is by Maggio, who says: "The current effort is the 
first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel- 
stop at mission end." Again, not a word about software [9]. Pfleeger lays out a roadmap for assessing project risk that 
includes risk prioritization [16], a step that we address with the degree of confidence in the statistical analysis of risk (see 
Section 6). This paper is organized as follows: research approach, risk factors, results, and conclusions. 

4. RESEARCH APPROACH 

By retrospectively analyzing the relationship between requirements and reliability, we were able to identify those risk 
factors that are associated with reliability and we were able to prioritize them based on the degree to which the relationship 
was statistically significant. In order to quantify the effect of a requirements change, we use various risk factors that are 
defined as the attribute of a requirement change that can induce adverse effects on reliability (e.g., failure incidence), 
maintainability (e.g., size and complexity of the code), and project management (e.g. personnel resources). Various examples 
of risk factors are shown in Section 5. 

Table 1 shows the Change Request Hierarchy of the Space Shuttle, involving change requests (i.e., a requests for a new 
requirement or modification of an existing requirement), discrepancy reports (i.e., reports that document deviations between 
specified and observed software behavior), and failures. We analyzed categories 1 versus 2 with respect to risk factors as 
discriminants of the categories. 

Table 1: Change Request Hierarchy 
Change Requests (CRs) 

1. No Discrepancy Reports (i.e., CRs with no DRs) 
2. (Discrepancy Reports) or (Discrepancy Reports and Failures) 

2.1 No failures (i.e., CRs with DRs only) 
2.2 Failures (i.e., CRs with DRs and Failures) 

2.2.1 Pre-release failures 
2.2.2 Post-release failures 

4.1 Categorical Data Analysis 

Using the null hypothesis, Ho: A risk factor is not a discriminator of reliability versus the alternate hypothesis HI: A risk 
factor is a discriminator of reliability, we used categorical data analysis to test the hypothesis. A similar hypothesis was used 
to assess whether risk factors can serve as discriminators of metrics characteristics. We used the requirements, requirements 
risk factors, reliability, and metrics data we have from the Space Shuttle "Three Engine Ouf software (abort sequence 
invoked when three engines are lost) to test our hypotheses. Samples of these data are shown below. 

- Pre-release and post release failure data from the Space Shuttle from 1983 to the present.'An example of post-release failure 
data is shown in Table 2. 

Table 2 
Failure Found On Days from Release Discrepancy Severity Failure Release Module in 

Operational Increment When Failure Occurred Report # Date Date Error 
Q 75 r 2 05-19-97 03-05-97 10 

- Risk factors for the Space Shuttle Three Engine Out Auto Contingency software. This software was released to NASA by 
the developer on 10/18/95. An example of a partial set of risk factor data is shown in Table 3. 

Change    SLOC 
Request Changed 
Number 

A 1933 

Complexity 
Rating of 
Change 

Criticality 
of Change 

Number of 
Principal 
Functions 
Affected 

27 

Table 3 
Number of 

Modifications 
Of Change 

Request 
7 

Number of 
Requirements 

Issues 

238 

Number of 
Inspections 
Required 

12 

Manpower 
Required to 

Make 
Change 

209.3 MW 

190 



- Metrics data for 1400 Space Shuttle modules, each with 26 metrics. An example of a partial set of metric data is shown in 
Table 4. 

Table 4 
Module Operator 

Count 
Operand 

Count 
Statement 

Count 
Path 

Count 
Cycle 
Count 

Discrepancy 
Report Count 

Change Request 
Count 

10 3895 1957 606 998 4 14 16 

Table 5 shows the definition of the Change Request samples that were used in the analysis. Sample sizes are small due to 
the high reliability of the Space Shuttle. However, sample size is one of the parameters accounted for in the statistical tests 
that produced significant results in certain cases (see Section 6). 

Table 5: Definition of Samples 

Sample Size 

Total CRs 24 
CRs with no DRs 14 
CRs with (DRs only) or (DRs 
and Failures) 

10 

CRs with modules that caused 
failures 

6 

CRs can have multiple DRs, failures, and modules 
that caused failures. 
CR: Change Request. 
DR: Discrepancy Report. 

To minimize the effects of a large number of variables that interact in some cases, a statistical categorical data analysis 
was performed incrementally. We used only one category of risk factor at a time to observe the effect of adding an additional 
risk factor on the ability to correctly classify change requests that have discrepancy reports (i.e., a report that documents 
deviations between specified and observed software behavior) or failures and those that do not. The Mann-Whitney test for 
difference in medians between categories was used because no assumption need be made about statistical distribution; in 
addition, some risk factors are ordinal scale quantities (e.g., modification level). Furthermore, because some risk factors are 
ordinal scale quantities, rank correlation was used to check for risk factor dependencies. 

5. RISK FACTORS 

One of the software process problems of the NASA Space Shuttle Flight Software organization is to evaluate the risk of 
implementing requirements changes. These changes can affect the reliability and maintainability of the software. To assess 
the risk of change, the software development contractor uses a number of risk factors, which are described below. The risk 
factors were identified by agreement between NASA and the development contractor based on assumptions about the risk 
involved in making changes to the software. This formal process is called a risk assessment. No requirements change is 
approved by the change control board without an accompanying risk assessment. During risk assessment, the development 
contractor will attempt to answer such questions as: "Is this change highly complex relative to other software changes that 
have been made on the Space Shuttle?" If this were the case, a high-risk value would be assigned for the complexity criterion. 
To date this qualitative risk assessment has proven useful for identifying possible risky requirements changes or, conversely, 
providing assurance that there are no unacceptable risks in making a change. However, there has been no quantitative 
evaluation to determine whether, for example, high risk factor software was really less reliable than low risk factor software. 
In addition, there is no model for predicting the reliability of the software, if the change is implemented. Our research 
addressed both of these issues. 

We had considered using requirements attributes like completeness, consistency, correctness, etc. as risk factors [3]. 
While these are useful generic concepts, they are difficult to quantify. Although some of the following risk factors also have 
qualitative values assigned, there are a number of quantitative risk factors, and many of the risk factors deal with the 
execution behavior of the software (i.e., reliability), which is our research interest. 
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5.1 Space Shuttle Flight Software Requirements Change Risk Factors 

The following are the definitions of the nineteen risk factors, where we have placed the risk factors into categories and 
have provided our interpretation of the question the risk factor is designed to answer. If the answer to a yes/no question is 
"yes", it means this is a high-risk change with respect to the given risk factor. If the answer to a question that requires an 
estimate is an anomalous value, it means this is a high-risk change with respect to the given risk factor. 

For each risk factor, it is indicated whether there is a statistically significant relationship between it and reliability for the 
software version analyzed. The details of the findings are shown in Section 6. In many instances, there was insufficient data 
to do the analysis. These cases are indicated below. The names of the risk factors used in the analysis are given in quotation 
marks. 

Complexity Factors 
o Qualitative assessment of complexity of change (e.g., very complex); "complexity". Not significant. 
- Is this change highly complex relative to other software changes that have been made on the Space Shuttle? 

o Number of modifications or iterations on the proposed change; "mods". Significant. 
- How many times must the change be modified or presented to the Change Control Board (CCB) before it is approved? 

Size Factors 
o Number of source lines of code affected by the change; "sloe". Significant. 
- How many source lines of code must be changed to implement the change request? 

o Number of modules changed; "mod chg". Not significant. 
- Is the number of changes to modules excessive? 

Criticality of Change Factors 
o Criticality of function added or changed by the change request; "crit func" (insufficient data) 
- Is the added or changed functionality critical to mission success? 

o Whether the software change is on a nominal or off-nominal program path (i.e., exception condition); "off nom path", 
(insufficient data) 

- Will a change to an off-nominal program path affect the reliability of the software? 

Locality of Change Factors 
o The area of the program affected (i.e., critical area such as code for a mission abort sequence); "critic area" 
(insufficient data) 
- Will the change affect an area of the code that is critical to mission success? 

o Recent changes to the code in the area affected by the requirements change; "recent chgs" (insufficient data) 
- Will successive changes to the code in one area lead to non-maintainable code? 

o New or existing code that is affected; "new\exist code" (insufficient data) 
- Will a change to new code (i.e., a change on top of a change) lead to non-maintainable code? 

o Number of system or hardware failures that would have to occur before the code that implements the requirement 
would be executed; "fails ex code" (insufficient data) 
- Will the change be on a path where only a small number of system or hardware failures would have to occur before the 
changed code is executed ? 

Requirements Issues and Functions Factors 
o Number s id types of other requirements affected by the given requirement change (requirements issues); "other chgs" 
(insufficient data) 
- Are there other requirements that are going to be affected by this change? If so, these requirements will have to be 
resolved before implementing the given requirement. 

o Number of possible conflicts among requirements (requirements issues); "issues" Significant. 
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- Will this change conflict with other requirements changes (e.g., lead to conflicting operational scenarios) 

o Number of principal software functions affected by the change; "prin funcs" Not significant. 
- How many major software functions will have to be changed to make the given change? 

Performance Factors 
o Amount of memory space required to implement the change; "space" Significant. 
- Will the change use memory to the extent that other functions will not have sufficient memory to operate effectively? 

o Effect on CPU performance; "cpu" (insufficient data) 
- Will the change use CPU cycles to the extent that other functions will not have sufficient CPU capacity to operate 
effectively? 

Personnel Resources Factors 
o Number of inspections required to approve the change; "inspects" Not significant. 
- Will the number of requirements inspections lead to excessive use of personnel resources? 

o Manpower required to implement the change; "manpower" Not significant. 
- Will the manpower required to implement the software change be significant? 

o Manpower required to verify and validate the correctness of the change; "cost" Not significant. 
- Will the manpower required to verify and validate the software change be significant? 

o Number of tests required to verify and validate the correctness of the change; "tests" Not significant. 
- Will the number of tests required to verify and validate the software change be significant? 

6. RESULTS 

This section contains the results of performing the following statistical analyses shown in Tables 6, 7, and 8, 
respectively. Only those risk factors where there was sufficient data and the results were statistically significant are shown. 

a. Categorical data analysis on the relationship between CRs with no DRs vs. ((DRs only) or (DRs and Failures)), using 
the Mann-Whitney Test. 
b. Dependency check on risk factors, using rank correlation coefficients; and 
c. Identification of modules that caused failures as a result of the CR, and their metric values. 

6.1. Categorical Data Analysis 

Of the original nineteen risk factors, only four survived as being statistically significant (alpha £ .05); seven were not 
significant; and eight had insufficient data to make the analysis. As Table 6 shows, there are statistically significant results 
for CRs with no DRs vs. ((DRs only) or (DRs and Failures)) for the risk factors "mods", "sloe", "issues", and "space". We 
use the value of alpha in Table 6 as a means to prioritize the use of risk factors, with low values meaning high priority. The 
priority order is: "issues", "space", "mods", and "sloe". 

The significant risk factors would be used to predict reliability problems for this set of data and this version of the 
software. Whether these results would hold for future versions of the software would be determined in validation tests in 
future research. The finding regarding "mods" does confirm the software developer's view that this is an important risk 
factor. This is the case because if there are many iterations of the change request, it implies that it is complex and difficult to 
understand. Therefore, the change is likely to lead to reliability problems. It is not surprising that the size of the change "sloe" 
is significant because our previous studies of Space Shuttle metrics have shown it to be important [18]. Conflicting 
requirements "issues" could result in reliability problems when the change is implemented. The on-board computer memory 
required to implement the change "space" is critical to reliability because unlike commercial systems, the Space Shuttle does 
not have the luxury of large physical memory, virtual memory, and disk memory to hold its programs and data. Any 
increased requirement on its small memory to implement a change comes at the price of demands from competing functions. 
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Table 6: Statistically Significant Results (alpha < .05). CRs with no DRs vs. ((DRs 
only) or (DRs and Failures)). Mann-Whitney Test 

Risk Factor Alpha Median Value 
CRs with no DRs 

Median Value 
(DRs only) or 

(DRs and Failures) 
issues .0076 1 14 

space .0186 6 123 

mods .0401 0 4 

sloe .0465 10 88.5 

issues: Number of possible conflicts among requirements, 
space: Amount of memory space required to implement the change, 
mods: Number of modifications of the proposed change, 
sloe:   Number of source lines of code affected by the change. 

In addition to identifying predictive risk factors, we must also identify thresholds for predicting when the number of 
failures would become excessive (i.e., rise rapidly with the risk factor). An example is shown in Figure 1 where cumulative 
failures are plotted against cumulative issues. The figure shows that when issues reach 286, failures reach 3 (obtained by 
querying the data point) and climb rapidly thereafter. Thus, an issues count of 286 would be the best estimate of the threshold 
to use in controlling the quality of the next version of the software. This process would be repeated across versions with the 
threshold being updated as more data is gathered. Thresholds would be identified for each risk factor in Table 6. This would 
provide multiple alerts for the quality of the software going bad (i.e., the reliability of the software would degrade as the 
number of alerts increases). 

6.2. Dependency Check on Risk Factors 

In order to check for possible dependencies among risk factors that could confound the results, rank correlation 
coefficients were computed in Table 7. Using an arbitrary threshold of .7, the results indicate a significant dependency among 
"issues", "mods", and "sloe" for CRs with no DRs. That is, as the number of conflicting requirements increases, the number 
of modifications and size of the change increase. In addition, there is a significant dependency among "space", "mods", and 
"issues" for (DRs only) or (DRs and Failures). That is, as the number of conflicting requirements increases, the memory 
space and the number of modifications increase. 

Table 7: Rank Correlation Coefficients of Risk Factors 
CRs with no DRs 

mods sloe issues space 
mods .370 .837 .219 
sloe .370 .717 .210 

issues .837 .717 .026 
space .219 .210 .026 

(DRs only) or (DRs and Failures) 
mods sloe issues space 

mods .446 .363 .759 
sloe .446 .602 .569 

issues .363 .602 .931 
space .759 .569 .931 
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Figure 1. Failures vs. Issues 

6.3 Identification of Modules that Caused Failures 

Table 8 shows modules that caused failures, as the result of the CRs, had metric values that far exceed the critical values. 
The latter were computed in previous research [18]. A critical value is a discriminant that distinguishes high quality from low 
quality software. A module with metric values exceeding the critical values is predicted to cause failures. Although the 
sample sizes are small, due to the high reliability of the Space Shuttle, the results consistently show that modules with 
excessive size and complexity lead to failures. Not only will the reliability be low but this software will also be difficult to 
maintain. The application of this information is that there is a high degree of risk when changes are made to software that has 
the metric characteristics shown in the table. Thus, these characteristics should be considered when making the risk analysis. 

Table 8: Selected Risk Factor Module Characteristics 
Change 
Request 

Module Metric Metric Critical 
Value 

Metric Value 

A 1 change history line count in module listing 63 558 
A 2 non-commented loc count 29 408 
B 3 executable statement count 27 419 
C 4 unique operand count 45 83 
D 5 unique operator count 9 33 
E 6 node count (in control graph) 17 66 

All of the above metrics exceeded the critical values for all of the above Change Requests. 
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7. CONCLUSIONS 

Risk factors that are statistically significant can be used to make decisions about the risk of making changes. These 
changes affect the reliability of the software. Risk factors that are not statistically significant should not be used; they do not 
provide useful information for decision-making and cost money and time to collect and process. The number of requirements 
issues ("issues"), the amount of memory space required to implement the change ("space"), the number of modifications 
("mods"), and the size of the change ("sloe"), were found to be significant, in that priority order. In view of the dependencies 
among these risk factors, "issues" would be the choice if the using organization could only afford a single risk factor. We 
also showed how risk factor thresholds are determined for controlling the quality of the next version of the software. 

Statistically significant results were found for CRs with no DRs vs. ((DRs only) or (DRs and Failures)). 

Metric characteristics of modules should be considered when making the risk analysis because metric values that exceed 
the critical values are likely to result in unreliable and non-maintainable software. 

Our methodology can be generalized to other risk assessment domains, but the specific risk factors, their numerical 
values, and statistical results may vary. Future research will involve applying the methodology to the next version of the 
Space Shuttle software and identifying the statistically significant risk factors and thresholds to see whether they match the 
ones identified in this research. 
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Abstract 

Embedded computer systems are systems in whic h one or more computers monitor and con trol a larger electrome- 
chanical system.  Applications include telecomm unication systems, health care systems, defense systems, man ufac- 
turing automation systems, etc. Man y of these systems have mission-critical requirements and, hence, it is necessary 
to have high confidence in their reliability before deploying them. Further, due to variable environmental conditions 
and rapid technological advances, it is necessary to design these systems to be adaptable and easily modifiable. 

One way of achieving these objectives is to decompose a complex system in to smaller subsystems. Several decom- 
position methods have been developed. However, most of these methods do not necessarily enable system properties 
to be inferred from subsystem properties. In this paper, we constrain each subsystem to be an Independently De- 
velopable and End-user Assessable Logical (IDEAL) subsystem. We classify a system of IDEAL subsystems into 
three classes depending on the interaction pattern among the subsystems. Then, we present an extended finite state 
machine notation for modeling these subsystems and show how they can be statically composed together to form the 
system. The paper also shows how system-level properties can be computed from IDEAL subsystem-lev el properties. 

Keywords: Embedded software systems, High-assurance methods, Software decomposition and composition, Soft- 
ware reliability assessment. 

1    INTRODUCTION 

In recent years, dramatic advances in technology have made it possible to envision and develop highly critical em- 
bedded systems, including high-consequence real-time distributed applications such as on-board weapons control 
systems, avionics and vehicle control systems, air-traffic control systems, manufacturing systems, etc.   These em- 
bedded systems are becoming increasingly sophisticated and complex.  F or example, consider telecomm unications 
systems. Just a few years ago, all that a switching system had to do was to establish a route for a call, monitor the 
call for billing purposes, and release the resources dedicated to the call after it was completed. In recent years, this 
simple scenario has become extremely complex with an explosiv e growth in the number of features and capabilities. 
Telecommunications systems must now handle stationary and mobile calls (both cellular and satellite wireless sys- 
tems), handle various failure modes (switches, trunk-lines, satellites), support voice and data transmissions, handle 
different service plans, and provide numerous user-oriented features (call forwarding, speed dialing, caller id, 911 ser- 
vice, etc.). This tendency to continually push the envelope of complexity has been accelerating in many application 
areas, including defense systems, manufacturing systems, air-traffic control systems, vehicle control systems, etc. 

The growing sophistication and complexity of these embedded applications is stretching the limits of current 
software technology. Almost all the domain-specific knowledge for a given application is now embodied within the 
software and this is extending down to even traditionally all-hardware systems, such as software radios, digital cam- 
eras, and networked appliances. The reason is that software enables the implementation of high-quality, intelligent, 
flexible, and field upgradable application-specific features over generic hardware components. Software also enhances 
the robustness of a distributed application by monitoring the environment and adapting the system to tolerate 
hardware failures, network congestion, security attacks, etc. 

Several challenges must be overcome for the development and deployment of practical embedded systems. First, 
for critical applications, such as mobile command and con trol systems and vehicle control systems, it is necessary to 
be able not only to achieve high quality but also to rigorously demonstrate that high quality has in fact been achieved. 
Further, due to the rapidly changing technology and intense global competition, industry must be able to develop and 
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field these systems quickly and at a low cost. One method of handling these problems is to decompose the system in to 
more manageable portions. Various decomposition methods have been developed [7, 11, 17, 21]. All these methods 
simplify the analysis of software requirements. Several of these methods also facilitate the assurance of software 
quality, i.e., they result in the identification of subsystems that can be designed and implemented independently 
of the other subsystems. However, these methods do not necessarily enable the demonstration of high quality For 
complex software systems, one way of achieving "assessability" is to be able to infer the properties of the system from 
those of its subsystems. (The subsystems are smaller relative to the entire system and, therefore, easier to evaluate.) 
However, this inference is not always possible for arbitrary decompositions where, after the implementation phase, 
we may still be left with the task of determining the reliability of one complex monolithic program. 

This paper presents an approach in which software specifications are decomposed into subsubsystems in such a 
manner that reasoning about the properties possessed by the composition of subsystems can be deduced simply from 
the properties of the individual subsystems. Each subsystem in this class is independently developable, i.e., it can 
be designed and implemented independently of the other subsystems in the system. In addition, each subsystem is 
end-user assessable, i.e., it can be tested or verified by the end-user independently of any other subsystem. That 
is, the end-user (not the developers!) can certify each subsystem by directly observing and comparing its behavior 
with the expected behavior even though it might be part of a large system. W e refer to these subsystems as IDEAL 
(Independently Developable End-user Assessable Logical) software subsystems. 

The rest of this paper is organized as follows. Section 2 presents the possible interaction patterns between IDEAL 
subsystems. Section 3 presents static and dynamic methods of composing a system of IDEAL subsystems. Section 
4 presents assurance methods and Section 5 discusses some related work. Finally, Section 6 summarizes the paper 
and lists some possible research areas. 

2    SYSTEM MODEL 

We consider a system that consists of a collection of autonomous processes, {Po,Pi, ■ ■ -,Pn}. The following two 
properties must be satisfied to ensure that system-level properties can be inferred from subsystem-level properties. 

1. End-user observability. It must be possible to directly observe and evaluate the behavior of each process 
irrespective of whether it is running in isolation or in conjunction with other processes. In our approach, each 
Pi reads from or writes to a shared state space. The shared state space, such as the physical environment for 
process-control systems, is visible to the end-user. 

2. Implementation-invariant state space. The specification of each Pi must be such that the distribution of the 
state space is statistically invariant to any correct implemen tation ofP,-. Essentially, this means that it should 
be possible to guarantee the absence of nondeterminism in the behavior of every P,. 

Let A = {ai,a2,- ■ • ,ak} denote the set of actuators and S = {si,s2, • •-,s;} denote the set of sensors in the 
system. An actuator a affects a subset of the state space; let this be denoted by ca, i.e., the "capability" set for 
actuator a. At time t, an IDEAL process, Pi, monitors a subset Sp{(t) of sensors and sends commands to a subset 
Ap{ (t) of actuators. The instantaneous capability set for process P,- is a time-varying subset of the state space, 
Cpi(t), such that Cp{(i) = Ua6j4p (t)Ca. The complete capability set for process Pi is the entire subset of the state 
space that it can ever impact; this is given by Cp; = UaeAP

ca where Ap{ = {a\3t : t > 0 :: a € Ap{(t)}. A system of 
cooperating IDEAL processes consists of a set of IDEAL processes, P = {PQ, PI, ■ ■ ■, Pn}- 

Pi and Pj have producer/producer interaction if they affect at least one common poin t in the state space. They 
have producer/consumer interaction if one process generates information (or causes state changes) that is used as 
input by the other process. These types of processes are very useful for cooperative situations where one process 
performs a task that is then completed by another process. 

The composition of two processes, Pi and Pj depends on their capability sets. We have classified these into three 
distinct cases, namely, Spatially Separable (SS), Spatially Inseparable Temporally Separable (SITS), and Spatially 
Inseparable Temporally Inseparable (SITI) IDEAL processes. 

Spatially Separable (SS) Processes. Two processes P,- and Pj are spatially separable if Cpt l~l Cpj = <f>, that is, 
if they always affect different regions of the state space. Spatially separable processes will never interfere with each 
other, so no special composition is required. They can simply work and coexist with each other. This case is not 
theoretically interesting, but it is very useful and effective in practice. 
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Spatially Inseparable Temporally Inseparable (SITI) Processes. In this case, two processes need to simul- 
taneously cause changes in the same portion of the state space. For example, one process may be concerned with the 
safety requirements of the system while another process may be concerned with the functional requirements of the 
system. They may both be trying to influence the control trajectory but, perhaps, toward different goals. In these 
cases, only producer/producer interaction is meaningful. 

Consider a control program P. Let S(t) denote the time-varying state space of the system and s(t) denote the 
actual state of the system at time t. s(t) describes a trajectory of the system through its state space. The state 
space can be divided into goal states (states that the control system should reach), constraint states (states that 
the system must avoid), and free states (all the other states). The purpose of the control program is to determine a 
trajectory that passes through the free states and reaches a goal state without passing through any constraint states. 

Our experiences suggest that the top level requirements specification, g, for control systems can be decomposed 
into a conjunction of predicates, g — g\ A #2 A • • • A gn. The individual predicates, #,•, can be further decomposed 
into a disjunction of predicates, i.e., <7,- = gn V gt2 V • • ■ V</,-ni. Note that conjunctive and disjunctive decompositions 
can be applied to the specification iteratively as necessary. 

Let Sjj(2) denote the view of the state space that only reflects the goal or constraint specified by predicate gij. 
That is, Sij(t) has the same state space as S(t), but all its states other than those in {x\x £ S(t) A gij{x)} are 
free states. Let P,j be a program (corresponding to an IDEAL process)' that solves the limited control problem 
expressed in S;J(<). Given a specification of the form described above, an important question is: "How to compose 
the Pij's, 1 < i < n, 1 < j < rn, and how to validate and reason about the properties of the system resulting from 
the composition?" In conventional programs, P,j is viewed as a function that maps its input domain to its output 
space, i.e., Pij returns a single value for a given execution. There is no obvious mathematical model for merging 
independently developed P,j's into the overall system P since the output of the Pij's may be incompatible with each 
other. For example, the code for a safety process for a vehicle-control system may simply set the system to a fixed 
state that is guaranteed to be safe. This ensures that the goal of the safety process will be achieved since the system 
is always in a safe state. However, it prevents anything useful from being done. 

To cope with this problem, we view each P,j as a general relation, i.e., it returns the set of all possible output 
values for each input. We refer to Pij as a relational program [3]. Viewing programs as general relations greatly 
simplifies the composition procedure and reasoning about the system behavior. Now,P can be obtained by simply 
forming the intersection of the output sets of P,- 's, or P = P\ D P2 f~l • • • n Pn, where P,- is the program for achieving </,-. 
Similarly, each Pi can be obtained via a systematic union operation over its subsystems, i.e., P,- = P^UP^U- • 'UP,,,,. 

Among various subgoals of a control system, it is frequently the case that one goal has a higher priority than 
the other. For example, safety is a goal that has to be assured to a high degree of confidence in many control 
applications. If the output of the safety control process conflicts with the output of another process, then the safety 
goal should prevail. To ensure satisfaction of critical properties in the system, we introduce a priority scheme into 
relational composition. Consider a software architecture consisting of a collection of IDEAL processes, Po, P\, ■ • •, 
Pn. Let Oj(x) denote the output set of Pj{x), 0 < j < n, for input x. Assume that the processes are prioritized 
according to their criticality and priority(Pi) > priority(Pj) for all i < j. We define Qj(x) to be the intersection 
of the output sets for Po through Pj, i.e., Qj(x) = Oo{x) D 0\{x) C\ ■ ■ ■ n Oj(x). Clearly, if cj> denotes the empty set, 
then Qj(x) = (j> =$> Qk{x) — <ß, for all k > j. Let choose denote a deterministic function that takes a nonempty set 
and selects an element from the set, i.e., for set S ^ <f>, choose(S) € S. To achieve prioritization, the overall output 
of the system can be defined as choose(Qk(x)) where k = max{j\0 < j < nAQj(x) ^ <f>}. In this design, the system 
output will never violate Po, so Po should be designed to implement the critical functions of the system. EachPj, for 
i > 0, can then be designed to implement some functional requirements of the system or to provide a better quality 
of service, such as control trajectories that conserve resources, achieve more refined control, etc. 

Spatially Inseparable Temporally Separable (SITS) Processes. In a SITS system, there is at least one point 
in the state space that is affected by both Pj and Pj. Hence, Cpt CiCpj ^ <j>. However, Pj and Pj can be separated in 
time so that they do not simultaneously access the same point. Formally ,W : t > 0 :: Cp^t) D Cpj(t) = <j>. One way 
of achieving this separation is to create a third process, P/c, such that P^ coordinates P,- and Pj to ensure that they 
do not interfere with each other. We refer to IDEAL processes of typeP^ as coordination processes. The simplest 
coordination processes are those that only ensure mutual exclusion. More complex processes also ensure the absence 
of deadlocks. 

The case considered in the previous section is conceptually simple. In every cycle, each process looks at the 
state space (via sensors), performs its computation, and updates the state space (via actuators). Thus, there is no 
functional dependency between the processes, i.e., one process does not depend on the output of another process. 
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Similarly, since all the processes execute synchronously, there is no synchronization dependency among the processes. 
The class of Spatially Inseparable Temporally Separable systems is a richer class than SITI systems. Since actions 

can be separated in time, it is now possible to have functional dependency among the processes, i.e., a producer 
process can generates data that is subsequently used by a consumer process. Likewise, since any two SITS processes, 
Pi and Pj, may interfere with each other when they access the shared state space, there is a need for some sort of 
coordination to ensure that their accesses are serializable. Usually, this type of coordination logic is interspersed 
within the code that implements the functional aspects of the process. Two exceptions are the behavioral classes 
in DRAGOON [2] and the "separation of concerns" approach in Aspect-Oriented Programming [16]. There are 
significant advantages in separating out the coordination details from the implem entation of functional aspects. 
First, it significantly reduces the state space of each process which makes reliability assessment much simpler — 
processes corresponding to the functional aspects of the system only need to be concerned with the application 
state space while coordination processes are only concerned with aspects related to process synchronization. Second, 
it enhances the reusability and maintainability of the system. In particular, the coordination subsystems, which 
normally require more expertise to write, can be reused in a variety of different contexts. It also makes the system 
extremely flexible — the coordinators can be c hanged without having to recode any other portion of the system, 
either the functional processes or the access methods for the shared object. Third, with some enhancemen ts, it makes 
all functional as well as coordination processes IDEAL processes. 

3    CODE SYNTHESIS 

It is difficult to automatically convert goal-oriented specifications into code without a substantial knowledge-base 
(and associated inference engine) for the application domain. There are various formalisms that one can use to 
express system knowledge. One practical approach is to use a Finite State Machine paradigm to describe the state 
space of a system. 
Definition 1. A Finite State Mac hine (FSM) model for a pro cess-control system consists of a set of states, 
S = {si,S2, ■ ■ ■ ,s/s} and a set of transitions, T — {%|1 < i,j < k}. Associated with each transition, tij, is a control 
command vector, guard(t{j). The meaning of tij is that if the state of the machine is s; and guard(sij) has the given 
value, then the new state will be Sj [20]. 

Given the presence of continuous variables in many control systems, it is necessary to extend the FSM model to 
a Hybrid FSM (HFSM) model where con tinuous variables are associated with each state. 
Definition 2. A Hybrid FSM (HFSM) is an FSM where a vector of continuous variables is associated with each 
state. A transition tij is an instantaneous transition if the state changes to Sj whenever guard(t{j) has the given 
value. A transition tij is an eventually transition if the state will eventually change to Sj and guard(tjj) has the 
given value continuously in state s;. A state is a boundary state if all transitions are instantaneous; otherwise, it 
is an interior state. 

We call an HFSM knowledge base of a system amodel of that system. A model when combined with a speci- 
fication provides the basis for formal software development. The subgoals that form the literals of our behavioral 
decomposition can be specified against the model in a non-algorithmic manner using traditional techniques (e.g., 
pre/postconditions, invariants, constraints, etc.). 

Given a non-algorithmic specification, techniques such as deductive synthesis, refinement based transformation, 
etc., can be used to create an abstract algorithm satisfying the specification. The resulting abstract algorithm is 
essentially a path through the HFSM model of the system and, as sue h, it can be executed to provide early validation. 

In order to fit the notion of an abstract algorithm within our relation-based model of computation, w e further 
extend the HSFM and introduce relational HSFMs defined as follows. 
Definition 3. A Relational HFSM (RHFSM) is an HFSM where guard{Uj) can be a set of values rather than 
a single value. 
Given an RHFSM, it is possible to automatically generate the code through transformation. 

3.1    A Simple Example 

To illustrate the RHFSM model and the power of IDEAL subsystems, consider the following simplified example of 
a vehicle control system (see Figure 1).  At time*, the vehicle is at location x{t) and has velocity v(t).  The road 
intersects with a railway track from position 0 to position d.  Input alarm{t) is true if a train is in the crossing 
zone.  Input mrt{t) gives the most recent time that a train entered the crossing zone.   It is used to calculate the 
maximum available reaction time,S(t), for the vehicle; specifically, at time t, S(t) = S0 if alarm(t) is false and 
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6(t) = max{0,So — (t — mrt(t))} if alarm(t) is true. The goal of the controller is to drive the vehicle to position 
y without any accidents and subject to other constraints, such as obeying speed limit laws and providing a smooth 
ride. There is only one actuator; it accepts values for the desired acceleration, a(t), and operates the accelerator or 
the brake to achieve acceleration a(t). 

(■ 0m 
• -* v(t) 

x(t) 

0 d 

y 

Figure 1: Vehicle control problem. 

The requirements of the vehicle control program can be decomposed into four predicates. 

1. (go) Safety constraint. Vi : t > 0 :: -*(alarm(t) A 0 < x(t + S(t)) < d). 

2. (<7i) Reach destination goal. 3to : to > 0 :: (Vi : t > to ■■ (x(t) = y A v(t) = 0)). 

3. (52) Speed limit constraint. Vi : t > 0 :: — Vmax < v(t) < Vmax. 

4- (53) Smoothness of ride optimization. \/t : t > 0 :: |   jti'\ < «o- 

We assume that the most critical requiremert is go followed by g\, 52, and 53- 
Now, we can specify the model for achieving </,- independently using RHSFM. The model for 52 for the vehicle 

control program is shown in Figure 2. 

 ► instantaneous transition —*->■ eventually transition 

Figure 2: Relational HFSM for g2. 

Here, 0+ indicates a positive value just larger than 0 and 0~ indicates a negative value just smaller than 0. There 
are five states, namely, v(t) < -Vm, v(t) = -Vm, -Vm < v(t) < Vm, v(t) = Vm, and v(t) > Vm, and two control 
trajectories. One trajectory specifies that in state v(t) < -Vm, the acceleration can have any positive value and 
eventually the system will reach the state v(t) = —Vm. In this state, the legal accelerations are 0 • -A. Similarly, 
in state v(t) > Vm, the acceleration can have any negative value and eventually the system will reach the state 
v(t) = Vm where the legal accelerations are —A ■ -0. Any acceleration is legal in the goal state, — Vm < v(t) < Vm. 

The RHFSM in Figure 2 can be transformed in to the following code: 

P2:  ifv(t) < -Vmax -»■ a(t) := 0+ • -A\\ 
Vmax < v(t) -> a{t) := -A ■ -0- 
-Vmax < v(t).< Vmax -> a{t) := -A ■ -A{\ 

end if 
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3.2    Static Composition 

We assume we are given an abstract relational algorithm of the formal oj2« ••• ogn, where each symbol o denotes 
either a relational conjunction (i.e., intersection) or a relational disjunction (i.e., union), and g\ through gn are 
guarded command lists of the form: 

{guardi —i (ci,C2, • • -,Cj) := {set\i,set2i, ■ ■ ■,seijj|1 <«<«}• 

Our objective is to apply correctness preserving transformations to an algorithm of the form gi og2 o... ogn to obtain 
a semantically equivalent algorithm consisting of a single list of guarded commands where all o operations have been 
removed. 

Several axioms can be derived and used to simplify the computation of the intersection and union of relational 
programs. Some of these are listed in the following. 

1. If a0 is a singleton or null then (a := a0) D Q = (a := ao) for all Q. 

2'. If U is the universe of the output set, then (a := U) C\ Q = Q for all Q. 

3. If Ai, • • •, An are mutually disjoint sets and the actions of Q are of the form a := UJL^»/ for {ij\l < j < 
m} C 1 • -n, then (a := Ak) C\Q = {a := Ak) for 1 < k < n. 

4. If the actions of P are all either singletons or <j>, then P C\Q = P. 

5. If Ai, ■ ■ ■, An are mutually disjoint sets and the actions of P are of the form a := Ak, I < k <n, and those of 
Q are of the form a := UJLJ^. for {ij\l <j<m}cl--n, then PC\Q = P. 

6. If U is the universe of the output set, then (a := U) U Q = (a := U) for all Q. 

7. (a := <j>) U Q = Q, for all Q, where <f> denotes the empty set. 

Our experience so far has raised some interesting questions as to what kind of set representations (e.g., predicate 
based, inductive equations) can be handled at the transformational level. This in turn raises interesting questions 
regarding properties between controlled variables and monitored variables (e.g., continuity). 

 ► instantaneous transition -»-► eventually transition 

Figure 3: Relational HFSM for g\. 

Examples of Composition of IDEAL Subsystems. Figure 3 shows the relational HFSM for goal gi for the 
vehicle control problem discussed earlier. It consists of two trajectories, corresponding to whether the car is to the 
left or to the right of the destination. s(t) denotes the stopping position at maximum deceleration. The code, Pi, 
for gi can be automatically derived from this RHFSM and is shown in Figure 4(a). 
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if x(t) = y = s(t) -y a(t) := {0}Q 
x(t) < y < i(t) V y < i(t) < s(t) -> 

a(t):= -A--0-{\ 
s(t) <y < x(t) V s(t) < x(t) < y -y 

a(t) :- 0+ • -AQ 
x(t) < s(t) < y V </ < s(t) < i(t) -y 

a(t) :=-A-A\\ 
x(t)< y = s(t)^ a(t) :- {-A}Q 
s(t) = y < x(t)-y a{t) := {+A} 

end if 

Figure 4(a). Code for Pi. 

If x(t) = y = s(t)-+ a(t) := {0}Q 
x(t) < y < s{t) V y < x(t) < s(t) -y a(t) := -A ■ -0~[\ 
s(t) < y < x(t) V s(t) < x{t) < y -y a(() := 0+ ■  AQ 
x(«) < «(() < y V y < a(t) < x(t) -y 

ifv(t) < -Vmar -y a(t) := 0+ ■  AQ 
-Vm„ < t/(t) < VmaT -y a(t) := -A ■  AQ 
Vmai < v{t)-y a(t) : = ->4 • -0" 

end if Q 
x(t) <j<!(t)-)a(t) := {-A}U 

end if 

Figure 4(6). Code for Pi n P2. 

if s(t) < 0 -y 
if s(t) < 0 -y a(() := -A ■ ^Q 

s(t) = 0 -+ 
if x(«) = j(t) -y a(t) := -.4 ■ -OQ 

i(t) < s(«) -y a(t) :- {-A} 
end if 0 

s(t) > 0 -y a(t) := 0 
end if fj 

0 < x(t) <d-t a(t) := 0 0 
x(t) > d -y ( ■ • ■ similar to r(() < 0 ■ ■ ■ ) 

end if 

Figure 5(a). Code for P0i- 

if x(t) < 0 -y 
if p(t) < d-y a(t) := 00 

p(t) >d-y a(t) := amin(t) ■   A 
end if Q 

0 < x{t) < d -y 
if p(t) < 0 -y a(t) := -A- - ara,„(i)D 

0 <p(t) < d-y a(t) := 0Q 
p(t) > d-y a(t) := ami„(t) ■  A 

end if Q 
x(t) > d -y ( • • • similar to x(t) < 0 • • • ) 

end if 

Figure 5(6). Code for P02. 

ifx{t) < 0 -y 
if »(«) < 0 -y a(t) := -A •  -40 

>(t) = 0 -y 
ifx(t) = s(t) -y 

if p(t) < d-y a(t) := -A ■ -0Q 
p(() > d-> 

a(() := -A ■•0Uamj„(t)- -^ 
end if 0 

x(«) < s(t) -> 
ifp(()< d-> o(t) := {-.4)0 

p(t)><i^ 
a(() := {-A} Oamin(t) ■  A 

end if 0 
end if fl 

«(0 > 0 -y 
ifp(t) < d-y a(t) := 00 

p(t) > ti-> a(t) := ami„(t)- •>! 
end if 

end if Q 
0 < x(t) < d -y 

if p(t) < 0 -+ a(t) := -A ■ ■ - amin(t)\] 
0 < p(t) < d-y a(t) := 00 
p(t) > d-y a(t) := amin(t) ■  A 

end if 0 
x(t) > d-y (• ■ ■ similar to x(t) < 0 ■ • ■) 

end if 

Figure 5(c). Code for P0 = Poi U P02- 

We can obtain the code for<7i Agi by computing P\ D P2- Since g\ has a higher priority in the intersection, we 
first analyze the leaf nodes of Pi. There are three terminal actions, namely, "a(t) := {0}", "a(<) := {—J4}", and 
"a(t) := {+^4}", and the intersection of these with Pi gives the same output because g\ has a higher priority than g^. 
That is, (a(t) := {0})DP2 = a(t) := {0}, and similarly for the other two cases. There are three nonterminal actions, 
namely, ua(t) :=0+-^", aa{t) := -A ■ -O-", and "a{t) :=-A--An. (a(t) := 0+ • -A) f)R2 = a{t) := 0+ ■-A since the 
intersection with the first two actions of P2 is a(t) := 0+ • -A and the intersection with the third action of P2 is $ (the 
empty set) which causes the output to be that of P\ since g\ has a higher priority than g2. (a(t) := —A • -A) C\P2 = P2 

since the intersection of (a(t) := —A ■ -A) with each action of P2 returns the corresponding action of P2. Putting all 
these together, we obtain the code for Pi n P2 shown in Figure 4(b). 

For an example of the union operation, consider the safety requirement, <7o, for the vehicle control program. It can 
be achieved by not entering the intersection or by entering and crossing it within time 6(t). Formally, the "do not enter 
the intersection" subgoal, gou is given by (x(t) < 0 => W : t' > t :: x[t') < 0) A (x(t) > d => W : t' > t :: x{t') > d). 
Similarly, the "enter and cross the intersection" subgoal, go2, is given by 

(x(t) < 0 => 3t0 : t0 > t :: {W :t' >t0 :: x(f) > d)) 
A(x(t) > d => 3t0 : to > t :: (Vf : t' > t0 :: x(t') < 0)) 
A{0 < x{t) <d=> (3t0 :t0>t:: {W :t' >t0 " x(t') < 0)) 

V(3i0 : t0 > t :: (VT : t' > t0 " x(t') > d))}. 
The programs for subgoals goi and g02 are shown in Figure 5(a) and Figure 5(b), respectively. In Figure 5(b), p(t) is 
a function that computes the position of the car at the maxim urn acceleration at the end of the reaction t\me,S(t), 
and amin(t) returns the minimum acceleration needed to cross the intersection within the given reaction time. The 
union of the programs for the two subgoals can be derived automatically and is shown in Figure 5(c). 
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4 DEPENDABILITY ASSURANCE 

The safety of each subsystem is assured independently by finding the set of unsafe states and ensuring that there are 
no transitions from any reachable states to the unsafe states. 
Theorem 1. The safety of a disjunctive decomposition of Si(t) into Sij(i), 1 < j < n,-, follows from the safety of its 
subsystems if the set of unsafe states in Sy, 1 < j < n;, is identical to the set of unsafe states in S;(t). 
Theorem 2. The safety of a conjunctive decomposition of S(t) into Si(t), 1 < i < n, follows from the safety of its 
subsystems if the subsystems are ranked in a priority order and, in the intersection operation, the more safety-critical 
version overrides a less critical version if the intersection is <j>. 

The stability of the individual subsystems can be analyzed by determining whether the goal states are reachable 
from all possible states, including failure states. Unlike other attributes, the stability of the system is more difficult 
to show in general. 
Theorem 3. If Pi and P2 are stable IDEAL programs, then Pi n P2 is stable provided that there are no <j> outputs. 

For high-confidence certification, let ss-, 1 < i < n, be the states in an RHFSM and let i,-j, 1 < i,j < n, denote 
the transitions. To analyze the reliability of this HSFM, the following inputs are needed: (1) 7r,, the probability of 
starting in state s,-, and pij, the conditional probability of selecting transition t,j given that the state is s,-; these 
data must be provided by the domain expert; (2) r,-.,-, the reliability of each transition in the RHFSM, and c;, the 
probability that state s* has been correctly classified; these data are obtained from the analysis of the HFSM using 
the domain-specific analyzer. The reliability of the RHFSM is the probability that the selected trajectory (a) is 
achievable, (b) does not pass through any constraints, and (c) ends in a goal state. This is computed in the following 
way. Let Ti denote the set of trajectories to a goal state from state s,-. 
1) Reliability of trajectory x € T, R(x) = Yii<j<\x\ c*(0 x rx{i)x{i+i)\ 
2) Probability of selecting trajectory x € T, p(x) = Y[i<i<\x\Px{>)x(i+i)> 
3) Reliability of the RHFSM = £?=1 m £reT. p(x)R{x). 

The system level reliability follows from the subsystem level reliability in a simple way. 
Theorem 4. If Pi and P2 are two IDEAL programs, then P(Pi f~l P2) = R{Pi) x P(P2), provided Pi and P2 have 
independent failure processes. 
Theorem 5. If Pn and P12 are two IDEAL programs, then max{R{Pn),R(Pi2)} > P(PnUPi2) > R(Pn) xP(Pi2), 
provided Pi and P2 have independent failure processes. 
Theorem 6. If Pn, Pi2, and P2 are three IDEAL programs, then P((PU U Pi2) l~l P2) = [1 - (1 - P(Pn)) x (1 - 
P(Pi2))] x P(P2). 

5 RELATED WORK 
The research presented in this paper is related to rigorous automated software development methods and high- 
confidence assurance. 

Our modeling approach is an extension of the synchronous paradigm [20] to handle time-varying state spaces [1] 
and relational programs [3, 4]. The use of relational programs allows complete isolation of the different RHFSMs; 
that is, each RHFSM is designed to be maxim ally compatible with any other RHFSM. Hence, a change to other 
RHFSMs, including the addition or removal of RHFSMs, does not affect a given RHFSM — it cannot be made 
any more compatible. (A limited form of m ultiple outputs is possible in PAISLey, but it is restricted to undefined 
functions and processes [21].) 

Decomposing a state transition model into separate views is a crucial step in simplifying the model and making it 
amenable to analysis. One of the earliest works is reported in [21]. The concept of multiple views has also been used 
in Statecharts [11], Objectcharts [7], and RSML [17] among others and has been applied to existing languages, e.g. 
Z [15]. The novel feature in the IDEAL subsystem approach is that the model for each view is trajectory-oriented, 
i.e., it describes the set of all possible trajectories that can solve the control problem corresponding to the view. W e 
achieve further simplicity by having no interaction between the views — all the views receive the same vector of 
sensor inputs and independently compute their trajectories. 

Several types of assurance techniques have been developed for FSM-related models. Static analysis tools ha ve 
been developed for checking nonfunctional properties, including the completeness [12, 13], consistency [12, 13], and 
reachability of the model [14] as well as various general assertions, such as absence of deadlocks and basic safety and 
Iiveness properties [14]. In our approach, the completeness analysis is simple since each RHFSM has the same state 
space as the overall system but with a subset of the goals and/or constraints; thus, completeness can be checked 
by showing that the disjunction of all the state predicates is equal to the overall state space. Similarly, consistency 
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only needs to be checked for transitions having the same guard in two different RHFSMs. Model c hecking in the 
relational framework is more difficult. However, the underlying domain-specific knowledge base is an FSM (in fact, 
a cellular automaton for continuous control systems) and can be checked using SPIN [14]. 

For assurance of functional properties, it is necessary to have a model of the physical environment in addition to 
the specification of the control program. This was illustrated for a gas burner problem using duration calculus [6] in 
the ProCoS (Provably Correct Systems) project [19]. A more complex case study is reported in [10] where properties 
of the environment were formalized as axioms using PVS [8] for verifying safety properties of an aircraft wing and 
flap ontrol program. While these t ypes of checks and proofs enhance the confidence in the correctness of the model, 
it is difficult to quantify the confidence level. A variety of software reliability models have been developed over the 
past 25 years [18]. However, in addition to being controversial for safety-critical systems [5], there is no sound way 
of deducing the reliability of a system from the reliability of its subsystems. The reason is that statistical reliability 
measures depend on the operational profile. It is difficult to assess the operational profile at the system level and 
impossible to do so at the subsystem level because of the absence of historical data. The beauty of composing IDEAL 
subsystems is that every subsystem (RHFSM) has the same state space, except for differences in goals, constraints, 
and free states; hence, every subsystem sees the same operational profile. Hence, the IDEAL subsystem approac h has 
the important (and unique) property that the subsystem reliability estimates can be statistically combined to obtain 
the system reliability. Further, each RHFSM has relatively few states and transitions, which makes the reliability 
analysis feasible [9]. 

6    SUMMARY 

In this paper, we have presented a method of decomposing an application into subsystems such that the properties 
of the system can be deduced mathematicall y from the properties of its subsystems. Other advantages of a system of 
IDEAL subsystems include (a) higher confidence levels since each IDEAL subsystem is much simpler than the entire 
application, (b) only simple axioms and local proofs and transformations are needed to compose the subsystems 
together, (c) faulty subsystems can be identified directly by analyzing their outputs and repair/recovery actions 
can also be confined within each subsystem separately,  (d) facilitates multiparadigm implementations since the 
subsystems can be composed dynamically, (e) enables system evolution since there is a one-to-one, end-user visible 
correspondence between the requirements and the IDEAL subsystems, (f) high safety assurance since the priority 
scheme guarantee that safety-critical subsystems will never be affected by faults in the other subsystems, and (g) 
facilitates dynamic composition, i.e., the subsystems can be executed concurrently.  Some future research areas 
include development of domain-specific methodologies for achieving designs that consist of IDEAL subsystems as 
well as more detailed assurance techniques. 
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Abstract 

The "Object Constraint Language " (OCL) offers a formal 
notation for constraining model elements in UML diagrams. 
OCL consists of a navigational expression language which, 
for instance, can be used to state invariants and pre- and 
post-conditions in class diagrams. We discuss some prob- 
lems in ensuring non-local, navigating OCL class invariants, 
as for bidirectional associations, in programming language 
implementations of UML diagrams, like in Java. As a remedy, 
we propose a component-based system specification method 
for using OCL constraints, distinguishing between global 
component invariants and local class invariants. 

1    Introduction 

During the last years the "Unified Modeling Language" 
(UML [2]) has become the de facto standard for object- 
oriented software development. The "Object Constraint Lan- 
guage" (OCL [14]) offers a formal notation to constrain 
the interpretation of model elements occurring in UML di- 
agrams and therefore lends itself for systematic use in rigor- 
ous, UML-based software development methods, as shown, 
for example, in the Catalysis approach [5]. 

The OCL notation is particularly suited to constrain class 
diagrams since OCL expressions allow one to navigate along 
associations and to describe conditions on object states in 
class invariants and pre- and post-conditions of operations. 
However, by using the ability of describing navigational 
paths, a class invariant may be non-local in the sense that 
it also requires properties from other "remote" classes. This 
expressiveness and flexibility is appropriate in requirements 
specifications where the developer generally prefers a global 
view of the properties of the relationships between differ- 
ent classes. For design and implementation, however, such 
global requirements can be harmful since the implementation 
of a "remote" class would have to respect the non-local in- 
variant of another class which is not mentioned anywhere in 
the "remote" class. Thus a programmer may not only have 
to check the validity of the invariant of the class he is imple- 
menting, but also the validity of invariants of other classes. 

We first illustrate these problems with non-local class- 
based OCL invariants by simple examples, including the 

'Partially supported by the DFG project InOpSys, ref. WI 841/6-1. 

conventional use of "setter" operations and, more interest- 
ingly, standard OCL formalizations and Java implementa- 
tions of bidirectional associations. As a remedy, we pro- 
pose a component-based approach which has the following 
two properties: it allows us to write non-local invariants at 
the global level of components instead of at the local level 
of classes and it allows us to control the visibility of opera- 
tions. An operation can be component public and therefore 
visible for all classes inside and outside the component; or an 
operation can be component private and'therefore visible for 
all classes inside the component; or an operation can be class 
private and therefore visible only for its own class. Non-local 
invariants have to be respected only by component public op- 
erations; local invariants have to be respected by component 
public and component private operations; class private opera- 
tions do not have to respect any invariant. However, for sim- 
plicity, we omit component hierarchy aspects and inheritance 
between different components. 

In Sect. 2 we describe the problems with non-local class- 
based OCL invariants. In Sect. 3 we propose our component- 
based approach. In Sect. 4 we discuss how components can 
be realized in Java and we show some properties of correct 
realizations in Sect. 5. Throughout the paper we assume that 
the reader is familiar with UML class diagrams and the OCL 
notation. 

2    Non-Local Class Invariants 

For exhibiting the problems with non-local class-based in- 
variants, we model a simple seminar system inspired by a 
similar example in the Catalysis book [5, Sect. 2.5.1, p. 67], 
see Fig. 1. In this system a course consists of several sessions. 
Each session has at most one instructor and each instructor 
may be qualified for several courses. Each session has a start 
and an end time. A session may also be public, where exter- 
nal participants have to pay a certain amount in order to be 
admitted. There are three invariants: the simple invariant for 
the class Session requires that the start time is before the end 
time; the invariant for class PublicSession states that the price 
for such a session is at least 10$. The invariant for the class 
Instructor requires that an instructor should only teach ses- 
sions for courses he is qualified for. The class Session shows 
an initialization operation setup setting default start and end 
times for a session; this operation is overridden in PublicSes- 
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inv /«V|nstructor:   qualifiedFor-> 

includesAll(session.courses) 

Tx 
inv /«vSession: 

start.before(end) 

K 

Instructor 

qualifiedFor    * 

Course 

0..1 

inv /«»iPubiicSession : 

price  >=  10$ 

K 

Session 

start: Time 
end: Time 

setup() 
changeCourse(c: Course) 

post:   start  =  9:00am 
and  end =  11:00am 

K 

post:   course 3 
PublicSession 

price: Dollar 

setup() post:   price  =  10$ 5 
Figure 1: Annotated class diagram for the seminar example 

sion initializing additionally the price for the public session. 
Moreover, the class Session has a "setter" operation change- 
Course which allows to assign a new course to a session; the 
post-condition just requires to reassign the new course to the 
actual session. 

For a correct implementation of this system in Java, one 
would like to require that any operation C:: op [x\ : D\, ..., 
x„:D„) of any class C of the diagram preserves the invariant 
INVc, obtained by the conjunction of the class invariant of C 
and the invariants of all its super-classes (if any), and satisfies 
the pre- and post-condition provided for op. As formalized 
in [12], this means that the Hoare formula 

{Prec,op and INVC} 

C:: op[x\ :D\, ... 

{Posto,.op and INVc} 

xn :Dn) 

should be valid. In the example, any implementation of the 
operation changeCourse of class Session should satisfy the 
Hoare formula 

{start.before(end)} 

Session :: changeCourse(c : Course) 

{course = c and start.before(end)} 
(*) 

(for the implicit requirements of the bidirectional associations 
see below). The following Java implementation satisfies (*): 

void changeCourse(Course c) ( 
course = c; 

} 

The problem is that, although changeCourse does not in- 
volve any attribute or role of class Instructor, it may destroy 
the invariant /nvinstructor of class Instructor, e.g., when being 
called via 5. changeCourse (c) for a session s having instruc- 
tor s. instructor who is not qualified for the course c. 

Another problem stems from making explicit the semantic 
constraints of bidirectional associations by expressing them 

in OCL. Consider for example the one-to-many association 
between the class Course and the class Session. The semantic 
constraint requires that any object c of class Course is related 
to a set of objects of class Session in such a way that each 
of these objects is related to c; thus navigating from c to any 
object of Session and back to class Course yields the original 
object c. Similarly, the sessions of the course of a Session 
object s must include the original object s. In OCL, one may 
try to formalize this using the following two class invariants 
of Session and Course: 

context Course 
inv Inv'Course: 

self.session-> 
forAllfs   |   s.course = self) 

context Session 
inv /m/Session: 

self.course.session->includes(self) 

Now consider a system state a showing two objects c\, C2 
of class Course and three objects si, S2, s^ of class Session 
such that object c\ is related with objects s\ and S2, and ob- 
ject C2 is related with object 53, see Fig. 2(a). Obviously, a 
Java call S2 • changeCourse (C2) does not respect the invari- 
ants WCourse[ci/self] and WSession[52/self], cf. the object 
diagram in Fig. 2(b). 

According to Hitz and Kappel [7, Sect. 6.2.1, p. 271— 
275], a correct Java implementation of changeCourse with 
respect to the bidirectional association can be given using two 
Java operations addSession and rmSession in the following 
way: 

public class Session ( 
private Instructor instructor; 
private Course course; 

public void changeCourse(Course c)   { 
if  (course  != c)   { 

if   (course  != null) 
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c1 : Course 

s1 : Session 

s2 : Session 

d : Course 

s1 : Session 

s2: Session 

c2 : Course s3: Session c2: Course s3: Session 

(a) State a 

c1 : Course 

s1 : Session 

s2 : Session 

c2: Course s3: Session 

(b) State after S2 .changeCourse(C2) 

Figure 2: Sample states of the seminar system 

course.rmSession(this); 

course = c; 

c.addSession(this); 

public class Course { 

private Vector session; 

public void addSession(Session s) { 

if ((session.contains(s))) ( 

session.addElement(s); 

s.changeCourse(this); 

public void rmSession(Session s) ( 

session.removeElement(s); 

The operations changeCourse and addSession indeed pre- 
serve both of the invariants /«Vcourse and /«v4ession but (as 
Hitz and Kappel also mention in their book [7]) calling 
rmSession may lead to an illegal state; e.g., see Fig. 3, call- 
ing ci. rmSession (53) in state a leads to a state where the 
invariant /wgession[,S3/self] does not hold. 

Figure 3: State after C2. rmSession (.S3) 

3   Component-Based Invariants 

The problems described in the previous section are due to the 
fact that class invariants of one class are based on properties 
of objects of another class; in other words, the invariant ex- 
pressions navigate to objects of other classes. For instance, 
the invariant 7wvinstructor navigates to the sessions of an in- 
structor and requires that all these sessions are for courses the 
instructor is qualified for. Hence it is obvious that the class 
invariant for instructor can easily be destroyed by changing 
the course of a session. To overcome these problems we use a 
component-oriented development methodology. Component- 
based approaches for software development have been advo- 
cated by many authors including Broy [3] and Szyperski [13], 
or, in the context of UML and OCL, by Catalysis [5] and 
Cheesman and Daniels [4]. 

We do not propose a new notion of component; almost 
any of the notions for components in the literature is suitable 
for our approach provided that a component is composed of 
classes (and possibly local components) and that the follow- 
ing two requirements are satisfied: 

1. It is possible to require invariants globally for the whole 
component and also locally for the elements of a com- 
ponent. 

2. An operation can be declared to be visible either inside 
and outside the component, or only inside the compo- 
nent, or only inside a single class of the component. 

More precisely, we distinguish between class invariants and 
component invariants: A class invariant is an invariant for de- 
scribing properties concerning a single class (i.e. its attributes 
and association roles without navigation) and a component 
invariant is an invariant for describing properties concerning 
two or more classes. For example, the invariant 7nvinstructor 

of class Instructor cannot be used as a class invariant but 
has to be included in the component invariant for the sem- 
inar system (cf. Fig. 4). The invariants induced by bidirec- 
tional associations are also included in the component invari- 
ant /«vseminar- The invariants /«vSeSsion and /wpubiicSession of 
classes Session and PublicSession, however, are class invari- 
ants. 

Concerning the visibility of operations we distinguish be- 
tween operations which are 
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inv /nvSeminar: 

Instructor.alllnstances()->forAll(i | 
i.qualifiedFor->includesAll(i.session.course)) 

and Session.alllnstances()->forAll(s | 
s.course.session->includes(s)) 

and Course.alllnstances()->forAll(c | 
c.session->forAll(s I s.course = c)) 

"T\ 

Seminar 

l\ 

• 
• 

inv /»vSession: 
start.before(end) 

Instructor 0..1 * 
Session 

-start: Time 
-end : Time 

* 
, ' 

post:   start   «   9:00ara 
and end =  11:00am 

-setup() 
+changeCourse(c: Course) * v 

pre:   instructor. 
qualifiedFor->includes(c) 

post:   course   =  c 

-quauneurur A ** s 

Course 

-addSession(s: Session) 
~rmSession(s: Session) PublicSession 

/ 
-price: Dollar 

inv /«^>ub1icSession : 

price   >=   10$ 

b. / ~setup() 
  post:   price =  10$      | 

Figure 4: Component model of the seminar system 

component public — 
visible at the interface of the component 

component private — 
visible to all classes of the component 

class private — 
visible to a single class of the component 

Each component public operation has to preserve the compo- 
nent invariant, the class invariant where the operation is de- 
clared, and the class invariants of all super-classes, and satisfy 
their pre-/post-condition. Each component private operation 
has to preserve its class invariant and the class invariants of all 
super-classes and satisfy its pre-/post-condition. Finally, each 
class private operation has to satisfy its pre-/post-condition. 
Since class private operations are auxiliary operations which 
can be (internally) applied to an object in a "non-stable" state, 
they need not preserve invariants; cf. also [9]. 

Concerning the visibility of attributes we assume a good 
style of design: all attributes have to be visible only to a single 
class. 

Components in the sense of Cheesman and Daniels, Catal- 
ysis, or UML subsystems can express these visibility require- 
ments and also show notations for invariants. In particular, 
due to the explicit notion of interfaces used in Catalysis and 
by Cheesman and Daniels the visibility of component pub- 
lic operations can be modeled explicitly. A UML subsystem 

provides the following visibility correspondences for opera- 
tions [11]: class private corresponds to private (-), compo- 
nent private to package (~), and component public to public 
(+). Similarly, an attribute that is only visible to a single class 
has visibility private (-). 

Fig. 4 shows the seminar system as a UML subsystem 
component. We choose to declare rmSession and addSes- 
sion not to be component public but only to be component 
private. Hence the component invariant Vwvseminar needs not 
to be respected by these operations, but has to be respected 
by the component public operation changeCourse. In order 
to be able to fulfill the post-condition of changeCourse and, 
simultaneously, to ensure the preservation of the component 
invariant /nvSeminar, we have to add a pre-condition to change- 
Course, requiring the replacing course to be compatible with 
the abilities of the teaching instructor. In fact, the detection 
of this pre-condition is greatly facilitated by making the com- 
ponent invariant explicit. 

4   Realization of Components 

Based on our notion of component we define a realization re- 
lation which connects a UML design component and a Java 
implementation model. As implementation model for com- 
ponents we use Java packages, classes in a design compo- 
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nent are mapped to Java classes. However, we put an addi- 
tional restriction on Java classes: private Java attributes and 
methods are only called on this which is good programming 
practice for encapsulating object states. 

We employ UML trace and realization dependencies as 
considered in [1] to relate UML classes and Java classes, and 
UML design components and Java packages. A realization 
relation between a UML design component and a Java pack- 
age expresses that the implementation model satisfies the re- 
quirements of the design model. In particular, the Java meth- 
ods corresponding to a component public, component private, 
or class private operations in a class of the UML design com- 
ponent have to preserve the component invariant, the class 
invariant (and the class invariants of all super-classes), and 
satisfy its pre-/post-condition according to the requirements 
described in Sect. 3. Similarly, we have to consider compo- 
nent public, component private, and class private object con- 
structors, where we always require that constructors establish 
class invariants. Trace dependencies guarantee that the OCL 
expressions used as constraints for the design model can be 
interpreted in the implementation model. The constraints on 
the Java implementation are represented by Hoare formulae 
and can be proved using the calculus presented in [12]. 

C 
«trace»           1 L, tp 

1    1 
«java file» 

C.java 
1 

(a ) Trace dependency 

1 1 
«design subsystem» 
DesignComponent 

«realizes» 
o  «java subsystem» 

JavaPackage 

(b) Realization dependency 

Figure 5: Component dependencies 

A trace dependency holds between a UML design class C 
and a Java class C. java, see Fig. 5(a), if the direct super- 
classes of C and of C. java coincide, if the operations of C 
and the methods of C. java coincide (up to an obvious syn- 
tactic modification of the signature), if all attributes of C are 
also attributes of C. java, and if for each (explicit or implicit) 
role name at a navigable association end C. java contains a 
corresponding reference attribute with the same name. (Note 
that standard types may be slightly renamed according to 
the Java syntax and that role names with multiplicity greater 
than one map to reference attributes of some container type.) 
Concerning visibility the correspondences are as follows [6]: 
Component public operations correspond to public methods 
(of public classes) in Java, component private operations to 
Java default visible methods, and class private operations to 
private Java methods; private attributes in UML correspond 
to private attributes in Java. 

A realization dependency holds between a UML design 

component M and a Java package P, see Fig. 5(b), if the fol- 
lowing conditions are satisfied: Let IHVM denote the compo- 
nent invariant of the design component M and let Invc denote 
the class invariant of class C in M. Let INVc denote the inher- 
ited class invariant of class C, i.e., the conjunction of the class 
invariant of C and the class invariants of the super-classes of 
C: 

INVC- ■■ /\ InvD 

D>C 

1. For all classes C in M there is exactly one class C. java 
in P such that C and C. java are related by a trace de- 
pendency. 

2. Let op be an operation declared in the design class C 
with constraint 

context C: :op(x\ 
pre: Prec-.op 
post: Postc-op 

Du ■■ A.) 

(a) If op is class private then its corresponding pri- 
vate method op in C. java satisfies the pre-/post- 
condition (but no invariants): 

{Preo.:op} 
C::op{x\ :D\, 

{Postc-op} 

.., x„:D„) 

(b) If op is component private then the correspond- 
ing default visible method op in C. java preserves 
the inherited class invariant INVc and satisfies the 
pre-/post-condition: 

{Preo.:op and INVC) 

C::op(x\ :D\, ..., x„ :D„) 

{Postc-op and INVC} 

Moreover, any call of op for an object of a class D 
that is a sub-class of C, has to preserve the inher- 
ited invariant of D and satisfy the inherited pre-/ 
post-condition for op: 

{Prec-.op and INVD) 

D:: op(x\ :D\, .... 

{Postc-op and INVD} 

:Dn) 

(c) If op is component public then the corresponding 
public method op in C. java fulfills the require- 
ments for component private operations and addi- 
tionally preserves the component invariant Inv^: 

{Prec-.op 
C:: op (x\ : D\, 

{InvM} 

and INVc and IHVM) 

, x» :Dn) 
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3. Let C(x\,... ,x„) be a constructor of the design class C 
with constraint 

context C::C(X]   :  D\,   ..., xn   :   £>„) 
pre: Prec 
post: Pos/c 

(a) If the constructor C is class private or component 
private then the corresponding private or default 
visible constructor C in C. java establishes the in- 
herited class invariant INVc and satisfies the pre-/ 
post-condition: 

{Prec} 

x = new C(x\:D\, ..., x„:D„) 

{Postc[x/self] and INVc[x/self}} 

(b) If the constructor C is component public then the 
corresponding public constructor C in C. java ful- 
fills the requirements for component private con- 
structors and additionally preserves the component 
invariant InvM'- 

{Prec and IHVM} 

x = new C(x\\D\, ..., x„ :D„) 

{InvM} 

We say that a Java package is a correct realization of a 
UML design component M if a realization dependency holds 
between M and P. The requirements for a correct realization 
follow the conditions for class correctness in [9] or [8] which 
here are extended to take into account visibilities and com- 
ponent invariants. Note that, by requirement (2b) Liskov's 
substitution principle is satisfied with respect to pre-/post- 
conditions of inherited operations. 

For the seminar system introduced in Sect. 2, we can 
establish a realization dependency between the UML de- 
sign component in Fig. 4 and the Java implementation in 
Sect. 2 changing the public visibilities of addSession and 
rmSession into default visibilities. The proof obligations for 
setup originating from requirement (2b) are: 

{start.before(end)} 

Session:: setup () 

{start = 9:00am and end = 11:00am and 

start.before(end)} 

{start.before (end) and price >= 10$} 

PublicSession:: setup() 

{start = 9:00am and end = 11:00am and 

start.before (end) and price >= 10$} 

{start.before (end) and price >= 10$} 

PublicSession :: setupO 

{price = 10$ and 

start.before(end) and price >= 10$} 

Obviously, the last two requirments can be easily combined 
into a single requirement. 

Similarly, the proof obligations for changeCourse origi- 
nating from requirement (2b) and (2c) are: 

{instructor.qualifiedFor->includes(c) and 

start.before(end)} 

Session :: changeCourse(c:Course) 

{course = c and start.before (end) } 

{instructor.qualifiedFor->includes(c) and 

start.before(end) and price >= 10$} 

PublicSession :: changeCourse(c:Course) 

{course = c and 

start.before (end) and price >= 10$} 

{instructor.qualifiedFor->includes(c) and 

start .before (end) and /nvSeminar} 

Session :: changeCourse (c : Course) 

{/wvseminar} 

5    Properties of Correct Component 
Realizations 

In a correct Java realization of a UML design component, 
method and constructor calls cannot destroy the class invari- 
ants of alien objects, i.e. of any object different from the ob- 
ject the method is called upon or different from the newly 
created object; additionally, all objects created during the ex- 
ecution of an operation or a constructor satisfy their class in- 
variants. 

Lemma 1. Consider a correct realization of a design model. 
Assume that for any terminating method call o.op(d\, ..., 
d„) and any terminating constructor call o = new C[d[, 
..., d'm) the pre-condition of any method called during the 
evaluation of o.op(d\, ..., d„) and o = newC(d'x, ..., 
d'm) is satisfied. Then for any classes C and D of the im- 
plementation model, object o of class C, method op ofC, and 
object o' ^ o of class D existing in the state after executing 
o.op(d\, ..., d„): 

{/KVo[o'/self] and 

D.alllnstances()->includes(o')} 

o.op(d\, ..., d„) 

{InvD[o'/self]} 

{not D.alllnstances()->includes(o')} 

o.op(d\, ..., d„) 

{o'.oclIsNewO and 7«V£)[o'/self]} 

0) 

(2) 
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where d\,...,d„ are some objects. Moreover, for any classes 
C and D of the implementation model, object o of class C, 
method op ofC, and object o' ^ o of class D existing in the 
state after executing o = new C(d\, ..., d'm): 

{/ttVß[o'/self] and 

D.alllnstances () ->includes (o')} 

o = new C(d[, ..., d'm) 

{InvD[o'f'self]} 

{not D.alllnstances()->includes(o')} 

o = new C(d[, ..., d'm) 

{o'.oclIsNewO and Invo[o'/ self]} 

(3) 

(4) 

where d\,...,d'm are some objects. 

Proof sketch. The claims are proved simultaneously by in- 
duction on the depth of the execution tree of method calls 
and object creations. 

Each method call and each object creation is associated 
with an execution trace consisting of attribute assignments 
o.f=v, method calls o.op(v\, ..., v/), and object cre- 
ations o = new C(v\,  ..., v/). 

We define the degree of a method call, an object cre- 
ation, and an attribute assignment as follows: deg(o./ = v) = 
0, deg(o.op{d\, ..., d„)) = l +maxi<,<t{deg(5,)} where 
s\...Sk is the execution trace of o.op(d\, ..., d„), 
anddeg(o = new C(v\, ..., v/)) = 1+maxi<,-<yt{deg(sJ-)} 
where s\...Sk'is the execution trace of o = new C(v\, ..., 
vi). 

Let the assumptions of the claim hold and let o' be as in 
the claim. For any method call and any object creation, we 
proof the claim by induction on the degree of the method call 
or object creation and by sub-induction on the length of the 
execution trace. 

Case 1. Let 5i... Sk be the execution trace of a method call 
o.op(d\, ..., u?„). Let the pre-condition 7«V£)[o'/self] and 
D.alllnstances ()->includes (o') hold before execution 
Of 51 ...Sk- 

Case 1.1. Let deg(o.op(d\, ..., d„)) = 1. If k — 0 then 
Invo[o'/ self] holds trivially after s\ . ..5>. Let k > 0 and 
let Invo[o'jself] hold before the execution of Sk- Then Sk 
has necessarily the form o.f = v, since all attributes have to 
be private and attributes are only called on this. Hence, 
Invo[o' / self ] holds after the execution of Sk since o' ^o and 
all class invariants have to be local, i.e., they must not employ 
navigation beyond the scope of a single object. 

Case 1.2. Let deg(o.op(d\, ..., dn)) — m + 1. If k = 0 
then /nvo[o'/self] holds trivially aftersi ...Sk. Let k > 0 and 
let Involo' / self ] hold before the execution of Sk. Then there 
are three cases: 

Case 1.2.1. lfsk = o.f= v, then the same argument as in 
case 1.1 applies. 

style of Java classes. Hence, by proof obligations (2b-c) 
and the pre-condition assumption, /«vo[o'/self] holds af- 
ter execution of s^ If o" ^ o' then Invo[o'/self] holds af- 
ter execution of Sk by the main induction hypothesis, since 
dcg(sk) < m. 

Case 1.2.3. Let st — o" = new C {v\, ..., v/). Then 
o" ^ o'. Thus, lnvo\o' I self] holds after execution of Sk by 
the main induction hypothesis, since, again, deg(jyt) < m. 

An analogous argument holds for all remaining cases.   D 

From this observation, it follows that in a correct Java re- 
alization of a UML design model, any non-class private op- 
eration preserves all class invariants and, moreover, any com- 
ponent public operation preserves all invariants including the 
component invariant. In order to prove these properties let 
INVM denote the environment invariant of design component 
M, i.e., the conjunction of all class invariants of the classes in 
M for all instances: 

INVM= /\C.allInstances()-> 
c 

forAll(x | 7«vc[x/self]) 

Theorem 2. Consider a correct realization of a design 
model M. Assume that for any terminating method call 
o.op(d\, ..., dn) and any terminating constructor call o = 
new C (d\, ..., d'm) the pre-condition of any method called 
during the evaluation of o.op(d\, ..., d„) and o = new 
C(d[, ..., d'm) is satisfied. Then for any class C of the im- 
plementation model and any non-class private method op of 
C 

{Preo.-.op and INVM) 

C:: op(x\ :D\, ... 

{INVM} 

xn:D„) 

Case 1.2.2. Let Sk = o". op' (v\, v,). Ifo" = o'then 
op' cannot be private by our restriction on the programming 

holds; moreover, for any constructor C(x\,... ,x„) ofC 

{Prec-c and INVM) 

x = new C(x\\D\, ..., x„:D„) 

{INVM} 

holds. 

Proof. Let o.op(d\, ..., dn) be a terminating call of a 
non-class private method op of class C of the implemen- 
tation model. Let Invo[o'/self] be any class invariant of 
INVM where o' is an object existing in the state after exe- 
cuting o.op{d\, ..., d„). If d = o and thus D <C, then 
7nvo[o'/self] is ensured by the assumptions (2b) on preser- 
vation of invariants of non-class private methods in correct 
realizations of the design model. Otherwise, i.e. if o' ^ o, 
apply Lemma 1. 

The claim on constructors is proved analogously. D 

Corollary 3. With the assumption as in the theorem, any call 
of a component public operation or constructor preserves all 
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the invariants, i.e. 

{Prec:.op and INVM and InvM) 

C:\op\x\ :D\, ..., x„:D„) 

{INVM and IHVM) 

{Prec.-.c and INVM and Inv^} 

x = new C(x\\D\, ..., x„:Da) 

{INVM and InvM) 

6   Conclusions 

We have emphasized that pure class diagram-based object- 
oriented software development has some drawbacks related 
to invariants which can be overcome by using a component- 
based approach. Of course, the problems presented here 
are not the only problems in object-oriented and component- 
based software development. In particular, we have omitted 
a discussion of component hierarchies and associations be- 
tween components, which may be treated by repeating the 
component invariant approach at all hierarchy levels. Inheri- 
tance between an element of one component and an element 
of another component seems to pose some more subtle prob- 
lems. For instance, the interplay between inherited operations 
and component invariant preservation is not obvious. The is- 
sue of sharing between components [10] may have similar 
effects. 

However, OCL has proven to be a valuable tool for ana- 
lyzing well-known implementation schemata for associations 
between classes. In our opinion, OCL is well-suited as a con- 
straint language for UML and presents a further positive step 
towards rigorous object-oriented software development. 
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Abstract 
Phil Wadler claims in [1] that XML has types. In this article, we claim that XML types are parsers, and that 

equality of types is the functional equality of parsers, and not the formal syntactic identity between types. A system 
of sound logical rules for reasoning about inclusion between types is presented, and an algorithm for calculating 
a large subrelation of the inclusion relation is put forward. Arguments for the relative completeness of the rule 
system and the algorithm are described. 

1    XML Schemas as types 

In an interesting document [1] produced by Phil Wadler of the W3C committee examining XML and XSL, the point 
is made that XML has types, and that document definitions and XML Schemas can be likened to type specifications. 
Whether or not the details given there are correct, the important observation is that a type system for XML is possible. 
The idea is that a document tag pair "<a> ... </a>" can be seen as a data constructor. That is, at the abstract level, 
the XML scheme implicitly defines a data type, that we shall call a, and an associated unique outfix constructor that 
we shall denote (a)... (/a). 

In order to make this observation, Wadler makes two preliminary observations. The first is the familiar XML 
documents are trees. But what kind of trees exactly? The answer is: many different kinds of n-ary trees, with the tags 
serving to denote which kind is which. At the abstract level, the tag identifiers correspond to labels on the nodes of 
the trees. The contents found between the document tag pairs correspond to the branches of the tree. The following 
data type definition is suitable for the abstract tree representation of a document: 

t    =    (a) ex  ... (/a) (1) 

e    =    t\s\ ... (2) 

where t £ Tree, e, ei,... 6 Element, s is a string, and a is a tag identifier. This is an n-ary tree: a label and a list of 
branches. XML admits other atomic types than strings, but they,will not be considered here. 

But how does one represent the document tag attributes and other headers? This is Wadler's other observation, 
one well known to those with experience of XML: attributes in an opening tag may be regarded as merely the first of 
the elements inside the document tag pair. A tag with an attribute 

<a foo="bar"> ... </a> 

can be regarded as shorthand for a tag pair containing a new structure as the first of its sequence of document elements: 

<a> <a.foo> bar </a.foo> ... </a> 

The tag identifier a becomes the label on the topmost node in the abstract tree representation, and its first branch is 
a node with the label a.foo, while bar is a leaf string (quotes around strings are not necessary when the string occurs 
between tags instead of inside them). 
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Thus the type of document with an attributed tag corresponds to a double data type (and data constructor) 
definition, in which the attribute forms the first element within the outer tag: 

a    ::=    (a) a.foo ... (/a) 

a.foo    ::=    (a.foo) String  (/a.foo) 

This is correct, but not the end of the story. Other kinds of elements may appear, such as sequences. The whole 
content sequence within a tag pair itself has a sequence type. Unfortunately Wadler chooses product types to represent 
this type of sequences of elements, and this is not correct. According to Wadler, the type of the contents of the tag 
(a)...(/a) is: 

( a.foo String,   ... ) 

That is, a product type. This is not correct because the type product (x,x*) - pairs of x and lists of x - is not the 
same as (a:*, a;) or (x*) as product types, and the intention of XML schema is to regard the document types defined 
by tagged structures with these variantly typed contents as equally typed. 

The confusion extends also to elements which are themselves sequences. We may require an element to be a 
sequence of sequences of strings, for example. This is the same in XML as requiring it to be a simple sequence of 
strings, but standard type semantics will differentiate between lists of lists of strings String** and lists of strings 
String*. So standard types are not right for XML. We want a product type that more closely corresponds to the 
semantics of uni-level sequences, such as the bunches discussed in [3]. 

In the rest of this section a format and logic for XML types is presented that works its way around the problem 
noted above, and which provides a solid formal substrate for the interpretation and proper comprehension of XML 
document types. Then in Section 2 we will give an interpretation for types as parsers, thus the title of this article: 
XML types are parsers. XML Schemas will be seen to correspond to parsers, and the construction of the parsers will 
be directed by the type. The resulting parsers satisfy all the semantic relations that we want, including, for example 
(x, (y, z)) = ((x, y),z) and (x, x*) < x*. First, however, we describe XML in general terms, taking it from two different 
points of view in turn: the relation between XML and HTML and SGML; and XML as a group of related language, 
library and translation specifications, introducing the terminology of an XML document. 

1.1    What is XML? 

XML can be understood in various ways. It is a metalanguage, and also a set of standards. 

1.1.1    XML as a metalanguage 

XML (Extensible Markup Language) [8] is a simplification of SGML (Standard Generalized Makup Language). Both 
XML and HTML have emerged from SGML. SGML is also a meta-language — in other words, a language that serves 
to define other languages. While HTML is an application of SGML, XML is not an SGML application itself but rather 
a reduced version of SGML that is aimed at the world wide web. 

Although the simplicity of HTML initially appeared as an advantage, with the passing of time it has become 
apparent that there are important requirements which such a simple language is not able to satisfy. HTML is not 
extensible. That is to say, one cannot just add new tags as necessary, but instead one must wait until the following 
version of the standard for a tag's possible inclusion, and then browsers may begin to support the extension. 

XML emerged as an intermediate solution between SGML and HTML. In XML, as compared to SGML, there are 
some restrictions: the punctuation in the lexicon is already fixed and there are limitations on the syntax (for example, 
all tags should be opened and closed in a balanced fashion — with the exception of empty tags, which have a special 
form). 

The flexibility remaining in the syntax permits the creation of different languages. One may specify the set of 
tags and the restrictions on grouping them. This specification always appears in a separate document, called a DTD 
(Document Type Definition) document. It is said that XML conserves 80% of the flexibility of SGML and only has 
20% of its complexity. In addition, XML has been specially designed for the web. 
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1.1.2     XML as a set of specifications 

XML is not only a metalanguage for the definition of personalized languages, it is a family of standards which include 
all the related aspects of a document: its logical structure, its presentation, its hypertext structure, etc. 

XML 1.0 is the standard which defines the format for specifying the logical structure of a document. XSL (Ex- 
tensible Stylesheet Language) [9] is the standard that describes the shape of a XML document. It has two parts: 
XSLT [10], which describes how to transform one XML document to another; XSL-FO, which defines a vocabulary 
with which to specify the format of a XML document. 

The family of standards connected with the hypertext qualities of a document is called XLL (Extensible Linking 
Language). Amogst them are XLink [6] and XPointer [4]. XLink defines the form in which a reference is made to a 
document that we want to link to while XPointer defines how the targets are marked in said document. 

To understand in a little more detail the relation between the different standards, a document should be considered 
as a complex structure of various parts, as illustrated in figure 1: 

• logically structured information (XML); 

• physical layout information (XSL); 

• relations between different parts of the document or other documents (XLL). 

• response of the document to determined events (eg. interaction with the user). 

Non declarative   Declarative 
Markup Markup 

• XML: Information exchange 

• XML+XSL: Publishing 

• XML+XSL+XLL: Navigation 

• XML+XSL+XLL+ script: Application 

Figure 1: Document Structure 

XML can be used in different ways: 

• if the logical structure (XML) of the document is considered in isolation, XML can be regarded as being the 
format for information exchange between users, applications, etc; 

• if we take into account the physical layout, we obtain: 

- an independent publication format to show said structured content to the user; 

— if we made use of the stylesheet, we could modify the presentation of the document to personalize the 
information. The same XML document and different stylesheets can generate different versions for different 
users, perhaps with more or less content as appropriate for different information spaces (on-line version, 
printed version, etc.); 

• if links are added we get a hyperdocument which relates elements of different documents, allowing one to 
"navigate" through the information. 

• if code (Java, javascript, etc.)  is added to the document, the document will become an application. It will be 
able to interact with the user (person, intelligent agent or application) and respond to events. 

To process an XML document there exist two formats, object oriented processing (eg.   DOM [5]) and event 
oriented processing (eg. SAX), which will be described with more detail in the following section. 
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1.2    What does XML look like? 

The appearance of an XML document is very similar to that of SGML or HTML documents, as can been seen from 
figure 2: 

•c)itinl> 
«11=- 

<<lt>Hot Cop 
*-'iiii>by Jacques Moinli. 

Henry Beolo. and Victor Wills 

<li'-producer: Jacques Mcrali i'li> 
<li"-f)iiblislju':Pol>'firaitiRecpit)s--,/H> 
--"JiMaiglli: 6:20'-/li> 
<ü>wrillen: 1978 <'li> 
•-li "-artist: Village Pco|>lc-li> 

•v'ul:- 

•=title>Hot Cop-^'tille> 
<composer> Jacques MwalK7comno!-'er:> 
•-com]ioser- Hcmy Bcoto <'.'coni|>nser> 
^composep- Victor Wills ^/composcr> 
<prothiccP- Jacques Morsli <:/produecr-- 
<publiitliep- PoiyGrain </publisher- 
<leiiglil> 6:20 -c/leiiguY--- 
<yeai> 1978 </ycar> 
•-'-ariist> Village People </nrlist> 

■■'!xml> 
■■-.litin]-- 

hy Jacques Morali,   Henry Bcolu, mid Victor Wills 
•producer: Jacqties Mot'iili 
•piiMi slier: PolyOraitiRccot* 
•length: 6:20 
•written: 1978 
•artist: Villayc People 

Figure 2: XML vs HTML 

XML documents are comprised of marker and content tags. The five marker tags are the following: 

• elements 

• entity references 

• comments 

• processing instructions 

• sections CDATA 

Types of XML documents Those documents that comply with the basic rules of the syntax of XML are said to 
be well formed documents. Those that depart from the rules must follow a structure defined by the user and specified 
via a DTD document. When an XML document complies with the DTD, it is said to be a valid document. Parsers 
must verify the validity of the XML document with respect to the DTD. 

As can be seen in figure 3, the header of the document specifies whether it is to be a well formed XML document 
or valid with respect to some DTD. 

Well-formed xml 
<?xml versiort=''l .0'' slandaloiK'="yes"?~- 

<foo> 
<bar>.. <-blort/>..--7bar> 

•-/\ml> 

Valid xml 
<?xint vcrsion="l .0"?> 
<!DOCTYPE advert SYSTEM liltp:/Anvw.fcie>.or|j/adv.dld"> 

<fco> 
<bnr->..'-blort/^ . .</bar> 

</foo> 
</xinl> 

Figure 3: XML header 

Predefined structures   There are two forms of defining the structure of an XML document: using a DTD, or using 
XML Schemas. 

The DTD is a concept inherited from SGML. A DTD allows us to be sure that an XML document complies with 
a predetermined structure, but it brings with it a few problems: it has a different syntax to XML and it does not 
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permit the definition of new "basic data types" (int, boolean, etc.). From this arose the necessity of developing a new 
standard to describe the structure of a XML document: XML-Schemas [7]. 

XML 
'CONTACT 

•NAME Rram 'Kaplan '"-'NAME 

<PHONE'.VV<-<<>?,PHONE 

■ .'CONTACT- 

DT1) iSecuence Mmmet iOoTeleme,«. 

•;!ni.EMENT CONTACT (NAME. (PHONE I EMAIL). ADDRESS .'I' 

^ELEMENT NAME («PCDATA)* 

IELEMENT EMAIL C'PCDATA)'       jl « "we dementi 

■=!EI.BMRNT PHONE (S/K'DATAI • 

-(ELEMENT ADDRESS (STREET >. CITY. STATE. ZIP. COUNTRY?! 

•^ELEMENT STREET (»PCDATA! 

'TEI.EMKNT CITY («PCDATA) 

' [ELEMENT STATE WCTMTAV- 

■ [ELEMENT ZIP (MPCDATA) 

'ELEMENT COUNTRY (IWDATAr 

0 or more etemetiti 

Figure 4: XML DTD 

XML Schemas Schemas permit the definition of the structure of a document using the syntax of XML. This makes 
the structure more legible. Schemas also permit the definition of new data types (String, integer, etc. ). 

Which one to use, DTDs or Schemas? In general, in applications orientated towards documents where there are 
no strong typing implicit in the data, it is better to use DTDs. In those applications where data typing is important, 
Schemas are best used. 

1.3    A set of types for XML 

In giving XML a type system, first a set of formal types for XML documents must be given, and then the relations 
between them, i.e. a semantics of types for XML, must be stated. We will want at least the following semantic 
equations to hold in accordance with the perception that the XML documents they describe are not different on 
paper. Respectively: grouping within a sequence of elements does not matter; a list type following its base type is the 
same as the base type following the sequence type - both describe lists of length at least one; a list of lists is the same 
as a list type. I.e. there is no recording of how a sequence has historically been constructed. 

{x,(y>z))    =    (ix>y),z)   =' {x,y,z) 
(x,x*)    =    (x*-,x)        <  x* 

x'*    = ' x* 

We want documents satisfying XML schema containing only variants such as the above to be typed equally. It should 
be clear that the sequence of types in the interior of a tagged structure is the item of importance. The complete list 
of possible formal types that we will consider is given in (3) below: 

Type    ::= at tagged structure 
| (ii,...) products, found between tags 
| ti  + <2 unions 
| t* unbounded finite sequences 
| f empty type (3) 
| <J all type 
| fix. t fixpoint solution to x = t[x] 
| String strings 
| v type variable 

where Mi>*2 € Type and a is a tag identifier. Even if they are semantically equal, we want to be able to write 
(a, (b, c)) and ((a, b), c) and (a, b, c) differently. In the next section we will begin to dress this data type up with some, 
initially, formal semantics. 
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1.4    A wish-list for reasoning about types 

In this section we project some rules for reasoning about types in a formal way, before going on in the next section to 
provide a semantic substrate in which these rules may be derived, rather than simply formulated. The rules express 
intuitions about XML types. 

Clearly, yet more type equations and inequations will follow from the most basic intuitions about XML types 
expressed in the opening section, such as: 

(x + y,z)    =    (x, y) + (y, z) 

{xty+z)    =    (x,y) + (x,z) 

(x + y)*    >    x*+y* 

What is needed to make these equations hold is the standard set-theoretic interpretation of types, but with the nuance 
that type products are more like set-theoretic sequences than set-theoretic products, x* must be the limit of the 
operation of extending a product type through (*) and (a:, x) and (a:, x,x) ..., and including all the different length 
products as subtypes, so that 

(x, x*) = (x,c+ {x, e+(x,...)) = (x) + {x, x) + (x,x,x) + ...< x* 

This intention can be expressed via the rules immediately below: 

(list intro.) ___ IA\ 
(a,a*)<a*   (a*,a)<a*   e < a*   a < a* W 

(listelim.)     e<6  Vx.x<b->(a,x)<b   a* < b -> p ^ 

(listelim.)     e<fr  Vx.x<b->(x,a)<b  a* < b -> p ^ 

The rules above are presented in a somewhat unnatural form in order that they fit the pattern of introductions - 
in which the constructs below the line are more complex than those above - and eliminations - in which the converse 
is true. But they are recasts of more familiar reasoning procedures. 

The list introduction rules above assert that the list type contains the closure of the sets obtained by continuously 
extending a product by the same type again and again. The list elimination rules state that it is the least such closure. 
That is to say that the type is a limit type, the solution to a type equation: 

a*    =    e + (a,a*) + (a*,a) 

=   fix. e + (a,x) + (x,a) 

but the list type deserves a name of its own! Written in a more recognizable form, list elimination says, replacing p 
by the formula a* <b: 

€ < b Vs. x < b -> (x, a) < b 
a* <b 

which is evidently the statement that the list type is the minimal of the closures of the empty type under postfixing. 
To the rules for list types, we have to add the ordinary set-theoretic rules for inclusion, unions and products: 

n \ x <y   y < z 
(trans.) -^   - (8) 

(alHntra)       V<^ (9) 

• (all elim.)       V* "* *  " < * ~> P (1Q) 
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,    .     .        . x < a          x < b .... 
union intro.) ~          v^~,h (n) 

... a<x   b<x  a + b < x -> p .    . 
(union ehm.)    —= = =  (12) 

P 
i 

(x,y) < (a, b) 
(prod, intro.) ~~  ~ (13) 

( rod   elim )     ^' ^ - ^' ^ "* P  ^' ^ - ° A V - ^' ^ V * - ^' ^ A ^' ^ ~ 6 (14) 
P 

These rules identify inequality between types as essentially set-theoretic inclusion, with a top class w. Union is 
the minimal set containing both components, and products are really set-theoretic senquences, with their elements 
"promoted" so that if they themselves contain sequences, then the elements of the elements appear inline at top- 
level within the sequence. The rule given for product elimination can be understood more easily by replacing p with 
(x,y) < (a,b). Then the rule reads: 

(a;, t) < a A y < (t, b) V x < (a, t) A (t, y) < b 
{x,y) < (a, 6) 

which is the law given by Tarski in his treatises on ordinal algebras and which describes the interaction between 
inclusion and sum on total orders. Here it has validity because it describes how two partitions (a.b) and (x,y) of the 
same sequence of elements may be related. Either a is short and has to be padded by some t to be the same length as 
x, or a is long and it is x that has to be padded by t to reach the length of a. In the first case we can compare (short) 
a followed by t with (long) x, and t followed by (short) y with (long) 6. In the second case, (long) a can be compared 
with (short) x followed by t, and t followed by (short) 6 with y. The two cases are depicted below: 

a b a b 
X y X y 

The empty type is the identity for type products. When it occurs in a sequence it can be forgoten. In the trivial 
case, a product of one type is just the same as a type alone: 

x *C v 
(empty intro.) r ; r = ; : ; r (15) V ;       (c,z)<y   (x,e)<y  x < {e,y)   x<{y,e) K 

(empty elim.)       &*>**   X-^^   ^-^   ^^ (16) 
x < y £<2/ x < y $ S V 

x ^ v 
(singleton intro.) ~ (17) 

(x) <y  x <{y) 

i ■  w    i-   \   x <(y) (x)<y (IQ\ (singleton elim.)    —   (18) 
x < y      x < y 

The rules governing the fixpoint operator identify it as finding the fixpoint solution, and being least with that 
property: 

(fix intro.)    — ——  (19) 
e[(fix.e)/xl < fix.e 

(fix elim.)    *«•«<'->«<*  H*-e<t-+p (20) 

P 

and, finally, the tag type constructor does nothing to its elements except "tag" them, so it preserves and reflects 
inequalities: 

(tag intro.)        X ~ V (21) 
a x < a y 

(tag elim.)     =  (22) 
x <y 
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Though these rules presently compose nothing more than a wish-list, they are sound. This is because they really 
do have a model. That model interprets the types as parsers, and is given in the next section. This is the essence of 
the insight that XML documents can be typed, for types in general might be anything at all that proves convenient as 
an a priori calculation in order to help ensure the syntactic correctness of code, but the distinguishing feature of XML 
is that it is a language that treats of documents, so the types of XML must be calculations that check the correctness 
of documents, i.e. parsers. 

The rules given have also been carefully formulated in terms of introductions - which construct a relation with more 
complicated expressions within - and eliminations - which reduce complexity. The idea in setting them up in this way 
is that it may then be shown that an introduction followed by an elimination can be recast as an elimination followed by 
an introduction. That means that proofs using these rules can be reformulated as a sequence of eliminations followed 
by introductions along any descending branch of the proof tree. They must then pass through an assertion about the 
relation between certain subexpressions of the original along the way. Further, uses of transitivity and reflexivity (for 
non-atomic types) can be removed from the proof. These observations mean that proofs of an inclusion between given 
types are essentially normalizable, and render searches for proofs - in principle - mechanizable. 

2    The semantics of XML types 

In the last section, we concluded that XML types are parsers. This is another way of saying that from each type, 
we can construct a parser for the documents described by the type. Viewing that yet another way, XML Schemas 
and document descriptions can be seen as the instructions how to build a type-directed parser. That is, each schema 
tells how to construct a parser for its documents. The parser construction depends only on the type expressed by the 
schema, and no more information. In this section details of the construction are given. 

The constructed parsers are context-free ambiguous parsers. From each XML document they produce a set of 
alternative parses. Each parse is a "syntax tree", or more exactly the Tree type described in equations (1) and (2), 
but in general it could be anything, so the syntax tree type appears as a variable in the definition (23) below: 

Parser x = Text -> { x } '        (23) 

In the following section, the semantics of these parsers will be explored, and then the type constructors of XML 
will be expressed in terms of operations on parsers. 

2.1    The algebra of parsers 

The ambiguous parsers defined in (23) admit an algebra which includes the principal operations of placing parsers in 
sequence and in alternation. Respectively: 

('—•) :: Parser [x] -* Parser [x] —> Parser [a;] 

(Pi ^ Pi)text = {si ^ s2|a?i ^ x2 = text, si £pi xx, s2 € pi x2} (24) 

(+) :: Parser x —»• Parser x —> Parser x 

(Pi +P2)text = pi text U P2 text (25) 

That is, sequencialization entails the partition of the text in every way possible, and the concatenation of the sequences 
of trees that result from the analysis of each set of two parts. The ambiguous nature of the parsers ensures a large 
number of possibilities. Alternation is the set-theoretic union of the possible parses from either one of the parsers. 

As is to be expected, sequentialization distributes over alternation. That is: 

a ^ (b + c)    =    (a ^ b) + (a >-*■ c) 
{a + b) <~-c   =    (a -> c) + (b <~- c) 

The sequencialization operator, which operates between parsers that produce sequences of syntax trees, can be 
expressed in terms of more elementary operators. If e is the parser which recognises the empty text (and produces the 
empty sequence of syntax trees), and : is the operation between parsers described immediately below, then: 

(Pi : <0 -^ Pi    =   Pi ■ Pi 
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The combinators e and : have precisely the following semantics, analogous respectively to that of the empty list and 
the 'cons' operator which adds a new element to the front of a list: 

(:) :: Parser x —> Parser [x] —>• Parser [x] 

(pi   : p2)text = {n : s2 | *i — x2 = text, n € Pi xly s2 e p2 x2} (26) 

e :: Parser [x] 

fM = {[]} (27) 

<_ = {} 

The c parser recognizes precisely the empty text. It rejects any other text. That is in contrast to the the error parser, 
which rejects every text, and the string parser, which accepts precisely a text composed of one string, and produces 
the leaf syntax tree that corresponds to it: 

error :: Parser x 

error _ = { } (28) 

string :: Parser Tree 

string fstri = { str} (29) 

string _ = {   } 

The e parser is the identity for sequencialization, whereas the error parser is the identity for alternation: 

a s~^ €    =    c ■—• a        =  a 

a + error    =    error + a  =  a 

The combination p\ : e performs a trivial change on the trees produced by the parser px: it inserts each in a 
singleton list. The operation changes the type but not the essence of the data, and it is therefore of utility when 
combining parsers, because it "promotes" the syntax trees that they produce up by one list bracket. 

singleton     ::    Parser x —>• Parser [x] 

singleton p   =    p : e (30) 

The converse operation is also useful. The flatten operator removes a pair of list brackets, converting a parser that 
produces a sequence of sequences of syntax trees into one that produces a sequence of syntax trees. 

flatten    ::    Parser [[x]] —> Parser [x] 

flatten p text   =    { concat ss | ss € p text } (31) 

Finally, we can construct a parser that accepts an arbitary number of repeats of a given document design: 

(*)     ::    Parser x -» Parser [x] 

p*    =    x where x = e + (p : x) (32) 

In the next section, the operations detailed above serve to express the semantics of XML types. Obviously, given 
their setting as multi-valued functions, parsers have limits of increasing sequences, where one parser is said to be 
greater than the other if it is more "accepting". That is, all the parses of the smaller parser are also parses of the 
larger parser: 

Pi < Pi    <->■    Vtext. pi text C p2 text (33) 

<->    Pl+P2=P2 (34) 
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The limit is the set theoretic limit: 

Pi < Pt < • • • Z1 P ** Vtext. p text =   [J pi text (35) 
i 

and all the (finitary) operators already discussed are monotonic with respect to the ordering (34) on parsers, and 
continuous with respect to directed limits. 

2.2    XML types as parsers 

The construction of parsers from XML types is "context free", in the sense that it depends only on the type expression, 
not on the context in which the type expression is embedded. First of all, given a tag type, the corresponding parser 
checks that the tag is what it should be, and then parses the content inside the tag. The result will be a set of possible 
singleton lists of parse trees. The singleton represents the unitary character of a tag, as compared to the multiple 
character of the sequence of contents inside the tag: 

[—]c    '■'■    Type -> Parser [Tree] 

[a t]c 
!<a> text </a>l    =    { [(a) x (/a)] \x £(t]c text } (36) 

where e is a type expression that commences with a tag construct. 
The interpretation of the content type within a tag is a parser that produces a nontrivial list of trees, not a 

singleton. Each tree in the list corresponds to a (promoted) element in the tag contents. 
For example, the simple tagged document: 

<a> "Hello" "World" </a> 

satisfies the type 

a (String, String) 

and the parser for this type, when applied to the document, will produce the unique parse tree with a single node and 
two leaf branches from it: 

(a) ["Hello", "World"] (/a) 

so the parser for the product type within the tag produces lists of trees, which can then be fixed as branches to the 
tag node above. 

l(h, ■ ■ ■ ,tn)}c   =    [ti]c ~ ■ ■ ■ ~ [tn]c (37) 
(38) 

(39) 

(40) 

(41) 
(42) 

(43) 

The fixpoint interpretation deserves a little comment. It is the interpretation of the fixpoint of a type equation, 
which itself will yield an infinitely extended formal type expression (without the ^ operator) provided there is at least 
a leading constructor on the type. So pix.a x for some tag a is alright, but \ix.x is not. The interpretation of the 
infinitely extended type expression goes as follows: the rules above tell one how to interpret the approximants to the 
type as parsers, and the interpretation is the functional limit of those interpretations. 

It is also possible to define the interpretation of fix.e to be the fixpoint of the automorphism of parsers p >-»• [e]'c 

in which the interpretation [—]'c now transforms the type variable x to p when it encounters it in expression e. That 
calculation should give the identical result because the extra information fed into the functional fixpoint calculation 
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, • • -,tn)}c = [ti]c - ... - [tn]c 

[()]c = empty 

[t*]c = flatten ([t]c)* 

[*i + *a]c = [ti]c + [h]c 
[String] c = singleton string 

l/ix. e]c = [6]c where 6 = e[6/x 

Mc = empty 



is that the interpretation of x will be a parser, which is already inevitable because it must fit into the operators that 
are applied to it in the interpreted expression. 

It is possible to define the list type as a limit of types: 

t* = ixx. (e+(t,x)) 

and this will yield the same parser as the list type parser described by the earlier equations. 
For example, if we try the parsers obtained, respectively, from the types 

a String* 

a (String,String*) 

a (String*,String) 

a (String*, (String)) 

a (fix.e + (String, x), (String)) 

on the document 

<a> "Hello World" </a> 

(a tag pair containing a string) then all the parsers parse the document in exactly the same way, as: 

{ (a)  "Hello World" (/a) } 

(the outfix constructor enclosing a leaf node). The parse is a singleton, indicating that there are no alternative parses 
of the document. However, the parsers are not exactly the same, because the first admits the empty tag: 

(a)  (/a) 

and the rest do not. But the other parsers are identical, and all parse everything in the same way, with the single 
exception noted. Therefore the other parsers are subparsers of the first and the type correspondence is: 

a String*    >    a(String,String*)     =  a(String*,String) 

=    a (String*, (String))  =  a (fix.c+ (String, x), (String)) 

The rules for the comparison of types can be derived from the algebra and semantics of operations on parsers. 
The parser constructed from a type parses the text iff text conforms to the type.   That intention is expressed 

formally as follows: 

[i]R text ^ {}<->• t  \=  text 

But it is practically difficult to verify this intention by any other means than parsing using the parser constructed 
from the type. Some texts obviously conform to the specification given for them: they may, for example, consist of a 
sequence of strings within a single tag. The document type specification should then say "sequence of strings within a 
single tag". The problem arises when the document specification says something more complicated, such as "sequence 
of sequences of strings all within a single tag". Then the type is not self-evidently that which it should be. In this 
example, the type is equal to the evident type of the document, but not identical. The variants among type expressions 
that are equal but not identical may in principle be so great as to leave no obvious alternative as to try the parser 
constructed from the type on the document to see if it conforms. There will be many different alternative parses to 
try, since the parsers are ambiguous. 

In the next section, an algorithm is presented which is successful in identifying many of the possible variants of 
type presentations. 
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2.3    An algorithm for the comparison of types 

The reduction rules below do a remarkably good job of assigning a relation of "formal inclusion" for types. The open 
end of the relation symbol points to the larger type, which is the more accepting parser: 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

' (52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

with equality of type variables of the same name within expressions. The error parser is the smallest parser, but no 
type translates to it. Note that reflexivity (x ■< x) is not expressed generically, but only of atomic types. The recursive 
application of the rules reduces the assertion of reflexivity to reflexivity on atomic types. 

Note that the rule applications always terminate because the type expressions on the right hand side of each rule 
are always simpler than those on the left hand side. 

In principle this is a proper subrelation of the functional definition of when one parser is more accepting than 
another. That is: 

h<t2 -4 h <h (63) 
yet it is a larger subrelation than might naively be supposed, because, for example, it correctly determines the inclusion 
between a list type and the type of lists of at least one entry: 

(String,String*)<String* 

Where the subrelation is incomplete is in the comparison of types that can be proved to be equal via set-theoretic 
reasoning, but which are not self-evidently so from the syntax alone. The list type cannot be determined to be equal 
to its definition as a set-theoretic limit, for example: 

fix.e + (String, x) /< String* 

However, another pair of reduction rules may be added to take care of the comparisons between lists and limits: 

x* <p,v.e    *r-    e+ (x,v)^<e (64) 

Hv.e<y*    <—    e<e + (y, v) (65) 

That leaves the problem that different partitions of a document are not detected by these rules. For example: 

ti+t2<x <- t\ -<x A t2 -<x 

X<ti + t2 <r- x <tx V x<t2 

String ^String 

x*<y* <- x<y 

{t\,.. .,tn)<x* f- t\ <x* A .. .tn <x* 

x<y* f- x^eV x<y 

X<(ti ■ ■ -,tk, [tk+i, ■ ■ -,ti),ti+i, ■ . .,t„) <- X<{ti,...,tn) 

(tl,... ,tk, {tk+i, ■ ■ -,ti),ti+i, ■ ■ -,tn)^y <- {tx,...,tn)<y 

X-<(ti, . . .,tk,£,tk+l, ■ --ttn) <- X<(ti,...,tn) 

{tl, ■ ■ .,tk>C,tk+l, ■•-,tn)^y <- {ti,...,t„)^y 

(ti,...,M^(<i. •■•.<;) '«- ti^,t[ A...Atn^t'n 

(x)<y <- x<y 

x<(y) <r- x<y 

a t\ -Ka t2 f- tx<t2 

*:<() «- x<e 

Olv <- e<y 

eXe 

x -<u 

fix. t\ -<lix. e2 4- ei <e2 
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(String, (String, String)) ^((String, String), String) 

That is because there is no convenient way to detect all the Tarskian relationships: 

(a, b) <(c, d) <- 3a:. (a, x)<c Ab<{x,d)V a <(c, x) A (a:, b) < d (66) 

but substituting for x in the above in turn all the possible subexpressions of a, 6, c, d appears to be sufficient for the 
common cases. In particular, adding the rule (66) above with x restricted to the proper subexpressions of the left and 
right hand sides does make the mentioned inequality hold: 

(String, (String, String)) ^((String, String), String) 

The search can be lengthy in the case that the result is false, because the set of subexpressions might be recalculated 
for the recursive comparisons of every subexpression. Considerable efficiency can be achieved by calculating the set 
once for the whole, at the outset, and then reusing it throughout the recursion. Even the removal of repeats from the 
list of subexpressions may incurr a comparison for equality, which will evoke another recursive calculation, so there is 
much opportunity to produce a very computationally expensive implementation of the reduction rule (66). 

Similarly, because the list type corresponds to the union of various sequence types, an extra rule must be inserted 

to cope with the comparison (a, 6) < t*. It is derived from (66) by substituting (c,d) by (t,t*). A symmetrically 
derived variant replaces (c, d) by (t* ,t): 

(a,b)<t*    <-    3x. (a,x)3tAb^{x,t*)Va±(t,x)/\(x,b)<t* . (67) 

(a,b)<t*    <-    3x. (a,x)<t* Ab:<{x,t)Va-<{t*,x) A(x,b)<t (68) 

Obviously (a,b) < (t,t,t*) etc., etc. remain to be considered too. But replacing the fragment x by (t,x) in the above 
formulae does the job. The trouble is that a: is supposed to be a subexpression of those that appear in the original 
formula, and that is not necessarily the case for (t,x). One must accept the incompleteness of this search procedure 
or be prepared to try comparisons of unbounded length. In practice, searching to a depth of two or three repeats will 
be enough. 

We are still not finished, because the rules above are in principle not enough to resolve when to insert extra empty 
types in a sequence for the purposes of comparision. That is: 

(String)   /<  (String,String*) 

because although the extra relations 

(String)  < (String, e), (String, e) ■< (String, String*) 

are known, there is no rule that creates these intermediate results and then applies transitivity to them. That can be 
remedied with the rule below, which checks to see if some elements of a sequence type contain the empty type, and 
thus may be discounted in the comparison: 

x<(a,b)    <-    i^aAf^Vf^aAi^ (69) 

With this rule in operation, the example is resolved correctly: 

(String)  <  (String, String*) 

and indeed even other nonobvious relations are calculated correctly by the rules. For example: 

(a, a, a)    ■<    (a + b)* 
(a,6,a,6,a)    ■<    ((a,6)*,a) 

Are there still relations that cannot be uncovered by these rules? Yes, there are. As remarked, those which derive 
from the unrolling of limits (such as list types) to some a priori unknown depth before they become true. 
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3    Summary 

In this article we have presented XML and a system of types for it, interpreting the types as parsers in order to get 
the required semantics for the inclusion relations between types. Obviously, the membership of a document in a type 
is decidable - the decision is made by parsing the document using the parser corresponding to the type. Although 
the full relation of inclusion between types appears not to be decidable, most practical cases can be rendered via the 
algorithm presented here. 
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Abstract 

This paper presents an approach to automatic test generation from specifications written 
in extended finite state machines (EFSMs). We consider a hierarchy of coverage criteria based 
on the information of control flow and data flow in EFSMs and formulate the problem of test 
generation as finding counterexamples during the model checking of EFSMs. The ability of 
model checkers to construct counterexamples allows test generation to be automatic. 

We illustrate our approach using the temporal logic CTL and its symbolic model checker 
SMV. We show how to translate an EFSM into a SMV program and how to express a coverage 
criterion as a set of CTL formulas. A test suite consists of all the counterexamples obtained by 
model checking the CTL formulas against the SMV program. 

Keywords: test generation, extended finite state machines, control flow and data flow, model 
checking 

1    Introduction 

Testing has always been an essential activity for validating the correctness of software and hardware 
systems. The testing process usually consists of two main steps: test generation and test execution. 
Test generation constructs tests from the specification of an implementation under test by deter- 
mining which functionalities will be tested. Test execution applies tests to the implementation, 
makes observations during the execution of tests, and validates the observed behaviors. Although 
testing cannot provide an absolute guarantee on correctness as is possible with mathematical ver- 
ification, systematic test generation and execution can greatly increase the effectiveness of system 
validation, especially when performed automatically by suitable tools. 

This paper discusses the problem of test generation from formal specifications written in ex- 
tended finite state machines (EFSMs). EFSMs extend FSMs with data variables and operations on 
them and are widely used as underlying models of many specification languages such as SDL [2], 
Estelle [4], and Statecharts [11]. Because an EFSM specification typically allows an infinite number 
of executions, it is impossible to determine whether an implementation conforms to its specification 
by considering all the possible executions of the specification. Therefore, exhaustive testing is in 
general impossible to achieve and it is necessary to have systematic coverage criteria which select a 
finite and reasonable number of tests satisfying certain conditions. In the last two decades, a num- 
ber of test generation methods and tools have been proposed for EFSMs (for survey, see [3, 8, 17]) 
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and most of them focus on a hierarchy of coverage criteria based on the information of control flow 
(e.g., states and transitions) or data flow (e.g., definitions and uses of variables) in EFSMs. 

This paper shows that the problem of test generation from EFSMs based on control and data 
flow coverage criteria can be formulated as a model checking problem. Given a finite state system 
model and a temporal logic formula, model checking provides either a claim that the formula is 
satisfied in the system model or else a counterexample explaining why the formula is falsified. In our 
approach, each coverage criterion is expressed as a set of temporal logic formulas and the problem 
of test generation satisfying the criterion is formulated as finding counterexamples during model 
checking the formulas against EFSMs. The ability of model checkers to construct counterexamples 
allows test generation to be automatic. 

We illustrate our approach using the temporal logic CTL [7] and its symbolic model checker 
SMV [18]. An overview of test generation is shown in Figure 1. First we describe how to translate 
EFSMs into input to SMV, which we call SMV program. We, then, describe how to express coverage 
criteria in CTL. A given coverage criteria is expressed as a parameterized set of formulas in CTL 
that are instantiated for a given EFSM specification. Each formula is defined such that the formula 
is satisfied in an EFSM if and only if the EFSM does not have an execution which covers the entity 
described by the formula. If the entity can be covered in the EFSM, model checking will fail and 
SMV will generate a counterexample which is one of the executions covering the entity. A test suite 
consists of all the counterexamples obtained by model checking each CTL formula in the formula 
set against the SMV program. 

Figure 1: Overview of test generation 

The remainder of the paper is organized as follows: After describing related work in Section 
2, we give a brief introduction to CTL model checking in Section 3. We define the syntax and 
semantics of EFSMs in Section 4. We describe test coverage criteria and a test generation method 
for EFSMs in Sections 5 and 6, respectively. Finally, we conclude the paper with a description of 
future work in Section 7. 

2    Related Work 

Widely-used system models in the testing literature include finite state machines (FSMs) and 
labelled transition systems (LTSs), especially in hardware testing and protocol conformance testing. 
Testing methods based on such models primarily focus on the control-flow oriented test generation 
such as transition tour, unique-input-output sequence, distinguishing sequence, and characterizing 
sequence (for survey [3, 8, 17]). Although these methods are well-suited for hardware circuits 
and control portions of communication protocols, they are not powerful enough to test complex 
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data-dependent behaviors. 
EFSMs extend FSMs with variables to support the succinct specification of data-dependent 

behaviors. If the state space of an EFSM is finite, one can construct the equivalent FSM by 
unfolding the values of variables. Thus, EFSM-based testing with finite state space can be reduced 
in principle to ordinary FSM-based testing. Of course, this approach suffers from the well-known 
state explosion problem which makes test generation often impractical. Even when test generation 
is feasible, this approach is often impractical because of the test explosion problem, i.e., the number 
of generated tests might be too huge to be applied to implementations. 

A promising alternative is to apply conventional software testing techniques to test generation 
from EFSMs [22]. In this approach, an EFSM is transformed into a flow graph that models the 
flow of both control and data in the EFSM and tests are generated from the graph by identifying 
the flow information. The approach abstracts the values of variables when constructing flow graphs 
and hence it can be applicable even if the state space is infinite. However, it requires posterior 
analysis such as symbolic execution or constraint solving to determine the executability of tests 
and for the selection of variable values which make tests executable. 

The approach we advocate here is based on constructing Kripke structures from EFSMs, and 
thus, also suffers from the state explosion problem. However, the formulation of test generation as 
model checking in our approach enables the use of symbolic model checking [5] that has been shown 
to be effective for controlling the state explosion problem for certain problem domains. Second, 
our approach overcomes the test explosion problem by using control and data flow information of 
EFSMs like the flow-graph approach. Finally, our approach can be seen as complementary to the 
flow-graph approach. In particular, flow graphs can be constructed for systems whose state space 
is infinite, whereas our approach has the advantage that only executable tests are generated which 
obviates the need of posterior analysis. Ideally, one would eventually like to be able to combine 
these two approaches. 

Recently connections between test generation and model checking has been considered in the 
literature. A tool that uses test generation methods inspired by model checking algorithms is 
described in [16]. Test generation using counterexamples constructed by a model checker has been 
applied in several contexts. Mutation analysis is used in the approach of [1]. In [6, 9], test generation 
is performed from user-specified temporal formulas. No consideration is given to coverage criteria. 
Several control flow coverage criteria are considered in [10]. We are not aware of any work that 
considers the model checking approach to data-flow oriented test generation. 

3    CTL Model Checking 

Symbolic model checking [5] is a commonly-used technique for the automatic verification of finite 
state systems. A widely-used temporal logic for symbolic model checking is CTL [7]. Let AP be the 
underlying set of atomic propositions. The syntax for CTL is defined by the following grammar: 

<f> ::= p | -</> | <f> A <f>' | EX<j) \ AX<f> \ E[(j>U<p'] \ A[4>U<f/] 

where p E AP and <f>, <fi' range over CTL formulas. The remaining temporal operators are defined 
by the equivalence rules: EF<f> = E[trueU4>}; AF<f> = A[trueU(j)}\ EGip = ->AF{-y<f>); AG<f> = 

-iEF(-*l>). 
The semantics of CTL is defined with respect to a Kripke structure (S,SQ,L,R) where S is a 

finite set of states; So C S is the set of initial states; L: S -> 2AP is the state-labeling function; 
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and R C S x S is the set of transitions. A sequence so, s\, S2, ••• of states is a path if (s;, Sj+i) £ -R 
for all i > 0. A path p is a s-path if p(0) = s. The satisfaction relation j= is inductively defined as 
follows: 

• s \= p iff p £ L(s); s \= -«/> iff ->(s |= 0); s |= <f> A </>' iff s \= <f> and s (= <f>'; 

• s (= £X0 (resp. AX"</>) iff for some (resp. all) s-path p, p(l) J= </>; 

• 5 |= ü?[0[7<£'] (resp. A[<f>U<f>']) iff for some (resp. all) s-path p, there exists i > 0 such that 
p(z) |= </>' and p(j) (= </> for all 0 < j < i. 

An input to SMV consists of a symbolic representation of a Kripke structure as well as a list of 
CTL formulas to be checked. The symbolic representation consists of a set of variable declarations 
that determine the state space and a set of predicates over variables that describe the initial states 
and transition relation. Let V be a set of variables. We call v' as the primed version of a variable 
v £ V and use V' to denote the set of primed versions of all variables in V. Let S(F) be the set of 
all interpretations of V. We define a SMV program as a tuple (V, Init, Trans) where V is a finite 
set of variables; Init is a predicate on V; and Trans is a predicate on V U V. A SMV program (V, 
Init, Trans) defines the Kripke structure (5, 5b, L, R) such that S = 2(F); So = {a £ Ti(V) \ a 
|= Init}; L(a) = {v=a(v) | v £ V), for each a £ S(V); (a, a') £ R if and only if (a, a') (= Trans, 
where (a, a') is the interpretation that assigns a(v) tovGK and a'(v) to v' £ V'. 

4    EFSMs 

This section defines the syntax and semantics of EFSMs and introduces the notion of test sequences. 

4.1    Syntax 

An extended finite state machine (EFSM) is a tuple (Q, qo, E, V, T) where Q is a finite set of 
states; qo is the initial state; E is a finite set of events, partitioned into Ei and Eo comprising input 
and output events, respectively. Each event is of the form e(P) where e is an event identifier and P 
is a (possibly empty) set of parameters; V is a finite set of variables; T is a finite set of transitions, 
partitioned into Tj and To comprising input and output transitions, respectively. A transition is a 
tuple (q, e(P), g, a, q') where q £ Q, e(P) £ E, and q' £ Q. If e(P) is an input event, we require 
that g be a predicate onV I) P and a be a set of assignments to V. Otherwise, we require that g 
be a predicate on V and a is a set of assignments toVUP. 

For a state q and event e{P), define <3g,e(p) as {g | (q,e(P),g,a,q') £ T}. An EFSM is 
deterministic if, for each state q and event e(P), gi A gj = false for all g%,gj £ Gq,e(P) sucn tnat 
g{ zfi gj. In deterministic EFSMs, there is at most one possible transition to be taken at a given state 
and event. An EFSM is completely specified if, for each state q and event e(P), gi V ... V gn = true 
where Gq^P} = {gi,—,gn}- In completely specified EFSMs, there is at least one possible transition 
to be taken at a given state and event. For simplicity, this paper considers only deterministic and 
completely specified EFSMs. 

We illustrate our approach using the bounded retransmission protocol (BRP), an extended 
version of alternating bit protocol that aborts transmission following a bounded number of retrans- 
mission attempts [14].   The protocol consists of a sender, a receiver, and two channels between 
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them. This paper focuses on only the sender and adopts the EFSM specification for the sender by 
Rusu et al.[21] (see Figure 2). 

. 

h: req?(F) 
1f:=F; head:=l; rn:=0 

SEND.FILE 

£4: timeout? 
[rn< max] 

t2: msg!(M) 
/M:=f(head); 
rn:=rn+l 

WAIT_ACK 

t6: t 
[r 

imeout? 
n=max] 

£5: ack? 
[head=last] 
1head:=head+l 

SEND-COMPLETE 

t7: t 
[he 

/C:=con 

zonf!(C) 
ad<last] 
f.not.ok 

t8: conf!{C) 
[head=last] 
/C:=con}Ldont -know 

r 

WAIT.TIMEOUT2 

tio: time( mt? 

£3: ack? 
[head<last] 
]head:—head+l; rn:=0 

t9: conf!(C) 
[head=last+l] 
/C:=conf-ok 

Figure 2: The sender of the BRP 

The set of events in Figure 2 is partitioned into E\ = {req?(F), ack?, timeout?, timeouts?} and 
Eo = {msg!(M), conf!(C)}. The meaning of events is described by req?(F): a list of messages F 
arrives, ack?: acknowledgment received, msg!(M): a message M transmitted, conf!(C): a confir- 
mation C made. There are two timeout events denoted by timeout? and timeout2?. The set of 
variables is defined as {/, last, head, max, and rn}. The variable / is a list of messages, last is used 
to denote the length of /, and head, which is of integer subrange [1, last+l], indicates the message 
of / to be transmitted, max is the maximum number of retransmissions allowed for the sender, 
whereas rn, integer subrange [0, max], records the current number of retransmissions performed by 
the sender. 

The EFSM's state space for the BRP sender is infinite due to (i) the type of messages, (ii) the 
length of message lists (last), (iii) the number of retransmissions (max). To make the state space 
finite, we scale down the EFSM by choosing the type of messages as boolean and by fixing last 
and max as 3 and 2, respectively. This enables the application of model checking to automatic test 
generation for the BRP sender. Of course this scaling-down is an ad-hoc abstraction and does not 
preserve all the possible behaviors of the original EFSM. We believe that abstractions techniques 
in the verification literature can be applied to constructing more general finite state abstractions 
from infinite EFSMs (see, for example, [12]). 
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4.2 Semantics 

To generate tests from EFSMs using CTL model checking, we view EFSMs as Kripke structures. 
Because we use the symbolic model checker SMV, we do not enumerate Kripke structures explicitly 
but encode them symbolically using a set of variables and predicates. First we represent the state 
space of an EFSM (Q,qo,E, V,T) in terms of (i) a variable -K which ranges over Q; (ii) a boolean 
variable for each event identifier; (iii) a variable for each variable and parameter; (iv) a boolean 
variable for each transition. 

The set of initial global states is described by the predicate Init as follows: 

Init ::= {n=q0) A Ae€i?(e=0) A Ater(
i=0) 

which states that there is no event and transition taken prior to the initialization. 
For an expression exp, we denote by exp[V'/V] the result of replacing each occurrence of v € V 

in exp by its primed version v'. Finally we capture the transition relation of an EFSM as follows: 

Trans ::= VteT Tmnst 
Tränst ::= Enabledt —>■ Takent 
if t is an input transition and a = {v:=expv \ v € V}, 

Enabledt "= (*=q) A {g[P'/P]=l) 
Takent ::= W=4) A (e'=l) A AeieE,e^e(e'i=0) A f\veV(v'=expv[P'/P]) A 

(*'=1) A Atl6T,tl#t (<i=0) 
if t is an output transition and a = {v:=expv \ v € V} U {p:=expp | p € P} 

Enabledt ::= {n=q) A (g=l) 
Takent ::= (7r'=g') A (e'=l) A t\ei&E,e^M=Q) A hv€vW=*cPv) A 

NPzp{p'=™Pp) A (<'=1) A Atier,ti# (*'i=0) 

Note that there is no constraint on the next value of the parameters of input events because their 
changes are determined by the environment of the EFSM, whereas the parameters of output events 
are determined by the EFSM itself. Appendix A shows the SMV program corresponding to the 
EFSM in Figure 2. 

4.3 Test Sequences 

A test sequence of an EFSM is a finite path of its corresponding Kripke structure and a test suite 
is a set of test sequences. Figure 3 shows a test sequence for the BRP sender which corresponds to 
the execution of the transition sequence t\, t?, t^. For legibility, each global state shows only the 
events and transitions that are taken at that state. 

We compare the nature of test sequences for reactive systems to those for transformational 
systems. Most of analysis and testing methods for transformational systems, e.g., flow graphs[13] 
and program dependency graphs[15], contain a distinguished node called exit node to model the 
terminating behaviors of such systems. Test sequences are naturally defined in terms of paths whose 
first node is the entry node and last node is the exit node of the graphs. On the other hand, there 
is no corresponding notion in reactive system models, because the behavior of reactive systems is 
characterized by their non-terminating executions. 

A widely used approach to defining pseudo-exit nodes in EFSMs is to require that the execution 
of test sequences end at an initial state from which another test sequence can be applied.   In 
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9Si: 7T=WAIT_REQ, 

/[l]=±,/[2]=±>/[3]=±,Aead=±,rn=± 

1 

9S2- 
7r=SEND_FiLE,re9.'=l,F[l]=l,F[2]=0,F[3]=l, 

/[l]=l,/[2]=0)/[3]=l,Acfld=l,m=0,<i=l 

ff S3: 
7r=WAIT.ACK,m5ff/:=l,M=l, 

/[l]=l,/[2]=0)/[3]=l)Äead=l,m=l,t2=l 

■ ■ 

gs4: 
7r=SEND_FILE,acfc?=l, 

/[l]=l)/[2]=0)/[3]='l)Acad=2,rn=0,*3=l 

Figure 3: Example of test sequences 

general, testers may want to designate an arbitrary state as a pseudo-exit node. An interesting 
notion is marker state in the supervisory control theory by Ramadge and Wonham [19]. The theory 
distinguishes paths ending at a state designated as a marker from others and interprets such paths 
as completed tasks of the machine. For example, a tester may want to designate the state WAIT_REQ 
in Figure 2 as a marker and require that the execution of all test sequences end at the marker. In 
this case, the test sequence shown in Figure 3 can be extended by executing the transition sequence 
*2) ^3> *2) *3> ^5> ^9i *io m order to guarantee that the machine ends at WAIT_REQ. 

5    Test Coverage Criteria for EFSMs 

EFSMs specify the required behavior of implementations under test by describing the possible 
sequences of input and output events in terms of control and data dependencies between events. 
Specification-based testing with EFSMs aims at determining whether an implementation establishes 
the desired flow of both control and data expressed in its specification. 

5.1    Control Flow Oriented Test Coverage Criteria 

Obviously the strongest test coverage criteria for checking the conformance of an implementation 
to its EFSM specification is path coverage which requires that all paths of the EFSM's reachability 
graph be traversed. Because there is, in general, an infinite number of paths, it is impossible to 
achieve exhaustive testing and we need to have systematic coverage criteria that select a reasonable 
number of tests satisfying certain conditions. This paper investigates a family of test coverage 
criteria based on the flow information of both control and data expressed in EFSMs. 

We say that a test sequence gso, gsi, ..., gsn covers a state q (resp. a transition t) if there exists 
i such that gsi(ir) = q (resp. gsi(t) = 1). 
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State coverage. 
sequence in P. 

A test suite P satisfies state coverage if every state in Q is covered by a test 

Transition coverage. A test suite P satisfies transition coverage if every transition in T is 
covered by a test sequence in P. 

5.2    Data Flow Oriented Test Coverage Criteria 

We adopt the following convention which classifies each variable occurrence as being a definition or 
use. For a variable v and a transition t = (q, e, g, a, q'), v is defined at t if a contains an assignment 
that defines v and is used at t if a contains an assignment that references v or g references v. We 
use def(v) and use{v) to denote the sets of transitions that define and use v, respectively. 

We discuss how structured variables such as arrays are handled, say / in Figure 2. In general 
it is not possible to determine statically the particular array element which is being defined or 
used. Therefore, an assignment to the variable a[e] will consist of a definition of a and an use of 
each variable referenced at e. An use of a[e] will consist of an use of a and an use of each variable 
referenced at e. Table 1 shows the information of definitions and uses for the BRP sender. 

Table 1: The definitions and uses for the BRP sender 

f head rn 
def {h} {h, h, h} {h, h, £3} 
use {t2} {t2, h, h, h, ts, tg} {*2, h, te} 

Let v be a variable and t, t' be transitions. We say that a path gso, gs\, ..., gsn is a definition- 
clear path with respect to v from t to t' if gsi(t)=l, gsj(t')=l, and there is no definition of v at t" 
such that gsk(t") = 1, for each k in i < k < j. We say that a tuple (v,t,t') is a def-use association 
if t € def(v), t' G use(v), and there exists a definition-clear path with respect to v from t to t'. 

Table 2 shows the def-use associations in Figure 2. For example, consider the tuple (head, t±, 
ts). It is a def-use association because the definition of head at t\ can reach the use of head at £3 
through the definition-clear path shown in Figure 3. For another example, the tuple (head, t\, £5) 
is not a def-use association because there is no definition-clear path with respect to head from t\ 
to £5. 

We say that a test sequence covers a def-use association (v,t, t') if the test sequence is a 
definition-clear path with respect to v from t to t'. 

AU-def coverage. A test suite P satisfies all-def coverage if for each variable v and each transition 
t such that t € def(v), some def-use association (v,t,t') is covered by a test sequence in P. 

All-use coverage. A test suite P satisfies all-use coverage if for each variable v and each tran- 
sition t such that t €. def(v), every def-use association (v,t,t') is covered by a test sequence in 
P. 
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Table 2: The def-use associations for the BRP sender 

variables def-use associations 

/ U,hM) 
head (head,ti,t2), (head,ti,ts), (head,t\,tr) 

(head,t3,t2), (head,t3,t3), (Ziearf,^,^), 
(head,t3,t7), (head,t3,ts), (head,t3,tg), 

(head, £5, £9) 
rn (rn,tut2), (rn,t2,t2), (rn,t2,t4), 

(rn,t2,t6), (rn,t3,t2), (rn,t3,t4), 
(rn,t3,t6) 

6    A Test Generation Method for EFSMs 

This section shows that test generation from EFSMs can be automatically performed by using the 
ability of model checkers to construct counterexamples. Briefly the generation of a test suite from 
a given EFSM and test coverage criterion consists of the following steps. 

• An SMV program for the given EFSM is constructed as described in Section 4.2. 

• A set of CTL formula is constructed from the criterion. 

• A test suite is constructed by mo del-checking each CTL formula against the SMV program. 

6.1    Control Flow Oriented Test Generation 

We represent each coverage criterion described in the previous section as a set of CTL templates. 
For a given EFSM, the set of templates is instantiated into a set of CTL formulas which captures 
exactly the coverage criterion for the EFSM. 

We begin with the state coverage criteria which requires that for each state q, there exists at 
least one test sequence covering q. For a state q, we define the predicate in(q) as K=q. Let exit be 
a predicate defined as in(marker) if there is a marker state marker and true otherwise. The Kripke 
structure for an EFSM has a path covering q if and only if (i) there exists a global state gs{ which 
is reachable from an initial global state gso and at which in(q) is satisfied; (ii) there exists a global 
state gsj which is reachable from gsj and at which exit is satisfied (see Figure 4). We express this 
requirement using the CTL formula EF(in(q) A EFexil). 

in{q) 

9Si 

exit 

9Sj 

Figure 4: A test sequence covering state q 

Now we take the negation of the above formula and run SMV against the negated formula 
->EF(in(q) A EFexit) because we are interested in generating test sequences covering q instead of 
checking the satisfiability of the original formula. If there exists a test sequence covering q, SMV 
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generates a counterexample which corresponds to a test sequence covering q. Otherwise, SMV 
provides the result of true which implies that there is no test sequence covering q. There are two 
cases in which SMV provides true against the negated formula. First the global state gsi is not 
reachable from any initial global state, i.e., EFin(q) is not satisfied at any initial state. Second gSj 
is not reachable from gs^ i.e., EFexit is not satisfied at gs{. 

To generate test sequences satisfying state and transition coverage from an EFSM M = (Q, qo, E, V, T), 
we use the following sets of CTL formulas. 

State coverage.    {->EF (in(q) A EF exit) | q € Q} 

Transition coverage.    {->EF (t A EF exit) \ t <E T} 

6.2    Data Flow Oriented Test Generation 

The following predicates are used to encode the information about definitions and uses of a variable 
v in SMV. 

d(v)::=     V     t <v)"=     V     * 
t€def(v) teuse(v) 

For example, for the BRP sender, we have d(f) ::= *i, u(f) ::= t2, d(head) ::= t\ Vtz Vis, u(head) 
::= t2 V t3 V t5 V t7 V t8 V t9, d{rn) ::= h V t2 V t3, and u(rn) ::= i2 V U V i6- 

The requirement for a def-use association (v,t, t') can be stated as follows: (i) there exists a 
global state gs{ which is reachable from an initial global state gso and at which t is satisfied; (ii) 
there exists a path gsi+i ... gsj-i which starts from a successor of gs{ and contains no definition 
of v until gsj at which t' is satisfied; (iii) there exists a global state gsk which is reachable from 
the global state gsj and at which exit is satisfied (see Figure 5). We express this requirement using 
EF {tAEXE [-.d(u) U {? A EF exit)}). 

t ->d(v) ->d(u) t' exit 

gs0 W • • • -*( gsi\jgsi+i)->.... -JgSj-i\j gsj \+ ... -J gsk 

Figure 5: A test sequence covering def-use association {v,t,t') 

For each tuple (v,t,t') such that t € def(v) and t' G use(v), we determine whether the tu- 
ple is a def-use association or not by associating the negation of the above formula ->EF (t A 
EX E{->d(v)U (t' A EF exit)]) with the tuple. If SMV generates the result of true against the 
negated formula, the tuple is not a def-use association. Otherwise, the counterexample generated 
by SMV corresponds to a test sequence covering the def-use association (v,t,tr). 

All-def coverage. 

{^EF (tAEXE [->d(v) U (u{v) A EF exit)}) \v€V,te def(v)} 

All-use coverage. 

{^EF (tAEXE [-.<*(«) U (t' A EF exit)]) \veV,te def(v), t' G use(v)} 
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6.3    Example 

Prom a given coverage criterion, we construct a set of CTL formulas and model check each for- 
mula in the set against the SMV program corresponding to an EFSM. If the formula is false, the 
model checker produces a counterexample which yields a test sequence to be included in a test 
suite. As an example, Appendix B shows the counterexample which is obtained by model checking 
-iEF(ts A EFin(wAlT_REQ)), which is a formula from the transition coverage criterion formula set. 
This counterexample corresponds to the execution of event sequence req?(F[l]=0,F[2]=0,F[2]=0), 
msg!(M=0), ack?, msg!(M=0), timeout?, msg!(M—0), timeout?, conf!(C=conf-noLok), timeout^?. 
Appendix C shows test suites for the BRP sender with respect to state, transition, all-def, and 
all-use coverage criteria, respectively. 

7    Current and Future Work 

We have presented a symbolic model checking approach to automatic test generation from EFSMs. 
Our approach considers a hierarchy of coverage criteria based on the information of both control flow 
and data flow in EFSMs and expresses each coverage criterion as a collection of CTL formulas. Tests 
are generated by finding counterexamples during model checking the formulas against EFSMs. The 
resulting test suite provides the capability of determining whether an implementation establishes 
the desired or required flow of control and data prescribed in its EFSM specification. 

Other formalisms. Our representation of coverage criteria as collections of CTL formulas is 
language-independent and is applicable with minor modifications to any kind of specification lan- 
guages based on EFSMs, e.g., SDL, Esetelle, and Statecharts. In fact, semantic differences in such 
languages affect only the translation method into input to SMV. 

Other coverage criteria. A number of other coverage criteria based on control and data flow 
have been proposed in the software testing literature (see, for example, [20]). Some of these coverage 
criteria cannot be handled by SMV since it generates only one counterexample. For example, all- 
du-path coverage criterion requires that all definition-clear paths for each definition-use association 
be traversed. To generate tests for this criterion properly, we need all counterexamples to each 
CTL formula instead of only one. Such coverage criteria can be handled by extending SMV to 
construct multiple counterexamples for a CTL formula or by using a different model checker that 
has this capability. 

Nondeterminism. In the case of non-deterministic EFSMs, there may be more than one possible 
output event sequence for a given input event sequence. In this situation, a single counterexample 
constructed by model checkers is not enough for the input event sequence, since it identifies only 
one output event sequence among all possible ones. One possible solution to this problem is to 
treat the counterexample as prescribing only the input event sequence. An extra step is then 
necessary to find all output event sequences corresponding to this input event sequence. If we have 
a model checker that produces multiple counterexamples to a formula, as discussed in the previous 
paragraph, we can express the input event sequence as a formula and give its negation to the model 
checker. The set of counterexamples constructed by the model checker will contain all possible 
output sequences. 
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Optimization. Often the test suite constructed by our approach will contain redundant tests. 
For example, the counterexample shown in Appendix B covers the transitions t\, t2, £4, te, £7, £10 
in addition to £3. It is, therefore, necessary to develop techniques to minimize the total number or 
the total length of generated tests without sacrificing the coverage they provide. 

Test Execution. This paper is only the beginning and we are studying the above mentioned 
issues to make the approach practical. In addition, this paper focuses on only test generation 
and does not discuss the problem of test execution. As a first step, we are investigating how to 
apply generated tests to actual implementations under test. Our goal includes the development of 
automated toolsets which support both test generation and execution, and the evaluation of our 
approach on embedded systems. 
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A    The SMV Program for the BRP Sender 

MODULE main 
VAR 
— states 
pi: {WR, SF, WA, SC, WT}; 
— events 
req: boolean; ack: boolean; timeout: boolean; timeout2: boolean; 
msg: boolean; conf: boolean; 
— parameters 
F:  array 1..3 of boolean;  M: boolean;  C:  {conf-ok,  conf-not-ok,   conf-dont-know}; 
— variables 
f:  array 1..3 of boolean; head:   1..4;  rn:  0..2; 
— transitions 
ti: boolean; t2: boolean; t3: boolean; t4: boolean; t5: boolean; 
t6: boolean; t7: boolean; t8: boolean; t9: boolean; tlO: boolean; 
DEFINE 
trans-tl   := enabled-tl  ft taken-tl; 
enabled-tl   := pi=WR; 
taken-tl   := next(pi)=SF & next(req)=l ft next(ack)=0 ft next(timeout)=0 fc next(timeout2)=0 & 

next(msg)=0 & next(conf)=0 & 
next(f[l])=next(F[l])   fc next(f [2])=next(F[2])   & next(f[3])=next(F[3])  ft 
next(head)=1 ft next(rn)=0 fc 
next(tl)=l  ft next(t2)=0 k next(t3)=0 k next(t4)=0 k next(t5)=0 ft 
next(t6)=0 ft next(t7)=0 k next(t8)=0 k next(t9)=0 ft next(tlO)=0; 

trans-t2  := enabled-t2 ft taken-t2; 
enabled-t2   := pi=SF; 
taken-t2  := next(pi)=WA ft next(req)=0 k next(ack)=0 8k next(timeout)=0 ft next(timeout2)=0 ft 

next(msg)=l  k next(conf)=0 k 
(head=l  -> next(M)=f[1])   k  (head=2 -> next(M)=f[2])   k  (head=3 -> next(M)=f[3]) 
next(f[l])=f[l]  k next(f[2])=f[2]  ft next(f[3])=f[3]  ft 
next(head)=head ft next(rn)=rn+l ft 
next(tl)=0 ft next(t2)=l ft next(t3)=0 ft next(t4)=0 ft next(t5)=0 k 
next(t6)=0 ft next(t7)=0 ft next(t8)=0 k  next(t9)=0 ft next(tlO)=0; 

trans-t3 := enabled-t3 ft taken-t3; 
enabled-t3 := pi=WA ft head<3; 
taken-t3 := next(pi)=SF ft next(req)=0 k  next(ack)=l ft next(timeout)=0 ft next(timeout2)=0 fc 

next(msg)=0 ft next(conf)=0 ft 
next(f[l])=f [1]  ft next(f[2])=f[2]  ft next(f [3])=f [3]  ft 
next(head)=head+l ft next(rn)=0 ft 
next(tl)=0 ft next(t2)=0 ft next(t3)=l ft next(t4)=0 ft next(t5)=0 ft 
next(t6)=0 ft next(t7)=0 ft next(t8)=0 ft next(t9)=0 ft next(tlO)=0; 

INIT 
pi=WR fc req=0 & ack=0 fc timeout=0 & timeout2=0 ft msg=0 ft conf=0 ft 
tl=0 ft t2=0 & t3=0 & t4=0 ft t5=0 & t6=0 ft t7=0 ft t8=0 fc t9=0 & tlO=0 
TRANS 
trans-tl I trans-t2 I trans-t3 I trans-t4 I trans-t5 I 
trans-t6 I trans-t7 I trans-t8 I trans-t9 I trans-tlO 

243 



B    The Counterexample for £3 

— specification  !EF  (t3 = 1 & EF exit)  is false 
— as demonstrated by the following execution sequence 
state  1.1: 
pi=WR req=0 F[1]=0 F[2]=0 F[3]=0 ack=0 timeout=0 timeout2=0 msg=0 M=0 conf=0 C=conf-dont-know 
f[l]=l  f[2]=l  f[3]=l  head=4  rn=2 
tl=0 t2=0 t3=0 t4=0 t5=0 t6=0 t7=0 t8=0 t9=0 tlO=0 

state  1.2: 
pi=SF req=l f[l]=0 f[2]=0 f[3]=0 head=l rn=0 tl=l 

state 1.3: 

pi=WA msg=l rn=l t2=l 

state 1.4: 

pi=SF ack=l head=2 rn=0 t3=l 

state 1.5: 

pi=WA msg=l rn=l t2=l 

state 1.6: 

pi=SF timeout=l t4=l 

state 1.7: 

pi=WA msg=l rn=2 t2=l 

state 1.8: 

pi=SC timeout=l t6=l 

state 1.9: 

pi=WT conf=l C=conf-not-ok t7=l 

state 1.10: 

pi=WR timeout2=l ti0=l 

resources used: 

user time: 0.26 s, system time: 0.03 s 

BDD nodes allocated: 10365 

Bytes allocated: 1376256 

BDD nodes representing transition relation: 566 + 9 

244 



C    Test Suites for the BRP Sender 

State coverage 

state 
WAIT-R.EQ 

SEND-FILE 

WAIT_ACK 

SEND_COMPLETE 

WAIT_TIMEOUT2 

test sequence 

reg?(0,0,0) 
re??(0,0,0), msg!(0) 
req?(0,0,0), msg!(0), timeout?, msg!(0), timeout? 
req?(0,0,0), msg!(0), timeout?, msg!(0), timeout?, conf!(noLok) 

Transition coverage 

transition 

h 
t2 

U 
h 
*6 

*7 

*8 

*10 

test sequence 
req?(0,0,0) 
req?(0,0,0), msg!(0) 
req?(0,0,0), msg!(0), ack? 
req?(0,0,0), msg!(0), timeout? 
req?(0,0,0), msg!(0), ack?, msg!(0), ack?, msg!(0), ack? 
reg?(0,0,0), msg!(0), timeout?, msg!(Q), timeout? 
req?(0,0,0), msg!(0), timeout?, msg!(0), timeout?, conf!{not-ok) 
reg?(0,0,0), msg!(0), ack?, msg!(0), ack?, msg!(0), timeout?, msg!{0), 
timeout?, conf .'(dont-know) 
req?(0,0,0), msg!(0), ack?, msg!{0), ack?, msg!{0), ack?, conf!(ok) 
req?(0,0,0), msg!(0), timeout?, msg.'jO), timeout?, conf!{ok), timeout2? 

AU-def coverage 

definition test sequence 

(/, *i) reg?(0,0,0), msg!(0) 
(head, t\) req?(0,0,0), msg!(0) 
(head, t$) req?(0,0,0), msg!(0), ack?, msg!(0) 
(head, £5) req?(0,0,0), msg!(0), ack?, msg!(0), ack?, msg!(0 i, ack?, confl(ok) 

(rn, ti) req?(0,0fl), msg!(0) 
(rn, t2) req?(0,0,0), msg!(0), timeout? 

(rn, t3, i2) req?(0,0,0), msg!(0), ack?, msg!(0) 
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All-use coverage 

tuple test sequence 

{f,h,t2) reg?(0,0,0), msg!{0) 
{head, t\, £2) re??(0,0,0), msg!{0) 
{head, t\, £3) req?{0,0,0), msg!{0), ack? 
{head, £1, £5) infeasible 
{head, t\, £7) req?{0,0,0), msg!{0), timeout?, msg!{0), timeout?, conf !{not.ok) 
{head, t\, t%) infeasible 
{head, t\, £9) infeasible 
{head, £3, £2) rec?(0,0,0), msg!{0), ack?, msg!{0) 
{head, £3, £3) reg?(0,0,0), msg!{0), ack?, msg!{0), ack? 
{head, £3, £5) reg?(0,0,0), msg!{0), ack?, msg!(0), ack?, msg!{0), ack? 
{head, £3, £7) req?{0,0,0), msg!{0), ack?, msg!{0), timeout?, msg!{0), timeout?, 

conf!{noLok) 

{head, £3, £8) req?{0,0,0), msg!{0), ack?, msg!{0), ack?, msg!{0), timeout?, 
msg!{0), timeout?, msg!{0), timeout?, conf!{donLknow) 

{head, £3, £9) infeasible 

{head, £5, £2) infeasible 
{head, £5, £3) infeasible 
{head, £5, £5) infeasible 
{head, £5, £7) infeasible 

(head, £5, £8) infeasible 
(ftead, £5, £9) req?{0,0,0), msg!{0), ack?, msg!{0), ack?, msg!{0), ack?, conf!{ok) 
{rn, £1, £2) req?{0,0,0), msg!{0) 
(rn, £i, £4) infeasible 
(rn, £1, £6) infeasible 
{rn, £2, £2) req?{0,0,0), msg!{0), timeout?, msg!{0) 

(rn, £2, £4) req?{0,0,0), msg!{0), timeout? 

{rn, £2, £6) reg?(0,0,0), msg!{0), timeout?, msg!{0), timeout? 

(rn, £3, £2) reg?(0,0,0), msg!{0), ack?, msg!{0) 
{rn, £3, £4) infeasible 
(rn, £3, £6) infeasible 
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A C interface to the Concurrency Workbench 
Daniel C. DuVarney1 2 

W. Ranee Cleaveland34 

S. Purushothaman Iyer12 

Abstract 
Software model-checking aims to apply model-checking techniques, which have been found effective 

in reasoing about finite state designs, to programs. An integral part of this process is the generation of 
a finite state model from programs. In this paper we report on how C-programs can be abstracted and 
reasoned about in the Concurrency Workbench in a seemless manner, thus yielding a C-interface to the 
workbench. A further advantage of our approach is that designs that are checked for correctness in the 
Workbench can now be related to programs that implement those designs. 

1    Introduction 

The past twenty years have seen great strides in the use of model-checking to validate finite state designs of 
programs and circuits. Given the impressive results that have been achieved [5] in these limited applications 
there have been efforts to apply model-checking to software systems [6, 11] and to infinite state designs [2, 4]. 
The former style of work is based on abstracting programs to arrive at finite state designs, which can then 
be model-checked. The latter, however, depends upon considering decidable properties of certain subclasses 
of infinite state systems. In this paper we address the approach of abstraction. 

Apart from model-checking software we are also motivated by another problem: that of relating designs 
and implementations. In traditional software life cycles a (finite-state) design may be constructed and 
validated with respect to requirements stated in a formal, logic-based language. However, any implementation 
of the design is not checked against the validated design. Our thesis is that abstract interpretation can play 
a huge role in bridging the gap between designs and implementations. More importantly, by constructing a 
(finite-state) abstraction of an implementation we can (a) model-check software and (b) relate designs and 
implementations using notions of refinement and simulation [12]. In the rest of the paper we will discuss 
our efforts in building the tool c2ccs that allows an user to abstract C-programs, and reason about the 
abstraction (and, in turn, the original program) using the Concurrency Workbench of. the New Century 
(CWB'-NC) [15]. In particular, c2ccs strives to make the abstraction process and the reasoning process 
seamless so that, in effect, an user deals with a C-intefface to the CWB-NC. 

An user, typically, provides to the tool c2ccs a C-program with additional guidance information, such 
as events to observe, variables to abstract, etc. The tool C2CCS produces a finite state abstraction of the 
input program as a Labeled Transition System - the main internal data-structure for CWB-NC. Furthermore, 
an additional tool makes it possible to view the LTS by translating it to the format of daVinci [10], a system 
for viewing graphs. The ability to visualize an LTS provides valuable feedback to an user who can fine-tune 
his/her abstraction. The tool makes it unnecessary to manually construct a design of a system (as, for 
instance, in [9]), but instead derive it from the source code. 

The main contributions of our work are the following 

1. An user-driven abstraction process where the user dictates what events are relevant, how variables 
have to be abstracted, how inter-procedural analysis should be carried out, and how function pointers 
should be interpreted. 

2. Given that we are interested in generating a finite state design from an input program we restrict our 
attention to tail-recursive programs. The model-building, i.e., generation of an LTS, is carried out 
so that the structure of the original program is preserved in the abstraction. More importantly, the 
control structure of the original program is maintained in the translation thus making it easy for the 
user to correlate the graphical view of the abstraction against the original program. 

1Dept of Computer Science, North Carolina State University, Raleigh, NC 27695-7534. 
2 Supported in part by ARO grant P-38682-MA. 
3Dept of Computer Science, State Univeristy of New York at Stony Brook, Stony Brook, NY 11794-4400 
"Supported by AFOSR grant F49620-95-1-0508, ARO grant P-38682-MA and NSF grants CCR-9505562, CCR-9996086 and 

INT-9996095. 
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main 0 { int PO H ' 

PO; if  (p)  { 

} QO; 
} 

else { 

} 
ret urn ; 

/\ 

call P(); call Q(); 
1 

/ 
/ 

int QO  { 

if   (r)  { 

PO; 
} 
else { 

} 
return 

call P(); 

Figure 1: An example program and its conrol-flow graph 

3. We generate an LTS directly from a program which is then passed on to the reasoning algorithms of 
the Concurrency workbench. This allows us to seemlessly integrate abstraction and reasoning. To 
achieve this effect we make use of CWB-NC's ability to deal with any state space representation as long 
as it comes equipped with certain operations. 

4. A graphical representation of the design that is generated from the program. 

Related work There are several projects that have recently considered using abstraction to generate 
models from programs [7, 11, 3]. In the project Bandera [6], Corbett et al use slicing to generate a finite- 
state abstraction of the original program - where the slicing (i.e. what variables to ignore) is dictated by 
the property that is to be established. Holzmann and Smith [11] allow an user to provide patterns for 
transforming C-code to an abstracted version in Promela. Finally, Brylow, Damhaard and Palsberg [3] 
abstract assembly code to control flow graphs with procedure calls embedded in them. Furthermore, they 
use recent work on model-checking pushdown systems and its connection to flow analysis [4, 14]. 

2    Early experiments: The dataless case 

Given a C-program it can be encoded in the Calculus for Communicating Systems [13] as CCS is Turing- 
powerful. However, we would not be able to reason about the translated program. Clearly, the transla- 
tion/abstraction should be in a decidable subclass such that it captures the behavior of the original program 
and some of its relevant properties too. As a first cut we will discuss what it means to ignore all the data 
values, and abstract the control structure. The sequence of procedure calls that are made will be observable 
in the abstraction and will be a superset of actual sequences of the program. Such an abstraction will pre- 
serve universally path quantified temporal formulae, but is seldom useful in practise. We will, nevertheless, 
discuss the salient points of this abstraction as a stepping stone for discussing our current implementation. 

Imagine translating a C-program to intermediate code, as is typically done in compilers. Such a translation 
would break long expression calculations to a sequence of single-operation calculations, and will also translate 
control structures such as while and for statements into tests and gotos. From the resulting translation 
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call PQ; 

Q ' 

t / 
/ 

'   / * 

sail PO; i 

\ 
\ *     / 

1 

/ 

/ / 
/ 

' 

;all CO; 

/ / 
/ 

'.1.1... 

Figure 2: A transition system for the program of figure 1 

one can extract a control-flow graph [1] where each node is a piece of straight-line code terminated by either 
a goto or a procedure call. We construct such a graph for each of the procedures in the input program. 
Given that we wish to translate our C-programs to a finite state Labeled Transition System we will have to 
restrict ourselves to tail-recursive C-programs. 

To determine whether a given C-program is tail-recursive or not we consider the call graph of the input 
program, where nodes are procedures and edges denote procedure calls (with source being the caller and 
target, of the edge, being callee). Clearly, a procedure that appears in a strongly connected component of 
such a graph indicates that it could call itself recursively, though perhaps in an indirect fashion. 

A particular call to procedure Q in procedure P is said to be a tail call provided P returns immediately 
after control returns from procedure Q, i.e., there are no other calculations in procedure P once Q returns. A 
strongly connected component is said to be tail-recursive provided each call in the procedures of the strongly 
connected component are tail calls. A program is said to be tail-recursive provided all of the strongly 
connected components are tail-recursive. Note that this is a syntactic property, not a semantic one, and can 
be easily checked. 

Note that procedure call and return are indicated textually and using dashed-arrows, respectively. 
Assume we are given a C-program that is tail recursive. To build an LTS for it we start with control- 

flow graphs for each of the procedures, such as in Figure 1. Furthermore, notice that the call-graph for 
this program has procedures P and Q in the only (non-trivial) strongly connected component of the graph. 
Choosing one of this SCC, say P, as a representative and expanding (inlining) calls to other procedures the 
strongly connected component can be converted into a single function. In this case it involves substituting 
a copy of Q's control-flow graph in graph for P. With repeated substitutions, if necessary, we get a single 
control-flow graph of a function that can be converted to iteration (because of its tail-recursiveness). We 
present the results of these substitutions for our example in Figure 2. 
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Domain Representation Description 
Unity None All values abstracted to T. 
Mod k Bit-vector (2 • k + 1 bits) Values are abstracted to the set of possible remain- 

ders when divided by k. 
Interval x\ ...xn Bit-vector (2 + n bits) Given a set of break-points X\,.. xn (x\ < x-i < 

... < xn), each value is abstracted to a subset of 
the set of intervals ({[oo,a:i),[2;,;,2;,;+i)](l < i < 
n)i [xn, +00]}) to which it might belong. 

Table 1: Abstract domains, 

type A_index = part(0,  1,  2,  98,  99,   198); 

file "example.c" 

{ 
fun binsearch(var 1 : A_index; var h : A_index; var x : top) : top 

{ 
var m : A_index; 

} 

fun find() : top 

O 

Figure 3: An abstraction mapping file for the source file of Figure 4 

3    Incorporating Data and Abstractions 

In addition to constructing the control flow graph our tool c2ccs also allows an user to incorporate abstrac- 
tions of the input program's data in the finite state design. The tool is not fully automatic but provides an 
user-driven abstraction process where the user specifies how to abstract the program data. 

The abstraction mechanism currently supports only integer values. Table 1 lists the abstract domains. 
There are three basic kinds of abstraction. The first is the unity abstraction, which is the coarsest possible 
abstraction wherein all concrete values are mapped to the same abstract value. The second is the modulo k 
abstraction, in which a set of remainders is maintained relative to a user-specified parameter k. The third 
is the interval abstraction, in which integer values are partitioned into contiguous subranges by the user, 
and the abstract value is a bit-vector indicating which subrange(s) the concrete value might be in. The 
motivation for the "modulo" abstraction comes from the common use of finite counters in protocols, such as 
the sliding window protocol. 

The user controls how abstractions are applied. The initial input is an abstraction mapping file, which 
gives an abstraction for each variable and each function in the program from which a model is to be extracted. 
An example mapping file appears in Figure 3. If a variable or function is omitted from the mapping file, the 
default abstraction is the unity abstraction. 

For each abstract domain the system has an abstraction function a which maps from concrete to abstract 
values, a (unimplemented) concretization function 7 which maps from abstract to concrete values, a least 
upper bound operator n, and abstract implementations of the C operators. 

All our domains are classic abstract interpretations as defined by [8]. The values in each domain form a 
lattice, with T representing all possible concrete values and ± representing non-terminating computations 
(note: -L is currently unused). 

Within the lattice, the U operator merges two abstract values. xUj/ returns a value z such that 7(2;) C 7(2) 
and 7(2/) C 7(2)). U is used to collect a single abstract value from multiple execution paths in a manner 
similar to traditional data-flow analysis. 

The abstract operators are all provably sound. Specifically, 7(a(x) o a(y)) C x o y has been proved for 
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int A[100]; 

int binsearch(int 1, int h, int x) 

{ 
int m = (1 + h) / 2; 
if (A[m] == x) return m; 
if (1 >= h) return -1; 
if   (A[m]  > x)  return binsearch(l, m-1, x); 
return binsearch(m+l, h,  x); 

} 

int find(int x) { 
return binsearch(0, 99, x); 

} 

Unity 

Figure 4: ( 

ModAl 

1 program to be abstracted 

Interval^,^,...a,, Precise 
Unity Unity Unity Unity Unity 
Mod*, Unity Modgcd(ki,k2) Modfc2 Modfe 

Intervaly,,,^...^ Unity Modfcj Interval^,....rn}U{Wi...*,„} Interval^ j3,2,...yil 

Precise Unity Modfcl IntervaUi,^,. ,.Xn Precise 

Table 2: Rules for combining abstractions. 

each operator o. Furthermore, definitions of the operators have been chosen which generally lose as little 
information as possible. 

When values from different abstract domains are combined in an operation, there is an implicit coercion 
to the more abstract domain. The hierarchy of domains is: Interval C Mod C Unity. Table 2 gives the full 
rules for combining mixed abstractions. In general, mixing abstractions is not very useful, as it often results 
in a complete loss of information. 

With the definition of abstract operators in place, the effect of a basic block can be determined. Basic 
blocks correspond to nodes in the control-flow graph and consist of a sequence of non-branching statements 
followed by at most one branching statement (conditional branch, unconditional branch, or case statement). 
A basic block is evaluated in the context of an environment in which all variables have been bound to an 
abstract value. Given an environment e, the result of executing a basic block under e is a set of environment 
and block pairs. This set is computed by evaluating all the non-branching statements to yield an environment 
e', and then applying any constraints that can be inferred from the branch taken to get multiple environment 
and block pairs. For example, consider the block 

x = x - 1; 
y = y - x; 
if x > 0 then goto block2 else goto block3; 

Further, assume that, x and y are abstracted to the domain 2^ne9'zero'pos^ and that the initial environment 

[x^t {pos},j/H> {neg}] 

Now evaluation of the non-branching statements x = x - 1 and y = y x results in the environment: 

[a; H- {zero,pos},y \-¥ {neg}] 

The block / environment pairs resulting from evaluation of the branch on x > 0 in this environment are: 

{(block2, [x t-> {pos},y H- {neg}]), (block2, [x \-t {zero},y t-4 {neg}])} 
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let, 

Figure 5: Data flow within the system architecture. 

B = the set of basic blocks 
E : B —> Env map from basic blocks to environments. 
60 = first block of main 
eo = initial environment (e(v) = a(inital value of v) for all v) 
ef = the empty environment 

E(b) = e0    if b = b0 

ee    otherwise 
P := {60} 
while (P ^ 0) 

pick any b £ P 
P:=P- {b} 
let e = £(fo) 
let succ(b, e) be the successors of (6, e) 
for each (fr,,ßj) S succ(b,e) do 

let e< = ß(6i) U e* 
if e'i ^ E{bt) then 

P := P U {6t} 
E:=(E-{(()6i,ei)})U{(6i!e;)} 

Figure 6: Monovariant Kripke structure generation. 

4    Generation of the State Space 

The state space generation for a system is essentially a four step process, as illustrated by Figure 5. First, 
the input files are parsed and compiled into control-flow graphs. In this process the abstraction to be applied 
to each function and variable is also recorded in the symbol table. Second, all function calls are unrolled, 
eliminating the control stack. Third, a Kripke structure is built by executing the unrolled code in the abstract 
domain(s) specified by the user. Finally, the Kripke structure is converted to an LTS. 

The first step taken by the system is to parse the abstraction mapping file. This file gives the pathnames 
of all the C source files in the program. A high-level intermediate code is generated, organized into basic 
blocks. 

In the second step, function calls are unrolled, as discussed in Section 2. The intermediate code allows 
for basic blocks to be aliased, wherein the alias block contains a pointer to the original block plus a new 
branching instruction which supercedes the last instruction in the original block. Although function-call 
unrolling may cause a large increase in the size of the intermediate code, we believe aliasing will reduce 
memory usage to the point of practicality for many programs. 
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findO: 
1 = 0; 
h = 99; 
x = y; 

goto binsearchO; 

oinsearchO: 
m = (l + h)/2; 
if(A[m] = x) 
gotobinsearchl; 

else   goto binsearch2; 

binsearchl: 
result = m; 

ainsearch2: 
if(l>=h) 

goto binsearch3; 
else 

goto binsearch4; 

3insearch3: 
result = -1; 

binsearch4: 
if(A[m]>x) 
goto binsearch5; 

else 
goto binsearch6; 

binsearch.5: 
h = m-l; 

binsearch.6: 
l = m+l 

Figure 7: Program of Figure 4 after basic block generation and function call unrolling. 

4.1    Kripke Structure Generation 

The third step is the generation of a Kripke structure. The Kripke structure states will be basic blocks and 
environment pairs. The environment will also serve as the label of the state. 

We use two algorithms for generation of the Kripke structure. The first algorithm, shown in Figure 6, 
is monovariant over the values of variables, with every block in the unrolling corresponding to one state in 
the Kripke structure. It generates a single environment for each basic block, resulting in a smaller model 
of limited usefulness. Given a basic block b, an environment is collected over all execution paths which 
reach b. Abstract interpretation is then used to determine the environment(s) which are propagated to the 
successor blocks of b. This process is repeated until a fixpoint is reached for the structure (i.e., until the 
input environment for each block stabilizes). 

Consider the program of Figure 4. One property we would like to check is whether or not the array 
accesses done by binsearch are guaranteed to be within the bounds of the array A. This can be done by 
generating a monovariant Kripke structure under the interval abstraction: 

[-oo... - 1], [0], [1], [2], [3.. .98], [99], [100... 198], [199... + oo] 

After basic blocks have been generated and function calls unrolled, the result is the program of Figure 7. 
Applying the monovariant algorithm results in the kripke structure of Figure 8. From the kripke structure, 
we can infer that the value of m is within the bounds of the array A. 

Polyvariant kripke structure generation results in a larger but more powerful model. The polyvariant 
algorithm, shown in Figure 9, generates a seperate state for each combination of basic block and environ- 
ment. The polyvariant algorithm also uses abstract interpretation, but when multiple execution paths cause 
different environments to be input to a basic block, the environments are not combined. Instead, a separate 
states is generated for each unique block and environment pair. This generates many more states but also 
enables many more properties to be verified. 
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1 = 
h 

= [0..99] 
= [0..99] 

m = [0..99] 

rYJ^\ 
\ 

rV\ 
\ 1 = [0..98]     ) 

xXi/Xl 
1 = [0..99] 

Figure 8: Monovariant Kripke structure generated from program of figure 7. 

let 

in 

B — the set of basic blocks 
bo = first block of main 
e.Q = initial environment (e(w) = «(initial value of ?;) for all v) 
Q = Q' = {{bo,e0)} 

while (<?' ± 0) 
pick any (6, e) S Q' 
Q1 := Q> - {(b,e)} 
Let succ(b, e) be the successors of (6, e) 
New — siicc(b, e) — Q 
Q := Q U New 
Q' := Q' U New 

Figure 9: Polyvariant Kripke structure generation. 

The program fragment of figure 10 is an example of when polyvariance is required to verify certain 
properties. Assume we want to know that, the calls to P and V are strictly interleaved — that is, after calling 
P, V must be called before P is called again, and vice-versa. While both algorithms generate sound models, 
only the polyvariant model can be used to prove that calls to P and V are indeed interleaved. The second 
half of figure 10 shows the polyvariant LTS. 

Memory usage is a critical issue, particularly under the polyvariant model. To conserve memory, all the 
environments are combined into a trie. Each node of the trie represents a particular variable. Each outgoing 
edge represents a binding of the variable to a particular value. The bindings encountered along any path 
from the root of the trie to a leaf define an environment. We hope this will conserve a large amount of 
memory, and plan to evaluate the utility of this storage technique in the near future. 

4.2    Labeled Transition System Generation 
The generation of a labeled transition system (henceforth called LTS) from a Kripke structure is done by 
discarding the labels on the states and attaching action labels to the transitions. The default label is the 
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int flag = 0; 

while OeofO) { 
int and = get_command(); 

if   (cmd == 1)  { 
if   (!flag)  { 

PO; 
flag= 1; 

} 
} eise { 

if   (flag)  { 
V(); 
flag = 0; 

} 
} 

Figure 10: C program fragment and the resulting poly variant LTS 

invisible action r. Visible actions are generated in two cases. The first is the case when an "interesting" 
function or line of code is executed. The second is the case when a particular condition is true, such as 
0 <= m && m <= 99. The user specifies which labels to associate with each event. 

5    Conclusion and current state of the tool 

Our tool is still a work in progress. Currently, the tool generates Kripke structures and displays them using 
the graph visualization tool /refDaVinci. Furthermore, we only use polyvariant model generation as it is 
most likely to yield usable abstractions of programs. 

We have presented a tool that can be used to slice and dissect a C-program, and to reason about it. 
This is in sharp contrast to testing, which takes a black-box view of a system. Furthermore, by combining 
a model-generation tool and a reasoning tool, we have created a easily-usable front-end to the Concurrency 
Workbench. Finally, we have made it possible to compare designs against implementations. 
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Specification of a Parallelizing SequenceL Compiler 
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ABSTRACT 
SequenceL is a language that provides declarative constructs for nonscalar processing. Rather than specifying program 
control structures that, in turn, imply a data product, the problem solver specifies a data product and the control structures to 
produce or process the data product are implied. Although SequenceL has been previously introduced in two papers [2, 3], 
recent improvements to the language have indicated that parallel control structures are also implied by the SequenceL problem 
solutions. Keywords: High Level Language, Automatic Parallelisms, Executable Specifications 

1.0  A brief review of SequenceL. 
One of the first major advances in computer language design, often called the von Neumann architecture, was the 

elimination of the distinction between program and memory. This advance eventually led to the paradigms where data is 
stored in named locations and algorithms can define the locations through the use of assignment and input-output statements. 
Advances also led to the development of the control flow constructs that are used to define and process data structures. These 
constructs are the sequence, selection, iteration, and parallel constructs. 

The SequenceL paradigm [2, 3] provides no distinction between data and functions/operators. Furthermore, all data 
is considered to be nonscalar, i.e., sequences. Recently, an underlying control flow used in the evaluation of SequenceL 
operators has been introduced [4]. In the underlying Consume-Simplify-Produce-cycle (i.e., CSP-cycle), operators enabled 
for execution are Consumed (with their arguments) from the global memory, Simplified according to declarative constructs 
that operate on data, and the resulting simplified terms are then Produced in the global memory. This CSP-cycle, together 
with the declarative SeqenceL constructs (applied during the simplification step) imply control flow structures that the 
programmer does not have to design or specify. 

The elimination of the distinction between data and operators is achieved through the use of a global memory, called 
a tableau T, where SequenceL terms are placed: 

[fl ,,f 2 2,..., fnn] where n>0 

when a,= 0 fi is a sequence and when af>0 ft is a function or an operator. The arity a, of a function or operatorß indicates 
the number of arguments (i.e., sequences) ft requires for execution. There is no notion of assignment in SequenceL. 
Furthermore, there is no notion of input distinguished from the application of an operator to its operands. In this context, the 
word operator refers both to built-in and user-defined operators. 

The underlying CSP control flow in SequenceL eliminates the need for the programmer to specify parallel and most 
of the specification of iterative and sequence-based operations. The control flow approach identifies operators that are 
enabled for execution. The enabling of operators is based upon the arity of the operator (which is derived from the operator's 
signature) matching the number of sequences following the operator. For example, suppose the global memory T contains the 
following: 

Where, [f3, ,x,y,z] = x, [f2
2 ,x,y] = y, and [f2j ,x,yj = xy. The control flow is with reference to T and involves a 

repeated cycle of consuming, simplifying, and producing. The state of the machine is reflected - not with program counters, 
register and memory states, etc. - but by the global memory alone. As long as there exist enabled operators in the memory, 
execution proceeds. In T, above, there are two enabled operators, namely/3; and f2

2l. These operators and their arguments 

1 Research sponsored, in part, by NASA NAG 5-9505. 
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are consumed from the tableau, and they execute in parallel. Placeholders mark in T where respective results will be placed. 
Execution simplifies the consumed terms. Suppose the simplified terms result in a final state for the function/''; namely/0; 
and a final state for/22,, namely f°5. The resulting tableau contains the simplifications produced as a result of the execution 
of the operators/3/ and/^: 

r = [f,.fi.fj 

Now ft executes, and simplification leads to a sequence to concatenated terms: 

T" = lf0,f5] 

The final Tableau (seen above) can be viewed as the "output" of the program of operations. The total computation is 
reflected in the following graph, where the vertical dimension indicates a sequence of simplification steps (i.e., the sequence 
control flow construct) and the horizontal dimension indicates actions that can take place in parallel (i.e., the parallel 
construct). Thus, sequential and parallel structures are derived through the application of the built-in CSP-cycle to T: 

rf„f3„fl,f„f3,f
22,f,<,f>si 

fl.ft.f2 f2.f4.fs 

'lfi.fl.fS 

[f°jfs] 

However, CSP alone will not achieve the desired effect. In order to derive finer-grained parallelisms and many iterative 
processes in an automated way, CSP must interact with advanced constructs for processing data. The desired interaction 
occurs in the Simplification step of the CSP-cycle. These advanced SequenceL constructs are the regular, generative, and 
irregular constructs. 

The regular construct applies an operator to corresponding elements of the normalized operand sequences. For 
example, +([4,4]) distributes the plus sign among the corresponding elements of the two singleton sequences [4] and [4], 
resulting in [8], Now consider the more complicated application: 

T=[*([20,30,40JJ2J)J 

In this case normalization results in the elements of the second operand sequence being repeated in the order they 
occur until it is the same length (and/or dimension in terms of nesting) as the larger: 

T= [* ([20,30,40], [2,2,2])] 

Now the multiplication operator can be distributed among the corresponding elements of the operand sequences. 
The normalization/distribution is a single simplification step: 

T = [*([20,2]), *([30,2]), *([40.2])] 

As a result, in the next CSP cycle there are three parallel operations that can take place. Thus, the interaction of the 
CSP execution cycle and the regular construct results in the identification of microparallelisms. The final result is: 

T" = [40, 60, 80] 
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The generative construct allows for the generation of sequences, e.g., [1,...,5] = [1,2,3,4,5], The irregular construct 
allows for conditional execution: 

T-[Double-odds(Consume(s_l (n)), Producefnext)) where next - 
[ *([s_l(i) 2]) when <>(mod([s_l(i),2]),0) else Q] Taking ifrom [l,...,n],[2,3,4,5]] 

Here is the trace of the function: 

[ *([[2,3,4,5](i), 2]) when <>( mod([[2,3,4,5](i),2]),0) else []]Taking i from [1.....4] 
I 

[ *([[2,3,4,5](i), 2]) when <>( mod([[2,3,4,5](i),2]),0) else []]Taking i from [1,2,3,4] 

[ *([[2,3,4,5](1), 2]) when 
o(mod([[2,3,4,5](l),2]),0) 
else []] 

[ *([2 ,2]) when 
<>( mod([2,2]),0) 
else []] 

I 
[ *([2 ,2]) when 
<>( 0,0) 
else []] 

[ *([2 ,2]) when 
False 
else []] 

I 

[*([[2,3,4,5](2),2])when 
<>( mod([[2,3,4,5](2),2]),0) 
else []] 

[*([3,2])when 
<>( mod([3,2]),0) 
else []] 

I 
[ *([3,2]) when 
<>( 1,0) 
else []] 

I 
[*([3,2])when 
True 
else []] 

[*([[2,3,4,5](3),2])when 
<>( mod([[2,3,4,5](3),2]),0) 
else []] 

[ *([4,2]) when 
o( mod([4,2]),0) 
else []] 

[ *([4,2]) when 
o( 0,0) 
else []] 

I 
[ *([4,2]) when 
False 
else []] 

[ [] *([3,2]) 

[*([[2,3,4,5](4),2])when 
o(mod([[2,3,4,5](4),2]),0) 
else []] 

[ *([5,2]) when 
o( mod([5,2]),0) 
else []] 

[ *([5,2]) when 
o( 1,0) 
else []] 

[ *([5,2]) when 
True 
else []] 

I 
'([5,2]) 

I 
10 

[6,10] 

With the irregular construct one can, when necessary, produce recursive applications of a function: 

T=flist(Consume(s_l), Produce(next)) where next = 
[[list, -([s_l, 1])] when >(s_l,0) else [s_l]J [4] 

Recursion involves a function placing itself back into T. Here is the trace of the function: 

[list(Consume(s_l), Produce(next)) where next = 
[ [list, -([s_l, 1])] when >(s_l,0) else [s_l]] [2] 

[ [list, -([2, 1])] when >(2,0) else [2]] 

[list(Consume(s_l), Produce(next)) where next = 
[ [list, -([s_l, 1])] when >(s_l,0) else [s_l]] [1] 
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[ [list, -([1, 1])] when >(1,0) else [1]] 

[list(Consume(s_l), Produce(next)) where next = 
[ [list, -([s_l, 1])] when >(s_l,0) else [s_l]] [0] 

[ [list, -([0, 1])] when >(0,0) else [0]] 

[0] 

SequenceL, represents an attempt to develop a language abstraction in which control structures - sequential, 
iterative, and parallel - are implied. 

In summary, the SequenceL abstraction presents.a paradigm with the following aspects: 

• a Global Memory that does not distinguish between operators and data, and whose state fully reflects the state of 
computation; 

• All operands are sequences where atoms are represented by singleton sequences; 
• Underlying Consume-Simplify-Produce execution strategy; and 
• High level constructs to process nonscalars, applied in the simplification step. 

For more detail about SequenceL please see [2, 3] 

2.0 SequenceL Interpreter 
A SequenceL intepreter was constructed in 1999, based upon the Consume-Simplify-Produce control flow. A 

number of experiments were conducted to determine adept SequenceL is in finding inherent parallelisms in a problem 
definition. Included in these experiments was the Matrix Multiply2. Consider the matrix multiply function as written in 
SequenceL: 

Function matmul(Consume(s_](n,*),s_2(*,m),Produce(next)) where next - {compose(f+(f*(succ_l(i,*),succ_2(*J))J)J)J 
Taking fij'JFrom cartesianj)roduct([gen([1,...,n]),gen([],...,m])]) 

([[2,4,6],[3,5,7],[1,1,1]], [[2,4,6],[3,5,7],[1,1.1]]) 

The term, [[2,4,6],[3,5,7],[1,1,1]] is the sequence representation of a matrix. We will now trace the steps the SequenceL 
interpreter takes in order to evaluate the function above. Bear in mind the only information provided by the user is the 
function above, together with its arguments. The user does not specify any control structures - not even the parallel paths that 
can be followed in solving the problem. These parallel paths are implied in the solution and derived by the SequenceL 
semantic. The semantic is an interactions between the CSP-cycle and the SequenceL constructs applied in the Simplify step. 

2.1 The Interpreter's Trace of the Evaluation of the SequenceL Matrix Multiply. 
For simplicity, let T contain only the matrix multiply function and its input sequences as seen above. The first step is 

to instantiate the variables s_l and s_2. At the same time, variables n and m obtain the cardinal values in the designated 
sequence dimensions: 

{compose([+([*([[2,4,6],[3,5,7],[l,l,l]](i,*), [[2,4,6],[3,5,7],[1,1,1]](*J))])])} 
Taking [i,j]From cartesian_product([gen([I,...,3]),gen(77,. -,3])]) 

Now SequenceL's generative construct produces the values needed in the Taking clause. The simple form of the generative 
command is seen in this example. It simply fills in the integer values between the upper and lower bounds, i.e., from 1 to 3: 

2 For the classes of problems included in the full range of experiments please see [4], 
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{compose([+([*([[2,4,6],[3,5,7],[l,l,l]](i,*), [[2,4,6],[3,5,7],[l,l,l]](*,j))])])} 
Taking [iJJFrom cartesian_product([[l,2,3],[l,2,3]]) 

Next the SequenceL Cartesian Product generates the values for subscripts i and/ 

fcompose([+([*([[2,4,6],[3,5,7],[l,l,l]](i,V,[P,4,6],[3,5,7],[l,l,l]](*J))])])} 
Taking [i,j]From [ [[1], [1]], [[I], [2]], [[1], [3]], 

[[2], [1]], IP], [2]], [[2], [3]], 
[PL PJL [PL P1L [PL [3]] ] 

Now that the simplification of the function is complete, the function's result is produced in T: 

T=[ 
[ 

[ 

[ 

1 

+([*([P 
+([*([P 
+([*([P 
+([*([P 
+([*([P 
+([*([[2 
+([*([P 
+([*([P. 
+([*([P 

4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 
4,6],[3,5, 

7],P, 
7],P, 
7],P. 
71.11. 
7].P. 
71.P. 
7J.P. 
71. P. 
7],P. 

U1J(1. 
1.111(1. 
1.111(1. 
1.111(2. 
1.111(2, 
1.111(2. 
l.W(3. 
l.W(3. 
l.W(3. 

V.1P.4, 
V.[[2.4, 
V.[[2.4, 
V.[[2.4, 
V.[[2.4, 
*).[P,4 
*).[[2,4, 
VJP.4, 
*).[[2.4, 

6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 
6],[3,5, 

7LP.1. 
7],[1,1, 
71.P.1. 
7J.P.1, 
71.P.1. 
7LP.1. 
7J.P.1, 
7],[1,1, 
7],[1,1, 

1J](*.1))1) 
W(*.2))l) 
W(*.3))])] 
111(*.1))1) 
1]](*.2))J) 
1]](*.3))])] 
1]](*,1))1) 
W(*.2))l) 
1]](*,3))])] 

II 
II 
II 
II 
II 
II 
II 
II 

The next Consume-Simplify-Produce (CSP) step replaces the tableau above with the one below.   This simplification step 
results in the parallel selection of the vectors to be multiplied. Concurrent evaluation is denoted by the || symbol. 

[ 
[ +([*([[2.4,6],[2,3,1]])]) 

+([*([[2,4,6], [4,5,1]])]) 
+(r ([[2.4,6], [6,7,1]])]) 

[ +([*([P.5,7],[2,3,1]])]) 
+([*([[3.5.7], [4,5,1]])]) 
+([*([[3.5,7],[6,7,1]])]) 

[ +([*([[1.1,1L P.3.1]])]) 
+([*([[!.!. 11.[4.5,1]])]) 
+(r([P.l.l],[6,7,l]])l) 

II 
II 
II 
II 
II 
II 
II 
II 

In the next CSP step, the products are formed concurrently using SequenceL's regular construct. The regular process 
distributes a built-in operator, e.g., the * operation, among corresponding elements of the operands, resulting in 27 parallel 
multiplies 

[ 

1 

[ +([*([[2], PID II *([[4], [3]]) II *([[6], [1]])]) 
+([*([PL [411) II *([[4], [5]]) I/ *([[6], [1]])]) 
+([*([PL [6]]) II *([[4], PID II *([[6], [HDD   ] 

[ +([*([PL PID II *(1PL PID II *([[7], [I]])]) 
+([*([P1, [4]]) II *([PL PID II *([[7L P1D1) 
+([*([P1, [6JDII *([[5], PID II *([PL P1D1)   1 

[ +([*([PL PID II *([[!], PID II *([[!], PID!) 
+([*([[!]. [4JDII *([PL PID II *([[!]. P1DD 
+([*([PL [6JDII *([PL PID II *([[!], PID!) 1 

Comparing the tableau above and the resulting tableau below, one can see that SequenceL handles nested parallelisms 
automatically. The final step of simplification involves the application of the regular construct to form the sums of the 
products. 
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T = [ +([4,12,6])            II 
+([8,20,6])            II 
+([12,28,6])]       II 

[ +([6,15,7])           II 
+([12,25,7])          II 
+([18,35,7])]       II 

[ +([2,3,1])             II 
+([4,5,1])             II 
+([6,7,W ] ] 

This regular process adds together corresponding elements of the operand sequences. E.G., +([4,12,6]) = [4+12+6] = [22]. 
The final result is: 

[[22, 34, 46], [28, 44, 60], [6, 10, 14]] 

Since no further simplification is possible, evaluation ends. There are three SequenceL constructs: the regular, irregular, and 
generative. The matrix multiply employed the regular and the generative. For more detailed explanation of these constructs 
see [2, 3] 

One important aspect of this language is that through the introduction of new language constructs, one can imply 
most control structures - even concurrent or parallel structures. Therefore, rather than producing an algorithm that implies a 
data product, one can come closer to specifying a data product that implies the algorithm that produces or processes it. The 
difficult part of traditional forms of programming seems to be centered around the fact that programmers have to somehow 
envision the elusive data product implied by their programs. 

3.0 SequenceL Compiler. 
The trace of the interpreter's execution of the Matrix Multiply is summarized graphically in figure 1. Much of the 

breadth and depth of any lattice structure outlined in the execution of a SequenceL function is very dependent upon the data 
presented to the functions and operations. The data for a program is not typically known prior to execution of the program. 
To contend with the unknown data at compile time, languages require programmers specify the type, size, and dimensions of 
data in their programs. 

# of processors 

mm 1 

* * * 27 

[[[22],[34],[46]],[[28],[44],[60]],[[6],[10],[14]]] 

Figure 1. Trace of Matrix Multiply. 

We have made a design decision that we would like to maintain the current language, which does not require this 
information. Of course, this is not an issue in building an interpreter, but does require extra thought in building a compiler 
that achieves our goal of generating parallelized multithreaded C code to run in a shared memory multiprocessing 
environment. Below is the full SequenceL grammar for which we will construct the compiler: 
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A —> integer | real | string 
L -» A,L | TO,L | A | TO 
E-> [ ] | [L] | s(integer) 
V-> id 
0 -» + | -1 /1 * | abs | sqrt | cos | sin | tan | log | mod | reverse | transpose | rotateright | 

rotateleft | cartesianproduct 
M -> *,M | T0,M | * | TO 
T -> E | V | O(T0) | gen([T0,...,T0]) | gen([T0,...,T0] by TO | $ 
TO -» T | T(M) | T(map(M)) 
RO —> < | > | = | >= | <= | <> | integer | real | var | operator 
R -> RO(TO) | and(R+) | or(R+) | not(R+) 
B -> T0+ | T0+ when R else B 
C -> [ ] | taking [V*] from TO 
F -» VCV*) where next = {B} C 
U -» V ,U | E, U | V | E 
P-> {{F+}U} 

To contend with the unknowns involving the data to which a function will be applied, we are separating the compiler 
and scheduler issues in terms of the construction of an execution graph. In what follows we will focus on the evaluation of the 
multiplication and addition operators, i.e., the evaluations that take place subsequent to the instantiation of variables and the 
evaluation of the taking clause. Therefore, the graph in figure 1 is our focal point. 

Notice that the normalization and distribution of operators is completely dependent upon the input variables. We 
can, therefore imagine the basic compiled outline of the matrix multiply to be: 

... ->Normalization —>Distribution 1 -> Distribution 2 ->Distribution 3 —> 
Multiplication -> Addition 

The outline could indeed be produced by a compiler - based upon the following distribution/evaluation rule: 

Def.l.   £(0ma'h([t1,t2,...,tj)) = 

ifp'([t,,t2,...tn ]) = lthen 

f(t, ema,h (t2 0
rma!h...0r"""h (t„., 0ma{h 0...))J 

else 

ifju'([t,,t2,...t„])=2then 

f0(tj), 0(tz), .... 0(tJJ 

where [th t2,..., tj = transpose(v([tlt t2,..., tj)) 

else 

[Z(0(U)), 1(0(12» Z(0(tn))l 

where [t,, t2,..., tj = v([t,, t2,..., tj) and 0ma'h e { A ,+,-,*, /, div, mod } and vis the normalization operation 

and 0m""h is the real or actual mathematics operation corresponding to the 0"""h operator and p' gives the level of 

nesting of the operand 
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Consider the following example in which there are 3 levels of nested sequences. This example, where fx' (fti, t2 .... tn ]) 
3, exercises all three of the distributive operations: 

+([ [[1,2,3],[4]], [[5,6,7],[5]], [[8,9,],[6]] ]) =(3) 
normalization and distribution 

[+([[1,2,3],[4,4,4]]), +([[5,6,7],[5,5,5]]), +([[8,9,8],[6,6,6]]) ] =(2) 
normalization (which has no effect), transposition, and distribution 

[ [ +([1,4]), +([2,4]), +([3,4]) ], [ +([5,5]), +([6,5]), +([7,5]) ], [ +([8,6]), +([9,6]), +([8,6]) ] ]        =(1) 
final distribution 

[ [ [1+4], [2+4], [3+4] ], [ [5+5], [6+5], [7+5] ], [ [8+6], [9+6], [8+6] ] ] 

In reviewing the tableau trace in section 2.1 and the lattice in figure 1, parallel threads of execution are apparent (e.g., in each 
descending branch of the lattice). The current plan is to compile computational components (e.g., the multiplication and 
addition computations) and have the scheduler perform the related normalization and distribution actions to result in the 
appropriate sequencing and parallelizing of computations. Notice that there is an interaction between the result of the inner 
products and the summation components of the matrix multiply. A stepwise scheduler that performs the normalization, 
distribution, and load balancing appears to be the part of the compiler that will require the mostattention and effort. 

3.1   Technical Issues Related to Compilation and Scheduling. 
The compiler for SequenceL will attempt to take advantage of the tableau structure which to date has provided many of the 
insights into SequenceL, specifically the implied parallelisms. Early on in the evaluation of the language and possible 
compiler design scheduling was recognized as playing a central role in the success of the compiler for parallel or multi- 
processor architecture. The scheduling of a task on a parallel computer will consider a number factors such as task 
granularity, task allocation and task synchronization. Granularity is a defined as the ratio between computation and 
communication [8] or how much computation should or will take place before there is communication between tasks. A fine- 
grained parallelism has very few instructions between communication cycles while a coarse grained parallelism has many 
instructions between communication cycles. Therefore the scheduler must be able to manage granularity. For example given a 
fine grained parallelism involving 1000 calculations the scheduler might create only 10 threads with 100 computations in each 
in order to keep inter-processor communications overhead at a minimum, for a coarse grained parallelism of 1000 
calculations the scheduler might create 1000 threads of execution. Task allocation is closely tied to the computer's 
architecture, the scheduler might have to consider the differences between a non-uniform memory access (NUMA) machine 
and a uniform memory access machine when scheduling tasks. 

Many of the more recent successful parallel architectures have been either shared memory architectures like that found in the 
Silicon Graphics Inc's Origin2000 which is a NUMA cache coherent system [6], or distributed memory systems such as 
IBM's SP and Beowulf clusters. Ideally any new parallel languages and compilers developed for those languages would be 
implemented for both of these architectures. For this first prototype parallel SequenceL compiler, only one of these 
architectures will have be chosen for the initial development. Typically, distributed memory architectures are more difficult to 
program since they are message passing architectures also they have fewer sophisticated development tools such as good 
parallel debuggers. Shared memory architecture, like the Origin2000, are shipped with vendor supplied integrated 
development tools and compilers that can take advantage of all processors using standard sequential programming techniques. 
In addition systems like the Origin2000 can also be programmed using message passing if necessary. 

An early decision was made to implement the compiler using a subset of C as an intermediate programming language. 
Therefore, with this in mind and given the decision to use a shared memory architecture the choices for the underlying C 
based parallel development tool was narrowed down to three choices. 

1) Message Passing Interface (MPI) 
2) OpenMP 
3) Multi-threading (Pthreads) 
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When it came to choosing one of these three parallel programming models the following criteria was used, control over task 
scheduling, ease in data snaring and portability. 

MPI is a great parallel programming tool for the experienced parallel programmer. The availability of low-level message 
passing calls, provides the developer with a tool that gives them complete control over their parallel application. Scheduling 
tasks or threads of computation within a parallel application is not a problem since MPI gives the developer complete control 
over all of the tasks at a process level of execution. It is also the low-level nature of the MPI calls that also makes it a difficult 
development tool to use [1] in addition the process model of execution makes it a poor choice for fine grained parallelisms. 
Another factor against MPI was the fact that experience has shown that MPI is not available on many symmetrical multi- 
processor systems (SMP), it is typically found only on parallel computers as a vendor supplied package or as an add-on for 
cluster computers [5]. 

OpenMP is describes as a shared memory or distributed shared memory parallel programming tool [1]. Its implementation is 
at a higher level of abstraction than MPI. On the Origin2000 parallel program developers can utilize OpenMP in one of two 
ways. Sequential programs can be submitted to an OpenMP tool, which automatically adds OpenMP compiler directives to 
the code or a developer can manually place the directives in the code themselves. OpenMP directives are designed to take 
advantage of parallelisms in loops, it is not designed for functional parallelisms. MPI can take advantage of both functional 
and loop parallelisms. Scheduling with OpenMP is possible at a computational level with respect to loop iterations, but 
scheduling of specific processors is not available using a scheduling protocol. 

The final parallel programming model evaluated was Pthreads. Pthreads is similar to MPI in that much of the coding of the 
parallel application is the responsibility of the developer. But it does have several important advantages over MPI, first it uses 
a thread model while MPI uses a process model, therefore task overhead could be less. Second it can take advantage of shared 
memory accesses, different threads can access the same memory locations, data sharing with MPI requires message passing. 
This could also be a disadvantage since it can lead to memory bottlenecks [7]. Although OpenMP is also based on a thread 
model and has the same shared memory access capability it does not provide the same level of control over thread scheduling 
that Pthreads does. Typical shared memory programming models follow a coarse grained thread model, Pthreads provide a 
better range of control over computational threads since they can be fine grained [9]. Finally unlike MPI and OpenMP a 
Pthreads based program will run without change on a single processor system as well as on parallel system like the 
Origin2000. The benefit therefore of implementing the compiler with Pthreads is that in developing a parallel compiler for 
SequenceL a single processor compiler will also result. 

Given a SequenceL source code program and a final Pthreads based C program what are the required intermediate stages to 
get from one to the other? An early prototype utilized syntax changes, although the results were successful changes were 
required in the language in order to assist in the semantic analysis using this technique [10]. It was concluded that a better job 
of reduction based on the SequenceL simplification rules might have resulted in avoiding the language changes. The next 
prototype will use a parser/reducer that will simplify the source into a reduced SequenceL based on language simplification 
rules. From the reduced source code a translator will convert the source into a graph(s) structure. The justification for 
choosing a graph structure is the SequenceL tableau. It is not clear yet where this will lead, but the tableau data structure has 
proven to be a remarkably good tool in describing the parallelisms, which fall out of SequenceL. For example a simple 3x3 
dense matrix multiplication has the following tableau structure. 

T=f 

J 

Z+([*([[2,4,6],[3,5,7],[1,1,1]] (1,*),[[2,4,6],[3,5,7],[1,1,1]] (*,1))]) 
Z+([*([[2,4,6],[3,5,7],[1,1,1]] (1, *),[[2,4,6],[3,5,7],[1,1,1]](*,2))]) 
Z+([*([[2,4,6],[3,5,7],[1,1,1]] (1, *),[[2,4,6],[3,5,7],[1,1,1]](*,3))]) ] 
Z+([*([[2,4,6],[3,5,7],[1,1,1]] (2, *),[[2,4,6],[3,5,7],[1,1,1]](*,!))]) 
Z+([*([[2,4,6],[3,5,7],[1,1,1]] (2,*),[[2,4,6],[3,5,7],[1,1,1]] (*,2))]) 
Z+([*([[2,4,6],[3,5,7],[1,1,1]](2,*),[[2,4,6],[3,5,7],[1,1,1]](*,3))])] 
Z+([*([[2,4,6],[3,5,7],[1,1,1]] (3,*),[[2,4,6],[3,5,7],[1,1,1]] (*,1))]) 
Z+([*([[2,4,6], [3,5,7], [1,1,1]](3,*), [[2,4,6], [3,5,7], [1,1,1]](*,2))]) 
Z+([*([[2,4,6],[3,5,7],[l,l,l]](3,*),[[2,4,6],[3,5,7],[l,l,l]](*,3))])] 

From this structure it is very easy to see that each line represents a parallel thread of execution. Within each thread is the 
computational task consisting of a multiply/add operation. The simplified graph representation of the above tableau could 
consist of computations going in the depth direction and scheduling issues going in the breath direction. The key therefore in 
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going from Sequence!, to C code will be the implementation of the data-flow and control flow in some form of graph 
representation that will provide the same level of description as the above tableau. Therefore the prototype parallel 
SequenceL compiler will have two intermediate representations of the SequenceL source code, the graph(s) representation 
and the C code. 

Several key elements of a compiler have not been mentioned yet. One key stage in any compiler is optimization, for the first 
prototype parallel compiler for SequenceL optimization will be left to the C compiler. The only optimization that will occur 
in the prototype compiler will be related to thread scheduling. 

4.0 Concluding Remarks. 
SequenceL is a Turing complete language. An interpreter exists that finds the parallel structures inherent in 

SequenceL problem solutions. The Matrix Multiply example represents a fairly straightforward problem solution insofar as 
the parallel paths behave independently of one another. In other words, once the parallelisms are known, the paths can be 
spawned and joined together with each path contributing its part of the final solution without knowledge of what the other 
paths have computed. Examples of problems where there are computed, intermediate results that need broadcasting have also 
been explored using the SequenceL interpreter. 

For example, the Forward Processing in the Gaussian Elimination Solution of systems of linear equations has been 
executed with good results in terms of finding inherent parallelisms. With three or more equations, intermediate results must 
be known to all paths in order to produce the final result. 

Finally, in terms of scheduling, both the matrix multiply and the Gaussian Codes are examples of problems for which 
static a-priori schedules can be generated. The paths of execution can be determined based upon the dimensions of the 
matrix, in the matrix multiply, and the number of equations, in the Gaussian code. The Quicksort problem was run as an 
example of a problem where dynamic scheduling is necessary. 

The classes of problems represented by the Gaussian and Quicksort problems already explored in the interpreter will 
indeed introduce additional issues in the development of the SequenceL compiler and scheduler. 
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ABSTRACT 
In this paper, we extend the data flow based finite state verification approach used in FLAVERS so it is applicable to infinite 
as well as finite executions. We first describe the previously developed algorithm that is used to check properties specified in 
regular languages on finite executions of distributed systems. We then present two new algorithms that enable FLAVERS to 
check safety or liveness properties on infinite executions of distributed software systems. 

The attractiveness of FLAVERS is in its low-order polynomial complexity bounds, its ability to derive the model of ex- 
ecutable behavior automatically from a program's source code, and its ability to improve the precision of the analysis by 
incrementally improving the accuracy of the program model. All these features are preserved in the proposed extensions. 
These extensions apply to the existing FLAVERS prototypes for analysis of both Ada and Java programs. 

KEYWORDS 
Finite state verification, model checking, static analysis, safety, liveness. 

1    INTRODUCTION 
Finite state verification techniques can be used for detecting the presence or proving the absence of certain kinds of errors in 
software systems. These approaches are based on reasoning about a finite, abstracted model of a system's behaviors. FLAVERS 
(FLow Analysis for VERification of Systems) is a finite state verification approach that uses data flow analysis techniques to 
verify user-specified properties of sequential and concurrent software systems [11,12]. FLAVERS is capable of verifying 
properties about sequences of events, where the events are recognizable actions in the program and the sequences are either 
translated into or specified directly as a finite state automaton (FSA). The attractiveness of this approach is in its low-order 
polynomial complexity bounds, its ability to derive the model of executable behavior automatically from a program's source 
code, and its ability to improve the precision of the analysis by incrementally improving the accuracy of the program model. 
FLAVERS prototypes have been developed for Ada [11] and Java [16]. 

To date, FLAVERS has been restricted to considering programs with only finite executions. This is a serious limitation, 
because, in practice, distributed systems are frequently intended to execute infinitely. In this paper we propose two extensions 
to the FLAVERS analysis algorithm that allow FLAVERS to check properties on software systems with infinite executions. 

Traditionally, verification properties have been classified into two broad categories: safety and liveness [1,3]. The distinction 
is that safety properties are finitely refutable and liveness properties are never finitely refutable. Intuitively, a safety property 
specifies that an undesirable state of the system is never reached and a liveness property specifies that a desirable state of the 
system is eventually reached on all executions. 

Any property can be represented as a union of a safety property and a liveness property [2]. Any property checked only 
on finite executions of a system is a safety property, since the so-called "undesirable" state of the system can be viewed as 
the terminal state1 where the predicate of interest either holds or doesn't hold. Safety properties are also a concern for infinite 
executions, when the property is finitely refutable. Thus, a property that can be proved by examining all finite execution trace 
prefixes would be such an infinite safety property. In this paper we focus on extending FLAVERS to handle both safety and 
liveness properties for infinite executions. 

'Without loss of generality, we can assume that there is a single terminal state. 
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Our extension for checking safety properties on infinite executions is very simple and requires two small modifications to 
the original FLAVERS' approach: (1) a modification of the property representation and (2) a simple change in the analysis 
algorithm, where property violations are checked not only in the terminal state of the system but also at relevant intermediate 
points of system execution. 

Our extension for checking liveness properties with FLAVERS is based on representing the property of interest as a Biichi 
automaton [22] and computing the states that this automaton can be in at different points of the program execution. This 
computation is carried out by the same data flow algorithm that FLAVERS uses for checking properties on finite executions. 
After that we determine if the graph contains infinite paths with suffixes on which the property Biichi automaton never enters an 
accept state. An existence of such a path signifies that the property represented by the automaton does not hold on the execution 
of the system corresponding to this path through the graph. Checking this is based on computing maximal strongly-connected 
components in the derived representation of the program. This algorithm could also be applied to safety properties for infinite 
executions, but its worst-case bound is larger than that of the algorithm specialized for safety properties on infinite executions. 

Our algorithm for checking safety properties on infinite executions uses a form of FSA-based property specification, used, 
for example, in [7] and makes a fairly obvious change to the original data flow algorithm of FLAVERS. Our algorithm for 
checking liveness properties is similar to the existing algorithms used by model checking [9] and reachability analysis [5,13] 
approaches. Despite these similarities, we make several important contributions. First, our proposed extensions maintain the 
current strong points of FLAVERS, using an efficient data flow algorithm, automatically dealing with software systems at 
the implementation level (although FLAVERS can handle high-level specifications as well [17]), and giving the analyst the 
opportunity to improve the precision of the analysis incrementally by deferring the modeling of certain features of the system 
until it becomes clear that such modeling is necessary. Second, we can use the existing FLAVERS framework for specifying 
fairness or other conditions that should be assumed during infinite executions of the system. Finally, we do not assume that all 
loops in the threads of control of the system can execute infinitely. Instead, the analyst has the means of specifying which of 
the thread loops can or cannot execute infinitely. 

For convenience, we introduce the following abbreviations. We will refer to the original algorithm of FLAVERS [11] as 
finite executions, or FE, algorithm; to the proposed algorithm for checking safety properties on infinite executions as safety infi- 
nite executions, or SIE, algorithm; and to the proposed algorithm for checking liveness properties as liveness infinite executions, 
or LIE, algorithm. 

In the next section we give a brief overview of the existing techniques for checking liveness properties on infinite executions 
of software systems. In Section 3 we describe the FE algorithm. Section 4 describes the specification of safety properties on 
infinite executions and introduces the SIE algorithm. In Section 5 we describe the specification of liveness properties and 
introduce the LIE algorithm. In Section 6 we discuss some the issues related to fairness conditions and incremental precision 
improvements. Finally, in Section 7, we outline directions for future work. 

2    RELATED WORK 
There exists a considerable amount of work on finite state verification approaches for verifying concurrent systems. 
There are four major approaches to finite state verification: reachability analysis, necessary conditions, model checking, and 
data flow analysis approaches. In this section we describe the way in which some representative finite state verification tech- 
niques handle properties on infinite executions. 

SPIN [13] is a reachability analysis technique that accepts properties expressed in linear temporal logic (LTL) and focuses 
on systems with asynchronous concurrency control. Each of the threads of control in the software system is modeled with 
a Biichi automaton and the negation of a property is also represented as a Biichi automaton. All these Biichi automata are 
combined in a synchronous cross-product, with the worst-case size of this automaton being exponential in the number of 
threads of control. If the language of the resulting Biichi automaton is non-empty, it means that the property can be violated. 
This can be determined in time linear in the number of states and transitions in the combined Biichi automaton by performing the 
Tarjan depth-first search algorithm [20] for constructing all strongly-connected components. If there exists a reachable strongly- 
connected component that contains at least one accepting state, a reachable acceptance cycle exists, and so the property violation 
is found. The complexity of SPIN analysis is Ö(S + V), where S is the number of states in the product Biichi automaton and 
V is the number of transitions in this automaton. 

Enhanced Compositional Reachability Analysis (ECRA) [8] works similarly to SPIN. ECRA computes a cross product of 
automata in a compositional way, "hiding" some of the transitions and thus, potentially, reducing the size of the cross product 
automaton. For safety properties, ECRA uses FSAs to represent all threads of control as well as to represent the property, which 
is augmented with a special trap state that represents property violations. After the FSAs for the property and threads of control 
are composed into a single cross-product automaton, the property is violated if this cross-product automaton contains a trap 
state. The analysis of liveness properties with ECRA is done in a similar way [5], using Biichi automata instead of FSAs. The 
property is considered to be violated if there is a reachable strongly-connected component in the product Biichi automaton that 
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does not contain transitions to accepting states of this automaton. Conversely, if each reachable strongly-connected component 
contains at least one transition into an accepting state of the product automaton, the property holds. The latter holds true only 
under a relatively strong fairness assumption that each transition in a reachable strongly-connected component is eventually 
executed if this strongly-connected component is executed forever (the semantics of the distributed systems for which ECRA is 
designed make this assumption possible). The worst-case complexity of ECRA is the same as that of SPIN, but a good selection 
of the decomposition of the system model may result in significant reductions in the size of the product automaton in practice. 

Necessary conditions analysis [10] generates a set of integer linear inequalities that represents necessary conditions for the 
existence of legal executions for systems with synchronous concurrency control. The necessary conditions express constraints 
on the number of times certain system events take place relative to other system events. The negation of the property is also 
represented as a set of inequalities. For infinite executions, some of the constraints are computed using strongly-connected 
components of Büchi automata, where each automaton represents a thread of control in the system. For liveness properties, 
some additional inequalities have to be introduced. Integer linear programming is used to solve this set of inequalities. If no 
solution of the set of inequalities exists, the property holds on all executions of the system. This approach is NP-hard in the size 
of the system of integer inequalities that has to be solved. In practice, this approach is often very efficient, although it does not 
appear to be applicable to asynchronous communication mechanisms. 

Model checking [9] does not make a clear distinction between safety and liveness properties. In this approach, it is assumed 
that all executions of the system are infinite and properties are represented in computation tree logic (CTL). To prove a CTL 
formula F, model checking constructs a Kripke structure [14] for the system. This Kripke structure represents the set of all 
reachable states of the system and thus the number of its states is exponential in the number of threads of control and modeled 
variables. The goal of model checking is to check whether or not formula F holds in the start state of the Kripke structure, 
which signifies that it holds for all possible executions of the system. 

In general, the complexity of model checking is 0((V + E)f), where / is the size of the CTL formula representing the 
property, V is the number of states, and E is the number of transitions in the Kripke structure. The algorithm for checking 
liveness properties with FLAVERS that we propose in this paper is quite similar to this specific case of model checking. 

3    THE FE VERSION OF FLAVERS 
In this section we introduce the FSA-based property specification used by FLAVERS, give a very high-level overview of 
FLAVERS, and then present the FE algorithm. 

3.1   Representing FE Properties 
FLAVERS uses an event-based view of the software system being analyzed. In this view, user-selected names, called events, 
are associated with observable activities of interest in the system and then all potential executions of the system are represented 
as sequences of these events. For example, both a variable assignment and a method call could be examples of events. 

A number of formalisms for specifying properties have been proposed, including temporal logics [9,19], process algebras [4, 
15], and various forms of regular languages and finite state automata [18,21]. FLAVERS uses deterministic finite state automata 
for specifying properties to be checked on terminating executions of a system. 

A deterministic FSA can be represented as a tuple (5, s0, S, 6, A). S is the set of all states of the FSA, including the unique 
start state s0. S is called the alphabet of the FSA and includes all events used by this FSA. 6 is a total transition function 
SxE->5 that represents all event-based transitions between the states of the FSA. We deal with total FSAs, which means 
that from any state there is a transition based on each event from the alphabet2. We write 6(s, e) = s' to indicate that there is a 
transition from state s to state s' based on event e. Finally, A is the set of accept states {oi, o2,..., ap}, VI < i < p, Oj € S. 
A trace of an FSA on an event sequence w = ei,ez, ■■■, en is a sequence of states so, si,..., sn, where so is the start state and 
for any i, 1 < i < n, there is a transition from Sj_i to Si on event e». A sequence of events e\,..., en is accepted by P if the 
last state in the corresponding trace of this automaton is an accept state: sn € A. An example of an FSA is given in Figure 1. 
This FSA has two states s0 and si, and so S = {s0, sx}. State s0 is the start state, which is denoted by an arrow with no origin, 
and also an accept state, as denoted by concentric circles. The alphabet of this FSA is {open, close, C}. There is a transition 
from state s0 to state si based on event open. Graphically, we may represent several transitions from state s to state s' with a 
single arrow that is labeled with a list of events on which all these transitions are based. For example, in Figure 1 the self-arrow 
on state si is labeled open, C and thus represents two transitions, <5(si,open) = Si and <5(si,C) = a\. This FSA accepts 
the sequence open, C, close, because it has a trace s0, Si, si, s0 on this sequence and the last state in this sequence, so, is an 
accept state. 

We call the set of properties that can be specified as an FSA regular event sequencing properties. Such a property holds for 
a system if for any terminating execution of this system the sequence of events observed on this execution puts the FSA in an 
accept state. 

2For convenience, we introduce a single trap state that is the destination node of all "illegal" transitions introduced to make the FSA total. 

269 



open 

close, C open, C 

Figure 1: An example FSA or Büchi automaton 

3.2   Overview of the FE Approach 
FLAVERS models the software system under analysis as a Trace Flow Graph (TFG). The TFG is based on the control flow 
graphs (CFGs) for the components of the system, where the nodes in the TFG may be labeled with events. We call the collection 
of all events with which the nodes of the TFG are labeled the alphabet of this TFG. To reduce the size of the representation, the 
CFGs are refined to remove all nodes that are not labeled with an event or that do not affect the sequencing of events. Thus, the 
resulting refined CFGs correctly capture all possible sequences of events associated with their corresponding component. At 
present, FLAVERS handles interprocedural systems by in-lining called routines. Since nodes with events are usually a small 
subset of all the nodes in the original CFG, the refined CFG is typically much smaller than the original CFG. Thus, in our 
experience, in-lining of refined CFGs usually does not"cause a severe blow-up in the size of the CFG representation. 

The TFG for a concurrent system is obtained by connecting the refined, in-lined CFGs for all threads of control with 
additional nodes and edges. Unique initial and final nodes represent the start and the end states of the system respectively. 
In addition, depending on the concurrency semantics of the system being modeled, the TFG may include special nodes that 
represent communication among the threads of control. In all cases, special edges that represent interleavings of events from the 
threads of control executing in parallel are added to the TFG. Each path from the initial to the final node in the TFG represents 
a sequence of events that occur on the nodes along this path. The TFG is a conservative representation of the sequences of 
events that could occur along a system execution. That is, any sequence of events in the TFG alphabet that could occur during 
execution of the system is represented by some path in the TFG with a corresponding event sequence. However, the converse 
is not true, since CFGs and thus TFGs may contain a number of infeasible paths, which do not correspond to any system 
executions. 

Formally, a TFG is a labeled directed graph G = (N, E, ninitiai, nßnai, EG, L), where N is the set of graph nodes, E is the set 
of edges, n,„,„a/ £ N, nßnai G N are the initial and final nodes, EG is an alphabet of event labels associated with the graph, and 
L : N ->■ EQ is a function that labels some of the nodes of the graph with an event drawn from this alphabet. For convenience 
in presenting the algorithms, with each node n in the TFG, we associate a set Pred(n) containing all predecessors of n. 

A property specified as an FSA holds for a system if this FSA accepts event sequences for all paths through the TFG for this 
system. FLAVERS uses the data flow based FE analysis algorithm to solve this problem. This is done by associating states of 
the property FSA with the nodes of the TFG. We use a forward-flow data flow algorithm where states are propagated from one 
node to another, depending on the FSA transition function associated with the events that are encountered in the TFG. Thus, a 
state s is associated with node n if and only if there is a path from the initial node of the TFG to n that encounters a sequence 
of events that drives the property FSA to state s when the path reaches n. Note that since multiple paths may exist from the 
initial node to node n, a set of property states may be associated with each node. The iterative worklist algorithm continues 
to propagate states to nodes in the TFG until it reaches a fixed point, where no additional states can be associated with TFG 
nodes. The outcomes of this analysis are either that (1) the set annotating the final node of the TFG contains only accept states 
of the FSA, indicating that the property holds on all executions of the system or (2) the set annotating the final node of the TFG 
contains at least one non-accept state of the FSA, which means that the property may not hold on some executions. 

The alphabet of the property must be a subset of the events in the alphabet of the TFG: E C EG. To represent the fact that the 
property "ignores" the events not in E, we can modify the transition function of the FSA to contain self-transitions on all states 
of the property for all events that are in the TFG alphabet but not in the FSA alphabet: Vs £ 5, Ve € (EG \ E), 6(s, e) = s. As 
a result of this modification, the alphabet of the property becomes equal to the alphabet of the TFG: E = EQ. 

If the analysis finds that a property holds on all paths through the TFG, then it is guaranteed to hold on all possible 
executions of the system. When the analysis indicates that the property does not hold on some paths through the TFG, this may 
be because the system is in error or it may be because all the paths in the system model that violate this property correspond 
to infeasible paths. FLAVERS provides a means for selectively removing infeasible paths from consideration by allowing the 
analyst to add feasibility constraints, finite state automata that model semantic restrictions on the system's execution that are 
not reflected in the TFG. For example, CFGs, and the TFGs constructed from them, typically do not model the values assigned 
to variables during execution. Thus, paths through the TFG may not represent feasible executions because these paths do not 
respect the values of some variables. A feasibility constraint could be constructed to track the possible finite values or ranges 
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of values of such a variable, thereby eliminating some or all infeasible paths. Formally, a constraint automaton is an FSA 
C = {Sc,sc,'£c,6c,cc), where cc is a unique crash state. 

The crash state of a feasibility constraint signifies that the sequence of events applied to the constraint does not correspond 
to any legal behavior of the system. For any state t € Sc and any event e € Ec, M*>e) = °c if and only if observing event 
e at state t does not correspond to any legal behavior of the constraint. The crash state is a sink, which means that there are no 
transitions from this state to any other state in the constraint. When feasibility constraints are used, instead of propagating states 
of the property automaton through the TFG, the FE algorithm propagates tuples of states where each tuple has an element that 
represents a state of the property and an element for a state of each of the constraints. More precisely, tuple T = (p, c1;..., cfc), 
wherep e SP,a € Sc»Vl < i < k and the start tuple T0 is the tuple {sP,sCi,-,sck)- If one of the elements in a tuple 
represents a crash state for a constraint, this tuple is not propagated beyond this node. 

Similar to the case where no feasibility constraints are used, the FE algorithm runs until it reaches a fixed point, after which 
the states of the property annotating the final TFG node determine whether the property holds on all executions of the system. 

In the following, we refer to the collection consisting of the TFG, property automaton P, and the constraint automata 
d,..., Ck as an analysis problem. Similar to extending the alphabet of the property, we extend the alphabets of all constraints 
to include all events in the alphabet of the TFG: Vi, 1 < * < k, Ve € (EG \ Scf), Vs € SCi ,6{s,e) = s. 

We refer to the collection of all possible tuples for a given analysis problem as Tuples: 

Tuples =   \J     U   ...    U   (p,ci,...,Cfc) 
p€SPcieSCl      ck€Sck 

A tuple transition function A : N x Tuples -> Tuples describes propagation of tuples through TFG nodes. It is defined as 
follows: 

Vn e N,T = (p,ci,...,cfc) e Tuples, A(n,T) = (<5p(p,L(n)),(5c71(ci,L(n)),...1<5cfc(cA,L(n))) 

3.3   The FE Algorithm 
The FE algorithm of FLAVERS is a forward flow data flow algorithm over the TFG with the power-set of Tuples as the lattice. 
The function space is provided by function it : 2TuPles xN^ 2Tuples based on the tuple transition function A3: 

\/nEN,Ae 2T"P'es,n(A,n) = {T\3T' e A, A(r',n) = T) 

The FE algorithm associates two sets of tuples with each node n in the TFG, IN(n) and OUT{n). The IN set for node n 
represents the possible states of the system immediately before this node is executed. This set is computed as the union of all 
possible states in which the system can be after the predecessor nodes for n are executed: 

IN(n) =     U     OUT(p) 
p£Pred(n) 

The OUT set for node n represents the possible states of the system immediately after this node is executed. This set is 
computed by applying the transition function to n and the tuples in its IN set and removing from the result all tuples that 
contain at least one constraint crash state: 

OUT{n)=(   (J    A(n,r))\{r = (p>ci,...,c*)e7i(ptes|3».l<*<*.c* = co«} 
TelN(n) 

The algorithm is initialized by setting the OUT set of the initial TFG node to contain the start tuple and setting all other IN 
and OUT sets to be empty. .    . 

The algorithm repeatedly recomputes IN and OUT sets of the TFG nodes in an arbitrary order, until a fixed point is reached. 
To determine if the property holds on all terminal executions of the system, all tuples in the OUT set of the final TFG node 
are investigated. The property holds if all states of the property FSA in these tuples are accept states: VT = (p,d, ...,ck) € 
OUT{nß„ai) :p£Ap. If this condition is not true, FLAVERS concludes that the property does not hold. 

4    THE SIE VERSION OF FLAVERS 
By making a simple modification to the FE algorithm, FLAVERS can check safety properties on infinite executions. The most 
important change is in the representation of properties. Although we still use FSAs to represent safety properties to be checked 
on infinite executions, these FSAs have a somewhat different form than those used in the FE algorithm. 

3To satisfy the definition of a function space, several additional functions also need to be defined, but they are not important for the discussion in this paper. 

An interested reader is referred to [12]. 
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Any event sequencing safety property can be formulated in a form that describes undesirable behaviors of the software 
system under analysis. The reason for this is that safety properties are finitely refutable statements and so they can be represented 
as sequences of events that should be observed to refute the property. The refutation event must be explicit and thus represents 
a certain point in the event sequences. Similar to the approach of [6], we define a special violation state v, which represents the 
property being refuted, v is a sink state, which means that there is a transition from v to v on any event in the alphabet of this 
FSA. We say that sequences of events that correspond to traces of this FSA that contain the violation state v violate the safety 
property represented by this FSA. The following theorem offers a proof that any regular event sequencing safety property can 
be represented as an FSA with a violation state. 
Theorem 1. Any regular event sequencing safety property can be represented as an FSA with a unique violation state v, such 
that the property does not hold on an event sequence if and only if the trace of the FSA corresponding to this sequence contains 
v. The converse is true as well: any FSA with a violation state represents a safety property. 

Proof. Due to the space limitations, we do not present the full formal proof, which is based on the formal definition of safety [1]. 
D 

The SIE algorithm of FLAVERS uses FSAs with a violation state to represent properties. This algorithm proceeds in exactly 
the same way as the FE algorithm, with the exception that instead of checking just the final node of the TFG for violations, we 
check all nodes. It is not sufficient to check only the final node, because it represents the terminal state of the system, in which 
all threads of control terminated. This terminal state is never reached if at least one thread enters an infinite loop. Thus, the SIE 
algorithm checks if any node n of the TFG contains a tuple T such that the property in this tuple is in the violation state; this 
represents a violation of the property. 

The worst-case complexity of the SIE algorithm is the same as that of the FE algorithm, Ö(N2S), where N is the number 
of nodes in the model of the software system under analysis and S is the number of states in the synchronous cross-product 
of the automaton representing the property of interest and all feasibility constraint automata used by FLAVERS to improve its 
analysis precision. 

5    THE LIE VERSION OF FLAVERS 
In this section we first describe the representation of liveness properties used in our LIE FLAVERS algorithm, present an 
overview of the approach, and then give the details of the LIE algorithm itself. 

5.1   Representing Liveness Properties 
Since FSAs can encode only finite event sequences, we need a different formalism to describe infinite behaviors, w-auto- 
mata [21] provide such a formalism. Usually, for an infinite trace sequence a to be accepted by an w-automaton, some infinite 
pattern of accept states of this automaton must be observed on the traces of this automaton on a. In particular, we use a well- 
known subclass of w-automata, Büchi automata. A deterministic Biichi automaton is an automaton (SB,SB,^B,ÖB,AB), 

where SB is a set of states, SB £ 5B is a start state, Eß is the alphabet, AB is a set of accept states, and 6B is the transition 
function SB X SB -> SB- A trace of a Büchi automaton on an infinite event sequence o = ei,e2,... is an infinite sequence 
of states so, si,..., where SQ is the start state and for any i > 1, there is a transition from Sj_i to s* on event e*. A Biichi 
automaton accepts an infinite sequence of events ei,e2,... if the corresponding trace contains an infinite number of accept 
states. For example, the automaton in Figure 1 can be interpreted as a Büchi automaton. An infinite event sequence of 
alternating open and close events open, close, open, close,... is accepted by this automaton because the corresponding 
trace of this automaton so, Si, SQ, ... contains an infinite number of occurrences of accept state SQ. 

An arbitrary Büchi automaton cannot be used as a liveness property in our approach. The reason for this is that in FLAVERS, 
if the event associated with a node is not in the alphabet of a (property or constraint) automaton, the automaton does not change 
state when the transition function for tuples is used to compute the OUT set for this node. Thus, it is possible that an execution 
trace has a suffix in which all tuples have the Büchi property automaton in its accept state because none of the events in this 
trace is in the alphabet of this property. To avoid this situation, we modify each Büchi property automaton in a way that makes 
its alphabet equal to the alphabet of the TFG. The modification is based on creating an additional non-accept state for each 
accept state in the Büchi automaton and having transitions on events that are not in the alphabet of the Büchi automaton go 
from each accept state to its newly created non-accept state. 

For this modification, let A be a Büchi automaton for which LA C ST, where Er is the alphabet of the TFG. We build a 
new Büchi automaton A' equivalent to A in the sense that it accepts the same set of infinite strings in the following way: 

1. Copy A to A'. 

2. Set YIA< = ST- 

3. For each non-accepting state s e SA
1
, create new transitions 8A- (s,e) = s for each e € Ey \ Y,A- 
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a,b 

a,b b'c a.b c 

(a)  An example property  before (b) An example property after transformation 
transformation 

Figure 2: Illustration for the algorithm transforming Biichi automata 

4. For each accepting state s e SA>, create a new non-accepting state s' € SAL For each transition originating in s, 
6(s, e) = s", create a transition S(s', e) = s". Note that this includes cases where s" — s. Create a transition from s to 
s' for each event in Sr \ £A- Finally, create a self-transition on state s' for each event in Ex \ £A: <J(s', e) = s'. 

Note that after this modification, all transitions based on events that were not originally in the alphabet of the property that 
originate in an accepting state s lead to a new state s' created by the algorithm. Figure 2 illustrates the Biichi automaton 
transformation defined here. We assume that ET = {a,b, c} and T,A = {a,b}. Figure 2(a) shows a Biichi automaton 
before the transformation and Figure 2(b) shows the corresponding Biichi automaton after the transformation. Note that this 
transformation does not cause a severe blow-up in the size of the Biichi property automaton, since the number of extra states 
created equals the number of accept states in the original Biichi property automaton. 

5.2 Overview of the LIE Approach 
A direct and very naive approach to checking properties on infinite executions would be to follow the FE algorithm with a 
Biichi automaton representing the property of interest, but to preserve the history of changes for each (T, n) pair, starting with 
the initial pair (To, n,„,„a/). Then we can check if the current state is already present in this history and if an accept state of the 
property has been entered since its last occurrence. Of course, the complexity of storing and perusing all that additional history 
information is prohibitive. Instead, we use the FE algorithm but then evaluate the TFG with all the tuples assigned to its nodes 
to find infinite behaviors. In the rest of this section we give the details of this LIE algorithm and the artifacts that it relies upon. 

As described in Section 3.3, the FE algorithm of FLAVERS associates sets of tuples OUT(n) with each node n in the TFG. 
A tuple T is in OUT(n) if there is a path through the TFG from the initial node nMtiai to n that corresponds to a trace of events 
that would cause the automata for the property and all constraints to transfer from their start states to the states represented by 
tuple T. Thus, the problem of determining whether a particular tuple T appears in the OUT set of node n can be viewed as a 
reachability problem in the tuple-node space Tuples x N. Formally, the tuple-node space Tuples x N is a structure (P,E,„), 
where P is the set of pairs (T, n) such that T G OUT(n) after the FE state algorithm terminates and Etn is the set of edges, 
where {(Tum), (T2,n2)) € Etn if (Ti.m), (T2,n2) € P Am £ Pred(n2) A A(nuTi) = T2. 

We say that there exists a path from pair (T,n) to pair (T',n') if there are pairs (Ti,7ii),..., (Tk,rik) for some k > 0, 
suchthat ((r,n),(r1>ni)),((ri>ni))(r2,n2)),...,((I*,nfc)>(r

/,n')) e Etn. A reachability function Reach : P -► 2P for 
a given pair returns the set of all pairs that can be reached for this pair through a path in the tuple-node space: V(T, n) € 
Tuples x N,Reach((T,n)) = {(T',n')\3 apathfrom (T,n) to (T',n')}. 

From an abstract level, our LIE algorithm uses an approach for analyzing the tuple-node space that is very similar to the ap- 
proach used by model checking and reachability analysis approaches. We attempt to identify strongly-connected components in 
the tuple-node space that do not have tuples containing an accept state of the property. If such a strongly-connected component 
is found, it represents one or more infinite executions on which an accept state of the property is not entered infinitely often. 
By the definition of Biichi automata acceptance, the property is violated on such executions. On the other hand, the absence of 
such strongly-connected components signifies that the liveness property holds on all infinite executions of the program. In the 
rest of this section we describe this algorithm in detail. 

5.3 The £ZE Algorithm 
The following algorithm for checking liveness properties with FLAVERS assumes that the FE algorithm is used first, and so 
every node of the TFG has a set of tuples, denoted OUT, associated with it. The following steps are then performed: 

1. Remove from the OUT sets of all TFG nodes all tuples where the Biichi automaton is in an accept state. 
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2. Find all maximal strongly-connected components in the resulting (reduced) tuple-node space. A maximal strongly- 
connected component in the tuple-node space Tuples x N is defined as a set of tuple-node pairs C C P such that 

(a) V(Tuni), (T2,n2) € C, (T2,n2) e Reach((Tuni)) and 
(b) V(Ti,ni) eC,(T2,n2) eJP\C,(T1,n1) ? Reach((T2,n2)) V (T2,n2) $ Reach((Tuni)). 

3. If at least one strongly connected component has been found, the property is violated. This property violation can be 
illustrated by inserting in the OUT sets of all TFG nodes the tuples that were removed in step 1 of this algorithm and 
showing a path from (T,„,„a/, n,„,v/a/) to this strongly-connected component. 

Intuitively, if after removing all tuples in which the property automaton is in an accept state, no strongly-connected com- 
ponents exist in the tuple-node space, it means that no execution can be found on which the property automaton enters an 
accept state only a finite number of times. This means that the liveness property being checked holds on all possible program 
executions. Alternatively, if a strongly connected component is found, it represents a suffix of an infinite execution such that on 
this suffix no accept states of the property are entered. Thus, on this execution an accept state of the property is entered only a 
finite number of times, and so the property is violated. 

This approach is similar to the one used by model checking [9]. In fact, our approach can be reduced to checking a specific 
CTL formula AGAFa with model checking, where a is true in a tuple-node pair (T, n) if and only if the state of A in T is 
accepting. The major difference between our approach and that of model checking is in the way that the state space of the 
system is represented and in the way this representation is computed. 

5.4 Properties of the LIE Algorithm 
We need to prove termination and conservativeness, and determine the complexity of this algorithm. 
Theorem 2 (Termination). For any LIE analysis problem (G, P, C\, ...,Ck), the algorithm terminates. 

Proof. This follows from the fact that the tuple-node space is finite and termination of the efficient Tarjan algorithm [20] for 
computing maximal strongly-connected components. □ 

Conservativeness of our algorithm means that if there exists an execution of the system on which the Büchi property 
automaton does not hold, the algorithm will detect that. 
Theorem 3 (Conservativeness). If there exists an execution of the system on which there is a suffix where an accept state of 
the property Büchi automaton is not reached infinitely often, our algorithm will detect that. 

Proof. Suppose that there is an execution of the system with a suffix on which the Büchi automaton never enters an accept state. 
Since both the TFG model and the FE algorithm are conservative [11], this means that there is a trace through the tuple-node 
space of the problem on which the Büchi automaton never enters an accept state. Since the tuple-node space is finite, this trace 
must correspond to a loop L in the tuple-node space. When our algorithm eliminates all states of the tuple-node space that 
correspond to tuples in which the Büchi property automaton in an accept state, loop L is still present, since in no tuples along 
this loop is the property in an accept state. Thus, there exists a strongly-connected component that contains this loop, and so 
our algorithm will conclude that the property may be violated. □ 

The following theorem states the worst-case complexity of the algorithm. 
Theorem 4 (Worst-case Complexity). The worst-case complexity of our algorithm as described is 0(\N\2\Tuples\ + \E,n\). 

Proof. The |iV|21 Tuples] component of the complexity formula in the statement of this theorem is just the worst-case complexity 
of the FE algorithm that must be done first. The worst-case complexity of the Tarjan algorithm for finding all maximal strongly- 
connected components of the tuple-node space is 0(\P\ + \E,n\). By observing that \P\ < \N\\Tuples\, we arrive at the stated 
complexity. C 

This worst-case result is consistent with the complexity of other finite state verification approaches on liveness properties, 
except for [10], where the worst-case bound in general cannot be expressed in terms of the characteristics of the property and 
system models. 

5.5 Implementation 
We have implemented the approach proposed in this paper and carried out an initial, preliminary experiment, in which we dealt 
with two liveness properties for a concurrent Ada producer/consumer example. In this example, multiple producer threads put 
items in an unbounded buffer and multiple producer threads extract items from this buffer. Our first property specifies that 
a consumer thread does not starve, i.e. on all infinite executions a consumer thread extracts items from the buffer an infinite 
number of times. This property can be violated, since the example does not guarantee fair treatment of all threads. Our imple- 
mentation correctly finds an infinite execution that demonstrates starvation of a consumer thread. Our second property specifies 
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Figure 3: A fairness FSA example 

that on all infinite executions some buffer activity (putting or extracting items) happens infinitely often. Our implementation 
correctly demonstrated that this property holds on all possible executions of the example. 

The producer/consumer example is scalable; we checked the two properties described above on four different sizes of the 
example: 2, 4, 6, 8, where the size corresponds to the number of consumers/producers in the example. (Thus, the example 
of size 2 has two producers and two consumers.) For each of the sizes the outcome described in the previous paragraph was 
obtained. An interesting observation is that for both properties, the number of required constraints did not depend on the size of 
the example. For the first property we needed two constraints modeling control flow through select threads and for the second 
property we needed three similar constraints. In all cases, checking each of the properties took under 4 seconds on a Pentium 
III Xeon 550 MHz machine. 

6 FAIRNESS ASSUMPTIONS AND PRECISION IMPROVEMENTS 
To be conservative, FLAVERS assumes that all traces through the TFG or tuple-node space correspond to executable behavior 
in the system being analyzed. Constraints can be used to eliminate infeasible traces selectively. For infinite executions, the 
algorithm described above assumes that all loops can be executed infinitely. It would be more realistic to recognize that some 
loops can execute infinitely, while others cannot. Program optimization techniques could be used to statically detect at least 
some of the finite loops. Using FLAVERS constraint mechanism (e.g. modeling values of variables used in loop predicates), 
information could be provided to improve or refine this static analysis. Alternatively, we believe that it may be more practical 
to let the analyst mark those loops in threads that can never execute infinitely (or, the analyst may mark all potentially infinite 
thread loops). Given this information, the above algorithm can be modified so as not to consider the strongly-connected 
components in the tuple-node space that correspond to a set of loops in the control flow of individual threads, if any of these 
loops cannot be infinite. 

Fairness conditions are often employed to ensure that some reasonable behaviors of a system are taken into account. For 
example, in a client-server configuration of system threads, a possible fairness requirement is that if two client threads request 
a service S infinitely often and the server satisfies S infinitely often, then both clients obtain the service infinitely often (in 
other words, it is not possible for one of the clients to "starve" while the other always gets the service). With FLAVERS, we 
can again use the feasibility constraint mechanism to represent fairness assumptions. Because feasibility constraints are FSAs, 
these assumptions are rather strong. For example, using only FSAs, it is impossible to represent the fairness assumption about 
the client-server system described above. However, we can represent an assumption that after client A requested service, the 
server can serve at most 3 requests from clients other than A before serving client A. An FSA modeling this fairness assumption 
is shown in Figure 3. Transitions labeled request A represent the event of client A requesting service and transitions labeled 
serve A and serve other represent the events of the server serving A and a client other than A respectively. (Note that in this 
example, we make two reasonable assumptions about the system: (1) a client does not post a request if it has one unsatisfied 
request outstanding and (2) the server does not provide an unrequested service.) We believe that such fairness conditions are 
practical, since they can be derived from the actual specifications of the description of the environment in which the software 
system under analysis has to execute, unlike fairness conditions that specify that a service will be offered infinitely often. 

7 CONCLUSIONS AND FUTURE WORK 
In this paper, we have extended the original data flow analysis algorithm of FLAVERS (FE algorithm) to check properties on 
infinite executions of concurrent software systems. Two different algorithms are presented, one for checking safety properties 
and the other for checking liveness properties. Although, by representing safety properties as Büchi automata, we could 
use the LIE algorithm for checking both kinds of properties on infinite executions, the SIE algorithm has better worst-case 
complexity bounds than the LIE algorithm. Both of these algorithms do not involve changing the existing analysis algorithm 
of FLAVERS but rather add to it, in a language independent way. This means that the feasibility constraints of FLAVERS that 
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improve precision of the analysis can be used successfully with the proposed algorithms. This is particularly attractive since 
feasibility constraints can be used to model fairness assumptions about the system under analysis or to refine information about 
infinite and finite loops. Of course, the problem of determining precisely whether a given loop can be infinite is undecidable. 
Efficient, conservative automated techniques can be used for this problem and supplemented with guidance from the analyst. 
With such information, the precision of the analysis results would improve considerably. Thus, we believe that this approach 
would provide a more precise and realistic basis for analysis and incorporates application-specific fairness and executability 
considerations. 
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Abstract 

The paper discusses an approach to construct discrete abstractions of hybrid systems by means of qualitative 
reasoning. The work is performed in the context of a modeling language for hybrid systems CHARON. We introduce 
a qualitative version of the language and describe the abstraction technique using a motivational example. The 
resulting abstract model is conservative and can be used to analyze properties of the original hybrid system. 

Keywords:    hybrid systems, abstraction, qualitative reasoning. 

1    Introduction 

Distributed embedded control systems usually consist of multiple components that exhibit both continuous and 
discrete behavior. Hybrid systems is a widely-used mathematical model for such systems. Since many embedded 
systems are safety-critical, it is important to analyze hybrid systems for correctness. The combination of discrete and 
continuous state changes makes analysis of hybrid systems an extremely challenging task. Algorithmic verification 
techniques require that we work with a finite representation of the state space of a system. Abstractions and 
approximations are necessary to make algorithmic analysis possible. In this paper, we consider the construction of 
discrete approximations of hybrid systems by means of qualitative reasoning. 

Qualitative reasoning [12, 7, 9] is a well-established technique in the Artificial Intelligence community. It allows 
researchers to model physical systems using incomplete information. Often, there is not enough information about 
the system to represent it by means of differential equations. However, the basic relations between the variables in 
the system are known. In this situation, qualitative models can be used to capture the incomplete knowledge in a 
model, which can be simulated to obtain a rough outline of the system behavior. Furthermore, as more information 
about the system becomes available, the qualitative model can be refined to provide a more accurate description. 

An alternative role for qualitative reasoning has received much less attention. Qualitative models can be seen as 
discrete abstractions of continuous and hybrid systems. They provide a conservative approximation of the system 
behavior. That is, every possible behavior of a system is captured by some qualitative behavior, but not all qualitative 
behaviors necessarily correspond to a real system behavior. Qualitative models, which exhibit finite-state behavior, 
can be fully explored by a verification tool and thus provide a means of conservative analysis of hybrid systems. 

We explore qualitative abstractions of hybrid systems in the context of CHARON [1], a recently introduced novel 
language for hybrid system modeling. The language supports specification of multi-threaded (parallel or distributed) 
systems as a hierarchy of concurrent agents and complex behaviors within one thread as a hierarchy of modes. 
CHARON has a number of high-level language features such as data encapsulation and scoping, exception handling, 
and instantiation of parameterized objects. CHARON has been given formal compositional semantics [2] that makes 
modular reasoning about hybrid systems possible. In this paper, we describe a qualitative variant of the CHARON 

language that will allow us to construct conservative qualitative approximations of CHARON models and analyze 
them using state-space exploration techniques. 

•This work is supported in part by the NSF grant CCR-9988409, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-0466, DARPA ITO 
MOBIES F33615-00-C-1707, and ONR N00014-97-1-0505 (MURI). 
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Related work. Qualitative reasoning has emerged in the past decade as a mature technique for approximate 
reasoning. Qualitative abstractions are primarily targeted at continuous systems expressed as differential equations. 
However, tools such as QSIM [12] are capable of modeling discrete transitions and are thus applicable to general 
hybrid systems. An application of qualitative reasoning to hybrid systems in the context of controller synthesis 
is discussed in [5]. Similar in spirit but different technically is recent work on verification of safety properties in 
continuous systems via qualitative abstractions [14, 13]. There, conservativeness of qualitative abstractions is used 
to prove that violations of safety properties is impossible in the concrete model. Analysis is based on reasoning 
about individual trajectories, while we are concentrating on more traditional in the verification are state-machine 
representations. 

It is well-known that formal verification techniques such as reachability analysis and model checking are unde- 
cidable for hybrid systems in general [11]. Research has concentrated on decidable subclasses of hybrid systems, or 
on finding conservative approximations for hybrid systems. See [3] for a survey of state-of-the-art techniques. 

The need to construct finite abstractions of infinite-state systems is not limited to the hybrid systems domain. 
Predicate abstraction [10] is a promising technique for reducing the range of a variable to a finite set of "important" 
values. Effectively, predicate abstraction determines appropriate landmark values for each variable in the program. 
The proposed approach can be seen as an extension of the predicate abstraction techniques for hybrid systems. 

The paper is organized as follows: in Section 2 we introduce the language CHARON and informally describe its 
semantics. In Section 3, we present a framework for qualitative description of systems. Our approach follows the 
treatment of [12], which describes the simulation of qualitative models using a tool QSIM. Our approach is not based 
on simulation, however. We construct a qualitative model as a hierarchical state machine and explore its state space 
to determine its properties. The benefits of this approach are discussed in Section 5. Then, in Section 4 we present 
the qualitative variant of CHARON and its semantics. The semantics is compositional in the sense that behaviors of 
composite objects are computed from their components. A simple example is presented in Section 5 to illustrate the 
approach. 

2    CHARON modeling language 

CHARON is a high-level language for modular, hierarchical description of hybrid systems. CHARON describes a hybrid 
system as a collection of concurrent agents that interact with each other through shared variables and bounded- 
capacity channels1. Agents have well-defined interfaces, consisting of its input and output variables and channels. 
Sequential behavior is described in CHARON by means of modes. Modes also have interfaces, consisting of entry and 
exit control points, through which a thread of control enters and leaves the mode. 

Intuitively, an execution of a CHARON specification is an alternating sequence of discrete and continuous steps. 
Discrete steps are instantaneous mode switches, while continuous steps take a finite amount of time when no control 
changes occur. 

The hierarchy in CHARON is twofold. The architectural hierarchy describes how the agents in the system interact 
with each other, hiding the details of interaction between sub-agents. The behavioral hierarchy describes behavior 
of each agent as a collection of modes, hiding the low-level behavioral details. At the leaves of the architectural 
hierarchy are primitive agents that do not have concurrent sub-agents. Behaviors of primitive agents are captured 
by modes, described below. 

Agents and modes operate on sets of typed variables. In each agent or mode, variables are partitioned into global 
and local variables. Global variables are further categorized into input and output variables. Also, variables can be 
either analog or discrete. Discrete variables are updated by discrete steps during the execution; analog variables are 
updated in a continuous fashion, but may also be reset by discrete steps. During a continuous step, analog variables 
follow a flow, a smooth continuous function of time. We assume that analog variables have type real. 

A mode is a hierarchical hybrid state machine equipped with analog and discrete variables. While a mode stays 
in a state, its analog variables are updated continuously according to a set of constraints, which take the form of 
differential and algebraic equalities and inequalities. Taking transitions from one state to another, the mode updates 
its discrete variables. States of the mode are submodes that can have their own behavior. A mode has a number 
of control points, through which control enters and exits the mode. That is, to perform a computation in one of its 
submodes, a mode takes a transition to an entry point of that submode. When the computation in the submode 
is complete, a transition from an exit point of the submode is taken.  The mode also has entry transitions, from 

1 Channels are not considered in this paper. 
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an entry point of the mode to an entry point of one of its submodes, and exit transitions, from an exit point of a 
submode to an exit point of the mode. Entry transitions specify initial states of a mode and may give initial values 
to the variables of the mode. 

Primitive modes, which do not have any submodes, can have multiple entry points but only the default exit 
point. Since there are no internal control points in a primitive mode, every entry transition is also an exit transition. 
Intuitively, a primitive mode stays during its execution in its default exit point. 

Transitions are labeled with guards and actions. A guard is a predicate on the values of the mode variables. A 
transition is enabled when its guard is true. An action is a partial state transformer, when a transition is taken, 
variables of the mode are updated according to the action of the transition. 

Before the computation of a mode is completed, it may be interrupted by a group transition, originating from 
a default exit point of the mode. After an interrupt, control is restored to the mode via a default entry point. We 
use invariants to force one of the outgoing transitions. Control can reside in a mode only as long as its invariant is 
satisfied. As soon as an invariant is violated, control has to leave the mode by taking one of the enabled outgoing 
transitions. 

Each primitive agent has an associated top-level mode that specifies its behavior. A top-level mode has a single 
non-default entry point init, which is used to initialize the mode before execution. Since agents never terminate, 
their top-level modes do not have non-default exit points. 

An object-oriented feature of CHARON is that declarations of modes and agents act as classes. A parameterized 
declaration of a mode or an agent can be instantiated in a model multiple times with different values of parameters. 

Semantics. CHARON is given formal compositional trace semantics. Each agent or mode is characterized by its 
interface and the set of traces it allows. Traces of a mode are formed by the flows defined by the mode constraints, 
interleaved with discrete steps of the mode, in which a mode transition is taken, updating local and output variables, 
and discrete environment steps that change the values of input variables. The set of traces of a composite mode can 
be computed from the traces of the submodes. While executing in one of the submodes, the mode follows a trace of 
the active submode that complies with the constraints of the mode. 

A primitive agents has as its traces the traces of its top-level mode, restricted to the global variables of the agent. 
A trace of a composite agent is such that, when projected on the global variables of a sub-agent, it yields a trace of 
the sub-agent. Semantics of agents is also compositional. The set of traces of an agent can be computed from the 
sets of traces of the sub-agents. 

A motivational example. We use a simple example throughout the paper to illustrate the facilities of CHARON. 

It represents a swimming pool equipped with a pump that controls.the water level, and a sign that tells whether the 
water is deep enough to swim. The architecture of the model is shown in Figure 1. It consists of three agents, Pool, 
Pump and Sign. The first agent represents the water in the pool and its behavior is given by a single differential 
equation relating the flow of water and its level. Two other agents are instantiations of parameterized agents 
WaterPump and Switch. Their top-level modes are presented in Figure 2. The agent WaterPump controls the water 
flow. The pump can be turned on or off, maintaining constant flow: when the pump is on, water flows into the 
pool, when it is off, the water flows out of the pool. Modes On and Off are instances of the mode SteadyMode with 
different values of parameters. In addition, the pump has two transient modes, TurnOn and TurnOf f. These modes 
are instances of the mode Trans ientMode, when the water flow smoothly changes from one steady-mode level to the 
other. Entry transitions of the primitive modes in the example are trivial and we omit them in the figures. Initially, 
the pump starts in the On or TurnOf f submode depending on the water level, as prescribed by the entry transitions. 
Then, the pump cycles through on and off phases. 

3    Fundamentals of qualitative reasoning 

3.1    Qualitative variables 

A qualitative variable has an associated type, or quantity space. A quantity space consists of a finite set of landmarks. 
A landmark represents an "interesting" value of the variable and may be a symbolic or integer constant. We assume 
that landmarks of a variable are completely ordered. That is, when we consider a variable v with the quantity space 
{vi,«2i —,vn}, we will always assume vi < vi < ... < vn. 
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Figure 1: A swimming pool in CHARON 
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Figure 2: Declarations for the swimming pool 

During an execution, we track not only the values of the qualitative variables, but also the directions of their 
change. It allows us to increase accuracy of qualitative behaviors. A valuation of a qualitative variable v is a pair 
(I, d), where / is a qualitative value of v and de {-,*,+}. The meaning of a valuation (I, d) for v is that the value 
of v is / and the first derivative with respect to time is negative if d = -, is zero if d — *, and is positive if d = +. 
For discrete qualitative variables the only possible value of d is their valuations is *. 

During an execution, an increasing qualitative variable may either reach the next larger value or stop increasing. 
Similarly, a decreasing variable may reach the next smaller value or stop decreasing. A stationary variable may turn 
into either increasing or a decreasing one without changing its qualitative value. When the variable assumes its 
smallest landmark value, it cannot be decreasing; similarly, when it assumes the largest landmark value, it cannot 
be increasing. As an example, consider the possible evolutions of a single unconstrained qualitative variable with the 
quantity space {Zi,/2, J3}, represented as a state machine in Figure 3. 

i^-C^Q-^w 

GD (wj uFX (w*) GD 
D 

Figure 3: State machine for a single variable 
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3.2    Qualitative Constraints 

Multiple variables in the same execution can evolve independently of each other. If variables are to evolve in a 
coordinated fashion, we need to introduce constraints. 

Constraints over qualitative variables take the form v o Eq, where o e {<, <, =, ^, >, >} and Eq is a qualitative 
expression. Qualitative expressions are constructed from qualitative variables and constants by means of qualitative 
operators described below. The quantity spaces of the left-hand and right-hand sides of a constraint must be the 
same. 

Functional operators. A functional operator represents an underspecified function from a tuple of quantity spaces 
into a quantity space. An example of a functional operator is a monotonic function M+ (v) for a qualitative variable 
v. A constraint of the form v\ = M+(v2) specifies that in every state of the execution, the directions of change in the 
valuations of v\ and v2 agree. In addition, the relation between some elements of the quantity spaces of vi and v% 
may be known. In this case, the valuations also have to agree on those elements. For example, consider a model with 
variables v\ with the quantity space {hiihiMz} and v2 with the quantity space {hi,h2,h3}- Let the constraint be 
vi = M+(v2) with the set of related values {(/n,/2i), ('13,^23)}- The "increasing" part of the state machine shown 
below. Symmetric "stable" and "decreasing" parts are omitted. 

1,2+A, .^HMI^A apW+Hfl^a ^ 

OA+M1"'1^1^1^) Ky^+) Kp^n^^+M1"*^*) 

(\^i2)+^2 + }^Wn)+^'h2)+h(iU+^'l22)+ 

Arithmetic qualitative operators. Arithmetic qualitative operators are special cases of functional operators. An 
arithmetic qualitative operator is a mapping from a pair of quantity spaces to a quantity space. When components 
of the quantity spaces are integer constants, the natural rules can be used to define the arithmetic operators. 
For symbolic constants, the user must specify the mapping explicitly. For example, an addition operator from 
{0, On, Inf}2 to {0, Onl,On2,Inf} may be given as {{(On, 0), Onl), ((0, On), Onl), ((On,On), On2)}. Addition and 
multiplication operators are always commutative and monotonic in both arguments; the landmark value 0 is always 
used naturally in all arithmetic operators. If quantity spaces are signed (that is, 0 is an element of the quantity 
space), multiplication of positive values yields a positive value, etc. Other properties of the arithmetic operators 
(such as associativity) may not be satisfied. 

Qualitative differential constraints. In addition to constraints on variables, qualitative constraints can apply 
to first derivatives of variables. Remember that a valuation of a qualitative variable includes a three-valued com- 
ponent representing the direction of its change. A qualitative differential constraint constrains this component of 
the valuation. Values of the right-hand side expression are taken in relation to 0, which must be contained in the 
quantity space of the expression. For example, constraint v' = 1 means that the direction-of-change component of 
the valuation for v is always +; that is, v monotonically increases. 

4    Qualitative CHARON 

In this section, we describe QCHARON, that replaces real variables of CHARON with qualitative variables. The 
change affects only the modes. The agent hierarchy and interfaces of agents are unaffected (except that types of 
agent variables change to qualitative types). 

We introduce the following quantity spaces for the variables used in the swimming pool example: 
level      { 0, Lo, Swim, Hi, Owf } 
flow      { mlnf, Out, 0, In, Inf } 
timer    { 0, Ready, Inf } 
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Figure 4: Declarations of qualitative agents and modes 
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Figure 5: Architecture of the qualitative model 

The landmarks for each variable are as follows: water level is at Lo when the pump has to be turned on, at level 
High the pump needs to be turned off, and it is safe to swim when the level is above Swim. When the flow of water 
is enough to make water level rise, the value of the flow is In, if the level is decreasing, the value is Out. The value 0 
means that the level is constant. These landmark values for flow are chosen to be used in the differential constraint 
of the Pool agent. Finally, the timer has only one interesting value: duration of the interval that the pump spends 
in a transient state, denoted Ready. Note that all these values are either constants or parameters in the CHARON 

model. 
We also need to turn the expressions of the CHARON model into qualitative expressions. Consider the differential 

equation of mode TransientMode, expression rate * (1 - timer/2) becomes rate * (M~(timer)[(0,1)(Ready, 0)]). It 
represents a monotonically decreasing function of timer, which has value 1 when timer is 0, and 0 when timer has the 
qualitative value Ready. We do not need to specially define the multiplication operator in this expression, because 
we are interested only in the sign of the expression. All other expressions in the example are transformed into the 
qualitative form by replacing concrete constants and parameters with qualitative constants. 

Figure 4 shows the qualitative version of the swimming pool example. Figure 5, which represents the architecture 
of the qualitative model is the same as Figure 1 with the parameters removed. The agents WaterPump and Switch 
are no longer parameterized, because their parameters are used in a qualitative way, and are now captured as types 
of qualitative variables. However, not all parameters in the model are removed. Submodes of WaterPump are still 
parameterized, since they are instantiated multiple times with different values of parameters. 

Semantics. Following the setup of CHARON, semantics of a QCHARON specification is given by the interface of the 
mode (its control points and global variables), and set of traces that the specification can produce. We will define 
set of traces in a bottom-up fashion, starting from the leaves of a behavioral hierarchy. For each mode, we will first 
capture the set of its executions as a state machine. It is important to notice that this state machine is a semantic 
object and does not have to be constructed explicitly during analysis of a QCHARON specification. Executions are 
projected onto the global variables of the mode to yield the set of traces of the mode. 

First, a state of a mode with variables v\,...,vn is a tuple of valuations for the variables of the mode. A mode 
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Figure 6: Runs of the submodes of WaterPump 

variable can be updated either in a discrete or in a continuous fashion. Discrete variables are changed by the 
transitions of the mode. Discrete variables can assume only landmark values during an execution. A continuous 
variable follows "a flow, i.e. a differentiable function, during an execution and thus can assume as values its landmarks 
and the intervals between adjacent landmarks. 

Executions of a primitive mode are represented as a state machine, where each state corresponds to a state of 
the mode. Transitions represent possible changes in variable valuations, such that valuations in the states connected 
by a transition agree with all the constraints of the mode. A run of a state machine is a sequence of states such that 
every two consecutive states in a sequence are connected by a transition. To represent executions, we extend the 
state machine with special nodes that do not correspond to a state of the mode, but capture entry and exit points 
of the mode. Each entry point is connected by a transition to every state in which the values of variables agree with 
the guard and the action of the entry transition attached to the entry point. Every state is connected by a transition 
to the exit point node, since an execution can be interrupted at any time. 

We show the state machine for SteadyMode (instantiated as On) in Figure 6(a). In the mode On, variables flow 
and timer are constant and variable level is an input variable whose value is constrained by the invariant of the mode 
and the direction of change is unconstrained. Figure 6(b) shows a fragment of the state machine for TransientMode 
(instantiated as TurnOff). In this mode, timer increases, flow decreases, and level is unconstrained. The fragment is 
chosen to comply with the constraint on level from the agent Pool, which will be applied when behaviors of individual 
components are composed into behaviors of the whole system. Since the entry transitions of the modes are trivial, 
the entry node of each state machine is connected to every state and we do not show them to avoid cluttering the 
figure. 

We can now give semantics to composite modes by first extending the mode hierarchy at the leaves, replacing the 
primitive modes with their respective state machines. The state machine representing the executions of a composite 
mode m is obtained by "flattening" this hierarchical state machine into an ordinary state machine. To construct the 
flattened state machine of a mode from the flattened state machines of submodes, we perform the following steps. 

1. Connect by transitions the states in the state machines of the submodes according to the transitions of the 
mode. Consider a mode m with submodes mi and m,2- Let mi have an exit point x and m-i have an entry 
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Figure 7: Qualitative runs of the swimming pool model 

point e. Let t be a transition of m from x to e. Consider a state s\ in the state machine of mi that is connected 
by a transition to the node corresponding to x, such that si satisfies the guard of t. The state Si is connected 
by a transition to every state S2 that agrees with the action of t. This operation is repeated for every si in mi 
and for every t in m. 

2. Next, we introduce the nodes for the control points of the mode and introduce transitions similarly way to the 
regular transitions: for each entry transition from an entry point e to an entry point e\ of a submode mi, we 
add a transition from the node for e to every state in the state machine of mi that is connected to e\ and 
agrees with the guard and action of the entry transition. 

3. After all transitions have been introduced, the nodes for the submode control points are removed. 

Behaviors of a primitive agent are the same as the behaviors of its top-level mode. For a composite agent, we 
can compute the flattened state machine by taking a product of the state machines for the sub-agents, in which a 
transition is possible if and only if it is allowed by constraints in all the agents. In the swimming pool example, 
when we compose agents WaterPump and Pool, traces of WaterPump now have to satisfy the relationship between the 
variables flow and level prescribed by the Pool. In particular, this restriction effectively reduces the state machine 
of Figure 6(a) to the bottom row of states. We show the flattened state machine for the swimming pool example in 
Figure 7. To avoid cluttering the figure, we omit the labels of the states, but group together the states corresponding 
to executions within the same submode of WaterPump. 

In the same way as CHARON, the semantics of QCHARON is compositional, making the construction of the 
flattened state machine unnecessary. The set of traces permitted by the state machine of a mode can be computed 
from the transitions and constraints of the mode and the sets of traces of the submodes. 

5    Conclusions and Discussion 

We have presented preliminary results on the construction of conservative approximations of CHARON specifications 
by means of qualitative reasoning. The approach differs both from the existing abstraction techniques for hybrid 
systems analysis and from traditional uses of qualitative reasoning. A lot remains to be done to turn this approach 
into an abstraction methodology for hybrid systems, but the first impression is encouraging. 

Comparing our approach with that of qualitative simulation [12], we note that the hierarchical state machine 
yields a much more compact representation of the set of execution traces, in general, than an explicit representation. 
For comparison, we modeled our swimming pool example in QSIM, the foremost tool for qualitative simulation. 
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Much to our surprise, the problem turned out to be intractable for QSIM. It exceeded the limit of 500 traces that 
we set for the simulation, and ran out of memory with the trace limit removed. 

Comparing the proposed technique to the abstraction techniques for hybrid systems described in [3], it is clear 
that qualitative reasoning yields coarser abstractions than other existing techniques. This has its advantages and 
disadvantages. On the one hand, qualitative abstractions are much easier to compute and manipulate. This allows 
us to handle larger specifications. On the other hand, qualitative abstract models are much less precise than state- 
of-the-art techniques. They admit many behaviors that the original system cannot exhibit. In the discussion below, 
we consider ways to improve precision of-the abstraction without incurring too much overhead. 

Our future work on this topic will concentrate on the following aspects: 

• Improving accuracy of abstractions. A qualitative description of a mode or an agent represents all possible 
values parameters and constants in the model, because they are now assume qualitative values. This makes 
it more difficult to check properties of concrete systems. In effect, the question "does model A have property 
5?" in qualitative analysis becomes "can we select the values for parameters and constants in A such that the 
resulting model has property B?" As a result, a qualitative model will allow more qualitative behaviors than 
the original hybrid model, instantiated with a fixed set of parameters, would. 

In terms of our swimming pool example, the question whether the pool can overflow is answered positively. 
Indeed, if we choose the value of High too close to Owf, an overflow is possible in the TurnOf f mode, while 
the water level is still rising above High. At the same time, parameters in the original swimming pool example 
were chosen so that overflow cannot occur. In order to get a more precise answer, we need to constrain the 
model further to express the relative values of qualitative landmarks. The problem can be addressed from two 
directions. On the one hand, semi-quantitative reasoning [4] extends purely qualitative reasoning with partial 
numerical information. The second approach involves model refinement techniques such as proposed in [6]. 
These two approaches will be the main direction of our future research in this area. 

• Local landmarks. We observe that not every landmark value of a variable needs to be considered in every 
mode. For example, the value Swim of the variable level is used only in the agent Switch, and values Low and 
High are used only in the agent WaterPump. We can use this fact to reduce the sizes of mode state machines, 
and refine them as needed during analysis. 

• More complex functions. Functions used in our example are very simple, which makes the qualitative 
abstraction easy to perform. In general, providing accurate qualitative representations for a complex function 
may be difficult. The problem has been studied in the context of qualitative simulation previously [8]. We 
will explore mode splitting to make construction of qualitative representations simpler. With this technique, 
we partition the ranges of variables in a CHARON model in such a way that in each block of the partition the 
function can be simplified or approximated differently, yielding expressions with simpler qualitative form in 
each case. Then, we introduce a separate mode for each block of the partition, with additional invariants to 
ensure that the values of variables are within the block. Transitions between the new modes will correspond to 
the execution moving from one block of the partition to another. In this way, a mode in a CHARON model will 
correspond to a number of modes in QCHARON, but each mode will provide a more precise approximation. 
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