“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2001-06

Proceedings of Monterey Workshop 2001
Engineering Automation for Sofware Intensive
System Integration

Luqgi; Broy, Manfred

http://hdl.handle.net/10945/70996

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

KN D}(appointed — and published — scholarly author.
"m.‘“ LIBRARY

Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle

Hittpe/ e nps. ek library Monterey, California USA 93943

Monterey Workshop 2001

Sponsored by:
ONR / AFOSR / ARO / DARPA

Engineering Automation for Software Intensive System

Integration

June 18-22, 2001

A
DISTRIBUTION STATEMENT
Approved for Public Belease
Distribution Unlimited

U.S. Naval Postgraduate School

Monterey, California

20011231 071

Proceedings of

Monterey Workshop 2001

Engineering Automation for Software Intensive System

Integration

Sponsoréd by:

Office of Naval Research
Air Force Office of Scientific Research
Army Research Office

Defense Advanced Research Projects Agency

June 18-22, 2001
U.S. Naval Postgraduafe School

Monterey, California

Workshop Chairs
Lugi, US Naval Postgraduate School
Manfred Broy, Technical University of Munich

DISTRIBUTION STATEMENTA
' Approved for Public Release
i Distribution Unlimited

Workshop Chairs

Lugqi, US Naval Postgraduate School
Manfred Broy, Technical University of Munich

Program Committee

Egidio Astesiano — University of Genova
Mikhail Auguston — New Mexico State University
Valdis Berzins — US Naval Postgraduate School
Swapan Bhattacharya — IIIT, Calcutta
Barrett Bryant — University of Alabama
Jun Ge — US National Research Council
Jiang Guo — US National Research Council
David Hislop — US Army Research Office
Robert Herklotz — US AFOSR
Purush Iyer — Uppsala University
Oleg Kiselyov — US National Research Council
Fabrice Kordon — LIP6-SRC, Universite Paris 6
Zohar Manna — Stanford University
Dave Robertson — University of Edinburgh
John Zavada — ARO/ERO, US Army
Doug Gage - DARPA
Ralph Wachter - ONR
Du Zhang - California State University

Proceedings Editor

Nabendu Chaki - US Naval Postgraduate School
Swapan Bhattacharya - IIIT, Calcutta

Local Arrangements

Mantak Shing Jesse Betts Judy Cabana John Cristobal
Adriane Fells Oleg Kiselyov Ben Quismundo Ryan Yokogawa

ii

List of Attendees in Monterey Workshop 2001

Noel A. Acevedo
Dagohoy Anunciado
Egidio Astesiano
Mikhail Auguston
William Bail

Farokh Bastani
Daniel M. Berry
Valdis Berzins
Swapan Bhattacharya
Pam Binns

John Bohn

Manfred Broy
Barrett Bryant

Carol Burt

Vineet Chadha
Nabendu Chaki

Samiran Chattopadhyay

Andrew Chen
Ron Chen
Maxwell Chi
Lori Clarke
John Clements
Robert Cook
Dan Cooke
Steve Cross
Zhang Cui
Michael Dabose
David Dampier
John Drummond
Kathi Fisler

Leonard Gaines

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA
U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA
Universita' Digenova, Genova, Italy

Naval Postgraduate School, Monterey, CA, USA

The MITRE Corporation and PEO TSC, McLean, VA, USA
University of Texas at Dallas, TX, USA

University of Waterloo, Canada

U.S. Naval Postgraduate School, Monterey, CA, USA

Indian Institute of Information Technology, Calcutta, India
Honeywell Laboratories, Minneapolis, MN, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
Institut Fur Informatik, Technische Universitat Munchen, Germany .
U.S. Naval Postgraduate School, Monterey, CA, USA

2AB Inc, 1700 Highway 31, Calera, AL 35040, USA

Mississippi State University, Starkville, MS, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

Jadavpur University, Calcutta-32, India

Naval Air Warfare Center, Point Mugu, CA, USA

Defense Management Data Center, Seaside, CA, USA

Joint Interoperability Test Command, Ft. Huachuca AZ, USA
University of Massachusetts, MA, USA

Rice Univeréity, Houston TX, USA

Georgia Southern University, Georgia, USA

Texas Tech University, TX, USA

Software Engineering Institute, Carnegie Mellon University, PA, USA
California State University, Sacramento, CA, USA

Raytheon Missile Systenis, West, Tucson, AZ, USA

Mississippi State University, Starkville MS, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA
Worcester Polytechnic Institute, MA, USA

Naval Supply Systems Command, Mechanicsburg, PA, USA

iii

Ann Gates

Jun Ge

Kevin Greaney
Cordell Green
Armando Haeberer
David Hislop
Purush Iyer

Grant Jacoby
Craig Johnson
Paul Jones

Dan Kedziorek
Oleg Kiselyov
Fabrice Kordon
Bernd Kraemer
Shriram Krishnamurthi
Bill Lafond

Doug Lange
Insup Lee

Bruce Lewis
Matthew Lisowski
Nelson Ludlow
Lugqi

Milton Mata
Duane Matlen
John Melear

Bret Michael
Christopher Miles
Ann Miller
Michael Mislove
Theng Moua
Michael Murrah
Christopher Mushenski
Gleb Naumovich

University of Texas at El Paso, TX, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

Ballistic Missile Defense Organization, Pentagon, Washington DC, USA
Kestrel Institute, Palo Alto, CA, USA

Alameda Antonio Sergio 7 Sala 1A 2795, Linda-a-Velha, Portugal

U.S. Army Research Office, NC, USA

North Carolina State University, NC, USA

3804 SandTrap Circle, Mason, OH, USA

Defense Contract Management Agency, Sunnyvale, CA, USA

U.S. Food and Drug Administration, Rockville, MD 20857

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
U.S. Naval Postgraduate School, Monterey, CA, USA

LIP6-SRC, Universite Paris 6, Paris, France

Fern Universitaet, Hagen, Germany

Brown University, Providence, RI, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA
University of Pennsylvania, Philadelphia, PA, USA

U.S. Army Aviation & Missile Command, Redstone Arsenal, AL, USA
Naval Strike Air Warfare Center, NV, USA

Mobilisa, Port Townsend WA, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, M1, USA
U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
University of Missour-Rolla, Rolla, MO, USA

Tulane University, New Orleans, LA, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA

Polytechnic University, Brooklyn, NY, USA

iv

Paul Nelson
Danh Nguyen
Phuong Phan
Rob Piirainen
Joseph Puett
Rajeev Raje |
Rakhee Ramgolam
William Ray
Joy Reed

Dan Regep
Giana Reggio
Richard Riehle
Michael Saboe
Roberto Sandoval
Sol Shatz

Lydia Shen
Mantak Shing
Keith Shockley
Henny Sipma
Doug Smith
Stephen Smith
William Smuda
Oleg Sokolsky
Eugene Stark
Xian-He Sun
Geoffrey Thome
Paul Tobin
Stephen Vestal
Jennifer Warwick
Martin Wirsing
Michael Yee
Paul Young

Du Zhang

Standard Army Management Information Systems, Fort Belvoir, VA, USA
U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

PO BOX 58123 (MD X70), Santa Clara, CA, 95052

U.S. Naval Postgraduate School, Monterey, CA, USA

Indiana University Purdue University Indianapolis, IN, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA
Oxford Brookes University, Headington, Oxford, England

LIP6-SRC, Universite Paris 6, Paris, France

Universita' Digengva, Genova, Italy

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
Joint Information Operations Center, San Antonio, TX, USA

University of Illinois at Chicago, Highland Park, IL, USA

U.S. Space & Naval Warfare Systems Center, San Diego, CA, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
Stanford University, Stanford, CA, USA

Kestrel Institute, Palo Alto, CA, USA

U.S. Joint Forces Program Office, San Diego, CA, USA

U.S. Army Tank-Automotive & Ammunition Command, Warren, MI, USA
University of Pennsylvania, PA, USA

State University of New York at Stony Brook, NY, USA

Illinois Institute of Tech, Chicago, IL, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

Armed Forces Communications & Electronics Association, Fairfax, VA, USA

Honeywell Laboratories, Minneapolis, MN, USA

U.S. Space-& Naval Warfare Systems Center, San Diego, CA,.USA
Institut fur Informatik - University of Munich (LMU), Germany
Defense Management Data Center, Seaside, CA, USA

U.S. Naval Postgraduate School, Monterey, CA, USA

California State University, Sacramento, CA, USA

Preface

Luqi

The 2001 Monterey Workshop on Engineering Automation for Software Intensive
System Integration was sponsored by the Office of Naval Research, Air Force Office of
Scientific Research, Army Research Office and the Defense Advance Research Projects
Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of
a principled engineering solution for software and for their many-year tireless effort in
supporting a series of workshops to bring everyone together.

This workshop is the 8™ in a series of International workshops. The workshop was held in
Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general
theme of the workshop has been to present and discuss research works that aims at
increasing the practical impact of formal methods for software and systems engineering.
The particular focus of this workshop was “Engineering Automation for Software
Intensive System Integration”. Previous workshops have been focused on issues
including, “Real-time & Concurrent Systems”, “Software Merging and Slicing”,
“Software Evolution”, “Software Architecture”, “Requirements Targeting Software” and
“Modeling Software System Structures in a fastly moving scenario”.

A major goal for this series of workshops is to encourage the software engineering
community in general to improve interaction between researchers and engineering
practitioners. The workshop has long established itself as a summit where researchers
from academics and industries can exchange recent results, assess their significance and
earn motivation for transferring the relevant results to practice. This indeed is a forum
where software engineers may communicate current problems in engineering practice to
researchers and help focus to bridge the gap between the theoretical and practical sides of
the subject.

It is no longer the case that theoretical foundations for computing are lacking. However,
keeping in mind the challenge to put these results to work, the formal aspects of
computing cannot be studied in isolation in the context of software engineering. The need
to ensure that the assumptions on which formal models are based are consistent with the
situations encountered in practical applications puts interdisciplinary requirements on
researchers and lends importance to interactions between experts from heterogeneous
backgrounds.

This year, apart from the distinguished panel of invited speakers, we have accepted
contributed papers mainly to encourage the emerging researchers in software
engineering. This has widened the scope of discussion and the sessions were highly
interactive and rich with intellectual frictions in opinion from a broad range of experts.
Members of the academic, government, military and commercial world exchanged their
vision, insight and concerns on many important issues. I hope that the workshop has
made another step to reduce the gap between theory and practice of software engineering.

vi

Content

Preface
Lugi, Naval Postgraduate School, Monterey, CA.

1.

Little Languages & Their Programming Environments

John Clements, Paul Graunke, Dept. of Computer Science, Rice
University, Houston, TX; Shriram Krishnamurthi, Computer Science
Dept., Brown University, Providence, RI; and Matthias Felleisen, Dept. of
Computer Science, Rice University, TX.

XML-Based Integration of Interface Definition Language Extensions
Bernd Kramer, Dept. of Electrical and Information Engineering, Fern
University, Hagen, Germany; and H. Arno Jacobsen, Dept. of Computer
Science, University of Toronto, Toronto, Ontario, Canada.

Subclassing errors, OOP & Practically Checkable Rules to Prevent Them
Oleg Kiselyov, Software Engineering, Naval Postgraduate School,
Monterey, CA.

Changé—Merging of PSDL Abstract Data Types
David A. Dampier and Vineet Chadha, Dept. of Computer Science,
Mississippi State University, MS.

Formal Verification of Embedded Distributed Systems in a Prototyping

Approach :
Fabrice Kordon, LIP6-SRC, University P.&M, Curie, Paris, France.

A Model Checking Framework for Layéred Command & Control Software
Kathi Fisler, Dept. of Computer Science, Worcester Polytechnic Institute;
Shriram Krishnamurthi, Computer Science Dept., Brown University; Don
Batory and Jia Liu, Dept. of Computer Science, University of Texas at
Austin.

A Framework for Knowledge Management & Automated Constraint
Monitoring

Ann Q. Gates and Steve Roach, Dept. of Computer Science, The University
of Texas at El Paso, El Paso, Texas.

The Use of Computer-Aided Prototyping for Reengineering Legacy
Software

Man-Tak Shing, Lugi and Valdis Berzins, Dept. of Computer Science,
Naval Postgraduate School, Monterey, CA.

vii

Vi

19

33

43

53

63

77

89

10.

11.

12.

13.

14.

15.

16.

17.

Modeling Constraints as Methods in Object Oriented Data Model

Samiran Chattopadhyay, Dept. of Comp. Science & Engineering, Jadavpur
University, Calcutta, India; Chanda Roy, RCC Inst. of Information
Technology, Calcutta, India; and Swapan Bhattacharya, Indian Institute of
Information Technology, Calcutta, India.

A Unified Approach for the Integration of Distributed Heterogeneous
Software Components

Rajeev Raje, Dept. of Computer and Information Science, Indiana
University Purdue University Indianapolis; Mikhail Auguston, Barrett R.
Bryant, Computer Science Dept., Naval Postgraduate School, Monterey,
CA; Andrew Olson, Dept. of Computer and Information Science, Indiana
University Purdue University Indianapolis; and Carol Burt, AB Inc.,
Calera, AL.

Enhancements & Extensions of F(;rmal Models for Risk Assessment in
Software Projects

Mike Murrah, Craig Johnson and Lugqi, Dept. of Computer Science, Naval .

Postgraduate School, Monterey, CA.

Visual Meta-Programming Notation

Mikhail Auguston Dept. of Computer Science, Naval Postgraduate School,
Monterey, CA.

Optimization of Distributed Object-Oriented Servers

_ William Ray and Valdis Berzins, Dept. of Computer Science, Naval

Postgraduate School, Monterey, CA.

Formalizing Software Architecture for Embedded Systems
Pam Binns and Steve Vesta , Honeywell technologies Center, MN

Design Models for Components in Distributed Object Software
X. Xie and Sol Shatz, University of Illinois at Chicago.

Use of Object Oriented Model for Interoperability in Wrapper-Based
Translator for Resolving Representational Differences between

Heterogeneous Systems
Paul Young, Valdis Berzins, Jun Ge and Lugi, Dept. of Computer Science,

Naval Postgraduate School, Monterey, CA.
Intelligent Software Decoys

James Bret Michael and Richard Riehle, Naval Postgraduate School, Dept.
of Computer Science, Monterey, CA.

viii

101

109

120

128

140

150

160

170

178

18.

19.

20.

21.

22.

23.

24.

25.

26.

Software Requirements Risk and Reliability
Norman Schneidewind, Naval Postgraduate School, Monterey, CA.

Design for Independent Composition & Evaluation of High-Confidence
Embedded Software Systems

F.B. Bastani, I.-L. Yen, University of Texas at Dallas; J. Linn, Texas
Instruments; K. Rao, Alcatel USA; and V.L. Winter, Sandia National Labs.

OCL Component Invariants
Hubert Baumeister, Rolf Hennicker, Alexander Knapp and Martin Wirsing
Ludwig-Maximilians—Universit™ at M"” unchen

XML Types are Parsers

Peter T. Breuer, Carlos Delgado Kloos, Luis Sanchez Ferndndez, Ma.
Carmen Ferndndez Panadero and Andres Marin Lopez, Depto. Ingenieria
Telématica, Universidad Carlos III de Madrid, Spain.

Automatic Test Generation from Specifications for Control-Flow & Data-
Flow Coverege Criteria v

Hyoung Seok Hong and Insup Lee, Dept. of Computer and Information
Science, University of Pennsylvania, PA.

A C-Interface to the Concurrency Workbench

Daniel C. DuVarney, Dept. of Computer Science, North Carolina State
University, Raleigh, NC; W. Rance Cleaveland, Dept. of Computer
Science, State University of New York at Stony Brook, Stony Brook, NY;
and S. Purushothaman Iyer, Dept. of Computer Science, North Carolina
State University, Raleigh, NC.

Specification of a Parallelizing SequenceL. Compiler
Daniel E. Cooke and Per Andersen, Computer Science Dept, Texas Tech
University, TX

Extending FLAVERS to Check Properties on Infinite Executions of
Concurrent Software Systems

Gleb Naumovich, Polytechnic University, Brooklyn, Dept. of Computer
and Info Science, Brooklyn, NY; and Lori A. Clarke, Computer Science
Dept., University of Massachusetts, Amherst, MA.

Qualitative Modeling of Hybrid Systems
Oleg Sokolsky and Hyoung Seok Hong, Dept. of Computer and Information
Science, University of Pennsylvania, PA.

X

188

198

208

216

230

247

257

267

277

Little Languages and their Programming Environments

John Clements! Paul Graunke! Shriram Krishnamurthi?
Matthias Felleisen?
1Department of Computer Science 2Computer Science Department
Rice University Brown University
Houston, TX 77005-1892 Providence, RI 02912

contact: <sk@cs.brown.edu>

March 15, 2001

Summary

Programmers constantly design, implement, and program in little languages. Two different ap-
proaches to the implementation of little languages have evolved. One emphasizes the design of
little languages from scratch, using conventional technology to implement interpreters and compil-
ers. The other advances the idea of extending a general-purpose host language; that is, the little
language shares the host language’s features (variables, data, loops, functions) where possible; its
interpreters and compilers; and even its type soundness theorem. The second approach is often
called a language embedding.

This paper directs the attention of little language designers to a badly neglected area: the pro-
gramming environments of little languages. We argue that an embedded little language should
inherit not only the host language’s syntactic and semantic structure, but also its programming en-
vironment.

We illustrate the idea with our DrScheme programming environment and S-XML, a little trans-
formation language for XML trees. DrScheme provides a host of tools for Scheme: a syntax analysis
tool, a static debugger, an algebraic stepper, a portable plugin system, and an interactive evaluator.
S-XML supports the definition of XML languages using a simple form of schemas, the convenient
creation of XML data, and the definition of XML transformations.

The S-XML embedding consists of two parts: a library of functions and a set of syntactic
extensions. The elaboration of a syntactic extension into core Scheme preserves the information
necessary to report the results of an analysis or of a program evaluation at the source level. As a
result, all of DrScheme’s tools are naturally extended to the embedded language. The process of
embedding the S-XML language into Scheme directly creates a full-fledged S-XML environment.

We believe that this method of language implementation may be generalized to other languages
and other environments, and represents a substantial improvement upon current practice.

1 Reusing Language Technology

Programmers constantly design little programming languages. Many of these languages die a quick
death or disappear under many layers of software; network protocols, GUI layout declarations, and
scripting tools are examples. Others evolve and survive to fill a niche; AWK, Make, Perl, and Tcl
come to mind.

Once a programmer understands that some problem is best solved by designing a new little
language, he must make an implementation choice. One possibility is to build the little language
from scratch. This option involves the tasks of specifying a (typically formal) syntax, a (semi-
formal) system of context-sensitive constraints, and an (informal) semantics; and of implementing
the required software: a lexer, a parser, a type checker, a code generator and/or an evaluator.

The other option is to extend an existing general-purpose language with just those constructs
that the task requires. In this case, the little language shares the host language’s syntax (variables,
data, loops, functions) where possible; its interpreters and compilers; and even its type soundness
theorem. This kind of extension is often called a Janguage embedding.

The following table summarizes the salient differences between strategy of implementing a
language “from scratch” in a language A and the strategy of embedding a little language into a
language B.

designing a little language “from scratch”

embedding a little language

variables, loops, etc. are designed explicitly
safety/type-soundness may not exist

lexer is implemented in A

parser is implemented in A

validity checker is implemented in A
interpreter is implemented in A

variables, loops, etc. are those of B
safety/type-soundness is that of B
the lexer is an extension of B’s

the parser is an extension of B’s
the validity checker is B’s

the interpreter is B’s

Succinctly put, the “implement from scratch” strategy uses technologies; an embedding shares, and
thus truly reuses, technology for the construction of a little language.

This paper illustrates that a language embedding can reuse more of the host’s technology than
just the evaluator. Specifically, we argue that if a programming environment for a host language is
properly constructed and if we use a well-designed embedding technology, the mere act of construct-
ing the embedding also creates a full-fledged programming environment for the little languages.

In support of our argument we construct an embedded little language, called S-XML, and derive
its environment from DrScheme, our Scheme programming environment [7]. S-XML permits pro-
grammers to create and manipulate XML-like data. More precisely, they can use a set of constructs
to specify XML trees in a natural manner, and they can define tree transformations on the data with
an easy-to-use pattern-matching construct. DrScheme provides a host of tools for Scheme: a syntax
analysis tool that includes a variable binding display and a variable renaming mechanism; a static
debugger; an algebraic stepper; a portable library system; and an evaluator that correlates run-time
exceptions with the program source. the S-XML programming environment inherits all of these.

The S-XML embedding consists of several language extensions. Some can be defined as func-
tions, some cannot. The implementation of the latter exploits DrScheme’s syntax definition mech-
anism, which, in turn, is based on Scheme’s macro technology. DrScheme’s syntax extensions are
completely transparent to DrScheme’s tools. At the same time, the elaboration of a syntactic exten-
sion into core Scheme preserves all necessary information to report the results of an analysis or of

<article> |Article |

<header>
<title>Not an Article</title>
<author> John Clements </author> Hﬂeade;l ITéXtI

</header>

<text>
This is not a newspaper article. chars
But if it was, this is where the |Tit|e| |Author|
article’s text would be.

</text>

</article> chars chars

Figure 1: Correspondence between concrete and abstract syntaxes

a program evaluation at the source level. By adding two small extensions that undo the elaboration
at certain strategic places, we thus ensure that DrScheme’s syntax checker checks the syntax and
context-sensitive properties of S-XML transformations; the static debugger turns into an XML va-
lidity checker; the stepper shows how the transformations rewrite XML trees at the level of XML
data constructors; and the interpreter prints XML results and reports errors in terms of S-XML trans-
formations. In short, the process of embedding the S-XML language into Scheme directly creates a
full-fledged S-XML environment. .

The following section introduces XML and S-XML; the third section discusses the S-XML
embedding in Scheme. The fourth and fifth section present DrScheme and the little language envi-
ronment created with the embedding. The underlying technology is explained in the sixth section.
The seventh section relates our work to the relevant areas. The last section summarizes our ideas
and suggest topics for future extensions.

2 A Running Example: S-XML

To Illustrate our ideas, we develop a little language — and an accompanying programming environ-
ment — for operating on XML documents.

2.1 XML

XML (for “eXtensible Markup Language”) is a proposed standard for a family of languages. It was
designed to provide a middle ground between the universally accepted but inconsistent and seman-
tically rigid HTML language and the extensible but overly complex SGML family of languages. To
a first approximation, an XML element may be either character data or a tag pair annotated with
an optional attribute association list and enclosing a list of zero or more XML elements [3]. In this
regard, HTML and XML are similar.

On a deeper level, XML consists of two related parts: a concrete syntax and an abstract syntax.
Figure 1 shows an example of the concrete syntax and a corresponding abstract syntax tree.

Specific languages within the XML domain are specified using “schemas”. A schema defines
the set of valid tags, their possible attributes, and constraints upon the XML elements appearing
between a pair of tags. A schema for the newspaper article language from figure 1 appears in figure

<schema>
<element name="header">
<sequence> <element-ref name="title"/>
<element-ref name="author"/>
</sequence>
</element>
<element name="body">
<mixed> <pcdata/> <mixed/>
</element>
<element name="article">
<sequence> <element-ref name="header"/>
<element-ref name="body"/>
</sequence>
</element>
</schema>

Figure 2: A simple schema for newspaper articles

2.1 This schema specifies, among other things, that the header field must contain a title and an
@author@. The ability to specify XML languages explicitly using schemas is what most clearly
separates XML and HTML.

XML documents are data; in order to use this data, programmers must write programs that
accept and manipulate it. Walsh [27], a member of the XML design team, states:

... [I]t ought to take about two weeks for a competent computer science graduate
student to build a program that can process XML documents.

The implication is that processing XML data is a tedious and time-consuming process, involving
the design and implementation of a project-specific package of I/O routines.

Below the surface syntax, XML expressions are purely trees. Each node is either character data
or a tagged node containing a set of attributes and a set of subtrees. A program that processes XML
data will be a tree-processing program. Given the complexity of the defined syntax, it makes sense
to abstract away from that concrete syntax into a purely tree-based paradigm.

Once the work of parsing concrete syntax is moved out of the programmer’s domain, processing
XML trees becomes a more manageable task. Many if not most XML programs will consist of a
small set of tree transformations, taking the data from one XML language into another. For instance,
a newspaper’s web site might be designed to transform an article stored in an XML-structured
database (as shown in figure 1) into a web page shown to a reader. An HTML document produced
by such a transformation is shown in figure 3.

2.2 S-XML

The simple and specialized nature of XML transformations makes them an ideal candidate for an
embedded language solution. The language should include special forms for creating and validat-

'The W3C has not yet settled on a schema standard. The schema shown here is written in a simple illustrative schema
language designed to be read easily. Also, the trivial schemas for author and title are omitted.

<html>
<head><title>Not an Article</title></head>
<body>
<center><hl>Not an Article</hl>by John Clements</center>
<spacer type='vertical" size="20">
<p>This is not a newspaper article. But if it was, this
is where the article’s text would be.</p>
</body>
</html>

Figure 3: The result of a simple XML transformation

ing XML elements, and a mechanism for expressing tree transformations easily. On the other hand,
a language for XML processing should not preclude the production of more complex programs.
Rather, it should allow programmers to work with the full power of the general-purpose host lan-
guage, if they so choose. .

We call our language S-XML.. It uses S-expressions to match the tree-based structure of XML
elements. It provides the xml and Imx forms for creating XML elements and embedding computa-
tion; the xml-match form to state pattern-based transformations on these elements; and a language
of schemas to express language restrictions. We explain these constructs below.

2.2.1 xml

The little language must provide language forms for constructing XML elements conveniently, be-
cause any program that transforms XML data needs to construct XML elements. In other words,
we must choose a concrete syntax for these elements in the embedded language.

To take a simple example, a HTML footer might contain a horizontal line and a page number.
A naive approach would be to directly embed XML’s concrete syntax into Scheme strings:

" <center>page number 3</center>"

The obvious shortcoming of the string representation is its lack of structure; every procedure that
operates on this data must parse the string all over again. This is wasteful and time-consuming. A
better way is to specify this data in a structured form. Our language should provide a straightforward
way to create such “parsed” structures, independent of the representation of these data. Ideally, the
program text that creates an XML element should closely resemble the XML text itself, less the end
tag. In the S-XML language, this datum is therefore represented with the following program text:

(xml (center "page number * (em 3)))

Within the form (xml ...), each nested subexpression is taken to describe an XML element. Just
as double-quotes and backslashes are used in many languages to denote literal data, xml is used to
denote XML literals. ‘

XML elements may also contain attributes. The xml form permits the addition of attributes to
elements. These attributes appear as an optional (parenthesized) list immediately following the tag
name. Thus, an HTML body tag with the bgcolor attribute might be written as:

(define (format-article xml-article)

(xml-match xml-article (title-string author-string body-text T) ; keywords
[(article (header (title title-string) (author author-string)) ; pattern
(text body-text ...))
(xml (html (head (title title-string)) ; result

(body (center (hl1 title-string) "by " author-string)
(spacer ((type "vertical") (size "20")))
body-text ...)))]
[(page) ; pattern
(error *format-page "badly formatted xm!-article ")])) ; Tesult

Figure 4: A simple transformer

(xml (body ((bgcolor "BLUE"))...))

222 Imx

With the xml construct, programmers can conveniently specify large XML constants. But pro-
grammers may also wish to abstract such tree constructions over certain parameters. For exaniple,
a programmer may wish to specify the footer of a page relative to a page number. To allow an
“escape” into the parent language, S-XML includes the Imx construct:

(Imx expression)

An Imx expression may only occur as a sub-expression of some xml expression. It evaluates
its subexpression; the result is spliced into the XML tree in place of the Imx-expression. Using a
combination of Imx and xml forms, a programmer can now easily define a function that produces a
page footer:

(define (make-footer page-number)
(xml (center "page number: " (em (Imx page-number)))))

2.2.3 xml-match

The programmer now has the tools needed to build elements of the desired XML language. Next,
he needs a mechanism to manipulate these elements in a simple way. The most convenient method
is to use pattern-matching; our S-XML language provides the xml-match form, to perform pattern-
matching and tree-processing on XML elements. .

To evaluate an xml-match expression, each pattern is matched against the input. Once a match
is found, the result expression is evaluated, with the bindings introduced by the pattern-match.

Figure 4 shows the definition of the HTML-producing transformer illustrated earlier. Note that
both input and output patterns are specified in the same way that xml elements are.

(schema
(element ((name "header"))
(sequence (element-ref ((name "title")))
(element-ref ((name "author")))))
(element ((name "body"))
(mixed (pcdata)))
(element ((name " article™))
(sequence (element-ref ((name "header")))
(element-ref ((name "body"))))))

Figure 5: A S-XML Schema for an Article Language

2.2.4 schema

One of the most important features of XML is the ability to define and restrict XML languages, us-
ing formal specifications. Several standards have been proposed for this; S-XML uses our version
of schemas. A schema describes the set of valid XML elements for a specific XML language. A
schema is also itself an XML element, and may therefore be described using the same S-XML con-
ventions. Figure 5 shows the S-XML representation of the schema shown in figure 2. A companson
with the XML specification of this schema reveals the similarity between the two.

3 Building a Little Language

On the one hand, much of the functionality of a little language may be established by building a
library of functions and constants. In fact, for some tasks a domain-specific 11brary serves as a
complete solution to the embedding problem.

On the other hand, there are language forms that cannot be implemented as ordinary functions.
Among these are shortcuts for creating structured data (e.g. xml and Imx), language forms that
introduce variable bindings (e.g. xml-match), and language forms that affect the flow of control in
non-standard ways (xml-match again). '

These new language forms may be added using macros. Macros are tree-rewriting rules that are
applied to syntax trees during compilation. They elaborate the language forms of the little language
into the forms of the host language. In our case, the host language is Scheme.

3.1 Scheme Macros

The notion of syntactic abstraction is not a new one. Nearly every general-purpose programming
language has some facility for declaring and invoking macros. However, the vast majority of these
are deeply flawed. Macro systems like C’s gained a well-deserved reputation as dangerous and
inelegant. Their ill-considered use often leads to problems for novices and experts alike. Embedding
a little language in C using these macros would be difficult at best.

Fortunately, languages like Scheme offer more controlled and useful macro mechanisms. These
systems operate on expressions, rather than tokens, and they have a well-defined semantics as tree

transformations. As a simple example, consider the let form of Scheme. The let form binds values
to variable names. In many languages, this type of operation is built into the language. In Scheme,
it need not be. Instead, Scheme may implement let with a macro that elaborates each use of the
form into the application of a procedure. Here is the rewriting rule for let:

(let ((<var> <exp>)...) <body> ...)) + ((lambda(<var>...) <body>...) <exp>...)

The ellipses are not a notational shorthand but are an integral part of the macro language described
in the Revised® Report on Scheme [14]. On the left-hand-side of the macro, they indicate that the
prior pattern will occur zero or more times, as in a BNF grammar. This input pattern is matched
against the input, and where ellipses occur, bindings of lists are created. The right-hand-side pattern
uses ellipses to generate sequences of output patterns drawn from these bindings. The components
of the matched patterns may be split from each other, as illustrated by the let macro shown here.

3.2 Building S- XML

S-XML is implemented as an embedding within Scheme. The embedding (comprising the forms
enumerated in section 2.2) is constructed as a combination of a small functional library and a set of
macros. '

The xml form is implemented as a single macro. This macro transforms uses of the xml form
into expressions that construct Scheme data. The form also permits the omission of empty attribute
fields; it is this kind of syntactic shorthand that gives the little language one of its true advantages
over the unmodified general-purpose language. The action of the xml macro is shown in this exam-
ple, where an xml form is translated into Scheme code that creates a structure:

(xml (center "Text: " (Imx (get-text)))) —> (make-center (list) (list " Text: » (get-text)))

Each use of the schema form elaborates into a structure declaration and a type declaration.? An
example of this macro’s translation is shown here:

(schema
(element ((name "elt")) —
(sequence
(element-ref ((name "other"))))))

(begin
_ (define-struct elt (attrs elements))
(define-type elt (cons other null)))

Note that adopting a richer schema language is simply a matter of modifying a single macro; no
other code needs to change.

The xml-match form is implemented using a macro in conjunction with a library function.
The macro delays the evaluation of the patterns and their matching expressions. It also provides
bindings for any pattern variables that occur in the expressions. The function accepts a value and
these pattern-expression pairs, and evaluates the first expression whose pattern matches the input
value.

2DrScheme uses a type inference system called MrSpidey, described in more detail in section 4.

A transformer that takes centered text to italicized text is elaborated like this:

(xml-match-fn (xml (center 3))

(xml-match (xml (center 3)) (list *text)
(text) - (list
((xml (center text)) (list ’(center text)
(xml (italic text)))) . (lambda (zext)
(xml (italic text))))))

The xml-match-fn procedure is a part of S-XML’s runtime library.

With the addition of these three forms, Scheme becomes S-XML, a little language ideal for con-
structing and manipulating XML-like data, along with the full gamut of Scheme values. Variables
and functions are inherited from Scheme. As a result, first-semester undergraduates can program
using XML in a matter of days, rather than the weeks of work that are supposedly required.

4 DrScheme

Building an S-XML evaluator using macros and functions is not enough. This is the lesson that we
as programmers have learned in the course of implementing many languages, both little and large.
In fact, for a “from scratch” little language implementation, the execution framework is a small
fraction of the total work required to make the language usable. To use a language productively,
programmers need a host of related tools: editors, checkers (syntax and semantic), debuggers, li-
braries, and the like. We demonstrate these ideas with the DrScheme programming environment [7].

DrScheme is a programming environment for the Scheme language. It is a graphical, cross-
platform environment for developing programs. It includes a syntax-sensitive editor, a read-eval-
print loop, a syntax checker, a stepper, and a static type checker. The challenge is to reuse these
tools in the design and execution of an embedded language.

Scheme programs are composed entirely of S-expressions, and DrScheme’s edltor takes ad-
vantage of this in many ways. It provides a set of S-expression-directed movement and editing
functions. It supports dynamic parenthesis-matching, as well as static highlighting of S-expressions
adjacent to the cursor. DrScheme automatically indents lines, and unmatched parentheses are high-
lighted in red.

Another of the tools DrScheme provides is a syntax-checker. This tool performs a number of
tasks:

1. itidentifies and highlights syntax errors;
2. it highlights unbound identifiers;
3. it draws arrows from bound identifiers to their binding occurrences; and

4. it permits alpha-renaming, whereby all occurrences of an identifier in a given declaration
scope may be renamed consistently.

The syntax checker is useful for beginners, as it helps them to understand the syntax of the
source language. The checker is also useful for experienced programmers, who generally make
more syntactic mistakes than they would like to admit.

DrScheme also features a symbolic algebraic stepper, which can display a program’s execution
as an algebraic calculation, according to a standard reduction semantics for Scheme. The step-
per shows each step of the execution as a rewriting step; the “before” and “after” expressions are
displayed, and the difference is highlighted. The stepper is useful both in debugging and in under-
standing the details of the language semantics.

DrScheme provides static type-checking through MrSpidey [8]. MrSpidey performs type infer-
ence by using set-based analysis [10, 2] to associate a set of values with each program location.
When MrSpidey cannot guarantee that the application of a primitive will not cause an error, it flags
the location of the primitive’s application. Furthermore, MrSpidey provides useful information to
the user in the form of graphical inference chains. If an inappropriate argument might reach a prim-
itive, MrSpidey visually depicts the execution path whereby this argument arrives at the erroneous
application.

MirSpidey also has an explicit assertion mechanism, of the form (: expression type). Using this -
form, the user may force MrSpidey to check whether an expression is guaranteed to evaluate to a
given type. So, for instance, the assertion (: (+ 3 5) str) fails, because the result of evaluating (+ 3
5) is a number rather than a string.

DrScheme supports plugins, called Teachpacks for historical reasons. Any DrScheme pro-
gram may be evaluated with one or more plugins enabled. These plugins are encapsulated using
DrScheme’s unit system [9], which guarantees that only the intended plugin’s functions are ex-
posed, and also that the plugin’s meaning will not be affected by the user’s code.

S Building a Little Language Environment

In order to deliver a useful programming environment to the programmer, DrScheme’s tools must
work seamlessly with the new forms of S-XML. In the following sections, we examine several of
DrScheme’s tools and how their behavior must change to accommodate the embedded language.

5.1 Editing

Since the little language consists entirely of tree-structured expressions, the editor’s features are
inherited immediately; editing programs in the little language is as convenient as editing Scheme.
The only modification required to the programming environment is the addition of the xm]-match
keyword to the list of specially indented keywords in DrScheme’s preference panel.

5.2 Check Syntax

The Check Syntax tool is designed to work transparently through macros. No modification whatso-
ever is required to extend the syntax checker for an embedded language.

The syntax checker is particularly useful for embedded languages, where the language’s syntax
is often described informally. For instance, even an experienced programmer might be surprised
when using an embedded language to discover that certain identifiers are unbound, or are bound to
locations other than expected.

For an example of this, see figure 6, an example using the S-XML language. In particular,
this example shows the definition of a simple web page, using the xml and Imx forms. The bind-

10

il E s Wk e
win t ez 'ﬂs.gl ‘G, twut sy | ﬂgsm]_nbnmwnlmvﬂll:umi

RO AT PORT S YR T

; Z.v'i EXTAIRIRYS SRS NP
B TR ITERY T DN SRR R o
TR ST VOATT S TN TR

Letiv luetlegmii bow et b stes i ; }" R
Tew Un ‘Ul ';l-| ""'"-"9" MFMIIIIEM.

Dom tamR L ad sevl e sniake sEh i R

PRI AL TR Y, AU n KRR 1h | 1 [
om Chim Citgthone -:l-.”ﬂ;n-l [T KSR Y b
Chsa= “1=a b2t L
thed_ TI= A, mini a4, ca-
C1mv lttkastdrRel ne THY o N b dnsws 3D

———

i X 1|ﬂ“""ii§,u'm||'-l--'m | eses [eeiny

Figure 6: Check Syntax works through macros

ing arrows show how make-home-link and home-link-text are bound, and the red highlighting® on
backgronud-color indicate that this identifier is unbound (in this case, because of a simple typo).
Finally, the ‘rename .. .to’ box shows how users can rename all occurrences of a specific binding in
an S-XML transformation.

5.3 The Stepper

When a programmer embeds a little language within Scheme, the stepper should be transparent with
respect to the macros and libraries introduced by the embedded language. In other words, it must
“step” in a manner that corresponds to the reductions of the embedded language, rather than the
host language.

S-XML embeds several forms within Scheme; each has a natural reduction sequence. The xml
form must simply be transparent; xml values are displayed as such, and computation within these
terms (using the Imx form) are properly embedded. The schema form is trivial, as it contains no
runtime computation. The xml-match form shows steps corresponding to the location of the proper
pattern, and those within the corresponding pattern.

Figure 7, shows a step in the evaluation of a simple HTML construction. The stepper highlights
the reducible subexpression in green, and the resulting subexpression in purple. The call to make-
page-footer is replaced by the body of the procedure, and the value of the argument is substituted in
the bound location in the body.

30n a grayscale printer, this will appear gray.

11

B . o[

| .d=f ne g 4 of<=sel I1

] 'def ne Inakr page Faoter ocge wnden!

Gl
Lzertenr
“ais is page romber !
Dtelic om (4 pege wbes porooifret)ln])
i
aal
Tocdy

Cr besu.a CaroaCt,
'Tiiz ivs 1 Loy
L Soune-puge—fus.en 5300

{1 izl

L Iy

(3¢ TR TH A1 TR

; Tair dtew g oued

1(1 l’l“‘;lm':‘)]ili:.’i:l |.u|| T B) A S PR |-;|:- 1 “inllxi‘:l:'J:l:

.‘}[-llhl

Figure 7: The stepper works through macros

5.4 Validity Checking

MrSpidey provides an assertion mechanism to enable programmers to check statically that certain
variables may only be bound to values of a given type. The natural extension of this assertion ability
in the S-XML language is to use the assertion operator for validity checking. In S-XML, a schema
expands into a MrSpidey type definition.

This type definition may then be used to implement S-XML validity checking, as shown in
figure 8. Rather than a body, this article has simply a string. This is illegal, by the schema that
appears above. Therefore, MrSpidey highlights the offending assertion in red. The path from the
string to its use in the xml form is indicated by a series of arrows.

5.5 Plugins

DrScheme’s plugin system also proves useful in the S-XML language embedding. For instance,
the “simple-cgi” plugin permits users to build and test cgi scripts. Using this plugin, programmers
can write programs which interact directly with a web browser, either by using a simple “question
& answer” interface, or by sending a complete HTML form. The S-XML language provides the
needed forms to easily construct these HTML forms.

In figure 9, the simple-cgi Teachpack is used to interact with the user directly. Note that in this

12

p— 5“%7':'.:!‘!:"!“"“["]?#?; mﬂ"m‘!&{?ﬂ“-ﬂ T

[ceta
ielement (laare "tlLle’)y (secaenze lzkroagils 1
velemens (hnare "authe'y) ysequeacs isielrgls) ""'L
velzmers (lnare "aendes'y)
{zaquerce té . 2revs pef tirame "] .e"))
1e oreqs pef tlrame ‘aataor'delds
1element (nars "acdy®))) -
{r xed 1ocdetad;; h
ialemens (lnare “artlcle®))
Cerquerce te.oreqs rel wirame ‘hecder')
ve.srent ref clrame ‘bocy 00400

1 Ceeflae Jogy Bexk glntcgged Bocy

{0 der ;nn;.Tn}‘r ‘hender (+111a "Thle 1o a Fl4la®!
] > - vauthor ' we Futkar™!)
Lirdbody text)!)

¢ ocle;

T+ +] ||

4 Welcons <X [Irhpige- . ~eré on 1UTsC°
§ CHZCKG:

| ta~r ngs Tgps omzect er Jiu., ariic.s’ failsd ir fi.e 'epicsy syaip.e.s
1 TOTr - CICCoC: I Jof .3 scasiale chocss iz 7,360

{ MAILZD CoIroicis: | vof . 122al Lycs asesriicne?

Figure 8: MrSpidey catches validity errors

case, we may also use the stepper to trace the execution of the script.

6 How It All Works

The extension of DrScheme’s programming tools to S-XML is largely automatic. The key tech-
nologies required are source correlation and rectifiers.

In DrScheme, source elaboration of macros is performed by McMicMac [19]. McMicMac
transforms a source file (a character stream) into an abstract syntax tree. Each term in the tree has a
reference to some position of the source file. These references are preserved by McMicMac’s sub-
sequent macro elaboration, so that each term in the fully elaborated program has a direct reference
to a source location. This elaborated program goes to the evaluator for execution.

As a consequence, the static tools (including the syntax-checker and MrSpidey) operate trans-
parently with respect to macros. These tools draw conclusions about the elaborated program, and
display the results using source-correlation indirection. Hence, they require no modification what-
soever to accommodate the embedded language.

The interpreter and the stepper draw heavily on source correlation as well. However, since these
tools are not static, they must also display the runtime values and expressions of the embedded
language. DrScheme employs rectifiers to perform these back-translations. There are two types of

13

e R T N T e g .Oc.%

File “Edlt Windows Help

" ‘Home] << Previous| Next >3]

ny
(prompt-read "Enter the first number to add: ")
(prompt-read "Enter the second number to add: ")))
(show (show
(+ (+
(prompt-read - 31415928
"Enter the first number to add: ") (prompt-read i
{prompt-read "Enter the second number to add: "))) ¥
"Enter the second number to add: "))) :

“File’ Edit View Go Communicator -

"Back "'* Forward - Reload “'Home ' Search’ Nefscape . .. Print Securiy -:Shop . - Stop -
i . Bookmarks & Location: [http: //127.0.0.1:8010/cqi-bin/;id378+k2-455381294
‘(Entuﬂwfirst‘numbuto adxtl 31415924 Lo s
| Avewer] .
= B %D aP) N2

Figure 9: Using Plugins to Test CGI Scripts

rectifiers: value rectifiers, and expression rectifiers.

A little language that enriches the value set of the host language must include a way to display its
values to the user. Value rectifiers perform this translation. That is, if the little language introduces
new language forms for the creation of data, the programming tools should display the resulting
values using the same forms that the programmer employed to create the data. In S-XML, the
following interaction* illustrates this:

> (xml (center "page number " (em (Imx (+ 1 2)))))
(xml (center "page number " (em 3)))

Rather than displaying the value in an internal format, the printer uses the concrete syntax asso-
ciated with the little language. Since value rectifiers deal exclusively with runtime values, they
have no need of source correlation. A value rectifier provides a mapping from values to displayed
information.

The second category of rectifier comprises the expression rectifiers. These arise in the operation
of the stepper, which must reconstruct each step within the host language’s evaluator as a step within
the embedded language. In some cases, the elaborated forms may have been partially evaluated.
For instance, the evaluation of the xml-match form may proceed through many reductions. Each

*Value rectifiers are currently implemented for the stepper, but not for the read-eval-print loop.

14

of these must be displayed as an xml-match term. Expression rectifiers make heavy use of source
correlation information, as they must reconstruct source terms based upon the history of macro
elaboration imposed upon the source.

For the S-XML language, we have constructed these rectifiers explicitly. Future work includes
generating them automatically from the macros and libraries that make up the language embedding,

7 Related Work

Our work relates to four distinct areas of research. They are, in descending order of relevance: the
construction of programming environments; the embedding of little languages in host languages;
the problem of debugging optimized code; and transformation languages for XML. EMACS is
by far the most prominent effort to produce an extensible and customizable programming envi-
ronment [23]. With a few hundred lines of EMACS code, a programmer can create an EMACS
mode that assists with some syntactic problems (indentation, syntax coloring) or with a read-eval-
print loop (source correlation of run-time environment). But, the EMACS extensions have to be
produced manually; they are not connected or derived from the little language embedding.

Most other work on the construction of programming environments focuses on the creation of
tools from language specifications. For example, Teitelbaum, Reps, and others have created the
Cornell Synthesizer Generator [21], which permits programmers to use attribute grammar technol-
ogy to define syntax-directed editors. The ASF+SDF research effort [16] has similat, but more
comprehensive goals. A programmer who specifies an algebraic-denotational semantics for a little
language can create several interesting tools in this framework. In contrast, our work concentrates
on the pragmatic problem of creating or prototyping language tools rapidly. In particular, we accom-
modate an existing implementation without any modifications. Given that most implementations are
not derived formally, our work has greater potential to be applied to other environments.

Second, our most interesting technical problem concerns the relationship between the execution
of elaborated code and the source text. At first glance, this suggests a commonality between our
work and the work on debugging optimized object code. More specifically, code optimizations are
problematic for debuggers and our algebraic stepper. Both need to cope with code transformations
when they interrupt the execution of a program. Hennessy [11], Adl-Tabatabai and Gross [1],
and Cooper, Kennedy and Torczon [4] describe solutions to the problem of debugging optimized
code. We believe, however, that the two communities apply different techniques for the backwards
translations due to the radically different levels of languages. We are currently studying whether
the techniques carry over from the debugging to the stepping problem and whether the adaptation
of these techniques has any advantages.

Third, although our paper is not about techniques for language embeddings, it heavily draws
on ideas in that area. The history of language embeddings starts with LISP [24] and Mcllroy, who
introduced the notion of macro transformations in 1962 [20]. Over the past decade, the Scheme pro-
gramming language introduced three important innovations in macro systems. First, Kohlbecker, et
al. [17] showed how to render macro expanders hygienic, that is, make them compatible with the lex-
ical structure of a host language. Second, Kohlbecker and Wand introduced the macros-by-example
specification method {18]. Last, but not least, Dybvig, Hieb and Bruggeman [5] implemented the
first source-correlating macro system; our work is based on the more powerful McMicMac program
elaborator[19].

15

More recently, other language communities have rediscovered the idea of embedding languages
for reuse. Fairbairn (6], Hudak [12], Wallace and Runciman [26] use Haskell’s infix operators and
higher-order functions to embed little languages,’ including a little language for XML; Kamin and
Harrison [13] are working along similar lines, using SML. More recently, Oleg Kiselyov [15] has
also worked to embed XML within Scheme. All of these efforts focus on embedding techniques;
none has paid attention to the programming environments of little languages.

Fourth, our paper, like that of Wallace and Runciman [26] and Thiemann[25] address the prob-
lem of transforming XML elements. Our solution solves a problem from which both of the other
approaches suffer. Specifically, using S- XML programmers can specify XML trees in a generic
manner yet they still get the benefits of XML validity checking.

8 Conclusion

We must learn to re-use all levels of language technology in the construction of little languages.
The potential benefits are enormous. Shivers [22] reports that his version of AWK, which is more
powerful than the original, is one tenth of the original’s size. A small implementation is also easy
to manage and to change. Hence, an embedded language is easier to extend than a stand-alone
language. An improvement to the host language generally improves the embedded language(s)
immediately. Finally, if one language plays host to several embedded languages, programs in the
latter can easily exchange structured forms of data, e.g., lists, trees, arrays. In contrast, stand-
alone implementations must employ the operating system’s tool box, which often means that “little
language programmers” must write parsers and unparsers.

With this paper we wish to contribute to the argument for language embeddings, and we hope
to direct the attention of researchers to the programming environments of little languages. More
centrally, we illustrate how an embedding also creates a powerful programming environment for
little languages. The construction hinges on three properties of the host language and environment.
First, the host language must have a mechanism for defining new language constructs. Otherwise
the user of a little language must immediately know everything about the host language. Second, the
mechanism must translate instances of the new constructs in such a manner that the tools can report
results in terms of the surface syntax. Finally, the tools must not contain hard-wired assumptions
about the source language.

For our example, we had to add two small functions to two environment tools: one for translating
Scheme values back into S-XML syntax, and another one for reconstructing an S-XML construct
that has a multi-step algebraic reduction semantics. Based on our experience, we conjecture that
this effort can be automated and we plan to tackle the problem in the future.

References

[1] Adl-Tabatabai, A.-R. and T. Gross. Source-level debugging of scalar optimized code. In
Programming Language Design and Implementation, May 1996.

These efforts use higher-order functions to express little: language programs because the chosen host languages do
not provide facilities for defining new language constructs that declare variables. A detailed discussion of this distinction
is irrelevant to the topic of our paper.

16

[2] Aiken, A. Introduction to set constraint-based program analysis. Science of Computer Pro-
gramming, 1999.

[3] Bray, T., J. Paoli and C. Sperberg-McQueen. Extensible markup language XML. Technical
report, World Wide Web Consortium, Feburary 1998. Version 1.0.

[4] Cooper, K. D., K. Kennedy, L. Torczon, A. Weingarten and M. Wolcott. Editing and compiling
whole programs. In Software Engineering Symposium on Practical Software Development
Environments, December 1986.

[5] Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme. Lisp and Sym-
bolic Computation, 5(4):295-326, December 1993.

[6] Fairbairn, J. Making form follow function: An exercise in functional programming style.

Software—Practice and Experience, 17(6):379-386, June 1987.

[7] Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen. DrScheme: A ped-
agogic programming environment for Scheme. In International Symposium on Programming
Languages: Implementations, Logics, and Programs, number 1292 in Lecture Notes in Com-
puter Science, pages 369-388, 1997.

[8] Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Catching bugs in the
web of program invariants. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 23-32, May 1996.

[9] Flatt, M. and M. Felleisen. Cool modules for HOT languages. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, 1998.

[10] Heintze, N. Set Based Program Analysis. PhD thesis, Carnegie Mellon University, October
1992.

[11] Hennessy, J. Symbolic debugging of optimized code. Transactions on Programming Lan-
guages and Systems, 4(3):323-344, 1982.

[12] Hudak, P. Modular domain specific languages and tools. In International Conference on
Software Reuse, 1998. '

[13] Kamin, S. and D. Hyatt. A special-purpbse language for picture-drawing. In USENIX Confer-
ence on Domain-Specific Languages, 1997.

[14] Kelsey, R., W. Clinger and J. Rees. Revised® report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9), October 1998.

[15] Kiselyov, O. Scheme and XML. Unpublished Manuscript. Available on the web at:
http://pobox.com/ oleg/ftp/Scheme/xml.html.

[16] Klint, P. A meta-environment for generating programming environments. ACM Transactions
on Software Engineering and Methodology, 2(2):176-201, 1993.

[17] Kohlbecker, E. E., D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro expansion.
In ACM Symposium on Lisp and Functional Programming, pages 151161, 1986.

17

[18] Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic transformations from
their specifications. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 77-84, 1987.

[19] Krishnamurthi, S., M. Felleisen and B. F. Duba. From macros to reusable generative program-
ming. In International Symposium on Generative and Component-Based Software Engineer-
ing, September 1999. To appear in Springer-Verlag Lecture Notes in Computer Science.

[20] Mcllroy, M. D. Macro instruction extensions of compiler languages. Communications of the
ACM, 3(4):214-220, 1960.

[21] Reps, T. W. and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag, 1989.

[22] Shivers, O. A universal scripting framework or, Lambda: the ultimate “little language”. In
Jaffar, J. and R. H. C. Yap, editors, Concurrency and Parallelism: Programming, Networking
and Security, pages 254-265. Springer-Verlag, 1996. LNCS 1179.

[23] Stallman, R. EMACS: the extensible, customizable, self-documenting display editor. In Sym-
posium on Text Manipulation, pages 147-156, 1981.

[24] Steele, G. L., Jr. and R. P. Gabriel. The evolution of Lisp. In Bergin, T. J., Jr. and R. G. Gibson,
Jr., editors, History of Programming Languages—II, pages 233-308, 1996.

[25] Thiemann, P. Modeling HTML in Haskell. In Practical Applications of Declarative Lan-
guages, January 2000.

[26] Wallace, M. and C. Runciman. Haskell and XML: Generic document processing combina-
tors vs. type-based translation. In ACM SIGPLAN International Conference on Functional
Programming, September 1999.

[27] Walsh, N. A technical introduction to XML. World Wide Web Journal, Winter 1997.

18

XML-Based Integration of Interface Definition
Language Extensions

Bernd J. Krdmer
Department of Electrical and Information Engineering
FernUniversitit
58084 Hagen, Germany
bernd.kraemer@jfernuni-hagen.de

H.-Armo Jacobsen
Department of Electrical and Computer Engineering and
Department of Computer Science
University of Toronto
Toronto, Ontario, Canada
Jacobsen@eecg.toronto.edu

1 Introduction

Standard middleware platforms offer interface definition languages (IDLs) to sup-
port component reuse and interoperability in a heterogeneous computing context.
IDLs typically allow the specification of component and interface names, the sig-
nature of operations a component can perform, and possible exceptions that might
be raised during operation execution. This limitation to syntactic aspects ensures
that IDLs are applicable to a wide range of application domains, can be mapped to
a variety of implementation languages, and are easy to learn.

When components are used in mission critical applications, however, more
documented information is needed about essential properties of a. component to
determine how it will behave in the intended context. In [3] Beugnard et al. dis-
tinguished four levels of abstraction to organize the specification of a component’s
properties:

e a syntactic level, which is covered, e.g., by OMG IDL, ODL, DCE IDL, or
M-IDL,

e a behavioral level addressing functional properties of operations, e.g., in
terms of pre- and post-conditions,

e a synchronization level taking into account that a component might be oper-
ating in a concurrent environment, and

19

e aquality of service (QoS) level at which timing requirements, throughput, or
precision attributes can be formally documented.

In the literature, we can find a range of proposals for extending IDLs with behav-
ioral specifications [31], synchronization constraints [16], real-time requirements
[25, 29], or quality of service specifications [32]. In essence, such extensions break
through the abstractions provided by the middleware platform at hand and allow
users to specify aspects of an application normally hidden in code and behind trans-
parency mechanisms of the actual middleware.

A crucial issue of all these proposals is, however, the question how they are
implemented. A straight-forward attitude is to wait for the proper extension of the
proposer’s preferred middleware standard and its implementation by a vendor. But
standardization endeavors take time and sometimes never materialize. Conversely,
applications that would exploit such IDL extensions prior to standardization are
not portable as long as they depend on proprietary platform extensions.

To escape this trap, we proposed in [12] to leave IDL untouched and rather
include synchronization constraints as comments in IDL interface definitions. The
IDL file is then processed as usual with a standard IDL compiler, while the an-
notated IDL specification is compiled separately with a dedicated tool into code
implementing proper sanity checks. In [13] this idea was carried further to the
presentation of a collection of design patterns proposing ways to integrate code
fragments implementing IDL extensions transparently with the skeleton code gen-
erated by standard IDL compilers. The price for this approach was the need for a
disciplined use of comments in the IDL specification to avoid that the tool process-
ing the synchronization constraints gets confused by informal comments.

In this paper we further explore this idea by using the eXtensible Markup Lan-
guage XML [4] as a meta grammar to specify the syntax of the IDL and the given
specification extension uniformly. A first design of this idea was published in [14].
The structured XML document provides an adequate basis for a semantic process-
ing of extended component specifications. We sketch the design of a tool that re-
lies on emerging XML technology such as XLS (eXtensible Stylesheet Language)
Transformations (XSLT) to process the extended interface definition language. Al-
though originally designed for presentation purposes, XLST can also be used to tra-
verse an XML document and transform it into programming language code, in our
case code that implements functional specifications, synchronization constraints,
or QoS requirements. This concept builds on the old idea of syntax-directed trans-
lation schemes [1].

The remainder of this paper is organized as follows. Section 2 surveys some
interface definition language extensions described in the literature. Section 3 devel-
ops the framework for specifying IDL extensions and demonstrates how to express
IDL with XML and codify IDL extensions with XML. Section 4 sketches the de-
sign of a language processing tool based on syntax-directed translation schemes.
In the appendix we include the full XML DTD for OMG IDL.

20

2 Survey on IDL Extensions

IDLs have been designed to provide interfaces to components, while keeping
the interface independent of the choice of the actual component implementation
language. The design of an IDL is also constrained by the set of intended target
languages. For OMG IDL, for instance, this set includes languages as diverse as
C, C++, Java, Cobol, Ada, and Lisp.

2.1 IDL Extensions

Much research work has focused on annotating IDL with behavioral extensions,
such as pre- and post-conditions, invariants, abstract operation semantics, data in-
tegrity conditions, and Homn clauses [24, 23, 6).

Synchronization level specifications state legal partial orderings of operation
invocations at a component’s interface. They reflect causal dependencies between
services provided by a component and give rise to static and dynamic checking of
a client-server interaction. Path-expressions [27], IPDL (Interaction Protocol Defi-
nition Language) [5], and regular types for active objects [19] were proposed to en-
force the sequencing of operation executions, while Petri nets [8] and other mecha-
nisms for expressing richer synchronization constraints are presented in [7, 26, 16].
They address additional properties such as mutual exclusion, synchronization dis-
tance, and fairness for protecting shared resources in concurrent environments.

Specification notations and implementation concepts for handling real-time
constraints (such priorities, deadlines, or execution time) and QoS attributes (such
as allowed response delay, required bandwidth, resource needs, or precision of re-
sponse) have been proposed in [25,2, 29, 32]. '

Other IDL extensions include object co-location constraints and coordination
constraints [10], data parallelism [15], security annotations [9], and component
definition language extensions [18, 20].

2.2 Processing Extended IDL

In CORBA, DCE, DCOM, and many RPC systems, an IDL specification is pro-
cessed by a stub compiler that generates stub code for client and server side use.
This stub code enables communication between components across address spaces
and machine boundaries according to the mechanisms of the underlying middle-
ware standard. The stub code manages the packaging and marshaling of service
invocations on the client side and provides corresponding reverse operations (un-
marshaling, unpackaging) on the server side.

For the implementation of IDL extensions various solutions have been pre-
sented in the literature. Many of the above listed language extensions directly
modify the IDL syntax by including additional keywords (€.g., [24, 30]). This ap-
proach is tied to the particular platform used and the resulting application code is

21

not portable.

In previous work we have proposed to extend IDL by embedding synchroniza-
tion annotations as comments [16]. This has the advantage that extension unaware
IDL compilers are still able to process the specification, whereas extension aware
compilers may fully exploit the annotations. The drawback of this approach that an
undisciplined provision of comments may confuse the extension aware compiler.

A third alternative relies on programming conventions. Interface attributes and
operation arguments are used to encode specifications of real-time constraints as
proposed in [25, 29]. The programmer has to obey naming conventions that are en-
forced by a specialized language processor, which is also responsible for providing
the proper stub code. This solution is constrained by the same portability argument
as the first approach.

In [13] we have developed the extension adapter design pattern that allows ap-
plication developers to integrate the code implementing his IDL extensions with
the server side skeleton code generated from the standard stub compiler. This
approach is applicable to all IDL extensions that operate on a component’s state
across multiple operation invocations.

In contrast to this category of extensions, some of the QoS notations discussed
in the literature require support from lower middleware layers. As this support
is not available in standard platforms, a portable approach for these extensions is
feasible by now.

3 XML Based Framework for Extended IDL

XML has become a popular language for describing structured documents. Al-
though often stated, XML languages have no predefined application-level process-
ing semantics and XML processors have no inherent understanding of document
semantics. XML just captures a document’s syntactic structure. But a growing
number of XML related languages and tools for processing XML specifications
are becoming available. Examples include: XSL, the style sheet language; XSLT,
the XML transformation language, which uses XSL, and XPath, a language for
addressing parts of an XML document. .

The integration of XML technology with middleware platforms is an emerg-
ing paradigm [28]. Compilers for translating IDL specifications into XML, for
instance, exist [22]. Most major database management systems support XML. It
is therefore straightforward to create a repository for the extended interface defini-
tion language. Most middleware products implement their own repositories, which
cannot be extended, to also manage the proposed IDL extensions.

In the sequel we use OMG IDL and the features of the CORBA middleware
platform to illustrate our ideas. However, our approach extends to other middle-
ware platforms, such as DCOM (Distributed Component Model) with the M-IDL
(Microsoft Interface Definition Language), as well.

22

3.1 A DTD for OMG IDL

We start from a document type definition (DTD) for IDL, which is compliant to the
OMG CORBA standard [21] (see the Appendix for a full reference DTD of OMG
IDL). Then we show how to model and integrate IDL extensions in terms of DTDs.
Figures 1 and 2 illustrate the tree structure spanned by the IDL constructs intexr-
face and one of its constituents, namely operation. (We avoid presenting the
textual form of an XML specification as its readability is limited.)

Figure 1: Structure of the DTD for the IDL interface construct

A component interface in IDL has a name, a possibly empty list of names of
interfaces, zero or more attributes, operations and type signatures,
exceptions, and few other elements. The details of an operation signature
are depicted in Fig. 2.

An IDL operation consists of a return type (typeref), an operation name, an
optional qualifier oneway that, when available, indicates a non-blocking operation
invocation, a parameter list whose elements are qualified as in, out or inout
parameters, a clause for raising an exception (RAISES), and a context clause.
Fig. 3 shows an example of an IDL interface including two operations and two
attributes. The corresponding XML code is given in Fig. 4.

Assuming an XML-capable editor, the specification of a component interface
in XML is not much different from the specification of the interface in IDL. The
XML specification can be easily processed to yield the tag-free interface specifica-

23

[o NAME . 5@ ONEWAY%
sting) |string

¢ TYPEREF -

* INE

OPERATION |

*0UT

¢ INOUT

¢ RAISES

+ CONTEXT

Figure 2: Structure of the DTD for an IDL operation

Interface BankAccount {
void deposit (in Euro amount);
void withdraw (in Euro amount);
Euro balance ();
Euro overdraftLimit (); }

Figure 3: IDL specification of the interface of a simple bank account

24

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<!DOCTYPE IDL SYSTEM "idl.dtd"s>

<IDL>
<INTERFACE NAME = "BankAccount"s>

<OPERATION NAME = "deposit"s
<TYPEREF NAME = "void"/>
<IN NAME = "amount">

<TYPEREF NAME = "Euro"/>

</IN>

</OPERATION>

<OPERATION NAME = "withdraw"s>
<TYPEREF NAME = "void"/>
<IN NAME = "amount"s>

<TYPEREF NAME = "Euro"/>

</IN>

</OPERATION>

<ATTRIBUTE NAME = "balance">
<TYPEREF NAME = "Euro"/>

</ATTRIBUTE>

<ATTRIBUTE NAME = "overdraftLimit">
<TYPEREF NAME = "Euro"/>

</ATTRIBUTE>

</INTERFACE>
</IDL>

Figure 4: IDL specification of the interface BankAccount

25

tion satisfying the OMG standard.

3.2 Adding a DTD for Synchronization constraints

We specify IDL extensions in the same way as we did with standard IDL but take
into account that both DTDs can be merged and the new DTD becomes a new el-
ement of the bare IDL DTD (i.e., the merged DTD replaces the “old” IDL DTD).
Figure 5 presents the tree representation of an incomplete DTD for specifying syn-
chronization constraints as proposed first in [16]. (Element other is just an ab-
breviation for other constraint operators, which are of no interest here.)

+ MUTEX © name1 4 Lc name2
] string’ . sing

[0 ALTERNATlNGE" [- mmo‘lq [o name2
R ding' siing

P SYN_plﬁTANCEci [o namet [o name2 [o max q

* SYNQ_OONSTRAINTq @

Figure 5: Structure of the DTD for synchronization constraints

Merging this DTD and the IDL DTD introduced in the previous subsection
yields a new DTD in which sync_constraint is a new alternative in the list of
elements of an interface. The annotated IDL specification in Fig. 6 illustrates
both the inclusion of synchronization constraints and behavior specifications in-
spired by [3]. The DTD defining the syntax of the behavioral specification, which
uses relational operators and boolean and arithmetic expressions on operation and
attribute names, is not shown here.

Interface BankAccount {
void deposit (in Euro amount);
// {pre: amount > 0}
// {post: balance() = balance()@pre + amount}
void withdraw (in Euro amount);
/...
// {invariant: balance() >= overdraftLimit ()
// {syncc: mutex (deposit, withdraw)

Figure 6: BankAccount interface enhanced with behavioral specifications and syn-
chronization constraints

The mutex constraint serves to ensure that invocations of deposit andwith-
draw operations may not overlap. In [12] we have shown how such specifications

26

of synchronization constraints can be mapped into code. This code maintains two
state variables for each operation affected by such constraints. The state variables
keep track of two types of events: the start of an operation execution and its ter-
mination. The code observes guards in such a way that an operation execution is
deferred or rejected unless the guard is true. A guard simply relates the numbers
of occurrences of these events to implement the semantics of the mutex and other
synchronization operators.

4 Design of an eXtended IDL Processor

The design of a processor for eXtended IDL was inspired by previous work on a
language definition environment that supported complex structure driven compu-
tations and object transformations [17]. This work relied on the old idea of syntax-
directed translation schemes that were developed in the framework of parsing and
compilation theory to specify mappings from one language to another. Following

the structure of a language, syntax-directed translation schemes are “generation

techniques ... interspersed with parsing operations” [1].

Syntax-directed translation schemes (SDTS) associate the nonterminals and
production rules of two context free grammars G; and G2. An SDTS defines a
mapping which, given a parse tree built according to the rules of grammar G, de-
termines a tree according to the rules of grammar G and hence a text written in the
second language. In the simplest case an implementation of a translation scheme is
a pure tree manipulation. More complex implementations have interspersed pars-
ing and unparsing operations that interpret the output terminal symbols of G, as
calls to output actions.

The processing environment sketched in Fig. 7 is based on XPath, XSLT, and
XSL. A preliminary design has been published in [14]. XPath operates on an XML
document represented internally as a tree. XSL and XSLT serve to specify trans-
lation rules and output actions. XSLT provides template rules with patterns. The
pattern serves to identify the XML nodes to which the template applies.

In Fig. 7 we denote the extended interface definition language by XIDL and
bare IDL simply by IDL, whose XML format is defined through a DTD, denoted
by IDL.dtd as discussed in Section 3.1. The IDL extension is captured in a sep-
arate DTD eXtension.dtd, which substitutes or extends selected elements in
IDL.dtd. The merge of both DTDs constitutes the DTD of the extended inter-
face definition language denoted by XIDL.dtd. The latter corresponds to Gj,
while the syntax Ga of the target programming language is implicitly defined in
the XLST definition of translation rules and output actions. The XIDL processing
tool transforms the input language XIDL to a suitable output format, such as Java
stubs and skeletons, via XSLT transformation rules.

The support code implementing the IDL extensions is integrated with the stub
and skeleton code according to the extension adapter design pattern defined in
[13]. Stubs and skeletons must either be based on the dynamic invocation and

27

IDL.dtd

l EXtension.dtd

XIDL.dtd

XSL | XSL/XML-
XML -> <code> processor
< Xinterface.xml > stubs skeletons support code

Figure 7: XML DTD processing stages to synthesize XIDL processor.

the dynamic skeleton interface or they must exploit the Java portability layer as
the stub or skeleton ORB interfaces, respectively, are not specified in the CORBA
standard (cf., e.g., [11] for implications and limitations).

5 Conclusion

In this paper we have introduced a framework to specify IDL and IDL extensions
in a combined specification language based on XML document type definitions.
We have demonstrated how this framework can be used to model different IDL
extensions. Moreover, we have sketched a design of a processor for eXtensible
IDL (XIDL).

We are currently working on an implementation of this framework based on
standard XSLT processing tools. As outlined above, our implementation will only
be able to exploit the less performant dynamic interfaces of current ORBs. An-
other alternative is the Java portability interface, which is only available for ORBs
conformant to the standard Java language mapping. This limited range of choices
is due to limitations in the openness and extensibility of the CORBA standard [11].

We intend to base our approach on the XML Schema standard by replacing
the IDL DTD by an XML schema definition of IDL. This will allow us to include
more rigorous type information in interfaces and thus improve type checking of
service interfaces expressed in XML.

Appendix: Full DTD for OMG IDL

The following constitutes a complete XML DTD for OMG IDL, compliant to
CORBA 2.2 [21]. This DTD does not include the recently added language identi-

!See http://www.w3.org/XML/Schema

28

fiers, such as object-by-value argument passing, which could easily be added.

<?xml version="1.0" encoding="iso-8859-1"?>

| I -

:i-- A DTD for OMG IDL, compliant to CORBA 2.2 —-:

<l-- -——>

<!ELEMENT IDL (COMMENT | DECLARATION | MODULE | INTERFACE)* >
<!ELEMENT COMMENT (#PCDATA) >

<!ELEMENT DECLARATION (CONSTRUCTED_TYPE | CONSTANT | EXCEPTION |

FWD_REFRENCE)* >
<!ELEMENT CONSTRUCTED_TYPE (STRUCTURED_TYPE | TYPEDEFED_TYPE)* >
<!ELEMENT STRUCTURED_TYPE (STRUCT | UNION | ENUM) >

<|ELEMENT TYPEDEFED TYPE (ARRAY | BND_SEQUENCE | UNBND_SEQUENCE | STRING |
TYPEDEF) >

<!ELEMENT FWD_REFRENCE EMPTY >
<|ATTLIST FWD_REFRENCE
name CDATA #REQUIRED >

< !ELEMENT EXCEPTION (MEMBER*) >
<!ATTLIST EXCEPTION
name CDATA #REQUIRED >
< !ELEMENT MEMBER EMPTY >
<!ATTLIST MEMBER
name CDATA #REQUIRED
type CDATA #REQUIRED >

< !|ELEMENT CONSTANT EMPTY >

< |ATTLIST CONSTANT
name CDATA #REQUIRED
type CDATA #REQUIRED
value CDATA #REQUIRED >

<!ELEMENT STRUCT (MEMBER*) >
< !ATTLIST STRUCT
name CDATA #REQUIRED >

<!ELEMENT UNION (MEMBER*) >

<!ATTLIST UNION .
name CDATA #REQUIRED
sw_type CDATA #REQUIRED >

<!ELEMENT ENUM (ELEMENT+) >
<!ATTLIST ENUM

name CDATA #REQUIRED >
<!ELEMENT ELEMENT EMPTY > .

‘< !ATTLIST ELEMENT

value CDATA #REQUIRED >

< !|ELEMENT ARRAY (DIMENSION+) >
<!ATTLIST ARRAY
name CDATA #REQUIRED
: type CDATA #REQUIRED >
<]ELEMENT DIMENSION EMPTY >
<!ATTLIST ARRAY
value CDATA #REQUIRED >

29

<!ELEMENT BND_SEQUENCE EMPTY >
<!ATTLIST BND_SEQUENCE
name CDATA #REQUIRED
type CDATA #REQUIRED
bound CDATA #REQUIRED >

< !ELEMENT UNBND_SEQUENCE EMPTY >
<!ATTLIST UNBND_SEQUENCE
name CDATA #REQUIRED
type CDATA H#REQUIRED >

<1ELEMENT STRING EMPTY>

<!ATTLIST STRING
name CDATA #REQUIRED
lenght CDATA #REQUIRED »>

<!ELEMENT TYPEDEF EMPTY >

< |ATTLIST TYPEDEF
typename CDATA #REQUIRED
name CDATA #REQUIRED >

<!ELEMENT MODULE (DECLARATION | INTERFACE)* >
<!ATTLIST MODULE
name CDATA #REQUIRED >

<!ELEMENT INTERFACE (INHERITANCE*, (DECLARATION | ATTRIBUTE | SIGNATURE)*) >
<!ATTLIST INTERFACE
name CDATA #REQUIRED >

< !ELEMENT INHERITANCE EMPTY »>
<!ATTLIST INHERITANCE
ancestor CDATA #REQUIRED >

<!ELEMENT ATTRIBUTE EMPTY >

<!ATTLIST ATTRIBUTE
mode (readonly | readwrite) ‘"readwrite"
name CDATA #REQUIRED
type CDATA #REQUIRED >

<|ELEMENT SIGNATURE { ARGUMENT*, (RAISES?), (CONTEXT?)) >
<!ATTLIST SIGNATURE
mode (oneway | twoway) "twoway"

name CDATA #REQUIRED
rtype CDATA #REQUIRED >

<|ELEMENT ARGUMENT EMPTY >
<!ATTLIST ARGUMENT

mode (in | out | inout) #REQUIRED
name CDATA #REQUIRED
type CDATA #REQUIRED >

<!ELEMENT RAISES (EXCEPTION_TYPE+) >
<!ELEMENT EXCEPTION_TYPE EMPTY >
<!ATTLIST EXCEPTION_TYPE
exception CDATA #REQUIRED >

<!ELEMENT CONTEXT (CONTEXT ELEMENT+) >
<!ELEMENT CONTEXT ELEMENT EMPTY >
<!ATTLIST CONTEXT_ ELEMENT
name CDATA #REQUIRED >

30

References

[1] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation, and Compiling. Prentice Hall,
1972

[2] C.Becker and K. Geihs. Generic QoS specifications for CORBA. In Kommunikation in Verteil-
ten Systemen (KIVS’99), pages 184—195. Springer-Verlag, 1999,

[3] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components Contract
Aware. IEEE Computer, 32(7):38—45, July 1999,

[4] T.Bray, J. Paoli, and C. M. Sperberg-McQueen (editors). Extensible markup language (XML)
1.0. Technical report, W3C, Feb. 1998.

[S] B. Bukowski. Interaction protocols: Typing of object interactions in frameworks. Technical
report TR B 96-10, Freie Universitit, Berlin, 1996.

{6] C. Della, T. Cicalese, and S. Rotenstreich. Behavioral specification of distributed software
component interfaces. IEEE Computer, 32(7):46-53, July 1999.

[7] S.Frelund. Coordinating Distributed Objects. MIT Press, 1996.

{8] H. Gruender and K. Geihs. On the object-oriented modelling of distributed workflow applica-
tions. In 3. Internationale Tagung Wirtschafisinformatik (W), Berlin, Germany, 1997.

[9] D. Hagimont, J. Mossire, X. Rousset de Pina, and F. Saunier. Hidden software capabilities.
In 16th International Conference on Distributed Computing Systems (ICDCS), pages 282289,
May 1996.

[10] O. Holder, L. Ben-Schaul, and H. Gazir. Dynamic layout of distributed applications in Fargo.
Technical report, Technion — Israel Institute of Technology, Aug 1998.

[11] H-A. Jacobsen. Programming language interoperability in distributed computing environ-
ments. In Lea Kutvonen, Harmunt Knig, and Martti Tienari, editors, Second IFIP Working
Conference on Distributed Applications and Interoperable Systems II (DAIS), Helsinki, Fin-
land, June 1999. Kluwer Academic Publisher.

[12] H.-A. Jacobsen and B. J. Kréimer. A design pattern based approach to generating synchro-
nization adaptors from annotated IDL. In IEEE Automated Software Engineering Conference
(ASE’98), pages 63-72. IEEE Computer Society, September 1998.

[13] H.-A. Jacobsen and B. Krimer. Design patterns for synchronization adaptors of CORBA ob-
jects. Special issue of L’'OBJET: Journal on "Object Orientation and Formal Methods, Hermes
Publisher, 2000.

[14] H.-A. Jacobsen and B. J. Krimer. Modeling Interface Definition Language Extensions. In
Technology of Object-Oriented Languages and Systems (TOOLS-Pacific 2000), pages 242-252.
IEEE Computer Society, November 2000.

[15] K. Keahey and D. Gannon. PARDIS: A parallel approach to CORBA. In International Sym-
posium on High Performance Distributed Computing, pages 31-39. IEEE Computer Society,
Aug 1997.

[16] Bernd J. Kriimer. Synchronization Constraints in Object Interfaces, volume Information Sys-
tems Interoperability, chapter 5. Research Studies Press, 1998.

[17] Bernd J. Krimer and H.-W. Schmidt. Developing Integrated Environments with ASDL, IEEE
Software, January 1989, pp. 98-106, IEEE Computer Society.

[18] Jeff Magee and Jeff Kramer. Composing Distributed Objects in CORBA, volume Information
Systems Interoperability, chapter 7. Research Studies Press, 1998.

[19] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis, editors,
Object Oriented Software Composition, chapter 4, pages 99-121. Prentice Hall, 1995.

[20] OMG. CORBA components RFP. Technical report, Object Management Group, 1998. URL:
hitp://www.omg.org/techprocess/meetings/schedule/CORBA_Component. ModeL RFP.html,

31

[21] OMG. The Common Object Request Broker Architecture and Specification. Revision 2.0.
Technical report, Object Management Group, 1998.

[22] A. Patzke. Der Weg von IDL zu XML: IDL2XML-Compiler. Technical report, University
of Technology Hamburg-Harburg Technische Informatik 5 (FSP 4-10) Schwarzenbergstr. 95,
July 1998. (in German) URL: http://kant.ti5.tu-harburg.de/Publication/1998/reports/id12xml/-
default.htm.

[23] A.Puder. A declarative extension of IDL-based type definitions within open distributed envi-
ronments. In International Conference on Object Oriented Information Systems, pages 423
436, 1998.

[24] S. Sankar and R. Hayes. An Interface Definition Language for Specifying and Testing Soft-
ware. ACM Sigplan Notices, 29(8), Aug 1994.

[25] D. C. Schmidt, D. Levine, and S. Mungee. The design of the Tao real-time object request
broker. Computer Communications, 21(4), 1998.

[26] von de las Heras Quiros and Olmo Millan. Inheritance Anomaly in CORBA Multithreaded
Environments. Theory and Practice of Object Systems, 3(1):45-54; 1997.

[27} D. Watkins. Using interface definition languages to support path expressions and programming
by contract. In Technology of Object-Oriented Languages and Systems (TOOLS), 1998.

[28] Andrew Watson. CORBA and XML; conflict or cooperation? Technical report, Object Man-
agement Group, 1999. URL: http://www.omg.org/library/watsonwp.html.

[29] V. F. Wolfe, J. Black, B. Thuraisingham, and P. Krupp. Real-time method invocations in dis-
tributed environments. Technical report, University of Rhode Island, Jan 1996.

[30] X/Open SUN Microsystems. ADL Language Reference Manual (1.0 edition), 1996. URL:
http://www.sunlabs.com/research/adl.

[31] V. Zadorozhny. Towards an integrated CORBA/RAISE semantic interoperable environment.
Technical Report 117, UNU/IIST, P.O.Box 3058, Macau, July 1997.

{32] J. A. Zinkey, D. E. Bakken, and R. E. Schantz. Architectural support for quality of service for
CORBA objects. Theory and Practice of Object Systems, 3(1):56-73, 1997.

32

Subclassing errors, OOP, and practically checkable rules to prevent them

Oleg Kiselyov
Software Engineering, Naval Postgraduate School, Monterey, CA 93943
oleg@pobox.com, oleg@acm.org

Abstract

This paper considers an example of Object-Oriented Programming (OOP) leading to subtle errors that break separation of
interface and implementations. A comprehensive principle that guards against such errors is undecidable. The paper introduces
a set of mechanically verifiable rules that prevent these insidious problems. Although the rules seem restrictive, they are
powerful and expressive, as we show on several familiar examples. The rules contradict both the spirit and the letter of the
OOP. The present examples as well as available theoretical and experimental results pose a question if OOP is conducive to
software development at all.

Keywords: object-oriented programming, subtyping, subclassing, implementation inheritance, C++, functional program-
ming

1 Introduction

Decoupling of abstraction from implementation is one of the holy grails of good design. Object-oriented programming is
claimed to be conducive to such a separation, and therefore to more reliable code. In the end, productivity and quality are the
only true merits a programming methodology is to be judged upon. This article will discuss a simple example that questions if
Object-Oriented Programming (OOP) indeed helps separate interface from implementation. First we demonstrate how easily
subclassing errors arise and how difficult (in general, undecidable) it is to prevent them. We later introduce a set of expressive
rules that preclude the subclassing errors, and can be mechanically verified. Incidentally the rules run contrary to the OOP
precepts.

We take a rather familiar example that illustrates the difference between subclassing and subtyping: the example of Sets
and Bags. The example is isomorphic to that of circles vs. ellipses or squares vs. rectangles. Section 2 introduces the example
and carries it one step further, to a rather unsettling result: a "transparent" change in an implementation suddenly breaks client
code that was written according to public interfaces. We set out to follow good software engineering practices; this makes the
resulting failure even more ominous. Section 3 brings up a subclassing vs. subtyping dichotomy and the Liskov principle of
behavioral substitutability. We show that Sets and Bags viewed as mutable or immutable objects are not subtypes of each other.
The indiscriminate use of implementation inheritance indeed prevents separation of interface and implementation. In Section
4 we take a contrary point of view, of bags and sets as values without a hidden state and whose responses to external messages
cannot be overridden. We prove that a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as
a bag, a set maintains every invariant of a bag — and it is still a set. The section also shows that if we abide by practically
checkable rules we obtain a guarantee that the subtle subclassing errors cannot occur in principle. We will also show that the
rules do not diminish the power of a language.

Inheritance and encapsulation, two staples of OOP, make checking of the Liskov Substitution Principle (LSP) for derived
objects generally undecidable. On the other hand, the proposed rules, which can be checked at compile time, make derived
values satisfy LSP.

The article aims to give a more-or-less "real" example, which we can run and see the result for ourselves. By necessity
the example had to be implemented in some language. The present article uses C++. It appears however that similar code and
similar conclusions can be carried on in many other object-oriented languages (e.g., Java, Python, etc).

33

2 Coupling of interface and implementation

Suppose I was given a task to implement a Bag — an unordered collection of possibly duplicate items (integers in this example).
I chose the following interface:

typedef int const * CollIterator; // Primitive but will do
class CBag |
public:

int size(void) const;

int count (const int elem) const;

virtual void put(const int elem);

virtual bool del(const int elem);

CollIterator begin(void) const;

CollIterator end(void) const;

CBag{void) ;
virtual CBag * clone(void) const;
private: ... // implementation details elided

i

The class CBag defines usual methods to determine the number of all elements in a bag, to count the number of occurrences
of a specific element, to put a new element into a bag and to remove one. The latter function returns false if the element to
delete did not exist. We also define the standard enumerator interface [11] — methods begin () and end () —and a method to
make a copy of the bag. Other operations of the CBag package are implemented without the knowledge of CBag’s internals:
the print-on operator < <, the union (merge) operator +=, and operators to compare CBags and to determine their structural
equivalence. These functions use only the public interface of the CBag class:

void operator += (CBag& to, const CBag& from);

bool operator <= (const CBag& a, const CBag& b);
inline bool operator >= (const CBag& a, const CBagé& b)
{ return b <= a; }

inline bool operator == (const CBag& a, const CBag& b)
{ return a <= b && a >= b; }

The complete code of the whole example is available in [7]. It has to be stressed that the package was designed to minimize
the number of functions that need to know details of CBag’s implementation. Following good practice, I wrote validation code
(file vCBag. cc [7]) that tests all the functions and methods of the CBag package and verifies common invariants.

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each
element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my CBag
package and realized that it can be used with few additional changes. The definition of a Set as a Bag, with some constraints,
made the decision to reuse the CBag code even easier.

class CSet : public CBag {

public:
bool memberof (const int elem) const
{ return count(elem) > 0; }

// Overriding of CBag::put
void put (const int elem)
{ if (imemberof (elem)) CBag::put (elem); }

CSet * clone(void) const

{ cSet * new_set = new CSet();
*new_set += *this; return new_set; }

CSet (void) {}

}i

The definition of a CSet makes it possible to mix CSets and CBags, asin set += bag; orbag += set; These operations
are well-defined, keeping in mind that a set is a bag that happens to have the count of all members exactly one. For example,
set += bag; adds all elements from a bag to a set, unless they are already present. On the other hand, bag += set; is
no different than mefging a bag with any other bag. You too wrote a validation suite to test all CSet methods (newly defined

as well as inherited from a bag) and to verify common expected properties, e.g., a+=a = a.

34

In my package, I have defined and implemented a function that, given three bags a, b, and c, decides if a+b is a subbag of .

(o N
bool foo(const CBag& a, const CBag& b, const CBag& c)
{ // Clone a to avoid clobbering it
CBag & ab = *(a.clone()); .
ab += b; // ab is now the union of a and b
bool result = ab <= ¢;
delete &ab;

return result;

}

It was verified in the test suite. You have tried this function on sets, and found it satisfactory.
Later on, I revisited my code and found my implementation of foo () inefficient. Memory for the ab object is unneces-
sarily allocated on heap. I rewrote the function as

bool foo(const CBag& a, const CBag& b, const CBag& c)

CBag ab;
ab += a; // Clone a to avoid clobbering it
ab += b; // ab is now the union of a and b

bool result = ab <= ¢;
return result;

}

It has exactly the same interface as the original £oo () . The code hardly changed. The behavior of the new implementation is
also the same — as far as I and the package CBag are concerned. Remember, I have no idea that you are re-using my package.
I re-ran the validation test suite with the new foo () : everything tested fine.

However, when you run your code with the new implementation of £oo (), you notice that something has changed! The
complete source code [7] contains tests that make this point obvious: Commands make vCBagl and make vCBag2 run
validation tests with the first and the second implementations of £oo (). Both tests complete successfully, with the identical
results. Commands make vCSetl and make vCSet2 test the CSet package. The tests — other than those of £oo () —all
succeed. Function foo () however yields markedly different results. It is debatable which implementation of £oo () gives
truer results for CSets. In any case, changing internal algorithms of a pure function £oo () while keeping the same interfaces
is not supposed to break your code. What happened?

What makes this problem more unsettling is that both you and I tried to do everything by the book. We wrote a safe,
typechecked code. We eschewed casts. g++(2.95.2) compiler with flags -W and -Wall issued not a single warning. Normally
these flags cause g++ to become very annoying. You did not try to override methods of CBag to deliberately break the CBag
package. You attempted to preserve CBag’s invariants (weakening a few as needed). Real-life classes usually have far more
obscure algebraic properties. -We both wrote validation tests for our implementations of a CBag and a CSet, and they passed.
And yet, despite all my efforts to separate interface and implementation, I failed. Should a programming language or the
methodology take at least a part of the blame? [10, 4, 1] '

3 Subtyping vs. Subclassing

The breach of separation between CBag’s implementation and interface is caused by CSet design’s violating the Liskov Substi-
tution Principle (LSP) [9]. CSet has been declared a subclass of CBag. Therefore, C++ compiler’s typechecker permits passing
a CSet object or a CSet reference to a function that expects a CBag object or reference. However, it is well known [3] that a
CSet is not a subtype of a CBag. The next few paragraphs give a simple proof of this fact, for the sake of reference.

The previous section considered bags and sets from the OOP perspective — as objects that encapsulate state and behavior.
Behavior means an object can accept a message, send a reply and possibly change its state. From this point of view, bags
and sets are not subtypes of each other. Indeed, let us define a Bag as an object that accepts two messages: (send a-
Bag ‘put x) puts an element x into the Bag, and (send a-Bag ’‘count x) gives the occurrence count for x in
the Bag (without changing a-Bag’s state). Likewise, a Set is defined as an object that accepts two messages: (send a-
Set ‘put x) puts an element x into a-Set unless it was already there, (send a-Set ‘count x) gives the count of
occurrences of x in a-Set (which is always either 0 or 1). Throughout this section we use a different, concise notation to
emphasize the general nature of the argument.

35

Let us consider a function
(define (fnb bag) (send bag ’‘put 5) (send bag ‘put 5) (send bag ‘count 5))

The behavior of this function, its contract, can be summed as follows: given a Bag, the function adds two elements into it and
returns (+ 2 (send orig-bag ‘count 5)). Technically you can passto £nb a Set object as well. Just as a Bag, a Set
object accepts messages ‘ put and ’ count. However applying £nb to a Set object will break the function’s post-condition
stated above. Therefore, passing a set object where a bag was expected changes the behavior of a program. According to the
LSP, a Set is not substitutable for a Bag —a Set cannot be a subtype of a Bag.

Let us consider another function

(define (fns set) (send set ’‘put 5) (send set ‘count 5))

The behavior of this function is: given a Set, the function adds an element into it and returns 1. If you pass to this function a
bag (which — just as a set — replies to messages ’ put and ‘ count), the function £ns may return a number greater than 1.
This will break £ns’s contract, which promised always to return 1.

One may claim that "A Set is not a Bag, but an ImmutableSet is an ImmutableBag."” This is not correct either. An im-
mutability per se does not confer subtyping to "derived" classes of data, as a variation of the previous argument shows [8]. C++
objects are record-based. Subclassing is a way of extending records, with possibly altering some slots in the parent record.
Those slots must be designated as modifiable by a keyword virtual. In this context, prohibiting mutation and overriding
makes subclassing imply subtyping. This is the reasoning behind BRules introduced below. However merely declaring the
state of an object immutable is not enough to guarantee that derivation leads to subtyping: An object can override parent’s
behavior without altering the parent. This is easy to do when an object is implemented as a functional closure, when a handler
for an incoming message is located with the help of some kind of reflexive facilities, or in prototype-based OO systems [8].
Incidently, if we do permit a derived object to alter its base object, we implicitly allow behavior overriding. For example, an
object A can react to a message M by forwarding the message to an object B stored in A’s slot. If an object C derived from A
alters that slot it hence overrides A’s behavior with respect to M.

The OOP point of view thus leads to a conclusion that neither a Bag nor a Set are subtypes of the other. The interface or an
implementation of a Bag and a Set appear to invite subclassing of a Set from a Bag, or vice versa. Doing so however will violate
the LSP — and we have to brace for strikingly subtle errors. The previous section intentionally broke the LSP to demonstrate
how insidious the errors are and how difficult it may be to find them. Sets and Bags are very simple types, far simpler than the
ones that typically appear in a production code. Since LSP when considered from an OOP point of view is undecidable, we
cannot count on a compiler for help in pointing out an error. As Section 2 showed, we cannot rely on validation tests either.
We have to see the problem [4, 10, 1].

4 Mechanically preventing subclassing errors

Bags and sets — as objects — indeed are not subtypes. Subclassing them violates LSP, which leads to insidious errors. Bags
and sets however do not have to be viewed as objects. We can take them as pure values, without any state or intrinsic behavior
— just like the numbers are. In Section 2, CBag and CSet objects encapsulated a hidden state — a collection of integers. The
objects had an ability to react to messages, e.g., put and del, by altering their state. In this section we re-do the example of
Section 2 using a different approach. Bags and sets no longer have a state that is distinct from their identity and that can be
altered. Equally important we do not allow any changes to the behavior of bags and sets with respect to applicable operations,
by overriding or otherwise. In other words, every post-condition of a bag or a set constructor holds throughout the lifespan of
the constructed values. This approach makes the subclassing problems and breach of encapsulation disappear. It turns out that
a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as a bag, a set maintains every invariant of
a bag —and it is still a set.

The LSP says, “If for each object o1 of type S there is another object 02 of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when o1 is substituted for 02, then S is a subtype of T.” If type T denotes a set of
values that carry their own behavior, and if values of type S can override some of T values behavior, the LSP is undecidable.
Indeed, a mechanical application of LSP must at least be able to verify that all methods overridden in S terminate whenever
the corresponding methods in T terminate. This is generally impossible. On the other hand, if T denotes a set of (structured)
data values, and S is a subset of these values — e.g., restricted by range, parity, etc. — the LSP is trivially satisfied.

This section also shows that if one abides by mechanically verifiable rules he obtains a guarantee that the subtle subclassing
errors cannot occur in principle. The rules do not reduce the power of a language.

36

4.1 BRules

Suppose I was given a task to implement a Bag — an unordered collection of possibly duplicate items (integers in this example).
This time my boss laid out the rules, which we will refer to as BRules:

o no virtual methods or virtual inheritance
¢ no visible members or methods in any public data structure (that is, in any class declared in an . h file)
e no mutations to public data structures

— astrict form: no assignments or mutations whatsoever
— a less strict form: no function may alter, directly or indirectly, any data it receives as arguments

The rules break the major tenets of OOP: for example, values no longer have a state that is separate from their identity. Prohibi-
tions on virtual methods and on modifications of public objects are severe. It appears that not much of C-++ is left. Surprisingly
I still can implement my assignment without losing expressiveness — and perhaps even gaining some. The exercise will also
illustrate that C++ does indeed have a pure functional subset [12], and that you can program in C++ without assignments.

4.2 Interface and implementation of a FBag

class FBag {

public:
FBag(void) ;
FBag(const FBag& another); // Copy-constructor
~FBag (void) ;

private:
class Cell; // Opaque type
const Cell * const head;
FBag{const Cell * const cell); // Private constructor
// Declaration of three friends elided

}:

Indeed, there are no virtual functions, no methods or public members. We also declare functions that take a FBag as (one
of the) arguments and return the count of all elements or a specific element in the bag, print the bag, fold [5] over the bag,
compare two bags for structural equivalence, verify bag’s invariants, merge two bags, add or delete an element. The latter three
functions do not modify their arguments; they return a new FBag as their result. It must be stressed that the functions that
operate on a FBag are not FBag’s methods; in particular, they are not a part of the class FBag, they are not inherited and they
cannot be overridden. The implementation is also written in a functional style. FBag’s clements are held in a linked list of
cells, which are allocated from a pre-defined pool. The pool implements a mark-and-sweep garbage collection, in C++.

Forgoing assignments does not reduce expressiveness as the following snippet from the FBag code shows; the snippet
implements the union of two FBags:

struct union_f {

FBag operator() (const int elem, const FBag seed) const {
return put (seed,elem);

}
}i

FBag operator + (const FBag& bagl, const FBag& bag2)

return fold(bagl,union_£(),bag2);

}

Following good practice, I wrote a validation code (file vFBag . cc [7]) that tests all the functions of the FBag package and
verifies common invariants.

4.3 Implementation of a FSet. FSet is a subtype of a FBag

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each

element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my FBag

package and realized that it can be used with few additional changes. The definition of a Set as a Bag (with some constraints)
. made the decision to reuse the FBag code even easier. '

37

class FSet : public FBag {

public:

FSet (void) {}

FSet (const FBag& bag) : FBag(remove_duplicates(bag)) {}

}i

bool memberof (const FSet& set, const int elem)
{ return count (set,elem) > 0; }

Surprisingly, this is the whole implementation of a FSet. A set is fully a bag. Because FSet constructors eventually call FBag
constructors and do no alter the latter’s result, every post-condition of a FSet constructor implies a post-condition of a FBag
constructor. Since FBag and FSet values are immutable, the post-conditions that hold at their birth remain true through their
lifespan. Because all FSet values are created by an FBag constructor, all FBag operations automaticalty apply to an FSet value.
This concludes the proof that an FSet is a subtype of a FBag.

. The FBag. cc package [7] has a function verify (const FBagé) that checks to make sure its argument is indeed a
bag. The function tests FBag’s invariants, for example:

const FBag bagnew = put (put(bag,S),5);

assert (count (bagnew,5) == 2 + count(bag,5) &&
size(bagnew) == 2 + size(bag));
assert (count (del (bagnew,5),5) == 1 + count(bag,5));

Your validation code passes a non-empty set to this function to verify the set is indeed a bag. You can run the validation code
vFSet. cc [7] to see for yourself that the test passes. On the other hand, FSets do behave like Sets:

const FSet all2 = put(put(put(FSet(),1),1),2);
assert (count(all2,l) == 1);

const FSet donce = FSet () + all2;
const FSet dtwice = donce + all2;
assert (dtwice == all2);

where a112 is a non-empty set. The validation code vFSet . cc you wrote contains many more tests like the above. The code
shows that a FSet is able to pass all of FBag’s tests as well as its own. The implementation of FSets makes it possible to take a
union of a set and a bag; the result is always a bag, which can be made a set if desired. There are corresponding test cases as
well.

To clarify how an FSet may be an FBag at the same time, let us consider one example in more detail:

// An illustration that an FSet is an FBag
int cntb{const FBag v) {
FBag bl = put(v, '5); FBag b2 = put(bl, S5);
FBag b3 = del (b2, 5);
return count (b3, 5); }
const int cbl = cntb(FBag()); // cbl has the value of 1
const int cb2 = cntb(FSet()); // cb2 has the value of 1

// An illustration that an FSet does act as a set-
int cnts(const FSet v) {
FSet 81 = put(v, 5); FSet 82 = put(sl, 5);
FSet 83 = del(s2, 5);
return count (83, 5); }
const int cs = cnts(FSet()); // cs has the value of 0

This example is one of the test cases in vFSet . cc [7]. You can run it and check the results for yourself. Yet it is puzzling:
how come cs has the value different from that of cb1 if there is no custom del () function for FSets? The statement FSet
g2 = put(sl, 5); isthe mostilluminating. On the right-hand side is an expression: putting an element 5 to a FBag/FSet
that already has this element in it. The result of that expression is a FBag {5,5}, with two instances of element 5. The statement
then constructs a FSet s2 from that bag. A FSet constructor is invoked. The constructor takes the bag {5,5}, removes the
duplicate element 5 from it, and "blesses" the resulting FBag to be a FSet as well. Thus s2 will be a FBag and a FSet, with
one instance of element 5. In fact, s1 and s2 are identical. A FSet constructor guarantees that a FBag it constructs contains
no duplicates. As objects are immutable, this invariant holds forever.

38

4.4 Discussion

Surprising as it may be, assertions "a Set is a Bag with no duplicates" and "a Set always acts as a Bag" do not contradict each
other, as the following two examples illustrate:

Let {value ...} be an unordered collection of val-
ues: a Bag. Let us consider the following values:

vA : 42, vB : {42}, vC : {43}, vD : {4243}, vE :
{424342}

vA is not a collection; vB, vC, vD, and vE are bags.
vB, vC, and vD are also Sets: unordered collections
without duplicates. vE is not a Set. Every Set is a Bag
but not every Bag is a Set.

Let uf-integer denote a natural number whose prime fac-
tors are unique. Let us consider the following values:
vA: %, vB : 42, vC : 43, vD : 1806, vE : 75852

vA is not an integer; vB, vC, vD, and vE are integers.
vB, vC, and vD are also uf-integers. vE is not a uf-
integer as it is a product 2 % 2 % 3 x 3 % 7 % 7 * 43 with
factors 2, 3, and 7 occurring several times. Every uf-
integer is an integer but not every integer is a uf-integer.

We introduce operations merge (infix +) and subtract
(infix -). Both operations take two Bags and return a
Bag. Either of the operands, or both, may also be a Set.
The result, a Bag, may or may not be a Set. For example,

vB + vC = vD Both of the operands and the result are
also Sets

vB +vD = vE The argument Bags are also Sets, but
the resulting Bag is not a Set

vE +vE = {424342424342} None of the Bags
here are Sets

vD — vC = vB The argument Bags are also Sets, so is
the result.

vE — vC => {4242} One of the arguments is a Set, the
resulting Bag is not a Set.

vE — vE = {} The argument Bags are not Sets, but
the resulting Bag is. :

We introduce operations multiply (infix *) and reduce
(infix %): a%b = a/gcd(a, b). Both operations take two
integers and return an integer. Either of the operands,
or both, may also be a uf-integer. The result, an integer,
may or may not be a uf-integer. For example,

vB xvC = vD Both of the operands and the result are
also uf-integers

vB *vD = vE The argument integers are also uf-
integers, but the resulting integer is not a uf-
integer

vE xvE = 5753525904 None of the integers here are
uf-integers

vD%vC = vB The argument integers are also uf-
integers, so is the result

vE%vC = 1764 One of the arguments is a uf-integer,
the resulting integer is not a uf-integer

vE%vE => 1 The argument integers are not uf-
integers, but the resulting integer is.

39

Bags are closed under operation merge but subsets of
Bags — Sets — are not not closed under merge. On
the other hand, both Bags and Sets are closed under
subtract.

We may wish for a merge-like operation that, being ap-
plied to Sets, always yields a Set. We can introduce a
new operation: merge — ¢ f — not — there. We can de-
fine it specifically for Sets. Alternatively, the operation
can be defined on Bags; it would apply to Sets by the
virtue of inclusion polymorphism as every Set is a Bag.
Sets are closed with respect to merge—i f —not—there.
On the other hand, to achieve closure of Sets under
merge we can project — coerce — the result of merging of
two Sets back into Sets, a subset of Bags. The FBag/FSet
package took this approach. If we merge two FSets
and want to get an FSet in result we have to spetifi-
cally say so, by applying a projection (coercion) oper-
ator: FSet::FSet (const FBagé& bag). That oper-
ator creates a new FBag without duplicates. This fact
makes the latter a FSet, Thus F'Set(vB + vD) = vD,
an FSet.

Integers are closed under operation multiply but sub-
sets of integers — uf-integers — are not closed under
multiply. On the other hand, both integers and uf-
integers are closed under reduce.

We may wish for a multiply-like operation that, being
applied to uf-integers, always yields a uf-integer. We can
introduce a new operation: lcm, the least common mul-
tiple. This operation is well-defined on integers; it would
apply to uf-integers by the virtue of inclusion polymor-
phism as every uf-integer is an integer. uf-integers are
closed with respect to the lcm operation.

On the other hand, to achieve closure of uf-integers un-
der multiply we can project — coerce — the product of
two uf-integers back into uf-integers, a subset of inte-
gers. If we multiply two uf-integers and want to get
a uf-integer in result we have to specifically say so, by
applying a projection (coercion) operator: remove —
duplicate — factors. That operator creates.a new inte-
ger without duplicate factors. This fact makes the result-
ing integer a uf-integer. Thus u f —integer(vB*vD) =
vD, a uf-integer

It has to be stressed that the two columns of the above table are not merely similar: they are isomorphic. Indeed, the right
column is derived from the left column by the following substitution of words that preserves meaning: Bag ¢ integer, Set
+ uf-integer, merge <> multiply, subtract > reduce. The right column sounds more "natural" — so should the left column as
integers and uf-integers are representations for resp. FBags and FSets.

From an extensional point of view [2], a type denotes a set of values. By definition of a FSet, it is a particular kind of FBag.
Therefore, a set of all FSets is a subset of all FBags: FSet is a subtype of FBag. A FBag or a FSet do not have any "embedded"
behavior — just as integers do not have an embedded behavior. Behavior of numbers is defined by operations, mapping from
numbers to numbers. Any function that claims to accept every member of a set of values identified by a type T will also accept
any value in a subset of T. Frequently a value can participate in several sets of operations: a value can have several types at
the same time. For example, a collection { 42 } is both a Bag and a Set. This fact should not be surprising. In C++, a value
typically denoted by a numeral 0 can be considered to have a character type, an integer type, a float type, a complex number
type, or a pointer type, for any declared or yet to be declared pointer type. This lack of behavior is what puts FBag and FSet
apart from CBag and CSet discussed in the previous article. FSet is indeed a subtype of FBag, while CSet is not a subtype of
a CBag as CSet has a different behavior. Incidentally LSP is trivially satisfied for values that do not carry their own behavior.
FBags and FSets are close to so-called predicate classes. Since instances of FSets are immutable, the predicate needs to be
checked only at a value construction time.

4.5 Polymorphic programming with BRules

The FSet/FBag example above showed BRules in the context of subtypes formed by a restriction on a base type. As it turns
out, BRules work equally well with existential (abstract) types. To illustrate this point, the source code accompanying this
article [7] contains three implementations of a collection of polymorphic values. The collection is populated by Rectangles and
Ellipses, which are instances of concrete classes implementing a common abstract base class Shape. A Shape is an existential
type that knows how to draw, move and resize itself. A file Shapes-oop.cc gives the conventional, OOP-like implementation,
with virtual functions and such. A file Shapes-no-oop.cc is another implementation, also in C++. The latter follows BRules,
has no assignments or virtual functions. Any particular Shape value is created by a Shape constructor and is not altered after
that. Shapes-no-oop.cc achieves polymorphic programming with the full separation of interface and implementation: If an
implementation of a concrete Shape is changed, the code that constructs and uses Shapes does not even have to be recompiled!
The file defines two concrete instances of the Shape: a Square and a Rectangle. The absence of mutations and virtual functions
guarantees that any post-condition of a Square or a Rectangle constructor implies the post-condition of a Shape. Both particular

40

shapes can be passed to a function set_dim(const Shape& shape, const float width, const float
height) ; Depending on the new dimensions, a square can become a rectangle or a rectangle square. You can compile
Shapes-no-oop.cc and run it to see that fact for yourself.

It is instructive to compare Shapes-no-oop.cc with Shapes-h.hs, which implements the same problem in a purely functional,
strongly-typed language Haskell. All three code files in the Shapes directory solve the same problem the same way. Two C++
code files - Shapes-oop.cc and Shapes-no-oop.cc — look rather different. On the other hand, the purely functional Shapes-no-
oop.cc and the Haskell code Shapes-h.hs are uncanny similar — in some places, frighteningly similar. This exercise shows that
BRules do not constrain the power of a language even when abstract data types are involved.

5 Conclusions

It is known, albeit not so well, that following the OOP letter and practice may lead to insidious errors [10, 1]. Section 2 of
this article showed how subtle the errors can be even in simple cases. In theory, there are rules — LSP — that could prevent the
errors. Alas, the rules are in general undecidable and not practically reinforceable.

In contrast, BRules introduced in this article can be statically checked at compile time. The rules outlaw certain syntactic
constructions (for example, assignments in some contexts, and non-private methods) and keywords (e.g., virtual). Itis
quite straightforward to write a lint-like application that scans source code files and reports if they conform to the rules. When
BRules are in effect, subtle subclassing errors like the ones shown in Section 2 become impossible. To be more precise,
with BRules, subclassing implies subtyping. Subclassing by definition is a way of creating (derived) values by extending,
restricting, or otherwise specializing other, parent values. A derived value constructor must invoke a parent value constructor
to produce the parent value. The former constructor often has a chance to alter the parent constructor’s result before it is cast
or incorporated into the derived value. If this chance is taken away, the post-condition of a derived value constructor implies
the post-condition of the parent value. Disallowing any further mutations guarantees the behavioral substitutability of derived
values for parent values at all times.

As the examples in this article showed, following BRules does not diminish the power of the language. We can still benefit
from polymorphism, we can still develop practically relevant code. Yet BRules blur the distinction between the identity and the
state, a characteristic of objects. BRules are at odds with the practice if not the very mentality of OOP. This begs the question:
Is OOP indeed conducive to software development?

One can argue that OOP — as every powerful technique — requires extreme care: knives are sharp. Likewise, goto is
expressive, and assembler- or microcode-level programming are very efficient. All of them can lead to bugs that are very
difficult, statically impossible, to find. On the other hand, if you program, for example, in Scheme, you never have to deal with
an "invalid opcode" exception. That error becomes simply impossible. Furthermore, “while opinions concerning the benefits
of OOSD [Object-Oriented Software Development] abound in OO literature, there is little empirical proof of its superiority”

[6].

Acknowledgments

I am grateful to Valdis Berzins for valuable discussions and suggestions on improving the presentation. This work has been
supported in part by the National Research Council Research Associateship Program, Naval Postgraduate School, and the
Army Research Office under contracts 38690-MA and 40473-MA-SP.

References
[1] Cardelli, L. Bad Engineering Properties of Object-Oriented Languages. ACM Comp. Surveys 28(4es), 1996, article 150.

[2] Cardelli, L., Wegner, P. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comp. Surveys, 17(4):
December 1985, pp. 471-522.

[3] Cook, W.R., Hill, W.L., Canning, P.S. Inheritance Is Not Subtyping. In: Carl A. Gunter and John C. Mitchell. Theoretical
Aspects of Object- Oriented Programming. MIT Press. ISBN 0-262-07155-X.

[4] Hatton, L. Does OO sync with how we think? IEEE Software 15(3) , May-June 1998, pp. 46 -54.

41

[5] Hutton, G. A tutorial on the universality and expressiveness of fold. Journal of Functional Programming, 9(4):355-372,
July 1999,

[6] Johnson, R.A. The Ups and Downs of Object-Oriented Systems Development. Comm. ACM 43(10), October 2000, pp.
69-73.

[7] Kiselyov, O. Complete code that accompanies the article. <http://pobox.com/~oleg/ftp/packages/subclassing—
problem.tar.gz>, August 4, 2000.

[8] Kiselyov, O. Subtyping, Subclassing, and Trouble with OOP. <http://pobox.com/~oleg/ftp/Computation/Subtyping/index.html>,
August 4, 2000.

[9] Liskov, B., Wing, J. M. A Behavioral Notion of Subtyping. ACM Trans. Programming Languages and Systems, 16(6),
November 1994, pp. 1811-1841.

[10] Ousterhout, J.K. Scripting: Higher-Level Programming for the 21st Century. IEEE Computer, March 1998, pp. 23-30.
[11] Standard Template Library Programmer’s Guide. SGI Inc, 1996-1999. <http://www.sgi.com/tech/stl/>.
[12] Stroustrup, B. The Real Stroustrup Interview. IEEE Computer 31(6), June 1998, pp. 110-114.

42

Change-Merging of PSDL Abstract Data Types

David A. Dampier
Department of Computer Science
Mississippi State University
Mississippi State, MS 39762
(662) 325-8923
dampier@cs.msstate.edu

Vineet Chadha
Department of Computer Science
Mississippi State University
Mississippi State, MS 39762
(662) 325-8832
vineet@cs.msstate.edu

Abstract

Software development as an enterprise is al a critical place in history. We are now developing needs for
software faster than we can develop solutions. The future of sofiware engineering is in providing computer-aided
tools for automating as much of the evolution process as possible, so we can hope to meet the software needs of the
future. Our argument is that software should not be built and then maintained, but should be evolved, from the first
requirements analysis, to system retirement. If we build software for evolution, it is generally easier to make
changes to that software, whether they are corrective, adaptive, or perfective. This paper outlines a method of
applying changes to abstract types that extends a previous change-merging method for executable prototypes
written in the Prototype System Description Language (PSDL) [19]. PSDL prototypes consist of a set of operators
and a set of abstract data types. Previous work focused on merging changes to PSDL prototypes consisting of only
operators. Our current work is aimed at providing a model for merging changes to PSDL types as well, thus
completing the change merging method for complete prototypes. This paper contains a model for change-merging
PSDL abstract data types, as well as a consistency theorem that demonstrates the model’s correctness.

KEYWORDS: Change Merging, Program Integration, Abstract Data Types, Classes, Software Evolution, Software
Automation, Multiple Inheritance.

1. INTRODUCTION

Since the first computer program was written, software developers have been looking for innovations in
software development. Some of the areas focused on are: programming languages, computer-aided tools, object-
orientation, and process improvement. None of these innovations has been the elusive “silver bullet” that some are
looking for [8]. Everyone agrees that there has to be a way to make software development better, but few can agree
on how. What is commonly accepted today is a need for developers to focus on building software that can evolve.

Software systems are becoming increasingly huge and complex. In order to keep up with growing software
needs and take advantage of increasing hardware capabilities, software must be designed, built, and delivered in less
than twelve months. Additionally, this software must be evolvable, so when technology innovations occur, changes
can be made more rapidly to the software to take advantage of these innovations. Research into computer-aided
prototyping, where systems are built with executable specifications is showing some promise of providing a way to
rapidly build software systems that more accurately satisfy the user's needs. However, all of the capabilities are not
yet available to provide continuing evolution support to those same systems, once they are delivered. Incorporating

43

changes into those systems requires reworking the original specification, and regenerating the executable code.
Where this is often efficient, and allows maintenance of only the specification level code, it discounts the need for
maintaining adaptive changes unique to particular environments.

Any software, modified after development, is very difficult to maintain. Changes made to any software system
can be of three types: corrective, perfective or adaptive. Whenever an evolutionary change is made to the base
version of a program, and the new version of the program is customized for a customer, perfective or adaptive
changes made to the previous version of the sofiware must be re-applied to the new version. This can produce
inconsistencies in the existing version of the software. The answer is to build the software initially with the
knowledge that it will change, and that the base version will evolve. In this way, the software can be built for
evolution. To do this effectively, computer-aided tools are needed that will allow changes made to the base version
of the system to be integrated automatically into each unique version. The first substantive work done in this area by
Berzins in [2] provided models for understanding how two different enhancements made to the same software
artifacts can be merged to produce a version with the characteristics of both enhancements. This pioneering work
provided the basis for several follow on efforts in merging and integration. These follow on efforts include the work
of Horwitz, Reps and others at the University of Wisconsin-Madison on integrating different versions of while
programs [7, 18, 22] and Berzins and Dampier at the Naval Postgraduate School on merging changes to data flow
programs in the form of PSDL prototypes. [3, 4, 5, 6, 14, 15]

Dampier did the first substantive work on change-merging PSDL programs [14, 15]. He constructed a model
and method for automatically combining different versions of a prototype written in the PSDL. Prototypes written
in PSDL consist of a set of PSDL data types and a set of PSDL operators. Dampier’s work was limited to
semantics-based change-merging of PSDL operators [14, 15]. The focus of this paper is the exploration of
semantics-based change-merging of PSDL types. This is a part of the prototype change-merging problem that has
not yet been explored. The next section will review the PSDL change-merging problem, and provide a context for
the work outlined in this paper.

2. CHANGE-MERGING OF PSDL PROTOTYPES

Change merging is a process that allows different changes to a software product to be combined using
computer-aided tools. Change merging can be done in two fundamental ways: semantics-based and syntax-based.
Syntax-based change merging is performed on the source code of the input versions with respect to the differences
in the syntax of each version. Semantics-based change merging is performed on the functions computed by the
software product with respect to the behavior associated with each input version. Semantics-based change merging
requires a solid mathematical foundation to provide some guarantee of the correctness and engender confidence in a
working change-merging system [15].

PSDL is the language used to build prototypes in the Computer-Aided Prototyping System (CAPS) [20]. CAPS
provides the designer with a set of computer-aided tools to quickly build a specification for a software system using
PSDL, retrieve or build required primitive software components, and generate an executable prototype of the
system. This prototype is then demonstrated to the customer, and based on the customer’s comments, is updated to
satisfy the customer’s updated requirements. A graphic of a prototyping paradigm similar to that used in CAPS is
shown in Figure 1.

PSDL prototypes are constructed as sets of operators and data types, where each of the components can be
either composite (constructed from collections of other PSDL components) or atomic (implemented in a high level
programming language, like Ada or C++). The operators implement either functions or state machines and the PSDL
types are abstract data types (ADTs) containing both data and methods to operate on those data.

During construction of a sufficiently large prototype, it may be necessary to distribute different pieces of the
design effort to different designers, and ultimately integrate their individual efforts into a cohesive prototype. This
integration effort generated a need to provide automated tools that would provide the capability to integrate these
individual efforts in a safe way without the need for extensive human intervention. Our initial efforts on this
problem were very successful. [4, 14, 15] Unfortunately, our efforts until now have been limited to merging changes
to prototypes with only operators, without regard to the data types that will doubtless be required in large prototypes.
In [13], an approximate method for merging changes made to PSDL operators was provided. In [14, 15], a slicing
method was provided that used the approximate method for completing the change-merge, but validated the results

through the use of prototype slicing.

44

The existing model and method for change-merging PSDL prototypes consists of a model for change-merging
operator specifications and a method of slicing prototype implementation graphs that provides a mechanism for
guaranteeing semantic correctness of a syntactic merge of the implementation graphs. The basis for this guarantee is
the Slicing Theorem that states that the behavior of any slice of a prototype will remain precisely the same in any
prototype, as long as the slice is precisely the same. [15] The benefit of this theorem is that we can show that as long
as the behavior of a slice with respect to an affected part of a modified prototype remains the same in the change-
merged version, then the significant change in that modification is preserved through the change-merge operation.
The rest of the model uses lattice theory, along with Boolean and Browerian algebras to construct the change-
merged specifications. The focus of the rest of this paper is on merging changes to PSDL types.

l Initial Goals

> Requirements Requirements > Prototype
Determination Construction

New Goals Noted Deficiencies Prototype

Performance
Prototype
Demonstration

Customer
Satisfied?

Validated Requirements

Architecture

System
Construction <

l System

System Fielding

Figure 1: Rapid Prototyping in CAPS [15]

3. PSDL TYPES

PSDL prototypes consist of both types and operators. PSDL types are abstract data types. Their basic structure
is the same as any abstract data type, with a set of attributes and a set of methods. All declared types in PSDL
prototypes are PSDL types. The structure of the type specification for these types is the same, whether the
implementation is in PSDL or some high-level implementation language. As already stated, PSDL types consist of
both data and operators to affect those data. The basic structure of a PSDL type contains both specification and an
implementation. The specification consists of a set of attribute definitions, as well as specifications for the methods
or operators to operate on those attributes. An example of a PSDL Type specification is shown in Figure 2. PSDL
keywords are shown in boldface. This is the specification for a basic class of Person containing simple data like
their name.

The implementation part of the PSDL type, as was stated earlier, can either be in PSDL or in some high level
language like Ada or C++. For simplicity, and because our current version of CAPS uses Ada exclusively, all
examples of non-PSDL implementations will be shown in Ada. The alternate structures of the implementation part
of the PSDL type for both PSDL implementations and Ada implementations are shown in Figure 3. Again, PSDL.
keywords are shown in boldface text. Even in a PSDL implementation, some operators may be implemented in a

45

high-level language instead of PSDL. This mixed implementation structure may seem complicated, but as you will
see, does not affect our change-merging method at all.

Type Person
specification
name: string

operator create
specification
input name: string
end

operator get_name

specification
output name: string

end

end
Figure 2: Example of a PSDL Type Specification for Person
Type Person
specification
end

implementation ada Person_Package end
or

Type Person
specification

end
implementation Person

operator create
implementation ada create_person end

operator get name
implementation

name
get_name >

end

end

Figure 3: Example of different PSDL Type Implementations for Person

46

4. CHANGE MERGING OF PSDL TYPES

We started our research by searching for accomplished work on merging changes to abstract data types.
Finding none, we took the view that the merging of changes made to abstract data types is similar to multiple
inheritance, As it turns out, there is considerable research to support this notion. We will start our look at change-
merging PSDL types with a look at some of this research.

4.1 Inheritance Models

In [10], the author discussed efficient handling of class hierarchies. He argues that a lattice structure was
suitable for class hierarchies for the following reasons:

e Lattices allow resolution of multiple inheritance conflicts exactly. They also help to reduce the
complexity of implementing conflict resolution strategies.
Lattices help in writing typing inference algorithms.
It is easier to represent large complex software systems in terms of small lattice structures.
Lattices support compact encoding techniques.

Figure 4 shows an inheritance lattice from [10]. It is easy to see how the multiple inheritance from both
Student and Employee could cause problems in StudentEmployee. One example of a conflict is in the department to
which each of the persons is assigned. Certainly students are assigned to a department that they are studying in, and
Employee are assigned to a department in which they work, but what happens when an employee in the Math
department is a student in the Computer Science department. This is an example of the kind of conflicts that can be
caused by this kind of inheritance.

Person
/ \
Student Employee
—_— .
StudentEmployee
) N~

Undergraduate Graduate Teaching Research Assistant
Student Student Assistant Assistant Instructor Professor

Figure 4: An Inheritance Lattice [10].

In [12], the author described inheritance as a mechanism for incremental programming. Based on Cook’s
inheritance mechanism, Benattou and Lakhal presented an incremental formal model of both single and multiple
inheritance [1]. Their model allows a new class to be defined by incremental modification of existing classes. The
authors also address the automatic conflict solving in multiple inheritance using two operators: @©c a combination
operator on structures with conflict resolution, and Ac a multiple inheritance operator. Their paper addressed name
and value conflicts and possible ways of solving those conflicts. They suggested solving name conflicts by explicit
designation and value conflicts by a process called /inearizing. Ducournau et al also addressed conflict resolution
mechanisms for inheritance. According to them, there can be two possible kinds of conflicts: value conflicts, and
name conflicts. Value conflicts are due to having different values for the same attribute. Name conflicts are due to
different attributes having the same name [16].

47

In [9], the authors addressed conflicts between methods of the same name in superclasses. Consider the
following example:

Student Employee
Superclass: Person Superclass: Person
Methods: CardNumber() Methods: CardNumber()
ValidateCard() ValidateCard()

Consider ‘these two as base classes in a class hierarchy diagram. We can get a StudentEmployee as an
inherited class, much in the same way as show in Figure 4. According to the author, a class must inherit all of the
characteristics of their superclasses. The authors considered two kinds of strategies for solving conflicts: linear
strategies and graph-oriented strategies.

4.1.1 Linear Strategies:

Languages such as CommonLoops follow linear strategies. These strategies are based on a common
principle, “flatten the inheritance graph to a linear chain without duplicates, and then treat the results as single
inheritance” [9]. It converts the partial ordering of classes into a total one by using relative ordering of classes within
the list of the direct superclasses of each class. These strategies oppose the tenets of object-orientation such as
reusability, incremental design and modularity.

4.1.2 Graph-Oriented Strategies:

Graph-oriented strategies deal with complete hierarchical class diagrams. When a conflict arises,
they can specify the superclass from which they wish to inherit. In [17], the authors proposed a formal method that
produces a lattice structure called a Galois lattice from a given set of classes. This method of building lattice
structures from a given set of classes has the following advantages:

e It supports an efficient incremental update algorithm.
e [t does not depend on input ordering.

In [21], the authors consider an approach for the extension and merging of a base system in a library
or existing application. The authors suggested that successive extensions can be combined using an extension
operator and parallel extensions can be combined using a merge operator. Conflicts should be resolved in the merge
operation.

4.2 Possible Conflicts in Abstract Data Type Merging and the methods for Resolving Them

Based on our research, we have identified several types of conflicts that have to be resolved when merging
two PSDL ADTs. The different conflicts fall into the following basic categories: types, attributes, and methods.

4.2.1 Type Set Merging

Type Set conflicts arise when two prototypes are being merged that contain new types with different
names, or have removed types from the base still used by the other modification. These conflicts can occur when
two independent changes are made to the same prototype, where new type definitions are required for the change, or
old type definitions are no longer required. Since all PSDL prototypes contain a set of data types, the correct
solution to this problem can be found through the use of a Powerset lattice, or Boolean algebra. Both modified
versions of the prototype contain a different set of types than the base version of the prototype. The minimal merged
version of the set of types can be constructed through the use of the following change-merge equation:

Merge = (A - Base) U (A N B) U (B - Base) [3]

This equation chooses the types that have been added in A and B, along with the types that have
been preserved from the Base version in both A and B. The only possible problem that could occur as a result of
this change-merge, is if a type that has been removed in one modification is needed for a new method or attribute in
the other modification. In this case, that type can be added back into the prototype as needed. This set of types can
contain more than the minimal set without conflict. Additionally, each of the modified versions can contain a new
type by the same name, but with different specifications and implementations. In this case, the solution is simple,
these two types should be renamed, perhaps by adding the version number of the modification, and treated
appropriately as different types.

48

4.2.2 Merging Attributes

Now, we consider the case where different changes have been made to the same PSDL type in each
of the modified versions. At the top level, the set of attributes in the merged version of the type can be combined
using much the same method as described in the previous section for the sets of types in a prototype. Obviously, if
an attribute is removed in the first modification, and not in the second, then its removal was significant to the
designer of the first modification, so that change should be preserved. Since any method that operated on that
attribute would also have had to be removed in the first modification, its removal would also be significant and must
be preserved in the merged version. Any use of that type by a new method in the second modification would cause a
conflict, but this is a conflict that would have to be resolved by the designer.

Similarly, added attributes in each of the modified versions of the PSDL type would be included in
the merged version. Let us look at some examples of these conflicts and their resotutions (See Figure 5), borrowing
from the Student and Employee problem seen earlier.

type Person
specification
name: string
SSN: string,
age: string
end
type Person (Student) type Person (Employee)
specification specification
name: string, name: string,
class: integer, department: string,
department; string, socsecnum: string,
stu_id_num: string, age: integer
age: natural
end
end
type Person (StudentEmployee)
specification
name: string

class: integer,
student_department: string,
employee_department: string,
stu_id_num: string,
socsecnum: string,

age: T

end

Figure 5: An Example of Attribute Merging

As can be seen from this example, in the case where new attributes were added in each of the
modified versions, those new attributes appear unchanged in the merged version (stu_id_num, socsecnum, class). In
the case where attributes in the base version were removed in one or both of the modified versions, it does not
appear in the merged version. In the case where new attributes were added to both of the modified versions with the

49

same name, but with different meanings, they were both renamed and included in the merged version. This example
does bring to light a possible problem we have not yet discussed. Age appears in all three input versions, but with
three different type declarations: string, integer, and natural. Rightly, we have included the definition of the age
attribute in the merged version, but with the type identifying a conflict. This is the safest way to include the
attribute, but it may not be the only way. Consider this particular example. In the Student version of the ADT, age
is defined as a natural number, and in the Employee version, it is defined as an integer. Since both of these are
different from the Base version, it is indeed a conflict, but since the set of naturals is a subtype of the set of
integers, it may be possible to take the most restrictive version and resolve the conflict automatically. We are still
exploring this possibility and hope to have an extension to this model soon.

4.2.3 Merging of Methods

For merging the sets of methods, a Boolean algebra based merging operation similar to those
described in the two previous sections is also applicable. However, in addition to the merging of sets by name, we
have some additional concerns with methods. First, let us say that in the case where we have three different versions
of the same method being included where the three methods are PSDL operators, previous results from [4, 14, 15]
can be applied to effectively produce the merged version of the operator. Likewise, if the three implementations are
Ada implementations (or some other high level programming language), we must defer to an as yet undiscovered
method for merging changes to operators in those-languages. The following cases refer to different problems we
have been able to enumerate in our study of the ADT merging problem.

4.2.3.1 Return Parameters are Different

When the methods are the same, and the return parameters are different in one of the modified
versions, include the modified version in the merged type. If the return parameters are different in all three versions,
there is only one feasible option, report a conflict. If we try to choose between the two modifications, we may

produce a version that is not safe.
4.2.3.2 Arguments are Different
When the methods are the same, but the input arguments are different, there are three possible
options:

¢ Include one of the methods: this is not safe unless the method in one of the modified
versions is the same as the base version, as it doesn’t take into consideration why they
are different.

e Report a Conflict: this is maximally safe, but provides no benefit other than safety.

e Include both of the methods: this too is safe, but is similar to function overloading
available in most object-oriented programming languages.

4.2.3.3 Arguments are the Same but Listed in Different Order

When the methods are the same, but the input arguments appear in a different order, we have
the same three options as if the arguments are different. The most appropriate choice for resolving this conflict is to
include both of the modified versions of the method.

5. CONSISTENCY THEOREM

In [11], we provide a model and method for merging abstract data types in the general case. Mathematical
equations are also provided to describe each of the above operations on generic abstract data types. Alsoin [11], a
theorem is provided that shows that the result of merging two different modifications of a base abstract data type
results in a set of attributes and methods which are consistent. This theorem is based on the following definitions:

Sa is the set of attributes in an abstract data type, A.
M, is the set of methods in an abstract data type, A.
P, is the set of input parameters to the methods contained in M,.

50

Y(Sa, M,) is a consistency predicate that is TRUE if and only if the methods contained in M, are consistent
with the attributes contained in S, . This consistency is shown by the relation P, < S,. Based on this consistency

predicate, Y, the following theorem is stated: (The proof of this theorem is provided in [11])

Consistency Theorem
If Base, A, and B are three versions of an Abstract Data Type, and

'Y(SBase, MBase) = PBase c SBase
Y(SaMya) & P, CSa
Y(Sg,Mp L4 PsC S

then Y(Sagpaseis, Ma(Bases)-

6. CONCLUSION

Change merging of abstract data types in general is applicable to many software evolution activities. It also has
some potential in the areas of software reuse and reengineering. Today, due to the increased complexity of software
systems, a primary focus is component-based development and reusable software. Abstract data type change
merging can help in the integration of two concurrent developments of an object or the automatic integration of two
or more changed versions with respect to the base version they are created from. We have explored a basic change-
merging problem as it applies to the prototype-merging problem and have described our results. This is a
complicated research problem, and although the results described in this paper are very encouraging, much work in
still necessary to provide a working change-merging tool for PSDL.

References

[1] Benattou, M., and Lakhal, L., “Incremental Inheritance Mechanism and its Message Evaluation Method”,
Proceedings of 3™ Basque International Workshop on Information Technology, July 1997, pp. 159-168.

[2] Berzins, V., “On Merging Software Extensions”, Acta Informatica 23, pp. 607-619.

[3] Berzins, V., “Software Merge: Semantics of Combining Changes to Programs”, ACM Transactions on
Programming Languages 16(4), pp.1875-1903.

[4] Berzins, V. and Dampier, D., Software Merge: Combining Changes to Decompositions. Journal of Systems
Integration 6, 1996, pp. 135-150.

[5] Berzins, V., and Luqi, Software Engineering with Abstractions, Addison-Wesley Publishing, 1996.

[6] Berzins, V., “Merging Changes to Software Specifications”, Lecture Notes in Computer Science, October 1997,
pp.121-131.

[7] Binkley, D., Horwitz, S. and Reps, T., “Program Integration for Languages with Procedure Calls”, 4ACM
Transactions on Software Engineering and Methodology, ACM Press, January 1995,

[8] Brooks, F., “The Silver Bullet: Essence and Accidents of Software Engineering”, IEEE Computer, 20(4), April
1987, pp. 10-19.

[9] Carré, B. and Geib, J., “The Point of View Notion for Multiple Inheritance”, Proceedings of the European
Conference on Object-Oriented Programming Systems, Languages, and Applications, October 1990, pp. 312-
321.

[10]Caseau, Y., “Efficient Handling of Multiple Inheritance Hierarchies”, Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, And Applications, September 1993, pp. 271
—287.

[11]1Chadha, V., Automated Evolution of Abstract Data Types, Master’s Thesis, Mississippi State University,
Mississippi State, MS, September 2001.

51

[12]Cook, W., “Interfaces and Specifications for the Smalltalk-80 Collection Classes”, Proceedings of the Seventh
Annual Conference on Object-Oriented Programming Systems, Languages, And Applications, October 1992,

pp. 1-15.
[13]Dampier, D., 4 Model for Merging Different Versions of a PSDL Program, Master’s Thesis, Naval
Postgraduate School, Monterey, CA, June 1990.

[14]Dampier, D., Luqi, and Berzins, V., “Automated Merging of Software Prototypes”, Journal of Systems
Integration, 4(1), pp. 33-49.

[15]Dampier, D., A Formal Method for Semantics-Based Change Merging of Software Prototypes, Ph.D.
Dissertation, Naval Postgraduate School, Monterey, CA, June 1994,

[16] Ducournau, R., Habib, M., Huchard, M., and Mugnier, M., “Monotonic Conflict Resolution Mechanisms for
Inheritance”, Proceedings of the Seventh Annual Conference on Object-Oriented Programming Systems,
Languages, And Applications, October 1992, pp. 16-24.

[17]Godin, R., and Mili, H., “Building and Maintaining Analysis-Leve! Class Hierarchies using Galois Lattices”,
Proceedings of the Eighth Annual Conference on Object-Oriented Programming Systems, Languages, And
Applications, September 1993, pp. 394-410.

[18]Horwitz, S., Prins, J., and Reps, T., “Integrating Non-Interfering Versions of Programs”, ACM Transactions on
Programming Languages and Systems 11(3), pp. 345-387.

[191Luqi, Berzins, V., and Yeh, R., “A Prototyping Language for Real Time Software”, JEEE Transactions on
Software Engineering 14(10), October 1988, pp. 1409-1423,

[201Luqi, “Software Evolution through Rapid Prototyping”, IEEE Computer, May 1989.

[21]Ossher, H., and Harrison, W., “Combination of Inheritance Hierarchies”, Proceedings of the Seventh Annual
Conference on Object-Oriented Programming Systems, Languages, And Applications, October 1992, pp. 22-40.

[22]Ramalingam, G., and Reps, T., “A Theory of Program Modifications”, Lecture Notes in Computer Science 494,
pp- 137-152.

52

Formal verification of embedded distributed systems
in a prototyping approach

F. Kordon, I. Mounier, E. Paviot-Adet
LIP6-SRC, Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France
Fabrice.Kordon@lipé. fr
Isabelle.Mounier@lipé6.fr
Emmanuel . Paviot-Adet@lipé . fr

Abstract: This paper presents an evolutionary prototyping
methodology dedicated to the design, verification and
implementation of embedded systems. This methodology
relies on LfP: a formalism combining UML-like structu-
ring capabilities and a precise semantic suitable for both
code generation and formal verification based on colored
Petri nets. We apply this methodology on a small example
and show how it enables system designers to detect non-
trivial problems on the system.

Keywords: Prototyping, Formal verification, Petri Nets,
UML.

1. INTRODUCTION

Design and implementation of industrial systems is get-
ting more and more complex [9]. This is a problem for em-
bedded distributed systems for which a high quality is
required. Several problems can be identified:

« Standard notation, such as UML [15] can be considered
as an important contribution to describe a solution.
However, it is more suitable at an early stage of applica-
tion design and implementation. Thus, UML specifica-
tions are difficult to check due to their semi-formal
semantics (dynamic aspects are not formally defined). A
typical illustration is the interaction between compo-
nents of a system. This information is dispatched into
several diagrams: interaction, sequence and state.

« Once the specification of the system is completed,
implementation need to be done. Then, developers may
interpret these specifications and we can get a program
which is not exactly the image of the corresponding
specification.

* Tests of the system are usually performed on the pro-
gram. Then, when debugging the program, the initial
specification tends to disappear: modifications on the
program are not reported to the specification. Security of
such modification usually decreases in the maintenance
phase of the system.

Evolutionary prototyping [13] is a good solution to these
problems since it enhance the definition of a model serving
as a basis for both the description of the system and auto-
matic code generation. By reducing the production cost of
an executable program, it promotes the model to be the cen-
ter of the development process. Then, a system is elaborat-
ed by successive refinements of the following operations:

* design/refinement of the model,

« evaluation of the model,

* code generation,,

« evaluation of the prototype,

In evolutionary prototyping, a strong correspondence

&

53

D. Regep
PhD. student CS TELECOM
28, rue de la Redoute, BP 74
92263 Fontenay-aux-Roses Cedex, France
Dan.Regep@lip6.fr

between the model, programs and documentation may be
maintained. However, evaluation of the system still rely on
«traditional» testing techniques based on large bench-
marks.

This paper presents an evolutionary prototyping tech-
nique. Our methodology relies on LfP (Language for Pro-
totyping), a formalism dedicated to the description of
embedded distributed systems [18]. L/P combines high lev-
el modeling facilities such as the one of UML and a precise
semantics suitable for both code generation and system ver-
ification by means of formal methods (instead of bench-
marks-based testing).

Section 2. presents our prototyping methodology. Then,
L/P is described in Section 3. Section 4. details an example
of system specification using LfP and states some proper-
ties to be checked on this system. Finally, Section 5. shows
how a formal specification can be generated from the LfP
model and used to detect non-trivial errors.

2. METHODOLOGY

Our methodology is a model-based development in the
sense of [17]: the model describes the system and serves as
a basis for validation (in our case, formal verification) and
code generation. Our methodological approach aims to im-
plement evolutionary prototyping capabilities based on:

* An integrative design approach. LfP acts as a glue pro-
totyping language [2] between state of the art specifica-
tion formalisms (e.g. UML for system modeling, ODP
as a distributed component framework {8], Petri nets for
formal verification).

* An aspect oriented design framework. LfP is based on a
multi views approach to system prototyping [7]. Views
are dedicated to a given prototyping aspect: software
architecture, system implementation and formal prop-
erty description.

* A formalized development approach to system behavior
modeling and verification [19]. L/P relies on well
formed Petri nets semantics [3] for formal verification.

* A hierarchical, structured and modular approach to
system modeling [4]. L/P uses a component based
approach allowing hierarchical specification and behav-
ior refinement.

The main objective of LfP is to formalize relations be-
tween system modelling, formal verification and code gen-
eration of embedded distributed systems. Thus, we provide:

« transparent formal verification to enable its use in an
industrial context without requiring specific training and
skills [12],

« strong correspondences between the detailed descrip-

tion of a system, its proofs and its implementation. In

other words: «what you check and what you implement

is what you describey.

Figure 1 presents our methodology. It takes in input an
UML specification of a system. UML is not suitable for di-
rect verification as noticed in the VUML project [10]. This
is also true for distributed code generation from UML as
mentioned in [14]. So, extensions to UML have to be con-
sidered. LfP has been elaborated for this purpose and can be
seen as an additional UML diagram.

UML mode]] reformulation
formal debug s enrichment
e 3
synthesis

spelllons <=
i eneration
verification s
e“‘e‘\\
o Piograms 50

Figure 1 : Our evolutionary prototyping methodology.

The LfP model can be partially generated from UML
standard diagrams. However, it contains enriched informa-
tion compared to other UML diagrams: centralized descrip-
tion of components behavior by means of finite state
machines (FSM), identification of properties to be verified
and implementation directives. All this information is locat-
ed in L/P and can be checked without being concerned with
coherence problems between several diagrams.

Once the L/P model is produced, Petri nets synthesis can
be performed. In Figure 1, «synthesis» cotresponds to a set
of transformations from L/P to Petri nets. Each one is ded-
icated to the verification of a given property according to a
given strategy. This reduces the complexity of the proof:
non relevant information can be discarded and thus, gener-
ated Petri nets are optimized.

Once all properties stated in the L/P model are verified
(which may require some modification and several refine-
ment son the diagram itself), code generation produces
pieces of programs to be compiled and deployed in the tar-
get execution environment.

As shown in Figure 1, the main interest of evolutionary
prototyping is to enhance the role of a model which en-
ables: 1) several refinement of the system since production
of the corresponding executable version is performed at
low cost, 2) formal verification manageable by engineers

since most of the process is hidden and performed automat-

ically, 3) use of the LfP model, even during the mainte-
nance phase.
To operate our methodology, we use a set of languages
dedicated to each prototyping phase:
» UML for system specification and modelling,
* LfP diagram to centralize informations and to enable
code generation as well as formal verification,
» Petri nets to apply formal verification procedures,
* Programming languages to implement the system.

3. THE LFP FORMALISM

This section summarizes the main features of LfP. De-

54

tailed information and rationale can be found in [18].

L/P is a graphical Architecture Description Language
with coordination facilities. It is dedicated to the rapid pro-
totyping of embedded concurrent systems. LfP enhances an
existing UML model with information enabling automatic
code generation of concurrent programs and formal verifi-
cation.

To do so, LfP uses three orthogonal views adapted to
some specification aspects:

» the functional view (implemented as a diagram),

» the implementation view (textual annotations on the dia-
gram),

* the property view (textual annotations on the diagram),

The functional view describes the system behavior in
terms of execution workflow of connected components and
the coordination between component instances. It also de-
scribes the system software architecture.

The implerhentation view describes the system imple-
mentation constraints (target executive, used programming
language, communication infrastructure) and the deploy-
ment topology.

The property view specifies properties to be verified by
the system (similar to the B proof-assertions [1]). Such
properties are stated by means of invariants (for example, to
check mutual exclusion), temporal logic formulas (for ex-
ample, to check availability or fairness of a service) or other
statements that can be converted to a given formal method.
This view can be exploited to perform computer-assisted
formal verification but also introduces relevant information
for code generation (i.e. rutime checks).

3.1. The LfP Structure

The LfP functional diagram contains:

* a declarative part defining management information
(e.g. model name, author, version number, comments
and the associated UML model if any) and formal decla-
rations: types or constants. Elementary types are: integer
range, ordered enumerations or the opaque type. The
opaque type denotes variables which only support the
affectation operation and, thus, cannot influence the exe-
cution workflow.

* a list of entities: classes and media.

A LfP class corresponds to a complete UML instancia-
ble class. Thus, abstract or virtual UML classes have no
correspondence in L/P.

A media is used to connect classes. It specifies both in-
teraction contract and communication semantics. It corre-
sponds to an UML association, aggregation or composition.

Table 1 presents the graphical representation for classes
and media.

LfP Class] LfP Media
Class Media
name name

Table 1: Graphical representation of classes and media
3.2. LfP entities

As mentioned in Section 3.1., the L/P functional dia-
gram contains classes and media. Their description strongly
relies on LfP-FSM (Finite State Machine) supporting vari-
ous elements of a class or media specification. Thus, we

present the L/P-FSM structure prior to classes and media.
3.2.1. LfP-FSM

L/P-FSM uses a notation similar to the one of Petri nets
and provides some modelling facilities. They are used in
various parts of a specification; the main difference consists
in the signification of transition labels. LfP-FSM contains:

« a declarative part specifying a list of variables repre-
senting the execution context.

« the FSM itself. It specifies the execution workflow of a
class, a class role, a method or a media. A L/P-FSM
contains basic elements (or nodes) «wired» together
using connection links.

Variables of a LfP-FSM context are either local to a
class or media instance or shared between all of them. Vari-
ables are typed (according to a visible defined type) and
may hold a default value. As mentioned in Section 3.1.,
opaque variables only support the affectation operation.

Symbol name Icon

State O @Besm .FINAL

LOOP <«———— transition name
Transition <i <= 3> -—— guard condition
D i++; -——— statement
[i > 0] <«———— safety condition

S-Transition .LOOP «—— transition name alias

block ««——— sub-net name

[:] SYNC -«—— Dbarrier name

Protector variable.lock «—— protector name
4

~<«——— protector cardinality

H-Transition

Barrier

SC_channel.server 3 server
Binder AN binder name —»
reference to a binder
target
Constructor ﬂ ConveyerControler «— class
name

Table 2: Graphical representation of L{P-FSM basic elements
Table 2 summarizes nodes to be found in an LfP-FSM:

» States are execution steps. Two special states are distin-
guished: BEGIN and FINAL corresponding to the initial
and final execution states. L/P-FSM has only one initial
state.

« Transitions express potentially guarded actions. Guard
conditions specify activation rules to be satisfied when
firing a transition. The transition name may reference
class role name (Section 3.2.2.), or a class method name.
A statement is executed after the firing, it modifies state
variables of the LfP-FSM visible at this level. These
have an atomic execution semantics. Safety conditions
express invariants useful for formal verification, debug-
ging and testing
Transitions may be linked to sequential code written
using any programming language, to be inserted in the
distributed application at code generation time. This
code may change opaque variables values only and thus,
cannot change the execution workflow.

* Shadow Transitions (S-Transitions) are graphical
aliases to existing transitions proposed to simplify L/P-

55

FSM.

 Hierarchical Transitions (H-Transitions) abstract sub-
LfP-FSM to increase readability. Sub-L/P-FSM have
one initial state and one terminal state. These are bound
to the H-Transition input state and output state.

* Barriers are special shared transitions corresponding to
a synchronization point between all concurrent instances
of a L/P-FSM.

* Protectors are shared locks (multi-level semaphores or
groups of semaphores) used to provide restricted access
to a shared resource. They are used to define critical sec-
tions between concurrent instances of a LfP-FSM. A
protector can be standalone or associated to one variable
or group of variables. The protector cardinality specifies
how many concurrent L/P-FSM instances may simulta-
neously get into the critical section.

* Binders are access points to media. L/P-FSM communi-
cate through binders by means of messages. A message
consists of three fields: 1) a message name known by the
media, 2) message discriminants that can be modified by
the media, 3) message arguments that must be opaque
for the media. Binders are declared in media and refer-
enced in classes.

* Constructors are used to create new class instances. An
initialization context has to be specified for created
instances.

Table 3 presents connectors to be used in a L/P-FSM.

Arc | Protector link I Media link
—>>
_—> R <
<c—>>

Table 3: Graphical representation of LfP-FSM connectors

« Arcs are used to link a State to a Transition, S-Transi-
tions, H-Transition or Barrier and vice versa. An arc
express the execution sequence. I/P-FSM are sequential
finite state machines. Thus, the number of input and out-
put arcs of a Transition (S-Transition, H-Transition, or
Barrier) is of exactly one.

« Protector Links connect Protector to Transitions or S-
Transitions and vice versa to define critical sections.

* Media Links are used to connect Binders or Construc-
tors with Transitions or S-Transitions. Media Links
specify the connection direction (in, out or inout). A
Media Link specifies the binding contract between local
context variables and messages (discriminant, name and

arguments).
3.2.2. L/P Classes

" A LsP Class corresponds to an UML implementation
class and expresses some functional aspects of a system. It
consists of:

* a declarative part specifying: 1) the class identifier, 2)
for each binder, potential messages and their parameters
(some of these messages correspond to public methods),
3) a list of private methods and their parameters, 4)
defintion of sequential code to be linked to transitions.

« a list of FSM defining : 1) the execution contract (main
FSM), 2) class roles (optional), 3) methods.

Definition of the main FSM is mandatory. It represents
the execution workflow of a class instance. Transitions in
the lxlnadin FSM may reference class roles (if any) or class
methods.

Class roles correspond to alternative class behaviors;
their definition is optional. Each role is described using a
L/P-FSM. Transitions in a role may reference methods.

Class methods are also described by means of a LfP-
FSM defining the execution workflow (i.e. the method ex-
‘ecution contract).

Table 2 summarizes the graphical representation of the
class main LfP-FSM, a class role or of a class method.

the main LjP-FSMl a class role I a class method

Main FSM Role name Method name|
O—+1—0 O - MNO

Figure 2 : Graphical representation of class components.
3.2.3. LfP Media

Media connect instances of LfP Classes. It is possible to
use them as basic components or to assemble them into
more sophisticated communication patterns. Media con-
necting two or more LfP classes correspond to an UML as-
sociation, aggregation or composition. Media can also be
used to implement shared resources (list, FIFO, stack, etc.).

A media specifies binding constraints and communica-
tion protocol semantics. We base our approach on the ODP
contract definition [8]. A media consists of:

* a declarative part defining : 1) new types declaration 2)
media variables which are similar to class variables, 3)
the interaction contract consisting of several binding
constraints.

* the main FSM representing the communication contract
(communication protocol semantics).

The binding constraints specify: 1) a reference to the
connected binding point, 2) the communication mode
(synchronous or asynchronous), 3) the accepted messag-
es and their arguments, 4) the binding multiplicity (one,
all or any): one means that the binder is connected to only
one class or media instance; all specifies that the binder is
shared by all the connected classes instances; any leave this
unspecified.

A media cannot play various roles, has no methods nor
associated constructors. Media carry on information on
classes request.

4. ANEXAMPLE

Let us consider a set of conveyers circulating on a path
divided in N segments as shown in Figure 3. A segment
may contain only one conveyer. Conveyers may cross be-
tween segments where a crossing zone is defined (noted Z
in the Figure). When two conveyer cross, the first one get
into a special path in the crossing zone and let the other one
get out before entering in the segment.

[S S, [Su
-

z, Zy.
Figure 3 : The conveyer system.

4.1.

Conveyers, segments and crossing zones are locally
driven by an embedded Control application. Command
centers drive conveyers movements (using the MOVE mes-

Conveyer Behavior in the System

56

sage). However, these are not part of the system but corre-
spond to an «external» component (e.g. a piece of code that
already exists and has to be linked to the generated pro-
grams),

Therefore, the system contains three classes: Segment-
Control (noted sC), ConveyerControl (noted cc) and Cross-
ingZoneControl (noted czcC). Interactions between classes
are defined using the following rules:

1) Upon receiving a MOVE command, a ¢C has to require
(using DEM message) an authorization provided by the
SC of the segment it wants to get in (if different from the
current one). When it gets a positive answer (AUT mes-
sage), it may come in.

2) This authorization may be refused (REF message),
then, the conveyer must get into the crossing zone.

3) A conveyer stopped in a crossing zone is not consid-
ered to be in any segment.

4) The SC replies AUT when it is empty.

5) The SC replies REF when it contains a conveyer. It
then store the query in a local FIFO to reactivate the
demanding conveyer when it is empty.

6) The CC sends DEM when it wants to leave a segment,
Jjust before entering in a new one.

7) The CC leaves the crossing zone when it gets a Go
message from the SC. This message is sent when the
conveyer occupying the segment leaves it.

8) When a ccC leaves a segment (to get into another one
or to get into a crossing zone), it notifies the correspond-
ing SC by means of a OUT message. This message is also
sent when a CC leaves a czc.

9) To increase security, CC checks (message EMPTY) if 2
¢zc is empty when entrance in a segment is refused.

10) The CzC answers to EMPTY using OK (it is empty) or PB
(it already contains a conveyer).

11) When PB is sent by a €zc, the CC sends ALARM to other
conveyers and the entire system stops in an error state.
Figure 4 presents the static structure of the system as an

UML class diagram.

SC .
DEMO client 1.* MPTY()
k<oneway>> OUT() channel_command k<oneway>> OUTY()
server 1.*
server| 1..* CcC T [server
L [<<oneway>> MOVE()
- y>> GO 1
SC_channel client j<oneway>> ALARM()[client CZ_channel

sender |1 1..*| receiver
I CC_channel I

Figure 4 : The UML class diagram of the conveyer system.

Let us illustrate the rules exposed in Section 4.1. with
UML sequence diagrams. The one of Figure 5 corresponds
to a first scenario. Conveyer «c» located in segment «1»
wants to get into segment «2». It sends DEM and gets AUT,
enters in segment «2» and sends OUT to segment «1».

[2:5C | [1:5C]
L _ AUT : X
. . oUT '

Figure 5 : Sequence diagram of scenario 1.
The UML sequence diagram of Figure 6 corresponds to
a second scenario. A conveyer «cl», located in segment
«1», wants to get into segment «2» where another conveyer

«c2» is located. When «2» refuses entrance, «cl» gets into
the crossing zone «z» after having checked if it is empty.
When «c2» leaves «2», «c1» is waken up by «2» and leaves
«z».

[c1:cC| [e2:cC] [1SC| [28C| [zCzC|

{ DEM ! ! ! :
e REF | : \ X
. EMPTY . : : X
L OK E 5 :
L_our | - : :
X , our I .
X I TG :
: 5 . OUT .

Figure 6 : Sequence diagram of scenario 2.
4.2. The LfP Specification

In order to build the LfP diagrams we reuse information
found in the UML models.

4.2.1. Description of the System

Figure 7 presents the main L/P diagram. The static
structure of this is derived from the UML class diagram
(Figure 4). It declares three classes (corresponding to the
UML ones) and four media. The first three media corre-
spond to the three UML associations and specify the com-
munication protocol between classes as well as their
interaction contract with media. The last media is a local
FIFO used by SC instances to store unsatisfied queries.

model_name ;=" yeurs” ;
author :='Dan Regep’;

version :=0.0.1;

comments :=";

UML_model := "conveyers.mdl’;

const NBC :=2;

const NBS :=4,

const NBZ :=3;

type station is integer range 1..NBS;
type start_bound is integer (1,2,3);
type end_bound is integer (1,2,3);

static instances:
CC with HID in range .. NBC;
SC with HID in range 1.NBS ;
CZC with HID in range 1..NBZ;
properties:

ISC H cC ||ICZC Il

Figure 7 : The LfP main diagram of the conveyer example.
] The declarative part of the L/P main diagram consists
of:

» general model information. Model name, author, ver-
sion, associated UML model.

» declaration of constants and new data types. NBC, NBS
and NBZ constants respectively define the number of
conveyers, segments and crossing zones. A new type
(station) defining valid station identifiers. Two enu-
merated types (start_bound and end bound) repre-
senting valid bounds of a segment in terms of stations
(stations are numbered). We assume here that there is
only one station per segment. This may be changed
without modifying the structure of the LfP model.

* declaration of static class instances with their initial
context. We find two conveyer instances, four segment
instances and three crossing zone instances.

« a list of properties to be verified for the system. These -

57

declarations belong to the property view of the system.
We provide some interesting properties in Section 4.3.

4.2.2, Description of the SC Class

Figure 8 presents the SC class. The declarative part
specifies for each connected media binder, the list of ac-
cepted messages (marked as in) and possible outgoing
messages (marked with out). According to the sequence di-
agrams of the two scenarios (Figure 5 and 6), a SC class in-
stance may receive an entrance demand (DEM) or a
notification message (OUT). A segment controller may reply
to the demanding conveyer controller using two alternative
messages: entrance authorization (AUT) or entrance reject
(ReF). It also sends GO to let a waiting conveyer come in
from a crossing zone.

messages:

from SC_channel.server

in DEMO);
in OUTY();
out AUT();
out REF()

out GO();
from FIFO_channel.in DEM ouT

out WRITE (in opaque data);
from FIFO_channel.out MO MO

in READ (out opaque data);
internal_methods:
procedures:

Figure 8 : The SC (Segment Control) class.

The main L/P-FSM (Figure 9) specifies the execution
contract of the sc class. Its purpose is to merge together the
two alternative behaviors corresponding to the execution
scenarios from Figure 5 and Figure 6.

The main LfP-FSM states that DEM and ouT methods
should be mutually exclusive. Moreover, OUT can be exe-
cuted only if the segment contains a conveyer (segment
state is full).

The main LfP-FSM declares three local variables (dupli-
cated in any class instance): status represents the execu-
tion state of a class instance (empty or full); index stores
the number of pending demands; HID represents the class
instance identifier. HID corresponds to a unique instance
identifier.

When constructing new class instances, all context vari-
ables have to be initialized.

Main FSM
O—~{1—+0O

context : BEGIN

local status is Cempty’, *full’);
local index := 0 is integer range 0..NBC;
local HID is integer range 1..NBS;

<status = 'full‘:
DEM < Jour
_ FULL_OR_EMPTY
Figure 9 : The main LfP-FSM of the SC class.

Figure 10 presents the DEM method LfP-FSM. It defines
conveyer_ID, a local variable used to store the identifier of
a demanding conveyer.

The DEM execution contract has two branches: _

» When the segment is empty, access is granted and the
segment state changes to full.

» When the segment is full, the query is stored in a FIFO
media for further process and the index of pending
demands is incremented. Then, a negative response
(REF) is sent back to the conveyer.

Communication with the FIFO has oneway asynchro-
nous message passing semantics.

context : local conveyer_ID := 0 is integer range 0..NBC;

QO BEGIN

>

SC_channel.server
1 «msg = 'DEM'>

conveyer_ID :=
mag.discriminator.sourcelD;

<status = ‘full's

index+s+ ;

FIFO_channel.in
»»]

mgg := 'WRITE'; 1

mag.data := conveyer ID ;

<status = 'empty’s
status := 'full’;

SC_channel.server

SC_channel.server

I
':;9 1= 'AUT
mBg.discriminator.destinationID:«

1
conveyer ID;

meg := 'REP';
mag.discriminator.destinationID:«
conveyer 1ID;

FINAL
Figure 10 : LfP-FSM of the DEM method.

Figure 11 presents the LfP-FSM of the ouT method. As
for DEM, it also contains a local variable to store conveyer
identities. Behavior of the oUT method consist of two alter-
native branches:

» If there is no pending request (index = 0) then status
of the segment is changed to empty.

o If there is at least one pending requests, the oldest
demand is retrieved from the FIFO and a GO message is
forwarded to the corresponding conveyer.

context : local conveyer_ID :=0 is integer range 0..NBC;

BEGIN
SC_channel.server

1 <msg = 'OUT'>
I L

<index > 0>
index --;

FIFO_channel.out

>l
>

<index = 0>
status := ‘empty;

msg := °‘READ;
conveyer_ID := msg.data;

SC_channel.server

msg := 'GO';
meg.discriminator.destinationiDd :=
conveyer_ID;

FINAL

Figure 11 : LfP-FSM of the OUT method.
Due to space reasons the LfP representations of cc and
€z classes are not presented in this paper.

4.2.3, Description of the SC_channel media

The structure of the SC_channel media is presented be-
low in Figure 12. Its context consists of two local variables:
client_ID represents the identifier of the connected cc
class and message is used to encapsulate the contents of an
incoming message.

SC_charmel has two binders (client and server)
through which it is connected to a client (a cc class in-
stance) and to all server instances together (all cs class in-
stances). The connected conveyer is the client (client
multiplicity is one) and all connected segments are servers
(multiplicity of the server binder is marked as al1).

The media may transport several messages. Possible
messages and their parameters are enumerated for each
binder. The communication is asynchronous through both
binders.

When receiving a message through the client binder, the
media dispatches it to the concerned server. This is
achieved using a simple copy of the message contents from
the incoming binder to the output one.

In order to match an incoming message from a server,

58

the message destination should be identical to client_ID.

context :
local client_ID is integer range 1..NBC;
local message is opaque;

binders:
client: asynchronous ; server: asynchronous;
multiplicity :=1 ; multiplicity := all ;
messages: in DEM (); messages: out DEM ();
in OUT(); out OUT ();
out AUT (); in AUT ();
client server

:&i

meg.#all :« message;

message :« msg.¥all;

BEGIN
server

client
mag.discriminator.destinationID « client_ID> '

msg.#all := message; message :s mag.#all; 1

Figure 12 : LfP-FSM of the SC_channel media.
4.3. Properties to be Verified

Two kinds of properties may be considered with regards

to modular specification: '
* properties local to a module,
s properties global to the complete specification.

Local properties concern the internal behavior of a com-
ponent independently from its environment. If we consider
the Segment Control class, local properties express the link
between the demand of a conveyer and the answer of the
segment, such as:

i. if SegmentControl gets request to enter an empty seg-
ment, it answers “OK” to the conveyer,

ii. if SegmentControl gets request to enter a full seg-
ment, it answers “REF” to the conveyer.

Global properties concern the behavior of the complete
system; verification thus requires the specification of the
entire system. An example of such a property is :

iii. the system is deadlock free.

5. FORMAL VERIFICATION

L/P specifications cannot be used «as is» to perform for-
mal verification. Thus, a translation into a verification lan-
guage is necessary. The generated formal specification is
not as easy to read as the one in L/P, but handles automated
formal verification.

It is usually impossible to perform formal verification
without abstraction and reduction of the system at the for-
mal Ievel. However, as most abstractions and reductions
rely on the semantics of the property to be verified, we pro-
duce one formal specification per property to verify. Thus,
the obtained formal specification is equivalent to the LfP
one regarding the considered property.

We choose well formed colored Petri net [3] because, in
addition of excellent capabilities for the description of con-
current systems, they support both structural and behavioral
verification methods.

Let us use the conveyers example to illustrate validation
of the behavioral property stated in Section 4.3. To validate
this system, we used CPN-AMI, a Petri net based CASE en-
vironment [11].

5.1. Colored Petri Nets

This section informally presents colored Petri nets.

A colored Petri net is a 5-uple <P, T, Pre, Post, Types,
My> where:
« P is a set of places (depicted by circles).
« T is a set of transitions (depicted by rectangles).
» Pre[t] is the precondition function for transition t.
» Post[t] is the postcondition function for transition t.
* Types is the set of basic types. A basic type is a finite
set.
* M, is the initial marking.
Figure 13 depicts a simple colored Petri net with 3 plac-
es (P1, P2 and P3) and 2 transitions (t and t1),

class

P1 DPI Idis 1..3;
P2Dp2 Valuel is 1..10;
2*<1, 3> <1, 5>, <2, 7> Value2 is 4..15

domain
DP1 is <Id, Valuel>;
DP2 is <Id, Value2>;
DP3 is <Id, Valuel, Value2>;

<6, V1> o, v <i, v2>
t %n Lo

<i, vi++1, v2> var
i,jinId;
vl in Valuel;
v2 in Value2;
pp3 P3

Figure 13 : Simple colored Petri net example.

To each place p, a domain Dom(p) is associated: Dom(p)
is the cartesian product of some basic types. In Figure 13,
basic classes are id, Valuel and Value2. The domain of P1
is the cartesian product of Id and Valuel, the one of P2 is
the cartesian product of Id and Value2 and the one of P3 is
the cartesian product of Id, Valuel and Value2

A marking M(p) is associated to each place p: M(p) is a
multi-set over Dom(p). Therefore, a marking M is the func-
tion that associates a marking to each place p of P. An ele-
ment of a marking in a place is called a token. In Figure 13,
the initial marking associates:

« two tokens having the <1, 3> profile to P1,
« tokens <1, 5> and <2, 7> to P2,
« the empty multi-set to P3.

Pre and Post functions describe how a marking is modi-
fied when an action is performed. Since actions are associ-
ated to transitions, instead of «an action is performed» we
say: «a transition is fired».

To each transition, a set of variables Var(t) is associated.
Each variable is defined over a basic type. In Figure 13,
Var(t) = {i, j, v1, v2} and Var(t1) = {i, v2}. Variables i and
j are defined over the basic class Id, variable v1 is defined
over Valuel and variable v2 is defined over Value2

Let us call a binding of t the association of a value to
each variable of Var(t). Let x a binding of't, Pre[t][p, x] re-
turns a multi-set over Dom(p). A transition t can be fired for
a marking M iff:

« constraints over the binding are satisfied (they are called
guards),
« Pre[t][p, x] is included in M(p) for all p of P,

Post{t][p, x] also returns a multi-set over Dom(p). If t
can be fired for binding x, then a new marking M' can be
computed: M'(p) = M(p) - Pre[t][p, x] + Post[t][p, x]. Since
a variable may appear in many post or preconditions, it is
useful to define the successor (++n) and the predecessor (-
-n) functions.

In Figure 13, many bindings can be found for transition
t, likei=3,j=5, vl =7, v2 = 6. However, t cannot be fired
for this binding since <3, 7> is not a token in P1 for the ini-
tial marking. The following binding allows t to be fired : i

59

=1,j=2,vl =3,v2 =7 (token <1, 3> belongs to P1 and
token <2, 7> belongs to P2, there is no precondition for P3
and the guard is satisfied since i <j). When t has been fired
a new marking M, is computed:

« P1 contains the token <1, 3>,

« P2 contains the token <1, 5>,

* P3 contains the token <1, 4, 7>. ,

- From this new marking no binding can be found for t to
be fired (the only possible binding wouldbei=1,j=1, vl
=3, v2 =5 and it does not satisfy the guard i <j). Figure 14
shows the reachability graph of the net figure Figure 13.
The double circled state corresponds to the initial marking
(M) of the net.

Pl = {2%<1,3>}, P2 = {<I, 5>,<2,7>},P3 =0
Pl = {2%<1,3>}, P2 = {<1,5>},P3 =0

27 >
1(1,2,3,7)
Pl ={2*<1,3>},P2={<2,7>},P3=0
(1,5 —>

P1={<1,3>},P2= {<]l, 5>}, P3={<1,4,7>} t(1,5)

(15 t1(2,7)

t(1,2,37)
Pl={<1,3>},P2=0,P3 = {<2,7>} P1={2%<1,3>},P2=0,P3=0
Figure 14 : Reachability graph of the simple colored Petri net.

5.2. From LfP to Colored Petri Nets

We have to ensure that results computed at the Petri net
can be translated into LfP terms. Therefore, the translation
process has to preserve the component structure of LfP
models. This strategy also enables modular verification
when it is possible (e.g. for local properties). ‘

Therefore, we work at the module level (modules are de-
duced from L/P classes). We then compose them to produce
a complete Petri net of the system.This procedure has two
main steps:

* Generation of Petri net modules from L/P-FSMs.
» Composition of Petri net modules

To illustrate the translation procedure, we consider the

specification of the SegmentControl.

5.2.1. Generation of Petri Net Modules

Structure of the Petri net. To obtain the structure of the
Petri net, we consider LfP-FSM of the input model:

« In the Main-FSM, transitions corresponding to methods
are replaced by the corresponding LfP-FSM.

« Places initiating methods are identified with the BEGIN
place in the corresponding LfP-FSM

» Method output places are identified with FINAL places
in the corresponding L/P-FSM.

» We preserve at the Petri net level, names of L/P places
and transitions. Unnamed L/P places and transitions are
given an arbitrary name in the Petri net. Naming is
requested by some verification tools.

If we consider the SegmentControl class, we obtain the
Petri net of Figure 15. Black places and transitions are the
one of the Main-FSM. Transitions DEM, t1, t2, t3 and plac-
es p1, P2 describe the method DEM. Transitions OUT, t4, t5
and place P3 describe the behavior of method ouT. Tran-
sition DEM (respectively ouT) are shared by the Main-FSM

and the method DEM (respectively OUT).
Channel SC server and FIFO_channel out correspond
to media.

The verification we consider does not matter with the
implementation of communication channels. We may thus
abstract their specification with a single place. However it
requires their implementation to respect the following prop-
erty: channels are deadlock and loss free. This assertion
has to be inserted as an implementation note used by code
generators.

Color-domains, valuations and initial marking. Once
the structure of the Petri net obtained, it is necessary to de-
fine variables management using color classes and do-
mains, variables, valuations and guards. A color domain
representing the information required to determine the state
of the system is associated to places in the Petri net model.

We thus consider the variables identified in FSMs:

¢ Information depicted by variables declared in the main
FSM is associated to place,)
. I;)llaces derived from methods are enriched by local vari-
ables.
o Information in a channel contains three parts :
source, the destination and the value of the message.
<full,1,1,0>,<empty,2,0>,<ful},2,3,0>,<empty,4,0>

the

BEGIN
StatusSegment <status,
HID,index >
?l%“il:aex > <status,HID,index--1 >
OUT method |)
FULL_EMPTY <emf L
HiDnndex > index =0},

StatusSegment] <status,conveyerlD,
i >
HID, HID,index

index> o

<full, P3

A

index > HID, index >

i >
index <status,

conveyerID,
HID,index >
[msg_chanel = DEM] [status = full and ouT s
msg_channel = QUT] index>0] :,J
<status, l L
<status, conveyerID, msg_channe], < msg_channel,
i HID, ’ conveyerID,HID>
ID,index > index > fﬁxg:ycrm, ¢
] <GO,conveyerlD,
P1 3\ [status = empty) HID>

StatusSegmentLocal AUT conveyerlD’

iD= channel SC_server

1 <msg_FIFO,
T_channel SC conveyerID,HID>

<status,
conveyerlD,
<status,conveyerlD, HID,
HID, index > index >

a [status = full]) <WRITE conveyerID,HID>
<sttus,conveyerID, FIFO_chane!_ou
HID,index++1 > T_channel_FIFO

P2

Local

<REF conveyerID, HID>
<status,conveyerID,
e HID,index >

=

\.

DEM method
Figure 15 : Petri net of the SC (SegmentControl) class.

Let us illustrate this on the Petri net in Figure 15 and the
corresponding declarative part in Figure 16. Places of the
main FSM carry: status of a segment (empty or full), iden-
tity of the segment (integer between 1 and 4) and an index
that indicates the number of conveyer waiting for segment
release. This information is represented by the StatusSeg-
ment domain. Places derived from methods also contain the
identity of the conveyer willing to enter the segment.
Therefore the new domain, StatusSegmentLocal, is de-
fined. Each of the two communication channels has its own
domain (T_channel_scand T_channel_ FIFO).

The following declaration contains the classes, domains

60

and variables that are necessary for the description of the
SegmentControl class.
CLASS

Tstatus is ([empty, full);

TCC is 1..2;

TSC_C2C is 1..4;

Tindex is 0..2;

Tmsg_channel_sSC is (OUT,DEM, AUT, REF, GO, VIDE, OK, PB] ;

Tmsg_FIFO_channel is [WRITE,READ];

DOMAIN

StatusSegment is <Tstatus,TSC_CZC,Tindexs>;

StatusSegmentLocal is <Tstatus,TCC,TSC_CZC,Tindex>;

T_channel _SC is <Tmsg_channel_SC,TCC,TSC_CZC>;

T_channel_ FIFO is «<Tmsg_FIFO channel,TCC,TSC_CZC>;
VAR

status in Tstatus;

conveyerlD2 in TCC;

conveyerID in TCC;

HID in TSC_CZC;

index in Tindex;

msg_channel in Tmsg_channel_ SC;

msg_FIFO in Tmsg_FIFO_channel;

Figure 16 ; declarative part of the SC (SegmentControl) class.

Arcs valuation and transitions guards are also deduced
from the LfP specification.Let us consider transition DEMin
Figure 15. ‘

To be fired it requires one token from place
FULL_OR_EMPTY (domain StatusSegment) and one token
from channel SC_server (domain T channel SC). The
arc from place FULL,_OR_EMPTY to DEMis valuated by the tu-
ple <status,HID,index>; the one from
channel_SC_server to DEM is valuated by the tuple
<msg_channel, conveyerID HID>,

So, to fire DEM, a message must be sent to a segment
identified as full or empty (this segment is not responding
to arequest) and HID variables must be the same in both val-
uation. The token stored in the DEM output place is a combi-
nation the input: <status,conveyerID,HID,index>.

Transition t3 authorizes (t2 refuses) the entrance in the
segment; t3 has the following guard [status = empty] (re-
spectively [status = full] for t2). These guards corre-
spond to the preconditions defined in the LfP-FSM
(Figure 10).

This way, places domain, arcs valuation and transitions
guard are computed from the L/P specification. Petri net of
Figure 15 and declaration in Figure 16 represent the com-
plete Petri net specification of SegmentControl Class.

The initial marking of the Petri net corresponds to the
static instantiation of classes. For SegmentControl, we in-
dicate which are the full segments; for ConveyerControl
we indicate the segment identifier where each conveyer is
and, for we indicate that all CrossingZoneControl in-
stances are empty.

Petri net reduction. As the Petri net is automatically
synthesized from the LfP specification, its structure may be
not optimized. Some reductions are possible regarding the
class of properties to verify. These reductions concern the
Petri net structure. Therefore, combinatorial explosion of
the corresponding state graph is reduced and verification
becomes easier.

If we consider deadlock freeness, reduction techniques
presented in [6] can be applied. If we consider verification
of temporal properties, reduction techniques presented in
[16] are necessary.

The first technique is compatible with deadlock freeness
property (property iii.), the second one is compatible with

Properties i.and ii. Some reductions, as the following one,
belong to the two techniques. The rule we apply aims to
identify two transitions (t, and t,) where the bindings of t,
depends only on the bindings of t,,. Such a reduction is pos-
sible between transitions DEM and (t1 and t3).

Figure 17 shows the reduced Petri net. Black transitions
replace the three ones that have been reduced. The place be-
tween DEM, t1 and t3 has been suppressed.

BEGIN
StatusSegment

<full,1,0>,<empty,2,0>,<full,3,0>,<empty,4,0>

<status,
HID,index >

<status,

HID,index > <status,HID,index--1 >

FULL_EMPTY [index =0)
StatusSegment Ve fﬁgﬁ‘nyd x> “

~

<status, <status,conveyerlD,
, HID,index >

<status,conveyerID,
HID,index >

our

)

msg_channel = O
[status = empty && EM_83

msg_channel = DEM];

<status, <], <msg channel,
HID,index > 5‘,‘5%;‘3}}’{;",“ " conveyerlD,HID>
HID>
<AUT,conveyerID, <GO,conveyerlD,
s, HID> ’ ~L HD>
index >
<msg_channel, channel_SC_server ¢ msy FIFO,
conveyerlD, ‘ :
[status = full && HID> T_channel_SC conveyerlD,HID>

msg_channet = DEM}

DEM_t < TE,conveyerID,HID>

mo_:hlnnel:ou
T_channe!_FIFO

<status,conveyerlD,
HID;index++1 >

StatusSegmentLocal
<REF,conveyerID,HID>

<status,conveyerID,
HID,index >

L
Figure 17 : Reduced Petri net of the SC (SegmentControl) class.
5.2.2. Composition of Petri Net Modules

Composition. The composition of modular Petri nets is
obtained by identification of channel binding points. In our
case, as each channel is represented by a single place, we
perform the fusion of all the places representing the same
channel.

Abstraction of system environment.To verify our sys-
tem, we need a representation of its environment. At the
verification level, this environment consists of the Com-
mand class (Figure 4) and channel_command.

Due to possible communications between Command and

cc classes, this environment can be represented a generator

of messages coming from the communication channel.
Command sends all possible messages since we have no con-
straints on it. Therefore, even if we consider a particular ini-
tial configuration, the evolution of the system leads to all
possible configurations. :

The complete model. The assembled model, obtained by
composition of reduced modules, contains 20 places, 28
transitions and 92 arcs.

5.3. Verification of properties

We consider two types of properties: local and global.
5.3.1. Local properties

Let us consider SegmentControl with properties i. and

61

ii. The formal language we use to express such properties is
a temporal logic [5], properties i. and ii. are interpreted as :
« . if transition DEM is fired with the binding (status =
empty, conveyerID, HID, index, msg_channel = DEM)
then place channel_SC_server will eventually contain
the token <AUT,conveyerID,HID>,

* ji.: if transition DEM is fired with the binding (status =
full, conveyerID, HID, index, msg_channel = DEM)
then place channel_SC_server will eventually contain
the token <REF,conveyerID,HID>
To verify such a property, it is not necessary to consider

the entire system specification. The Petri net of ControlSeg-
ment class associated to an abstraction of its environment
with an adapted initial marking is sufficient.

We use PROD [20], a model checker dedicated to col-
ored Petri nets and integrated as a component in CPN-AMI
[11] to verify the temporal logic specification of these por-
perties. .

These properties are verified. Once all classes individu-
ally verified, we can consider global properties.

5.3.2. Global Properties

We now want to verify property iii. Theorem provers are
able to check such a property without considering a specific
instantiation of the system (e.g. a given number of segments
agd conveyers). However, such proofs cannot be automat-
ed.

To enable automated proofs based on the reachability
graph, we have to instantiate the system. Such instantia-
tions can be deduced from the expected size of the system.
A well accepted strategy is to start with a small number of
resources and components to check if the property is cor-
rect. Then we use realistic dimensions of the system for a
safer verification.

So, let us start with two conveyers and four segments.,
We first compute the reachability graph of the complete
Petri net and look for terminal nodes (i.e. specification deal-
docks). We also used PROD to evaluate this property.

The computed reachability graph holds 3072 nodes,
6209 arrows and 33 terminal nodes. Thus, our specification
is not correct. PROD helped us to extract a path between the
initial state and one of the terminal nodes. This path builds
a scenario explaining why our specification is not deadlock
free.The scenario is the following :

« Initially conveyer 1 is in segment 1 and conveyer 2 is in
segment 3,

* Conveyer 2 asks for segment 2 and enters in it.

« Conveyer 1 then asks for segment 2 and is not allowed
to enter it.

« Conveyer 1 therefore asks to enter in crossing zone 1.

« It is allowed to enter this crossing zone which is imme-
diately set to occupied even if conveyer 1 has not yet left
segment 1.

* Conveyer 2 then asks for segment 1, it is not allowed to
enter since conveyer 1 has not yet left the place.

« Therefore it asks to enter crossing zone 1. This raises a
problem and the system stops.

This deadlock is due to asynchronous communication
between classes : conveyer 1 has not yet considered the au-
thorization from the crossing zone since the crossing zone
considers it is already in. Then, our specification does not
ensure that the number of occupied segments and crossing

zones remain equal to the number of conveyers. The verifi-
cation process shows an implicit property that should be ex-
plicitly expressed in the LfP verification view.

To solve this problem, a communication protocol be-
tween classes has to ensure that when a crossing zone (or a
segment) accepts a conveyer’s demand, this conveyer is no
more considered as being in the crossing zone (or segment)
it is leaving, Transactions ensure such a property. THus, the
systems designer should update the LfP specification ac-
cording to this observation. Such an operation corresponds
to what we called «formal debugy in Figure 1.

6. CONCLUSION

In this paper, we have presented an evolutionary proto-
typing methodology that promotes formal verification and
debugging of a specification as well as code generation of
distributed programs.

This methodology relies on LfP: a formalism offering
structuration capabilities and having a precise semantics
suitable for the description of interaction between compo-
nents of an embedded distributed system. The strong se-
mantical definition of LfP aims to eliminate problems
observed on a standard notation such as UML when it
comes to code generation and formal verification. Howev-
er, LfP remains connected to UML since we consider it as
an additional diagram. Some parts of this diagram may be
deduced from classical UML diagrams but system design-
ers have to provide new information regarding cooperation
between classes in the system.

We illustrated our methodology on a small example: a
conveyer system. This example showed that non-trivial er-
rors can be detected on a system that appears to be correctly
described. The detected problem deals with sophisticated
behavioral aspects of the system which are due to some un-
specified aspects on the system (here, some communication
issues were not properly stated).

Based on the study presented in this paper, it appears
that our methodology has some «nice» capabilities when
designing a system:

» It is connected to a standard UML-based approach. -In
our methodology, UML design fits the early conception.

« LfP is used as a basis for detailed description of the sys-
tem and a basis for code generation and formal verifica-
tion.

« Qur transformation techniques preserve a strong corre-
spondence between the model level (L/P), the formal
level and the program level.

« The use of formal methods to check properties may be
hidden to the end user. Then, it can be used by engineers
having a low knowledge on formal methods.

« Formal verification techniques enable formal debug at
the mode! level. Then, if we assume that no bug is intro-
duced by code generators, system implementation
should behave according to the verified properties.

Our methodology is partially implemented in CPN-
AMI, a Petri net based CASE environment.

7. REFERENCES

(1] JR.Abrial, "The B-book", Cambridge University Press, 1995

{21 M. Bjorkander, "Graphical Programming Using UML and SDL", in
Computing Practice, Vol. 33, No. 12, December 2000, <http://www.com-
puter.org/computer/c02000/rztoc.htm#rz030>

62

(3] G. Chiola, C. Dutheillet, G. Franceschini & S. Haddad, "On Well-
Formed Coloured Nets and their Symbolic Reachability Graph", High
Level Petri Nets. Theory and Application. Edited by K. Jensen G.Rozen-
berg, Springer Verlag 1991

{4} M Elkoutbi, R. Keller :"Modeling Interactive Systems with Hierar-
chical colored Petri nets", In Proceedings of the 1998 Advanced Simula-
tion Technologies Conference, pages 432-437, Boston, MA, April 1998.
The Society for Computer Simulation International. HPC98 Special ses-
sion on Petri-Nets.

[5] E.Emerson, "Temporal and Modal Logic"” Handbook of Theoretical
Computer Science, Chapitre 16, pages 995-1072 , Elsiever Science, 1990
[6] S.Haddad, "A Reduction Theory for Coloured Nets", LNCS : High
Level Petri Nets. Theory and Application. Edited by K. Jensen , G.
Rozenberg, Springer Verlag 1991 .

[7] V. Issarny, T. Saridakis and A. Zarra : "Multi-view Description of
Software Architectures"”, in Proceedings of the 3rd ACM SIGSOFT Inter-
national Software Architecture Workshop, pages 8184, November 1998,
http: //www.irisa.fr/solidor/doc/../doc/ps98/isaw98.ps.gz

[8] ITU-T : "Open Distributed Processing”, X.901, X.902, X.903 and
X.904 standards, <http:/www.itu.int/itudoc/itu-t/rec/x/x500up>

[9]1 N.Leveson, "Software Engineering: Stretching the Limits of Com-
plexity", Communications of the ACM, Vol 40(2), pp 129-131, February
1997.

[10] J. Lilius, I. Porres Paltor :" vUML: a Tool for Verifying UML
Models", in Proceedings of the 14th IEEE International Conference on
Automated Software Engineering, October, 1999. <http:/dlib.compu-
ter.org/conferen/ase/0415/pdf/04150255.pdf>

[11] the LIP6-SRC team, the Mars project homepage, <http://www-
src.lip6.fr/logiciels/mars/>

{12] Lugi & J. Goguen : "Formal Methods: Promises and Problems”,
IEEE Software, Vol 14, N°1, pp 75-85, January 1997.

[13] Lugi, V. Berzins, M. Shing, R. Riehle and J. Nogueira : "Evolutio-
nary Computer Aided Prototyping System (CAPS)", in Proceedings of the
Technology of Object-Oriented Languages and Systems (TOOLS 34),
August 2000, Santa Barbara, California

[14] N. Medvidovic, Richard N. Taylor : "A Classification and Compari-
son Framework for Software Architecture Description Languages", IEEE
Transactions on Software Engineering, vol. 26, no. 1, january 2000.
<hitp://dlib.computer.org/ts/books/ts2000/pdf/e0070.pdf>

[15] OMG, "OMG Unified Modeling Language Specifiacation", version
1.3, June 1999, <http://www.omg.org/cgi-bin/doc?ad/99-06-09.zip>

[16] D. Poitrenaud and J.-F. Pradat-Peyre, "Pre and Post-agglomerations
for LTL Model Checking", proceedins of 21st International Conference
on Application and Theory of Petri Nets, Aarhus, Denmark, June 2000,
pages 387-408, Springer-Verlag

[17] D. Quartel, M. van Sinderen, L. Ferreira Pires : "A model-based
approach to service creation”, in Proceedings of the Seventh IEEE Com-
puter Society Workshop on Future Trends of Distributed Computing Sys-
tems, pages 102-110. IEEE Computer Society, 1999. <http:/
wwwhome.cs.utwente.nl/~quartel/publications/Ftdcs99.pdf>

{18] D. Regep, F. Kordon, "LyP: a specification language for Rapid pro-
totyping of Concurrent Systems", to appear in proceedings of the 12th
IEEE Intemational Workshop on Rapid System Prototyping, Monterey,
June 2001

[19] J. Saldhana and S. M. Shatz, "UML Diagrams to Object Petri Net
Models: An Approach for Modeling and Analysis," Proceedings of the
Int. Conference on Software Engineering and Knowledge Engineering
(SEKE), Chicago, July 2000, pp. 103-110.

[20) K. Varpaaniemi, J. Halme, K.Hiekkanen & T.Pyssysalo, "PROD
reference manual”, Technical Report B13, Helsinki University of Techno-
logy, Digital Systems Laboratory, Espoo, Finland, August 1995

A Model Checking Framework for Layered Command and Control
Software |

Kathi Fisler Shriram Krishnamurthi
Department of Computer Science Computer Science Department
Worcester Polytechnic Institute Brown University
kfislerecs.wpi.edu sk@cs.brown.edu
Don Batory Jia Liu
Department of Computer Science Department of Computer Science
University of Texas at Austin University of Texas at Austin
dsbecs.utexas.edu jliu@cs.utexas.edu
March 21, 2001
Abstract

Most existing modular model checking techniques betray their hardware roots: they assume that modules com-
pose in parallel. In contrast, layered software systems, which have proven successful in many domains, are really
quasi-sequential compositions of parallel compositions. Most such systems demand and inspire new modular veri-
fication techniques. This paper presents algorithms that exploit a layered (or feature-based) decomposition to drive
verification. Our technique can verify most properties locally within a layer; we also characterize when a global
state space construction is unavoidable. This work is motivated by our efforts to verify a military fire simulation and
support software system called FSATS.

1 Introduction

Today’s software applications are modularized around objects that collaboratively interact to provide the functionality
of an application. This is the fundamental starting-point for contemporary object-oriented design as well as contem-
porary modular model checking techniques [15, 19, 23, 27].

An alternate form of modularity centers around features rather than objects. Programmers design and construct
applications by introducing one feature at a time. Each feature adds new capabilities and responsibilities to previously
existing objects and introduces new objects to a design. A characteristic of features is that they are largely independent:
this substantially reduces application complexity (because the concerns and implementation details of one feature are
separable from those of others) and increases application extensibility (because new features can be easily added and
unwanted features removed). Feature-oriented design is a form of step-wise refinement in which the refinements are
entire features, rather than low-level changes to individual statements.

Many research efforts now approach design through features, including layers [5], collaborations [26], aspects [22]
and units [14]. In this paper, we call them layers to evoke the visual imagery of feature-based refinement. Layers have

“been particularly successful in software product-lines, where each application of a product-line is defined by a unique

combination of features. A brief sampling of successful designs in this vein includes a military command-and-control
scenario simulator [4], a programming environment [13], network protocols and database systems [5, 6, 33], and
verification tools [16, 30].

The success of layered designs at implementing software product-lines suggests a tantalizing prospect: they may
also assist in validating product-lines. Layers have well-defined interfaces that permit their composition to build larger
systems. Layers tend, at least in principle, to obey the characteristics of components [17, 20, 31], such as separate
compilation, multiple instantiability and external linkage. Perhaps we can verify each layer individually, and perform
cross-layer verification when composing layers.

63

As a case study, we are especially interested in a layered system called FSATS, which implements a military
command-and-control scenario simulator [4]. In particular, we wish to apply model checking to FSATS. FSATS is
a particularly good candidate for model checking for two reasons. First, the design includes specifications of state
machines [4], which eliminates the problem of deriving such state machines from the software. Second, the system
has several temporal properties (for instance, every accepted mission eventually results in a weapon firing) that are
especially amenable to model checking.

FSATS is a complex collection of over 19 layers that can be composed independently to form scenario simulators.
This immediately makes the straightforward application of model checking impossible, due the combinatorial number
of possible systems, and the sizes of the larger compositions. FSATS has thus inspired our research into new forms of
modular algorithmic verification. As FSATS is too complex to serve as a running example in this paper, we discuss
it briefly to elicit its key characteristics, then illustrate our development on two simple examples that distill these
characteristics.

The rest of this paper is organized as follows. Section 2 discusses prior work on modular verification and its
relationship to our work. Section 3 discusses FSATS and presents our methodology. Section 4 presents conclusions
and discusses avenues for future work.

2 Background and Related Work

Model checking is a technique for proving logical properties of systems [9]. Its successful application to hardware
makes its use on software systems an attractive proposition. In a canonical model checker, a design is represented
as a (finite) state machine, while properties are usually expressed in variants of temporal logic. Model checkers
handle designs consisting of several machines running in parallel by automatically computing the cross-product of the
machines, then applying their algorithms to the resulting single machine; we exploit this feature in section 3. For an
extensive survey of model checking, we refer the reader to the book by Clarke, Grumberg and Peled [9]. In the rest of
this paper, we assume a basic familiarity with model checking.

Model checking algorithms vary with the logic of properties. Our work extracts properties of layers by examining
the labels on interface states. This assumes the model checker uses state labeling, which is the technique employed
for branching-time temporal logics such as CTL. To simplify the development, we present our algorithms assuming an
explicit representation of the state space of a system. In practice, many model checkers represent state symbolically
rather than explicitly [25]. Our algorithms are insensitive to this difference; indeed, we performed the verification
tasks in this paper on a model checker employing symbolic representations [32].

Several researchers have described techniques for modular verification of designs [15, 19, 23, 27]. These tech-
niques are based on a hardware-oriented notion of modularity, in which modules are composed in parallel. For
instance, one module might be a CPU, while another module represents a floating-point co-processor. The research
then shows how to ensure the preservation of individual properties about the CPU or floating-point processor; using
these techniques to prove properties involving both devices requires substantial experiénce, and is not always possible.
These results do not apply to most software systems, where control flows sequentially between modules.

Some preliminary research [2, 10, 24] has begun to consider modular verification with sequential, rather than
parallel, control flow. The original work [24] handles systems with only one state machine; it also lacks a design
framework, such as layered design, that drives the decomposition of the system. Subsequent work uses hierarchical
state machines [2] and StateCharts [10] to provide this decomposition, but the resulting systems are still monolithic.
In contrast, we analyze systems with three key distinguishing features:

e Each layer introduces a feature that was not previously present in the system; the layer does not simply refine
existing features.

e Layers are developed without knowledge about all the other layers that may exist in a final, composed system.
e Each layers (unit of sequential composition) encapsulates simultaneous extensions to multiple state machines.

The work by these other authors does not even admit these design possibilities. Alur and Yannakakis cite the problem
of sequential verification over multiple state machines as open for future work [2]. Furthermore, they do not discuss
how to handle systems that involve quasi-sequential composition of parallel compositions, such as exist in FSATS.
Alur et al. discuss analysis techniques for sequential refinements within modules that are composed in parallel (this

64

issio)

Forward Observer Field Officer Mortar

Figure 1: A sample of layered state machines from FSATS. The top layer is the base system, the second adds missions
that fire mortars, and the third adds missions that fire artillery. The full design contains state machine hierarchies for
the artillery as well as for other personnel in the command hierarchy.

work uses the term “behavioral hierarchy” for refinements within modules and “architectural hierarchy” for parallel
compositions of modules) [1]. The critical difference between their work and ours is that theirs does not support
coordination between sequential refinements across modules. Our work, in contrast, considers verification for layers
that gather related sequential refinements into modules. Encapsulating related refinements in layers allows us to verify
properties of entire features in isolation from other features, even when those features cross-cut several actors (i.e.,
objects). Without a layered architecture, isolating this information from across parallel modules is difficult if not
impossible.

3 Verifying Layered Software Systems
3.1 FSATS: An Example of Layered Design

FSATS is a command and control simulator. At core, it consists of a series of protocols for selecting weapons to fire
at potential targets. The actors in FSATS are various military personnel (forward observers, field officers, brigade
commanders, etc) arranged in a command hierarchy and the weapons at their disposal. Observers repeatedly iden-
tify potential targets and send messages along the command hierarchy to initiate missions against the targets. The
personnel in the hierarchy accept or forward missions depending upon the weapons at their disposal. In the FSATS
implementation, each potential target spawns a new thread in which to execute the protocol for handling that target.

Batory et al. have presented a layered design of FSATS, written largely as a set of layered state machines [4].
Figure 1 shows a sample of the layered state machines that comprise FSATS. A careful look at the machines and the
code shows several characteristics that are potentially interesting from a model checking perspective:

e Each layer’s (extension) state machines compose sequentially with their corresponding base machines.
e Each layer (extension) attaches to a common start and end point from the base layer.

e The conditions under which control enters a particular layer are similar across all actors and are closely coordi-
nated through message passing.

e The state machines essentially synchronize at the end of a mission (on the EndMsg messages) right before the
involved actor threads terminate.

These four observations drive the methodology and algorithms presented in this paper. The combination of these
characteristics enable a powerful, modular approach to verification in which we verify layers individually and reason
about property preservation under layer composition.

65

reentry exit reentry exit
B: (out) (in)
I = <exit, reentry>
—

N ——— 27N,
E: out{ r~—()$_,’ in T

Figure 2: Composition of a base system B with an extension E via an interface.

3.2 A Model of Layered Design

We view a design as a set of classes, roughly one per actor in the system. A layer consists of a set of class extensions
(mixins 7, 18, 28, 29, 34]) for the actor classes. The set of mixins in a layer relate to a common task, or Seature, in
the overall system (in FSATS, the features generally represent missions that utilize different weapons). This definition
permits actor classes and mixins of arbitrary complexity. To make the problem of verification more tractable, we
assume each actor class can be described as a state machine, and that each mixin extends an existing (base) state
machine by adding nodes, edges, and/or paths between states in the base machine. State machine models of software
arise from one of two sources: either the software is written in terms of state machines, as is true for many embedded
software applications, or abstraction techniques derive state machines from the source code [11, 12]. FSATS is of
the former flavor. Our work could adapt to the latter if the abstractions produce machines for which we could define
meaningful interfaces between layers; accordingly, we regard the work on state machine abstractions as orthogonal to
this paper.

Each base or composed system specifies interfaces, in terms of states, at which clients may attach extensions. We
define interfaces formally below. In our experience, new features generally attach to the base system at common or
predictable points, as Figure 1 illustrates; the set of interfaces is therefore small. This is important, as the interface
states will indicate information that we must gather about a system in order to perform compositional verification of
layers; a large number of interfaces might require too much overhead in our methodology.

Figures 3 and 6 show examples of base systems, layers, extensions, and interfaces; Sections 3.4 and 3.5 explain
the examples in detail. The following formal definition makes our model of layered designs precise. The definitions
match the intuition in the figures, so a casual reader may wish to skip the formal definition.

Definition 1 A state machine is a tuple (S,Z,A,s0,R,L), where S is a set of states, T is the input alphabet, A is the
output alphabet, so € § is the initial state, R C § x PL(Z) x § is the transition relation (where PL(Z) denotes the set of
propositional logic expressions over X), and L : S — 24 indicates which output symbols are true in each state.

Definition 2 A base system consists of a tuple (Mi,...,M;) of state machines and a set of interfaces. We denote
the elements of machine M; as (Sas, Zpsi, Arsi, Sopy, Rasi, L) An interface contains a sequence of pairs of states
({exity,reentryy), ..., (exity,reentry;)) Each exit; and reentry; is a state in machine M;. State exit; is a state from which
control can enter an extension machine, and reentry; is a state from which control returns to the base system. Interfaces
also contain a set of properties and other information which are derived from the base system during verification; we
describe these properties in detail in later sections.

Definition 3 An extension is a tuple (E\,...,E,) of state machines. Each E; must induce a connected graph, must
have a single initial state with in-degree zero, and must have a single state with out-degree zero. For each E;, we refer
to the initial state as in; and the state with out-degree zero as out;. States in; and out; serve as placeholders for the
states to which the layer will connect when composed with a base system. Neither of these states is in the domain of
the labeling function L;.

Given a base system B, one of its interfaces /, and an extension E, we can form a new system by connecting the
machines in E to those in B through the states in , as shown in Figure 2. For purposes of this paper, we assume that B
and E contain the same number of state machines. This restriction is easily relaxed; the relaxed form allows actors to
not participate in each new feature, or to allow new actors as required by new features. The mortar mission in FSATS
(Figure 1, first extension layer), for example, does not augment the protocol of field officers. We also assume that the
states in the constituent machines of base systems and extensions are distinct.

66

Definition 4 The composition of base system B = (M),...,M;) and extension E = (E,...,E;) via an interface
I=({exit,,reentry\),..., (exity, reentry;)) is a tuple (Ci, ..., Cy) of state machines. Each C; = (Sci, Zci, Aci, Sog;, Reir Lei)
is defined from M = (SM,-,):M,',AM,',SOM,.,RM,',LM,'>' and Ei = (SE,',ZE,',AE,‘,SOE,.,RE,',LE,') as follows: Sc; = SM,‘ USE,' -
{in;,out;}; so; = 0,3 Rei is formed by replacing all references to in; and out; in Rg; with exit; and reentry;, respec-
tively, and unioning it with Rys;. All other components are the union of the corresponding pieces from M; and E;. We
will refer to the cross-product of Cy,...,C; as the global composed state machine. Composed systems may serve as
subsequent base systems by creating additional interfaces as necessary.

33 Veriﬁcatioh Methodology

Our methodology is designed to support compositional verification of layered designs. Specifically, our methodology
supports the following activities:

1. Proving a CTL property of an individual layer or composition of layers. This is easily done in the base system
with existing techniques, but becomes more complicated in extension layers.

2. Deriving a set of constraints on the exit and reentry states of a layer that are sufficient to preserve a particular
property after composition (the preservation constraints).

3. Proving that a layer satisfies the preservation constraints of another layer (or existing system). This activity
is only meaningful if the preservation constraints were generated for the exit and reentry states to which the
new layer will attach. We establish preservation by analyzing only the extension, not the composition of the
extension and the existing system.

These activities correspond to a kind of modular verification, where the layers are modules. As in standard approaches
to modular verification, we are interested in proving properties of modules and in preserving those properties upon
composition with other modules.

‘We illustrate our methodology using two examples: a sportswatch and a communication protocol. The sportswatch
design consists of a single actor; each collaboration therefore contains and extends only one state machine. This ex-
ample motivates our interfaces and high-level approach to sequential layer composition. The communication protocol
captures the key characteristics of FSATS identified in Section 3.1 and shows how our methodology extends to designs
with multiple state machines in each collaboration. We have performed all verification runs cited in these sections us-
ing the described methodology and the VIS model checker [32]. Section 3.6 discusses pragmatic issues behind these
runs.

3.4 Single-Machine Designs

Figure 3 shows a layered design of a sportswatch with timer and alarm features. The base system contains four display
nodes: clock display, alarm time display, date display, and an alarm status display that supports toggling the alarm
status. The first extension adds a timer which the user can reset, resume, and stop. The timer layer also supports a
split timer for capturing time instantaneously. The second extension supports setting the alarm time; we omit layers
for setting the clock time due to space constraints. Although both extensions add core functions, rather than optional
features, we implement them as layers to allow a designer to include any of several possible implementations of these
features in a final watch (as in a product-line architecture). The watch is controlled through two buttons (B1 and B2)
and a mode switch that can be in the forward (ms-f) or back (ms-b) positions.

The base system should satisfy the property that one can always get to the display-clock state (written as AG EF
display_clock in CTL). This property is easy to verify using a model checker. The base layer publishes one interface:
{dispclock,dispclock), meaning that all extensions will start from and return to the dispclock state. Once we extend
the base system with the timer, we must prove that adding the timer will not cause the display-clock property — which
has already been proven of the base layer — to fail. We could compose the base system and timer layers and re-verify
the property on the composed system. This approach, however, wastes the work that we have already done proving the
property of the base layer; worse still, on a larger example, the composed design could be too large to model check.
We therefore want to verify that the timer layer will preserve the property already proven of the base system without
using the entire base system.

67

ms-b
Bldn set
Bldn {(minute

Figure 3: A collaborative design for a sportswatch.

/’_—\Bldn
E(TRUE U display_clcck)',’- T msf B2dn
display_clock; o0 3 ¢ in 3 B2dn -B—Zd_’.
!(E(TRUE U K(E(TRUE U display_clock)))) *._ RN -n

Bldnl Bldn fBldn

\—B2dn_ 0| msb
_ B2dn \ split
ms-by ms-b

Figure 4: The timer extension with marking assumptions on the out state.

The classic CTL model checking algorithm [8] checks a property by marking each state with the subformulas of
the property that are true in that state. After marking is complete, the formula is true of the design if its initial state is
marked with the full property formula. If we can prove that an extension does not alter the markings of the base system
states for a given property, then that property will hold in the composition of the base system with the extension as
well. It suffices to show that the markings of the exit states in the base system interfaces are not altered, as all states
which reach layer states do so through the exit state.

Given the base system interface ({dispclock,dispclock) in this case) and a property to preserve (AG EF dis-
play_clock), we use a model checker to extract the set of subformulas of the property that mark each state in the
interface; these markings can be stored with the interface, and need not be re-computed on each extension. The
following three formulas mark dispclock:

e E(TRUE U display_clock)
* display_clock (this implies the previous formula)
* /(E(TRUE U !(E(TRUE U display_clock)))) (equivalent to AG(EFdisplay clock))).

We must prove that the extension will preserve the markings on the exit state from the base system. The CTL
model checking algorithm marks states based on the markings of its successor states. As some extension states have
transitions to the reentry state (in the base system), we need the reentry state’s markings to compute the markings on
the extension states. Our verification algorithm consists .- assuming that the out state of the extension has the same
markings as the reentry state, deriving the markings on the in state, and checking that those markings are the same as
on the original reentry state; this approach is consistent with the standard backwards-reachability approach to model
checking. We derive the markings on the in state by checking a property of the form AG(in — ¢) for each subformula
¢ of the property to be preserved. Figure 4 shows the sportswatch timer layer with the marking assumptions on out.

68

Model checking confirms that in retains the original markings of dispclock, so the property will be preserved upon
composition.

In addition to the display-clock property, we can also verify that the timer layer (without the base layer attached)
satisfies the property “once started, the timer can always be stopped” (AG(start-timer — EF stop-timer)). We view the
timer layer as the base system and the base as the extension to verify that the base layer would preserve this property
upon composition.

We also construct a composed system from the base layer and the timer extension, with interface (dispclock, reset).
The interface states change after composition because the watch requires switching between modes to be deterministic;
satisfying this constraint requires new layers to be entered from the timer layer, rather than the original base system.
For both states in the interface, we record the markings necessary to satisfy the two properties already proven of the
system. These markings arise from both verifying the properties of each layer and from verifying the preservation of
the other layer’s properties. For dispclock, the new set of interface markings is:

e /(E(TRUE U /(E(TRUE U display_clock))));

e E(TRUE U display_clock);

o display_clock;

o /(E(TRUE U !((starttimer — E(TRUE U stoptimer)))));
¢ (starttimer — E(TRUE U stoptimer)),

e E(TRUE U stoptimer)

Using these markings, we verify that adding the alarm layer preserves the existing properties (displaying the clock and
stopping the timer).

3.4.1 Summary of Algorithm on Single State Machines

In summary, the verification algorithm for the single state machine case is as follows:

1. Write the model for the extension, including the placeholder states in and out.

2. Assign the subformulas that marked the actual reentry state in the base system as labels of the placeholder
reentry state (ouf).

3. Model check all of the subformulas of the original property in the placeholder reentry state (in). If in has exactly
the same markings (restricted to subformulas of the property) as it did before the extension, the property will
hold in the composed system.

This algorithm, whose correctness proof we defer to a forthcoming technical report, was independently derived by
Laster and Grumberg for reasoning about sequential decomposition of finite state machines [24]. Its correctness
depends in part on all reachable states in the composed design lying in either the base system or the extension (an
obvious point in the single-machine case, but one which becomes interesting in the multiple-machine case). For
checking preservation of purely existential properties, this algorithm is unnecessary because sequential composition
trivially preserves such properties (a simple observation, but one which Laster and Grumberg [24] did not note).

For our experiments, we simulated this algorithm using the VIS model checker. VIS does not support this algorithm
directly, as there is no way to seed out with the assumed marking. Instead, we were forced to include a transition from
out to the entire base system model; we did not include transitions from the base system to in. We verified that the
markings on the actual reentry state (dispclock) did not change under this operation. As in was not.attached to the base
system, this approach is sufficient to argue that the verification would have gone through with the seeded markings
(and no base system) had VIS supported that operation. Section 3.6 summarizes the issues that arose trying to use
conventional model checkers for this sort of modular verification.

69

mtraln/"tram mn" else train-in
clsc Original protocol
E’ train- clear& . e]scE’ outtrain/ .D ginal p!
velse oy finain o] !qrmsl_sl_e_a_r

outtrain/
"tunnel-clear’

...

? tunnel-clear ;
+ Two-train extension
:

Figure 6: A collaborative design for a track-operator communication protocol.

3.5 Multiple-Machine Designs

The algorithm in Section 3.4.1, as well as prior research into verification under sequential composition, does not apply
to FSATS because FSATS has multiple state machines in each layer. In practice, almost all interesting collaborative
designs, by their very nature, will employ multiple state machines extensions per layer. When each layer contains a
single state machine, extending a system with a layer corresponds to sequential composition of state machines. When
layers contain multiple state machines, extending a system with a layer corresponds to a hybrid of sequential and
parallel composition: the machines within a layer are composed in paralle] (because they run together to implement
a particular feature), but the layers themselves are composed in a quasi-sequential manner. The actual composition is
not strictly sequential: this detail is at the crux of the verification problem for systems like FSATS.

Constructing a design by sequential composition is appealing because, as Section 3.4 shows, it supports indepen-
dent verification of layers. Figure 5(left) shows a layered system constructed in this fashion. The construction provided
in the formal model (the global composed state machine, Definition 4), however, is different. As Figure 5(right) il-
lustrates, the construction first extends each base machine with its corresponding mixin, then composes the resulting
machines in parallel. Clearly, we would prefer to compose systems according to the first construction because it sup-
ports layered verification. In order to do this, however, the first construction must produce the same global composed
state machine (upto reachability of states) as the second! This relationship captures the crucial challenge in layered
verification of designs with multiple state machines per layer. We must construct the parallel compositions represent-
ing each layer in such a way that composing them sequentially yields the state machine arising from Definition 4. This
is possible only because most cross-product states in the composite system arise from cross-products within layers;
this section notes the exceptions and how our methodology handles them.

This section motivates our algorithm for constructing parallel, compositions within layers. Our algorithm is de-
signed to create parallel compositions that can in turn be composed sequentially with other layers. We describe the
algorithm by illustrating its behavior on a small example. We also evaluate this algorithm’s ability to verify prop-
erties of layers in isolation. While many layers (including the FSATS layers) can be verified in isolation under this
construction, our motivating example illustrates a case where independent verification may fail. A property for which
verification may fail must be verified in the composed system, rather than compositionally through the layers. We pro-
vide a characterization of these cases and a model-checking-based algorithm to determine whether properties can be
verified compositionally. Section 3.5.1 presents our new example, which captures the salient characteristics of FSATS
without necessitating as much explanation of the domain.

3.5.1 - The Clayton Tunnel Protocol

We consider a layered design of a communications protocol between operators at either end of a train tunnel (see
Figure 6). This protocol, taken from Holzmann’s book [21], should already be familiar to those versed in the model

70

) |Mtrain-in & intrain .-~
i .

; .
intrain/"trai4in" L~ train-in

v
notrain)
notrain i

|
j
tunnel-clear&}ntrain outtrain/ "tunnel-clear”

i

i

Figure 7: The cross-product state machine for the tunnel base layer. The exit subgraph for an interface containing both
train states as exit states is enclosed in the solid box. The dashed box encloses the exit subgraph extended with an
escape state for capturing the conditions under which control would leave the exit subgraph. The portion in the dashed
box is part of the interface of the base system with both frain states as exit states.

checking literature. Our design is derived from an actual communication protocol that was in use (and contributed
to an accident!) in England in 1861. The two state machines model the human operators on either end of long train
tunnel covering a one-way track. Unable to see one another, the operators communicate messages about the status of
the tunnel. In the base layer, the operators communicate when trains are entering and exiting the tunnel. The inbound
operator sends a train-in message to the outbound operator when a train enters the tunnel. The outbound operator sends
a train-clear message to the inbound operator when a train exits the tunnel. The base layer consists of the protocol for
exchanging these two messages.

The full protocol was designed to prevent two trains from ever being in the tunnel simultaneously (we omit the
specific details from the model is this paper because they are irrelevant for our purposes). The accident that occurred
arose because a second train entered the tunnel (in the same direction as the first train) before the first one left; although
the inbound operator suspected the problem, the communication protocol was too weak to convey the situation to the
outbound operator. One solution is to add messages to the protocol that convey this information accurately. The
extension adds a two-in message from the inbound to the outbound operator; it also adds states to both operator
machines so that the outbound operator does not send the train-clear message until both trains have left the tunnel.

Verifying this protocol requires a model of the trains that can enter and exit the tunnel. A model of the events
that drive a protocol, but are not part of its definition, is called an environment model. The environment model for the
tunnel protocol must generate reasonable train data; for example, no train should ever leave the tunnel before it enters
the tunnel. For simplicity, we use an environment model containing two trains. Their only constraints are that the first
train enters the tunnel before the second, and that both trains enter the tunnel before they exit the tunnel. This model
is reasonable because the original protocol was such that at most two trains could be in the tunnel at once if the train
drivers obeyed the rules of using the tunnel. We implement environment models as state machines. For the tunnel
protocol, the model generates signals intrain and outtrain to indicate trains entering and leaving the tunnel.

Depending upon when trains eriter and leave the tunnel, the operators may be inconsistent on their views as to
whether there is a train in the tunnel. Given the base layer, we would like to prove that the inbound operator never
livelocks thinking that there is a train in the tunnel (AG(EF (inbb.state=notrain)); this property requires all trains in
the tunnel to eventually exit the tunnel, which we handle with a fairness constraint [9]. We can easily discharge this
property of the base system; the challenge is to verify that the extension preserves it. For the extension, we wish to
prove that once the inbound operator warns that there are two trains in the tunnel, it does not exit the extension until it
receives a tunnel-clear message (AG ((inbmsg=two-in) — A(!(instate=out) U (outbmsg=tunnel-clear)))).

3.5.2 Composing the Extension in Parallel

The extension consists of the two state machines in the dashed box in Figure 6 (though with in and out states, as
in Figure 4). We could form a naive parallel composition of these two machines using a standard cross-product
procedure [9]. This construction assumes that both machines start in their initial states (the in states) simultaneously.
This assumption, however, is not necessarily valid. For example, the inbound operator may notice the second train
before the outbound operator has registered that there is a train in the tunnel (this synchronization problem arises in
FSATS). Our parallel composition therefore needs additional information about the synchronization of the ir states
in the extension in order to construct a valid composition. Fortunately, we can derive this information from the base
system. Given a set of exit states that form an interface in the base system, we can compute the subgraph of the base
system that involves only the exit states; we then use this subgraph (which we call the exit subgraph, defined formally
below) to drive transitions between the in states in the parallel composition. Figure 7 shows the exit subgraph for the

71

tunnel protocol. To verify preservation of properties under sequential composition, the exit subgraph includes a state
that indicates when a transition would have left the exit subgraph; this state is labeled escape in Figure 7. While in
practice this subgraph could be large, these graphs are small in FSATS (and presumably similar systems) because the
actors decide to enter a particular extension at roughly the same time based on a tight sequence of message passing.
Section 3.5.3 discusses a similar problem on the reentry states.

The following steps construct the exit subgraph:

1. Construct the cross-product of the base system machines.

2. Restrict the cross-product states and transition relation to those states that contain at least one exit state from
some state machine in the cross product.

3. Add a new state escape to the resulting graph. From every state in the exit subgraph, add a transition to escape
enabled on each condition that causes a transition outside of the exit subgraph. There are no transitions out of
escape.

4. Identify all states (other than escape) with no incoming edges as initial states of the exit subgraph.

In the general case, the exit subgraph might not be connected. In designs such as FSATS, this subgraph is connected
and has no transitions to escape. This is because the subgraph captures delays due to message passing before all actors
enter an extension layer. In such cases, it can be used to sequentially compose a base system and an extension. Every
state of the subgraph that contains exit state exit; enables transitions to in;. Details appear in the full technical report.

Given the parallel composition of the extension machines constructed using the exit subgraph, we can attempt to
verify the layer property using the environment model to generate the trains. This effort fails. The inbound operator
sends the two-in message as soon as the environment model sends the first train into the tunnel; this is wrong, however,
because the inbound operator should only enter the multiple train state when the second train enters the tunnel before
the first train exits. This happens because some history between the in states and the environment is lost. Specifically,
the environment model must have the first train in the tunnel and the second train approaching the tunnel at the in states
of the extension; the normal environment model starts with both trains approaching the tunnel. We can synchronize the
environment model with the extension by composing the environment model with the base system before computing
the exit subgraph. The initial states of the exit subgraph now contain states of the environment model; those states
should be used as the initial states of the environment when verifying properties of the layer. This construction
indicates that the tunnel environment should start with the first train already in the tunnel.

Although generating restricted initial states of the environment model appears to be an overhead of formal verifi-
cation, the problem of generating these models is similar to the problem of generating a testing harness for a layered
design. Layered designs offer the hope of testing layers in isolation. That testing, however, requires knowledge about
the environment that will drive the layer. Our approach merely formalizes the problem of obtaining a restricted testing
harness for layered designs. In FSATS, the environment model problem arises because each extension corresponds to
a new type of mission which is initiated only if the environment has generated a target of a particular type.

3.5.3 Verifying Properties Compositionally

The preceding section identified two key issues in supporting verification of layers independently from their base
systems: synchronizing initial states and restricting environment models. Applying both techniques allows us to
verify that an extension satisfies a given property relative to an interface to a base system. This does not address our
entire problem, however, as we still must characterize when the properties of the composition of this layer with a base
system can be verified via sequential composition, rather than on the global composed state machine.

The algorithm for checking property preservation under sequential composition requires that all states that are
reachable in the composed system are contained in one of the layers being composed. For compositional verification
to work, we must characterize when the reachable states of the composed system are contained in the reachable states
of the union of the base system and the extension. In the general case, the desired result seems unlikely. Just as the
actors do not enter an extension simultaneously, they do not exit from the layer simultaneously. The asynchronous
exits may create reachable states in the composed system that are not contained in the extension. Worse still, these
states may lead to states that become reachable in the base system only after composition. Either case would break
our proposed layered verification methodology. ’

72

Fortunately, the collaborative designs that we have studied, including FSATS, tend to have a characteristic that
addresses this problem: the reentry states eventually synchronize after executing an extension. Thus, with appropriate
modeling of the reentry states in the extension, the sequential composition of the base system and the extension
could capture the full global state space, as required for layered verification. We capture this model with a reentry
subgraph that is computed in similar fashion to the exit subgraph; transitions to reentry states enable transitions in the
reentry subgraph. Using the exit and reentry subgraphs, we can offer a CTL characterization of the cases in which our
methodology is insufficient. When our methodology does not suffice, we will have to check the properties in the full
composed system. !

The constraints that indicate when a property preservation can be confirmed (using a similar strategy as in the
single state machine case) in layered fashion are as follows:

1. The escape state in the exit subgraph is not reachable under the restricted environment model.

2. The reentry states eventually synchronize: that is, once one layer machine reaches its reentry state, it remains
there until all layer machines have reached their reentry states. This constraint is easily expressed as a series of
CTL formulas to check of the model, one for each state machine in the extension:

AG (reentry; — Alreentry; U reentry| A ... Areentryi))

We omit the proof that these conditions are sufficient to prove a correspondence between the two constructions of
the global composed state space due to space constraints; the technical report will contain the full details. Intuitively,
the proof consists of an argument that, under the above constraints, all reachable states under the first construction are
reachable states in either the extension or the base system under the second construction. The interesting cases of this
proof involve global states with some components in the base system and some in the extension. The conditions listed
above restrict all such states to lie in the extension including the exit subgraph.

3.6 Implementation

We have conducted all the model checking tasks described in this paper. For this, we used the symbolic model checker
VIS [32]. We modified VIS slightly to display all sub-formulas of properties generated during the marking phases; we
used these sub-formulas for verifying the preservation of properties in other layers. For the paper’s examples, the time
and space usage are negligible.

Section 3 describes how we simulated the modular verification scenario while in fact attaching extensions to, po-
tentially, the entire base system. This is because existing model checkers do not appear to be designed for extension
to verifying open systems. For instance, they do not provide a way to query and assert properties on specific states.
Expressing our extension layers in Verilog (VIS’s input language) required manual insertion of additional design vari-
ables because we could not easily unify states in the underlying symbolic transition system. Finally, building the exit
and reentry subgraphs was difficult in VIS’s symbolic framework. Computing the core subgraphs is straightforward
(by adding routines to the VIS source code); adding the escape state is difficult because it requires us to essentially
reverse-engineer the symbolic state encoding to find an unused boolean representation for the escape state. A front-
end for supporting layered design languages could work around the limitations of Verilog, but the limitations of the
symbolic framework are harder to surmount.

Some properties can be verified in layers without the full power of model checking. For instance, simple properties
that ensure a system always reaches a consistent state may not need extensive verification in an extension: simply
showing reachability between the extension’s in and out states often suffices (this relates to checking the requirement
in our formal model that extensions yield connected graphs). These properties arise both in the examples presented in
this paper and in FSATS. Therefore, there is clearly potential for applying more light-weight verification tools.

4 Conclusion and Future Work

Layered designs, which concentrate on the step-wise refinement of a system’s features, offer an alternative to tra-
ditional object-based designs. They have arisen in several contexts, methodologies and applications, and appear to

1'When we need to verify in the full composed system, we can apply existing techniques for parallel composition. As these techniques can be
very difficult to use in practice, applying them effectively remains an open problem.

73

be especially promising in the context of software product-lines. Layered approaches share many of the software
construction advantages of more traditional components.

This paper has explored how layered software designs require a different form of modular verification. We demon-
strated that object-based decompositions of systems into modules that are concurrently or sequentially composed are
inappropriate for layered designs. We also showed that layered, feature-based designs are actually quasi-sequential
compositions of parallel compositions, and explained how certain constraints can make their verification tractable.
We believe these constraints are reasonable because many applications appear to satisfy them. The resulting verifica-
tion methodology minimizes the work expended to verify compositions relative to the work done verifying individual
layers.

We have concentrated solely on model checking because we want to understand the strengths and limitations
of algorithmic verification on layered designs. Our experience suggests that extant model checkers have not been
designed to be extended for such tasks. (Certainly, a custom model checker is necessary to complete the verification
of the entire suite of FSATS layers.) A related question is how to extend our approach to handle LTL formulas; for
technical reasons, we have only considered CTL properties.

Layered designs can benefit from a broader scope of verification techniques. Early work on dependencies between
layers [3] must be formalized and incorporated into any validation framework. We have encountered some layered
designs involving complex data invariants that will likely be more amenable to theorem proving. While model check-
ing captures and can verify the salient properties of the FSATS suite, it can be overkill. Preserving certain properties
requires only simple results such as freedom from livelock or non-modification of particular variables. In these cases,
simpler tools such as reachability engines and type systems may suffice. We expect further work with a richer set of
designs to help us identify when the full power of our current methodology is required.

References

[1] Alur, R, R. Grosu and M. McDougall. Efficient reachability analysis of hierarchic reactive machines. In Inter-
national Conference on Computer-Aided Verification, volume 1855 of Lecture Notes in Computer Science, pages
280-295. Springer-Verlag, 2000.

(2] Alur, R. and M. Yannakakis. Model checking of hierarchical state machines. In Symposium on the Foundations
of Software Engineering, pages 175-188, 1998.

[3] Batory, D. and B. J. Geraci. Composition validation and subjectivity in GenVoca generators. JEEE Transactions
on Software Engineering, pages 67-82, Feburary 1997.

[4] Batory, D., C. Johnson, B. MacDonald and D. von Heeder. Achieving extensibility through product-lines and
domain-specific languages: A case study. In International Conference on Software Reuse, June 2000.

[5] Batory, D. and S. O’Malley. The design and implementation of hierarchical .software systems with reusable
components. ACM Transactions on Software Engineering and Methodology, 1(4):355-398, October 1992.

[6] Biagioni, E., R. Harper, P. Lee and B. G. Milnes. Signatures for a network protocol stack: A systems application
of Standard ML. In ACM Symposium on Lisp and Functional Programming, 1994.

[7] Bracha, G. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD thesis,
University of Utah, March 1992.

[8] Clarke, E., E. Emerson and A. Sistla. Automatic verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244-263, 1986.

[9] Clarke, E., O. Grumberg and D. Peled. Model Checking. MIT Press, 2000.

[10] Clarke, E. M. and W. Heinle. Modular translation of Statecharts to SMV. Technical Report CMU-CS-00-XXX,
Carnegie-Mellon University School of Computer Science, August 2000.

[11] Corbett, J. C., M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby and H. Zheng. Bandera : Extracting
finite-state models from java source code. In Infernational Conference on Software Engineering, 2000.

74

[12] Dwyer, M. B. and L. A. Clarke. Flow analysis for verifying specifications of concurrent and distributed software.
Technical Report UM-CS-1999-052, University of Massachusetts, Computer Science Department, August 1999.

[13] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler and M. Felleisen. DrScheme: A
programming environment for Scheme. Journal of Functional Programming, 2001. To appear.

[14] Findler, R. B. and M. Flatt. Modular object-oriented programming with units and mixins. In ACM SIGPLAN
International Conference on Functional Programming, pages 94104, 1998.

[15] Finkbeiner, B., Z. Manna and H. Sipma. Deductive verification of modular systems. In Compositionality: The
Significant Difference, volume 1536 of Lecture Notes in Computer Science, pages 239-275. Springer-Verlag,
1998.

[16] Fisler, K., S. Krishnamurthi and K. E. Gray. Implementing extensible theorem provers. In International Confer-
ence on Theorem Proving in Higher-Order Logic: Emerging Trends, Research Report, INRTA Sophia Antipolis,
September 1999.

[17] Flatt, M. Programming Language;v for Reusable Software Components. PhD thesis, Rice University, 1999.

[18] Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 171-183, January 1998.

[191 Grumberg, O. and D. Long. Model checking and modular verification. In International Conference on Concur-
rency Theory, volume 527 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[20] Heineman, G. T. and W. T. Councill. Component-Based Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[21] Holzmann, G. ‘Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[22] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented Programming, June 1997.

[23] Kupferman, O. and M. Y. Vardi. Modular model checking. In Compositionality: The Significant Difference,
volume 1536 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[24] Laster, K. and O. Grumberg. Modular model checking of software. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1998.

[251 McMillan, K. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[26] Mezini, M. and K. Lieberherr. Adaptive plug-and-play components for evolutionary software development. In
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications, pages 97—
116, October 1998.

[27] Pasareanu, C. S., M. B. Dwyer and M. Huth. Assume-guarantee model checking of software: A comparative
case study. In Theoretical and Practical Aspects of SPIN Model Checking, volume 1680 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[28] Smaragdakis, Y. and D. Batory. Implementing layered designs and mixin layers. In European Conference on
Object-Oriented Programming, pages 550-570, July 1998.

[29] Steele, G. L., Jr., editor. Common Lisp: the Language. Digital Press, Bedford, MA, second edition, 1990.

[30] Stirewalt, K. and L. Dillon. A component-based approach to building formai-analysis tools. In International
Conference on Software Engineering, 2001.

[31] Szyperski, C. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1998.

75

[32] The VIS Group. VIS: A system for verification and synthesis. In Alur, R. and T. Henzinger, editors, International
Conference on Computer-Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 428—
432. Springer-Verlag, July 1996.

[33] van Renesse, R, K. Birman, M. Hayden, A. Vaysburd and D. Karr. Building adaptive systems using Ensemble.
Technical Report 97-1638, Department of Computer Science, Cornell University, July 1997.

[34] VanHilst, M. and D. Notkin. Using role components to implement collaboration-based designs. In ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages & Applications, 1996.

76

A Framework for Knowledge Management and Automated
Constraint Monitoring

Ann Q. Gates and Steve Roach
Department of Computer Science
The University of Texas at El Paso
El Paso, Texas 79968
agates, sroach@cs.utep.edu

Abstract
This paper describes an approach called Dynamic Monitoring with Integrity Constraints
(DynaMICs) that consists of a specification language for defining constraints and tools that
permit automated instrumentation of constraints, runtime monitoring that minimizes performance
degradation, and tracing. The goal is to capture domain and system knowledge as constraints and
to use the constraints to monitor software execution, providing evidence of correctness and
assistance in identification of error sources.

The paper presents a framework for managing knowledge and instrumenting programs to test
the state of programs at runtime. In addition, it discusses the role that-temporal logic, model
checking and program-synthesis systems can play in developing and using DynaMICs.

1. Introduction

The successful development of complex software systems typically requires management of
two types of knowledge: domain knowledge and system knowledge. Domain knowledge is that
knowledge needed to understand problems and solutions in a particular area of human endeavor.
For example, in order to construct a program that simulates wind tunnel experiments, system
developers would need some knowledge of fluid dynamics.

System knowledge is that knowledge needed to understand the design and implementation of
a software system that solves a problem from a particular domain. For example, in order to
implement a module for an information management system, system developers would need to
understand the structure of data to be processed and how it maps to the application domain.
Domain knowledge is elicited from domain experts, customers, users, and possibly from written
reference material. System knowledge comes from designers, implementers, and maintainers.

The integration of domain and system knowledge is essential for successful software
development. This includes the capture and communication of such knowledge among team
members throughout the software lifecycle. In addition, understanding the relations between
domain and system knowledge can help close the gap between a software failure and the fault that
leads to that failure.

77

One technique for capturing domain and system knowledge is through the use of integrity
constraints. Integrity constraints, referred to as constraints in the remainder of this paper, are
propositions about state of a system. State is defined as a set of program-variable and value pairs
that captures a snapshot of memory during program execution. Constraints can be used to check
during runtime that the system is meeting its requirements and that assumptions and limitations,
which arise from design and implementation decisions, hold. Not only can constraints be used to
identify errors and assist in debugging, they also can provide evidence of correctness at execution
time, maintain knowledge about the domain and system, and assist in planning and implementing
maintenance of the software.

This paper presents a framework for managing domain and system knowledge and for
instrumenting programs to test the state of programs at runtime. The ultimate goal of this work is
to automate the insertion of constraint-checking code in order to facilitate the use of constraints.
With automated instrumentation, domain experts and system implementers may be more willing
to expend effort generating the needed constraints to ensure correct execution.

1.1 DynaMICs

Dynamic Monitoring with Integrity Constraints (DynaMICs) is an approach that captures
domain and system knowledge through constraints to ensure the correct functioning of a program
during its execution (GT99, GT00, GTO1). Fig. 1 presents a high-level view of the DynaMICs
approach. The main features that differentiate DynaMICs from other software-fault monitoring
approaches are as follows: constraint specifications are maintained in a repository separate from
other artifacts, and constraint-checking code is automatically inserted into the code. The
separation of constraint specifications from code facilitates identification of potential conflicts
among constraints throughout the software’s lifecycle. Algorithms translate propositions into
constraint-checking code and determine the execution points at which the constraint-checking
code is to be embedded into the program.

The tracing mechanism (GMO1) provides support for establishing linkages between
constraints and artifacts, which along with linkages that are created automatically during
instrumentation, permits the following types of tracing: from application source code to
constraint, from constraint to application source code, from constraint to
requirements/artifacts, and from application code to requirements/artifacts. Because the links
between the application code and constraints are created automatically during the instrumentation
process, the links are maintainable. In addition, it eliminates the need for physic al links between
artifacts and application code, which relieves the programmer from managing links in the code
when code is revised, a tedious task that is prone to error. The approach addresses some of the
issues that have slowed extensive adoption of tracing. Specifically, DynaMICs targets simplified
tracing of constraints among documents, reduced overhead for tracing and, in conjunction with
monitoring, requirements compliance with respect to constraints.

One of the reasons for the lack of widespread adoption of runtime monitoring is the
performance degradation that results when constraint checks have been inserted into the program
code. To address this, several different types of monitors are being investigated, e.g., one in
which monitoring responsibilities are delegated to a process other than the one executing the
application program (TM99, SM93).

78

Execuls avd
ot
rayarernod
[N

Oaput

Lorwmrant WML T AT
LA L] Ty o o
RO
» Y

Figure 12 A lgh- fevel view of DynaMICs,

1.2 Impact of DynaMICs

Prediction of the impact of maintenance is difficult. In particula r, tools are needed to
facilitate the identification of conflicts when new requirements or code are added. By managing
domain and system knowledge, DynaMICs provides such support. Formally capturing knowledge
allows reasoning about the effects of change and reduces the probability of creating errors in the
software. The types of faults that are detectable through DynaMICs are dependent on the
constraints specified by the development team. DynaMICs targets requirements faults, in
particular those resulting from incorrect, inconsistent, and ambiguous requirements (GL98). In
addition, DynaMICs is effective at detecting when an unpredictable sequence of events results in
inconsistent data in the system (C01) and when the context of the program’s operation changes as
described in (LC95).

Communicating information among team members and eliminating conflicts in requirements
are major concerns during development of complex systems (CK88, DV93). While successful
software development efforts typically include at least one person who can integrate different
perspectives on the development process as well as domain and system knowledge, there is an
inherent risk in such dependence on key personnel. In addition, there is a limit as to how much
knowledge can be managed by a single person, especially as systems become larger, more
complex, and cross application domains. The capture of critical knowledge through constraints
and the separation of constraints from the source program assist information management and
communication.

Automated instrumentation of program code provides assurance of constraint coverage, i.e.,
DynaMICs determines the points in the program at which constraints from the repository should
be checked. It also simplifies maintenance of constraints because changes are made to high-level
constraint specifications and not to the code itself. This approach reduces the number of errors
that can be introduced during maintenance because it is not possible for insertion or deletion of
program code to corrupt previously inserted monitoring code. By establishing relations between
constraint specifications and supporting documentation, it is also possible to provide justification
of constraints. This supports resolution of conflicts between specifications and code.

79

An area in which this work can have impact is in creation and execution of test beds. Adding
constraints during testing typically requires manual instrumentation of checking code and
removal of the code when the product is deployed. Additionally, because of the large increase in
code size due to instrumentation, execution times are naturally increased. By automating the
insertion of constraint-checking code, developers are free from the task of instrumentation and
can focus instead on improving the knowledge base that indicates correct program execution.
Defects can be identified earlier in the testing cycle, reducing cost.

1.3 Organization of Paper

The remaining sections in this paper examine the constraint specification and automated
instrumentation components of DynaMICs in which formal methods are critical. The main points
covered in each section are as follows:

e overview of component, including a description of the knowledge needed, where it is
obtained, and how its used;

e approach used to realize the component, including a discussion of the technologies that
have been used to develop a proof-of-concept; and

e integration of formal methods, including a discussion of formal methods that impact
development of a runtime monitoring system such as DynaMICs.

2. Constraint Specification
2.1 Overview

Initial work on DynaMICs has focused mainly on capturing domain knowledge and limited
system knowledge through constraints. Domain knowledge includes properties, behaviors, and
relationships among real-world objects being modeled by the software. System knowledge
includes assumptions made by developers and limitations imposed by the system design. To have
a larger impact on system development and maintenance, the knowledge base of DynaMICs must
be extended to include additional system knowledge, in particular design knowledge derived from
objects, data structures, operations, relationships among operations, and algorithms. Nevertheless,
constraint-checking code establishes an implicit relationship between domain knowledge and the
system.

Domain experts, clients, users, and members of the development team contribute to constraint
definition. Other sources of constraints include documentation such as interview transcripts,
memoranda, reports, and the requirements specification (GK97, DV93). Members of the
development team contribute constraints by. applying assumptions about the operating
environment (e.g., acceptable input values) and limitations imposed by the design (e.g., size of a
data structure). Testers, who are interested in monitoring program behavior under specific testing
conditions, can add special-purpose constraints.

80

Constraint elicitation and identification necessitates analysis of the problem from a
perspective different than requirements analysis. Requirements answer the question, "What will
the system do?" while constraints answer the question “What monitored relationships can indicate
correct program execution?”. For example, consider the division of two integers, @ and b, that
yields a quotient, ¢, and a remainder, r. For this problem, two constraints can be defined:

r<band(gxb)+r=a

The constraints do not recalculate the division of a and b, rather they check that the division
is correct. Domain (division) expertise is required to specify constraints such as these. A more
detailed description of the constraint-definition process can be found in (GMO1).

2.2 Approach

Constraints specifications consist of three parts: events, conditions, and actions. The event
directs instrumentation by specifying the state at which the condition must hold. The condition
expresses the constraint, and the action specifies what must be performed on violation of the
condition. Each is discussed in the subsections that follow.

Constraints are captured during the requirements elicitation, requirements analysis, design,
and implementation phases of software development. As a result, it is necessary to maintain the
mapping from terms in the constraint specification to variables and storage locations at the
program-code level. This is done through a data dictionary that maintains information about
variables used in specifications, called constraint variables. Program development personnel
maintain the associations of the constraint variables to program variables during program
construction.

2.2.1 Event Specification

The event definition directs program instrumentation and is defined as an ordered five-tuple
(GT99): _ E

Event : Variable-set x States x Transition-x ‘Phase x Placement

Variable-set: set-of-tokens

States : {static, transitional}
Transition : {immediate, intermediate, delayed}
Phase : {input, processing, output}

Placement : {before-store, after-store}

Events are based on stores to variables associated with constraint variables. Variable-set
maintains the set of constraint-variable names for which state transitions (a change in the values
held in constraint variables) are observed. States indicates the number of states needed to
compute the value of the constraint. Static indicates that only the current (or anticipated) state is
examined, requiring no instrumentation to save state. Tranmsitional indicates that current and
previous states are examined.

81

Variable -set, Transition, and Phase identify the state transitions to be monitored with respect
to a specified phase. Valid phases include input, processing, and output. For a specified phase and
Variable-set, immediate indicates that the constraint must hold after each state transition. Delayed
denotes that a constraint must hold at the end of a specified phase. For example, a delayed-on-
input constraint for variables a, b, and c indicates that the associated monitoring code executes
after all values for these variables have been read. If a program uses an iterative construct to read
in these values, then the check will occur at the point where the iterative construct terminates.

In the case of nested iterative constructs, the check will occur outside the outermost construct.
For the specified phase and Variable-set, an intermediate value designates that the constraint
must hold after an implied sequence of state transitions. For example, if Variable-set contains
variables a and b and both variables are updated in a sequence, then the monitoring code executes
after the sequence completes.

The types of instructions that cause state transitions within a program and that can be used to
determine potential points of program instrumentation include input, assignment, and output
instructions, i.e., instructions that store data to memory. Each is associated with a computation
phase. Because computed values may not be stored to memory, but instead stored to a device via
output instructions, it also is necessary to consider output instructions as instructions that cause
state transitions. An assumption is made that controls of sensitive devices are memory mapped
and, thus, are accessed using assignments. Constraints on file output, with a format that is clearly
specified, can be checked (GT01).

Placement indicates whether a constraint is placed before a store or after a store to a
constraint variable. In the case of a constraint in which a violation will cause catastrophic failure
(referred to as a mission-critical constraint) it is imperative that the constraint is checked before
the value is stored. A critical constraint is one in which a violation of the constraint indicates a
hazard condition that could result in catastrophic failure. Constraints for critical and non-critical
constraints can be checked after a store to a variable.

2.2.2 Condition Specification

The condition definition is expressed in a first-order language (G96). In addition to
specifying relationships between program variables, conditions can determine, for example,
whether the following hold: the value associated with a program variable is within a range of
values, the value is a member of a set of values, a program variable has been assigned a value
(not-null property), two sets of values are disjoint, and a set is a subset of another. Although we
are using the term “program variables” in this discussion, it is important to note that the main use
of constraints is to capture domain knowledge about the objects being modeled by the program.
Because this type of constraint is implementation independent, a data dictionary, as described
earlier, maps variables used in the constraint to model these objects to program variables.

2.2.3 Action Specification

The action specification defines the consequence of a constraint violation. This can include
such actions as recording state in a history log, saving state for error recovery, performing state
rollback, and initiating graceful degradation. The latter three actions are currently under study.

82

2.3 Integration of Formal Methods

Some practitioners may find expressing constraints in a formal temporal logic to be daunting.
We believe that our specification language is more intuitive; however, it is semantically
equivalent to a formal temporal logic. Using the language defined in (DV93) event E and
condition C in a DynaMICs specification can be expressed as: (Es - Os C), where Es
denotes an event that occurs in state s, Os C denotes that condition C holds in the state
immediately following s, and P denotes that P holds in the current and all future states. Clearly,
the advantage of a formal language is the ability to reason about constraints. This is essential for
dealing with inconsistencies, one of the main software-development problems addressed by
DynaMICs.

e stk

Froggpem

Figure 21 A high-leved view of moded checking.

The goals of runtime constraint checking are similar to model checking (H97). Model heckers
monitor constraints of programs using an exhaustive finite-state search of an abstracted program
(see Fig.2). Because the state space of complex programs is too large for exhaustive search, a
common approach is to abstract the program to a model and test properties of the model.
DynaMICs extends the range of model checking by allowing verification of constraints over a
larger state space.

The approach provides runtime assurance that a property holds in a particular execution or
test suite, i.e., it explores only a subset of the state space that a program visits and not the entire
state space. Model checking will detect a failure if an error exists in the model. On the other hand,
DynaMICs will detect a failure if an error exists in the program on a tested execution path. Model
checking verifies a subset of a real program, and DynaMICs verifies a subset of states of a
program. :

One of the difficulties in model checking is the correct construction and instrumentation of a
model from a program. We would like to investigate the possibility of automating model
instrumentation for verification via model checking. Another area of research is the vertical
traceability of errors detected by a model checker to code and specifications. One possible
approach is to identify a failure using a model checker, instrument a source program using
DynaMICs, then execute the instrumented source code using the state trace from the model
checker to build a test suite. DynaMICs has the capability to trace to artifacts upon constraint
violations through the tracing mechanism.

83

3. Instrumentation

3.1 Overview

Monitoring code is code that results in the test of a constraint. This can be an in-line sequence
of instructions, a call to a procedure or function, or a trigger for an instruction sequence executed
in a separate process (F98, L95). Identifying the points in program execution at which monitoring
code should be executed requires the event definition of a specification along with analysis of the
program’s control flow. This section examines control-flow graph analysis and code generation.

3.2 Approach
3.2.1 Control-Flow Analysis

Analysis of a program’s execution flow is needed in order to automatically determine
program instrumentation points from constraint specifications (GP01). These points are
associated with updates to monitored variables. The analysis approach followed by DynaMICS
focuses on path expressions (T81, BM93, K97), i.e., regular expressions derivable from execution
control-flow graphs (CFGs), each node of which is a basic block. A basic block (AS86) is a
sequence of instructions with a single entry and single exit. Read/write lists are associated with
each basic block to identify basic blocks of interest, i.e., ones that include accesses to monitored
variables. Once these basic blocks are identified, the path expressions can be condensed by
coalescing adjacent basic blocks.

Using the event definition as a guide, path expressions are analyzed to identify program
instrumentation points; each of these points is associated with a unique path tag (TM99). Each
path tag maps to a constraint specification. An algorithm for defining path tags for immediate,
delayed-on-input, delayed-on-processing, and delayed-on-output constraints can be found in
(F98, GT99, GPO1). Checking immediate constraints is straightforward; the constraint check is
performed whenever a monitored variable is modified. Placerent of a delayed constraint requires
identifying the best location at which to place a constraint check. For a delayed-on-process
constraint, this is the point where assignment of the monitored variables is complete.

Analysis can be done at the intermediate-code or object-code level. In the case of mission-
critical constraints, object-code analysis is needed to prevent a transition to an unsafe state. In
memory-mapped IO systems, it may be necessary to prevent a write to memory prior to testing a
constraint. For constraints that are not critical, intermediate-code instrumentation is sufficient.
Because safety-critical systems require assurance that is not provided by current compilers,
checking of critical and mission-critical constraints requires instrumentation at the object-code
level.

3.2.2 Code Generation

One goal of DynaMICs is to synthesize constraint-checking code automatically from
constraint specifications. Constraints may require information that is not computed by the
program. This includes information that can be inferred from state and computed using counters
and accumulators. The collection of this information is defined using an event-condition-action
specification, where the event and condition are the same as a constraint specification. The main

84

difference is that the action, which computes values to be used by constraints, is triggered when
the condition is satisfied.

Consider a constraint that requires that a be less than b after a specified number of updates to
b. In this case, variable, c is introduced to maintain the count of the number of updates to b. The
event is an assignment to b (immediate-on-processing), the condition is #rue, and the action is the
increment of ¢. The constraint can be specified as ¢ > threshold ® a < b and is classified as an
immediate-on-processing constraint on variable b.

Two classes of code are considered: constraint-checking code which ensures that the
monitored program is executing correctly, as defined by constraints; and information-generating
code which computes additional information needed to check constraints. Only the constraint-
checking code raises violations for handling by the monitor. Neither will alter execution of the
program except in the case when a violation is detected by constraint-checking code and the
corresponding action definition requires error recovery. The information collected by
information-generating code does not affect program execution since the variables used to
maintain the information cannot be referenced in the source code.

Because constraint specifications and domain knowledge are implementation independent,
the code-generation algorithm needs to translate specifications to code, considering possible
differences between constraint-variable data types and associated program-variable data types
stored in the data dictionary.

3.3 Integration of Formal Methods

Examples of program-synthesis systems that generate concrete -level code from abstract-level
specifications are known (S91, SW94, SM96, W99). Some of these systems, in particular the
fully automated deductive systems, suffer from their dependence on automated-theorem-proving
tools.

However, it is possible that most of the constraints derived in practice will be classified by
their structure (G96). In this case, it might be possible to take advantage of proof planning or
schema-guided synthesis (WB92, BS90). Experiments conducted thus far have shown that the
code to test a constraint is reasonably small, on the order of tens of lines of high-level code (CO1).
This small size of code enables the use of fully automated tools.

The aforementioned approaches require complete axiomatization of domain knowledge. If
such knowledge is not available, inductive techniques for the synthesis of constraint-checking
code could be useful (F95, MB98). This would allow the collection of examples from which the
system will be able to generalize.

4. Summary

The difficulty in communicating crucial knowledge among team members from specification
to software deployment, managing change, and formally specifying requirements makes
verification of software challenging. To address this, it is imperative that developers begin to
focus on identifying pertinent domain and system knowledge that can be used to determine

85

whether a program is operating correctly during its execution. Successful software projects have
key personnel who can integrate several knowledge domains as well as system knowledge. The
aim of the work presented in this paper is to capture such knowledge as constraints and to use the
constraints to monitor the program during runtime.

This will facilitate identification of errors by closing the gap between a software failure and
the fault that leads to failure. The focus of this paper is to describe a framework for an approach
called DynaMICs that assists in providing evidence of correctness in software systems and
assistance in identification of error sources. Additionally, the paper describes the practical impact
of formal methods on development of DynaMICs.

The DynaMICs approach differs from other monitoring approaches because constraints are
stored separately from other artifacts and instrumentation of constraint-checking code is
automated. We believe that the automation provided by the approach, the ability to monitor
correct behavior of programs, and the ability to trace to artifacts will motivate the capture and use
of constraints. Because the formal language used by DynaMICs is semantically equivalent to a
formal temporal logic, a tool that supports reasoning about constraints and detection of potential
inconsistencies in requirements will make the approach even more attractive.

The goals of DynaMICs are complementary to model checking. The automated
instrumentation algorithms of DynaMICs may be applicable to instrumentation of abstract
programs in model checkers, and model checkers can support the use of DynaMICs. For example,
model checkers can direct creation of test suites from state traces upon failures and, using these
test suites, DynaMICs can facilitate the identification of faults in the program and assist in error
resolution through the tracing mechanism.

In order for DynaMICs to be applicable to high-assurance systems, it is crucial to generate
provably correct, executable code. Generation of constraint-checking code from specifications is
a good candidate for application of program-synthesis systems that take advantage of proof-
planning or schema-guided synthesis. The main reasons are the simple and concise pieces of code
that are generated from each constraint and the fact that constraints can be classified based on
their structure.

References

[AS86] Aho, A., Sethi, R. and J. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, MA, 1986.

[BM93] A. Bertolino and M. Marré, “Deriving Path Expressions Recursively,” IEEE Second
Workshop on Program Comprehension, pp. 177-185, July 1993. '

[BS90] A. Bundy, A. Smaill, and G. Wiggins, “The Synthesis of Logic Programs from Inductive
Proofs,” in J. W. Loyd (ed), Proceedings of the ESPRIT Symposium on Computational Logic, pp.
135-149, Springer-Verlag, 1990.

[CO1] R. Cereceres, “A Study Of The Effectiveness Of Integrity Constraints in the DynaMICs
Approach”, Master’s Project Report, The University of Texas at El Paso, El Paso, Texas, 2001.
[CK88] B. Curtis, H. Krasner, and N. Iscoe., “A Field Study of the Software Design Process for
Large Systems”, Communications of the ACM, 31(11), pp. 1268-1287, 1988.

[DV93] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed Requirements
Acquistion”, Science of Computer Programming, 20, pp. 3-50, 1993.

86

[F98] F. Fernandez, “Compiler-driven Approach to Monitoring Integrity Constraints”, Master’s
Thesis, The University of Texas at El Paso, El Paso, Texas, 1998.

[F95] P. Flener, “Logic Program Synthesis from Incomplete Information”, Klewer Academic
Publishers, Norwell, MA, 1995.

[G96] A. Gates, “On Defining a Class of Integrity Constraints”, Proceedings of the Eighth
International Conference on Software Engineering and Knowledge Engineering, pp. 338-344,
1996.

[GK97] A. Gates and C. Kubo Della -Piana, “The Identification of Integrity Constraints in
Requirements for Context Monitoring”, Proceedings of the International Conference and
Workshop on Engineering of Computer-Based Systems, pp. 498-505, 1997.

[GL98] A. Gates and S. Li, “Software Faults and their Detection through DynaMICs,”
Proceedings of the IASTED Conference Software Engineering, Las Vegas, NV, pp. 323-327,
1998.

[GT99] A. Q. Gates and P. J. Teller, “DynaMICs: An Automated and Independent Software-Fault
Detection Approach”, Proceedings of the Fourth International High-Assurance Systems
Engineering Symposium, pp. 11-19,1999.

[GT00] A. Q.Gates and P. J. Teller, “An Integrated Design of a Dynamic Software-Fault
Monitoring System”, Journal of Integrated Design & Process Science. Society for Design and
Process Science, 14(3), 63-78, 2000.

[GTO1] A. Q. Gates and P. J. Teller, “Dynamic Software Monitoring with Integrity Constraints:
A Unified Approach for the Development and Evolution of Software”, in review, 2000.

[GP01] A. Q. Gates, O. Mondragon, S. Roach, and A. Provetti, “Object-level Constraint
Instrumentation: From Control Flowgraphs to Path Expressions”, submitted to The Eighth
International Static Analysis Symposium, February 2001.

[GMO01] A. Q. Gates and O. Mondragon, “A Constraint-Based Tracing Approach”, to appear
Journal of Systems and Software, 2001.

[H97] G. Holtzman, “The Spin Model Checker,” IEEE Transactions on Software Engineering,
Vol. 23, No. 5, pp. 279-295, May 1997.

[K97] M. Kidd, “Ensuring Critical Event Sequences in High Consequence Computer Based
Systems as Inspired by Path Expressions,” Proceedings of the International Conference and
Workshop on Engineering of Computer Based Systems, pp. 483-490, 1997

[L95] J. R. Larus, “EEL: Machine-Independent Executable Editing”, SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 1995.

[LC95] Lugi and D. Cooke, “How to Combine Nonmonotonic Logic and Rapid Prototyping to
Maintain Software,” International Journal on Software Engineering and Knowledge Engineering,
5(1), pp. 89-118, 1995,

[MB98] S. Muggleton and W. Buntine, Machine invention of first-order predicates by inverting
resolution,” Proceedings of the 1988 International Conference on Machine Learning, pp. 339-
352, 1988. ’

[SM93] S. Sankar and M. Mandal, “Concurrent Runtime Monitoring of Formally Specified
Programs,” IEEE Computer, 26(3), pp. 32-41, 1993.

[S91] D. R. Smith, “KIDS: A Knowledge-Based Software Development System”, in Automating
Software Design, M. Lowry and R. McCartney (eds.), MIT Press, pp. 483-514, 1991.

[SM93] Y. V. Srinivas and J. L. McDonald, “The Architecture of Specware, a Formal Software
Development System”, Kestrel Institute Technical Report KES.U.96.7, 1996.

[SW94] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood, “Deductive
Composition of Astronomical Software from Subroutine Libraries”, Proceedings of the 12*
Conference on Automated Deduction, Nancy, France, June 28-July 1, 1994.

87

[T81] Tarjan, R.E., “Fast Algorithms for Solving Paths Problems,” Journal of the ACM , 28(3),
pp 584-614, 1981.

[TM99] P. Teller, M. Maxwell, and A. Gates, “Towards the Design of a Snoopy Coprocessor for
Dynamic Software-Fault Detection”,” Proceedings of the 18th IEEE International Performance,
Computing, and Communications Conference, pp. 310-317, February 1999.

[WB92] G. Wiggins, A. Bundy, 1. Kraan, and J. Hesketh, “Synthesis and Transformation of Logic
Programs from Constructive, Inductive Proof,” Proceedings of LOPSTR 91, Springer-Verlag, pp.
27-45, 1992.

[W99] V. Winter, “An Overview of HATS: A Language Independent High Assurance
Transformation System”, Sandia National Laboratories, 1999.

88

The Use of Computer Aided Prototyping for Re-engineering Legacy Software'

Luqi, V. Berzins, M. Shing
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Abstract

Re-engineering is typically needed when a system performing a valuable service must change, and its
current implementation can no longer support cost-effective changes. The process of re-engineering old
procedural software to a modern object-oriented architecture introduces certain complexities into the
software analysis process. The direct products of reverse engineering, such as requirements or design
specifications, are likely to have a functionally based structure. As a result, some transformation of the
recovered requirements and design specifications is necessary in order to obtain specifications for the new
structures. It is often very difficult to quickly determine if the transformed specification is a true
representation of the desired requirements. This paper discusses the effective use of computer-aided
prototyping techniques for re-engineering legacy software, and presents results of a case study which
showed that prototyping can be a valuable aid in re-engineering of legacy systems, particularly in cases
where radical changes to system conceptualization and software structure are needed.

Keywords: Software re-engineering, Object-oriented architecture, Computer-aided prototyping, Software
evolution, Combat simulation

1. Introduction

Legacy systems embody substantial institutional knowledge, which includes basic and refined
requirements, design decisions, and invaluable advice and suggestions from domain users that have been
implemented over the years. To effectively use these assets, it is important to employ a systematic strategy
for continued evolution of the current system to meet the ever-changing mission, technology and user
needs. Re-engineering has frequently been proven to be more cost effective than new development and is
also known to better promote continuous software evolution.

However, the institutional knowledge implicit in a legacy system is difficult to recover after many
years of operation, evolution, and personnel change. These software systems were originally written twenty
or more years ago using what many now view archaic and ad-hoc methods. Such legacy systems usually
lack accurate documentation, modular structure, and coherent abstractions that correspond to current or
projected requirements. Past optimizations and design changes have spread design decisions that now must
be changed over large areas of the code, and may have introduced inconsistencies and faults.

Software re-engineering can be defined as the systematic transformation of an existing system into a
new form to realize quality improvements, such as increased or enhanced functionality, better
maintainability, configurability, reusability, performance, or evolvability at a reduced cost, schedule, or risk
to the customer. This process involves recovering existing software artifacts from the system and then
transforming and re-organizing them as a basis for future evolution of the system. Since typical legacy
systems were originally designed and implemented using a functionally based approach, some
transformation of the recovered information is necessary in order to obtain an object-oriented model. It is
often very difficult to obtain a transformed specification that accurately represents the desired
requirements.

Since legacy systems are usually re-engineered only when the existing systems need some kind of
improvement, it is unlikely that the initial version of the reconstructed requirements adequately reflects

! This research was supported in part by the U.S. Army Research Office under contract number 350367-
MA and 40473-MA.

89

current user needs. Prototyping provides a means to identify and validate changes to system requirements
while simultaneously enabling prospective users to get a feel for new aspects of the proposed system. It is
a well-established approach that can be highly effective in increasing software quality [15]. When used in
conjunction with conducting a major re-engineering effort, prototyping can be extremely useful in assisting
in many areas of software modification, validation, risk reduction, and the refinement of new software
architectures and user requirements.

This paper describes a case study that illustrates the effective use of computer-aided prototyping
techniques for re-engineering legacy software [3, 16]. The case study consists of developing an object-
oriented modular architecture for the existing US Army Janus(A) combat simulation system [19], and
validating the architecture via an executable prototype using the Computer Aided Prototyping System
(CAPS), a research tool developed at the Naval Postgraduate School [14]. Janus(A) is a software-based war
game that simulates ground battles between up to six adversaries [9]. It is an interactive, closed, stochastic,
ground combat simulation with color graphics. Janus is "interactive" in that command and control functions
are entered by military analysts who decide what to do in crucial situations during simulated combat. The
current version of Janus operates on a Hewlett Packard workstation and consists of over 350,000 lines of
FORTRAN code. The FORTRAN modules are organized as a flat structure and interconnected with one
another via 129 FORTRAN COMMON blocks, resulting in a software structure that makes modification to
Janus very costly and error-prone. The Software Engineering group at the Naval Postgraduate School was
tasked to extract the existing functionality through reverse engineering and to create a base-line object-
oriented architecture that supports existing and required enhancements to Janus functionality.

The paper presents the re-architecturing process and the resultant object-oriented architecture. in
Sections 2. Section 3 describes the use of computer aided prototyping to validate the resultant architecture
and Section 4 draws some conclusions.

2. The Re-Architecturing Process

The re-architecturing process used in the case study consists of 3 major phases: reverse engineering,
object-oriented design and design validation via prototyping (Figure 1).

Reverse Engineerin Object-oriented Design Validation
Design domain expert Yia Prototypin

prototype
demonstratio:

domain expep
feedbgeX

executable

source code,
prototype

design documents,
user manual,
domain experts

object-oriented
architecture

oriented
. modeling

executable
prototype

[ﬁ)rward to target OO]
system implementation

structure charts

object-oriented
architecture

Figure 1. The object-oriented re-architecturing process.

90

2.1 Reverse Engineering

The first phase is reverse engineering. Input to this phase includes the legacy source code, design
documents, user manuals, and information from domain experts. Since the goal of the initial re-engineering
effort is to duplicate the functionality of the existing system within a modular, extensible architecture and
to reuse domain concepts, models and algorithms instead of the existing code, we should avoid including
any requirements/constraints that are consequences of issues related to FORTRAN implementation. The
best places to extract domain concepts from the existing system are the user manuals and the database
management system manuals. These manuals were written using the lingo of the user community and
should be relatively free of implementation details. We found the JANUS Data Base Management Program
Manual [10] particularly useful because it contains detailed information on what kind of data are needed to
model the battlefield and how they are organized (logically) in the database. The top-level structure of the
database is shown in Figure 2.

Janus Database
| |
Symbols Combat Systems Terrain
General ‘Weather Optical/Thermal
Characteristics Characteristics Sensors
Functional Weapons Engineer | CMRvs. Contrast | - cpemicy] /
Characteristics Temperature Heat Stress
Volume/Weight General Barrier Delays On-board Seekers il
Detection Characteristics Non-Arty Smoke ~ Range Dependent Chemical
Mine Round Guidance VEES Characteristics Susceptibility
Vulnerability MOPP Effects Grenades Capability Chemical
POL PH/PK Data Smoke Pots Footprints Rounds
Weapons/Ordina Sets Large Area BCIS Heat Stress
nce By Weapon Generators Characteristics
Weapon By Target Minefields . Flyer
Selection/ : Dispensing Fuselage/Rotor
Firing System Clearing Data Status
Weapon Mine Detection/ Rotor Track Radii
Selection/ Duds Rotor Acquisition
Target System Activation / Kill Times
Kill Categories Fuselage
Vulnerability to Probability
Indirect Fire Track
Artillery Systems Fuselage Radar
Indirect Fire X-section
Lethalities Jammer/Radar
Arty Cloud Data Characteristics
Optical & Jammer
Thermal Effectiveness
Contrast Probability of
Smoke Grenade Detection Data
Data vs. Aircraft
Aircraft Systems
Radar Systems

Figure 2. The top-level structure of the Janus Database.

91

Not shown in Figure 2 are the interdependencies between the data, whereby data entered in one
category affect directly or indirectly the data in other categories. For example, the barrier delay attributes of
the Engineer Data depend on specific weather conditions derived from the Weather Data and system
functional characteristics derived from the System Data. The overall network of interdependencies is highly
complex and can only be understood through construction and analysis of a functional model of the
existing Janus software.

Analysis of the legacy implementation of 350,000 lines of source code is a daunting but inescapable
part of this step. We recoiled from the magnitude of this effort and analyzed the Janus User's manual [9],
the Janus Programmer's Manual [7], the Janus Software Design Manual [8], and the Janus Algorithm
Document [18] instead. These documents helped us get started because they contained higher level

. information and were much shorter than the code. However, they were also older, and it was a constant
struggle to determine which parts were still accurate, and which were not. In hindsight, avoiding analysis of
the code was a mistake that slipped the schedule of the project by several months. Understanding a design
of this complexity requires time for mental digestion, even with tool support and judicious sampling. We
should have started analysis of the code right away and should have persistently continued this task in
parallel with all other re-engineering activities. Cross-fertilization between all the tasks would have helped
us recognize some dead-end directions earlier and would have enabled us to spend meeting time more
effectively.

Usmg manual techniques augmented w1th the text matching tool grep [1], which takes a regular
expression and a list of files and lists the lines of those files that match the pattern, we were able to walk
through the code and get a fairly good idea of what each subroutine was designed to do. We also used the
Software Programmers' Manual [7] to aid in understanding each subroutine's function. In doing so we were
able to group the subroutines by functionality to get a better understanding of the major data flows between
programs and develop functional models from the data flows. We used CAPS to assist in developing the
abstract models [3]. CAPS allowed us to rapidly graph the gathered data and transform it into a more
readable and usable format. Additionally, CAPS enabled us to concurrently develop our diagrams, and
then join them together under the CAPS environment, where they can be used to generate an executable
model.

We also had a series of brief meetings with the client, TRAC-Monterey, asking questions and making
notes on the system's operation and its current functionality. We paid attention to the client's view of the
system to gather their ideas on its strengths, weaknesses, and desired and undesired functionality. These
meetings were indispensable because they gave us information that was not present in the code. Since we
were not familiar with the domain of ground combat simulation, we were using these meetings to determine
the requirements of this domain, often playing the role of "smart ignoramuses" [4]. Domain analysis has
been identified as an effective technique for software re-engineering [17]. Our experience suggests that
competent engineers unfamiliar with the application domain have an essential role in re-engineering as well
as in requirements elicitation because lack of inessential information about the application domain makes it
easier to find new, simpler design structures and architectural concepts to guide the re-engineering effort.

2.2. Object-Oriented Design

Next, we developed object models and architecture of the Janus System using the aforementioned
materials and products, to create the modules and associations amongst them. Information modeling is
needed to support effective re-engineering of complex systems [5]. This was probably the most difficult
and most important phase. It required a great deal of analysis and focus to transform the currently scattered
sets of data and functions into small, coherent and realizable objects, each with its own attributes and
operations. In performing this phase, we used our knowledge of object-oriented analysis and the UML
notations to create the classes and associated attributes and operations [20]. This was a crucial phase
because we had to ensure that the classes we created accurately represented the functions and procedures
currently in the software.

Restructuring software to identify data abstractions is a difficult part of the process. Transformations
for meaning-preserving restructuring can be useful if tool support is available [6]. We used the HP-UNIX
systems at the TRAC-Monterey facility to run the Janus simulation software to aid in verifying and
supplementing the information we obtained from reviewing the source code and documentation. This step
enabled us to better analyze the simulation system, gaining insight into its functlonahty and further
concentrate on module definition and refinement.

92

The re-engineering team met several times each week for a period of two and a half months to discuss
the object models for the Janus core data elements and the object-oriented architecture for the Janus
System. We presented the findings to the Janus domain experts at least once per week to get feedback on
the models and architectures being constructed. In addition, the re-engineering team also presented the
findings to members of the OneSAF project, the Combat21 project, and the National Simulation Center
project. We found that information from these domain experts was essential for understanding the system,
particularly in cases where the legacy code did not correspond to stakeholder needs. This supports the
hypothesis advanced in [11] that the involvement of domain experts is critical for nontrivial re-engineering
tasks.

Early involvement of the stakeholders in the simulation community also paid off in the long run. Both
the National Simulation Center and Combat21 projects were able to save time and money by reusing our
work and came up with designs that look remarkably like ours (although much larger). Now, OneSAF
developers have been directed to look at the Combat21 class design and reuse as much as possible. So, our
efforts have directly benefited other simulation developers.

Based on the feedback from the domain experts, the re-engineering team revised the object models for
the Janus core elements and developed a 3-tier object-oriented architecture for the Janus System (Figure 3).

Tier 1
User Interface

JANUS
User Interface

() \
7 1 AN
Tier 2 /'/ ’,,’ ,,’ “. ‘\\
. 2 - Y ’ \ \
Applications
- e / A
m o o ! =‘ N
o K Y ¥ .
Combat . JANUS
Systems ng‘::n:;gn Combat JAAWS POSTP Elecx:reits
D g Simulation
~ ‘:\ r\\\ \\\ K ’:’7
Services I IS L
~\~~‘ _\ N hé -~ \\x\
" Pass
DB Utilities Interface
7 A
i
. /’ v,/
Tier 3
Storage &
.. Database DIS/HLA
Communication

Note: Lines showing the dependency of the Combat Systems DBMS, Scenario Management, JANUS
Combat Simulation, JAAWS, POSTP, DB Utilities and Pass Interface subsystems on the Core
Elements packages are omitted from the diagram to keep it clear and simple.

Figure 3. The resultant 3-tier object-oriented architecture.

93

We extracted most of the data and operations from the existing Combat System DBMS, Scenario
Management, Janus Combat Simulation, JAAWS and POSTP subsystems and encapsulated them as
simulation objects in the Core Elements package, leaving only application specific control codes that use
the simulation objects in each of these five subsystems. Figures 4 and 5 show the top level class structures
of the object models of the core elements. Details of the associated attributes and operations can be found
in [3, 22] and are omitted from these diagrams due to space limitations.

Scenario
b enemy
/ 1. .
Environment ol Foree Poe
T %*
Command Combat
& Control Element
* consists [? T T |
Aggregate of Unit Barrier Minefield Cloud
1.
Map CAC
Symbol Overlay

Figure 4. The top-level structure of the Janus Core Elements Object Model.

Environment
Wind
D/ Model
Elevation < Terrain Weather - Wet
Data f Data Bulb
. s etens Air
Terrain Visibility
Features i Model
A
Il | - Extinction
Linear 2D Building Thermal Optical Coefficient
Obiect Object Curve

Figure 5. The Environment Object Class.

94

Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which is the main event
scheduler for the simulation. RUNJAN determines the next scheduled event and executes that event. If the
next scheduled event is a simulation event, RUNJAN will advance the game clock to the scheduled time of
the event and perform that event. The existing Janus Simulation System uses 17 different categories to
characterize the events. RUNJAN then handles these 17 events using the event handlers shown in Figure 6.

1) DOPLAN - Interactive Command and Control activities
"2) MOVEMENT - Update unit positions

3) DOCLOUD - Create and update smoke and dust clouds

4) STATEWT - Periodic activity to write unit status to disk

5) RELOAD - Plan and execute the direct fire events

6) INTACT - Update the graphics displays

7) CNTRBAT - Detect artillery fire

8) SEARCH - Update target acquisitions, choose weapons against potential targets, and
schedule potential direct fire events

9) DOCHEM - Create chemical clouds and transition units to different chemical states

10) FIRING - Evaluate direct fire round impacting and execute indirect fire missions

11) IMPACT - Evaluate and update the results of an indirect round impacting

12) RADAR - Update an air defensc radar state and schedule direct fire events for “normal”
radar

13) COPTER - Update helicopter states

14) DOARTY - Schedule indirect fire missions

15) DOHEAT - Update unit’s heat status

16) DOCKPT - Activity to record automatic checkpoints

17) ENDJAN - Housekeeping activity to end the simulation

Figure 6. The event handlers for the legacy Janus system.

Like all typical Fortran programs, the existing event scheduler uses global arrays and matrices to
maintain the attributes of the objects in the simulation. Hence, one of the major tasks in designing an
object-oriented architecture for the Janus Combat Simulation Subsystem was to distribute the event
handling functions to individual objects. However, many of the current event handler categories contained
redundant code. They did not seem to be independent of each other and were not consistent with the class
hierarchy we created. For example, the set of event handlers used to simulate the activities of a particular
unit to search for targets, select weapons, prepare for a direct fire engagement, and then execute that direct
fire engagement differs depending upon whether the unit has a normal radar, special radar, or no radar at
all. The existing Janus Simulation System uses the RADAR event handler to carry out the entire procedure
if the unit has normal radar. However, it uses the SEARCH, RADAR, and RELOAD event handlers to
carry out the procedure if the unit has special radar. Finally the system uses the SEARCH and RELOAD
event handlers to conduct the procedure if the unit has no radar at all. We conjecture that this lack of
uniformity is due to a series of software modifications made by different people at different times without
full knowledge of the software structure. The example also illustrates another problem: the legacy event
handlers were not designed to perform independent tasks, and had complicated interactions with each other.

It was necessary to redefine some event categories in order to reduce interdependencies between the
event handlers, to factor simulation behavior into more coherent modules, to eliminate redundant coding of
the same or similar functions and to take advantage of dynamic dispatching of event handling functions in
the object-oriented architecture. Moreover, the Janus system was originally designed to work in isolation,
and has since been adapted to interact with other simulation systems. Interactions between the simulation
engine and the world modeler (the interface to the distributed simulation network) are performed implicitly
within the various event handlers in the existing Janus. Such interactions are made explicit in the new
architecture in order to provide a uniform framework to update World Model objects during the simulation.
The new architecture uses an explicit priority queue of event objects to schedule the simulation events. We
were able to reduce the total number of event handlers needed in the simulation, from 17 to 14, by
eliminating identified redundant code (Figure 7).

95

Event
Time_For_Event | % Simulation
Object
Execute()
ImpactEffects WriteStatus DoDirectFire CounterBattery
Execute() Execute() Execute() Execute()
DoPlan Display CheckPoint
Execute() Execute() Execute()
Search DolndirectFire ndSimulation | * UpdateHeatStatus
Execute() Execute() Execute() Execute()
MoveUpdateOb;j UpdateChemicalStatus ChooseDirectFireTargets
Execute() Execute() Execute()

Figure 7. The event class hierarchy.

We tried to make the actions of the new event handlers independent and orthogonal. Independent
means that one event handler does not invoke or depend on the action of another. Orthogonal means that
the purpose of one event handler is completely separate from that of another. Although our architecture
does not completely meet these goals, it comes much closer to them than the legacy design does. We
believe that these properties of the architecture are desirable because they impose a partitioned structure on
the system that aids future enhancements and modifications. If an enhancement affects only one kind of
event, then it becomes relatively easy to isolate the affected part of the code. If suitable naming conventions
are followed, relatively low-tech tool support will be adequate for helping system maintainers find the parts
of the code that must be understood and modified to make a future change to the system.

Every event has an associated simulation object in the new architecture. This associated object is the target of the
event. Depending on the subclass to which an event object belongs, the “execute” method of the event will invoke the
corresponding event handler of the associated simulation object. (See [3] for details.) The new event hierarchy enables
a very simple realization of the main simulation loop:

initialization;

while not_empty(event_queue) loop
e ;= remove_event(event_queue);
e.execute();

end loop;

finalization;

Note that this same code is used to handle all of the event handlers, including those for future
extensions that have not yet been designed. Event objects with associated simulation objects are created
and inserted into the event queue by the initialization procedure, the constructors of simulation objects, and
the actions of other event handlers. Depending on the actual event, events are inserted into an event
priority queue based on time and priority.

Our newly designed architecture eliminates the need for the simulation loop to know what kind of
object it is handling. Thus when adding an object type not yet designed, the simulation loop does not
require additional code to invoke the new object’s event handlers. By localizing all changes to the newly
added object class, our architecture eliminates the possibility of introducing errors into the existing parts of
the simulation.

96

3. Design Validation Via Prototyping

The process of transforming a design developed using the functional approach into an object-oriented
design introduces risks of unintentionally altering system behavior. In the context of our case study, the
resultant object oriented architecture and the new event dispatching control structure are areas of high risk
since they differ significantly from the functional design of the legacy software. UML provides two ways to
model behavior. One is to capture the behavior of individual objects over time using state machines, and
. the other is to capture the interactions of a set of objects in the system using sequence diagrams and
collaboration diagrams. While state machines are precise, they only focus on a single object at a time and is
hard to understand the behavior of the system as a whole. The sequence diagrams and the collaboration
diagrams, on the other hand, lack a formal semantics for precise description of the system behaviors.

One way to reduce the risk is to validate the dynamic behavior of the proposed architecture and to refine
the interfaces of subsystems via prototyping at the early design stage. To be effective, prototypes must be
constructed and modified rapidly, accurately, and cheaply. Computer aid for constructing and modifying
prototypes makes this feasible [15]. The CAPS system is an integrated set of software tools that generate
source programs directly from high-level requirement specifications.

Due to time and resource limitations, we developed a prototype for only a very small simulation run,
which consists of a single object (a tank) moving on a two-dimensional plane, three event subclasses
(move, do_plan, and end_simulation), and one kind of post-processing statistics (fuel consumption).

We developed an executable prototype using CAPS. Figure 8 shows the top-level structure of the
prototype, which has four subsystems: janus, gui, jaaws and the post_processor. Among these four
subsystems, the janus and the gui subsystems (depicted as double circles) are made up of sub-modules
while the jaaws and the post_processor subsystems (depicted as single circles) are mapped directly to
modules in the target language. After entering the prototype design into CAPS, we used the CAPS
execution support system to generate the code that interconnects and controls these subsystems. In addition,
a simple user interface was developed using CAPS/TAE [21].

Figure 8. Top-level decomposition of the executable prototype.

The resultant prototype has over 6000 lines of program source code, most of which was automatically
generated, and contains enough features to exercise all parts of the architecture. The code that handles the
motion of a generic simulation object was very simple, but it was designed so that it would work in both
two and three dimensions without modification (currently the initialization and the movement plan of the
tank object never call for any vertical motion). The code was also designed to be polymorphic, just as was
the main event loop. This means the same code will handle the motion of all kinds of simulation objects

97

without any modifications, including new types of simulation objects that are part of currently unknown

future enhancements to Janus and have not yet been designed or implemented.

Our prototyping experiment showed that the proposed object-oriented architecture allows design issues
to be localized and provides easy means for future extensions. We started out with a prototype consisting of
only two event subclasses (move and end_simulation) and were able to add a third event subclass (do_plan)
to the prototype without modifying the event control loop of the Janus combat simulator.

We also demonstrated the use of inheritance and polymorphism to efficiently extend/specialize the
behavior of combat units. For example, the move_update_object method of a tank subclass uses the
general-purpose method from its superclass to compute its distance traveled and a specialized algorithm to
compute its fuel consumption. We simply include one statement to invoke the move_update_object method
of its superclass followed by three lines of code to update its fuel consumption. Moreover, other combat
unit subclasses can be added easily to the prototype without the need to modify the event
scheduling/dispatching code and usually without modifying existing event handlers.

The issues raised by the design of the prototype also resulted in the following refinements to the
proposed architecture:

1. Extend the interface of the Execute_Event operation to return the time at which the next event is to be
scheduled for the same simulation object, and introduce a special time value “NEVER?” to indicate that
no next event is needed. The proposed change turns the communication between the event dispatcher
and the simulation objects from a peer-to-peer communication into a client-server communication.
This change eliminates dependencies of event handlers on event queue details and allows the event
dispatcher to use a single statement to schedule all recurring events for all event types.

2. Instead of recording the history of a simulation run in sets of data files, model the simulation history as
a sequence of events. The proposed change provides a simple and uniform way to handle history
records for all events, and allows the same modular architecture to be used for real-time simulations as
well as post-simulation analysis. It also eliminates the need for the write-status event, reducing the
number of events still further. This approach provides the greatest possible resolution for the event
histories, which implies that any quantity that could have been calculated during the simulation can
also be calculated by a post-simulation analysis of the event history, without any loss of accuracy. The
only constraint imposed by this design refinement is that the simulation objects in the events must be
copied before being included in the simulation history, to protect them from further changes of state as
the simulation proceeds. This constraint is easy to meet in a full-scale implementation because the
process of writing the contents of an event object to a history file will implicitly make the required
copy.

3. It is beneficial to allow null events appear in the event queue. A null event is one that does not affect
the state of the simulation, such as a move event for an object that is currently stationary. The
prototype version adopted the position that such events should not be put in the event queue, since this
corresponds to current scheduling policies in Janus, and appears at first glance to improve efficiency.
Our experience with the development of the prototype suggests that this decision complicates the logic
and may not in fact improve efficiency. The current design uses the process create_new_events to scan
all simulation objects once per simulation cycle to determine if any dormant objects have become
active, and if so, schedules events to handle their new activity. The alternative is to have the
constructor of each kind of simulation object schedule all of its initial events, and to have each event
handler specify the time of next instance of the same event even if there is nothing for it to do
currently. Handlers might still set the time of its next event to NEVER in the case of a catastrophic kill;
however this is reasonable only if it is impossible to repair or restore the operation of the units that
have suffered a catastrophic kill. The reasons why this design change may improve efficiency in
addition to simplifying the code are that:

(a) the check for whether a dormant object has become active is done less often - once per activity of

that object, rather than once per simulation cycle,

(b) executing a null event is very fast - a few instructions at most, so the “unnecessary” null events

will not have much impact on execution time, and

(c) the computation to find and test all simulation objects periodically would be eliminated.

We recommend allowing null events in the event queue, and explicitly scheduling every kind of event

for every object unless it is known that there cannot be any non-empty events of that type in any

possible future state of the object. For example, under the proposed scheduling policy, immobile or
irrecoverably damaged objects would not need to schedule future move events, but those that are

98

currently at their planned positions would need to do so, because a change of plan could cause them to
move again in the future, even though they are not currently moving. The resulting architecture enables
a very simple realization of the main simulation.

4. Conclusion

Our conclusion is that substantial and useful computer aid for re-engineering is possible at the current
state of the art. Human analysts and domain experts must also play an important part of the process because
much of the information needed to do a good job is not present in the software artifacts to be re-engineered.
Success depends on cooperation between skilled people and appropriate software tools.

The missing information needed for re-engineering is related to deficiencies of the current system at all
levels, from requirements through design and implementation. Thorough and accurate knowledge of these
deficiencies is crucial for success. The clients never want the re-engineered system to have the exactly
same behavior as the legacy system - if they were satisfied, there would be little motivation to spend time,
effort, and resources on a re-engineering project. Even if a system is being re-engineered for the ostensible
goal of porting to different hardware, the desired behavior at the interface to the hardware and systems
software will be different.

In practical situations, the requirements for the re-engineered system are different from those for the
legacy system. Key parts of the requirements for the new system are often missing or incorrect in the
legacy documents. Some of that information is present only in the minds of the clients, often fragmented
and scattered across members of many different organizations. Communication is a large part of the
process, and that communication cannot be automated away, although it can be enhanced by appropriate
use of prototyping. We found that the most important communications were those regarding newly
recognized requirements issues, and that such recognition were often triggered by discussions between
people with different areas of expertise.

Uncertainties about the true requirements play a central role in both re-engineering and the
development of new systems. We therefore hypothesized that prototyping could play a valuable role in re-
engineering efforts. Our experience in the case study reported here support that hypothesis.

We also found that prototyping can contribute substantially to the process of inventing, correcting, and
refining the conceptual structures on which the architecture of the new system will be based. Most legacy
systems are too complicated for individuals to understand.

This maze of details hides potential opportunities for simplifying and regulanzmg the conceptual
structure of the system to be re-engineered, and makes it difficult to recognize deficiencies in design and
architectural structure. The amplification process implicit in constructing skeletal prototypes helps expose
such opportunities.

We found that there are fundamental conceptual errors embodied in the legacy structures and
algorithms. Some of those errors were exposed when structural asymmetries and irregularities are
discovered in the process of extracting a model of the legacy software. Others were discovered only with
the help of the oversimplified models that are common in the early stages of prototyping a proposed new
architecture. Constructing a small and simple instance of the proposed architecture raises many of the main
design issues, and the simplicity of the model makes it much easier to consider and evaluate alternative
designs to find improved structures.

To be effective, prototypes must be constructed and modified rapidly, accurately, and cheaply. The
UML interaction diagrams lack the preciseness to support automatic code generation for the executable
prototype. This weakness can be remedied by the use of the prototype language PSDL [12, 13] and the
CAPS prototyping environment, which provide effective means to model the system’s dynamic behavior in
a form that can be easily validated by user via prototype demonstration.

References

[1] A. Aho, “Pattern Matching in Strings”, in Formal Language Theory: Perspectives and Open
Problems, R. Book (editor), Academic Press, NY, 1980, pp. 325-347. .

[2] V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, Re-engineering the Janus(4) Combat
Simulation System, Technical Report NPS-CS-99-004, Computer Science Department, Naval
Postgraduate School, Monterey, CA, January 1999.

99

3]

[4]

(5]
[6]
(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

(17

(18]

[19]

[20]
[21]

[22]

V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, “ Architectural Re-engineering of Janus using
Object Modeling and Rapid Prototyping,” Design Automation for Embedded Systems, 5(3/4), August
2000, pp.251-263. A preliminary version of the paper also appeared in Proceedings of the 10th

IEEE International Workshop in Rapid Systems Prototyping, Clearwater Beach, Florida, 16-18 June
1999, pp. 216-221.

D. Berry, Formal Methods: The Very Idea, “Some Thoughts About Why They Work When They
Work,” Proceedings of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engineering
Automation for Computer Based Systems, 1998, pp. 9-18.

O. Bray and M. Hess, “Reengineering a Configuration-Management System,” IEEE Software, Vol.

12, No. 1, Jan. 1995, pp. 55-63.

V. Cabaniss, B. Nguyen and J. Moregenthaler, “Tool Support for Planning the Restructuring of Data
Abstractions in Large Systems,” IEEE TSE, Vol. 24, No. 7, July 1998, pp. 534-558.

Janus 3. X/UNIX Software Programmer's Manual, Prepared for: Headquarters TRADOC Analysis

Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group, Leavenworth,

Kansas, Nov. 1993.

Janus 3.X/UNIX Sofiware Design Manual, Prepared for: Headquarters TRADOC Analysis Center,
Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group, Leavenworth, Kansas, Nov.

1993.

Janus Version 6 User's Manual, Simulation, Training & Instrumentation Command, Orlando,

Florida, 1995.

Janus Version 6 Data Base Management Program Manual, Simulation, Training & Instrumentation

Command, Orlando, Florida, 1995.

S. Jarzabek and P.K. Tan, “Design of a Generic Reverse Engineering Assistant Tool,” Proceedings
of the Second Working Conference on Reverse Engineering (WCRE'95), 1995, pp. 61-70.

B. Kraemer, Luqgi, and V. Berzins, “Compositional Semantics of a Real-Time Prototyping
Language,” IEEE Transactions on Software Engineering, Vol. 19, No. 5, May 1993, pp. 453-477.

Lugi, V. Berzins, and R. Yeh, “A Prototyping Language for Real-Time Software,” IEEE
Transactions on Software Engineering, Vol. 14, No.10, October 1988, pp. 1409-1423.

Lugi and M. Ketabchi, “A Computer-Aided Prototyping System,” IEEE Software, Vol. 5, No. 2,
1988, pp. 66-72.

Lugqi, “System Engineering and Computer-Aided Prototyping,” Journal of Systems Integration -
Special Issue on Computer Aided Prototyping, Vol. 6, No. 1, 1996, pp.15-17.

Lugi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo and B. Shultes, “The Story of Re-
engineering of 350,000 Lines of FORTRAN Code,” Proceedings of the 1998
ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Automation for Computer Based
Systems, Carmel, CA, 23-26 October 1998, pp. 151-160.

M. Moore and S. Rugaber, “Domain Analysis for Transformational Reuse,” Proceedings of 4th
Workshop on Reverse Engineering, IEEE Computer Society, 1997, pp. 156-163.

J. Pimper and L. Dobbs, Janus Algorithm Document, Version 4.0, Lawrence Livermore National
Laboratory, California, 1988. :

L. Rieger and G. Pearman, “Re-engineering Legacy Simulations for HLA-Compliance,”
Proceedings of the Interservice/Industry Training, Simulation and Education Conference (I/ITSEC),
Orlando, Florida, December 1999.

J. Rumbaugh, 1. Jacobson and G. Booch, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading, MA, 1999.

TAE Plus C Programmer’s Manual (Version 5.1). Prepared for: NASA Goddard Space Flight
Center, Greenbelt, Maryland. Prepared by: Century Computing, Inc., Laural, Maryland, April 1991.
J. Williams and M. Saluto, Re-engineering and Prototyping Legacy Software Systems-Janus Version
6.X, master’s thesis, Naval Postgraduate School, Dept. of Computer Science, Monterey, CA, March
1999.

100

Modeling Constraints as Methods in Object Oriented Data
Model

Samiran Chattopadhyayl, Chhanda Royz, Swapan Bhattacharya®

lDepartment of Computer Sc. & Engg, Jadavpur University, Calcutta — 700032, INDIA.
E-mail: chttpdhs@yahoo.com

2 R.C.C Institute of Information Technology, South Canal Road, Calcutta — 700 015, INDIA

3 Indian Institute of Information Technology - Calcutta, Block FC, Sector — 3, Salt Lake,
Kolkata — 700 091, INDIA. E-mail: bswapan@hotmail.com

Abstract

Object-oriented databases are becoming increasingly popular because of their capabilities to provide rich semantic
constructs to model real world entities and their relations [3, 6]. Modeling of constraints in Object Oriented Data Model
has been the focus of attention of many researchers in recent times [1, 5, 9, 10]. In this paper, we have attempted to model
single and multi-attribute constraints as special methods in a class. We have also modeled class constraints as methods in
a collection class associated with a user-defined class. The syntax and semantics of such modeling is extended to deal
with constraints in single inheritance. Finally, we have demonstrated the application of our constraint model by exploring
the possibility of developing a pre-processor that would add validity code in the methods defined by the user. The
development of such a pre-processor is to be based on a language and platform (such as Java) capable of run-time type
identification, reflection and introspection.

Key words: Object Oriented Database, Constraints, UML, Inheritance, Java Reflection

1. INTRODUCTION

Object-oriented databases are becoming increasingly popular because of their capabilities to provide rich semantic
constructs to model real world entities and their relations. In the process, the notions of object, class, inheritance,
relationships among classes and objects have been thoroughly treated in object oriented database systems. But, a
complete treatise on constraints is still evolving in the context of Object Oriented Data Model. However, the imperative
need for integrity maintenance in database systems is a long recognized fact. Constraints are restrictions on properties and
relations of database objects that ensure the integrity of data according to both the system and the user. Constraints also
ensure that subsequent updates on data will not violate these restrictions. In recent years, modeling integrity constraints in
object oriented databases has become an active research topic [1, 5, 9, 10]. In this paper, we have attempted to explore a
way to statically model constraints as specialized methods by re-defining the model element “Class” and extending the
meta-model of Object Oriented programming. Qur objective in this paper is to clearly bring out the syntax and semantics
constraints in an object oriented framework involving only single inheritance and usual relationship among classes. We
have tried to demonstrate that such a modeling approach would enable us to construct a pre-processor that could add code
to validate integrity constraints in the user-developed methods.

For more than a decade, specification, design and implementation of “Object Oriented Model” of Database systems has
been the focus of many research efforts [3, 6]. Object Oriented data model is a logical organization of real world objects
or entities, constraints on them and relationship among these objects. A core object-oriented data model consists of the
following basic components, namely, object and object identifier, attributes, methods, class, class hierarchy and
inheritance. Every object has a state, characterized by the set of values for the attributes of the object and a behavior,
defined by the set of methods which manipulate the state of the object. Each attribute of a class of objects has an access
specifier (such as public, private, protected etc.) that limits the visibility of the attribute. The state and behavior
encapsulated in an object are accessed or invoked from the external world only through explicit message passing.

101

Inheritance is deriving a new class (subclass) form one or more existing classes(super classes). The subclass inherits all
attributes and methods of existing classes and may have additional attributes and methods. Exact semantics of inheritance
is, however, dependent on a object oriented language and thus, not universal. A class “Y” is said to be a subclass of class
“X” (equivalently, class “X” is said to be a super class of class “Y”’) if and only if every object of class “Y” is necessarily
an object of class “X” (that is, Y ISA X). Objects of class “Y” then inherits the instance variables and methods of class
“X”. As a consequence, we can always use a “Y” object wherever an “X” object is permitted (that is, as an argument to
various methods). This is the principle of substitutability, which helps us to take the advantage of code reusability. The
ability to apply the same methods to different classes, or rather the ability to apply different methods with the same name
to different classes (a class “X” method might need to be redefined for use with class “Y”) is referred to as
polymorphism. Thus, when a class “Y” inherits from a class “X” then the set of instance variables, and the set of methods
of Y are a superset of the set of instance variables and the set of methods of “X”. The subclass “Y” can override the
implementation of an inherited method or instance variable by providing an alternative definition or implementation of
the base class. In this paper, we will deal with single inheritance only.

A prototype implementation of an Object Oriented Database (OODB) for VLSI designs have been developed in [8].
Jasmine, a full-fledged implementation of OODB, has been reported in [4]. [7] deals with an another advanced object
modeling environment. But these papers do not provide any insight to handle integrity constraints in object oriented
databases.

There has also been a good amount of effort to identify, specify, design constraints in an object oriented database [1, 5, 9,
10]. In relational databases, Date [2] identified four categories of integrity rules, namely domain rules, attributes rules,
relation rules and database rules. In the context of OODB, integrity rules may also be categorized in four groups - domain
rules, attributes Rules, class rules and database rules [5]. Class Rules apply to the objects of a given class only, while
database rules apply to objects form two or more distinct classes. It has been argued in [5], the domain rules and attribute
rules are represented and maintained in an OODB by the class hierarchy automatically by the virtue of object-orientation.
Therefore, only class rules and database rules need to be specified.

In [1], constraints have been modeled by means of exceptions in an object-oriented database. Ou deals with the
specification of integrity constraints such as key, uniqueness using UML class diagrams [9, 10]. Ou’s work proposes two
ways to specify integrity constraints in a class. One is to use a property string to specify attribute constraints and the other
is to add a compartment to specify class constraints. Our work differs from Ou in a major way. Class constraints (rules)
pertain to integrity constraints that may be checked after examining all objects of a class [9]. A non-static method in a
class is automatically provided with a self-reference to the object on which the method is called. Static methods can
manipulate only non-static members of objects of a class. Methods for checking class constraints must have access to all
objects of the class and thus, they can not be methods of the class itself. Class constraints can only be attached to a system
defined class containing all objects of a particular class. To reduce the number of class constraints for reasons of
performance, we also have single and multi-attribute constraints. While single attribute constraints are methods attached
to an attribute, multi-attribute constraints are specified as special methods of a class. We have demonstrated the
correctness of our model when applied in a class hierarchy involving single inheritance.

The layout of the paper is as follows. We discuss our approach to model integrity constraints (single attribute, multi-
attribute and class rules) in Section 2. The modeling approach has been shown to be extended to inheritance in Section 3.
We have presented a set of user’s code and a possible augmentation of constraint validation code by the system by a pre-
processor that understands the semantics of our model for specifying constraints in Section 4. Finally, we conclude in
Section 5.

2. MODELING CONSTRAINTS

An integrity constraint is a semantic information in an object or a relationship among objects. A constraint specifies a
condition and a proposition that must be maintained as true. Certain kinds of constraints are predefined; others may be
user-defined. A user-defined constraint is described in words in a given language, whose syntax and interpretation is a
tool responsibility. We attempt to model each constraint as a boolean method, which returns either true value or false
value. If the predicate within a method is satisfied by a model element then the method will return true; otherwise the
method returns false. These methods are clearly distinguished from the usual methods of a class by their usage and
therefore, the constraint methods are accommodated differently than usual methods in object—oriented data model.

In this section, we will consider three different types of constraints present in an object oriented data model.

102

@ Single Attribute Constraints,
(ii) Multiple Attributes Constraints &
(iii) Class Constraints.

Single attribute constraints are applicable to individual attributes of a class; muitiple attributes constraints involve more
than one attributes of a class and class constraints are applicable to individual classes of an object oriented database
system. For example, suppose that there is a class “Employee” with usual attributes and methods as shown in Figure 1(a).
A constraint on the attribute “age” of any “Employee” object may be described as “age of an employee must between 20
& 60”. Similarly a constraint on “id” may be described as “id must be greater than 0”.

Employee Employee
Attributes Attributes
id : integer name : string
name : string dept : string
dept : string experience : integer
age : integer salary : float
experience : integer
salary : float Constrained Attributes
dutyHrs : integer id : integer idC:[Id>0]
age : integer
Methods ageC: [age > 20 && age<=60]
hire () dutyHrs : integer
promote () ‘ dutyHrsC() [dutyHrs <=8]
demote ()
add () Methods
delete() hire ()
promote ()
demote ()
@ add ()
delete()
Constrained methods
empCl[experience, salary]
[if experience is less than 5 years
then salary must not be greater
than $2500 per month]
empC2[dutyHrs, salary]
[if dutyHrs is less than or equal
to 4 then salary should not be
greater than $1250 per month]

®)

Figure 1. (a) Class “Employee” (b) Class “Employee” with constraints

These constraints involve only one attribute of the class and they are called single attribute constraints. Similarly, there
could be a constraint described as “if experience of an employee is less than 5 years then the salary of that employee can
not be more than $2500”. This constraint is an example of a multiple attribute constraint. A constraint, which can be
checked by considering all objects of a class, is called a class constraint. A typical example of a class constraint in the
“Employee” class may be described as “id of an employee must be unique”. This constraint implies that whenever “id”
field of an “Employee” object is modified, uniqueness of the updated “id” value must be guaranteed by checking “id”
values of all other “Employee” objects.

103

The methods for the constraints idC and empC1 are shown in the following.

Boolean idC()
{
if (empid <= 0)
return (false);
return(true);
}
Boolean empCl1()
if ((salary > 2500) && (experience < 5))
return (false);
return(true);
}

In this section, we first deal with single and multi attribute constraints and then take up the class constraints. To handle
single and multi-value constraints, we propose that the element “Class” be redefined as a 4-tuple <A, CA, M,CM> ,
where, as usual , “A” & “M” represent attributes and methods respectively of the class. And “CA” and “CM” represent
constrained attributes and constrained methods respectively. A constrained attribute has the name of the attribute, its type
and a boolean method representing a single attribute constraint. A constrained method represents a multi-attribute
constraint and contains the names of the attributes involved.

Methods in a constrained attribute may be public, private or protected depending on the visibility of the individual
attributes involved with the constraint methods. These constraint methods would be invoked for checking the validity of
the attribute’s value whenever the value of an object changes. If the attribute associated with a particular constraint
method is private, then the visibility of that particular constraint method would also be private. This is because the value
of a private attribute can only be changed by a member function or a friend function and a private constraint method can
be invoked from within members or friends without causing any compilation or runtime error. Similarly, if the attribute
associated with a particular constraint method is public or protected, then the visibility of the constraint method would
also be public or protected respectively.

Employee_Collection

Attributes
Object[] allElements;
int noOfElements;

Methods
getObject()
add()
delete()

Constrained Methods
uniqueld() [Employee id should be
unique for all objects of Employee class

]

Figure 2. The class “Employee_Collection”
To represent class constraints, we introduce a singleton collection class associated with each general user-defined class,
where the singleton collection class would always contain a collection of all objects of the user-defined class. All
constraints that need to check all objects of a user-defined class for validation become boolean methods of the singleton
class. Thus, constraints on objects of the user’s class can be validated by calling a corresponding method of the collection
class. For example, suppose that there is a constraint on the class “Employee” which states that “id” of every “Employee”
object must be unique. For the class “Employee”, a collection class “Employee-Collection” is defined (see Figure 2). The

104

class “Employee-Collection” has two attributes, a pointer to the list of all existing “Employee” objects and the number of
“Employee” objects. The collection class also contains a method “uniqueld” to check the class constraint mentioned for
the class “Employee”.

Similarly the singleton class which is the collection of all objects of the “Employee” class can be described as shown in
Figure 2.

Whenever a new object of the class “Employee” is created, a reference to that object is added to the list “allElements” and
the integer “noOfElements™ is incremented. Similarly, whenever, an “Employee™ object is deleted then the reference of
that object is deleted from the list “allElements” and the integer “noOfElements” is decremented. Whenever the “id” of an
object is modified by a statement in the user’s program, the system must call the class constraint method “uniqueld()” of
the collection class to check whether the “id” remains unique for all object of the “Employee” class even after the
modification.

For linking the only instance of the class “Employee_Collection “ with the class an “Employee” object, the system first
calls the class level method getobject() of the collection class. After getting the object of the singleton class it would call
the constraint method of “Employee_Collection” class on that single object.

3. MODELING CONSTRAINT IN INHERITANCE

Let us assume that the class “Manager” is derived from the “Employee” class. We can add new constraints into the
derived classes as we can add new attributes and new methods. Further, constraints specified in the base class
“Employee” may be modified in the derived classes. Constrained attributes and constrained methods are inherited in the
derived class. An (not constrained) attribute in the base class can be re-declared as constrained in the derived class. The
methods in the constrained attributes may also be re-defined. New constrained attribute may be added. Constraint
methods specified in base classes may be modified in derived classes. New constraint methods may also be added. Let us
consider the class hierarchy as shown in Figure 3.

Employee Employee_Collection
Manager Manager_Collection
Attributes Attributes
mgrNo : integer
Methods
Constrained Attributes getObject()
ageC: [age>45 && add() :
age<=60] delete()
experienceC: [experience >=
5 years] Constrained Methods
UniqueMgrnoC()
Methods [mgrNo should be unique for

all objects of Manager class]

Constrained Methods

Figure 3. Class Hierarchy in modeling constraints in inheritance

In the given class hierarchy, we can add a new single attribute constraint method “experienceC()” in the “Manager” class
as “Experience must be greater than or equal to five years”. The base class attribute constrained method “ageC()”
[“Employee age should be greater than 20 years and less than or equal to 60 years”] may be modified in the derived
“Manager” class such as “ Manager’s age should be greater than 45 years”. Allowing modification to constraints in a
derived class which are already -specified in the base class poses a difficult logical problem. It is possible that the re-
definition leads to an inconsistency in the base class. For example, if the method “ageC()” is modified as “Manager’s

105

age should be greater than 45 years and less than 65 years”, then instances of “Manager” class would not remain valid the
instances of “Employee” class. Although this seems to be a serious restriction, if the reference can always be resolved to
the run-time objects, then the problem may implementionally be overcome. For the time being, we leave it to the database
designers to take care of the issue of consistency.

We can further add new class constraints in “Manager” class such as “Manager number should be unique”, “Department
code for each Manager should be unique” etc. These class constraint methods should be added into the singleton class
“Manager_Collection” class, which contains a collection of all objects of the “Manager” class. If a user modifies
“mgrNo” attribute of a manager object “m1”, the system adds a call to the corresponding class constraint methods of
“Manager_Collection” class. The class “Manager_Collection” is to be derived from “Employee_Collection * so that class
constraints in the base class are inherited in the derived class.

Defining new multiple attribute constraints and class constraints in a derived class poses some problems when the new
constraints involve attributes in the base class. In such cases, all base class methods that modifies the values of one
attribute involve in the new constraint must be re-written (re-defined) in the derived class. The re-defined method should
check the validity of the modified value of the said attribute by invoking appropriate constraint method.

4. APPLICATION OF CONSTRAINT MODEL

In this section, we explore the possibility of using the semantics of our constraint model to construct a preprocessor that
would add constraint validation code to user’s programs. We demonstrate that developing such a preprocessor is indeed
possible by looking at the following example scenarios. The classes that we are considering are the class “Employee” and
the class “Manager” derived from “Employee”. We also have two collection classes, “Manager_Collection” derived from
“Employee_Collection”. For simplicity, we make the following assumptions.

e The attributes of any object are not supposed to be directly updated even by a method in the class itself. That is, a
method has to be invoked to set attributes of an object.
An instance of a class is to be created by calling a “factory” method such as “create” present in every class.
We further assume that all attributes of the classes “Employee” and “Manager” are constrained. That is, for an
attribute “A”, without constraint, we assume that there is an empty function “AC” representing the constraint for “A”
making the attribute “A”, a constrained attribute.

e We assume that the preprocessor is developed on a language such as “Java” which has strong run-time type
identification, reflection and introspection capabilities. Java allows us to perform the following operations at run-

time:
() find out the methods, attributes, super classes of a class whose name is known at run-time;
(ii) - create an object of a class which is known at run time.

(iii) accessing modifying the properties of an object where the property names are known at run-time;
@iv) invoking methods on an object where the method names are known at run-time;

e The singleton objects of the collection classes “Employee_Collection” and “Manager_Collection” are pre-created
with appropriate initializations of the array “allElements” present in these objects. That is, the “allElements” array of
these objects contains references to existing “Employee” and “Manger” objects.

Next, we take up sample scenarios to explain the working of the preprocessor.

Scenariol: Creation of an object through factory methods in a class.

Suppose that the factory method of the class “Employee” dynamically creates a new “Empolyee” object.

Employee Create()
{

Employee e = new Employee();
return(e);

}

The preprocessor modifies the method “Create” in the following manner.

106

Employee Create()
{

Employee e = new Employee();

Class ¢ = get the “Class’ object of the class whose name is “Employee_Collection”;
Object o = invoke the method “getObject” of the Class “C”;

Invoke “add” method by passing (Object)e on the object “0”;

¢ = super class of c;

while(c is not null)

{
o = invoke the method “getObject” of the Class “C”;

Invoke “add” method by passing (Object)e on the object “0”;

}

Note that whenever an object is added to a collection class, “X”, the same object is also added to all super classes of “X”.

Scenario 2: Updation of an attribute which has an attribute-constraint.

Suppose that “setAge” is a function in the “Employee” class as described in the following.

void setAge(int x)
{

}

The code generated by the preprocessor for the above function is shown in the following.

age=x;

void setAge(int x)
age=x;
if (ageC() = = false)
goto errorhandler;

}

In case “ageC” is re-defined in the class “Manager’ and the object on which “setAge” is called be a “Manager” object
then automatically “ageC” function as defined in “Manager’ class would be called.

Scenario 3. Updation of an attribute which has a class constraint.
Suppose that “setld” is a function in the “Employee” class which is as follows.

void setld(int x)
{

}

The modified code of the function “setld” as produced by the preprocessor would be as follows.

id=x;

void setld(int x)

{
id=x;
n= get the run-time class name of “this” object;
nl= construct the class name of the corresponding collection_class;
o= invoke “getObject” method of the class where name is “nl1”;
invoke the “uniqueld” method of the object “O”;

107

Even if “setld” is invoked on a variable “e” which actually refers to a “Manager” object, the preprocessor generated
version of “setld” would invoke the “uniqueld” method of the appropriate class at execution time.

5. CONCLUSION

Modeling of constraints in OODM has been the focus of attention of many researchers in recent times. In this paper, we
have attempted to model single and multi-attribute constraints as special methods in a class. We have also modeled class
constraints as methods in a collection class associated with a user-defined class. The syntax and semantics of such
modeling is extended to deal with constraints in single inheritance. Finally, we have demonstrated the application of our
constraint model by exploring the possibility of developing a pre-processor that would add validity code in the methods
defined by the user. The development of such a pre-processor is to be based on a language and platform capable of run-
time type identification and introspection.

Modeling constraints as methods have a serious logical problem as methods in the base class may be re-defined in the
derived class leading to inconsistent situations. We have assumed that it is the responsibility of the database designer to
ensure that inconsistency is avoided in the overall definition of the system. We have not considered the issue of multiple
inheritance either. It may be interesting to see how constraints in multiple inheritance may be modeled. Similarly,
modeling database constraints (like foreign key etc.) would also be challenging task. We are in the process of
implementing the pre-processor we discussed in our paper, the prototype of which would be ready soon.

References

[1] Bassiliades, N., and Vlahavas, 1., “Modeling constraints with exceptions in object oriented Database”, Proceedings of
13™ International Conference on the Entity-Relationship Approach, Manchester, United Kingdom, December 1994,
Lecture Notes in Computer Science, P. Loucopoulos (Ed.), Vol. 881, 189-201, 1994.

[2] Date, C.J., “An Introduction to Database Systems”, Sixth Edition, Addision- Wesley Publishing Company Inc., 1995.

[3] Gray, P.M.D., Kulkarni, K. G., Paton, NW., “Object-Oriented Databases — A semantic Data Model Approach”,
Prentice Hall International, 1992.

[4] Ishikawa, H., Yamane, Y., Izumida Y., & Kawato, N.,, “An object-oriented Database System Jasmine :
Implementation, Application and Extension” , IEEE Transaction on Knowledge and data Engineering ,Vol 8, No 2,
April 1996.

[5] Jagadish, H.V., Qian, X., “Integrity Maintainance in an Object Oriented Database”, Proc. Of the 18" International
Conference on Very Large Databases, (Vancouver, BC, Canada, August, 1992).

[6] Khoshafian, S., “Object ~Oriented Databases”, John Wiley & Sons, Inc, 1993.

[7] Li, Q., Lochovsky, F. H., “ADOME : An advanced object Modeling Environment “, IEEE Transaction on
Knowledge and data Engineering ,Vol 10, No 2, March/April 1998.

[8] Nayak, T. K., Majumdar, A K., Basu, A. & Sarkar, S., “VLODS : A VLSI OBJECT ORIENTED DATABASE
SYSTEM “, Information Systems Vol 16, No 1, 73-96, 1991.

[9] Ou, Y., “On using UML class Diagram for object oriented database Design - Specification of integrity constraints”,
International Workshop, UML'98, (Mulhouse, June 1998).

[10]0u, Y., “On mapping between UML and Entity Relationship Model”, International Workshop, UML'98, (Mulhouse,
June 1998).

108

A Unified Approach for the Integration of
Distributed Heterogeneous Software Components!

Rajeev R. Raje? ® Mikhail Auguston* ® Barrett R. Bryant* ¢ Andrew M. Olson? Carol Burt’

Abstract

Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly
complex task. One possible approach to developing distributed software is based on the integration of heterogeneous
software components that are scattered across many machines. In this paper, a comprehensive framework that will allow
a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a meta-
model for components and associated hierarchical setup for indicating the contracts and constraints of the components,
b) an automatic generation of glues and wrappers, based on a designer’s specifications, for achieving interoperability, c)
a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered
by each component and an ensemble of components. A case study from the domain of distributed information filtering is
described in the context of this framework.

Keywords: Distributed systems, Formal methods, Glue and Wrapper technology, Quality of Service

1 Introduction

The rapid advances in the processor and networking technologies have changed the computing paradigm from a centralized
to a distributed one. This change in paradigm is allowing us to develop distributed computing systems (DCS). DCS
appear in many critical domains and are, typically, characterized by: a) a large number of geographically dispersed and
interconnected machines, each containing a subset of the required data, b) an open architecture, ¢) a local autonomy
over the hardware and software resources, d) a dynamic system configuration and integration, e) a time-sensitivity of the
expected solution, and f) the quality of service with an appropriate notion of compensation. These characteristics make
the software design of DCS an extremely difficult task.

One promising approach to the software design of DCS is based on the principles of distributed component computing.
Under this paradigm DCS are created by integrating geographically scattered heterogeneous software components. These
components constantly discover one another, offer/utilize services, and negotiate the cost and the quality of the services.
Such a view provides a scalable solution and hides the underlying heterogeneity.

Various distributed component models, each with strengths and weaknesses, are prevalent and widely used. However,
almost a majority of these models have been designed for ‘closed’ systems, i.e., systems, although distributed in nature,
are developed and deployed in a confined setup. In contrast, a direct consequence of the heterogeneity, local autonomy
and the open architecture is that the software realization of DCS requires combining components that adhere to different
distributed models. This in turn increases the complexity of the design process of DCS. Hence, a comprehensive framework,
that provides a seamless access to underlying components and aids in the design of DCS, is needed.

In this paper, one such framework is described. This framework consists of: a) a meta-model for components and
associated hierarchical setup for indicating the contracts and constraints of the components, b) an automatic generation of
glue and wrappers, based on a designer’s specifications, for achieving interoperability, ¢) a formal mechanism for precisely
describing the meta-model, and d) a formalization of the notion of quality of service offered by each component and an
ensemble of components. The paper also presents a case study that shows the application of the framework to a specific
problem domain. : :

The rest of the paper is organized as follows. The next section contains a detailed discussion about the meta-model.
As an application of the meta model, a case study from the domain of distributed information filtering is presented in
the Section 3. Section 4 deals with the formal specification. of the meta model, the automated system integration, and
evaluation of the approach. Finally, we conclude in Section 5.

1This material is based upon work supported by, or in part by, the U. S. Office of Naval Research under award number N00014-01-1-0746.

2Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street,
SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}@cs.iupui.edu, +1 317 274 5174/9733

3This material is based upon work supported by, or in part by, the National Science Foundation Digital Libraries Phase II grant.

4Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP 517, Monterey, CA 93943, USA,
{auguston, bryant}@cs.nps.navy.mil, +1 831 656 2509/2726

5This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under
contract/grant number 40473-MA. On leave from Computer Science Department, New Mexico State University, USA.

6This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office
under contract/grant number DAAD19-00-1-0350. On leave from Department of Computer and Information Sciences, University at Alabama at
Birmingham, USA.

72AB, Inc., 1700 Highway 31, Calera, AL 35040, USA, cburt@2ab.com, +1 205 621 7455

109

2 Component Models and a Meta-model

Many models and projects for the software realization of DCS have been proposed by academia and industry. A few
prominent ones are: Java™ Remote Method Invocation (RMI) [16], Common Object Request Broker Architecture
(CORBA™) [16, 20], Distributed Component Object Model (DCOM™) (11, 16], Web-component model/DOM [10],
Pragmatic component web {5], Hadas [6], Infospheres [4], Legion [22], and Globus [21]. Each of these models/projects has
strength and weaknesses. Some of these are language-centric and only assume a uniform way of the world (Java); while
the others allow a limited interoperability (CORBA ~ allowing implementations in different languages). Some of these
are general-purpose, i.e., not concentrating on any particular application domain (DCOM), while others are specifically
tailored to high-performance computing applications (Legion). However, almost all of these models/projects do not assume
the presence of other models. Thus, the interoperability which they provide is limited mainly to the underlying hardware
platform, operating system and/or implementational languages. Also, there are hardly any models which emphasize the
notion of quality of service offered by the components. Projects, such as Agent TCL (8], etc., based on the principles of
intelligent agents have imbibed the notion of the quality of service and related compensation. However, the agents are at
a higher level of abstraction than components and many of the agent projects/frameworks use one or the other existing
distributed-component models at the low-level.

2.1 Why a Meta-model?

Given the above mentioned plethora of component-based models and also noting the fact that components, by their
definition, are independent of the implementation language, tools and the execution environment; it is necessary to answer
the questions: why is o meta-model needed for a seamless interoperation of distributed heterogeneous components? and
how would a meta-model assist in seamlessly integrating distributed heterogeneous software components? The answer to
these question lies in: a) in any organization, software systems undergo changes and evolutions, b) local autonomy is an
inherent characteristic of today’s geographically (or logically) dispersed organizations, and c) if reliable software needs to
be created for a DCS by combining components then the quality of service offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to rapidly create prototypes and experiment
with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic (manual or semi-automatic)
component-based software development for DCS. However, the solution of decreeing a common COTS environment, in an
organization, is against the principle of local autonomy. Hence, the development of a DCS in an organization will, most
certainly, require creating an ensemble of heterogeneous components, each adhering to some model. Also, every DCSis
designed and developed with a certain goal in mind, and usually that goal is associated with a certain perception of the
quality (as expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and future) heterogeneous
components by capturing their necessary aspects, including the quality of service offered by each component and an
amalgamation of components.

2.2 Unified Meta-component Model (UMM)

In [17] we have proposed a unified meta-component model (UMM) for global-scale systems. The core parts of the UMM
are: components, service and service guerantees, and infrastructure. The innovative aspects of the UMM are in the
structure of these parts and their inter-relations. UMM provides an opportunity to bridge gaps that currently exist in the
standards arena. For example, the CORBA Component Model (CCM™) [13] and Java Enterprise Edition component
models (J2EE™) are consistent, and yet, because of the absence of a formal meta-model, it is difficult during the evolution
of each to recognize when the boundaries that maintain the consistency are crossed. Similarly, it has been demonstrated in
numerous products that the Component Object Model (COMT™M) [18] and CORBA component models are similar (in an
abstract sense) enough to allow meaningful bridging. It is, however, not possible to point to a Meta~-model that constrains
the implementations of these technologies.

For enterprise component solutions, this is an area where significant standards work is now focused. The OMG Meta
Object Facility (MOFT™) [14] provides a common meta-model that allows the interchange of models between tools as well
as the expression of models in XMI™ (an MOF compliant XML™ (eXtended Markup Language)) [12]. This work allows
the generation of interfaces from Unified Modeling Language (UML) [19] models, however, a careful analysis of the resulting
interface specifications makes it clear that distribution is not a key factor in the algorithms used. For example, quality of
service requirements for performance, scalability and/or security would dictate the use of iterators, the factoring of interfaces
to separate “query” and “administrative” operations, and the use of structures and/or objects passed by value. The current
standards in this tend to focus on data access with accessors and mutators and relationship transversal. This is acceptable
in a single machine environment, but unacceptable for highly distributed communications and collaborations. The recent
shift in focus for the Object Management Group to “Model Driven Architecture” (MDA™) [15] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require standardization

110

of Business and Component Meta-Models. The need to support the evolution of component models and to describe the
capabilities of the models will be key to realizing the full potential of an E-business economy.
The following sections describe the various aspects of UMM in detail.

2.2.1 Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each component adheres to
some distributed-component model and there is no notion of either a centralized controller or a unified implementational
framework. Each component has a state, an identity and a behavior. Thus, all components have well-defined interfaces
and private implementations. In addition, each component in UMM has three aspects: 1) a computational aspect, 2) a
cooperative aspect, and 3) an auxiliary aspect.

Computational Aspect

The computational aspect reflects the task(s) carried out by each component. It in turn depends upon: a) the objective(s)
of the task, b) the techniques used to achieve these objectives, and c) the precise specification of the functionality offered
by the component. In DCS, components must be able to ‘understand’ the functionality of other components. Thus, each
component in UMM supports the concept of introspection, by which it will precisely describe its service to other inquiring
components. There are various alternatives for a component to indicate its computation — ranging from simple text to
formal descriptions. Both these extremes have advantages and drawbacks. UMM takes a mixed approach to indicate the
computational aspect of a component — a simple textual part, called inherent attributes and a formal precise part, called
functional ottributes.

The functional part is formal and indicates precisely the computation, its associated contracts and the level(s) of service
offered by the component. Multi-level contracts for components have been proposed by [2], classifying the contracts into
four levels — syntactic, behavioral, concurrency and quality of service (QoS). UMM integrates this multi-level contract
concept into the functional part of the computational aspect. As stated earlier, in DCS each component will be offering a
service and hence, the level related to the QoS is especially critical in UMM. The QoS depends upon many factors such
as, the algorithm used, the execution model, resources required, time, precision and classes of the results obtained. UMM
makes an attempt at quantifying the QoS by creating a vocabulary and providing multiple levels of quality, which could
be negotiated by the components involved in an interaction. The functional part will also be specified by the creator of
the component.

Cooperative Aspect

In UMM, components are always in the process of cooperating with each other. This cooperation may be task-based
or greed-based. The cooperative aspect depends on many factors: detection of other components, cost of service, inter-
component negotiations, aggregations, duration, mode, and quality. Informally, the cooperative aspect of a component
may contain: 1) Expected collaborators — other components that can potentially cooperate with this component, 2) Pre-
processing collaborators — other components on which this component depends upon, and 3) Post-processing collaborators
- other components that may depend on this component.

Auxiliary Aspect

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features of DCS. The
auxiliary aspect of a component will address these features. In UMM, each component can be potentially mobile. The
mobility of the component will be shown as a ‘mobility attribute’ (a notion similar to the inherent attribute). If a component
is mobile, then the mobility attribute will contain the necessary information, such as its implementation details and required
execution environment. Similarly, security in DCS is a critical issue. The security attribute of a component will contain the
necessary information about its security features. As DCS are prone to frequent failures, full and partial, fault tolerance is
critical in these systems. Similar to mobility and security, each component contains fault-tolerant attributes in its auxiliary
aspect.

2.2.2 Service and Service Guarantees

The concept of a service is the second part of the UMM. A service could be an intensive computational effort or an access to
underlying resources. In DCS, it is natural to have several choices for obtaining a specific service. Thus, each component,
in addition to indicating its functionality, must be able to specify the cost and quality of the service offered.

The nature of the service offered by each component is dependent upon the computation performed by that component.
In addition to the algorithm used, expected computational effort and resources required, the cost of each service will be
decided by the motivation of the owner and the dynamics of supply and demand. In a dynamic environment costs must
always be accompanied by the duration for which the costs are valid. As the system dynamics undergo constant changes,
the methodologies used to fix the cost of a service will evolve as time progresses, thereby creating a need to indicate the
time sensitiveness of the cost. The quality of service is an indication given by an component, on behalf of its owner, about

111

its confidence to carry out the required services in spite of the constantly changing execution environment and a possibility
of partial failures. The techniques used to determine the cost, the time-validity and the quality of a service will depend
upon the tasks carried out by the component and the objectives of its owner and will involve principles of distributed
decision making.

There are many parameters that a component can use to indicate its quality of service. A few examples are: i)
Throughput — number of methods executed per second and classification of methods based on their read/write behaviors,
ii) Parallelism constraints — synchronous or asynchronous, iii) Priority, iv) Latency or End-to-End Delay — turn-around
time for an invocation, v) Capacity — how many concurrent requests a given component can handle, vi) Availability -
indication of the reliability of a component, vii) Ordering constraints — can invocations (asynchronous) be executed out
of order by a component, viii) Quality of the result returned — does the component provide a classification or ranking
of the result, and ix) Resources available — how many resources (hardware/data) are accessible to the component under
consideration and what are the types of resources.

When a component uses certain metrics to indicate its QoS (either all the mentioned criteria or a sub/super set of
them), three interesting issues need to be addressed: a) how does the component developer decide these parameters?,
b) how does the developer guarantee the advertised QoS during the execution?, and c¢) when components are collected
together as a solution for specific DCS, what happens to the QoS of the combination and how does the combined QoS
meet the quality requirements of DCS?

The parameters to be used to describe the QoS of a component are highly context (application) dependent. The
proposed approach is to create lists of QoS metrics for common application domains. A few examples of such domains
are: scientific computing, multi-media applications, information filtering, and databases. Once such lists are created, they
would be used as a template by the component developers while advertising the QoS of their components.

QoS of Components

The issue of guaranteeing a particular QoS, for a component, in an ever changing dynamic DCS is extremely critical;
mainly because of external (e.g., policy matters related to resources) and internal (e.g., changes in algorithms) factors
that affect a life cycle of a component. In addition, as the software realization of DCS is based on an amalgamation of
heterogeneous components, a proper guarantee of a QoS offered by a component effectively decides the QoS of the entire
DCS. The quality metrics are expected to vary from one application domain to another and which metrics to select would
depend on the intentions of the component developer and the functionality offered by that component. A few examples of
such QoS metrics are already mentioned in the previous section. Irrespective of the metrics selected, there is a need for
a well-defined mechanism that will assist the developer to achieve the necessary QoS when that component is deployed.
Just like any software development process, the process of guaranteeing a certain QoS, as offered by a component, will be
an incremental and iterative one, as will be discussed later.

QoS of an Integrated System

In addition to the QoS of individual components, there is a need to achieve a certain QoS for the ensemble of heterogeneous
components assembled for a distributed system under discussion. The QoS of such an amalgamation will be decided by
the design constraints of the system under construction. However, the integral characteristics of such a system typically
cannot be expressed as a function of individual components but as a property of the whole system behavior. Hence, there
is a need for a formal model of system behavior, which will integrate the behaviors of each component in the ensemble
along with its QoS guarantees.

The proposed approach to address the problem of QoS is as follows. First, build a precise model of systems behavior
(event trace notion), provide a programming formalism to describe computations over event traces, and then apply these
in order to define different kinds of QoS metrics. Constructive calculations of QoS metrics on a representative set of test
cases is one of cornerstones of the proposed iterative approach to system assembly from components meeting user’s query
specifications.

This approach to the design of a system behavior model assumes that the run time actions performed within the system
may be observed as detectable events. Each event corresponding to an action is a time interval, with beginning, end, and
duration. Certain attributes could be associated with the event, e.g. program state, source code fragment, time, etc. There
are two binary relations defined for the event space: inclusion (one event may be nested within another), and precedence
(events may be partially ordered accordingly to the semantics of the system under consideration). Hence, when executed,
a system generates an event trace - set of events structured along the relations above. This event trace actually can be
considered as a formal behavior model of the system (“lightweight semantics”). This model could be presented as a set of
axioms about event trace structure called event grammar [1].

For example, suppose that the entire system execution is represented by an event of type execute-system. It may
contain events of the type evaluate-component-A and evaluate-component-B. Event grammar may contain an axiom:
execute-system: (evaluate-component-A evaluate-component-B)#
which states that evaluate-component-A is always followed by the evaluate-component-B event, and these pairs may be

repeated zero or more times.
A new concept for specification and validation of target program behavior based on the ideas of event grammars and

112

computations over program execution traces has been developed, and assertion language mechanisms, including event
patterns and aggregate operations over event traces, to specify expected behavior, to describe typical bugs, and to evalu-
ate debugging queries to search for failures (e.g. gathering run time statistics, histories of program variables, etc.) have
been created. An event grammar provides a basis for QoS metrics implementation via target program automatic instru-
mentation. Since the instrumentation is conditional, it does not deteriorate the efficiency of the final version generated
code. This mechanism based on independent models of system behavior makes it possible to define QoS metrics as generic
trace computations, so that the same metric may be applied to different versions of an assembled system (via automatic
instrumentation). To facilitate use of the event grammar model for the assembled system, the event definitions should be
consistent through the entire component space. The QoS metrics for components should adhere to this principle. The
process proposed in Section 4.4 for assembling a distributed system from components in a distributed network offers a
possible approach to achieving this.

2.2.3 Infrastructure

As local autonomy is inherent in open DCS, forcing every component developer to abide by certain rigid rules, although
attractive, is doomed to fail. UMM tackles the issue of non-uniformity with the assistance of the head-hunter and Internet
Component Broker. These are responsible for allowing a seamless integration of different component models and sustaining
a cooperation among heterogeneous (adhering to different models) components.

Head-hunter Components

The tasks of head-hunters are to detect the presence of new components in the search space, register their functionalities,
and attempt at match-making between service producers and consumers. A head-hunter is analogous to a binder or a
trader in other models, with one difference — a trader is passive, i.e., the onus of registration is on the foreign components
and not on the trader. In contrast, a headhunter is active, i.e., it discovers other components and makes an attempt to
register them with itself. There are many approaches possible for the discovery of components. They range from the
standard search techniques to broadcasts and multi-casts to selected machines. At a conceptual basis, UMM does not tie
itself to a specific approach but during the prototype development a particular approach will be selected for the discovery
process. During registration, each component will inform the head hunter about all its aspects. The head hunter will
use this information during matching. A component may be registered with multiple head-hunters. Head-hunters may
cooperate with each other in order to serve a large number of components. The functionality of head hunters makes it
necessary for them to communicate with components belonging to any model, implying that the cooperative aspect of
head hunters be universal. Considering the heterogeneous nature of the components, it is conceivable that the software
realization of a distributed system will require an ensemble of components adhering to different models. This requires a
mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous components.

Internet Component Broker

The Internet Component Broker (ICB) acts as a mediator between two components adhering to different component
models. The broker will utilize adapter technology, each adapter component providing translation capabilities for specific
component architectures. Thus, a computational aspect of the adapter component will indicate the models for which it
provides interoperability. It is expected that brokers will be pervasive in an Internet environment thus providing a seamless
integration of disparate components. Adapter components will register with the ICB and while doing so they will indicate
their specializations (which component models they can bridge efficiently). During a request from a seeker, the head hunter
component will not only search for a provider, but it will also supply the necessary details of an ICB.

The adapter components achieve interoperability using the principles of wrap and glue technology [9]. A reliable,
flexible and cost-effective development of wrap and glue is realized by the automatic generation of glue and wrappers based
on component specifications. Wrapper software provides a common message-passing interface for components that frees
developers from the error prone tasks of implementing interface and data conversion for individual components. The glue
software schedules time-constrained actions and carries out the actual communication between components.

The functionality of the ICB is analogous to that of an object request broker (ORB). The ORB provides the capability
to generate the glue and wrappers necessary for objects written in different programming languages to communicate
transparently; the ICB provides the capability to generate the glue and wrappers necessary for components implemented in
diverse component models (and providing service guarantees) to collaborate across the Internet. An ORB defines language
mappings and object adapters. An ICB must provide component mappings and component model adapters. While the
ICB conceptually provides the capabilities of existing bridges (COM-CORBA for example), the ICB will provide key
features that are unique; it is designed to provide the auxiliary aspects of the Internet — collaboration between autonomous
environments, mobility and security. In addition, the UMM includes quality of service and service guarantees. The ICB, in
conjunction with head-hunters provide the infrastructure necessary for scalable, reliable, and secure collaborative business
using the Internet.

113

3 A Case Study

In order to explain the UMM and the proposed approach, below a case study from the domain of distributed information
filtering is presented. Although the case study uses a specific domain, the principles can be easily extended to other
application domains that involve the software realization of a DCS.

3.1 Distributed Information Filtering

It is desired to develop a global information filtering system, in which, users will be interested in receiving selected
information, based on their preferences, from scattered repositories. Usually, a filtering task involves contacting the
scattered resources, performing an initial search to gather a subset of documents, representing, classifying and presenting
based on the user profile. Many different methods are employed for the sub-tasks involved in filtering. Thus, it can be easily
envisioned that different components, each employing a different algorithm to perform these sub-tasks, will be scattered
across an interconnected system. Each component may belong to a different model, may quote different costs and offer
different qualities of service.

Hence, a typical distributed information filtering system consists of the following types of components: a) Domain
Component (DC), b) Wrapper Component (WC), c) Representer Component (RC), d) Classifier Component (CC), and e)
User Interaction Component (UIC). In addition to these domain-specific components, headhunter components (HC) and
the ICB are needed.

All these components, their aspects and characteristics need to be defined using UMM. For the sake of brevity, only
the complete description of the domain component (DC) is shown below.

3.2 Domain Component

The domain component is responsible for maintaining a repository of URLs of associated information sources for particular
type (e.g., text, structure, sequence) of information that needs filtering.

For example, the inherent attributes might consist of Author (name of the component developer), Version (current
version of the component), Date Deployed, Execution Environment Needed and Component Model (e.g., Java-RMI 1.2.2),
Validity (e.g., one month from the deployment), Atomic or Complex (indivisible or an amalgamation of other components,
e.g. atomic), Registrations (with which headhunters this component is registered, e.g., H1 — www.cs.iupui.edu/hl and
H2 - www.cis.uab.edu/h2).

An informal description of the functional part of a component may contain:

1. Computational Task Description -- e.g., searching a selected set of databases over the Internmet.

2. Algorithm Used and its Complexity -- Webcrawling and 0(n"2), respectively.

3. Alternative Algorithms -- Indexing.

4. Expected Resources (best, average and worst-cases) -- multi-processor, uni-processor (300MHz

with an CPU utilization of 50%), and uni-processor (100MHz with CPU utilization of 99%), respectively.
5. Design Patterns Used (if any) -- Broker.

6. Known Usages =~ for assembling an up-to-date listing containing addresses of known information
repositories for a particular domain.
7. Aliases-- such a component is usually called a Pro-active Agent.

8. Multi-level contracts:

e.g., for a function like List getURLs (Domain inputDomain, Compensation inputCost), the behavioral
contract could specify the pre-condition to be (valid Domain Name and cost), post-condition to be:
if successful (activeClientThreads++ and cost+=inputCost)

else (raise DomainNotKnownException and InvalidCostException)

and the invariant could be (ListOfURLs > 1). Also, for the same function, the concurrency contract
could specify (maximum number of active threads allowed = 50).

The cooperation attributes of the domain component may consist of 1) expected collaborators UIC, WC, HC, TC and
RC, 2) pre-processing collaborators HC and TC, and 3) post-processing collaborators RC and UIC.

The auxiliary attributes of the domain component are 1) fault-tolerant attributes, e.g., check-pointing versions, 2)
security attributes, e.g., simple encryption, and 3) mobility attributes, e.g.. “not mobile.”

For the domain component, the QoS parameters may contain 1) number of available URL’s, 2) ranking of URL’s, and
3) average rate of URL collection.

A component developer may offer several possible levels of QoS, e.g., L1) novice (number of URL’s < 50 and no ranking
of URL’s and average rate of URL collection > 1 week and average latency > 2 minutes), L2) intermediate (number of
URL’s < 500 and simple ranking of URL’s and average rate of URL collection > 3 days and average latency > 1 minute),
and L3) expert (number of URL’s < 1500 and advanced ranking of URL’s and average rate of URL collection > 1 day and
average latency > 5 seconds).

114

Comp Implementation

Domain Knowledge Base
- Computationa|
UMM Specification UMM | Interface s
Ofa NLP Behavioral »
Component LG Generator Validation Yes
S
® Component
is Ready
for
No Deployment
(Collaboration
Refine the UMM Specification and the Impl ion of the Comp with

Headhunters)

Figure 1: The Component Development and Deployment Process in UMM

The expected compensations for the above levels in terms of the number of URLs could be 1) L1 > 100 and < 200, 2)
L2 > 200 and < 400, and 3) L3 > 400 and < 600.

4 Component and System Generation Using UMM Framework

The development of a software solution, using the UMM approach, for a DCS has two levels: a) component level — in this
level, different components are created by developers, tested and verified from the point of view of QoS, and then deployed
on the network, and b) system level — this level concentrates on assembling a collection of components, each with a specific
functionality and QoS, and semi-automatically generates the software solution for the particular DCS under consideration.
These two levels and associated processes are described below.

4.1 Component Development and Deployment Process

The component development and deployment process is depicted in Figure 1. As seen in the figure, this process starts with
a UMM specification of a component (from a particular domain). This specification is in a natural-language format, as
illustrated in the previous section. This informal specification is then refined into a formal specification. The refinement
is based upon the theory of Two-Level Grammar (TLG) natural language specifications [3, 23], and is achieved by the
use of conventional natural language processing techniques (e.g. see [7]) and a domain (such as information filtering)
knowledge base. TLG specifications allow for the generation of the interface (possibly multi-level) for a component. This
interface incorporates all the aspects of the component, as required by the UMM. The developer provides the necessary
implementation for the computational, behavioral, and QoS methods. This process is followed by the QoS validation. If the
results are satisfactory (as required by the QoS criteria) then the component is deployed on the network and eventually,
it is discovered by one or more headhunters. If the QoS constraints are not met then the developer refines the UMM
specification and/or the implementation and the cycle repeats.

4.2 Formal Specification of Components in UMM

Since the UMM specifications are informally indicated in a natural language like style, our approach is to translate this
natural language specification into a more formal specification using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The name “two-level” in Two-Level
Grammar comes from the fact that TLG consists of two context-free grammars, one corresponding to a set of type
declarations and the other a set of function definitions operating on those types. These type and function definitions are
incorporated into a class which allows for new types to be created.

The type declarations of a TLG program define the domains of the functions and allow strong typing of identifiers used
in the function definitions. On the other hand, function definitions may be given without precisely defined domains for
a more flexible specification approach. This framework consists of a knowledge-base which establishes a context for the
natural language text to be used in the specification under a particular domain model, in this case information filtering.
This allows the TLG to be translated into internal representations such as predicate logic, the natural representation for
TLG, event grammars, or multi-level Java interfaces taking the form of the UMM specification template. For the case

115

study, we may use a TLG class to describe the component structure and functionality as elaborated in the following
subsections.

4.2,1 Component Structure Specification

Syntactically, TLG type declarations are similar to those in other languages. Types are capitalized whereas constants
begin with lower case letters. The usual primitive types, such as Integer, Float, Boolean, and String are present as are
list constructors based upon regular expression notation, e.g. {X}* and {X}+ mean 0 or more and 1 or more occurrences
of X, respectively.

The types of the domain component in our information filtering system are defined in the following way in TLG.

Component :: DomainComponent; WrapperComponent; RepresentationComponent; ClassificationComponent;
UserInteractionComponent; HeadhunterComponent; ICB.

DomainComponent :: Name, InformalDescription, Attributes, Service.

Name :: dc.

Attributes :: ComputationalAttributes, CooperationAttributes, AuxiliaryAttributes.

ComputationalAttributes :: InherentAttributes, FunctionalAttributes.

InherentAttributes :: Author, Version, DateDeployed, ExecutionEnvironment,
ComponentModel, Validity, Structure, Registrations.

FunctionalAttributes :: TaskDescription, AlgorithmAndComplexity,
Alternatives, Resources, DesignPatterns, Usages, Aliases, FunctionsAndContracts.

AlgorithmAndComplexity :: webcrawling, n"2;

Alternatives :: {AlgorithmAndComplexity}.

Resource :: Architecture, Speed, Load.

Architecture :: uni-processor; multi-processor.

Speed :: Integer.

Load :: Integer.

DesignPatterns :: broker;

Aliases :: pro-active agent;
FunctionAndContract :: Function, BehavioralContract, ConcurrencyContract.
Function ::

Behav1oralContract :: Precondition, Invariant, Postcondition.

ConcurrencyContract :: single threaded; maximum number of active threads allowed = Integer;

CooperationAttributes :: ExpectedCollaborators, PreprocessingCollaborators, PostprocessingCollaborators.

ExpectedCollaborator :: uic; wc; hc; tc; rec.

PreprocessingCollaborator :: hc; tc.

PostprocessingCollaborator :: rc; uic.

AuxiliaryAttribute :: FaultTolerantAttribute; SecurityAttribute; MobilityAttribute.

FaultTolerantAttribute :: check-pointing versioms;

SecurityAttribute :: simple encryption;

MobilityAttribute :: mobile; not mobile.

Service :: ExecutionRate, ParallelismConstraint, Priority, Latency, Capac1ty, Availability,
OrderingConstraints, QualityOfResultsReturned, ResourcesAvailable,

ExecutionRate :: Float.

ParallelismConstraint :: synchronous; asynchronous.

Priority :: Integer.

Latency :: AverageRateOfURLCollection.

AverageRate0OfURLCollection :: Float.

Capacity :: NumberOfAvailableURLs.

NumberOfAvailableURLs :: Integer.

Availability :: Float.

OrderingConstraint :: Boolean.

QualityOfResultsReturned :: {URL}+.

ResourcesAvailable :: HardwareResources, SoftwareResources.

HardwareResources ::

SoftwareResources ::

The remaining components (e.g., wrapper, representation, etc.) may be described in a similar manner. All domains not
specified explicitly in the above example are assumed to be of type String, with the exception of Function which may take
the form of an interface definition in a programming language such as Java. Using standard natural language processing
techniques [7], the UMM specification may be automatically refined into this TLG specification, with user assistance as

116

needed to clarify ambiguities. The process is facilitated by the presence of a knowledge base which understands the domain
of information filtering from the point of view of vocabulary which may be used in making the original UMM specification.

4.2.2 Component Functionality Specification

The second level of the TLG specification is for function declarations. These resemble logical rules in logic programming
with variables coming from the domains established in the type declarations. For the Domain Component example, the
levels of Quality of Service may be specified as follows.

number of urls : size of QualityOfResultsReturned.

average latency : ...

no ranking of urls : ..

simple ranking of urls : ...

advanced ranking of urls : ...

average latency : ...

gos level 1 is novice : number of urls < 50, no ranking of urls,
AverageRateofURLCollection >= 1 week, average latency >= 2 minutes.

qos level 2 is intermediate : number of urls < 500, simple ranking of urls,
AverageRateofURLCollection >= 3 days, average latency >= 1 minute.

qos level 3 is expert : number of urls < 1600, advanced ranking of urls,
AverageRateofURLCollection >= 1 day, average latency >= b seconds.

Each rule defines how the particular entity is to be computed. As these rules are normally part of a class definition
encapsulating a corresponding set of type declarations, each rule has access to the data specified in the type declarations.
These natural language like rules may be further refined into a more formal specification, e.g. using event grammars.

4.3 QoS Guarantee of a Domain Component

For the case study, the event grammar to describe the system behavior is given below. The first part is the set of type
definitions and the second part is the description of computations over event traces implementing different QoS metrics.

exec_syst :: (request_sent | response_received)*
response_received :: (URL_detected | failed)

"These type definitions describe the types of events which may occur as the system executes. The computations over these

events include verification that the number of URL’s detected is less than 50 and also the latency (e.g., for all requests for
URL’s, every response received occurs within 10 units of time). id is an event attribute which associates a unique identifier
between query attributes and corresponding responses. Both of these metrics yield Boolean values.

CARD [URL_detected from exec_syst] < 50

Forall x : request_sent from exec_syst
Exists y : response_received from exec_syst
id (x) = id (y) & begin_time (y) - end_time (x) < 10

4.4 Automated System Generation and Evaluation based on QoS

In general, different developers will provide on the Internet a variety of possibly heterogeneous components oriented
towards a specific problem domain. Once all the components necessary for implementing a specified distributed system
are available, then the task is to assemble them. Figure 2 shows a process to accomplish this. The developer of the desired
distributed system presents to this process a system query, in a structured form of natural language, that describes the
required characteristics of the distributed system. For example, such a query might be a request to assemble an information
filtering system. The natural language processor (NLP) processes the query. It does this aided by the domain knowledge
(such as key concepts in the filtering domain) and a knowledge-base containing the UMM description (in the form of a
TLG) of the components for that domain. The result is a formal UMM specification that will be used by headhunters
for component searches and as an input to the system assembly step. This formal UMM specification will be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS. The framework, with the
help of the infrastructure described in Section 2.2.3, collects a set of potential components for that domain, each of which
meets the QoS requirement specified by the developer. From these, the developer, or a program acting as a proxy of the
developer, selects some components. These components along with the component broker and appropriate adapters (if
needed) form a software implementation of the distributed system. Next this implementation is tested using event traces
and the set of test cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with respect to the
QoS) implementation is found, or until the collection is exhausted. In the latter case, the process may request additional

117

UMM TLG of Components main Knowledge Base

Selection Criteria

System Query NLP Ensemble of Tterative
(Natural Components Experimentation
Language) (including Glues and Wrappers)
Headhunters
Mects the
No — Refine the Query Criteria?
Yes

System Assembled from Components
System is Ready for Deployment

Figure 2: The Iterative System Integration Process in UMM

components or it may attempt to refine the query by adding more information about the desired solution from the problem
domain. Once a satisfactory implementation is found, it is ready for deployment.

5 Conclusion

This paper has presented a framework that allows an interoperation of heterogeneous and distributed software components.
The software solutions for future DCS will require either automatic or semi-automatic integration of software components,
while abiding with the QoS constraints advertised by each component and the collection of components. The result of using
UMM and the associated tools is a semi-automatic construction of a distributed system. Glue and wrapper technology
allows a seamless integration of heterogeneous components and the formal specification of all aspects of each component will
eliminate ambiguity while detecting and using these components. The UMM does not consider network failures or other
considerations related to the hardware infrastructure, however, these could be integrated into the QoS level of components.
The UMM approach to validating QoS is to use event grammar to calculate QoS metrics over run-time behavior. The
QoS metrics are then used as a criteria for an iterative process of assembling the resulting system as shown in Section 4.4.
UMM also provides an opportunity to bridge gaps that currently exist in the standards arena. Although, the paper has
only presented a case study from the domain of distributed information filtering, the principles of UMM may be applied
to other distributed application domains. Future work includes refinement of the UMM feature thesaurus and methods
for translating UMM specifications into Two-Level Grammar, refining the head-hunter mechanism, developing Quality of
Service metrics for components and systems, and development of generation mechanisms for domain-specific component
reuse.

References

[1] Auguston, M. A Language for Debugging Automation. In Proceedings of 6th International Conference on Software
Engineering and Knowledge Engineering, pages 108-115, 1994.

[2] Beugnard, A., Jezequel, J., Plouzeau, N. and Watkins, D. Making Components Contract Aware. IEEE Computer,
32(7):38-45, July 1999.

[3] Barrett R. Bryant. Object-Oriented Natural Language Requirements Specification. In Proceedings of ACSC 2000,
the 23rd Australasian Computer Science Conference, January 81-February 4, 2000, Canberra, Australia, pages 24-30,
January 2000.

[4] California Institute of Technology. Caltech Infospheres On-line Documentation,
URL:- http://www.infospheres.caltech.edu/, 1998.

[5] Fox, G. The Document Object Model Universal Access Other Objects CORBA XML Jini JavaScript etc.
http:/ fwww.npac.syr.edu/users/gcf/msrcobjectsapril99, 1999.

[6] Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE Internet Computing, pages
83-86, 2(2), 1998. . :
[7] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

118

[8] Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S. and Cybenko, G. Agent TCL: Targetting the Needs of Mobile
Computers. IEEE Internet Computing, pages 58-67, 1(4), 1997.

[9] Lugi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS - Architecture for Distributed
Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th International Workshop on Rapid System
Prototyping, 2001.

[10] Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January-February 1999.
[11] Microsoft Corporation. DCOM Specifications, URL:- hitp://www.microsoft.com/oledev/olecomn, 1998.

[12] Object Management Group. XML Metadata Interchange. Technical report, Object Management Group Document
No. ad/98-10-05, October 1998.

[13] Object Management Group. CORBA Components. Technical report, Object Management Group TC Document
orbos/99-02-05, March 1999.

[14] Object Management Group. Meta Object Facility (MOF) Specification, Version 1.3. Technical report, Object Man-
agement Group, March 2000.

[15] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report, Object Manage-
" ment Group Document No. ab/2001-02-01, February 2001.

[16] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA. John Wiley & Sons, Inc., 1997.

[17] Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the fourth IEEE
" International Conference on Algorithms and Architecture for Parallel Processing (ICASPP’2000), 2000.

[18] Rogerson, D. Inside COM. Microsoft Press, 1996.

[19] Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998.
[20] Siegel, J. CORBA Fundamentals and Programming. John Wiley & Sons, Inc., 1996.

[21] The Globus Project. Globus Website, URL:- http://www.globus.org/, 2000.

[22] University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

[23] van Wijngaarden, A. Orthogonal Design and Description of a Formal Language. Technical report, Mathematisch
Centrum, Amsterdam, 1965.

119

Enhancements & Extensions of
Formal Medels for Risk Assessment in Software Projects

Michael R. Murrah Eugi Craig S. Johnson
mmurrah@nps.navy.mil Lugi@cs.nps.navy.mil csiohnson@dcmdw.dcma.mil

Naval Postgraduate School
2, University Circle
Monterey, CA 93943 USA

Abstract

Over the past 40 years limited progress has been made to help practitioners estimate the risk and the
required effort necessary to deliver software solutions. Recent developments improve this outlook, one in
particular, the research conducted by Juan Carlos Nogueira [1]. Dr. Nogueira developed a formal model
for risk assessment that can be used to estimate a software project’s risk when examined against a desired
development time-line. This model is based on easily obtainable software metrics. These metrics are
quantifiable early in the software development process.

Dr. Nogueira developed his model based on data collected from a series of experiments conducted on the
Vite’Project simulation [2]. This unique approach provides a starting point towards a proven formal model
for risk assessment, one that can be applied early in the software development lifecycle. Approaching
software risk estimation has never previously been successfully accomplished in this manner.

The proposed research will provide definitive evidence that software risk assessment can be conducted
early in software development using quantifiable metrics and simple techniques. Enhancements will be
made to Dr. Nogueira’s model, based on calibrations against post-mortem projects. These enhancements
will result from many threads of research; extension of input metrics, increased number of simulation runs,
simulation scenarios based on actual projects, and the introduction of a “gearing factor”. Ultimately, the
research will yield an improved risk assessment model, one that has been validated against thousands of
post-mortem projects, having applicability to any software development activity.

1. Introduction

The current state of the art techniques of risk assessment rely on checklists and human expertise. This
constitutes a weak approach because different people could arrive at different conclusions from the same
scenario. The difficulty of estimating the duration of projects applying evolutionary software processes
adds intricacy to the risk assessment problem.

2. Dr. Nogueira’s Risk Assessment Model

Dr. Nogueira’s research introduces a formal method to assess the risk and the duration of software projects
automatically, based on measurements that can be obtained early in the development process. The method
has been designed according to the characteristics of evolutionary software processes, and utilizes
quantifiable indicators such as efficiency, requirement volatility and complexity. The formal model, based
on these three indicators estimates the duration and risk of evolutionary software processes. The approach
introduces benefits in two fields:

a) Automation of risk assessment.
b) Early estimation methods for evolutionary software processes.

120

Dr. Nogueira developed four software risk estimation models that show great promise in determining a
software projects’ associated risk early in the software development life cycle. The models accomplish
early estimation by utilizing a set of quantifiable metrics that can be collected from the beginning of project
development. In actuality, the requirements volatility metric is an estimation during the first development
cycle and during subsequent development cycles is quantifiable. After each iteration of software
development, the required input metrics can be applied to the model in order to reduce the error in the
model’s results.

The minimum required input metrics, to support risk assessment, required for Dr. Nogueira’s estimation
model are the following:

a. Efficiency (EF) — The efficiency of the organization can be measured observing the fit between people
and their roles [1]. Dr. Nogueira’s research indicates that the efficiency of an organization can be directly
calculated by computing the ratio of direct time (working and correcting errors) divided by the idle time
(time spent without work to do).

b. Requirements Volatility (RV) — Requirements volatility expresses how difficult the requirement
elicitation process is. The requirements volatility is obtained by the following formula [1].

Requirements Volatility = Birth Rate Percentage + Death Rate Percentage

Birth Rate Percentage (BR%) = the percentage of new requirements incorporated in each cycle of the
software evolution process as calculated by:

BR% = (New Requirements / Total Requirements) * 100 percent

Death Rate Percentage (DR%) = the percentage of requirements that are dropped by the customer in each
cycle of the evolution process as calculated by:

DR% = (Deleted Requirements / Total Requirements) * 100 percent

c. Complexity (CX) — Complexity has a direct impact on quality because the likelihood that a component
fails is directly related to its complexity [1]. The complexity metrics can be determined in two forms: large
granular complexity and fine granular complexity. These two forms of complexity can be directly

determined from software specifications written in the Prototype System Description Language (PSDL) 3]

Large Granular Complexity (LGC) expresses the relational complexity of the system as a function of the
number of operators (O), data streams (D), and types (T)

LGC=0+D+T

Fine Granular Complexity (FGC) expresses the relational complexity of each operator in the system and is
a function of the fan-in and fan-out data streams related to the operator [1]. For the purposes of the
completed research and our notion of future research, the FGC metric is too specialized; our efforts
concentrate on just the representation of the LGC.

FGC = fan-in + fan-out

Software developers can utilize Dr. Nogueira’s four models to assess either the development time required
to develop a project or determine the associated probability of completing a software project given the
project’s duration.

121

3. Previous Validation Research

In this section of the paper we present the results of validation attempts when using Dr. Nogueira’s
estimation models. The first is a result of the research conducted by Dr. Nogueira in his initial research and
supplies data from simulations and comparisons to one project. The second validation endeavor is the
results of research conducted on two additional projects [5].

3.1 Dr. Nogueira’s Validation

In conducting his research, Dr. Nogueira derived some initial conclusions with the models. The
simulations showed that the three risk factors observed during the causal analysis (efficiency, requirements
volatility, and complexity) have compound effects over the three parameters of the Weibull distribution [1].

Dr. Nogueira illustrates the results of the models against 16 simulated projects. Each model derives an
increasing degree of accuracy based on: metrics from the three risk factors, Weibull cumulative density
function, and the derivation of the time.

Models 1-2. Model 1 can be used when the requirements volatility is small. Model 2 considers the three
factors (EF, RV, and CX), but neglects the combined effect of EF and RV.

Figure 1 illustrates the results of the models which were calculated using 95% of confidence (p=0.95).
Note the errors as vertical segments between the estimated and real values.

100
s00 T
- 1 3
§ 500
E 400
et = duration
300 >y
P e Model 1
200 o
100 o
and-
0
0 100 200 300 400 800 900 700
Simulated Time (days)
700
600 T
1 d
;. s00
g 400
t = duration
200 + .
, = | < Modet 2
200
100 e
-
°
] 00 200 300 400 800 eo0 700
Simutated Time (days)

Figure 1. Scatter Plot of Models 1-2

Model 3. Model 3, illustrated in Figure 2, considers the three factors as well as the combined effects of EF
and RV. The analysis of variance shows that the samples obtained from the simulations and the samples
obtained from the estimates using Model 1, 2 or 3 cannot be statistically differentiated.

Another interesting result is that the errors remain in the range of+15% for all of the scenarios. This result
is interesting if we compare it with the results of COCOMO (£20% in the best cases). Barry Boehm in
reference to the validation of COCOMO said, “In terms of our criterion of being able to estimate within
20% of projects actuals, Basic COCOMO accomplishes this with only 25% of the time, Intermediate
COCOMO 68% of the time, and Detailed COCOMO 70% of the time.” [4].

Model 4. Model 4, Figure 2, can be used for any range of complexity and requirements volatility, and
considers the three factors, their combined effects, and the following a priori assumptions:

e A project with 0 LGC will take 0 days
e 0,B,andy>0

122

o IfRV increases the p(x<=t) decreases
e If CXincreases then p(x<=t) decreases
e IfEF increases then p(x<=t) increases

700
s00 I
§ soo L
E 400
- ration
- o —
« Mode
200 - :X-
100 e
ar
°
0 100 200 300 400 500 800 700)
Simulated Time (days)
s00
700
L
s 600
‘é' 500 l
400
s
§ 00 = [~ damton
Y 200 y « Madel 4
100 PR_J
-
°
0 teo 200 300 400 500 $00 100
Simyliated Tima (days}

Figure 2. Scatter Plot of Models 3-4

The scatter plot in Figure 2 compares the simulated times versus the estimated times. Most of the errors are
overestimations and the duration of the project has no effect over the percentage of error. Model 4 is
conservative. The maximum overestimation error was less than 16% and the maximum underestimation
was less than 4%.

Model 4 gives a good estimation for projects between 4,000 and 20,000 LGC (128 and 640 KLOC of Ada).
The estimation seems to be too optimistic for projects smaller than 1000 LGC but it is quite good for larger
projects. To verify the model Dr. Nogueira used a real project consisting of 1836 LGC developed in 1.5
years by the Uruguayan Navy'. Model 4 predicts 17 months instead of 18 months, the actual development
time.

3.2 Additional Project Validation

Project A [5]. We used Nogueira’s Model 4 to calculate the probability of completion curve for the
projects. For consistency, we used working days, defined as 22 days per month, the same as used in the
original Nogueira model.

The model predicted that the minimum time, in days, necessary to have a probability of completion of
100% is approximately 260 working days. When compared to the actual time it took, which was 336
working days, the model predicted completion sooner. The model predicted 76 working days less, or a
22.6% delta.

(1-(260/336)) (100) = 22.6.

At this point, with 22.6% variability, we decided to investigate and see what the original estimated
completion date was from project records. The original estimation was 200 working days, with the project
schedule slipping 136 working days for build 3. The developer missed the original completion estimation
by 40.5%. :

! SIMTAS a simulator for war gaming with 75,240 lines of code
123

(1- (200 / 336)) (100) = 40.5.

The Nogueira model missed the developer’s original estimate by 23.1%

(1-(200/ 260)) (100) = 23.1

Does this mean that the Nogueira model is too optimistic as are most developers’ estimates, or is it a better
fit? This data point leaves us with an inconclusive position as to the validation of the model against the
first project. It appears that there is a difference when using real projects with real data versus simulated
project data, and this reflects what the real world is — unpredictable.

Project B [5]. We used Dr. Nogueira’s Model 4 to calculate the probability of completion curve for Build
2 using; BR=2.59, DR=3.04, RV=5.63, 0=2544, D=4010, T=1003. The model predicted Impossible.

Actual time for build 2 took from 4/24/00 until 7/10/00 or 68 working days at 22 working days a month,
We believe this inconsistency is due primarily because the calculation for the LGC count is based on all six
Computer Software Configuration Items (CSCI). Core functionality on three CSCIs; CSCI-A, CSCI-B, and
CSCI-C had been previously developed and validated. However, the builds during this period, involved
addition of functionality to the following CSCls: CSCI-D, CSCI-E, and CSCI-F. That is, build 2 was
modifying only a portion of the total software system code, but the LGC data gives a view of all six CSCls
combined.

The available data was not broken down into separate CSClIs, nor does it, post-mortem, identify the code
that was being worked in a previous software release. We cannot fault the developer for not collecting
metrics for research concepts that they are not aware of, nor do we believe that this type of data collection
is a requirement of CMM level 3.

A finding of this research is the need to adjust the CX when applying the Nogueira model to evolved
projects that are developing or enhancing only a portion of their CSCls.

Additionally, this project did not utilize a lower case tool such as Rational Rose. We believe use of such a
tool is essential when attempting to apply the Nogueira formal model, as it provides the capability to collect
detailed information, over the software development lifecycle, that can later be extracted and used for input
to the Nogueira model metrics.

4. Issues with Dr. Nogueira’s Risk Assessment Model

Applying Dr. Nogueira’s risk assessment model, in its current form, presents a number of issues that must
be resolved before substantial progress can be achieved validating the model’s results. The first issue and
most notable draw back when using Dr. Nogueira’s risk assessment model is limited confidence that the
model provides valid results. This is due to three factors: the limited amount of time that the model has
been in existence, the model has not been exercised on a wide base ofreal world projects (completed or on-
going), and the fact that the model was developed using simulation techniques. The first factor noted can
only be dealt with in the passage of time. However, this research will exploit a unique opportunity to
impact the latter two issues.

Although Dr. Nogueira’s research shows promise in estimating the associated risk when developing
software systems, the model has not been significantly exercised beyond theoretical simulation. Three
“real world” projects to date have been applied against the estimation model [1], [5]. It should be noted
that all three of these projects were exercised post-mortem. Model validity has not been demonstrated in
the context targeted by the model’s original design, estimating risk early in a software project’s life cycle.

A second issue that exist when using Dr. Nogueira’s risk assessment model is the required input metrics.
This issue is a double-edged sword. A major attraction to using Dr. Nogueira’s model are these metrics.

124

They are determined in a definitive, quantifiable manner and can be derived extremely early in the software
development process [1], [6]. However, these metrics are quite unique. Currently, outside of the academic
environment, it is not common practice to collect these unique metrics in the required form to utilize Dr.
Nogueira’s risk assessment model.

In order to establish confidence in the usefulness and accuracy of Dr. Nogueira’s risk estimation model, the
model must be exercised against numerous projects. It would be ideal, and perhaps over time, to exercise
the model according to it original design; early in the software development cycle. However, the next
logical step is to continue to exercise the model in a post-mortem basis. Before this can be accomplished,
two things need to happen: First correlations must be determined between Dr. Nogueira’s required metrics
and metrics that are frequently collected in historical project databases. By establishing metrics
correlations, the model can be exercised against an additional project base helping address the second
factor of problem one. And second, a method other than the use of PSDL to generate O, D and T metrics
counts must be developed. Dr. Nogueira’s model was based on using PSDL to automatically scan and
generate counts for O, D, and T input to his model. It is unlikely that PSDL was used on any programs that
we have post-mortem data on. Co

The final problem associated with Dr. Nogueira’s risk assessment model is the configuration of the

Vite Project simulation. Dr. Nogueira developed the configuration of Vite’Project using Organizational

Consultant expert system. Fictitious software engineering organizations were developed to represent the
typical software development department. Based on the results of establishing fictitious CMM level 2 and
level 3 organizations, the Vite’Project was calibrated. Calibrating the simulation in this manner, could

yield different results than calibrating the simulation with actual information derived from real projects. If
Dr. Nogueira’s model can be verified by reprogramming the Vite’Project configuration this would provide
additional assessment to the third factor of problem one.

5. Proposed Research

The proposed research will expand the efforts of the previous validation effort. Figure 3 outlines the
research approach.

Identify
Comparable
Projects in the
Database

Develop the
Metrics
Mapping

Improved
Nogueira
Model

Develop
Gearing Factor

Exercise
Nogueira’s Model
against Actual
Projects and SLIM
Model

A
1 /
. SIS
! ',
1/ Flawin VITE’ Validate or e,
< { AdaptviTE’ Disprove g .
[to Actual Nogucira's L ; Masters 0y
' '~ Student i
- Completes

Te TN AL

Figure 3. Phases of Research

Phase one: During phase one of the research, post-mortem projects will be identified whose characteristics
are similar to the characteristics of the three projects previously exercised against Dr. Nogueira’s risk
assessment model. This affords the opportunity to begin with a baseline before proceeding to future
phases.

125

Phase two: This is the most challenging phase of the research and we hypothesize that this phase will
consume the majority of the available resources. In this phase, detailed analysis is conducted against the
available metrics that have been collected on the projects established during phase one. Correlations are
determined in the available data against the three metrics that are necessary when utilizing Dr. Nogueira’s
model. Upon completion of this phase, when a suitable “metric map” has been developed, research can
continue to phase three. The intent of the metric map is to provide a common platform to exercise Dr.
Nogueira’s model using metrics that were not originally collected for this purpose.

Phase three: Once a suitable metric map has been established, research continues by exercising Dr.
Nogueira’s model against the set of post-mortem projects determined in phase one. This phase is essential
to establish confidence in the results produced when using Dr. Nogueira’s model. Additionally during this
phase, another risk assessment method is introduced, Quantitative Software Management’s® (QSM) SLIM,
to help in the validation process. Essentially, there will be a comparison of three artifacts: the recorded
project performance, the estimated project performance using Dr. Nogueira’s model, and the estimated
project performance as determined by QSM’s SLIM. An assumption during this phase will be theaccuracy
of QSM’s SLIM. Of course, if the expected results are not achieved during this phase, additional research
must be performed to determine the cause of the variance.

Phase three (a): One potential cause of the variance observed during phase three could be a flaw in the
metric map determined during phase two. Continued research will be conducted to modify the mapping
and eventually minimize the chance that the metric map is the source of the deviation.

Phase three (b): Another factor that can influence deviation between the actual project data, Dr.
Nogueira’s estimation model, and QSM’s SLIM estimation model is the original configuration used to
establish project scenarios in the Vite’Project. Organizational Consultant expert system was used to
establish fictitious software engineering organizations. Research may indicate that reprogramming the
Vite’Project with actual information from software development organizations could yield different results
in the Vite’Project simulation. This was a fundamental factor in the development of Dr. Nogueira’s
research, A substantial change in the simulated results could require extensive rework of Dr. Nogueira’s
model.

Phase three (c): Finally, after exhausting Phases three (a & b), research may lead to examination of Dr.
Nogueira’s model with closer scrutiny. If deviation continues to present itself when conducting phase
three, we may have essentially resort to “ground zero” to establish potential conflicts. It should be noted
that phases three (a, b, & c) should not be considered mutually exclusive. Research could indicate that
partial modifications are required in all three sub-phases.

Phase three (d): Dr. Nogueira’s risk assessment model is perfectly suited for any evolutionary software
process because it follows the same philosophy [1]. Dr. Nogueira presents no hypothesis of the model’s
validity when the model is exercised outside of this domain. Once phase three is accomplished and
confidence has been established against the set of projects determined during phase one, the model can be
exercised against additional projects, from different industry sectors and different software development
methodologies. This may require the development of what we are calling a “gearing factor”. In this
research, the use of this term is intended to represent a value that is multiplied by the results determined in
Dr. Nogueira’s model, adjusting the results for the new domain. In some cases the model may provide
suitable results without the use of a gearing factor, other domains and development methodologies may
require this adjustment due to the unique nature of the software’s development.

Phase four: Phase four of the proposed research is the culmination of all of the proposed research. This
phase delivers the improved Nogueira model. A caveat to this phase and all of the sub-phases conducted
during phase three is the introduction of the Vite’Project API. This automated tool will improve the
statistical significance obtained when utilizing the Vite’Project simulation, greatly increasing the number of

simulation runs provided by the simulation.

126

6. Validation

We propose to validate our research by conducting controlled experiments against post-mortem projects.
QSM, founded in 1978 by Larry Putnam, has collected and maintained an extensive database of over 5,000
software projects [7]. Experiments can be conducted, utilizing the available software metrics from QSM’s
database, that correlate the required metrics in Dr. Nogueira’s model. This will afford our research the
means to evaluate actual projects against Dr. Nogueira’s model.

Another source of validation is obtained by configuring Vite’Project with actual software project
development information. As previously mentioned, Vite’Project scenario’s were originally established by
the creation of fictitious software development organizations. Different results could be derived from
simulations configured according to actual projects.

Finally, we propose to increase the statistical significance of Dr. Nogueira’s software risk assessment
model. We can accomplish this by increasing the simulation runs of each scenario through automation via
the Vite’ API when available.

7. Conclusion

This research introduces a research plan to validate a formal risk assessment model for software projects
based on probabilities and metrics automatically collectable early in-the project. The approach enables a
project manager to evaluate the probability of success of the project very early in the life cycle. For more
than twenty years the estimation standards (COCOMO 81, COCOMO II, Putnam) have been characterized
by a common limitation: the requirements should be frozen in order to make estimations. This promising
model removes this important limitation, facing the reality that requirements are inherently variable.

The problem of risk assessment for projects has been treated as unstructured. Research shows, and
experiments will prove, a structured method to solve the problem based on metrics automatically collected
from the project baselines. This contribution impacts the software engineering state of the art, as well as
risk management in general. These metrics measure three risk factors identified in the research: complexity,
requirements volatility, and efficiency. The subjectivity issue characteristic of previous research has been
eliminated. Any decision-maker will arrive at the same estimates, independently of his or her expertise.

Finally, current research is based on simulations and a small set of real projects. It is desirable to collect
and analyze metrics and completion times of a larger set of real software projects to confirm and refine the
models. Our research will provide the missing elements from the models, validation, enhancements, and
extensions. ~

References

[1] Nogueira J.C., 4 Formal Model for Risk Assessment in Software Projects. PhD Dissertation. Naval
Postgraduate School. Monterey, California. 2000.

[2] The Vite’Project Handbook. Vite©. 1999.

[3] Berzins, V. and Luqi. Software Engineering with Abstractions. Addison-Wesley, 1990.

[4] Boehm, B. Software Engineering Economics. Prentice Hall, 1981.

[5] Johnson, C. S., Piirainen R. A. Application of the Nogueira Risk Assessment Model to Real-Time
Embedded Software Projects. Masters Thesis. Naval Postgraduate School. Monterey, California. March
2001.

[6] Nogueira, J.C., Luqi, Bhattacharya, S. A Risk 4ssessment Model for Software Prototyping Projects.
Rapid System Prototyping, 2000. RSP 2000. Proceedings. 11th International Workshop on , 2000 Page(s):
28 -33

[7] SLIM MasterPlan User’s Guide. QSM® March 2001.

127

Visual Meta-Programming Notation'

Mikhail Auguston®
Department of Computer Science

Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943 USA
auguston@cs.nps.navy.mil

Abstract

This paper describes a draft of visual notation for meta-programming. The main suggestions of this work include special-
ized data structures (lists, tuples, trees), data item associations that provide for creation of arbitrary graphs, visualization
of data structures and data flows, graphical notation for pattern matching (list, tuple, and tree patterns, graphical notation
for context free grammars, streams), encapsulation means for hierarchical rules design, two-dimensional data-flow dia-
grams for rules , visual control constructs for conditionals and iteration, default mapping rules to reduce real-estate re-
quirements for diagrams, and dynamic data attributes.

Two-dimensional data flow diagrams improve readability of a meta-program. The abstract syntax type definitions for

common programming languages and related default mappings (parsing and de-parsing) provide for a practically feasible
reuse of those components.

1 Introduction and objectives

Meta-programs are programs manipulating other programs. Typical applications include compilers, interpreters, source
code static analyzers and checkers, program generators, and pretty-printers. Domain-specific language implementation and
rapidly evolving generative programming [9] are the latest examples of developments in this domain. The complexity and
sophistication of meta-programs may be quite significant, so the readability and maintainability become an issue.

Compiler and generator design is a domain that has been studied extensively. There is a pretty good understanding of
what to do and how to do it, especially for front-end design, and a lot of domain-specific software design templates are ac-
cumulated in literature. The following domain features are among the most common for language processor design.

e Use of context-free grammars to specify syntax and serve as a basis for parser design.
o Intermediate representation of the input in the form of an abstract syntax tree. The importance of different tree data
structures is recognized in general for this problem domain.

o Typically, the main components of a language processor are very hierarchical and structured along the structure of data
(recursive descent parser is an excellent example of this feature). In other words, language processors are heavily data-
based applications.

e It appears that the most commonly used data structures include trees, lists, stacks, tables, and strings.
e The architecture of a language processor in most cases can be represented as a data flow between components (e.g., the
famous compiler data flow diagram on the page 13 of the “Dragon Book™[1]).

o The notion of an attribute associated with the data item, and attribute dependency and propagation schemes are of a
great relevance (the attribute grammar framework captures some of the essential static checking needs; the data flow
analysis performed for the optimization stage in a compiler may be considered as an attribute propagation over the

program graph).

! This research was supported in part by the U. S. Army Research Office under grant number 40473-MA-SP.
2 On leave from New Mexico State University, USA

128

e Tree (and graph) traversal and transformation is a common template for optimization and code generation tasks.
e Pattern matching (e.g., with respect to regular expressions or context-free grammars) may be a useful control structure
for this problem domain.

These considerations and experience with the compiler writing tools RIGAL[2][3], lex and yacc[11], and ELI[10] contrib-
uted to this work. Data-flow paradigm is quite natural for meta-programming domain since it is heavily data dependent,
and consequently, the graphical notation for data-flow diagrams could be appropriate. This should be integrated with visu-
alization of typical data structures, pattern matching, and encapsulation to provide for well-structured, hierarchical pro-
grams, Data-flow diagrams are most commonly used to represent dependencies between data and processes in visual pro-
gramming languages, for instance, in LabVIEW[5] and Prograph[8].

Two-dimensional diagram notation could significantly improve readability of meta-programs. Some of these ideas have
been explored in our previous work[4]. ‘

The main suggestions of this work are as follows:
o specialized data structures (lists, tuples, trees),
e data items associations that provide for creation of arbitrary graphs,
e visualization of data structures and data flows,

e graphical notation for pattern matching (list, tuple, and tree patterns; graphical notation for context free grammars and
streams),

e encapsulation means for hierarchical rules design,

¢ two-dimensional data-flow diagrams for rules,

e visual control constructs for conditionals and iteration,

e default mapping rules to reduce screen real-estate requirements for diagrams,
e dynamic (Last #rule $attribute) and static (via associations) data attributes,
e data-flow notation that assumes potential parallelism in the data processing,

e abstract syntax type definitions for common programming languages and related default mappings (parsing and de-
parsing) that provide for a practically feasible reuse of those components.

2 Constructs

This paper was not intended to give a complete and precise syntax and semantics of the visual language. At this point it is
rather a notation that will be upgraded to programming language status after the implementation effort is completed. A
(simplified) example of a compiler from a small subset of Lisp (called MicroLisp) to the C language will be used to present
the main ideas. Figures 3— 7 present several annotated parsing and code generation rules of the MicroLisp to C compiler.
Appendix A contains the MicroLisp context-free grammar and an example of a program.

2.1 Data flow diagrams

Detailed rationale for data-flow diagram notation and a survey of related work can be found in a previous paper[4].
Briefly, a meta-program is rendered as a two-dimensional data flow diagram that visualizes the dependencies between data
and processes. Diagrams actually are similar to the notion of procedure in common programming languages. A diagram
represents a single function called a rule, and rule calls may be recursive. The data-flow diagram supports the possibility of
parallel execution of threads within the rule.

The data-flow paradigm is closely related to the functional programming paradigm [7] and shares with that paradigm ref-
erential transparency and good correspondence between the source code (the diagram) and the order of program execution.

Each diagram represents a single function with several inputs and outputs. At the top of a diagram a signature of a rule
provides the rule name and types of its inputs and outputs. Besides data items, the diagram may also contain control struc-
tures, such as other rule calls, conditional data flow switches, and iterative constructs [4]. All of those constructs are illus-
trated in the MicroLisp examples.

129

The rectangular boxes in our notation denote values, and circles and ovals denote patterns, that could be matched with
data objects.

2.2 Types

Type represents a set of values (or objects). Basic predefined types include char (characters) and int (integers). There
is also a universal type ANY (which is a super type for any type) and the minimal type NULL (which is a subtype of any
other type and contains a single value Null representing also an empty list or tuple).

Aggregate types are ordered tuples of heterogeneous objects, which are useful for abstract syntax representation, and lists
(sequences of homogeneous objects that could be dynamically augmented). Extended BNF notation may be used to define
tuple types. To a large degree the type system is similar to the type mechanisms in VDM [13] and Refine[12].

Example of a tuple type definition.

prog::= function-def* expression

This establishes that an object of the type prog is a sequence of zero or more objects of the type function-def followed by
an object of the type expression. This could be considered as an abstract syntax representation for the MicroLisp program
level. Notice that ordered sequence of objects of the type function-def is nested within an object of the type prog.

Example of a list type definition.

text :: [char]

There is a predefined list type id:: [char], which stands for a set of character strings that are valid identifiers.

Example of a type definition with several alternatives (union type).

expr :: int | id | simple-expression
This effectively declar es that types int and id are subtypes of expr in the scope of this definition,

Appendix B presents some of the type definitions for the MicroLisp example.

2.3 Default mappings

text
prog
C-HeaderFile C-CodcFike
\ 4
text text

Figure 1. The top level data flow diagram for MicroLisp to C compiler

Certain rules may be declared as default mappings. It means that corresponding rul e calls are optional in the diagrams,
and input and output data boxes may be connected directly. This helps to save some screen real estate and to make diagrams
less crowded and more readable. Typically default mappings may be introduced for text -to-abstract syntax (parsing) and for
abstract syntax-to-text mappings (de-parsing, or abstract syntax -to-concrete syntax mappings).

Yet another kind of default mappings is associated with concatenation operations for tuples and sequences. In fact this is a
composition of parsing and de -parsing default mappings applied in the context of (visualized) concatenation. See MicroLisp
generation rules for examples (Figures 6 -7).

130

Definitions of abstract syntax types for common programming languages and related parsing and de -parsing default ma p-
pings may be valuable assets for reuse.

Default mappings also open the road for “lightweight” inference. For example, suppose that type A is defined as follows:
A::B | C
and there are default mappings B -> D and C -> D, then it is possible to derive a default mapping for A -> D. This example

actually addresses the polymorphism issue in our lightweight type system. Similar inference rules could be developed for
other aspects of type system based on transitivity of subtype relation.

2.4 Associations

Data objects may be associated with other data objects. Each of those objects may have other associations as well. Associa-
tions are not a necessary part of the type definition (although they could be included in the type definition as well) and ar e
rather optional named attributes of particular objects. Associations may be used to create arbitrary graphs from objects. The
following picture on Figure 2 illustrates the creation of a graph structure via associations from three data objects. Ass ocia-
tion is not symmetric. According to the following diagram object A has been associated with an attribute B via an ass ocia-
tion named ab, object B with C via be, and C with A via ca.

Associated objects are retained when the host objects are the source and target in an identical transformation (plain arrow
connecting data boxes of the same type) or are passed as inputs and outputs of rule calls. A special built -in rule #COPY
creates a copy of an object but retains only those components declared in the type definition. Associated objects could be
retrieved by pattern matching. For instance, on the right -hand diagram on Figure 2, object C (belonging to the associations
established in the previous example) may be passed as input, and an access to objects B and A ca n be obtained via pattern
matching (circles denote object patterns here). Notice that the direction of association arrow indicates the access path from
the host object to the attribute object. The association mechanism may be useful to simulate attribute -grammar —like attribute
propagation in ensembles of objects, to represent collections of objects as graphs, to implement symbol tables (where ident i-
fiers may be represented as associations names), and so on.

ca

- Ca
be

lc ab

Figure 2. Construction of associations between objects and retrieval of them
using pattern matching

2.5 Patterns and streams

Data object patterns are used to visualize structure of objects in order to provide access to object components and assod-
ated objects. An object pattern may be placed in any part of the data flow and is matched with the object connected to the
pattern input. ‘

131

If pattern matching is su ccessful the input object is passed downstream. If pattern matching fails, the entire diagram ex e-
cution fails, and the diagram sends to its outputs a default value Null, unless the pattern has been provided with the
‘Failed’ output route. See MicroLisp rules in Figures 3 -4 for examples.

If a rule’s input is a list, patterns applied to this input may be chained in a sequence (using thick gray arrows) to be a p-
plied consecutively. This pattern sequence consumes as many objects from the stream as it can succes sfully match. The n o-
tion of stream corresponds to the sequence in RIGAL language[2][3], and semantics of pattern matching is derived from
RIGAL’s pattern matching semantics. See MicroLisp parsing ru les for example (Figures 3 -5).

Rules can create output streams of objects as well.

2.6 States and dynamic attributes

Rule may have states — objects that persist while rule instance is active and can be updated by assignment operators within
the rule or from other rules called from this rule. This mechanism could be actually considered a macro extension for di a-
gram notation when a corresponding state object is passed to the called rules as an additional parameter and returned back
to the callee as an additional output. States have names starting with the § symbol, e.g. $X. The reference to the rule’s #A
state $X has a form Last #A $X. When referred within the rule #A, the prefix Last #A can be dropped. See Figures 4 -5 for

examples.
3 Examples of MicroLisp to C conpiler rules
The following diagrams present three top level parsing rules and two top level generation rules for MicroLisp -> C com-

piler. They illustrate most of the notations discussed above. Additional annotations provide more specific details and discu s-
sion. Those rules are deployed according to the data flow diagram on Figure 1 and default mappings in Appendix B.

3.1 Parsing

The source code of MicroLisp program is represented as a stream of characters. It is assumed that there is a lexical co m-
ponent that filters out comments, spaces, tabs, end-of-line characters from the stream before it is fed to the parsing rules.

132

#program: Stream [char]-> prog, Stream [messagel
state $func-list: [id] -~ updated by #func-def

#func-def
%%k
message:
"? expected"”
$func-list
Syntax err >
Func-tab
\
- Syntax err
¢ pProg: /
message:
"Errors func-def expr >
detected" oo
v
prog: >
Null

Figure 3. Parsing rule for the grammar rule
program ::= func-def * ‘?’ expression

Annotations for the rule #program

This rule has a state $func -list which will be gradually updated by the rule #func -def calls (see Figure 4). At the end of
parsing, object $func-list will be added as an attribute (via association with the name Func -tab) to the resulting object of
the type prog. The box containing $func -list has a dummy input of the type ANY, which is activated when the last pa t-
tern #expr terminates with success. This ensures the timing when the state value is picked up for the association o pera-
tion.

The rules #func-def and #expr are used as patterns. If pattern matching encapsulated in these rules is successful, the
rules also are successful and return values, which are used to assemble the return value of the rule #program.

If pattern matching for the pattern ‘? fails, the entire rule #program also fails and returns object Null, but before it
happens two messages will be sent to the output stream. Markers labeled ‘Syntax err’ are used to prevent a mess with
arrow intersections.

A data flow fork denotes duplication of the data item sent to two or more threads.

Nesting boxes and forwarding output of pattern rules of the types func-def and expr inside the resulting box of the type
prog provide an intuitive visualization for the tuple constructor.

The application of pattern #func -def may be repeated zero or more times (indicated by the ellipsis ‘***°), and it is sy n-
chronized with the tuple constructor (as the box of the type func-def in the resulting prog box is also accompanied by
an elli psis).

133

#func-def: Stream [char]-> Func-def, Stream [message]
state S$param-list: [id] -- used in #expr

O YOI,

o= $param -list

message:
"wrong
function
name"

Last #program $func-list

Name IN Last
#program $func-list

True

mesgsage:
function

name :
. \ / Func-def: j
; >
> d id id | expr
[X N]
defined
twice

Figure 4. Parsing rule for a function definition by a grammar rule
Function-definition ::= ‘(* DEFINE ‘(’ Name Param *)’ Expression ‘)’

Annotations for the rule #funedef

Built-in rule #Ident matches a character string that is an identifier. When successful, this identif ier (an object of the
type id) is input to the conditional data flow switch to check whether the function name is already on the list. If true,
the id item is forwarded to the message output stream. If false, it goes to the resulting tuple constructor.

A function name is also sent to update state $func-list in the current instance of rule #program. '|.= stands for the op-
eration to append an element to the end of list. This assignment operation updates the state Last #program $func -list.

The entire sequence of patterns in this rule consumes part of the input stream delegated from the calling rule #pr ogram.

Parameter names are appended to the state variable $param -list. All state variables are initialized by Null, which stands
for empty list in this case.

134

#expr : Stream [char] -> expr, Stream [messagel

v

True
Name IN Last

#func-def $parm-list

False

h 4

__p! expr

message:

id

not defined

#simple-expr

Figure 5. Parsing rule for MicroLisp ¢ xpression for the grammar rule
expression::= integer | parameter -name | ‘(* SimpleExpression ‘)’

Annotations for the rule #expr

e A pattern may have several alternatives. The alternatives are applied in order of appearance, if the first alternative
fails, the pattern matching backtracks in the input stream and the next alternative is applied until one of alternatives is
successful. If all alternatives fail, the entire alternative pattern also fails.

o The built-in rules #Number and #Ident, when successful, return objects of the types int and id, correspondingly.
Since the type expr is defined as a supert ype for int and id, the data flow to the resulting object of the type expr is
consistent.

3.2 Code generation

Code generation rules take as input a MicroLisp abstract syntax object and output C abstract syntax objects. Target code
template representation in th e diagrams is based on default mappings for C abstract and concrete syntax and visual repr e-
sentation of append operation as nested boxes.

Annotations for the rule #gen-program

135

— fimc-def >

#igen-program: prog -> C-HeaderFile, C-CodeFile

C-HeaderFile:

[N\ #include <stdio.h>
prog:

»| C-finc-prototype

C-CodeFile:
#include “lisp.h”

C-func-definition

int main(){
printf{ “The resultis:%dn”,

\\

\ y —ce |

Figure 6. Generation ruk for the MicroLisp program level

The input is of the type prog (abstract syntax object for MicroLisp) and a pattern for this object provides an access
to the component retrieval. Since func -def components may be repeated zero or more times, the ellipsis in the pa t-

tern represents the iterative traversal.

The iteration of the input is synchronized with the iterative ge neration of objects in two outputs. The
transformations itself are carried by default mappings func-def -> C-func-prototype and func-def -
> C-func-definition. The rule #gen-function-prototype in the next example gives the algorithm for the first
of these default mappings. Since the template provides particular concrete syntax for parts of the C code, those text
segments will be stored with corresponding C abstract syntax objects. The resulting parse tree for include and
printf will contain objects of the type id and text-string that hold values, such as “int”, “printf’, and other. These
concrete syntax values are retrieved by default mappings when pretty -printing corresponding C abstract o bjects.

The rule #gen-program constructs the target C code in the abstract syntax form. The mapping from abstract syntax
to the text will be done according to the main diagram in Figure 1 by corresponding de -parsing default mappings
for the C language. Both the abstract syntax definitions and default parsing and de -parsing mappings for the C
language may be reused for any other meta -program that uses C as a target.

136

Annotations for the rule #genfunction-prototype
o This rule provides the flavor of hierarchical structure of generation te mplates.

o The first appearance of the string “int” in the target object C -func-prototype object will be converted by the C default
parsing mapping into object C -type and the string “int” will be associated with it as a value. The same is true also for
the iteration of “int” in the parameter list.

e Box around the second instance of “int” is needed to indicate the binding with the iteration of id in the source object
func-def.

#gen-function-prototype: func-def -> C-func-prototype

(func-def : \ ' C-func-prototype:
int
id
——p! id (
—p
—>
\ [T , ,
| T see o
\o) /)

Figure 7. Generation rule for C function prototype.

o Parentheses, semicolon, and comma (as a separator between iterated elements; in the graphical interface there should
be a way to indicate that comma is related to the iteration ellipsis, e.g. by a dashed box) in the target object are optional,
and if present, will be consumed by corresponding C default parsing mappings. The resulting object is still an abstract
syntax object.

4 Preliminary conclusions

This paper presents very preliminary results on the visual notation for meta -programming. Work continues on the la n-
guage itself, case studies, and implementation issues. At the moment of this writing the interpreter for the core of da ta-flow
language is already implemented, and work is in progress on the graphical editor and advanced features like default ma p-
pings and tuple pattern matching. In it current form, the concepts presented may be used as a useful supplement to the
meta-program design documentation. We expect the advantages of this approach to be as fo llows.

e Visualization of data and data flow provides for better readability and uncovers parallelism in data processing.
¢ The tuple type provides for a precise, disciplined, and f lexible way to define abstract syntax.

o The simple association mechanism provides a natural way to introduce data attributes and opens the road for pro c-
essing of arbitrary graphs without cluttering the language with additional means.

137

e Pattern matching notati on covers in a uniform way data objects, rule calls, associations, and extended BNF not a-
tion for parsing.

o The language provides for systematic and consistent correspondence between constructors and patterns.

e The dynamic attributes (states) are actually mac ro extensions of pure functional paradigm (may be considered as
additional inputs and outputs for diagrams referring to the states), provide for more efficiency, and make the data
flow diagram simpler and less cluttered.

e Default mappings may be very conven ient for generation templates, provide basis for lightweight type inference,
and rule reuse.

e Data streams and patterns give a flexible and expressive framework for parsing rules supporting extended BNFn o-
tation, support reasonable and informative parsing e rror messages.

e Contro! mechanism, such as data flow switch, iteration and recursion fit well with data -flow notation and provide
for transparent and expressive language to define different kinds of meta -programming algorithms.

References

[1] A.Aho, R.Sethi, J.Ullman, Compilers: Principles, Techniques, and Tools, Addison -Wesley, 1986

2] M.Auguston, "RIGAL - a programming language for compiler writing", Lecture Notes in Computer Science, Springer Verlag,
v01.502, 1991, pp.529-564.

[3] M.Auguston, "Programming language RIGAL as a compiler writing tool", ACM SIGPLAN Notices, December 1990, vol.25, #12,
pp.61-69

[4] M.Auguston, A.Delgado, Iterative Constructs in the Visual Data Flow Language, in Proceedings of IEEE Symposium on Visual
Languages, Capri, Italy, 1997, pp.152 -159

[5] E.Baroth, C.Hartsough, Visual Programming in the Real World, in Visual Object -Oriented Programming, Concepts and Enviro n-
ments, (ed. M.Burnett, A.Goldberg, T.Lewis), Manning 1995, pp.21 -42

[6] D.Batory, Gang Chen, E.Robertson, Tao Wang, Design Wizards and Visua I programming Environments for GenVoca Generators,
IEEE Transactions on Software Engineering, Vol. 26, No 5, May 2000, pp.441-452

[71 R.Bird, T. Scruggs, M. Mastropieri ,Introduction to Functional Programming, Prentice Hall, 1998

[8] P.T.Cox, F.R.Gilles, T. Pietrzykowski, "Prograph", in Visual Object -Oriented Programming, Concepts and Environments, (ed.
M.Burnett, A.Goldberg, T.Lewis), Manning 1995, pp.45 -66

[9] K.Czammecki, U.Eisenecker, Generative.Programming, Methods, Tools, and Applications, Addison Wesley, 2000, pp.832, ISBN 0-
201-30977-7

{10] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A Complete, Flexible Compiler Construction System,
Communications of the ACM, 35(2):121 -131, February 1992.

[11] J. Levine, T.Mason & D.Brown, lex & yacc, 2nd Edition, O’Reilly, 1992
[12] Reasoning Systems, “Refine User’s Guide”, Palo Alto, 1992
[13] The Vienna Development Method: The Meta -Language, D. Bjorner et al, eds, LNCS 61, Springer 1978

Appendix A. Syntax of MicroLisp language and an example of a program

Program ::= Function-definition* '?' Goal -Expression

Goal-Expression ::= Expression

Function-definition ::= ' ('DEFINE' ('Function-name Parameter-name*')' Expression ')'
Expression ::= Integer | Parameter -name |'(' SimpleExpression ')

SimpleExpression ::= BinOperation Expression Expression | UnOperation Expression |

Function-name Expression* |COND Branch + | READ_NUMBER

138

Branch::= ' ('Expression Expression ')'

BinOperation ::= ADD | SUB | MULT | DIV | MOD | EQ | LT |GT | AND | OR
UnOperation ::= MINUS | NOT

Function-name ::= Identifier

Parameter-name ::= Identifier

Example of a MicroLISP program.
(DEFINE (gcd x Y)
(COND (EQ xy) X)
((6T xy) (ged (SUBxy) y))
(1 (ged x (SUByx)))))
? (ged (READ NUMBER) (READ_NUMBER))

Appendix B. Type definitions for MicoLisp -> C compiler

message:: [char]
program:: (func_def* expr)| NULL
attribute func_tab: [id]

func_def:: id id* expr

expr:: number | id | (op expr expr) | (op expr)|read_num | cond | function -call

function-call:: id expr*

cond:: (expr expr)*

default mappings
#prog: [char] -> prog
#gen program: prog -> C-HéaderFile, C-CodeFile
#gen-function-prototype: Func-def -> C-func-prototype
#gen-function-def: Func-def -> C-func-definition
#pretty print prog: prog -> [char]

This is a sketch of a (over)simplified version of C abstract syntax.
C_CodeFile:: include-statement * C-func-definition +
C_HeaderFile:: include-statement C-func-prototype *
C_func_prototype:: C-type func-name C-type *

C-type:: id
C_func_definition::
C expr::

Default mappings include parsing rules and pretty -printing rules (abstract syntax to text mappings).

139

Optimization of Distributed Object-Oriented Servers

William J. Ray
SPAWAR Systems Center, (619) 553-4150, ray@spawar.navy.mil

Valdis Berzins
Naval Postgraduate School, (831) 656-2610, berzins@cs.nps.navy.mil

Abstract - This paper presents a method for deploying distributed object servers to optimize client response time.
Object-Oriented (OO) computing is fast becoming the de-facto standard for software development. Distributed OO
systems can consist of multiple object servers and client applications on a network of computers, as opposed to a single
large centralized object server. Optimal deployment strategies for object servers change due to modifications in object
servers, client applications, operational missions and changes in various other aspects of the environment.

As multiple distributed object servers replace large centralized servers, there is a growing need to optimize the
deployment of object servers to best serve the end user’s changing needs. A method that automatically generates object
server deployment strategies would allow users to take full advantage of their network of computers.

States of the art load balancing techniques schedule a given number of independent tasks on a set of machines.
However, object servers do not have independent tasks: all methods in an object are related. Also, the number of times
a method is called is usually dependent on interactions with end users.

The proposed method profiles object servers, client applications, user inputs and network resources. These profiles
determine a system of non-linear equations that is solved to produce an optimal deployment strategy.

Keywords: Distributed Object, Load Balancing, Client Response Time, Optimization, Server Deployment and
Software Engineering,

1. INTRODUCTION

The future of computing is heading for a universe of distributed object servers. The evolution of object servers to
distributed object servers will parallel the evolution of the relational databases. Over time, object servers will provide
functionality to more client applications than their original applications, just as relational databases were used by more
applications than the original application. In both cases, systems optimized for the original application may not perform
well for the new applications. Tools that allow a programmer to model an object and easily create object servers with all
the necessary infrastructure code needed to work as a distributed object server are available [12]. This will lead to an
explosion in the number of object servers available to client applications.

A user’s network of computers will change frequently. Object servers, applications, hardware and user preferences will
be in a constant state of flux. No static deployment strategy can adequately take advantage of the assets accessible on the
network in such an environment.

No system can accurately predict user interaction with a system. Two separate users performing the same job will
interact with a system differently. The same user may interact differently while performing the same job at different
times. For these reasons and combinatorial explosion problems, an adaptive software engineering approach is proposed
instead of a traditional computer science approach.

‘Most deployment strategies today are dictated by the system engineer’s view of how the systems will be utilized. Of
course, the system engineer doesn’t revisit these strategies every time hardware, software or user interactions change.
The goal is to allow the user to update hardware and usage profiles. Software developers would supply new profiles
when their code changes. Any time a profile is updated, the model would be run and an automated reconfiguration of the
object server deployment could occur. In most cases, the frequency of change will be greatest in the hardware and usage
pattern profiles. Since many of these changes can take place without the knowledge of a system engineer or the budget to
employ one, a method that allows the users to update these profiles and initiate the reconfiguration is desired.

140

2. PREVIOUS WORK

There has been little work on deployment strategies for distributed object servers. The closest relevant research is in the
fields of load balancing, client/server performance and distributed computing. Most state of the art load balancing
techniques address scheduling of given set of tasks on a set of given machines. Some techniques only deal with tasks
that are independent. Others deal with dependent tasks that are usually linked together by temporal logic and mutual
exclusion constraints.

Object servers do not have independent tasks. All methods in all object types in a single object server are related at least
by locality and more often by the interaction between the object types. Also, the number of times a method is called is
not given, but rather depends on undetermined interactions with end users, very much like the situation in client/server
performance research. We propose a system that enables optimization of object server deployment to meet changing
needs.

3. CURRENT PRACTICES

Because of the difficulty in producing the infrastructure code necessary to support distributed object computing, many
developers produce huge monolithic object servers [11]. A powerful machine is usually needed to adequately handle this
server and successful applications that experience large increases in the number of users may outgrow the capabilities of
the fastest available single machine. With automated code-generation tools, these servers will be much easier to produce
and reconfigure [12]. This allows servers to be partitioned by allocating unrelated or loosely related objects types to
different physical servers that can be deployed across the network to take advantage of the available assets. By taking
advantage of all the assets on the network, faster response times can be achieved [11].

Loosely related object types are defined as object types that contain associations to other object types. When these
object types reside in different physical object servers, the result is an object server that calls on other object servers. A
server that calls other servers is a complex server [1].

Many networks of computers are installed with a single purpose in mind. Over time, these networks support an evolving
set of tasks. Even though the original role the network played can change dramatically, rarely does a single system
engineer revisit the deployment strategy for the entire system. What a user ends up with is usually the product of
multiple system engineers’ choices made based on the latest incremental changes without regard for the system as a
whole and interactions among its roles. It is infeasible, because of cost, to hire a system engineer to re-assess the whole
system every time a change occurs. In the end, the user is left with a system whose deployment strategy borders on
randomness. '

4. OPTIMIZATION OF DISTRIBUTED OBJECT-ORIENTED SYSTEMS

The goal of this paper is to describe a method that can generate distributed object oriented server deployment
architectures to take advantage of network resources for the purpose of reducing average client response time. A system
that carries out this method must be able to reason about deployment strategies of loosely related objects. The proposed
system maps all of these profiles into equations to minimize average client response time.

Average client response time was chosen as the optimization criteria over others. In this paper, the goal was to be user
centric. Criteria that focused on maximizing machine utility were not germane. Average client response time was
chosen over minimizing the maximum response time of one call because the method takes into account the entire usage

profile.

4.1 Optimization Model

The equations that need to be solved will minimize the sum of all of the response times for a given call pattern over a
given time interval. Since we want to allow the user the freedom to run client applications from anywhere on the
network, we will ignore all processing on the client machines and all network delay between client machines and server
machines. The only factors we will consider for optimizing our server deployment are the processing on the object
server and the network delay between complex object servers. Therefore, the objective function that we wish to
minimize is:

Minimize ZN: Z Qo * If; * Snorm + i i By
n=0m=0 m

i=0 j 0

141

subject to the following four constraints:

1. Object Servers cannot be split across machines.
a nm = 1, iff server n is running on machine m
0, otherwise

2. Each Server can run on only one machine [no multiple instances of the same server.

M
Vn Z am =1
m=0

3. RAM usage by the object servers cannot pass a set threshold on each machine.

N
Vm| Y am*V.ST.xU

4. CPU time on a given machine cannot surpass the corresponding real time interval.
a nm * R * Snonn
Vm Z <C
| n=0
where
N = Number of object servers
M = Number of physical machines
Anm = server n is running on machine m
R = Normalized machine load of server n (seconds, s)
S norm = Speed of the normalizing machine (MHz)
Sm = Speed of machine m (MHz)
Bij = Data sent between server i to server j (bits, b)
Qij = Network Speed between server i to server j (bps)
T. - = Physical RAM on machine m (bits, b)
V. = Memory allocated by server n (bits, b)
U = Multiple to limit RAM utilization [0.1,3.0]
C = Time Interval [seconds, s]

NOTE: All terms are fixed either by measurement or input except for @nm . The model varies all possible
combinations for nm and finds the minimum based on the above objective function and constraints.

4.2 Evolution

Over time, a collection of hardware, software and user requirements will change in a given environment. Common
hardware changes consist of adding new computers, removing old computers, upgrading CPUs, modifying RAM and
modifying network bandwidth capacity. Each of these hardware changes will produce an event that would trigger the
system to re-evaluate its deployment strategy.

142

Software can also be quite dynamic in nature. New object servers and applications can appear. Old ones can be
removed. Existing object schemata and methods can be changed. Each of these changes would trigger an event to re-
evaluate the deployment strategy.

4.3 Loosely Related Objects
Not all objects types that are related must necessarily be contained in a single object server. There is a point where the
performance of the system would improve by moving the object type into a different server. This is usually the case

- when none of the application code exercises an inter-server method call or exercises it only very rarely. Large message

sizes and slow network speeds will push for related object types to be co-located. The approach will be able to reason
about not only deploying object servers, but also recommend the schema supported by these object servers.

4.4 Priority Setting

User requirements can also be in a state of flux. Most computer systems are used to support multiple jobs. Business-
hour requirements can differ greatly from after-hours computational requirements. A developer’s network of computers
can support multiple projects, but may need to be optimized for a single project for demonstrations. In the military, the
operational mission being supported can change significantly. For example, a set of distributed object servers could be
used to support many applications aboard a ship. These applications could handle such tasks as Anti-Submarine Warfare
(ASW), Anti-Surface Warfare (ASUW), Anti-Air Warfare (AAW), Electronic Warfare (EW), humanitarian missions and
rescue missions. The relative computational activity of these applications could differ significantly on different missions
of the ship.

Optimizing a system of object servers for all possible roles would not be optimal when the system is only performing a
couple of missions at a time. By profiling each role, the user could choose to re-optimize his deployment to decrease the
response time when user chosen roles change. In this way, the user could tune his system to give peak performance for
the task he is currently trying to perform. '

4.5 Profiles

The tricky part is to figure out what elements are needed in the different profiles, how to map these profiles into
equations and then model how these profiles interact with each other. The more complex the modeling of the hardware
becomes the more computationally intensive the approach will become. Initially we demonstrate an approach with
rather simplistic profiles to demonstrate its capabilities.

4.5.1 Hardware Profiles

The aspects being modeled in the hardware profiles include characteristics of each computer such as CPU speed and
physical RAM size. The hardware profile also models the network speed between each computer. Current hardware
profiles do not directly support multi-processor computers, but they could be modeled as groups of separate nodes with
very high “network speeds” between them.

4.5.2 Object Server Profiles

Object servers need to be profiled for metrics associated with each method call in each object. The computational time
of each method call should be captured and normalized to a specific hardware architecture. Since object servers ideally
run continuously, the RAM of the object server must also be measured and summarized. The hardware profile and the
object server profile is sufficient to optimize the server deployment for the case where all the functionality contained in
all the objects is of equal value to the user. Metrics can be collected easily with a small client application that exercises
each method call and records the data. Thus, actual implementation code for the application isn’t needed to estimate the
object server profiles.

4.5.3 Client Application Profiles

Ideally, client applications would be delivered with their profiles. If the code is available, then the source can be parsed
to find all possible object invocations. Since exact frequencies of method calls are not algorithmically computable in the
general case, measurement is necessary to reliably estimate frequencies of calls. The system must allow a user to create
typical scenarios and record the method calls that occur in the scenario. This could be done by simulation or monitoring
calls to the object servers when the system is in a training mode. The plus side to this method is that the user could
represent more complex tasks involving many user interactions in a single profile. Numerous tools exist for complex
event processing in a distributed system [5, 6].

143

4.5.4 User Profiles

User profiles or roles indicate how a user interacts with the system over a given period of time. In simplistic terms, it is
like keeping track of how many times each button is selected over a given time interval. Average button push rates can
be expressed as number of events per second. The user can collect this data manually or automatically by the system
with audit trails. Multiple roles can exist for each user. The user could then select a set of roles and have the system
come up with an optimal deployment strategy to meet these criteria.

4.6 Profile Mappings

In order to compute the optimal deployment strategy given a set of profiles, one needs to map these profiles into
equations that can be solved for minimum response time. To illustrate the mappings, we present an example. The
example consists of three machines, three object servers and three client applications. The method demonstrates the
differences in deployment for a system tuned to a users-specific role. Table 1 shows the profile for the computer
hardware available.

Table 1. Machine profile for example.

MACHINE ‘ RAM (bits) CPU Speed (MHz)
SIX 512,000,000 = 64MB 600

BR733 1,024,000,000 = 128MB 733

GIGA 1,024,000,000 = 128MB 1000

Table 2 shows the network bandwidth available to communicate from each machine to the other. In this example, the
machines will have equal bandwidth between machines as is the case when all servers are running on the same local
LAN. The speed of communications between servers on the same machine is more difficult to predict. These speeds
usually lie in the interval bounded by the speed of the machines back plane and the speed of the network. It is dependent
on the operating system, implementation of the middleware, and other factors. For this example, we assume that intra-
machine communication is twice as fast as inter-machine communication. In the absence of measurements, the system
can be run with best and worst case scenarios by specifying the boundary values identified above.

Table 2. Network speed.
Machine to Machine | SIX BR733 GIGA
Speed (bps)
SIX 200,000,000 100,000,000 100,000,000
BR733 100,000,000 200,000,000 100,000,000
GIGA 100,000,000 100,000,000 200,000,000

Besides the hardware profiles, we need to have the server profiles. Table three lists each server’s RAM requirements.

Table 3. Server RAM requirements.

SERVER RAM Required (bits)
A 352,000,000 = 44MB
B 480,000,000 = 60MB
C 528,000,000 = 66MB

Additional parts of the object server are the timing of each individual method call available in each server and a list of
complex method calls. All of these measurements were taken on a single machine to normalize the values. In this
example, server A has one four methods, server B has two methods, and server C has three methods.

Table 4. Normalized Server Loads.

SERVER Method CPU time (s) Average Size of
Message (b)

A 1 0.5796 112000

A 2 2.6203 18400

A 3 1.18175 44800

A 4 2.0264 176000

B 1 1.76655 4000000

B 2 3.70085 2720000 -

144

C 1 3.0043 320000
C 2 4.8040 4000000
C 3 0.48815 400000

A complex method call is a method call that calls another object server. These method calls require special handling in
measuring their load on the host server and in the objective function for optimizing the system. Table 5 lists the complex
method calls in this example.

Table 5: Complex Method Calls

Complex Method Exterior Calls
B.2 C.1 '

The last information needed to optimize the system is information about the applications and the users. This step adds
roles to the list of profiles for the system to optimize. These roles have more realistic use patterns for the different jobs a
user would actually perform on the system. For this example, we will have three client applications with two buttons,
nine buttons and three buttons respectively.

Let’s assume that there are three different roles the network of computers.supports for the user and the following is the
use pattern shown in Table 6, and that the buttons call the following server methods shown in Table 7. Method calls that
appear in italics in Tables 7 and 8 are complex method calls. They appear in italics to remind us that these methods
require special handling when figuring out the objective function.

Table 6. Roles.
ROLE CALL PATTERN (observation interval is 990 seconds)
Role 1 50C1.B1+1C1.B2+1C2B1+1C2B6
Role 2 10 C1.B1 + 40 C1.B2 + 24 C3.B2
Role 3 50C2.B5+10C2.B9+30C2.B3+1C2.B2+1C3.B2

Table 7. User interface calls.

Button Methods Called
C1.B1 Al

C1.B2 A2+B.1

C2.B1 Cl+C2

C2.B2 C3

C2.B3 C.2

C2.B4 C.3

C2.B5 Al1+B2

C2.B6 B.2

C2.B7 Ad

C2.B8 C3+A3

C2.B9 Al+A2+A3+B2
C3.B1 C.1

C3.B2 B.1+B2

C3.B3 C.2

By substituting the user interface calls into the roles matrix, we get an objective function for optimizing the system

shown in Table 8. All other method calls will be ignored.

Table 8. Roles to server calls.

ROLE Methods Called in Role

Role 1 50*(A.1)+1*(A2+B.1)+1*(C.1+C.2)+1*(B.2)

Role 2 10 * (A.1)+40 * (A2 +B.1)+24 *(B.1 + B.2)

Role 3 50*(A.1+B2)+10*(A.1+A2+A3+B.2)+30*(C2)+ 1* (C3)+1
*(B.1 +B.2) :

145

4.6.1 Filling in the Equation for Role 1
Role 1 consists of 50 C1.B1 calls, one C1.B2 call, one C2.B1 call, and one C2.B6 call. The first step is to convert all of
the button calls into method calls by substituting the values for the calls from Table 4.
50 [A.1]+1[A2+B.1]+1[C.1 +C2]+1[B.2] =
50[A1]+1[A2+B.1]+1[C.1+C2]+1[B.2+C.1]=
50A1+A2+B.1+C1+C2+B2+C.l=
50A.1+A2+B.1+B2+2C.1+C.2
This leads to the following values for the array R for the optimization equation.
R (A) =50 [A.1 values for CPU] + 1 [A.2 value for CPU]

=50 [579.6] + 1 [2620.3]

=31600.3
R(B)=1 [B.1 values for CPU] + 1 [B.2 value for CPU]

=1[1766.55] + 1 [3700.85]

=5467.4
R (C) =2 [C.1 values for CPU] + 1 [C.2 value for CPU]

=2[3004.3] + 1 [4804.0]

=10812.6
There is only one italicized method call prior to substitution, so there is only one network value to deal with.
BITS[B,C] = 1 [B.2 message in bits]

= 320000

4.6.2 Filling in the Equation for Role 2
Using the same approach as in 4.6.1, we get the following for Role 2:
R (A) = 110608
R (B) =201879.6
R(C)=172103.2
There is only one italicized method call prior to substitution, so there is only one network value to deal with. However,
it is called 24 times.
BITS[B,C] = 24 [B.2 message in bits]
= 24 [320000]
= 7680000

4.6.3 Filling in the Equation for Role 3
R (A)=72796.5

R (B)=227518.4

R (C) =327870.45

BITS[B,C] = 19520000

4.7 Model Solutions
All of the information above is run through a LINGO model that varies the location of the object servers on the different

machines to find the a solution set that minimizes the value of the objective function. The model prompts the user for
inputs bandwidth, RAM percentage and computational time limitations. Changing any of these variables will lead to
different model outputs [10].

4.8 Model outputs
This method outputs the following deployment strategies for the different roles when setting different RAM limits and

keeping all other variables the same as in the last example. Solving the optimization problem defined in section 4.1 with
the parameter values determined in section 4.6 derives these results.

Table 9. Single user deployment strategies for different roles. RAM limit set to 1.5.

146

Machine Role 1 (user) Role 2 (1 user) Role 3 (1 user)
SIX None None None

BR733 None None None

GIGA A B,C AB,C AB,C

Table 10. Single user deployment strategies for different roles. RAM limit set to 1.0.

Machine Role 1 (1 user) Role 2 (1 user) Role 3 (1 user)
SIX None None None

BR733 B C A

GIGA A,C A B B,C

Table 11. Multiple concurrent users deployment strategies for different roles. RAM limit set to 1.0.

Machine Role 1 (28 user) Role 2 (4 user) Role 3 (3 user)
SIX None A A
BR733 B,C C B
GIGA A B C

From the model output, we can see that when a single user is present and RAM is not a limiting factor, the result is that
all the servers migrate to the fastest machine. However, when we start to limit RAM, the servers start to spread out. The
first server to leave the fastest machine turns out to be different in each role. Multiple concurrent users also tend to
spread the servers across the available machines. The significance of the model is that different roles and different
numbers of concurrent users lead to different optimal configurations in most cases for this example. No single static
configuration can outperform the ability to change configurations based on perceived changes in the usage of the system.

4.8 Experimentation

We tested the validity of the model by experimental measurement. A testbed was created with Windows 2000 machines
that match the characteristics of the machines in the above example. Servers were created using JDK 1.3 and RMI as the
middleware. Software to simulate the three different users was also created. The user was simulated with a random
choice for button selection that has a uniform distribution similar to the roles. This simulation software was
instrumented to measure the actual time the software was blocked waiting for an object server method call to response
[10]. All 27 different configurations were established and the average response time for each configuration was
measured and recorded. Between each simulation, the testbed machines were rebooted.

All 27 configurations were tested twice. One tested the configuration with the object servers using much less than the
stated memory needs. Another tested the configuration with the object servers using all of the stated memory needs.
Some configurations strained the machines memory limits. These configurations resulted in system failures in the test
with the object servers using all of the stated memory needs. These system failures are listed as error in the tables of
results. It should be noted that Windows 2000 did a much better job of swapping when memory utilization exceeded
100% than a previously tested operating system, Windows NT.

4.8.1 Experimentation Results
The below table is a tabulation of experimental results obtained from measuring the outputs of a test system.

Table 12: Measured Response Times

PAT} A B C |ROLE1 | ROLE2 | ROLE 3 |R1 MEM |R2 MEM | R3 MEM
1 | GIGA | GIGA | GIGA| 976.331] 5150.362] 6741.948] 977.343 | 5120.184 | 6776.846
2 | GIGA { GIGA |BR733{ 899.344] 5530.329] 8266.516] 942.984 | 5580.438 | 8213.157
3 | GIGA |BR733| GIGA| 960.811f 6417.171f 7802.172 887.031 | 6349.859 | 7900.562
4 | GIGA |BR733{BR733] 1079.641] 6686.376] 9124.938{ 1041.391 | 6696.141 | 9217.953
5 |BR733| GIGA | GIGA | 1140.796] 5953.015] 7413.343| 1144.672 | 5874.642 | 7267.639
6 |BR733| GIGA |BR733| 1218.875| 6233.064] 8508.343| 1282.643 | 6204.922 | 8519.844
7 |BR733|BR733| GIGA | 1119.092] 6877.968] 8142.719] 1228.031 | 6838.001 | 8232.064
8 |BR733|BR733{BR733| 1186.861] 7238.876] 9428.658} 1409.515 | 7215.576 | 9373.861
9 | GIGA | GIGA | SIX 991.531| 5958.547} 9259.221} 1039.298 | 5916.187 | 9463.079
10 | GIGA | .SIX |GIGA| 878.782] 7176.861] 8627.407| 962.609 | 7288.954 | 8532.983
11 | GIGA | SIX | SIX | 1157.765] 7852.795/10712.984] error error error

147

12 | SIX | GIGA | GIGA | 1274.376] 6375.549] 7332.718] 1348.828 | 6424.484 | 7346.219
13| SIX | GIGA| SIX | 1402.687| 6969.187] 9838.221] error error error
14| SIX | SIX IGIGA| 1413.983] 8211.857f 8972.002] error error error
15 | SIX SIX | SIX | 1642.232] 8644.362{12131.091} error error error
16 |BR733|BR733{ SIX | 1197.423] 7342.092| 10387.125} 1262.703 | 7322.595 |10529.611
17 |BR733| SIX |BR733| 1306.374] 7862.331| 10360.985| 1439.251 | 8148.969 [10123.563
18 |BR733| SIX | SIX | 1305.296] 8514.078{11067.388] error error €ITor
19 | SIX |BR733|BR733| 1291.719] 7601.829] 9591.424| 1535.657 | 7742.921 | 9770.578
20 | SIX |BR733| SIX | 1467.437} 8033.173[10590.126] error error error
21 § SIX | SIX |BR733| 1441.421} 8222.031]10185.453| error error error
22 | GIGA |BR733| SIX | 1114.344] 6987.719] 10259.391] 982.687 | 6967.624 |10193.641
23 | GIGA | SIX |BR733| 1068.765 7423.048 9834.875) 1131.969 | 7343.782 | 9804.983
24 |BR733| GIGA | SIX | 1246.361] 6515.812] 9563.001} 1311.905] 6613.031 | 9617.297
25 |BR733| SIX |GIGA | 1304.703| 7783.171| 8743.235| 1189.655 | 7548.561 | 8865.811
26 | SIX | GIGA |BR733| 1355.594] 6752.499| 8625.439] 1390.297| 6772.453 | 8860.094
27 | SIX |BR733| GIGA | 1306.687| 7380.828] 8259.047| 1344.611 | 7457.968 | 8328.064

4.8.2 Rolel

The models chose a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern 3
when RAM was limited to 100% utilization. Pattern 3 was the third fastest average response time in the minimal
memory run and the fastest average response time in the stated memory run. The fact that pattern 10 was the fastest
average response time in the minimal memory run is a result of the variability of the simulation [10]. Pattern 1 was the
fourth fastest on both runs even though it was the predicted configuration when RAM usage was set to 150% of physical
RAM in the model. More interesting from a software engineering standpoint was the fact that the model proposed a
configuration that outperformed most configurations from 10 to 44 percent and that the recommended patterns were free

from failures.

4.8.4 Role2

The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern
2 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 2 was the
second fastest average response time in both runs. Pattern 1 was the fastest average response in both runs, which is the
predicted configuration when RAM usage is 150% of physical RAM. Again, the configuration chosen by the model
outperformed most configurations from 10 to 38 percent.

4.8.5 Role3

The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern
5 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 5 was the
third fastest average response time in the minimal memory run and the second fastest average response time in the stated
memory run. Pattern 1, the fastest average response time in both runs, was the predicted configuration when RAM usage
was set to 150% of physical RAM. The fact that pattern 12 was the second fastest time in the minimal memory run is a
result of the variability of the simulation [10]. Again, the model proposed configuration outperformed most

configurations from 10 to 44 percent.

5. CONCLUSION
The approach seems to have merit and produce useful results. The system responds in a reasonable way with changes is

the environment, constraints placed on the system, and different roles that a user might want. Since all of these changes
take place on a given network of computers, static deployment strategies will never utilize the assets available to better
support the end user. The strategies chosen by our model were robust in the sense that performance was good even when

actual loads departed from predicted loads.
Predicting exactly how a user will interact with a system that supports multiple roles will always be an inexact science.

This system provides an adaptive software engineering approach to a real world problem that currently does not have a
better solution. No solution can be exact because of the limitations inherent in modeling users, software, hardware, etc.

148

Perhaps the most significant capability added by our model is the ability to automatically grow to the point where
machine limits are exceeded and hard failures occur.

6. FUTURE WORK

The system needs to be refined to more precisely reflect the workings of the network of computers. These refinements
include allowances for asymmetric communications, more precise models for computers, operating systems, middleware,
and queuing delays. Aggregated tuples of these models will be necessary to better evaluate the impact of RAM utility on
processing speed.

Tools will also need to be produced to ease the collection of data for the profiles. The initial prototype uses a manual
process involving LINGO 6 using data from previously collected metrics. The ability to easily collect the necessary
metrics and automatically solve the problem is desirable. A tool that maintained roles and could start the servers on the
given machines for that role would also be helpful. In a mature system, the tools should also automate the server code
generation and reconfiguration processes.

The approach could also be used to optimize other kinds of systems involving servers, such as web sites and relational
databases by modeling each server as an object. This would enable better deployment strategies, especially since many
of these non-object servers could be tightly coupled to object servers. Of course, combinatorial explosion is also an
issue. Larger systems can cause significant delays in computing deployment strategies. More realistic models as
mentioned above could also significantly impact the processing time.

REFERENCES

[Adler, R., “Distributed Coordination Models for Client/Server Computing,” IEEE Transactions on Computers,
pp. 14-22, April 1995.

21 Berzins, V. and Lugi, “Software Engineering with Abstractions”, chapter 6, Addison-Wesley, ISBN 0-201-
08004-4, 1991

[3] Kim, J., Lee, H. and Lee, S., “Replicated Process Allocation for Load Distribution in Fault-Tolerant
Multicomputers,” IEEE Transactions on Computers, vol. 46, no. 4, pp. 499-505, April 1997.

4] Loh, P., Hsu, W., Wentong, C. and Sriskanthan, N., “How Network Topology Affects Dynamic Load
Balancing,” IEEE Transactions on Parallel and Distributed Technology, vol. 4, no. 3, pp. 25-35, Fall 1996.

[5] Luckham, D. and Frasca, B., “Complex Event Processing in Distributed Systems,” Computer Systems
Laboratory Technical Report CSL-TR-98-754. Stanford University, Stanford, 1998.

[6] Luckham, D. and Vera, J., “An Event-Based Architecture Definition Language,” IEEE Transactions on
Software Engineering, Vol 21, No 9, pp.717-734. Sep. 19935.

[7 Lui, J., Muntz, R. and Towsley, D., “Bounding the Mean Response Time of the Minimum Expected Delay
Routing Policy: An Algorithmic Approach,” IEEE Transactions on Computers. Vol 44, No. 12, December 1995, pp.
1371-1382.

[8] Mehra, P. and Wah, B., “Synthetic Workload Generation for Load-Balancing Experiments,” IEEE Transactions
on Parallel and Distributed Technology, vol. 3, no. 3, pp. 4-19, Fall 1995.

91 Perrochon, L., Mann, W., Kasriel, S. and Luckham, D., “Event Mining with Event Processing Networks,” The
Third Pacific-Asia Conference on Knowledge Discovery and Data Mining. April 26-28, 1999. Beijing, China, 5 pages.
[10] Ray, W., “Optimization of Distributed, Object-Oriented Systems,” PhD Dissertation in Sofiware Engineering,
Naval Postgraduate School, September 2001.

[11] Ray, W., Berzins, V. and Luqi, “Adaptive Distributed Object Architectures,” AFCEA Federal Database
Colloquium 2000 Proceedings, pp. 313-330, September 2000.

[12] Ray, W. and Farrar, A., “Object Model Driven Code Generation for the Enterprise,” JEEE RSP 2001, June
2001.

149

Formalizing Software Architectures
for Embedded Systems

P am Binnsand Steve Vestal
steve_v estal@htc.honeywell.com
Honeywell T ec hnologyCenter

Minneapolis, MN 55418*

pam_binns@htc.honeywell.com

Abstract

This paper outlines an approach to embedded com-
puter system development that is based on integrated
use of multiple domain-specific languages; on in-
creased use of mathematical analysis methods; and on
incr ased inte gration between domain-specific specifi-
cation and mathematical modeling and code genera-
tion. We first outline some general principles of this
appr ach. We then present a bit more detail about
the emerging SAFE standard Avionics Architecture De-
scription Language and our supporting MetaH toolset.
We conclude with a summary of some research chal-
lenge problems, technic al appoaches, and preliminary
results uncover ed during our work.

1 Introduction

The use of domain-specific languages (4GLs) and
tools for embedded applications is wide-spread and
will increase. A number of COTS tools are already
in wide use for the dev elopmen of feed-back control
and display applications, for example. In many cases
the use of domain-specific technologies in preference
to general-purpose software development technologies
can result in cost savings and improvements in qual-
ity factors that justify the additional development and
acquisition costs of the domain-specific tools. Meta-
tool tec hnologies are aailable and have been used for
low er-cost deelopment of specialized domain-specific
tools[5].

Three main elements of a domain-specific language
-and toolset are illustrated in Figure 1. There is the
domain-specific language and editor, which allows con-
cise and rigorous specification of the structure and
semantics relevan tto a particular engineering disci-
pline. There are modeling and analysis methods and
tools to support design during the early phases of de-
velopment and vgriﬁcation during the later phases of

*This work has been supported by DARPA, Army AMCOM,
AFOSR, and Honeywell Laboratories.

150

dev elopmen. There is a code generation or synthesis
method to produce an implementation from a design
specification. We believe these elements should be in-
tegrated and automated as much as is practical. Mod-
els and code should be generated from a common spec-
ification, eliminating the hand-development of sepa-
rate model specifications where possible. The map-
ping between specification, models and code should
be structure-preserving, intuitiv e,and easily verified.
It should be possible to easily trace in an ydirection
betw eendesign specification, models, model analysis
results, and code.

The construction of complex embedded computer
systems is an inherently multi-disciplinary effort and
requires integrated use of multiple domain-specific lan-
guages and tools. The mix of specification languages
and tools needed in a particular development environ-
ment will depend on the mix of embedded functional-
ity needed in a particular product line.

Our work has focused on applying the above princi-
ples in the development of a computer system architec-
ture specification language and toolset. This language
and toolset are designed for use by embedded com-
puter system architects, among whose tasks is the inte-
gration of various hardware components and softw are
applications developed by other engineering groups us-
ing other domain-specific languages and tools. Fig-
ure 2 illustrates how the outputs of multiple domain-
specific tools feed into the architecture specification
toolset, which supports computer system integration
and modeling and analysis. The output of the toolset,
in addition to models and analysis results, is softw are
that integrates the pieces of the system together.

In addition to supporting embedded system devel-
opers, the language and toolset also provide a con-
text and enabler for technology development activi-
ties. We are using the language and toolset as an
object of study and a prototyping testbed in research
activities intended to enable large, dynamically recon-

B Design Feed-Back Verification
Model | Model
Domain-Specific / Generation Analysis
Language Specifications Syntactic
> and
Semantic Analysis
. Code
Code Generation >
Figure 1: Notional Domain-Specific Toolset
computer system
architecture specifications
: (AADL)
computer-aided hardware
control system .
desien tools / design tools
i \ computer
source & system source &
AADL architecture AADL
display/GUL | __—] and — software
design tools integration reengineering
tools * tools
embedded computer .
system implementation

Figure 2: Domain-Specific and AADL Toolsets

figurable, safety-critical distributed systems that effi-
ciently host both time-triggered and even t-triggered
w orkloads. We will conclude this paper with a survey
of some challenge problems, technical approaches, and
preliminary results in these areas.

2 MetaH/AADL

The emerging SAE standard Avionics Architec-
ture Description Language (AADL) is a language for
specifying softw areand hardware architectures for
real-time, safety-critical, scalable, embedded multi-
processor systems. The AADL allows dev elopers
to specify how a system is composed from soft-
w are components like processes and pac kagesand
hardware components like processors and memories.
Our MetaH/AADL toolset performs syntactic and se-
mantic checks, compliance chec ks betw eenspecifica-
tion and source code, schedulability analysis, relia-
bilit y analysis, partition isolation analysis, and gen-

erates/configures a middleware la yer that can be sub-
jected to formal analysis using linear hybrid automata
models. Figure 3 illustrates the current toolset.

Low-level soft w are constructs of the AADL describe
source components written in a traditional program-
ming language like C or Ada. The source components
themselves come from domain-specific tools, or are
hand-written, or are re-engineered from existing code.
Subprogram and pac lage specifications describe im-

_ portant attributes of source modules such as the file

151

containing the source code, nominal and maximum
compute times on various kinds of processors, stack
and heap requirements, mutual exclusion protocol to
be used for shared pac kages,etc. Eventnames and
data buffer variables used to hold message values can
appear within source modules and are described in the
AADL specification. The current toolset will parse
Ada source modules and check for compliance with
their AADL interface descriptions.

source architecture specifications

modules { {
graphical textual
editor editor

X ‘
compliance | syntactic and
checker semantic analysis
hardware/software
binder
]

y ¥ ¥) ¥
executive schedulability reliability partition
configuror analyzer analyzer analyzer

l [) [) [)

Y

make
v

load image ———>

linear hybrid automata
analyzer

Figure 3: MetaH/AADL Toolset

The higher-level soft w are constructs of theAADL
are processes, macros and modes. Processes group
together source modules that are to be scheduled as
either periodic (time-triggered) or aperiodic (even t-
triggered) processes. A process is also the basic unit
of securit yand fault con tainmen, and memory pro-
tection and compute time enforcement may be pro-
vided if the target RT'OS provides the needed support
features. Macros and modes group processes, define
connections betw een data and eent ports, and define
bindings betw een objects that are to be accessable be-
tween processes. The difference is that macros run
in parallel with each other, while modes are mutually
exclusive. Event connections between modes are used
to define hierarchical mode transition diagrams, where
mode changes at run-time can stop or start processes
or change connections.

The AADL also allo ws hardware architectures to
be specified using memory, processor, channel, and
device components grouped into systems. Hardware
objects may havedata and eventports and pac k-
ages in their interfaces. Soft w are and hardwre data
and event ports can be connected to softw aredata
and event ports, and softw are componens can access
hardware pac kages(which provide hardware-specific
APIs). Hardware descriptions iden tify (among other

152

things) hardware-dependent source code modules for
device driv ers, and code to provide a standard in-
terface betw een automatically composed applications
and the underlying RTOS.

Both graphical and textual specification is sup-
ported. The tw ocan be mixed (part of a specifi-
cation can be maintained textually and part graph-
ically), and the toolset can translate graphical to tex-
tual and vice ersa. This is convenient in a soft w are
and systems integration tool, since different parts of a
specification may be produced by different groups or
automatically generated by different domain-specific
tools.

A simple softw are/hardvare binding tool assigns to
hardware those softw are objects in a specification that
are not explicitly assigned, possibly subject to user-
specified constraints.

An executive configuration tool automatically pro-
duces the “glue” code needed to compose the various
source modules to form the overall application. The
resulting tailored middleware is responsible for process
dispatching, event and message passing, mode chang-
ing, etc. There is a makeh tool that performs all the
comples and links needed to produce a loadable image
for eac h processor specified in the system.

The design schema for the configured executive is

based on preemptive fixed priorit y scheduling the-
ory. Using AADL specifications of process period,
preperiod deadline, criticalit y, and precedence con-
strain ts,the executive generator derives priorit y pe-
riod transformation, and dispatch and time slice re-
fill information used in data tables and dispatching
code[11]. Data connection specificationand process
timing information are used to schedule and generate
code to move data betw een processes’ data buffer wari-
ables. Message-passing code includes fault-handling
constructs and is scheduled to meet hard real-time
communication deadlines in multi-processor systems.
Code to vector events to dispatch aperiodics or to trig-
ger mode changes, and code to manage mode changes,
is also generated.

Using information contained irthe AADL specifi-
cation and produced by the executive generator, the
schedulability modeler generates a detailed preemp-
tive fixed priority schedulability model of the applica-
tion. The model includes middleware sc heduling and
communication overheads as well as application work-
loads. In support of traceability, a human-readable
form of thmodel is written as w ell as the results of
analyzing the model. The schedulability analysis al-
gorithm we currently use is an extension of the exact
characterization algorithm that that can perform cer-
tain kinds of parametric analysis[21].

The executive code generated from a MetaH specifi-
cation may enforce integrated modular avionics parti-
tioning (protected address spaces, process criticalities,
enforced compute time limits, capability lists for run-
time services). Source objects may be annotated with
a safety level determined during system safety hazard
analysis[1] (required application code verification ac-
tivities and hence the degree of assurance depend on
the assigned safety level). The tool chec ksto insure
that correct operation of an object cannot be affected
by any error in any other object having a lower safety
level. For example, an object with a high safety level
should not depend on data from an object with a low
safety level (unless the connection is explicitly anno-
tated in the specification to allow this). The deadline
of a process with high safety level must be guaranteed
even if processes with low safety levels exceed their
stated compute times.

The reliability and linear hybrid automata analysis
tools will be discussed in later sections that describe
recen t researc h activities.

3 Research ,

Our long-term goal is a language and computation-
ally efficient toolset that support the development of
embedded systems that are distributed, dynamically

153

reconfigurable, fault-tolerant, support periodic (time-
triggered) and aperiodic (even t-triggered) task mod-
els with complex inter-task interactions, make efficient
use of resources, and are verifiable to the highest levels
of system safety and design assurance. In the follow-
ing sections we will cite some challenging problems in
these areas and outline some of the approaches we are
pursuing to deal with them.

3.1 Decomposition Scheduling

The distributed scheduling problem for systems
that host periodic feed-back control applications is
different than the multi-media scheduling problem.
Tight end-to-end latencies comparable to task peri-
ods must be guaranteed. Often no loss of data will
be tolerated. Solutions may need to be verified to the
highest levels of assurance, which in practice means
schedulability analysis must be available. Our no-
tional set of requirements is ‘

e high achieveable hardware utilization, e.g. over
90% processor and over 75% bus utilizations

e small end-to-end latencies, e.g. one sampling de-
lay (one period)

e high assurance that deadlines will be met, e.g.
formal schedulability analysis

e tractability for large systems, e.g. generate sched-
ules for thousands of tasks and messages on hun-
dreds of processors in tens of seconds, incremen-
tally ¢ hange a shedule in fractions of a second

e compatibility with COTS bus/network hardware,
adaptable to differences in scheduling require-
ments for individual resources, adaptable to dif-
ferences in redundancy management techniques
and interconnect topologies

We have been exploring an approadh we call decom-
position scheduling, illustrated in Figure 4. The ba-
sic idea is to decompose the overall system scheduling
problem into a set of individual resource scheduling
problems, solve the individual problems, then com-
bine the results of parametric schedulability analysis
for the individual resources to obtain a better decom-
position. Each individual resource scheduling problem
consists of the tasks or messages allocated to that re-
source, together with release times and deadlines that
are selected by the decomposition algorithm. Once
each resource has been scheduled, the results of para-
metric schedulability analysis (such as available laxity
and slack for the various tasks and messages) are used
to pick a new set of release times and deadlines. The
new deadlines and release times make the individual

process release time

process preperiod deadline
~a

processor
schedule

communication

deadline \

bus
schedule

communication release time

Y

A 4

end-to-end deadline

Figure 4: Decomposition Scheduling

scheduling problems easier for previously unschedula-
ble resources at the expense of previously schedulable
resources. The approach is iterative and contin ues un-
til a solution is found or the solution does not change
significantly bet w een successiviterations.

The iterative nature of the approach makes it po-
ten tially adaptable to incremental resc heduling. Dif-
feren t resources can potertially be scheduled using dif-
feren t disciplines, as long as parametric sthiedulability
analysis is availble for each discipline (our experiments
used preemptive fixed priority).

We performed experiments using a highly ab-
stracted workload from the B777 aircraft information
management system (113 tasks, 6 processors, 50% bus
utilization), and an early development workload from
the Comanche mission equipment pac kage (281 tasks,
24 processors). We constructed synthetic workloads
by “connecting” multiple copies until the bus became
unschedulable. Our prototype was able to schedule 6
connected Comanche systems (1686 tasks, 144 pro-
cessors, 57% bus utilization) in 3 seconds of Sparc
Ultra-2 CPU time. F or comparison, the University
of Maryland appliedm ulated annealing approach
to a sanitized B777 problem and required 23 hours of
CPU time[14]; the carefully tuned production schedul-
ing tool required a few hours to produce a schedule for
the fully detailed problem.

Our approach and preliminary results are similar
to those of Garcia and Harbour[15], although we use
a different decomposition algorithm at each iteration.
Our prototype also currently only schedules chains of
length tw o (one task and its outgoing messages, with
a direct bus available betw een sender and receber).

3.2 Slack Stealing

T raditional con trol applications use periodic task
and communication models, but many applications

use even t-triggered interactiv e task models.It remains
a challenge to mix the tw otypes of workloads in a
w ay that guarastees periodic task deadlines, provides
quick response times and high throughputs to the ape-
riodic tasks, and achiev es high processor utilizations.
Specific examples of such needs are the hosting of a
message handling application, or a TCP/IP stack, or
a Real-Time CORBA ORB, on the same system that
also supports vehicle control applications.

We have been dewloping slack stealing methods to
address this need. Slack stealing, as first proposed
in [18], is a preemptive processor scheduling algorithm
that delays the execution of high priorit y periodic
tasks to improve the response times of aperiodic tasks
while guaranteeing the periodic task deadlines. An
on-line slack server determines at each even tarrival
(each request for slack CPU time) how big of time
slice can be immediately granted at a particular pri-
ority kvel without causing any periodic deadlines to
be missed.

T able 1 cortains data illustrating the difference be-
tw eena bac kgroundand (high priorit y)slack server
when there is a single periodic task with (hyper)period
H = 10 and compute time C' = 6. The subscripts “bg”
and “ss” refer to a background server and (high pri-
ority) slack server, respectively. The departure time
of the n** aperiodic task is denoted by d, and the

" response time is r, = dp — a,. Columns 74, and

154

Tn,es Shows the slack server pro viding smaller response
times.

The bac kground server processes aperiodic tasks
only when there are no periodic tasks in the sys-
tem. Suppose an aperiodic task a is in service, hav-
ing completed z;; of its execution when 7, arrives at
time (n — 1)H. T aska will bepreempted un til time
(n—1)H +C while the periodic task executes, at which

id || ap | zp dn,bg Tn,bg dn,ss Tn,ss
1 1 1 7 6 2 1

291 3| 2 9 6 5 2

3 6 2 17 11 11 5
"4 8| 1 18 10 12 4

T able 1:Fig 5 and 6 Sample Data (H = 10,C = 6)

time it will resume service with a remaining execution
time requirement of ; — z;. The background server
timeline execution of the data in Table 1 is shown in
Figure 5.

Periodic Task
High Priority

|
20

Figure 5: Background Server Timeline

The slack server processes aperiodic tasks at the
highest priority as long as a periodic task will not miss
its deadline. Let C(¢) be the amount of compute time
an executing periodic task has consumed at time £,
0 < C(t) < min(C,t). When C(t) = C, it remains at
that v alue util £ = H, then is reset to 0. C — C(¢) is
the time required by the periodic task to complete by
its deadline. H — t is the time remaining in the cur-
rent hyperperiod. The slack remaining in the current
hyperperiod at timet is then (H —t) — (C — C(t)). In
other words, an aperiodic task « arriving at time £ to
an empty aperiodic queue would complete without de-
lay caused by the execution of a periodic task provided
z; < (H-t)-(C-C(t)). i z; > (H-1)- (C-C(t))
then the aperiodic task w ould bebloc ked durinBe
interval [t,t + H — (C — C(t))] while the periodic task
executes and completes exactly at its deadline. The
slack server timeline execution of the data in Table 1
is shown in Figure 6. Note that the periodic task is
bloc king aperiodic tasks in the time iterval 7, 10] oth-
erwise periodic execution occurs only when no aperi-
odic tasks are in the system.

When periodic tasks complete in less than their
w orst case execution time, the umsed execution time

155

Periodic Task
Low Priority

ngh Priority

\
Penodic Task

Aperiadic Task
3 d4 Execution

1+ SN

15 20

Figure 6: Slac k Serer Timeline

can be reallocated at the priorit y at which it w ould
have been executed. This form of slack is known
as reclaimed slack (timeline slack is what is sho wn
in Figure 6). Reclaimed slack is particularly im-
portant when safet y-critical applications are present
because extremely conservative w orst-case compute
times must normally be used to assure safety-critical
deadlines. T able 2 is an augmerted v ersion of Bble 1
for the execution timeline sho wnin Figure 7, where
each execution of C actually completes after 4 units
and 2 units are reclaimed.

1 id || an | on I dp ss] Tn,88
1 1 1 2 1
2 3| 2 5 2
3 6 2 9 3
4 8 1 10 2
51 13| 4 19 6
6 [17 1 20 3

Table 2: Fig 7 Sample Data (H = 10,C =6,R = 2)

Note that w edifferentiate betw eenaperiodic exe-
cution on timeline versus reclaimed sladk. Aperiodic
tasks 3 and 4 now execute on reclaimed slack in con-
trast to Figure 6. Aperiodic taskb®gins its execu-
tion on timeline slack (in interval {13, 16]), and is then
preempted by the periodic task to ensure its dead-
line. The periodic task completes early, allowing task
5 to finish its execution on reclaimed slack (in interval
[19, 20]).

We have dev eloped a ariety of slad stealing tech-
niques that are needed to use this technology in actual
embedded systems. Our first real-time implementa-
tion was in MetaH[7]. We later adapted slack algo-
rithms to support incremental processing[8] and then
dynamic threads and time partitioning[9] in DEOS,

1| Aperiodic Task
Periodic Task o ?ipme"ne A
High Priority s
\‘ Periodic Task vy Aperiodic Task
& Low Priority iy Reclaimed Slack
4 d 9, d d.d
2 3 4 s Y

Figure 7: Recalimed Slack Timeline

an R TOS contracted for use in six different F AA-
certified commercial jets. We w ereable to obtain

significant performance improvemerts relative to the

deferred server algorithm that w as originally used in
DEOS. For example, the throughput of an FTP stack

hosted on DEOS improved b y a factor of 3 (when slak

servers are used at one or both ends of a communi-

cation link with a handshaking protocol, throughput

increases because less time is spent waiting for the

parties to respond to each other). P erhaps more im-
portantly, the bandwidth reserved for this application

w as reduced ly a factor of 7, dramatically increasing

the available CPU utilization of the overall in tegrated
system. Slac k stealing has also been used to support
incremental display tasks, where a minimum tolera-

ble refresh update rate is guaranteed, with slack being

used to almost always achiev ea higher refresh rate.

Our algorithms pro vide the safe co-hosting of Level

E COTS FTP softw arewith Level A safety critical

soft w are without compromising real-time performance
measurements or achieveable CPU utilization.

We are currently investigating the applicability of,
and extensions to, slack stealing for more complex
models of task interaction, such as remote procedure
calls and queueing netw orks; and application of some
of these concepts to bus/netw orkscheduling in dis-
tributed systems.

3.3 Response Time Analysis

In many application areas, such as telecommunica-
tions, performance is usually discussed in stochastic
rather than deterministic terms. Averages alone are
not sufficient, metrics based on kno wledge ofthe re-
sponse time distribution are desired (e.g. the expected
percentage of requests that will be serviced within a
stated deadline). A challenge problem is to analyti-
cally predict response time distributions for aperiodic
tasks when they must share the CPU with periodic

156

tasks. Qur goals for analytic modeling of response
time distributions in the presence of periodic tasks are

o efficient generation of aperiodic response time dis-
tribution approximations with confidence bands

e on-line parameter sensing/estimation for re-
sponse time mode! validation, admission control,
and dynamic reconfiguration

e analytic models that enable efficient bus/netw ork
scheduling for blending periodic feed-back control
messages and even t-triggered messages

We are in vestigating modelsfor slac k serers that
execute at various priorit ylevels. Figures 8 and 9
illustrate the predictions of some different analytic
models plotted against simulation data for slack and
bac kground serv ers, respectively[10 | (H 64 ms,
C = 0.75H, aperiodic traffic utilization is 0.2 with
a mean service rate of 1 ms). We have developed new
models called the long and intermediate hyperperiod
models for slack and background servers (labeled LHM
and IHM). For comparison purposes we also show an
MM1 slack server model (labeled MM1), a heavy traf-
fic background server model (labeled HTM), and the
degraded server model (labeled DSM, which simply
reduces the server speed by the fraction of the CPU
taken by the periodic task). The simulation data
points appear as a heavy line.

FIFO FG Queue Resp Times; DS:~ ~; MM1: ..;.LHM -; IHM -.; xwlt=0

-

o
w©
T

o
©
Y

o
~
T

o o o o

(] 3 o =
-

~

[

Pr(RT <= x); rho = 0.950; tm1 = 5.27; std1 = 12.67; E[B] ~ 7.70
o

o
ps

o L " I 1 L
0

0

2 40 60 100 120
x:time; mu = 1.000; tambda = 0.200; H = 64.00; C = 48.00;w0 = 0.625; E[B[B>0] = 20.55

Figure 8: Slack Server Response Time

The observed aperiodic response time distribution
for a slack server in Figure 8 lies completely above the

DSM response time prediction. In contrast, the ob-
served aperiodic response time distribution when pro-
cessed at bac kground prioriy falls completely below
the DSM response time distribution in Figure 9. For
both server scheduling disciplines in the configurations
‘sho wn, the long and irtermediate hyperperiod models
give estimates closer to the simulation data. Different
models are better for different system configurations,
and we have criteria for selecting the best model.

1 Y

o o
-3 -3
: :

~

34.59; std2 = 23.92
o
5

o
o

T
-~

o
o
T

o o
& e
¥ T

Pr(RT <= x); rho = 0.950; tm2
2
T

i

140

20

L . . . 1
40 60 L] 100 120
xtime; mu = 1.000; lambda = 0.200; H = 64.000; C =48.000

160

Figure 9: Background Server Response Time

We are also investigating the impact that periodic
traffic patterns have on the delay distributions of the
aperiodic traffic. In many commercial bus communi-
cation protocols with integrated periodic and event-
triggered traffic, bus traffic is slotted and has desig-
nated start times for time-driven messages. Event-
triggered traffic also has dedicated time slots, which
are usually the remaining gaps not allocated to critical
periodic messages. There may be no even t-triggered
messages waiting at the start of a preallocated event
message time slot, or many messages might have been
queued for a long time. In many regards, the study of
these gaps on busses is analogous to the study of even t-
triggered task response times when run as background
tasks on a CPU with predefined scheduling times for
critical time-triggered periodic tasks. We have found
that the spacing and size of the aperiodic gaps can
have significart impact on the response delivery time
distributions, suggesting it is possible to improve bus
performance by appropriate scheduling of these gaps.

157

3.4 Hybrid Automata

T raditional real-time task models cannot easily
handle variability and uncertainty in clock and com-
putation and communication times, synchronizations
(rendezvous) betw eentasks, remote procedure calls,
anomalous scheduling in distributed systems, dynamic
reconfiguration and reallocation, end-to-end dead-
lines, and timeouts and other error handling behav-
iors. One of our goals is to analyze the schedulability
of real-time systems that cannot be easily modeled
using traditional scheduling theory. For example, we
w ould lile to be able to model and analyze a system
of tens of tasks on a few processors, where tasks may
make remote procedure calls to each other, may have
complex internal behaviors (multiple internal states
with state transitions dependent on inter-task inter-
actions), and have hard deadlines betw eenspecified
pairs of state transitions.

A tthe implementation level, task schedulers and
communication protocols are reactiv e components
that respond to events like interrupts, message ar-
rivals, service calls, task completions, error detections,
etc. Another of our goals is to model and verify im-
plementations of real-time functions. We would like to
model important implementation details such as con-
trol logic and data variables. We would like the map-
ping betw een model and code to be clear and simple
to better assure that the model really does describe
the implementation. Forexample, w ew ouldlike to
be able to model and verify a real-time scheduler or a
real-time bus driver.

We have been working with linear hybrid automata
models of such systems[22]. Our experience suggests
these are very pow erfuland natural models for very
complex real-time system behaviors. How evercom-
putational intractability is currently a much more se-
vere problem for hybrid automata model checking
than it is for finite state model chec king. We were
able to overcomesome of these problems by dev el-
oping our own protot ypereachability tool that uses
new polynomial-time algorithms to compute hybrid
state transitions, uses an oracle to concisely encode the
scheduling semantics for a particular model, and does
on-the-fly identification of reachable discrete states.
For example, w ew ereable to solvesome problems
having 100 times more discrete states than w ecould
with other tools, although our prototype does not cur-
ren tly support rate ranges or provide parametric anal-
ysis. We also show edthat the reachability problem
becomes decideable under restrictions that are very
reasonable for this problem domain.

We demonstrated these technologies by formally

verifying key behaviors of the core scheduling and
time partitioning modules of the MetaH executive.
The standard executive library modules were modified
by inserting calls to generate linear hybrid automata
models of the code that manages basic scheduling and
time partitioning functions (excluding slack stealing
and dynamic reconfiguration features). Time-varying
variables were used to mode] hardware timers and ac-
cumulated process compute time. Zero-rate variables
w ere used to model some wriables in the code. A com-
plete linear hybrid automata model for this portion of
the executive (about 1800 SLOC, about half of the
executive) was automatically generated by executing
each subprogram independertly with test data, then
subjected to a reachability analysis to verify some ba-
sic timing properties and assertions in the code. We
analyzed a set of applications that was sufficient to
achieve full coverage of the modeled code.

Our work to date suggests the technology has
passed the threshold of utility for verifying implemen-
tations of certain real-time functions. How eer, signif-
icant improvemerts in analysis techniques are needed
in order to analyze and verify the schedulability of
complex real-time workloads of non-trivial size.

3.5 System Safety

Our MetaH toolset supports a construct called an
error model, which allows users to specify sets of fault
even ts and error states. An error model includes speci-
fications of transition functions to define how the error
states of objects change due to fault, error propaga-
tion and recovery even ts. An individual object within
a specification can then be annotated to specify the er-
ror transition function and fault arrival rates for that
object.

We have a prototype reliability modeling tool that
generates a stochastic concurrent process reliabilit y
model{17, 20]. Error propagations betw een objects are
modeled as sync hronizationsor rendezvous betw een
stoc hastic concurrernt processes. Each suc hpropaga-
tion synchronization in the model can be controlled us-
ing an associated consensus expression, which can con-
ditionally mask propagations depending on the cur-
rent error states of selected objects. In the specifi-
cation, user-supplied consensus expressions describe
the error detection protocols that are implemented
by the underlying source modules for a particular
application. The reliabilit y modeler uses the error
model specifications and annotations to generate the
object error state machines, and uses the consen-
sus expressions and design structure to generate the
propagation synchronizations betw een these object er-
ror state machines. A subset of the reac hable state

space of this stochastic concurrent process is a Markov
chain that can be analyzed using existing tools and
techniques[19. We selected a stochastic concurrent
process model because it allowed us to generate a hier-
arc hical reliability model whose structure can be easily
traced back to the original specification and vice versa.

We believ ethis w orksubstantiates the basic con-
cept of generating a reliabilit y model from a de-
sign specification, but w ehave identified a number
of shortcomings that must be addressed for produc-
tion use[12]. Markov model generation and analysis is
subject to state space explosion; features in the lan-
guage to control abstraction in the generated model,
and state space optimization methods in the analysis
tool, are needed. Analysis results that are easily trace-
able back to the specification and include parametric
sensitivit y data are needed.

Markov reliabilit yanalysis and partition isolation
analysis are only two types of analysis used in a com-
prehensive systensafet y program[23]. The language
already contains some features for fault tree specifica-
tion, but features are needed to capture the results of
hazard analysis and failure modes and effects analysis
and summary. All these different analyses are syn-
ergistic and related, and the analysis toolset should
perform certain consistency checks betw een the differ-
ent models and results. F or example, basic ewents in a
fault tree are assumed to be statistically independent,
and all common cause analyses (such as partition isola-
tion analysis) should check for the absence of common
causes for pairs of basic events.

We close by noting that softw are safet y standards
require system safety program activities to be closely
integrated with development activities, and require
that safety data and analyses be clearly traceable
to dev elopmert w ork products such as designs and
code[3, 2]. Design assurance standards require re-
view and analysis in addition to testing, and encourage
as high a degree of formal analysis as is practical[1].
The well-in tegrated and formalized dewlopment pro-
cess and environment that we are pursuing can signif-
icantly contribute to meeting these requirements.

References

(1] Software Considerations in A irbrne Systems
and Equipment Certification, R TCA/DO-178B,
R TCA, Inc., Wishington D.C., December 1992.

[2] Software System Safety Handbook, Join t Soft-
w are System Safey Committee, December 1999,
www.nswc.na vy .mil/safet/handbook.pdf

[3] Guidelines and Methods for Conducting the
Safety Assessment Process on Civil Airborne Sys-

[5]

[6]

[7]

(8]

[9]

[10]

(11]

[12)

(23]

tems and Equipment, SAE/ARP 4761, December
1996.

MetaH User’s Guide, Honeywell Laborato-
ries, 3660 T echnologyDrive, Minneapolis, MN,
www.htc.honeywell.com/metah.

Domain Modeling Environment, Honeywell Lab-
oratories, 3660 T echnologyDrive, Minneapolis,
MN, www.htc.honeywell.com/dome.

Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, “Automatic Symbolic Verification of Embed-
ded Systems,” IEEE T ransactionson Software
Engineering, vol. 22, no. 3, March 1996, pp 181-
201.

Pam Binns, “Scheduling Slack in MetaH,” R al-
Time Systems Symposium, w ork-in-progress ses-
sion, December 1996.

Pam Binns, “Incremental Rate Monotonic
Scheduling for Improved Control System P er-
formance,” R eal-Time Applications Symposium,
1997.

P am Binns, “A Robust High-Performance Time
P artitioning Algorithm;The Approach Taken in
DEOS,” to appear in the 20F* Digital Avionics
Systems Conferenc ¢ November 2001

Pam Binns, Aperiodic R espnse Time Distribu-
tions in Queues with Deadline Guarante es for Pe-
riodic Tasks, Ph.D. Thesis, Department of Statis-
tics, University of Minnesota, October 2000.

Pam Binns and Stev eV estal, “Message P assing
in MetaH using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priorit ySchedul-
ing,” Life Cycle Software Engineering Confer-
enc ¢ Redstone Arsenal, AL, August 2000.

Pam Binns, Stev eV estal, William Sanders, Jay
Doyle and Dan Deavours, “MetalH/Mobius Inte-
gration Report,” prepared by Honeywell Labora-
tories and University of Illinois Coordinated Sci-
ence Laboratory, prepared for U.S. Army AM-
COM Soft w areEngineering Directorate, April
2000.

S. Campos, E. Clarke, W. Marrero, M. Minea and
H. Hiraishi, “Computing Quantitativ e Character-
istics of Finite-State Real-Time Systems,” R al-
Time Systems Symposium, December 1994.

159

[14]

[15]

[16]

17]

[18]

[19]

[20]

[21]

(22]

(23]

Shent-Tzong Cheng and Ashok K. Agrawala, “Al-
location and Scheduling of Real-Time Periodic
T askswith Relative Timing Constraints,” Uni-
versity of Maryland Departmert of Computer Sci-
ence Technical Report, 1993.

José Javier Gutiérrez Garcia and Michael

Gonzalez Harbour, “Optimized Priorit yAssign-

ment for T asks and Messages in Distributed Hard
Real-Time Systems,” Third Workshop on Parallel

and Distributed Real-Time Systems, April 1995.

Bruce Lewis, “Soft w ard® ortabilit yGains Real-
ized with MetaH, an Avionics Architecture De-
scription Language,” 18" Digital A vionicsSys-
tems Conference, St. Louis, MO, October 24-29,
1999.

Holger Hermanns, Ulrich Herzog and V assilis
Mertsiotakis, “Stochastic Process Algebras as a
T ool for Rrformance and Dependability Model-
ing,” Pr oceedings of the IEEE International Com-
puter Performance and Dependability Symposium
(IPDS’95), April 24-26, 1995, Erlangen, Ger-
many.

J. P .Lehoczky and S. Ramos-Thuel, “An Opti-
mal Algorithm for Scheduling Aperiodic Tasks in
Fixed-Priority Preemptive Systems,” IEEE Real-
Time Systems Symposium, December 1992.

W. H. Sanders, W. D. Obal, M. A. Quershi and F.
K. Widjanarko, “The UltraSAN Modeling Envi-
ronment,” Performance Evaluation Journal, vol.
25 no. 1, 1995.

Frederic kT. Sheldon, Krishna M. Kavi and
Farhad A. Kamangar, “Reliability Analysis of
CSP Specifications: A New Method Using
P etri Nets,” Proceedingsof AIAA Computing In
A erosp a¢ 8an Antonio, TX, March 28-30, 1995.

Steve Vestal, “Fixed Priority Sensitivity Analysis
for Linear Compute Time Models,” IEEE Trans-
actions on Software Engineering, April 1994.

Steve V estal, “Model-
ing and V erificationof Real-Time Soft w areUs-
ing Extended Linear Hybrid Automata,” NASA
L angley F ormal Methods Workshop, June 2000,
shemesh.larc.nasa.gov/fm/Lfm2000/Proc/

Steve Vestal, “MetaH Avionics Architecture De-
scription Language Soft w arend System Safet y
and Certification Study,” prepared by Honeywell
Laboratories, prepared for U.S. Army AMCOM
Softw are Engineering Directorate, Mara 2001.

Design Models for Components in Distributed Object Software'

X. Xie and S. M. Shatz
University of Illinois at Chicago

Abstract

Component-based software development has many potential advantages, including shorter time to market and lower prices,
making it an attractive approach to both customers and producers. However, component-based development is a new
technology with many open issues to be resolved. One particular issue is the specification of components as reusable entities,
especially for distributed object applications. Specification of such components by formal methods can pave the way for a
more systematic approach for component-based software engineering. This paper discusses an approach for blending Petri net
concepts and object-oriented features to develop a specification approach for distributed component software systems. In
particular, a scheme for modeling behavior restriction in the design of object systems is presented. A key result of this work is
the definition of a “plug-in” structure that can be used to create “subclass” object models, which correspond to customized
components.

Keywords: Distributed Software, Modeling, Object Design, Petri Nets

1. INTRODUCTION AND MOTIVATION

There is significant interest in using components in software development. Specification and implementation of a
system in terms of existing and/or derived components can dramatically decrease the time required for system development,
increase the usability of resulting products, and lower production costs [8]. However, component-based development is still
immature, with a lack of established procedures and support from formal modeling.

Reuse principles have typically placed high demands on reusable components. Such components need to sufficiently
general to cover the different aspects of their use, while also being simple enough to serve a particular requirement in an
efficient way. This has resulted in a situation where developing a reusable component may require significant effort. Reuse
can be aided by customization that applies constraints in situations where the functionality of a “base component” is more
general than is actually needed, or when some base-component features exhibit characteristics not suitable for a particular
application. Thus, the component’s behavior must be restricted before it can be reused in a new design.

One potentially efficient and natural technique to support constraints is restriction inheritance [2]. Restriction
inheritance defines a subclass that constrains the behavior of a superclass. This is in contrast to augment inheritance, where a
subclass augments, or extends, a superclass. Since subclassing by restriction often conflicts with the semantics and intention
of inheritance, where an instance of a subclass should be an instance of the superclass and should behave like one, some

researchers have suggested that restriction inheritance be avoided [8]. But, in our own experience, which does involve

! This material is based upon work supported by, or in part by, the U.S. Army Research Office under grant number DAAD19-
99-1-0350 and by NSF under grant number CCR-9988168.

160

development of commercial component-based software, we have observed benefits of restriction inheritance for customizing
components.

To develop a systematic design process with the capability for automated simulation and analysis, it is valuable to
define a design method’s syntax and semantics in terms of some formal notation and method. For engineering of distributed
object systems, it is desirable for the formalization to provide a simple and direct way to describe component relationships
and capture essential properties like nondeterminism, synchronization and concurrency. Petri nets [5] are one formal
modeling notation thaf is in many ways well matched for general concurrent systems. In particular, the standard graphical
interpretation of Petri net models is appealing as a basis for a design notation. In this paper we introduce a model called a
State-Based Object Petri Net (SBOPN), which is developed from the basic idea introduced in [6]. Here we extend the basic
SBOPN model to directly support restriction inheritance modeling for the purposes discussed earlier. SBOPN is most similar
in spirit to Lakos’ Language for Object Oriented Petri Nets, LOOPN [4]. LOOPN’s semantics are richer, but SBOPN
provides a more specific, and thus more intuitive, notation for capturing the behavior of distributed state-based objects. Like
LOOPN, SBOPN is based on a generalized form of Petri net called colored Petri nets [3]. Another language, CO-OPN/2 [1],
uses high-level Petri nets that include data structures expressed as algebraic abstract data types and a synchronization
mechanism for building abstraction hierarchies to describe the concurrency aspects of a system. CO-OPN/2 is a general model
that focuses on concurrency. SBOPN focuses more on the architectural modeling of state-based systems; thus it is simpler and

domain-specific.

2. AN EXAMPLE AND INTRODUCTION TO SBOPN MODELING

Consider the classic example of a system that uses a bounded buffer to temporarily hold items, such as messages. In
our example, there exists an operator to enable and disable the buffer, in addition to the standard producer and consumer
components. The four system components — buffer, producer, consumer and operator — operate asynchronously and only
interact via messages initiated by the producer (pur message), consumer (get message) or operator (enable and disable
message). At any point in time, the buffer should be in one of four states: Empty, Full, Partial (means Partially Full) or
Disabled. Depending on its state, the buffer may or may not be able to accept the messages put, get, disable and enable.
When the buffer is in Empty or Partial state, it can accept the put message and change to Partial or Full state. When it is in
Partial or Full state, it can accept the get messagé and change to Empty or Partial state. When it is in any state except the
Disabled state, it can accept the disable message and change to the Disabled state. Finally, when it is in the Disabled state, it
can accept the enable message and change to its previous state (before it was disabled): Empty, Partial or Full. To simplify
the example, we simply assume that after accepting a disable message, the buffer is reset to Empty state.

To model state-based systems, such as this buffer system, we use State-Based Object Petri Nets (SBOPN) [6]. This
can be ﬁewed as a special purpose form of (Colored) Petri net. Lack of space prevents us from giving an overview of Petri
nets here; we refer the reader to a reference like [5] for such information. Figure 1 shows a simple SBOPN model of the
system we have described above. Notice that there are separate models for the buffer, producer, consumer and operator
objects. Tfnese components are called State-Based Petri Net Objects (SBPNO) and the methods of objects are represented by
shared transitions. For example, the put method is represented by a shared transition used by the buffer object and the
producer object. The system model is called a State-Based Object Petri Net (SBOPN). To informally highlight some key
features of the SBOPN model, let us consider the buffer object. There is an arc from the place p; to the shared transition put.

161

The token labeled D in p;, is called a state token, and D is the current state-value of this state token. This represents that the
current state of the buffer is Disabled. The label {Empty, Partial} for the arc (p;, put) shows that the put transition has the
potentiai to fire only when the buffer is in the Empty or Partial state. This arc label is called a state filter. When all the input
places of a transition satisfy the corresponding state filter, that transition is enabled. The arc from the transition put to the
place p; is also labeled. This arc label (v, FI) is called a state-transfer tuple, where p, is called a state-transfer place and F1
is called a state-transfer function. This tuple determines the possible state(s) the buffer can be in after the put method is
processed. The input value of a state-transfer function is the state-value of the state token consumed from the associated state-
transfer place. In this simple example, the buffer can have the following changes due to the put method: from Empty to
Partial, from Partial to Partial, or from Partial to Full. The state-transfer function F4 indicates that a call to the disable
method results in the buffer transitioning to the Disabled state, regardless of the state-value of the token consumed from place
P

Now, consider a need to customize this general buffer component for use in a more restricted application. First,
assume the new buffer component should not allow the disable operation. Second, to ensure tighter synchronization on
producer and consumer components, the new buffer component should behave as a simple capacity-1 buffer. Thus, only when
the buffer is in the Empty state, instead of both Empty and Partial states, should it accept a put message. We call this new
buffer a “disable-free synchronous buffer.” To model a new system that uses a disable-free synchronous buffer, we could just
redesign the system in Figure 1 to create a new model. But, there are disadvantages that can result from a “re-design.” First,
creating the new buffer might change the interface of another class, the operator. This conflicts with the basic modularity
principle of object-design. This is an important issue, especially when it comes to consideration of model synthesis and reuse.
Second, the redesign might result in a change in the state filter for arc (p,, put) in the general buffer class -- from {Empty,
Partial} to {Empty}. But, such a change makes it now difficult to directly identify that the new object is actually one of many
possible behaviorially restricted objects derived from a common object — borrowing from object terminology, we can think of
these restricted object components as representing subclass objects of a superclass object. We will revisit this issue in Section
3.

We propose to model restriction inheritance by the simple addition of a “plug-in” structure to a superclass model. In
other words, we want to limit the behavior of the superclass object by adding some control structure to the superclass model.
Actually, this is very natural from the view of control theory since control systems limit the behavior of a system by adding
some controller logic. For example, [9] describes a method for constructing a Petri net controller for a discrete event system

modeled by a Petri net.

3. MODELING RESTRICTION SUBCLASS OBJECTS

In Section 2 we informally introduced the SBOPN modeling notation