
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2016

Foundations for Safety-Critical on-Demand
Medical Systems
Andrew Lewis King
University of Pennsylvania, kingand@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1816
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
King, Andrew Lewis, "Foundations for Safety-Critical on-Demand Medical Systems" (2016). Publicly Accessible Penn Dissertations.
1816.
http://repository.upenn.edu/edissertations/1816

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1816?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1816
mailto:libraryrepository@pobox.upenn.edu

Foundations for Safety-Critical on-Demand Medical Systems

Abstract
In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who
manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then
reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both
burdensome on clinicians and error prone.

Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability''
would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs,
and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow
clinicians to attach devices to a local network and then run software applications to create a new medical
system ``on-demand'' which automates clinical workflows by automatically coordinating those devices via the
network.

Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety
is not considered a compositional property in general. For example, two independently ``safe'' devices may
interact in unsafe ways. Indeed, even the definition of ``safe'' may differ between two device types.

In this dissertation we propose a framework and define some conditions that permit reasoning about the
safety of plug & play medical systems. The framework includes a logical formalism that permits formal
reasoning about the safety of many device combinations at once, as well as a platform that actively prevents
unintended timing interactions between devices or applications via a shared resource such as a network or
CPU. We describe the various pieces of the framework, report some experimental results, and show how the
pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Insup Lee

Keywords
Medical Systems, On-Demand, Plug and Play, Real-Time Systems, Safety Critical Systems

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1816

http://repository.upenn.edu/edissertations/1816?utm_source=repository.upenn.edu%2Fedissertations%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages

FOUNDATIONS FOR SAFETY-CRITICAL ON-DEMAND MEDICAL

SYSTEMS

Andrew L. King

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2016

Supervisor of Dissertation

Insup Lee

Cecilia Fitler Moore Professor, Computer and Information Science

Graduate Group Chairperson

Lyle Ungar, Professor, Computer and Information Science

Dissertation Committee:

Oleg Sokolsky, Research Prof., Computer and Information Science, University of Pennsylvania

Rajeev Alur, Prof., Computer and Information Science, University of Pennsylvania

Rahul Mangharam, Prof., Computer and Information Science, University of Pennsylvania

John Hatcliff, Prof., Computing and Information Science, Kansas State University

FOUNDATIONS FOR SAFETY-CRITICAL ON-DEMAND MEDICAL SYS-

TEMS

COPYRIGHT

2016

Andrew L. King

ABSTRACT

FOUNDATIONS FOR SAFETY-CRITICAL ON-DEMAND MEDICAL

SYSTEMS

Andrew L. King

Insup Lee

In current medical practice, therapy is delivered in critical care environments (e.g.,

the ICU) by clinicians who manually coordinate sets of medical devices: The clin-

icians will monitor patient vital signs and then reconfigure devices (e.g., infusion

pumps) as is needed. Unfortunately, the current state of practice is both burden-

some on clinicians and error prone.

Recently, clinicians have been speculating whether medical devices support-

ing “plug & play interoperability” would make it easier to automate current med-

ical workflows and thereby reduce medical errors, reduce costs, and reduce the

burden on overworked clinicians. This type of plug & play interoperability would

allow clinicians to attach devices to a local network and then run software ap-

plications to create a new medical system “on-demand” which automates clinical

workflows by automatically coordinating those devices via the network.

Plug & play devices would let the clinicians build new medical systems com-

positionally. Unfortunately, safety is not considered a compositional property in

general. For example, two independently “safe” devices may interact in unsafe

ways. Indeed, even the definition of “safe” may differ between two device types.

In this dissertation we propose a framework and define some conditions that

permit reasoning about the safety of plug & play medical systems. The framework

includes a logical formalism that permits formal reasoning about the safety of

many device combinations at once, as well as a platform that actively prevents un-

iii

intended timing interactions between devices or applications via a shared resource

such as a network or CPU. We describe the various pieces of the framework, re-

port some experimental results, and show how the pieces work together to enable

the safety assessment of plug & play medical systems via a two case-studies.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 3

1.3 Contributions . 8

1.4 Organization . 10

2 Motivating Examples & a Regulatory Framework 12

2.1 Introduction . 12

2.2 Motivating Examples . 13

2.2.1 Xray/Ventilator Coordination 13

2.2.2 Laser-Ventilator Interlock 15

2.2.3 Closed-Loop Management of Patient Controlled Analgesia 16

2.3 A Platform-Oriented Ecosystem 20

2.4 The Platform Argument Pattern 26

2.4.1 Pattern Terms . 28

2.4.2 The Pattern . 30

2.5 Related Work . 31

v

3 Time Parametric Modal Specifications 35

3.1 Notation Glossary . 39

3.2 Modal Specifications for Timing Variability 41

3.2.1 Clocks . 41

3.2.2 Syntax and Semantics 43

3.2.3 Modal Refinement . 49

3.2.4 Property Preservation . 52

3.2.5 Compositional Reasoning 58

3.3 Symbolic Semantics and Verification 64

3.3.1 Reduction to PTA Parameter Synthesis 65

3.3.2 May Reachability as a Recursive Horn-Clause Problem . . 67

3.3.3 Symbolic Semantics: Parametric Zone-Graphs 71

3.3.4 Zone-Graph Symbolic Reachability Analysis 75

3.3.5 Symbolic Modal Refinement Checking 78

3.4 Related Work . 88

4 The On-Demand Systems Description Language 92

4.1 Key Language Requirements . 93

4.2 Key Language Features . 96

4.3 Core Language Elements . 99

4.3.1 System Declarations . 101

4.3.2 Module Declarations . 103

4.3.3 Device Declarations . 106

4.4 Semantics . 112

4.4.1 Preliminaries . 112

4.4.2 Tasks . 115

vi

4.4.3 Modules, Dataflows and Programs 116

4.4.4 Devices . 121

4.5 Related Work . 122

5 A Prototype Medical Application Platform 126

5.1 MDCF Architecture and Functional Overview 129

5.1.1 Real-Time Message Bus 130

5.1.2 Device Manager . 130

5.1.3 Application Manager . 131

5.1.4 Resource Manager . 132

5.2 The Real-Time Message Bus . 135

5.2.1 Publish Subscribe and Quality of Service 136

5.2.2 RTMB Overview . 138

5.2.3 Middleware Design . 141

5.3 Determinizing Scheduler . 145

5.3.1 Operation . 147

5.3.2 Correctness . 151

5.4 Practical Real-Time Scheduling 156

5.4.1 Fixed Priority Scheduling Techniques 157

5.4.2 Flow Scheduling . 169

5.5 Evaluation & Performance Assesment 176

5.5.1 Scheduling and Resource Reservation in the RTMB 176

5.5.2 Performance of the Determinizing Scheduler 182

5.6 Related Work . 188

5.6.1 Separation Kernels . 188

5.6.2 Execution Strategies for Real-Time Determinism 193

vii

6 Case Studies 195

6.1 Introduction . 195

6.2 Ecosystem Assumptions . 196

6.3 Laser-Ventilator Interlock . 199

6.3.1 Scenario Specific Assumptions 199

6.3.2 Application Design . 202

6.3.3 Safety Argument . 205

6.4 Closed-Loop Management of Patient Controlled Analgesia 213

6.4.1 Scenario Specific Assumptions 213

6.4.2 Application Design . 216

6.4.3 Safety Argument . 218

6.5 Performance Evaluation . 225

6.5.1 Setup . 226

6.5.2 Results . 227

6.6 Related Work . 230

7 Conclusion 233

7.1 Discussion . 236

7.1.1 Can we truly ensure safety? 236

7.1.2 Do We Really Need Timing Guarantees? 237

7.1.3 The Cost and Benefit of Modal Refinement. 238

7.2 Gap Analysis & Future Work . 239

7.2.1 Regulatory Support for Compositional Reasoning 239

7.2.2 Suitable Criteria for Device-Interface Compliance 242

7.2.3 Physiologic Models for Model Based Reasoning 243

7.2.4 Expressive formal device interface language 244

viii

7.2.5 Trustworthy Devices . 245

7.2.6 Rigorously Verified & Validated Platforms 245

ix

List of Tables

5.1 Example OpenFlow flow table 139

5.2 Experimental Publish-Subcribe Set 179

6.1 Physical types used by devices in the Laser/Ventilator interlock

application. 201

6.2 Physical types used by devices in the PCA management application.214

7.1 Requirements, current status and gaps. 240

x

List of Illustrations

2.1 Ecosystem actors, their interactions and certification activities. . . 25

2.2 Pattern Terms: The relationship between models, specifications,

and physical embodiments. 29

2.3 The argument pattern for application assurance. 32

2.4 The Integrated Clinical Environment functional architecture. . . . 33

3.1 Labeled Transition Systems for three different types of PCA pumps.

devices. 36

3.2 Example MTS specification of a PCA pump. 37

3.3 An example of time-parametric modal specification. 48

3.4 Two example MIOTAs. 50

3.5 Parametric zone-graph of the specification in Figure 3.3. 75

4.1 Logical architecture of a closed-loop PCA safety interlock. 100

4.2 Grammar for ODSDL system declarations 101

4.3 Top level specification for the closed-loop PCA system 102

4.4 Grammar for ODSDL module descriptions 104

4.5 PCA Controller module declaration 106

4.6 Grammar for ODSDL device declarations 107

xi

4.7 Requirements on PCA pump interfacing and behavior 110

4.8 Requirements on Pulse-Oximeter interfacing and behavior 111

4.9 Task Execution Semantics . 117

5.1 MDCF Software Architecture. 129

5.2 Device connection protocol . 132

5.3 Relationship between a device’s logical data ports tand RTMB

topics. 133

5.4 Platform system instantiation process 134

5.5 Example mapping of MDCF application dataflow declarations to

publish/subscribe relationships 135

5.6 Real-Time Publisher and Subscribers with QoS. 137

5.7 Deployment of the RTMB on an OpenFlow enabled network. . . . 140

5.8 Client Library . 141

5.9 Global Resource Manager Architecture 144

5.10 Example Network Graph . 145

5.11 Example determinizer event queue. 147

5.12 Reordering a task map. 168

5.13 Experimental setup . 177

5.14 Best Effort . 180

5.15 MIDAS . 181

5.16 Latency bounds for ST3 when PT1 and PT2 are malfunctioning . . 182

5.17 Microtask execution times in microseconds. 184

5.18 ODSL test module template. [I], [P] and [D] are set according to

the test parameters. 186

5.19 Task completion variability with 0.75 system utilization. 187

xii

5.20 Task completion variability with 0.90 system utilization. 187

6.1 Development & verification workflow in the Ecosystem’s ODSDL

Development & Verification Environment 198

6.2 Laser/ventilator clinical scenario and safety interlock system spec-

ification. 204

6.3 Requirements for laser behavior 205

6.4 Requirements for ventilator behavior 206

6.5 Interlock software modules. 207

6.6 Assurance case fragment for the Laser / Ventilator Interlock ap-

plication. 208

6.7 Arguement fragment for the adequacy of the laser model. 211

6.8 Example trumpet curve. Taken from [171]. 215

6.9 Closed-loop management of PCA clinical scenario and system

specification. 217

6.10 Requirements for pulse-oximeter behavior 218

6.11 Requirements for PCA pump behavior 219

6.12 SafetyCheck module for the PCA control application 220

6.13 TPMS model of patient behavior and opiod pharmokinetics. . . . 221

6.14 Assurance case fragment for the PCA management application. . . 222

6.15 Arguement fragment for the adequacy of the pulse-oximeter model. 224

6.16 Refinement checking time - laser-scalpel specification. 228

6.17 Refinement checking time - ventilator specification. 229

6.18 Refinement checking time - PCA pump specification. 230

6.19 Refinement checking time - pulse-oximeter specification. 231

xiii

Chapter 1

Introduction

1.1 Motivation

Traditionally, safety-critical systems have been designed and integrated as mono-

lithic units before they are delivered to the customer. Typically, a prime contractor

manages development of the system from design through final systems integra-

tion. Because the prime contractor manages the entire development process, they

are in a unique position to assess the completed product for safety: They know

what components comprise the system, how those components interact (e.g., as

verified via integration testing), the intended use of the system and the system-

level safety requirements. Very often in regulated domains, such as aviation and

medical systems, the prime contractor must also construct a regulatory submission

that contains an argument (and supporting evidence) that their system behaves

safely and effectively. The system in question cannot be marketed or otherwise

deployed until the regulator accepts the argument and approves and/or certifies the

system.

1

In medicine, clinicians currently deliver therapy by manually coordinating col-

lections of independently developed devices. Now that many devices marketed

today already include some form of network connectivity (serial ports, Ethernet,

802.11 or Bluetooth wireless) clinicians are recognizing the potential to automate

device coordination via external control applications [70]. Ideally, future medi-

cal devices would support plug & play protocols which would allow clinicians to

construct networks of medical devices on-demand that automatically interoperate

to automate life-critical clinical workflows [69]. The integration model for on-

demand systems would differ from traditional systems because they would not be

supplied or integrated by a single vendor. Instead, a Health Delivery Organiza-

tion (HDO) would purchase interoperable devices, infrastructure (i.e., computa-

tional platforms) and software applications implementing clinical algorithms (i.e.,

“apps”) from a variety of different vendors. Specific medical systems would then

be assembled from devices on-hand to address a particular clinical need.

While practical use of such systems is still in the future, the ability for the

operator to construct new systems on-demand from off the shelf components has

the potential to yield several important benefits:

• Reduce Errors & Clinical Workloads - The ability to automate workflows

can reduce clinical errors, improving patient outcomes, while at the same

time reducing clinician workload [70, 134].

• Avoid Vendor Lockin - Vendor neutral interoperability protocols means

that HDOs would not be locked into a single vendor for all their medical

systems. They would be able to create “best-of-breed” systems of systems

by purchasing the best devices produced by different manufacturers [69].

2

Furthermore, it allows the HDO more flexible device procurement strategies

in general [184].

• Enable Innovation - Interoperability could enable new startups to con-

tribute new capability to the interoperable “ecosystem” via software ap-

plications. Currently, it is difficult for a company to create new medical

systems capability unless that company is an incumbent because it is not

practically feasible to add new capability independent of a physical medical

device.

In anticipation of interoperable plug & play medical systems and the benefits

they will bring there are a number of on-going efforts to create interoperability

standards [156, 88, 23, 139, 71], build prototype implementations that aim to sup-

port this vision [108, 155], and develop new regulatory frameworks [105, 172].

1.2 Challenges

Plug & play medical systems will be assembled by their (non-technical) users

which means that there will not be a single entity with technical competency (e.g.,

prime contractor) positioned to assess the safety of a specific combination of de-

vices. The lack of a traditional prime contractor poses a challenge to ensuring the

safety of these systems for two reasons: First, safety is a property of systems that

arises from the interactions between system components [126, 128]. Second, what

constitutes safe inter-device interactions will vary considerably between different

clinical scenarios. Often, we say that these two facets of safety mean that safety

is an emergent property [126, 38, 127]. It is critical to ensure that interactions

3

between devices are predictable and that those interactions satisfy the safety re-

quirements of the given clinical scenario. Since it will not be known specifically

which devices will be assembled into the composite system a priori, we are pre-

sented with a number of challenges to achieving safe interoperability. Here we

identify three significant challenges we try to address in this dissertation that must

be overcome if safe interoperable plug & play systems are to be achieved.

Challenge 1: Current Regulatory Frameworks Won’t Scale

Current regulatory frameworks (e.g., the US FDA device approval process) are

not designed with large scale, vendor neutral interoperability in mind. While the

FDA approval process does not explicitly disallow interoperable or plug & play

capabilities, it does make the approval of truly interoperable devices prohibitively

costly.

For example, as a device manufacturer, it is possible to develop a device de-

signed to work with other devices via a network interface. The FDA regulations

would then treat the other devices as “accessories” [62, 142] and subject each

possible combination of devices to regulatory approval. From the perspective of a

safety assesment, subjecting each combination isn’t a bad idea: It gives the manu-

facturer (and regulator) the opportunity to detect any unsafe interactions between

specific devices.

However, If we want a large ecosystem of interoperable devices, regulating

each combination is hugely impractical. Consider an ecosystem with n devices.

If its possible for every pair of devices to interoperate this would require n2 reg-

ulatory submissions (and approvals). Additionally, many medical systems would

likely involve more than just pairs of devices. If we want to combine m deivces

4

together, then we will need nm regulatory submissions and approvals (and if we

want to combine up to m its nm!!). Since the regulatory process is expensive

for both manufacturers and regulators, the current approach is not practical for

anything other than small values of n and m.

Challenge 2: Standardization of Behavior is not Practical

Historically, standards bodies have chosen to achieve interoperability by devel-

oping large, complex, and detailed standards that attempt to cover many (if not

all) aspects of the interoperable domain. For example, consider the IEEE-11073

interoperability standard for medical devices. IEEE-11073 standardizes a nomen-

clature (a mapping of numerical codes to device types), a comprehensive domain

information model (a definition of physiological signals and what device types can

provide those signals), a communications model (how information is exchanged)

and a data encoding specification [2]. The development of large complex stan-

dards is time-consuming and difficult: Work on IEEE-11073, started in 1986 [73]

(as IEEE-1073) but didn’t officially stabilize until 2005 [2]. Furthermore, the

complexity and long development cycles of large complex standards can hinder

their adoption, as has apparently been the case with IEEE-11073 [88].

Most standards like IEEE-11073 only cover data interoperability, i.e., how to

exchange data and how to interpret the data that is exchanged. However, reason-

ing about safety fundamentally comes down to reasoning about behavior. One

approach could be to follow the footsteps of what the IEEE-11073PHD [52, 47]

standard does for data but with behavior. IEEE-11073PHD defines the types of

data each different type of device (e.g., glucometer, scale, or pulse-oximeter) must

be able to report. We could imagine doing the same, but for behavior (e.g., define

5

precisely how an PCA pump ought to behave and bake it into the standard).

However, we contend that standardized behavior is not practically achievable.

IEEE-11073 took almost two decades, was only about data, and hasn’t found sig-

nificant adoption. Device behavior adds another significant layer of complexity.

Furthermore, among devices of the same type, their behavior can vary signif-

icantly between manufacturer and even model. Getting manufacturers to imple-

ment devices with precisely the same behavior is unlikely. There needs to be some

other mechanism for devices to communicate their beahvior in a standardized way

that also lets manufacturers and regulators assess safety.

Challenge 3: Timing Predictability in Open & Distributed Systems

Typical safety-critical systems are closed, meaning the components that comprise

the system do not change while the system is active and deployed. The behavior of

closed systems are easy, relative to open systems, to predict because the systems

developers can constrain the possible component interactions at design time.

For example, consider a distributed, time-sensitive, closed system like the

avionics on a modern commercial or military aircraft. Flight control signals gen-

erated by the flight control computer must reach the target flight-control surface

at the right time or the aircraft will not fly as intended. In less extreme examples

control authority would be diminished (loss of expected performance). In more

extreme examples the aircraft could depart stable flight and possibly crash (loss of

safety). Aircraft designers can ensure the distributed timing behavior of avionics

systems because they know precisely what nodes are on the network, how much

data each node will send, when each node will send data, and the timing require-

ments for each data flow. They can then use real-time scheduling theory [164] to

6

devise a transmission schedule that satisfies the timing requirements and special-

ized networking hardware (e.g., Avionics Full-Duplex Switched Ethernet [150])

to enforce that schedule.

Unfortunately, plug & play medical systems are inherently open, meaning its

users can add or remove components and otherwise change the configuration of

the system while it is running. The designers of plug & play medical systems

won’t have the luxury of knowing specifically what components comprise the

system, or what the timing requirements of the complete system are a priori.

Traditional techniques and technologies designed to robustly ensure the timing

behavior of the system can not be relied upon.

It will be important to find some way of guaranteeing the timing behavior

of plug & play medical systems. Many of the clinical scenarios [139] that can

benefit from plug & play medical systems outlined by the MD Plug & Play pro-

gram involve device coordination that is fundamentally time sensitive. Further-

more, most medical closed-loop control systems require some bounds on timing

to remain safe. While there are many medical system designs where a failure to

achieve desired timing behavior (e.g., a missed message delivery deadline) won’t

strictly cause an immediate safety violation (See, for example, the systems de-

signs in [20, 104] or [21]) a divergence from the expected timing behavior usually

causes the system to compensate with a fail-safe state (e.g., deactivate an infusion

pump) that will diminish the clinical utility of the system and should be avoided.

Of course, Challenges 1-3 are not the only challenges confronting safe plug &

play medical systems, they are only the challenges we are seeking to address at

some level in this work. Indeed, plug & play interoperability for medical devices

7

has been described as a wicked problem (i.e., “resistant to solutions; incomplete,

contradictory, and changing requirements; and complex dependencies?”) [72].

For example, one broad, challenging, and important area this dissertation does not

directly address is the security of plug & play medical systems (See [173, 174] or

[22] for some of the security challenges).

1.3 Contributions

We propose a number of ways to partly address Challenges 1-3 and then evaluate

our proposals. Our contributions are:

A Regulatory Framework & Assurance Argument Pattern

We propose and describe a “platform-oriented” regulatory framework that will

allow for a type “compositional certification” and avoid the problem of a com-

binatorial number of regulatory submissions associated with current regulatory

regimes (Challenge 1). The framework regulates three types of system compo-

nents: interoperable medical devices, medical applications (apps), and medical

application platforms (MAPs). The medical devices are certified to comply with

an interface, applications are certified assuming they are used with devices that

satisfy some stated interfaces, and the platforms run the applications and ensure

applications are only coupled with compatible devices. The premise of our work is

that application vendors will be able to to produce system-level safety arguments

by leveraging assurances provided by the regulatory framework and ecosystem.

We give an assurance argument pattern that captures essential reasoning needed

to bring assurance associated with certified components into a system-level saftey

8

claim.

Time Parametric Modal Specifications

We describe Time Parametric Modal Specifications (TPMS). TPMS is a new in-

terface theory with several features that make it useful for describing the device

interfaces needed by our proposed regulatory framework. While we designed

TPMS to work under our proposed regulatory framework, it is novel as an inter-

face theory on its own. To our knowledge, TPMS is the first interface theory to

allow the modeling of timing variability separately from functional variability and

also allow for the parallel composition of interfaces. Both of these features can

be useful to model families of real-time systems in general. In the context of our

proposed regulatory framework, it will let us model device behavior (Challenge 2)

and help formally reason about system behavior in a top-down fashion (Challenge

1).

The On-Demand Systems Description Language

We propose and describe the On-Demand Systems Description Language

(ODSDL). The ODSDL lets application designers implement the algorithm of

their application and specify both the logical architecture of their application and

what devices their application requires. The ODSDL uses TPMS to let app de-

velopers and device manufacturers directly specify the behavior needed from the

devices, avoiding the need to standardize the behavior of different device types

(Challenge 2). The ODSDL also has Logical Execution Time (LET) semantics for

both application tasks and distributed interactions (e.g., signaling over a network).

The LET semantics precisely define how the application behave with respect to

9

time, making it easier for the application developer to predict the behavior of their

application when it is deployed (Challenge 3).

A Prototype Medical Application Platform

We describe the Medical Device Coordination Framework / MIDdleware Assur-

ance Substrate (MDCF/MIDAS). MDCF/MIDAS is a protoype medical applica-

tion platform where we implement many of the capabilities required of MAPs by

our proposed framework. We focus primarily on how the MDCF/MIDAS is able

to achieve the ODSDL’s LET semantics in an open and distributed environment

(Challenge 3) and perform an experimental evaluation of our implementation.

1.4 Organization

The rest of this dissertation is organized as follows:

In Chapter 2 we first provide several detailed motivating clinical examples.

These examples will serve as running examples throughout the rest of the disser-

tation. Next, we describe our proposed regulatory framework and the associated

assurance argument pattern.

In Chapter 3 we describe Time Parametric Modal Specifications (TPMS). We

define TPMS, define and prove important properties (e.g., refinement, property

preservation, compositional reasoning) of TPMS, and then give some algorithms

to decide important decision problems (e.g., refinement & reachability checking)

of TPMS.

In Chapter 4 we propose the On-Demand Systems Description Language

(ODSDL). We give a sketch of the language and provide some simple examples

10

of its use to program a plug & play medical application. We also define its (LET)

semantics and show how its semantics result in input determinism (i.e., system

behavior is completely determined by its inputs).

Chapter 5 we describe the MDCF/MIDAS. We enumerate its features, show its

software architecture, and discuss the design features and scheduling techniques

it uses to achieve the LET semantics required by ODSDL applications. We evalu-

ate our implementation by running randomly generated ODSDL applications and

showing that the implementation in fact achieves LET semantics.

Chapter 6 reports on two case studies. We use these case studies to illustrate

how the different aspects of our contributions all work together to enable a system

safety. For our case studies we picked two of the running examples originally

described in Chapter 2. For each running example we describe some key as-

sumptions on the regulatory framework and interoperability ecosystem, design an

application using ODSDL, verify the safety of the designs, and produce a safety

argument using the assurance case pattern originally introduced in Chapter 2. We

also use the ODSDL artifacts produced for the case-studies to evaluate one of the

important TPMS decision procedures using realistic examples.

In Chapter 7 we conclude by summarizing the work and performing a gap

analysis. The gap analysis identifies the technical advances and social develop-

ments needed to make the framework described in this dissertation viable.

11

Chapter 2

Motivating Examples & a

Regulatory Framework

2.1 Introduction

In this Chapter we first describe a number of real clinical scenarios that could ben-

efit from plug & play medical systems. These scenarios will be used as running

examples throughout this dissertation. Each of these scenarios represents a situa-

tion where automation could prevent clinical errors and subsequent injury to the

patient. Automation of the type needed is generally not available due to the lack

of interoperability between different devices and device types produced by differ-

ent manufacturers. Under current regulatory frameworks, the creation of medical

systems supporting the type of automation required would need device manufac-

turers to work together and prepare joint regulatory submissions; something that

current manufacturers aren’t likely to justify given the costs and perceived busi-

ness benefits [125].

12

After we introduce the motivating examples we propose a regulatory frame-

work based on a “platform-oriented” ecosystem of interoperable medical compo-

nents. We give an overview of the stakeholders, their safety/assurances respon-

sibilities, and the regulatory processes the different types of interoperable com-

ponents will be subject to. Our goal is to allow application vendors to produce

system-level safety arguments by leveraging assurances provided by the regula-

tory framework and ecosystem. We show how ecosystem level assurance can be

combined into a system-level safety argument using an “assurance case pattern”.

Assurance cases are informal (but structured) documents that give an argument

why we should believe that a system satisfies some property. While an assurance

case is not a proof, we give an informal discussion of the underlying logic of our

argument.

2.2 Motivating Examples

2.2.1 Xray/Ventilator Coordination

A simple example of automating clinician workflows via cooperating devices ad-

dresses problems in acquiring accurate chest x-ray images for patients on ventila-

tors during surgery [118]. To keep the lungs movements from blurring the image,

doctors must manually turn off the ventilator for a few seconds while they ac-

quire the x-ray image, but there are risks in inadvertently leaving the ventilator

off for too long. For example, Lofsky [131] documents a case where a patient

death resulted when an anestheseologist forgot to turn the ventilator back on due

to a distraction in the operating room associated with dropped x-ray film and a

jammed operating table:

13

A 32-year-old woman had a laparoscopic cholecystectomy performed

under general anesthesia. At the surgeons request, a plane film x-ray

was shot during a cholangiogram. The anesthesiologist stopped the

ventilator for the film. The x-ray technician was unable to remove the

film because of its position beneath the table. The anesthesiologist

attempted to help her, but found it difficult because the gears on the

table had jammed. Finally, the x-ray was removed, and the surgical

procedure recommenced. At some point, the anesthesiologist glanced

at the EKG and noticed severe bradycardia. He realized he had never

restarted the ventilator. This patient ultimately expired.

These risks can be minimized by automatically coordinating the actions of the

x-ray imaging device and the ventilator. Specifically, a centralized automated co-

ordinator running a pre-programmed coordination script can use device data from

the ventilator over the period of a few respiratory cycles to identify a target image

acquisition point where the lungs will be at full inhalation or exhalation (and thus

experiencing minimal motion). At the image acquistion point, the controller can

pause the ventilator, activate the x-ray machine to acquire the image, and then sig-

nal the ventilator to unpause and continue the respiration [74]. Note that this case

above involves a very simple form of coordination logic that can significantly im-

prove the safety or the effectiveness of treatment for the patient. In our experience,

once the concept of device coordination is explained to a surgical clinician, they

can almost always come up with an scenario that they have encountered where

device coordination would be beneficial. For example, consider the example from

modern ear-nose-throat surgery in the next sub-section.

14

2.2.2 Laser-Ventilator Interlock

Many modern Ear-Nose-Throat (ENT) surgeries are now performed with a laser-

scalpel. While laser-scalpels can have different designs and utilize different phys-

ical processes to create the laser (e.g., [141] or [8]), the fundamental concept of

operations is the same: Laser-scalpels create a high energy laser beam that sur-

geons can use to cut flesh [106]. When the surgeon wants to begin cutting s/he

will aim the scalpel where s/he wants to cut and then toggles the beam on. When

the cut has been completed s/he toggles the beam off.

In many cases, laser scalpels provide a number of benefits and better patient

outcomes versus normal blades [16, 178, 153]: First, laser scalpels can result in

less bleeding because the heat generated by the laser beam automatically cauter-

izes the wound. Second, swelling can be reduced because the cauterizing effect

also seals nerve endings and small lymph vessels. Finally, since there is no con-

tact between the surgical instrument and the patient, there is a reduced risk of

infection.

Laser-Ventilator Hazards

While there are several accepted benefits of laser-scalpels for ENT surgeries, the

introduction of a laser to ENT surgeries increases the risk of surgical fire [166,

167]. The increased fire risk arises from the fact that ENT surgeries are performed

under general anesthesia: The patient will be unconcious and supported by me-

chanical ventilation where they will be intubated with a breathing tube carrying a

gas mixture of concentrated O2. The close proximity of an oxidizer (O2) with a

heat source (laser scalpel) is dangerous and can lead to a fire inside the patient if

the surgeon accidentally impinges the breathing tube [147].

15

In current practice this hazard is mitigated manually by the surgical team:

When the surgeon wants to cut, s/he will signal to the anethesiologist, who will

reduce the O2 flow to the patient (if it is safe to do so). As the surgeon cuts, the

anethesiologist will monitor the SpO2 levels of the patient. When the SpO2 ap-

proaches some defined lower threshold the anesthesiologist will ask the surgeon

to stop cutting and they will resume the flow of O2.

Despite these hazard mitigation efforts, approximately 650 surgical fires are

reported in the United States each year and it is estimated that nearly four times

that number go unreported [117, 61]. Clearly, some more effective measures are

needed. One possible solution is to build a system of medical devices that auto-

matically enforces mutual exclusion between laser-scalpel and ventilator activity.

2.2.3 Closed-Loop Management of Patient Controlled Analge-

sia

The use of Patient Controlled Analgesia (PCA) infusion pumps has emerged as the

premier process for meeting the goals of pain management. The computerized

pump is loaded with an analgesic drug such as morphine, fentanyl, or hydromor-

phone and can be programmed with a background, or basal, infusion rate as well

as a bolus dose. The basal infusion rate is delivered constantly and is selected

to be sufficient to control the patients normal pain level. The bolus dose is an

additional quantity of drug that is delivered only when the patient requests it by

pressing a button. The pumps are also programmed with dose limits that are set

for the specific patient, e.g., only allowing one dose to be delivered within a cer-

tain time frame. In addition to the drug delivery mechanism itself, components of

the PCA process include appropriate patient selection, proper patient education,

16

frequent patient assessment, and collaboration among the prescriber, pharmacist

and nursing staff.

Patient controlled analgesia provides consistent control of pain by allowing

patients to self-administer doses of a drug. Evidence from systematic reviews of

randomized controlled clinical trials indicate that the use of IV PCA leads to bet-

ter pain relief, improved patient outcomes (e.g., reduction in pulmonary complica-

tions) and increased patient satisfaction compared with conventional nurseadmin-

istered parenteral opioids [91]. The ability of patients to maintain some control

over their care appears to be a strong contributor to PCA associated improve-

ments in patient satisfaction. One of the major opioid side effects is respiratory

depression. Opioids have a direct effect on the respiratory center in the medulla

[44]. Respiratory depression increases progressively with dose. The use of back-

ground infusions in some patients may provide increased pain relief however this

increases the risk of respiratory depression and has led to a general recommenda-

tion of eliminating background infusions. Symptoms of respiratory depression in-

clude increasing sedation, decreased respiratory rate, decreased oxygen saturation

and increased end tidal carbon dioxide [115]. Breathing may become irregular

and periodic.

To address these issues, current nursing standards of care for monitoring pa-

tients during PCA administration include assessment of pain and sedation, along

with heart rate, blood pressure and respiration rate every four hours. Pulse oxime-

try (SpO2) is used to monitor falling arterial oxygen saturation.

17

PCA Hazards

Despite these positive outcomes, PCA pumps are also associated with a large

number of adverse events [82, 100]. The most common type of adverse event is

oversedation [133]. An excessive dose of the analgesic can cause neurologic de-

pression which may lead to respiratory depression and eventually respiratory dis-

tress. In extreme cases the patient may not be able to breathe adequately, leading

to death. Overdoses may have many causes including programming errors [75],

the use of the wrong concentration of drug, drug interactions, and PCA-by-proxy.

Programming errors may be caused by confusing drug names, e.g., hydromor-

phone and morphine or morphine and meperidine [82], by making a mistake in

dose or drug concentration calculations [179, 82] or entering the wrong values for

bolus dose size, infusion rate, or lockout interval. A common source of error is

entering a value that is off by a power of 10 or using the wrong units. For ex-

ample, entering 5 mL / minute instead of 5 mG / minute or programming a pump

with a drug concentration of 1 mG/mL when it is actually 10 mG/mL [82]. [179]

discusses a number of cases where patients were fatally overdosed because of an

improperly programmed drug concentration.

When someone other than the patient presses the button to request a bolus

dose, it is called PCA-by-proxy. Normally if the patient is oversedated they are

unable to press the button to get another bolus dose. If someone else presses the

button, this safeguard is bypassed and an overdose may occur. In 2004 the Joint

Commission made PCA-by-proxy their 33rd sentinel-event. Sentinel events are

occurrences that must be reported and investigated to their root cause or the facil-

ity risks losing their accreditation [99]. Healthcare facilities that have completed

staff education programs and incorporated a warning about PCA-by-proxy into

18

their patient education have seen lower overall rates of oversedation [99].

An analysis of reports to the MAUDE database maintained by the Food and

Drug Administration (FDA)s Center for Devices and Radiological Health (CDRH)

from 1984 to 1989 found that 67% of problems associated with PCA pumps were

caused by operator error [46]. This early study took place before the 1990 change

in Federal Reporting Guidelines that requires reporting of incidents involving de-

vice malfunctions and serious injuries or deaths to FDA. A later study [76] found

that nearly 80% of the 2009 reported incidents in 2002 and 2003 were blamed on

device malfunctions and that nearly 65% of these suspected device malfunctions

were confirmed by the device manufacturers. The human factors of pump inter-

face design are an important means of reducing use errors [19, 20]. Respiratory

depression associated with PCA varies between 0.3% and 6% depending on the

patient population and how respiratory depression is defined [152]. Most cases of

respiratory depression do not lead to permanent harm to the patient, but these still

represent serious incidents with the potential to harm or kill patients.

The Institute for Safe Medicine maintains a voluntary database of medication

errors. This MedMarx database contains 9500 PCA related errors in the span

2000 - 2004 [82]. These account for only 1% of the medication errors submit-

ted to the database, but this 1% accounts for 6.5% of harmful outcomes. This

almost certainly under-reports the actual number of occurrences, since the volun-

tary database can only track the rate of reporting, not the rates of errors or adverse

events [123]. Adequate pain control provides benefits including improved patient

satisfaction, lower rates of complication, reduced length of hospital stays, and

lower rates of litigation [82]. Some biomedical engineers take the attitude that the

only safe medical device is one thats never taken out of the box, but discontinuing

19

use of PCA pumps is simply not an option. While providing inadequate levels of

medication would indeed reduce the chance of overdose, pain management is an

essential part of the care of these patients.

As noted earlier, patients receiving PCA therapy are usually also connected to

a patient monitor that records their vital signs. These monitors typically measure

at least heart rate, blood pressure, respiratory rate, and oxygen saturation (SpO2).

The monitor has simple alarms which sound when the vital signs go outside of

some preset limits. If the patient receives an overdose, their vital signs will even-

tually go outside of the limits and the alarms will sound, summoning a caregiver

to the bedside.

However, by the time their vital signs drop far enough to cause the alarm

to sound, damage may have already been done. Caregivers are desensitized by

frequent false positive alarms, and they may not respond as quickly as would be

optimal. Furthermore, the infusion pump continues running until it is manually

stopped by a caregiver, which may not happen immediately on their arrival at the

bedside.

If there was an ecosystem of interoperable or plug and play medical devices

with the appropriate capabilities it would be possible to write an application that

automatically takes data from a monitoring device like a pulse-oximeter and then

deactivates the pump if there is the potential for overdose.

2.3 A Platform-Oriented Ecosystem

We believe that a platform-oriented ecosystem of medical components, if appro-

priately designed, could be used to ensure the safety of plug & play medical

20

systems. In this paper, we define an ecosystem as as set of devices, software

applications and computational platforms intended to interact with one another

using standardized plug & play interoperability protocols; the stakeholders that

organize, manufacture, and use these products; as well as the explicitly defined

processes that are followed to develop, certify, and use these products.

Our proposed ecosystem contains three categories of interoperable system

components. The component categories are device, application, and platform.

Devices expose a logical interface that acts like an API which applications can

use to control or receive data from the device. Applications implement the clin-

ical algorithms used to address a specific clinical scenario. Applications are not

just executable code; they have a requirements specification which declares what

interfaces compatible devices must implement and a QoS specification that de-

clares timing requirements (e.g., periods and deadlines on program execution).

Each platform consists of a network, computational resources (CPU, RAM, etc.),

real-time operating system and platform services. The platform’s job is to act as

a trusted base to enforce the correct assembly of on-demand systems: When the

Health Delivery Organization (HDO) plugs a device into the platform the device

will upload its interface specification. Then, when the HDO staff tries to launch

an application with a set of selected devices the platform will (1) check if those

devices’ interfaces are compatible with the application requirements and (2) ver-

ify that the application’s requested QoS can be guaranteed. If either 1 or 2 is false

the platform will prevent application launch.

There are a number of actors that participate in our vision of the ecosystem.

Each actor has different responsibilities and assurance obligations:

• The Ecosystem Standards Consortium consists of representives of the other

21

actors and follows a consensus process to define ecosystem standards: The

connectivity protocols used by each component to exchange data, the logi-

cal interfaces devices can implement, what it means for a device to be com-

patible with an application, and the compliance requirements that each type

of component (applications, devices, and platforms) must satisfy before that

component can be certified as a member of the ecosystem. We emphasize

that the consortium does not explicitly define specific systems - rather it es-

tablishes constraints on the architecture and interfaces of such systems and

their sub-components.

• The Device Vendor designs, manufactures, and markets their devices. Be-

fore their device can be admitted to the ecosystem they must provide assur-

ance (e.g., via an assurance case) that their device satisfies the ecosystem

compliance requirements for all interfaces the device claims it implements.

• The Application Vendor is responsible for providing assurance that their ap-

plication is safe when instantiated with compatible devices. Application

vendors play a role analogous to“system integrators” in conventional sys-

tems: They define the overall system function, and reason about overall sys-

tem safety. However, the distinction is that they define the system using a

software application and requirements/assumptions on the devices and plat-

forms. They do not specify a single system but a family of possible system

instances that satisfy the functional and safety goals of the clinical scenario.

Thus, the integration is “virtual”: they do not integrate specific physical de-

vices and platforms but specifications of devices and platforms where each

such specification represents a set of compliant components.

22

• The Platform Vendor must provide assurance that their platform will cor-

rectly perform its responsibilities. Because the platform is the trusted base

for each system these responsibilities include correctly executing applica-

tion code, correctly implementing the ecosystem device-application com-

patibility check and providing adequate system security.

• The Certification Authority polices component membership in the ecosys-

tem: The certification authority only grants certification to components that

satisfy the ecosystem compliance requirements. When a component be-

comes certified the authority will sign the component with a digital certifi-

cate. If postmarket surveillance reveals that a component has a previously

undetected problem resulting in non-compliance, the certification authority

can revoke the certificate associated with that component’s make and model.

The digital certificate enables the platforms to use cryptographic methods to

verify whether or not applications or devices have been certified. [77] con-

tains an overview of how cryptographic methods can be used to establish

trust and how the platform acts as a trusted base for this process.

• The HDO does not have assurance responsibilities per se (i.e., they are not

required to provide assurance to any other ecosystem actor) however, they

must still use the application as intended. If the HDO uses an application

in an unintended way (i.e., off-label use [30, 168, 163]) then the (safety)

assurances provided by the Application Vendor for that application are not

guaranteed to apply.

The ecosystem assurance and compliance obligations (combined with the run-

time checks performed by the platform) create a series of “gating functions” that

23

prevent the HDO from assembling potentially unsafe combinations of devices and

applications. Figure 2.1 illustrates the relationship between the ecosystem actors,

ecosystem components, the gating functions and the final physical instantiation of

a system. The unringed circles indicate steps in development or assembly of the

physical system. Lines indicate interactions between the actors. The ringed circles

indicate completion of one of the primary assurance steps and represent the gates.

First the Ecosystem Standards Consortium must establish the ecosystem standards

and component compliance requirements. Once the standards have been defined

the component manufacturers can design their respective components. The certi-

fication authority enforces the first set of gates: components are only allowed into

the ecosystem if they satisfy their respective compliance requirements. The final

set of gates are enforced by the platform: The platform will only let the applica-

tion run if it is being paired with compatible and compliant (i.e., certified) devices

and if the platform can guarantee that the application’s QoS requirements will be

met.

Interfaces, Compatibility, and Device Compliance:

For the purposes of this chapter1 we imagine that device and application inter-

faces are analogous to software interfaces from programming languages like Java:

When an application specifies that it requires a device interface it is much the same

as declaring a field variable in a Java class to have an interface-type: Any object

that implements that interface can be substituted for that variable. Compatibility

checking between devices and applications thus amounts to checking if the device

implements the required interface(s). A device is compliant with an interface if it

1Later chapters will introduce a more sophisticated interface theory: TPMS.

24

Figure 2.1: Ecosystem actors, their interactions and certification activities.

satisfies the Consortium defined compliance requirements for that interface type.

Consider the PCA pump from the motivating example. The Ecosystem Consor-

tium could define a standardized interface for PCA pumps called

“void InfusionTimedTicket(x)” which applications could use to send a timed ticket

to the pump. The Consortium would then define the behavior a PCA pump must

have in order to comply with that interface. In this case, the pump should cor-

rectly implement the ticket timer and cease infusion after some mandated amount

of time.

25

Platform Assurance & Compliance:

A compliant platform must correctly implement compatibility checking and re-

source management. Ideally, applications would be portable across platforms in

the ecosystem. This means that the Consortium would also standardize an exe-

cution model for the applications (i.e., application byte code format, semantics,

and available APIs). A compliant platform must then also correctly implement

the standard model of execution. Different applications will have different levels

of criticality: Applications with low criticality do not pose serious consequences

in the event of failure while failure of a high-criticality application may result

in catastrophic consequences. Because the application is totally dependent on

the platform to function correctly, the assurance requirements for each platform

should be at least as stringent as the assurance requirements for the most critical

application that will be admitted to the ecosystem. While the specifics of these

requirements are well beyond the scope of this paper, we can imagine that the

Consortium could mandate that all Platform Vendors follow guidance that would

result in levels of assurance similar to that of DO-178C Level A. [83].

2.4 The Platform Argument Pattern

Each on-demand application defines a set of possible systems: One for each al-

lowed combination of devices and platform with the application. The multitude

of potential systems implied by a single application presents a challenge for both

the application developer and Certification Authority. The application vendor will

need to devise an assurance argument that explains why all these possible com-

binations are safe. Practically, it won’t be possible for the vendor to analyze or

26

test each combination individually because the number of possible combinations

would prohibitively large. Additionally, new components (i.e., platforms & de-

vices) may be admitted to the ecosystem after the application is certified. Because

the application vendor will not be able to directly analyze all possible device com-

binations they will have to use some form of model-based reasoning: They would

analyze their application for safety using models as proxies for the concrete de-

vices. In theory, as long as the models capture the range of behavior allowed by

the different ecosystem gating functions (i.e., the compliance/certification checks

and the platform compatibily checks) then safety conclusions derived from the

model-based reasoning should hold for any allowed instantiation of the applica-

tion.

Of course, in practice, it is generally impossible to capture all the allowed

behavior of a physical system in a model. If an application vendor is using model-

based reasoning to support safety-claims they should justify why the models they

used are adequate. In our context, adequacy depends on the intended use of the

application (i.e., the meaning of adequate will vary from application to applica-

tion) as well as the assurances on each component provided by the ecosystem

itself. To this end we propose an assurance argument pattern that requires ap-

plication vendors to make model adequacy arguments explicit. Our hope is that

it can help both application vendors and the Certification Authority to quickly

identify assurance deficits or other fallacious reasoning in application assurance

arguments, especially those related to model-based reasoning. The remainder of

this section is organized as follows: First we define the terms the pattern uses.

Then we introduce and explain the platform argument pattern. We will show how

this pattern can be instatiated with our case studies later in Chapter 6.

27

2.4.1 Pattern Terms

Figure 2.2 maps out the terms used in the pattern. Our terms make an explicit dis-

tinction between models2 and physical embodiments. We ultimately care about

the physical embodiments but we are left with the models to analyze. The rows

correspond to the different types of ecosystem components (with the addition of

a row for the environment and instantiated system). The columns separate out

different abstractions for each of the component categories: The specifications re-

fer to the actual specification artifacts created by either the application developer

or device manufacturer, the models are semantic (i.e., analyzable) objects created

by the application developer based on the specifications. The last column (physi-

cal embodiments) represent the physical object that correspond to the models and

specifications.

Each entity in Figure 2.2 is defined as follows: The l devices admitted to the

ecosystem are D1, . . . , Dl. Each Di is compliant with its interface DIi, Each ap-

plication consists of anA and set ofAIj . TheA is the algorithm of the application

and represents executable code. Since these applications are typically real-time

we assume any QoS specifications in the application are contained within A. The

AIjs represent the application’s required device interfaces (If the application uses

n devices then 1 ≤ j ≤ n). The physical emobodiment of each AIj is the set

of devices that implement the interface AIj (we use ' to represent the compat-

2Through out this section we adopt a formal notation that might lead some readers to believe

that when we use the term “model” we are explicitly refering to formal models (i.e., ones that

could be analyzed by a model-checker). This is not the case. We are using “model” in a very

general sense and a model could range from an informal “mental model” to an executable model

that could be simulated to a fully formal model that could be analyzed by a model-checker.

28

Model Specification Physical Embodiment

Devices - DI1, . . . , DIl D1, . . . , Dl

App
Algorithm

Interface

Am A P (A)

AImj AIj Dj = {Di | DIi ' AIj}
Platform - - P

Environment Em - E

System Am ||nj=1 AI
m
j || Em A ||nj=1 AIj {P (A) ||nj=1 Dj || E | Dj ∈ Dj}

Figure 2.2: Pattern Terms: The relationship between models, specifications,

and physical embodiments.

ibility relation). The AImj are models created by the application developer and

are intended to capture all the behaviors of the devices that implement the AIjs.

Since A is a program, it has no physical embodiment until it is executed on a plat-

form, therefore P (A) represents platform P executingA. The device interfaces of

an application are syntactic objects. They don’t have explicit semantics but they

do imply a set of behaviors (i.e., the union of the behaviors of all the compliant

devices that are compatible with that interface)3. Each platform is represented

by a P . E represents the environment where the application will be deployed

and Em is the model of that environment. The last row are the system entities.

Am ||nj=1 AImj || Em is the model of the system. It is the composition of the

application model, the device models, and the environment model (We borrow the

parallel composition operator, ||, from process algebras to denote the combination

of two or more components running together). A ||nj=1 AIj (i.e., the application)

represents a specification of the system. {P (A) ||nj=1 Dj || E | Dj ∈ Dj} is the

3This is true for the purposes of this section. Later, we will introduce a specification theory

called TPMS for device interfaces that does have semantics.

29

set of possible physical systems specified by the application (one system for each

compatible combination of application and device(s)).

2.4.2 The Pattern

Figure 2.3 is a specification of the argument pattern using Goal Structured Nota-

tion (GSN) [102]. There are five components of a GSN-formatted diagram. First,

goals, which are represented by squares, establish some claim to be argued for.

Second, solutions, which are represented by circles, explain how those goals will

be met (and are usually used to refer to evidence). Third, strategies, which are

represented by parallelograms, establish an argumentation strategy (the soundness

of which is typically either intuitive or established externally). Fourth, contexts,

which are represented by stadiums, provide a specification of “the context within

which safety is to be argued” [102]. Contexts apply to all children of the node the

context is attached to. Finally, diamonds represent undeveloped goals (also often

used as placeholders for goals that are elided due to space). Because Figure 2.3

is a pattern specification the subject(s) in each node are variables surrounded by

curly braces; this indicates that the variables are placeholders that will be filled in

with concrete subjects when the pattern is instantiated. If a connector contains a

dot next to a variable (e.g., n), that indicates a multiplicity of sub-goals that must

be unrolled when the pattern is instantiated.

The top level goal (G:AllSat) states that all instantiantions of the applica-

tion must satisfy some property φ in a specified environment. Assurance for

this claim is argued via the platform argument strategy (S:PlatArg). The strat-

egy must always be applied in at least two contexts: One referencing the models

used in the model-based reasoning and the other referencing the ecosystem as-

30

surance and compliance requirements. S:PlatArg requires adequate assurance

for three sub goals. The first goal (G:ModelSat) is the model-based reasoning

step. The argument application vendor must argue that the chosen models sat-

isfy φ. The remaining two goals explicitly relate the models used in G:ModelSat

to the possible physical systems via the ecosystem assurance and compliance re-

quirements. G:ModelsAdequate asks the developer to argue why the models

chosen in G:ModelSat capture all the possible (relevant) behaviors allowed by

the application’s specification. Typically, the arguments for the adequacy of the

environment, application, and devices models will all take on a different character

so the pattern separates the arguments for each as a different sub-goal (Note the

multiplicity on the G: DevModel{N}Adq. that forces a sub-goal for each device

model). G:PlatformAssurance asks the developer to argue why the minimum

level of assurance provided by any ecosystem compliant platform is sufficient to

support the application: The application developer relies on the platform to cor-

rectly execute their application and ensure that the application is only instantiated

with compatible devices. If a platform fails to do either of these correctly, then φ

could be violated even if sound models were used in G:ModelSat.

2.5 Related Work

The original impetus for the research that resulted in this dissertation came from

the Medical Device Plug & Play (MD PnP) program at CIMIT [139]. The ultimate

goal of the MD PnP program is a medical device ecosystem where medical de-

vices can seamlessly integrate in a plug & play manner. The MD PnP program has

spawned a great deal of research seeking to understand the safety aspects of inter-

31

G: AllSat
There is adequate assurance
that All possible instantiations
of {App} satisfy {ɸ} in {E}

S: PlatArg
Argue via the
platform approach

G: ModelSat
{Am II AI1

m II … II AIn
m II Em }

satisfies {ɸ}

G: ModelsAdequate
the models {Am} , {AIj

m}
 (1 <= j <= n), and {Em} are
adequate for {ɸ} and {E}

G: PlatformAssurance
There is adequate assurance
that all platforms in the
ecosphere will correctly
execute {App}’s {A} and will
correctly perform app device
matching.

G: {Env}ModelAdq.
The model {Em} captures the
behavior of {E} relevant to {ɸ}.

G: DevModel{N}Adq.
Given ecosphere compliance
assurances: If {Di} complies
with {DIi} and {DIi} is
compatible with {AIn} then
{AIn

m} captures the behavior of
{D} relevant to {ɸ}.

Cntx: Models
The models {Am},
{Em}, and for all
1 <= j <= n {AIj

m}
(n = # of dev. req.)

Cntxt: Ecosphere
Ecosphere
compliance
mechanisms and
associated
assurance.

G: AlgModelAdq
The model Am captures the
behavior of A relevant to ɸ.

n

Figure 2.3: The argument pattern for application assurance.

operable medical systems and much of that research either inspired or influenced

the contents of this dissertation.

One result of the MD PnP program is the Integrated Clinical Environment

(ICE) standard [23]. ICE defines a functional architecture for plug & play med-

ical systems (see Figure 2.4). The architecture consists of a supervisor computer

to run supervisory applications, a network controller to manage communications

between devices and applications, and the interoperable devices themselves. In

terms of the vocabulary of this dissertation we can think of the supervisor and net-

workcontroller as the platform. While ICE defines a platform-based architecture

at a high-level it does not specifically proscribe the technologies required to make

32

Figure 2.4: The Integrated Clinical Environment functional architecture.

the system work, nor does it describe how to formulate a regulatory framework or

make assurance arguments.

There have been a number of research efforts to understand how to engineer

medical applications assuming an interoperable ecosystem exists. [20] describe

how to design an formally verify an application that synchronizes the operation of

an x-ray and ventilator. [104] developes a device coordination protocol to ensure

that a laser scalpel and ventilator can safely synchronize even in the presence of

network faults. [149] developed and verified a closed-loop algorithm that manages

the delivery of opiods administered by a PCA pump and maintains patient safety

even in the presence of network outages.

One problem faced by the platform approach is trust, i.e., how can a platform

trust that a device actually has the capabilities it claims it has and is not counter-

33

feit? One solution to this problem was described in [77]. Their solution allows

the platform to determine the authenticity of a device by examinging a device’s

cryptographic certificate: Whenever a device is certified the certifier will sign the

devices cryptographic certificate. Then the platform determines the authenticity

of the device much in much the same way as a web browser determines the au-

thenticity of a remote server via SSL.

While, as far as we know there has not been any work on assurance arguments

for plug & play or on-demand systems, there has been some work on assurance

arguments for model-based development [28]. The authors of [28] describe an

assurance argument pattern for systems developed using a model-based develop-

ment process. Like our proposed pattern, their pattern requires that the argument

preparer to first prove a propery using a model, and then justify the use of that

model. Their pattern does not address the peculiarities of model based reason-

ing for on-demand systems. There has been some interesting work on modular

certification [161] and compositional safety arguments [103]. These works are

primarily concerned with argument reuse but introduce some concepts that may

be applicable to providing assurance for on-demand systems.

34

Chapter 3

Time Parametric Modal

Specifications

Our goal is to make a formal specification language to model device behavior

suitable for use in a regulatory framework as described in Chapter 2. Application

developers would use the formalism to express requirements on device behav-

ior and would embed the requirements specification into the application. Device

manufacturers would use the formalism to express the behavior of their device

and would embed the behavior specification into the device. When the user tries

to start an application with a set of devices, the platform will check to see if the

devices behavior specification satisfies (i.e., is compatible with) the applications

requirements. Ideally, the formalism would allow for explicit descriptions of re-

active component behavior, allow for variability (i.e., let application developers

indicate acceptable variability), enable top-down model-based reasoning, support

automated compatibility checking between device behaviors and application re-

quirements, and allow us to model variablilty in allowed behavior (both functional

35

and timing).

r0

r1

r2

off? flowRate!0

on? flowRate!1

(a)

r0

r1

r2

r3

off? flowRate!0

bolus?

on?
flowRate!1

bolus?

flowRate!2

(b)

r0

r1

r2 r3

off?

flowRate!0

bolus?

on?

flowRate!1

bolus?

flowRate!2

overheat

restore

r6

alarm
air

r4 r5

on?
off?

flowRate!0
bolus?

(c)

Figure 3.1: Labeled Transition Systems for three different types of PCA

pumps. devices.

Modal specifications [15] are category of formalisms with attributes that make

them attractive as a formalism for device behavior modeling. First, they allow for

the explicit modeling of component behavior via labeled transition systems (LTS).

For example, Figure 3.1 shows the (unitmed) behavior of three different types of

infusion pumps modeled as LTSs. The labels on the edges indicate interactions

with the environment. The pump in Figure 3.1a is very simple, it outputs flow

as long as it receives an on signal, and it outputs no flow while it receives an off

signal. Figure 3.1b models a simple PCA pump. It behaves like the pump of

Figure 3.1a except that it outputs an increased flow when it gets a bolus signal.

Figure 3.1c models a “smart” PCA pump. The pump will automatically shut itself

off if it detects some dangerous situations (e.g., motor overheating or bubbles in

the infusion line).

Second, modal specifications are designed to allow for functional variability.

Modal specifications get their name because they extend classical labeled transi-

36

s0

s1

s2 s3

s4 s5

off? flowRate!0

bolus?

on?

τ

τ

flowRate!1

bolus?

flowRate!2

on?
off?

flowRate!0
bolus?

Figure 3.2: Example MTS specification of a PCA pump.

tion systems with a modality on transitions. Must-transitions specify behaviors all

satisfying implementations are required to contain. Figure 3.2 shows an example

modal input/output automata (MIOA) [121] specifying a family of infusion pump

behaviors. The solid lines indicate must-transitions and the dotted lines indicate

may-transitions. Implementations (i.e., LTSs with no may-transitions) are related

to specifications via a refinement relation. We say that an implementation refines

(i.e., satisfies) a specification if it has all the required behavior of the specifica-

tion and all of its behavior is allowed by the specification. The pumps modeled

in Figure 3.1 are all refinements of the MIOA specification in Figure 3.2. In this

way, modal specifications would let application designers succinctly specify the

set of device behaviors compatible with the safety and effectiveness goals of their

application.

May/must modality is useful for an on-demand ecosystem because it allows

application developers to be explicit about which behaviors are necessary and

which behaviors are irrelevant. For example, lets say an application developer

knows that their application needs an infusion pump but the safety of their appli-

cation is not affected by the pump shutting itself off for some unspecified reason.

37

They could specify the device requirements of their application using the MIOA

in Figure 3.2. This specification would let users use any of the pumps from Fig-

ure 3.1 with the application (as well as any others that refines the specification),

increasing the flexibility of the application.

Third, many modal specification theories inherently allow for top-down rea-

soning. For most modal specification formalisms it is possible to show they pre-

serve many useful properties (e.g., safety or liveness) under composition and re-

finement. Imagine if our on-demand ecosystem used modal specifications to ex-

press device behaivor and uses modal refinement as a means to check device appli-

cation compatibility. If so, it would be possible to verify system safety properties

by verifying a system model created by composing a model of the application

with its device requirements specification. Then, because the platforms would use

refinement to check compatibility between applications and devices we would be

ensured that any allowed combination will satisfy the safety properties.

Lastly, it’s important for a behavior specification formalism to have the ability

to model behavior w.r.t. wall clock time: Most medical systems are inherently

real-time systems, i.e., if they do something at the wrong time their safety or

effectiveness could be compromised. While there are a collection of modal spec-

ification formalisms with support for modeling time (e.g., [68, 182, 35, 56, 34]),

they either dont treat timing variability separately from functional variability (e.g.,

to model differences in the precision of actuators or processing capabilities of dif-

ferent devices), or they dont support the composition of specifications (e.g., [32]).

The inability to model timing variability separately from functional variability

can be awkward in practice: Effectively, it means all implementations of a timed

modal specification must inherit all of its timing behavior, including any non-

38

determinism or imprecision. We argue that it is important for designers to specify

whether implementations can refine the timing behavior of specifications, e.g., to

allow for implementations that are faster or more precise.

In this Chapter we introduce Time Parametric Modal Specifications (TPMS).

TPMS allow for the specification of functional variability separately from tim-

ing variability, support parallel composition, and preserve important (safety and

liveness) properties under refinement and composition. To the best of our knowl-

edge, TPMS is the first modal specification theory that explicitly supports parallel

composition of specifications and the modeling of timing variability.

This Chapter is organized as follows: First we give a notation glossary in Sec-

tion 3.1. Then, we formally define TPMS, their semantics, notion of refinement,

parallel composition and property preservation in Section 3.2. Section 3.3 gives

a number of procedures for deciding important decision problems (i.e., reacha-

bility checking and refinement checking). Section 3.3 gives a survey of related

work and explains why other modal specifications don’t separate functional from

timing variability.

3.1 Notation Glossary

I,M,P ,Q,S,X ,Y A specification (i.e., a IOTA, MIOTA, or TPMS).

I,M, P,Q, S,X, Y Transition transition system (TTS or MTTS).

α, β, γ . Parameters.

a, b . Actions.

c, x, y . Clock variables.

39

v, p, f . Valuations.

r . Clock reset set.

s . State.

S . States.

Θ . The set of natural-numbered parameters for a TPMS.

∼ Used where the comparison operators <,≤, >, or ≥ could be used.

|=3 . May satisify.

|=2 . Must satisify.

↪→2 . Syntactic must transition (sometimes set of).

↪→3 . Syntactic may transition (sometimes set of).

→2 . Semantic must transition (sometimes set of).

→3 . Semantic may transition (sometimes set of).

→d . Semantic delay transition (sometimes set of).

;2 . Zone-graph must transition (sometimes set of).

;3 . Zone-graph may transition (sometimes set of).

;d . Zone-graph delay transition (sometimes set of).

v Refinement between syntactic specifications (e.g., TPMS or MIOTA).

<∼ . . Weak refinement between syntactic specifications (e.g., TPMS or MIOTA).

40

� Refinement between transition systems (e.g., TTS or MTTS).

- Weak refinement between transition systems (e.g., TTS or MTTS).

JMK . Semantics ofM. IfM is an MIOTA JMK is an MTTS. IfM is a TPMS

then JMK is a set of MTTS.

φ, ψ State property (linear formula over clocks and locations).

3.2 Modal Specifications for Timing Variability

In this section, we propose a new notion of time-parametric modal specifica-

tions which can be used to describe the variability of timing and functional be-

havior in corresponding implementations. We first define parametric clock con-

straints in Section 3.2.1, and present the syntax and operational semantics of time-

parametric modal specifications in Section 3.2.2. We develop the specification

theory on modal refinement, property preservation and compositional reasoning

in Sections 3.2.3, 3.2.4 and 3.2.5, respectively.

3.2.1 Clocks

As in the classical theory of timed automata [5], we use a finite set of real-valued

clock variables, called clocks for short, to describe the progress of time. Given a

finite set of clocks Clk , we refer to a function v : Clk → R≥0 as a clock valuation.

Given d ∈ R≥0, let v+d denote the clock valuation that assigns all clocks x ∈ Clk

to v(x)+d. The set of all clock valuations is denoted by RClk
≥0 . We use 0 to denote

the clock valuation that assigns 0 to all clocks in Clk . Clocks can be reset to zero:

for r ⊆ Clk , let v[r 7→ 0] denotes the clock valuation that resets all clocks in

41

r to 0 and keeps the value v(x) for clocks x ∈ Clk \ r. A clock constraint is

a conjunctive formula of atomic predicates x ∼ c, where x ∈ Clk is a clock,

∼ ∈ {≤, <,=, >,≥} is an equality/inequality relation operator and c ∈ N is a

constant. A clock valuation v satisfies a clock constraint g, denoted by v |= g, iff

the proposition formula of g resolves to true when substituting all occurrence of

clock x with value v(x).

To specify timing variability, we extend the notion of clock constraints to para-

metric clock constraints, which are conjunctive formulae of predicates x ∼ (c+α)

where α is a non-negative integer parameter bounded by a set of linear constraints

C. Let Θ be a set of parameters, we call a function f : Θ → N a parameter

assignment. A parameter value f(α) is valid if it satisfies the linear constraints

C and c ± f(α) ∈ N. Let g be a parametric clock constraint; by assigning a set

of valid values f to its parameters Θ, we obtain an instance of g as a clock con-

straint, denoted by g[f(Θ)]. For example, a parametric clock constraint x ≤ 1+α

bounded by 1 ≤ α ≤ 3, α ∈ N has three instances: x ≤ 2, x ≤ 3 and x ≤ 4.

A clock valuation v satisfies a parametric clock constraint g, denoted by v |= g,

iff v satisfies all instances of g; and we say that v partially satisfies g, denoted by

v |=p g, iff v satisfies some instances of g. Let gi for i = 1, 2 be two paramet-

ric clock constraints, each of which is bounded by a set of linear constraints Ci

over parameters Θi; their conjunction g = g1 ∧ g2 is then bounded by the linear

constraints C = C1 ∧ C2 over parameters Θ = Θ1 ∪Θ2.

For the rest of the paper, we use B(Clk) (resp. P(Clk)) to denote the set

of clock constraints over clocks in Clk (resp. parametric clock constraints over

clocks Clk and parameters in Θ). We have B(Clk) ⊆ P(Clk), since a clock con-

straint can be considered as a special case of parametric clock constraints whose

42

instance is itself.

3.2.2 Syntax and Semantics

Now we propose the notion of time-parametric modal specifications, sometimes

called specifications for short in this paper, to capture the timing and functional

variability of different implementations modeled as Input/Output Timed Automata

(IOTA) (timed automaton [33] that distinguishes input, output and internal ac-

tions. Our IOTA is comparable to the restricted class of Lynch’s Timed I/O Au-

tomata (TIOA) whose trajectories can be modeled with what Lynch calls Alur-Dill

automata [101]

Formally a IOTA is defined as follows:

Definition 3.2.1 (Input/Output Timed Automata). An Input/Output Timed Au-

tomata (IOTA) A is a tuple (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3) where

• Loc is a finite set of locations, and l ∈ Loc is an initial location

• Clk is a finite set of clocks

• Act = Act I]ActO] τ is a finite set of actions partitioned into input Act I ,

output ActO and internal Act τ actions

• Inv : Loc → B(Clk) assigns invariants to locations

• ↪→2 ⊆ Loc×B(Clk)×Act×2Clk×Loc is the transition relation describing

the action transitions.

The semantics of a IOTA specification is an infinite transition system (Defini-

tion 3.2.2) that models the time-delay and action transitions allowed by the clocks

constraints:

43

Definition 3.2.2 (Timed Transition System). A timed transition system (TTS) M

is a tuple (S, s,Act ,→2,→3,→d) where

• S is an (infinite) set of states, s ∈ S is an initial state, and Act is a set of

actions

• →2⊆ S×Act ×S is the action transition relation, and→d ⊆ S×R≥0×S
is the delay transition relation

Definition 3.2.3 (Semantics of IOTA). The semantics of an I/O timed automaton

A = (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3), written JAK, is a timed transition system

(TTS) represented as a tuple (S, s,Σ,→) where

• S = {〈l, v〉 ∈ Loc × RClk
≥0 | v |= Inv(l)} is an infinite set of states

• s = 〈l,0〉 is an initial state

• Σ = Act ∪ R≥0 is the alphabet

• 〈l, v〉 a−→2 〈l′, v′〉 if there is an action transition l
g,a,r
↪→ 2 l′ in A such that

v |= g, v′ = v[r 7→ 0] (each clock in r is reset to 0) and v′ |= Inv(l′)

• 〈l, v〉 d−→d 〈l, v + d〉 for d ∈ R≥0 if v + d |= Inv(l)

A transition l
g,a,r
↪→ l′ is enabled at location l when guard g ∈ B(Clk) holds and

action a ∈ Act occurs; any clock in r ⊆ Clk will be reset to 0 once the transition

has been taken and the new location is l′.

IOTA can be extended to capture functional variability by distinguishing be-

tween may and must transitions [183, 50]. May-transitions represent allowed be-

havior, while must-transitions capture the required behavior. This extension of

IOTA are called modal IOTA (MIOTA). Formally, MIOTA are defined as follows:

44

Definition 3.2.4 (Modal I/O Timed Automaton). A modal I/O timed automaton

(MIOTA) A is a tuple (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3) where

• Loc is a finite set of locations, and l ∈ Loc is an initial location

• Clk is a finite set of clocks

• Act = Act I]ActO] τ is a finite set of actions partitioned into input Act I ,

output ActO and internal Act τ actions

• Inv : Loc → B(Clk) assigns invariants to locations.

• ↪→2 ⊆ Loc × B(Clk) × Act × 2Clk × Loc is the must transition relation

describing required behavior

• ↪→3 ⊆ Loc × B(Clk) × Act × 2Clk × Loc is the may transition relation

describing allowed behavior. We require that ↪→2⊆↪→3

We say an MIOTA

Definition 3.2.5 (Implementation). We say that A is an implementation (i.e.,

IOTA), if there is no variability, i.e., ↪→2=↪→3.

The operational semantics of MIOTA are then given by modal Timed Transi-

tion Systems (i.e., MTTS), which likewise extend TTS with may/must distinction

on transitions. The transitions of the MTTS inherit their modality from the modal-

ity of the edge that induces them in the MIOTA:

Definition 3.2.6 (Modal Timed Transition System). A modal timed transition sys-

tem (MTTS) M is a tuple (S, s,Act ,→2,→3,→d) where

45

• S is an (infinite) set of states, s ∈ S is an initial state, and Act is a set of

actions

• →2 ⊆ S×Act×S is the must action transition relation,→3 ⊆ S×Act×S
is the may action transition relation, and→d ⊆ S × R≥0 × S is the delay

transition relation

Definition 3.2.7 (Operational Semantics of MIOTA). The operational semantics

of a modal timed I/O automaton A = (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3), denoted

by JAK, is a modal timed transition system (MTTS) represented as a tuple (S, s,Σ,→
) where

• S = {〈l, v〉 ∈ Loc × RClk
≥0 | v |= Inv(l)} is an infinite set of states

• s = 〈l,0〉 is an initial state

• Σ = Act ∪ R≥0 is the alphabet

• 〈l, v〉 a−→2 〈l′, v′〉 (resp. 〈l, v〉 a−→3 〈l′, v′〉) if there is a must (resp. may)

action transition l
g,a,r
↪→ 2 l′ (resp. l

g,a,r
↪→ 3 l′) in M such that v |= g, v′ =

v[r 7→ 0] and v′ |= Inv(l′)

• 〈l, v〉 d−→d 〈l, v + d〉 for d ∈ R≥0 if v + d |= Inv(l)

We extend MIOTA to support timing variability by allowing natural number

valued parameters in the clocks contraints. We call this extension Time Para-

metric Modal Specifications. Syntactically, a time-parametric modal specification

looks similar to a MIOTA; it distinguishes must and may transition relations for

functional variability, and also allows parametric clock constraints for timing vari-

ability:

46

Definition 3.2.8 (Time-Parametric Modal Specification). A time-parametric modal

specification (TPMS)M is a tuple (Loc, l,Clk ,Θ,Act , Inv , ↪→2, ↪→3, C(Θ)) where

• Loc, l,Clk and Act are the same as in Definition 3.2.4

• Θ is a set of parameters that can take on values from N.

• Inv : Loc → P(Clk) assigns parametric clock constraints in the form of

x ≤ c± α or x < c± α to locations, where c, α ∈ N

• ↪→2 ⊆ Loc × P(Clk) × Act × 2Clk × Loc is the must transition relation

describing required behavior

• ↪→3 ⊆ Loc × P(Clk) × Act × 2Clk × Loc is the may transition relation

describing allowed behavior

• C(Θ) is a set of linear constraints on a finite set of non-negative integer

parameters Θ that are used in P(Clk)

We consider only consistent specifications where ↪→2⊆↪→3, i.e., a required

transition should also be allowed. Definition 3.2.8 coincides with Definition 3.2.4

if ↪→2=↪→3, P(Clk) = B(Clk) and Θ = ∅.
Intuitively, we can see that a time-parametric modal specification is a succint

way to specify a set of MIOTA; one for each valid valuation of the parameters.

Example Figure 3.3 shows a time-parametric modal specification for an infu-

sion pump, which has 4 locations: detect, disabled, start and infusion. The

initial location detect is indicated with an incoming arrow. There is only one

clock variable x. The actions include input (“bolus?”, “off pump?”) and out-

put (“alarm!”, “pump ison!”, “pump isoff!”). There are three parameters Θ =

47

infusiondetect start
bolus?

x := 0

pump ison!

x ≥ α
x ≤ β

alarm!

pump isoff!

off pump?

C : α ≤ β ≤ 3 and γ ≤ 4 and α, β, γ ∈ N

x ≥ γ

disabled

x := 0 x ≤ γ

off pump?
x := 0

off pump?
x := 0

x ≥ 5

Figure 3.3: An example of time-parametric modal specification.

{α, β, γ}, bounded by the linear constraints α ≤ β ≤ 3 ∧ γ ≤ 4 and α, β, γ ∈ N.

The invariant on detect and disabled is true (omitted in the figure), while the

invariants on start and infusion are the parametric clock constraints x ≤ β and

x ≤ γ, respectively. Must (resp. may) transitions are indicated by solid (resp.

dashed) lines in the figure. For example, once a pump detects a “bolus?” request,

it must move to the start location. If the pump is in detect or start it will be

disabled if it receives a “off pump” signal. Implementations are allowed to stay

disabled or return to detect after 5 units of time has elapsed.

Then, the semantics of TPMS can be defined in terms of the semantics of

MIOTA:

Definition 3.2.9 (Semantics of TPMS). For a time-parametric modal specification

M = (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3, C(Θ)), its semantics, denoted by JMK, is

a finite set of MTTSs such that there is a one-to-one mapping between each valid

parameter assignment f(Θ), an MIOTA and its MTTS M = (S, s,Act ,→2,→3

,→d).

48

3.2.3 Modal Refinement

We say that a MIOTA satisfies a TPMS if the MIOTA refines the TPMS. Before

we can formally define refinement between a MIOTA and a TPMS we need to

define refinement between two MIOTA. We say that a MIOTAM1 refines another

MITOA M2 if the operational semantic MTTS of M1 refines the operational

semantic MTTS ofM2:

Definition 3.2.10 (Modal Refinement of MTTSs). Let Mi = (Si, si,Act ,→2,i

,→3,i,→d,i) for i = 1, 2 be two MTTSs. We say that M1 modally refines M2,

denoted by M1 � M2, iff there exists a binary relation R ⊆ S1 × S2 containing

(s1, s2) such that for each (s, t) ∈ R we have

• for all (t, a, t′) ∈→2,2 there is some (s, a, s′) ∈→2,1 with (s′, t′) ∈ R

• for all (s, a, s′) ∈→3,1 there is some (t, a, t′) ∈→3,2 with (s′, t′) ∈ R

• for all (s, d, s′) ∈→d,1 there is some (t, d, t′) ∈→d,2 with (s′, t′) ∈ R, and

for all (t, d, t′) ∈→d,2 there is some (s, d, s′) ∈→d,1 with (s′, t′) ∈ R

Thus,M1 must exhibit all the required behavior ofM1, andM2 must exhibit

all the allowed behavior of M1. Since a TTS (Definition 3.2.7) can be consid-

ered as a special case of MTTSs where →2=→3, the above definition is also

applicable for A �M where A is a TTS and M is a MTTS.

Definition 3.2.11 (TPMS Refinement). Let A be a MIOTA and M be a TPMS

over the same actions. We say that A refines M, denoted by A v M, if there

exist a MTTS M ∈ JMK such that JAK �M . IfA is an implementation, then we

say that A implementsM.

49

infusiondetect start
bolus?

x := 0

pump ison!

x ≥ 2

x ≤ 3

pump isoff!

off pump?

x ≥ 4

disabled

x := 0 x ≤ 4

off pump?
x := 0

off pump?
x := 0

x ≥ 5

(a)

infusiondetect start
bolus?

x := 0

pump ison!

x ≥ 1

x ≤ 3

pump isoff!

off pump?

x ≥ 5

disabled

x := 0 x ≤ 5

off pump?
x := 0

off pump?
x := 0

x ≥ 2

(b)

Figure 3.4: Two example MIOTAs.

A time-parametric modal specificationMmay admit a set of implementations

with timing and functional variability. By fixing a parameter assignment for the

specification, a MTTS M ∈ JMK representing certain timing behavior is chosen;

and by checking whether the operational semantics of A modally refines M , we

compare their functional behavior. A is an implementation ofM when both the

timing and functional requirements are met. Later in Section 3.3.5, we present a

symbolic method to check the refinement relation.

Example Consider the time-parametric modal specification shown in Figure 3.3.

The MIOTA in Figure 3.4a is an implementation of the specification, where the

may transition from disabled to detect is implemented and the parameters are

fixed for α = 2, β = 3, γ = 4. The MIOTA in Figure 3.4b is not a valid imple-

mentation for two reasons. First, both the specification and implementation can

reach the location infusion with x = 0. The system in Figure 3.4b can then delay

up to 5 timeunits while in location infusion (the invariant is x ≤ 5), but the spec-

ification only allows for a delay of γ timeunits with γ ≤ 4. Second, the transition

from disabled to detect becomes disabled after only 2 units of time has elapsed.

Often we only care about the “internal” behavior of a component; we don’t

50

care how a component reaches some externally visible behavior only that it does.

Like many other types of modal specifications we provide a notion of weak refine-

ment and implementation which hides the internal computation of a component.

Before we can proceed to weak-refinement (and implementation) we need to de-

fine weak action transitions and weak delay transitions. Unlike normal delay tran-

sitions, weak-delay transitions have a (may-must) modality. We write d
=⇒2d for the

set of must-delay transitions and d
=⇒3d for the set of weak-delay transitions. This

distinction is required because what is externally observed as a delay transition

may internally involve τ steps, which are either may or must.

Definition 3.2.12 (Weak Transitions). The weak must (resp. may) action transi-

tion a
=⇒2 (resp. a

=⇒3) and weak must (resp. may-delay) delay d
=⇒2d (resp. d

=⇒3d)

are defined via the following rules:

s
a−→2 s

′ a ∈ Act

s
a
=⇒2 s′

s
a−→3 s

′ a ∈ Act

s
a
=⇒3 s′

s
τn−→2 s

′, n ∈ N
s

0
=⇒2d s′

s
τn−→3 s

′, n ∈ N
s

0
=⇒3d s′

s
d−→2 s

′

s
d
=⇒2d s′

s
d−→3 s

′

s
d
=⇒3d s′

s
d1=⇒2d s

′, s′
d2=⇒2d s

′′

s
d1+d2===⇒2d s′′

s
d1=⇒3d s

′, s′
d2=⇒3d s

′′

s
d1+d2===⇒3d s′′

In other words, any number of consecutive τ transitions are observed as a

0−delay transition. If one or more of the τ transitions in the sequence are not

must-transitions then then the delay transition is a “may” delay-transition.

Armed with a definition for weak-transitions we can now relax Definition

3.2.10 into a defintion for weak-refinement of MTTSs:

51

Definition 3.2.13 (Weak Modal Refinement of MTTSs). LetMi = (Si, si,Act ,→2,i

,→3,i,→d,i) for i = 1, 2 be two MTTSs. We say that M1 weakly modally refines

M2, denoted by M1 -M2, iff there exists a binary relation R ⊆ S1 × S2 contain-

ing (s1, s2) such that for each (s, t) ∈ R we have

• for all (t, a, t′) ∈⇒2,2 there is some (s, a, s′) ∈⇒2,1 with (s′, t′) ∈ R

• for all (s, a, s′) ∈⇒3,1 there is some (t, a, t′) ∈⇒3,2 with (s′, t′) ∈ R

• for all (s, d, s′) ∈⇒d2,2 there is some (t, d, t′) ∈⇒d2,1 with (s′, t′) ∈ R

• for all (s, d, s′) ∈⇒d3,1 there is some (t, d, t′) ∈⇒d3,2 with (s′, t′) ∈ R

Note that the differences between strong (Definition 3.2.10) and weak refine-

ment are the replacement of the transition relation with the weak version and an

extra rule to account for the existence of may-delay transitions.

Definition 3.2.14 (Weak Implementation). Let A be a MIOTA andM be a time-

parametric modal specification over the same actions. We say that A is a weak

implementation of M, denoted by A <∼ M, if there exist a MTTS M ∈ JMK

such that JAK -M .

It is also clear that implementation implies weak implementation:

Lemma 3.2.1 (Implementation implies Weak Implementation). LetA be a MIOTA

andM be a TPMS. Then A vM implies A <∼ M.

3.2.4 Property Preservation

Property preservation (i.e., the satisfaction of certain property on a specification

implies that all implementations also satisfy the property) is crucial for any speci-

fication theory because it allows designers to predict how systems will behave by

52

analyzing their specifications. In this section, we prove that the TPMS implemen-

tation relation preserves state-reachability, quiescence-freedom, and

timelock-freedom.

Reachability

Let φ be a linear formulae over the locations and clocks of some specificationM.

We say that φ is reachable in M if there is some path from M’s initial state to

a state satisfying φ. Reachability checking is crucial for safety analysis: If we

can define a set of “bad” or “unsafe” states we want to ensure that those states

cannot be reached in any implementation (i.e., that it is not may-reachability).

Conversely, we may also want to determine if all implementations are able to

reach some useful state (i.e., the state is must-reachable).

Before we can reason about reachability preservation we need to formally de-

fine may and must reachability:

Definition 3.2.15 (May-reachability). LetM be a TPMS and φ be a formula over

locations and clock values (i.e., states). Then if there is some path fromM’s initial

state to a state satisfying φ consisting of may-transitions in at least one MTTS

M ∈ JMK then we say that φ is may-reachable inM (writtenM |=3 EF φ).

Definition 3.2.16 (Must-reachability). LetM be a TPMS and φ be a formula over

locations and clock values (i.e., states). Then if there is some path fromM’s initial

state to a state satisfying φ consisting of must-transitions in all MTTS M ∈ JMK

then we say that φ is must-reachable inM (writtenM |=2 EF φ).

Note thatM |=2 EF φ impliesM |=3 EF φ because all must transitions are

also may transitions.

53

When it comes to safety analysis we generally want to know that if the speci-

fication cannot reach some bad state then neither can any of its implementations.

The TPMS refinement relation preserves negative may-reachability:

Lemma 3.2.2. Let A be a MTTS and M be a MTTS such that A � M . Let ψ be

a formula over the states of M . Suppose M 6|=3 EF ψ, then A 6|=3 EF ψ.

Proof. Because M 6|=3 EF ψ we know that there is no path consisting of may

or delay transitions in M from M ’s starting state through the states of M that

passes through some state s such that s |= φ. By definition of refinement of

MTTS (Definition 3.2.10) we know that A has a subset of the may and delay

transitions from M . We can conclude that there is no path consisting of may or

delay transitions in A from A’s starting state through the states of A that passes

through some state s such that s |= φ.

Theorem 3.2.3. Let A be a MIOTA implementation of a time-parametric modal

specificationM, i.e., A vM. Let ψ be a formula over the states ofM. Suppose

M 6|=3 EF ψ, then A 6|=3 EF ψ.

Proof. Since A vM, based on Definition 3.2.14, there must exist a MTTS M ∈
JMK such that JAK �M . Given thatM 6|=3 EF ψ, we know thatM 6|=3 EF ψ for

every M ∈ JMK. Thus, based on Lemma 3.2.2, we have that A 6|=3 EF ψ.

Sometimes one wants to know if a state can be reached in all implementations.

The implementation relation preserves positive must-reachability:

Lemma 3.2.4. Let A be a MTTS and M be a MTTS such that A � M . Let ψ be

a formula over the states of M . Suppose M |=2 EF ψ, then A |=2 EF ψ.

54

Proof. Because M |=2 EF ψ we know that there is a path π consisting of must

and delay transitions in M from M ’s starting state through the states of M that

passes through some state s such that s |= φ. By definition of refinement of MTTS

(Definition 3.2.10) we know that A has all the must and delay transitions of M .

Therefore, we conclude that there is a path π consisting must and delay transitions

in A from A’s starting state through the states of A that passes through some state

s such that s |= φ.

Theorem 3.2.5. Let A be a MIOTA implementation of a time-parametric modal

specificationM, i.e., A vM. Let ψ be a formula over the states ofM. Suppose

M |=2 EF ψ, then A |=2 EF ψ.

Proof. Since A vM, based on Definition 3.2.14, there must exist a MTTS M ∈
JMK such that JAK �M . Given thatM |=2 EF ψ, we know thatM |=2 EF ψ for

every M ∈ JMK. Thus, based on Lemma 3.2.4, we have that A |=2 EF ψ.

Quiescence Freedom

Informally, a state is quiescent if it is “inactive”, i.e., a system is quiescent if

it will not engage in any actions in the future. We can think of quiescence as

a deadlock-like state where time is still allowed to pass. The implementation

relation preserves negative reachability of quiescent states.

Definition 3.2.17 (Quiescent States). Let s be some state of TPMSM. We say

that s is may-quiescent (written s |=3 Ω) if all the paths starting at s consist of

only delay transitions and may transitions.

Lemma 3.2.6. Let A be a MTTS and M be a MTTS such that A � M . Let Ω be

the quiescence property. Suppose M 6|=3 EF Ω, then A 6|=3 EF Ω.

55

Proof. BecauseM 6|=3 EF Ω we know that there is no reachable state s inM such

that s |=3 Ω. There are two cases to consider:

• Case 1: There is some state s in A which is may-quiescent. Then by Theo-

rem 3.2.3 we know it is not reachable.

• Case 2: There is no state which is may-quiescent in M . This means that

for all states s in M there are paths starting at s consisting of both delays

and must-transitions. By definition A must include all those transitions and

therefore all those paths. We conclude that there are no may-quiescent states

in A.

Theorem 3.2.7. Let A be a MIOTA implementation of a time-parametric modal

specificationM, i.e.,A vM. Let Ω be the quiescence property. SupposeM 6|=3

EF Ω, then A 6|=3 EF Ω.

Proof. Since A vM, based on Definition 3.2.14, there must exist a MTTS M ∈
JMK such that JAK � M . Given thatM 6|=3 EF Ω, we know that M 6|=3 EF Ω

for everyM ∈ JMK. Thus, based on Lemma 3.2.6, we have thatA 6|=3 EF Ω.

Timelock Freedom

A state is timelocked if time cannot progress. It is possible to express a TPMS

where some implementation has a timelocked state. Like quiescence-freedom,

the implementation relation preserves negative reachability of timelocked states.

Definition 3.2.18 (Timedlocked States). Let s be some state of TPMSM. We say

that s is may-timelocked (written s |=3 EF Γ) if all the paths starting at s consist

only of may transitions or the 0-delay transition.

56

Lemma 3.2.8. Let A be a MTTS and M be a MTTS such that A � M . Let Γ be

the timelock property. Suppose M 6|=3 EF Γ, then A 6|=3 EF Γ.

Proof. BecauseM 6|=3 EF Γ we know that there is no reachable state s ofM such

that s |=3 EF Γ. There are two cases to consider:

• Case 1: There is some state s in A which is has may-timelocked. Then by

Theorem 3.2.3 we know it is not reachable.

• Case 2: There is no state which has may-timelock in M . This means that

for all states s in M there are paths starting at s consisting either of delay

transitions such that d ≥ 0 or must-transitions. By definitionAmust include

all those transitions and therefore all those paths. We conclude that there are

no may-timelocked states in A.

Theorem 3.2.9. Let A be a MIOTA implementation of a time-parametric modal

specificationM, i.e., A v M. Let Γ be the timelock property. SupposeM 6|=3

EF Γ, then A 6|=3 EF Γ.

Proof. Since A vM, based on Definition 3.2.14, there must exist a MTTS M ∈
JMK such that JAK �M . Given thatM 6|=3 EF Γ, we know that M 6|=3 EF Γ for

every M ∈ JMK. Thus, based on Lemma 3.2.8, we have that A 6|=3 EF Γ.

The theorems in this subsection also hold for weak implementation. The struc-

ture of the proofs do not change, one only has to reason over weak paths in the

place of strong paths.

57

3.2.5 Compositional Reasoning

We now introduce the notion of composition, which is important for component-

based design. LetM1 andM2 be two time-parametric modal specifications. They

are composeable iff they have disjoint sets of clocks and parameters, i.e., Clk 1 ∩
Clk 2 = ∅ and Θ1 ∩ Θ2 = ∅, and their actions only overlap on complementary

types: (Act I1∪Act τ1)∩(Act I2∪Act τ2) = ∅ and (ActO1 ∪Act τ1)∩(ActO2 ∪Act τ2) = ∅.

Definition 3.2.19 (Composition). Given two composeable time-parametric modal

specificationsMi = (Loci, li,Clk i,Act i, Inv i, ↪→2,i, ↪→3,i, Ci(Θi)) for i = 1, 2.

Their composition product, denoted byM1‖M2, yields a specification (Loc1 ×
Loc2, (l1, l2),Clk 1 ∪ Clk 2,Act , Inv , ↪→2, ↪→3, C(Θ)) such that

• Act = Act I]ActO]Act τ where Act I = (Act I1 \ActO2)∪ (Act I2 \ActO1),

ActO = (ActO1 \ Act I2) ∪ (ActO2 \ Act I1)

• Inv(l1, l2) = Inv 1(l1) ∧ Inv 2(l2)

• ↪→2 and ↪→3 are defined by the following rules (interchangeable for M1

andM2):

(l1, g1, a!, r1, l
′
1) ∈ ↪→γ,1 (l2, g2, a?, r2, l

′
2) ∈ ↪→γ,2(

(l1, l2), g1 ∧ g2, τ, r1 ∪ r2, (l′1, l
′
2)
)
∈ ↪→γ

(synchronizing)

(l1, g1, a, r1, l
′
1) ∈ ↪→γ,1 a /∈ Act2 ∨ a = τ(

(l1, l2), g1, a, r1, (l′1, l2)
)
∈ ↪→γ

(interleaving)

where γ ∈ {2,3}: if ↪→γ,1=↪→2,1 and ↪→γ,2=↪→2,2 in the synchronizing

rule, or ↪→γ,1=↪→2,1 in the interleaving rule, then ↪→γ=↪→2; otherwise,

↪→γ=↪→3.

• Θ = Θ1 ∪Θ2 and C(Θ) = C1(Θ1) ∧ C2(Θ2).

58

We also define composition at the semantic level for MTTS:

Definition 3.2.20 (Composition of MTTS). Given two MTTS Mi = (Si, si,Act i,

→i
2,→i

3,→i
d) for i = 1, 2. Their composition product, denoted by M1‖M2,

yields a specification (S1 × S2, (s1, s2),Act1 ∪ Act2,→2,→3,→d) such that

• →2, →3 and →d are defined by the following rules (interchangeable for

M1 and M2):

(s1, a!, s′1) ∈→1
γ (s2, a?, s′2) ∈→2

γ(
(s1, s2)), τ, (s′1, s

′
2)
)
∈→γ

(action synchronizing)

(s1, d, s1 + d) ∈→1
d (s2, d, s2 + d) ∈→2

d(
(s1, s2)), d, (s1, s2) + d

)
∈→d

(delay synchronizing)

(s1, a, s
′
1) ∈→1

γ a /∈ Act2 ∨ a = τ(
(s1, s2), a, (s′1, s2)

)
∈→γ

(interleaving)

where γ ∈ {2,3}: if →1
γ=→1

2 and →2
γ=→2

2 in the action synchroniz-

ing rule, or →1
γ=→1

2 in the interleaving rule, then →γ=→2; otherwise,

→γ=→3.

Since a MIOTA can be considered as a special case of time-parametric modal

specifications, the above definition is also applicable for the composition of two

MIOTAs (resp. a MIOTA and a TPMS), which yields a product MIOTA (resp.

TPMS). Compositional refinement is important for component based reasoning

because it enables top-down reasoning with component specifications: Let X
and Y be two TPMS. Compositional refinement means that if X1 v X then

X1‖Y v X‖Y . TPMS refinement is compositional. We conclude this section

by proving the compositionality of TPMS refinement and that compositionality

preserves reachability properties.

59

First we show that composition of syntax is equivalent to composition of

MTTS:

Lemma 3.2.10 (Equivalence of Syntactic and Semantic Composition). LetX1 and

X2 be two MIOTA. Then JX1K‖JX2K = JX‖X2K.

Proof. It suffices to show that the transitions of JX1K‖JX2K are subsets of the tran-

sitions of JX‖X2K and vice-versa. We prove both directions of the equality.

Case: Left to right . There are two subcases to consider, one for the action tran-

sitions and one for the delay transitions. (We do not need to distinguish

between may and must. The arguments the follow can be instantiated to

apply to either may or must transitions by substituting 3 or 2 for γ).

Case: action transitions . Assume towards a contradiction that there is

some ((s1, s2), a, (s′1, s
′
2)) in the action transitions of JX1K‖JX2K but

not in the action transitions of JX1‖X2K. W.o.l.o.g. we only con-

sider the action synchronizing case. By Definition 3.2.20 there must

be some (s1, a, s
′
1) ∈→1

γ and (s2, a, s
′
2) ∈→2

γ . But by Definition 3.2.7

there must be some transition (l1, g1, a, r1, l
′
1) ∈↪→γ,1 and

(l2, g2, a, r2, l
′
2) ∈↪→γ,2 where s1 |= g1 ∧ s2 |= g2 and s′1 is the same

as s1 except with location l′1 and all clocks in r1 reset and s2 is the

same as s2 except with location l′2 and all clocks in r2 reset. Now

if we follow Definition 3.2.5 it must be the case that ((l1, l2), g1 ∧
g2, a, r1∪r2, (l

′
1, l
′
2)) is a transition in X1‖X2. We can apply Definition

3.2.7 again to see that ((s1, s2), a, (s′1, s
′
2)) is an action transition of

JX1‖X1K.

60

Case: delay transitions . Assume towards an contradiction that JX K‖JYK

has a delay transition ((s1, s2), d, (s1, s2) + d) not in JX1‖X2K. Then

by Definition 3.2.20 there is a (s1, d, s1 + d) in the transitions of

JX1K and a (s2, d, s2 + d) in the transitions of JX2K and there is no

((s1, s2), d, (s1, s2) + d) in the transitions of JX1‖X2K. Let l1 be the

location associated with s1 and l2 be the location associated with s2.

Then it must be the case that s1 + d |= Inv(l1) and s2 + d |= Inv(l2).

Since Inv(s1, s2) = Inv(s1)∧ Inv(s2) by Definition 3.2.19 it must be

the case that (s1, s2) + d |= Inv(l1, l2). By Definition 3.2.7

((s1, s2), d, (s1, s2) + d) is a transition of JX1‖X2K.

Case: Right to left There are two subcases to consider, one for the action transi-

tions and one for the delay transitions.

Case: action transitions Assume towards a contradiction that there is some

((s1, s2), a, (s′1, s
′
2)) in the action transitions of JX1‖X2K but not in the

action transitions of JX1K‖JX2K. By Definition 3.2.7 if

((s1, s2), a, (s′1, s
′
2)) is a transition of JX1‖X2K there is some transition

((l1, l2), g1 ∧ g2, a, r1 ∪ r2, (l
′
1, l
′
2)) in X1‖X2 for appropriate

l1, l2, g1, g2, r1 and r2. By Definition 3.2.19 if ((l1, l2), g1 ∧ g2, a, r1 ∪
r2, (l

′
1, l
′
2)) is a transition of X1‖X2 then (l1, g1, a, r1, l

′
1) is a transi-

tion of X1 and (l2, g2, a, r2, l
′
2) is a transition of X2. This means that

(s1, a, s
′
1) is a transition of JX1K and (s2, a, s

′
2) is a transition of JX2K.

We can apply the action synchronizing rule of Definition 3.2.20 to

show that ((s1, s2), a, (s′1, s
′
2)) is a transition of JX1K‖JX2K.

Case: delay transitions Assume towards an contradiction that there is some

61

((s1, s2), d, (s1, s2) + d) in the transitions of JX‖YK but not in

JX1K‖JX2K. Let (l1, l2) be associated with the state (s1, s2). Observe

that by Definition 3.2.7 if ((s1, s2), d, (s1, s2) + d) is a transition of

JX‖YK then it is because (s1, s2)+d |= Inv(l1, l2). We know then that

by Definition 3.2.19 that it must be the case that (s1)+d |= Inv(l1) and

(s2) + d |= Inv(l2). This means that by Definition 3.2.7 (s1, d, s1 + d)

is a transition of JX1K and (s2, d, s2 + d) is a transition of JX2K. We

can now apply Definition 3.2.20 to show that ((s1, s2), d, (s1, s2) + d)

is a transition of JX1K‖JX2K.

Before we proceed with the proof of compositionality we introduce a “con-

venience lemma” to help us relate specifications that have been specified with

different syntax (e.g., location names, clock variable names, graph structure) but

have the same behavior (i.e., they are equivalent). This convenience lemma will

simplify our proof of compositionality.

Lemma 3.2.11 (Syntactic Equivalence). Let X1 be an MIOTA, X be a TPMS and

X1 <∼ X . Then by definition there is some X2 <∼ X such that X2 is defined over

the same locations, and clock constraints asX and JX2K - JX1K and JX1K - JX2K.

We say that the two specifications are equivalent (written X1 ∼ X2).

Proof. The conclusion follows directly from the definition of TPMS and MIOTA

refinement. (Definitions 3.2.14, 3.2.10 and 3.2.13).

Lemma 3.2.11 says that for any MIOTA X1 that refines (resp. implements) a

TPMS X , we can find some other MIOTA X2 created by syntactic manipulation

62

of X (i.e., turning may edges into must edges, fixing parameter values, etc.), that

has the same behavior as X1

Theorem 3.2.12 (Compositionality of Refinement). Let X and Y be two TPMSs

and let X1 and Y1 be two MIOTA such that X1 v X and Y1 v Y . Then X1‖Y1 v
X‖Y .

Proof. Assume towards a contradiction that it is not the case that X1‖Y1 v X‖Y .

There are three cases to consider: 1) JX1‖Y1K is missing a required must-transition,

2) JX1‖Y1K has an extra may-transition, 3) JX1‖Y1K has delay transitions not al-

lowed by any valid parametric substitution:

Case 1 JX1‖Y1K is missing a required must-transition. Then either JA′K or JB′K is

missing a required must-transition. But JX1K or JY1K can’t be missing any

required must transition because X1 v X and Y1 v Y .

Case 2 JX1‖Y1K has an extra may-transition. Then either JX1K or JY1K has an

extra may-transition. But JX1K or JY1K can’t have an extra may-transition

because X1 v X and Y1 v Y .

Case 3 JX1‖Y1K has delay transitions not allowed by substituiting valid values

for parameters:

By Lemma 3.2.11 there is some X2 and Y2 s.t. X1 ∼ X2 and Y1 ∼ Y2

and both X2 <∼ X and Y2 <∼ Y . By Lemma 3.2.10 we have that JX1‖Y1K =

JX1K‖JY1K. We can see by Definition of MTTS composition that if JX1‖Y1K

has different delays than permitted then both JX1K and JY1K have different

delays allowed by taking the invariants of either X or Y and substituting

valid values for parameters. But because X1 ∼ X2 and Y1 ∼ Y2 and that

63

X2 and Y2 are specifications created by substituting valid values for param-

eters we know that the delays of X1 and Y1 are precisely those allowed by

substituting valid values for parameters.

Theorem 3.2.13. Let X and Y be either TPMSs or MIOTAs. Let φ be some

reachability property (including timelock and quiescence freedom) over the states

of X and/or Y . Let ψ be some reachability property (not including timelock and

quiescence freedom) over the states of X and/or Y . Then for all Y1 s.t. Y1 v Y ,

if X‖Y 6|=3 EF φ then X‖Y1 6|=3 EF φ. Likewise, if X‖Y |=2 EF ψ, then

X‖Y1 |=2 EF ψ.

Proof. The conclusion follows directly from Theorems 3.2.9 (preservation of time-

lock freedom) 3.2.7 Quiescence freedom, 3.2.5 (preservation of must-reachability),

and 3.2.3 (preservation of negative may-reachability), and 3.2.12 (compositional-

ity of refinement).

3.3 Symbolic Semantics and Verification

In this section we propose some methods for checking reachability properties and

refinement of TPMSs. As it turns out, it is simple to reduce may-reachbility of

TPMSs to reachability checking on Parametric Timed Automata (PTA). This re-

duction is advantageous, because there are existing tools and techniques for check-

ing reachability on PTA. As far as we know, must-reachability and refinement

checking cannot be checked efficiently via a reduction to an existing problem for

which there are existing tools or techniques. For each problem we devise some

novel extensions of existing algorithms.

64

First, we show how to reduce TPMS may-reachability checking to PTA reach-

ability checking and give an overview of existing tools. Second, we show how

may-reachability of TPMS can be encoded as a recursive Horn-clause problem

(See [87] for a practical description of the recursive horn-clause problem). Encod-

ing may-reachability as a horn-clause problem enables the use of modern “fully

symbolic” SAT-based model-checking algorithms. These two techniques each

offer different potential advantages which we discuss in their respective sections.

Next, we show how parametric zone-graphs can encode the state-space of a TPMS

and how the parametric zone-graph can be used as the basis of an algorithm for

must-reachability checking (Sections 3.3.4 and 3.3.3). Lastly, we show how ex-

isting algorithms for checking the modal-refinement of MIOTAs can be extended

to efficiently check refinement of TPMSs (Section 3.3.5).

3.3.1 Reduction to PTA Parameter Synthesis

Parametric Timed Automata (PTA) [6] take classical Timed Automata and extend

them to allow parameters in clock-constraints. The original conception of PTAs

allow the parameters to take on values from the non-negative reals (R+). There

are also versions that restrict the parameters to the natural numbers or require that

the parameters take on values that satisfy some linear formula (as in TPMS) [10].

Much of the existing literature on PTAs focus on the parameter synthesis problem,

i.e., what values of the parameters make a some (e.g., a reachability) property true.

In general, the parameter synthesis problem is undecidable for the more gen-

eral forms of PTAs (e.g.,, the ones that don’t restrict the parameter values to some

finite set) [6]. However, once we restrict ourselves to PTAs that don’t admit an

infinite number of parameters there are a number of techniques available [14, 13]

65

and high quality tools [10, 11, 12, 135] that decide the parameter synthesis prob-

lem. The prime practical advantage of reducing may-reachability to PTA parame-

ter synthesis is that we can take advantage of mature tools and techniques.

The reduction of may-reachability of TPMSs to parameter synthesis of PTAs

is straightforward. First we define the restricted class of PTAs which are the target

of our reduction:

Definition 3.3.1 (Parametric Timed Automata). A Parametric Timed Automata

(PTA) is a tuple (Loc, l,Clk , Inv , ↪→, C(Θ)) where

• Loc, l,Clk are the same as in Definition 3.2.4

• Inv : Loc → P(Clk) assigns downwards closed parametric clock con-

straints in the form of x ≤ c± α or x < c± α to locations

• ↪→⊆ Loc × P(Clk)× Act × 2Clk × Loc is the transition relation.

• C(Θ) is a set of linear constraints on a finite set of non-negative integer

parameters Θ that are used in P(Clk)

Observe that Definition 3.3.1 is the same as for TPMS except there is no may/-

must distinction on transitions. Thus, we can create a PTA to represent the may-

behavior of a TPMS by treating the may transitions of the TPMS as the transitions

of the PTA. Checking may-reachibility is answered by checking whether there ex-

ists a parameter valuation such that the target state is reachable in the PTA: Let X
be a TPMS and X ′ be a PTA created by removing the must-transitions of X . Let φ

be a simple state formula over the locations and variables of X . Then X |=3 EF φ

if there exists some parameter valuation p |= C(Θ) s.t. X ′ |= EF φ.

66

3.3.2 May Reachability as a Recursive Horn-Clause Problem

Another way to check may-reachability of TPMS is by encoding and solving a

recursive horn-clause problem. Note, that this method also decides the param-

eter synthesis problem of PTAs: As far as we know the technique presented

here also represents a new algorithm to decide the parameter synthesis problem

of PTAs. The central idea of this technique is to encode instances of the may-

reachability problem as a set of recursive Horn-clauses so they can be solved by

recent symbolic model-checking techniques such as Interpolation Model Check-

ing (IMC) [138] and generalized versions of the IC3/Property Directed Reacha-

bility algorithm (PDR) [86, 43, 42].

One potential advantage of these techniques is that they are fully symbolic:

They avoid unrolling the explicit state transition graph of the model by instead

manipulating characteristic formula representing the reachable set and transition

relation. Consequently, these techniques have the potential to verify reachability

properities of TPMS with large discrete state spaces much faster (and utilizing less

memory) than the zone-graph technique of Section 3.3.4. Another advantage is

that, unlike traditional model-checking, these techniques can generate certificates

explaining why a reachability property is not satisfied. The certificate takes the

form of a formula that represents an inductive invariant over the transition rela-

tion of the model and implies the contradiction of the reachability property. The

certificate could then be used as evidence in an assurance case argument or other

type of regulatory submission.

In this section we describe a simple extension to the Horn-Clause encoding

for reachability of Timed Automata given by Hoder et al. in [86]. In order

to make the presentation simpler, we show the encoding for a modified (but se-

67

mantically equivalent) definition of TPMS: We redefine a TPMS M as a tuple

(l, Init, c, Inv , ↪→2, ↪→3,Θ, C(Θ)) where

• l : Dn is a vector of n variables, ranging over some finite domain D.

• Init : Dn → B is a predicate over Dn (i.e., the variables of l) that returns

true if the argument satisfies the initial states of the TPMS.

• Θ : Np is a vector of p of 0 or non-negative integer parameters.

• c : Rm is a vector of m real-valued clock variables.

• Inv : Dn ×Rm ×Np → B is a predicate over c, l, and Θ that returns true if

the valuation of c satisfies the invariant constraint associated with l.

• ↪→2 ⊆ (Dn → B) × (Rm → B) × 2Clk × (Dn → B) is the must-transition

relation describing required behavior.

• ↪→3 ⊆ (Dn → B) × (Rm → B) × 2Clk × (Dn → B) is the may-transition

relation describing allowed behavior.

• C : Np → B is the linear constraint over the parameters in Θ.

This modified definition, treats each location as a valuation of the discrete

variables which in turn allows for a compact representation of the specification’s

transition relation using characteristic formula over the variable valuations. The

transitions are specified as guarded commands: Characteristic formula over the

location and clock valuations are used to indicate both the states the transitions

are enabled in and the constraints on the values of the successor states (the primed

68

variables). Additionally, the actions associated with transitions are dropped be-

cause they are not relevant for the reachability problem (we only consider the τ

actions as all other actions are disabled in a closed system).

Extending Hoder et al.’s timed-automata encoding, the semantics of the may-

transitions of the TPMS can be directly encoded with the following system of

universally quantified recursive Horn-clauses. Let Θ ∈ Np, l, l′ ∈ Dn, d ∈ R+,

and c, c′ ∈ Rm. Then:

∀
Θ, l

Init(l) ∧ C(Θ)→ R(l, 0,Θ)

(3.1)

∀
Θ, l,l′, c,c′

R(l, c,Θ) ∧ T (l, c, l′, c′,Θ)→ R(l′, c′,Θ)

(3.2)

∀
Θ, l,l′, c,c′

∨
(gl,gc,r,g′)∈↪→3

(
gl(l) ∧ gc(c,Θ) ∧ g′(l) ∧

(
∧
ci∈r

c′i = 0

))
→ T (l, c, l′, c′,Θ)

(3.3)

∀
Θ, l, c,c′, d

Inv(l, c′,Θ) ∧ c′ = c+ d→ T (l, c, l, c′,Θ)

(3.4)

where R : Dn × Rm × Np → B is an uninterpreted predicate representing the set

of reachable states and T : Dn × Rm × Dn × Rm × Np → B is an uninterpreted

predicate that represents the transition relation. Equation 3.1 encodes the set of

reachable states: Any valuation of location and parameter variables that satisfies

the inital state and parametric constraint predicates is in the reachable set. Equa-

69

tion 3.2 specifies that any state reachable in a single step from the reachable set is

also in the reachable set. Equation 3.3 encodes the may-action transitions of the

TPMS: If the valuation of the location and clock variables satisfy the transition

guards then that transition is enabled. Equation 3.4 encodes the delay transition;

clocks are allowed to advance as long as the invariant predicate Inv is satisfied.

May-reachability using the Horn encoding can be checked by asserting Equa-

tions 3.1-3.4 to a suitable solver (e.g., Z3 [57]) and then querying the following

formula:

∃
Θ∈Np l∈Dn c∈Rm

Φ(l, c) ∧R(l, c,Θ) (3.5)

where Φ : Dn × Rm → B is a predicate specifing the set of states we want to

check for may-reachability. If equations 3.1-3.4 and 3.5 are satisfiable together,

then states satisfying Φ are may-reachable. If they are unsatisfiable then no states

specified by Φ are may-reachable.

Our Horn clause encoding of may-reachability for TPMS simply treats the

parameters as discrete variables that never change. In fact, the only difference be-

tween the our encoding for may-reachability of TPMS and the encoding of Timed

Automata reachability given by Hoder et al. in [86] is the addition of variables

representing the parameter valuations and the constraints over the valuation of

those variables. Thus, if a Horn-clause solver is able to decide reachability for

Hoder et al.’s Timed Automata encoding (such as the solver described in [86]

and available in the Z3 SMT solver) it will decide may-reachability of TPMS us-

ing the above encoding.

70

3.3.3 Symbolic Semantics: Parametric Zone-Graphs

Some techniques (e.g., [92]) for analysis of parametric timed systems extend the

classical notion of zones and zone-graphs for timed automata [33] to parametric

zones and zone-graphs. A parametric zone is in the form of a parametric clock

constraint (defined in Section 3.2.1), representing the maximal set of clock valua-

tions satisfying any instance of the parametric clock constraint. Let v be a clock

valuation and D be a parametric zone, we define v ∈ D iff v satisfies the para-

metric clock constraint of D, i.e., v |= D. Sometimes (as in must-reachability

checking) we want to know if v ∈ D for all possible parametric assignments. We

define v ∈ D for all possible parametric assignments iff v |=2 D (Likewise, we

can extend the notion to sets of valuations constrained by a formula φ: φ |=2 D

iff φ satisfies D for every valid parameter valuation). Given two parametric zones

D1 and D2, if v ∈ D1 implies v ∈ D2, then zone D1 is included in D2, denoted by

D1 ⊆ D2. We define D↑ = {v + d | v ∈ D, d ∈ R≥0} for the zone progression,

and r(D) = {v[r 7→ 0] | v ∈ D} for the clock reset of zones. A parametric zone-

graph is a graph where each node consists of a location and a parametric zone.

We define the symbolic semantics of time-parametric modal specifications based

on parametric zone-graph as follows.

Definition 3.3.2 (Specification’s Symbolic Semantics). The symbolic semantics

of a time-parametric modal specification M = (Loc, l,Clk ,Act , Inv , ↪→2, ↪→3

, C(Θ)), denoted by JMKz, is a parametric zone-graph (S, s,Act ,;2,;3,;d

, C(Θ)) where

• S = {〈l, D〉 ∈ Loc × P(Clk) | D ⊆ Inv(l)} is a finite set of symbolic

states, and s = 〈l, D0〉 is the initial state

71

• symbolic must action transition: 〈l, D〉 a
;2 〈l′, r(D ∧ g) ∧ Inv(l′)〉 if there

is a must transition l
g,a,r
↪→ 2 l

′ inM and g |=2 D and r(D ∧ g) |=2 Inv(l′)

• symbolic may action transition: 〈l, D〉 a
;3 〈l′, r(D ∧ g) ∧ Inv(l′)〉 if there

is a may transition l
g,a,r
↪→ 3 l

′ inM

• symbolic delay transition: 〈l, D〉;d 〈l, D↑ ∧ Inv(l)〉

A symbolic state 〈l, D〉 in JMKz corresponds to a set of states in the semantics

ofM. A symbolic transition 〈l, D〉 ;γ 〈l′, D′〉 with γ ∈ {2,3, d} implies that,

for every v′ ∈ D′, there must exist at least one MTTS M ∈ JMK which has a

transition 〈l, v〉 →γ 〈l′, v′〉 for some v ∈ D. Indeed, we show that the symbolic

semantics given in Definition 3.3.2 is a correct and full characterization of the

operation semantics given in Definition 3.2.9 as follows.

Theorem 3.3.1. Let M be a time-parametric modal specification, JMKz be its

symbolic semantics and JMK be its operational semantics.

• (Soundness) if the initial symbolic state 〈l, D0〉 in JMKz must (resp. may)

lead to a target state 〈lf , Df〉, then for all vf ∈ Df , state 〈lf , vf〉 must (resp.

may) be reachable from the initial state 〈l,0〉 in some M ∈ JMK

• (Completeness) if, in any M ∈ JMK, a target state 〈lf , vf〉must (resp. may)

be reachable from the initial state 〈l,0〉, then state 〈l, D0〉 in JMKz must

(resp. may) lead to 〈lf , Df〉 for some Df such that vf ∈ Df

Proof. We will prove by induction on the length of paths. Without loss of gen-

erality, we assume that all paths are expressed in the form of alternating (must

or may) action transitions and delay transitions, i.e., · · · 〈li−1, vi−1〉 a−→ 〈li, vi〉 d−→
〈li+1, vi+1〉 · · · for a ∈ Act and d ∈ R≥0.

72

(Soundness) Assume 〈l, D0〉 ;∗ 〈ln, Dn〉 σ
; 〈ln+1, Dn+1〉, where ;∗ rep-

resents a succession of transitions. By induction, we have 〈l,0〉 →∗ 〈ln, vn〉
for all vn ∈ Dn. We need to prove for all vn+1 ∈ Dn+1, there is a transition

〈ln, vn〉 σ−→ 〈ln+1, vn+1〉. There are two cases, since σ can be an action or a delay.

• Suppose 〈ln, Dn〉 a
;3 〈ln+1, Dn+1〉 for a ∈ Act . Based on Definition 3.3.2,

we have ln
g,a,r
↪→ 3 ln+1 and Dn+1 = r(Dn ∧ g) ∧ Inv(ln+1). By Defini-

tion 3.2.9, there is a transition 〈ln, vn〉 a−→3 〈ln+1, vn+1〉 in some M ∈ JMK

such that vn ∈ g. Thus, for all vn+1 ∈ Dn+1, there is a vn ∈ Dn such that

vn ∈ g, vn+1 ∈ Inv(ln+1) and vn+1 = vn[r 7→ 0].

• Suppose 〈ln, Dn〉 a
;2 〈ln+1, Dn+1〉 for a ∈ Act . Based on Definition 3.3.2,

we have ln
g,a,r
↪→ 2 ln+1 and Dn+1 = r(Dn ∧ g) ∧ Inv(ln+1) and g |=2 Dn

and r(Dn ∧ g) |=2 Inv(ln+1). By Definition 3.2.9, there is a transition

〈ln, vn〉 a−→2 〈ln+1, vn+1〉 in all M ∈ JMK such that vn ∈ g. Thus, for all

vn+1 ∈ Dn+1, there is a vn ∈ Dn such that vn ∈ g, vn+1 ∈ Inv(ln+1) and

vn+1 = vn[r 7→ 0].

• Suppose 〈ln, Dn〉 d
;d 〈ln+1, Dn+1〉 for d ∈ R≥0. From Definition 3.3.2, we

have ln = ln+1 and Dn+1 = D↑n ∧ Inv(ln). Due to the definition of zone

progression, we have Dn+1 = {vn + d | vn ∈ Dn, d ∈ R≥0 and vn + d ∈
Inv(ln)}. Based on Definition 3.2.9, we have 〈ln, vn〉 d−→d 〈ln, vn + d〉 if

vn + d ∈ Inv(ln). Thus, for all vn+1 ∈ Dn+1, there is a vn ∈ Dn such that

vn+1 = vn + d and vn, vn+1 ∈ Inv(ln).

(Completeness) Assume 〈l,0〉 →∗ 〈ln, vn〉 σ→ 〈ln+1, vn+1〉. The induction

step gives 〈l, D0〉 ;∗ 〈ln, Dn〉 and vn ∈ Dn. We need to prove that 〈ln, Dn〉 σ
;

〈ln+1, Dn+1〉 for some Dn+1 and vn+1 ∈ Dn+1. There are two cases:

73

• Suppose 〈ln, vn〉 a−→3 〈ln+1, vn+1〉 for a ∈ Act in any M ∈ JMK. Based

on Definition 3.2.9, there is a transition ln
g,a,r
↪→ 3 ln+1 in M and vn ∈ g,

vn+1 = vn[r 7→ 0] and vn+1 ∈ Inv(ln+1). By Definition 3.3.2, we have

〈ln, Dn〉 a
;3 〈ln+1, Dn+1〉 and Dn+1 = r(Dn ∧ g) ∧ Inv(ln+1). Thus,

vn+1 ∈ Dn+1.

• Suppose 〈ln, vn〉 a−→2 〈ln+1, vn+1〉 for a ∈ Act for all M ∈ JMK. Based

on Definition 3.2.9, there is a transition ln
g,a,r
↪→ γ ln+1 inM and vn |=2 g,

vn+1 = vn[r 7→ 0] and vn+1 |=2 Inv(ln+1). By Definition 3.3.2, we have

〈ln, Dn〉 a
;2 〈ln+1, Dn+1〉 andDn+1 = r(Dn∧g)∧Inv(ln+1) with g |=2 Dn

and r(Dn ∧ g) |=2 Inv(ln+1). Thus, vn+1 ∈ Dn+1.

• Suppose 〈ln, vn〉 d−→d 〈ln+1, vn+1〉 for d ∈ R≥0. Then we have ln = ln+1,

vn+1 = vn + d and vn, vn+1 ∈ Inv(ln). From Definition 3.3.2, we get

〈ln, Dn〉 d
;d 〈ln+1, Dn+1〉 and Dn+1 = D↑n ∧ Inv(ln) = {vn + d | vn ∈

Dn, d ∈ R≥0 and vn + d ∈ Inv(ln)}. Thus, vn+1 ∈ Dn+1.

The clock differences in a (parametric) zone-graph may increase unboundedly

due to transitions which reset some clocks but not others, which can result in an

infinite zone-graph. We can apply techniques such as zone normalization to nor-

malize zones and guarantee a finite zone graph. See [33] for an indepth discussion

on how these clock differences can increase unboundedly and how to implement

zone normalization techniques.

Example Figure 3.5 illustrates the parametric zone-graph induced from the time-

parametric modal specification shown in Figure 3.3. There are 7 symbolic states

74

〈detect, x = 0〉

〈detect, x ≥ 0〉

〈start, x = 0〉

〈start, x ≤ β〉

〈infusion, x = 0〉

〈infusion, x ≤ γ〉

off pump?

bolus?

alarm!

alarm!

pump ison!

off pump?

off pump?C : α ≤ β ≤ 3 and γ ≤ 4 and α, β, γ ∈ N

〈disabled, x = 0〉

bolus?

off pump?

bolus?

pump isoff!

off pump?

Figure 3.5: Parametric zone-graph of the specification in Figure 3.3.

in the zone-graph; for example, 〈infusion, x ≤ γ〉 is a state associated with a

location infusion and a parametric zone x ≤ γ, which is bounded by the linear

constraint: γ ≤ 4.

In Figure 3.5, solid lines represent symbolic must action transitions, e.g., there

is a must transition labeled with action “bolus?” from state 〈detect, x = 0〉 to

〈start, x = 0〉; dashed lines are for the symbolic may action transitions, e.g., state

〈start, x ≤ β〉 may loop back to 〈detect, x = 0〉 with action “alarm!”; and dash

dotted lines are for symbolic delay transitions, e.g., state 〈detect, x = 0〉 evolves

to 〈detect, x ≥ 0〉 via zone progression.

3.3.4 Zone-Graph Symbolic Reachability Analysis

Reachability analysis lies at the core of many verification problems, e.g., we can

verify safety properties by checking whether some bad states are reachable. In-

75

Algorithm 1 Must (resp. may) reachability analysis on parametric zone-graphs

Precondition: G is a a parametric zone-graph whose initial state is 〈l,D0〉
Postcondition: returns “YES”, if 〈lf , φf 〉 is reachable from 〈l,D0〉; “NO”, otherwise

1: function REACHABILITYCHECK(G, 〈lf , φf 〉)
2: seen← ∅, wait← {〈l,D0〉}
3: while wait 6= ∅ do

4: 〈l,D〉 ←pop(wait)

5: if l = lf and D ∩ φf 6= ∅ for all (resp. some) valid f(Θ) then

6: return “YES”

7: end if

8: if D 6⊆ D′ for all 〈l,D′〉 ∈ seen then

9: seen← seen ∪ 〈l,D〉
10: for 〈l′, D′〉 such that (〈l,D〉, 〈l′, D′〉) ∈;d and ;2 (resp. ;3) do

11: wait← wait ∪ 〈l′, D′〉
12: end for

13: end if

14: end while

15: return “NO”

16: end function

spired by the zone-graph based reachability algorithm in [33], we propose a sym-

bolic algorithm for the reachability analysis of parametric zone-graphs, which is

useful for the verification of time-parametric modal specifications.

As illustrated in Algorithm 1, we check whether a target state 〈lf , φf〉 is reach-

able from the initial state 〈l, D0〉 by exploring the state-space of parametric zone-

graph 1 on-the-fly. Note that we twist Algorithm 1 for both the must and may

reachability analysis. The algorithm maintains two sets of states: PASSED for

those having been traversed and WAIT for those to be considered. Starting with

1We assume a normalized zone-graph with finite transition relations.

76

the initial state 〈l, D0〉, the algorithm processes each element 〈l, D〉 of WAIT till

the set becomes empty. Note that a transition is a must transition (;2) only if

it is enabled for all parameter assignments. If l = lf and D ∩ φf 6= ∅ for all

valid parameter assignment f(Θ), then the target must be reachable. This can be

checked by querying an SMT solver with an assertion of the following form:

∃Θ [C(Θ) ∧ ¬∃Clk (D ∧ φf)]

If the above is satisfiable, then there exists an assignment to parameters Θ

that satisfy P(Clk) such that there is no possible valuation of the clocks Clk that

intersect with the target valuation φf . On the other hand, we say that 〈lf , φf〉
may be reachable if D ∩ φf 6= ∅ is only true for some f(Θ), in the sense that

the target may (not) be reachable for some implementation of the time-parametric

modal specification. If 〈l, D〉 does not hit the target and has not been traversed,

then the algorithm adds 〈l, D〉 to PASSED and all its successor states to WAIT.

The algorithm terminates when WAIT is empty, and outputs that the target state

〈lf , φf〉 is not reachable.

The termination of Algorithm 1 is guaranteed, because the parametric zone-

graph G has a finite set of symbolic states and finite transition relations, i.e., the

size of WAIT is finite. The correctness of Algorithm 1 is given by Theorem 3.3.1.

Example Consider the parametric zone-graph shown in Figure 3.5. A target

〈infusion, x ≤ 0〉 must be reachable, because there is a path

〈detect, x = 0〉 → 〈start, x = 0〉 → 〈start, x ≤ β〉 → 〈infusion, x = 0〉

and, for any valid parameter values satisfying the constraint: 0 ≤ α ≤ β ≤
3 ∧ 0 ≤ γ ≤ 4, we always have that x = 0 ∩ x ≤ γ 6= ∅. Suppose the target is

77

〈infusion, x = 3〉, then it may be reachable, because (x ≤ γ) ∩ (x = 3) 6= ∅ is

true for some parameter assignments, e.g., γ ≥ 3, but false for others, e.g., γ < 3.

3.3.5 Symbolic Modal Refinement Checking

Recall from Section 3.2.3 that we verify whether a MIOTA is an implementation

of a TPMS via a modal refinement check. We can directly apply the definition of

TPMS refinement (Definition 3.2.14) by reducing the problem to the timed refine-

ment check of MIOTA, where standard zone-graph based algorithms (e.g., [183])

are available: Given a time-parametric modal specificationM and potential im-

plementation I, we first solve the linear constraints C(Θ) and obtain a finite set

of parameter assignments. For each parameter assignment f , we substitute all the

occurrences of parameters Θ with values f(Θ), resolving the timing variability of

the specification and leaving a set of concrete specifications JMK. JIK <∼ M iff

I - S for some S ∈ JMK.

Unfortunately, brute-force checking refinement of I vs. each possible para-

metric concretization of M can be too slow for practical applications. If one

multiplies all the constants in the specifications by some factor (e.g., to increase

the resolution of the time units considered), the number of possible parametric

concretizations increases exponentially (i.e., it is “scaling-sensitive”). Further-

more, for a given implementation I and specificationM only a few (perhaps only

one) of the parametric concretizations of M witnesses I <∼ M. We want to

avoid checking as many irrelevent concretizations as possible because the known

procedures for checking the timed refinement of modal timed automata can be

expensive2.

2The zone and region techniques described [183, 182, 48] are EXPTIME.

78

The rest of Section 3.3.5 is devoted to a TPMS implementation checking algo-

rithm that avoids brute-force checking of each possible parametric concretization.

Our algorithm attempts to quickly narrow the parameter search space by leverag-

ing information learned from repeatedly applying a modified version of Weise et

al.’s refinement checking algorithm [183]. First we describe Carsten et al.’s algo-

rithm and import the relevant theorems from [183]. Then we we give a modified

version of Carsten et al.’s original algorithm and show how it can be used as part

of a procedure that avoids searching irrelevant parameter valuations. Finally, we

prove the correctness of our algorithm.

Weise’s Algorithm for Checking Refinement Between MIOTAs

Algorithm 2 is psuedo-code of an algorithm for checking timed-bisimulation orig-

inally presented in [183] and extended for checking timed-refinement in [182].

First, the algorithm constructs the syntactic product of the two specifications P
and Q (Definition 3.3.3). Then the algorithm unrolls a Backward Stable (BS)

zone-graph (see Definition 3.3.4) of the syntactic product. The BS zone-graph of

the product is a symbolic representation of an overapproximation of the refine-

ment relation between the input specifications. Finally, the algorithm iteratively

removes all the non-closed zones until all remaining zones in the zone-graph are

closed (i.e., each state in each zone can match the required action and delay tran-

sitions, see Definition 3.3.5). If the initial zone is removed then it is not the case

that P � Q.

Definition 3.3.3 (Syntactic Product of MIOTA). The syntactic product of two

MIOTA P = (LocP , lP ,ClkP ,ActP , InvP , ↪→2,P , ↪→3,P) and

Q = (LocQ, lQ,ClkQ,ActQ, InvQ, ↪→2,Q, ↪→3,Q) is

79

PQ = (LocP ×LocP , (lP , lQ),ClkP ∪ClkQ ∪ {t},ActP ∪ActQ, InvPQ, ↪→2,PQ

, ↪→3,PQ) where:

• InvPQ((lP , lQ)) = InvP(lP) ∧ InvQ(lQ).

• ↪→2,PQ and ↪→3,PQ are defined by the following rules:

(l1, g1, a, r1, l
′
1) ∈ ↪→γ,P (l2, g2, a, r2, l

′
2) ∈ ↪→γ,Q(

(l1, l2), g1 ∧ g2, a, r1 ∪ r2, (l′1, l
′
2)
)
∈ ↪→γ,PQ

(synchronizing)

(l1, g1, τ, r1, l
′
1) ∈ ↪→γ,X X ∈ {P ,Q}(

(l1, l2), g1, τ, r1 ∪ t, (l′1, l2)
)
∈ ↪→γ,PQ

(interleaving)

• t is a fresh clock.

Definition 3.3.4 (Backward Stable Zone Graph). A zone graph is called backward

stable if each state in each zone is reachable by some state in each predecessor via

an action transition: 〈l, D〉 a
; 〈l′, D′〉 implies that ∀v′∈D′ ∃v∈D↑ s.t. 〈l, v〉 a→

〈l′, v′〉 is in the corresponding MTTS.

Definition 3.3.5 (Product Zone Closure). All the points in a zone 〈lpq, Dpq〉 from

the zone-graph of MIOTA PQ are closed with respect to MIOTA specifications

P and Q if each point can match the delays of P & Q, match the may-actions of

P , and match the must-actions of Q. More formally, all the points of 〈lpq, Dpq〉
are closed w.r.t. P and Q iff the following formula holds (we abuse notation and

treat zones and clock constraints as sets of valuations or points that satisfy those

80

Algorithm 2 On-the-fly version of Weise’s zone algorithm to check whether a

Timed Modal Specification P � Q.
Precondition: Two MIOTA P & Q

Postcondition: returns TRUE if P � Q, FALSE otherwise

1: function REFCHECK(P,Q)

2: PQ← SYNTACTICPRODUCT(P,Q)

3: seen← ∅, check ← EMPTYSTACK()

4: PUSH(check, 〈lpq,0〉)
5: while NOTEMPTY(check) do

6: 〈lpq, Dpq〉 ← POP(check)

7: if RELEVANT(〈lpq, Dpq〉) then

8: if NOTCLOSED(〈lpq, Dpq〉) then

9: if 〈lpq, Dpq〉 = 〈lpq,0〉 then

10: return FALSE

11: end if

12: REMOVE(〈lpq, Dpq〉)
13: PUSHALL(check, PRED(〈lpq, Dpq〉)
14: end if

15: end if

16: if 〈lpq, Dpq〉 /∈ seen then

17: seen← seen ∪ 〈lpq, Dpq〉
18: PUSHALL(check, SUCC(〈lpq, Dpq〉)
19: end if

20: end while

21: return TRUE

22: end function

81

constraints):

D↑pq ∩ Inv(lp) ⊆ D↑pq ∩ Inv(lpq) (3.6)

∧ D↑pq ∩ Inv(lq) ⊆ D↑pq ∩ Inv(lpq) (3.7)

∧
∧

a∈MAY(ActP∪ActQ)

D↑pq ∩ Inv(lpq) ∩ GPQ(a, lpq) ⊆ D↑pq ∩ Inv(lpq) ∩ GQ(a, lq)

(3.8)

∧
∧

a∈MUST(ActP∪ActQ)

D↑pq ∩ Inv(lpq) ∩ GQ(a, lq) ⊆ D↑pq ∩ Inv(lpq) ∩ GPQ(a, lpq)

(3.9)

Where MAY (resp. MUST): 2ActP∪ActQ → 2ActP∪ActQ is a helper function

that filters out the set of actions associated with may (resp. must)-transitions and

GX : ActX × LocX is a helper function that gives the union of all the guards of

the edges associated with the specified action and location of specification X (the

null set is given if there is no such edge for the specified location).

Our presentation of Weise’s algorithm has one important difference compared

to what was originally described in [183]. In the original presentation, instead of

removing non-closed zones from the zone graph (line 12 of Algorithm 2), only the

non-closed regions of a zone were removed (Weise called this reducing a zone).

Does simply removing the zone affect the correctness of the algorithm when ap-

plied to MIOTA? As it turns out, if the two specifications are action determined

(Definition 3.3.6), then the product zone graph exactely represents the refinement

relation if the the implementation is valid.

Definition 3.3.6 (Action Determined MIOTA). Let X be some MIOTA specifi-

cation and Let R be the greatest refinement relation satisfying Definition 3.2.10

82

over JX K. We say that some MIOTA X is action determined if (s′, s′′) ∈ R when

(s, a, s′), (s, a, s′′) ∈→2,X or (s, a, s′), (s, a, s′′) ∈→3,X .

Definition 3.3.6 simply states that, for a given state, the specification cannot

have more than one transition with the same action-label if those transitions lead

to inequivalent states.

Lemma 3.3.2 (Product ZG Closure). Let P and Q be MIOTA. Let both P and Q
be action determined. If JPK � JQK then the product zone-graph of P and Q is

closed.

Proof. Supposed towards a contradiction that P � Q but there is some zone

〈l′pq, Dpq〉′ in the zone-graph of the product that is not closed. There are two pos-

sibilities: 〈l′pq, D′pq〉 is the initial zone or it is some successor zone. We examine

each case:

1. 〈l′pq, D′pq〉 is the initial zone. If 〈l′pq, D′pq〉 is the initial zone then it is not the

case that P � Q.

2. 〈l′pq, D′pq〉 is some succesor zone. Then either its predecessor 〈lpq, Dpq〉 is

not fully closed, or the states represented by the predecessor are not action

determined. Why? if the predecessor is closed, then there must be some

other transition 〈lpq, Dpq〉 → 〈l′′pq, D′′pq〉 in the product zone graph labeled

with the same action and 〈l′′pq, D′′pq〉. If 〈l′′pq, D′′pq〉 is closed but 〈l′pq, D′pq〉
isn’t, then (〈l′′pq, D′′pq〉, 〈l′pq, D′pq〉) /∈ R and therefore aren’t action deter-

mined.

The argument above can be inductively applied backwards until one reaches

the initial zone.

83

Since the product zone graph must represent the refinement relation for action

determined specifications, simply removing unclosed zones (as opposed to reduc-

ing) from the product graph is safe. This ability will be essential when we extend

Weise’s algorithm to check refinement of TPMSs. We don’t believe the restric-

tion to action determined TPMSs much a hardship: developers will likely want to

avoid action non-deterministic specifications for medical devices if possible.

Algorithm for Checking Refinement Between TPMSs

Algorithm 3 Scale-insensitive algorithm to check whether TPMS P is an imple-

mentation of Q.
Precondition: Two TPMS P & Q.

Postcondition: Returns TRUE if P <∼ Q, FALSE otherwise.

1: function REFCHECK(P,Q)

2: Ω← C(Θ)Q

3: while TRUE do

4: (R,Ω′)← GUESSREFCHECK(P,Q,Ω)

5: if R = TRUE then

6: return TRUE

7: else

8: if Ω′ = TRUE then

9: return FALSE

10: else

11: Ω← Ω ∧ ¬Ω′

12: end if

13: end if

14: end while

15: end function

84

Our algorithm (Algorithm 3) takes a modified version of Weise’s algorithm

and wraps it in a parameter search loop. The loop maintains a formula, Ω, that

constrains the possible valuations of parameters. On the first iteration Ω is sim-

ply the parametric constraint from the TPMS Q. On each iteration Ω is passed

to the sub-routine GUESSREFCHECK (Algorithm 4) that implements a modified

version of Weise’s refinement check. If GUESSREFCHECK “guesses” parame-

ters that allow it to build a closed BS-zone graph containing the initial states then

it returns true. If GUESSREFCHECK did not guess the correct parameters then

Ω is narrowed to exclude those valuations on the next iteration. Eventually, if

GUESSREFCHECK uses a complete guessing procedure, either witnessing param-

eter valuations will be found (and the algorithm returns TRUE) or it will not be

able to guess any more parameters and it will terminate with FALSE.

How can we make an effective guess procedure? Weise’s original algorithm

checks zone closure directly by using operations on zones. Indeed, the formula in

Definition 3.3.5 can be calculated by using only the future (D↑) and intersection

(D1 ∧ D2) zone operations which enables the use of efficient data structures to

represent zones such as DBMs. Another possibility is to represent the closure

property on zones using the zones’ characteristic formula and use an SMT solver:

85

f(Θ) ∧ Ω ∧ ∀
ClkPQ→R≥0

[
(
D↑pq ∧ Inv(lp)

)
→
(
D↑pq ∧ Inv(lpq)

)
∧
(
D↑pq ∧ Inv(lq)

)
→
(
D↑pq ∧ Inv(lpq)

)
∧

∧
a∈MAY(ActP∪ActQ)

(
D↑pq ∧ Inv(lpq) ∧ GPQ(a, lpq)

)
→
(
D↑pq ∧ Inv(lpq) ∧ GQ(a, lq)

)
∧

∧
a∈MUST(ActP∪ActQ)

(
D↑pq ∧ Inv(lpq) ∧ GQ(a, lq)

)
→
(
D↑pq ∧ Inv(lpq) ∧ GPQ(a, lpq)

)
]

The above formula is satsifiable if the subformula contained by the quanti-

fier (i.e., the closure property) is valid with parameters assigned values satisfying

f(Θ) ∧ Ω. Thus, any model returned by the SMT solver is a set of parameter

valuations that make the zone closed.

Algorithm 3 eventually terminates assuming the oracle we use for guessing

parametric assignments terminates: First, Weise’s algorithm (Algorithm 4) termi-

nates because the parametric zone-graph it explores is finite and it can only expand

and remove a zone at most once. The outer guessing loop terminates (Algorithm

3) because the number of possible parameter valuations is finite and any valuation

of the parameters is tried at most once.

Algorithm 3 decides modal refinement for action-deterministic TPMS given

Lemma 3.3.2 and assuming Weise’s orginal algorithm is correct. First, it is sound.

If it returns true then by definition it has found a parameter assignment that makes

the initial zone of the product zone graph closed. If it returns false, then my

86

Algorithm 4 Version of Weise’s zone-based refinement checking algorithm mod-

ified to assist a parameter search.
Precondition: Two TPMS P & Q and a boolean formula Ω indicating invalid parameter valua-

tions.

Postcondition: returns (TRUE, f(Θ)) if P <∼ Q for the given parameter valuation f(Θ), (FALSE,

f(Θ)) otherwise. If P <∼ Q then f(Θ) are the supporting witness parameter valuations. If

¬(P <∼ Q) then f(Θ) are parameter valuations that don’t support P <∼ Q.

1: function GUESSREFCHECK(P,Q,Ω)

2: PQ← SYNTACTICPRODUCT(P,Q)

3: f(Θ)← TRUEFORMULA()

4: seen← ∅, check ← EMPTYSTACK()

5: PUSH(check, 〈lpq,0〉)
6: while NOTEMPTY(check) do

7: 〈lpq, Dpq〉 ← POP(check)

8: if RELEVANT(〈lpq, Dpq〉) then

9: V ←CLOSEDPARAM(〈lpq, Dpq, f(Θ) ∧ Ω〉)
10: if V = FALSE then

11: if 〈lpq, Dpq〉 = 〈lpq,0〉 then

12: return (FALSE, f(Θ))

13: end if

14: REMOVE(〈lpq, Dpq〉)
15: PUSHALL(check, PRED(〈lpq, Dpq〉)
16: else

17: f(Θ)← f(Θ) ∧ V
18: end if

19: end if

20: if 〈lpq, Dpq〉 /∈ seen then

21: seen← seen ∪ 〈lpq, Dpq〉
22: PUSHALL(check, SUCC(〈lpq, Dpq〉)
23: end if

24: end while

25: return (TRUE, f(Θ))

26: end function
87

definition and Lemma 3.3.2 it could not find any parametric assignment that makes

the initial zone closed.

3.4 Related Work

In [119] Larsen et al. first introduced what they called a modal process logic.

Their modal process essentially consists of a LTS where each transition has both

an action label and a may/must modality. The may-must modality constrains

the behaviors exhibited by potential implementations: If a specification contains a

must-transition then all implementations of that specification must have an equiv-

alent transition. If a specification has a may-transition then an implementation is

allowed to have an equivalent transition.

Recently there has been renewed interest in modal specifications as a formal-

ism for software product lines [121, 66, 31]. In software product lines a product

line architect designs a product line by working “top-down”: They start with ab-

stract models of the software components and then incrementally refine the ab-

stract model into concrete implementations by either removing may transitions or

turning may into must transitions. Much of the research efforts studying modal

specifications for product lines has focused on creating a “complete” set of ale-

braic operators for the formalism in questions. These operators usually include

parallel composition, conjunction, disjunction and quotient.

Parallel composition allows designers to combine two specification into a

larger system where the two sub-specifications interact with each other. Con-

junction allows designers to create a new specification that has the intersection of

behaviors from the operands while disjunction is the union. Quotient gives the

88

“difference” between two specifications and is useful for synthesis.

There have been a number of interesting extensions to the basic idea of modal

specifications. Disjunctive modal transition systems [31, 64] allow for specifiers

to group may transitions into a disjunction. Then any valid refinement of the

specification must have a transition equivalent to at least one transition in the

disjunctive group. At some level, we have applied a similar idea in TPMS, where

a parametric clock constraint induces a number of possible MTTS.

Quantitative Modal Transition Systems [29, 120] add ranges of numerical

weights to the transitions of the specification. The weights can be used to de-

note a number of quantitative metrics, for example cost. One interesting class of

quantitative model transition systems are timed modal transition systems. Here,

instead of annotating edges with integer weights, an existing timed formalism,

such as timed-automata ([5]), is extended with a notion of may/must modality.

The first appearance of a timed modal specification in the literature can be

seen in [49] and Jens Godskesen’s PhD dissertation [68]. While they give a pro-

cess algebraic syntax for their specification the semantics of an implementation

are fundamentally the same as a Timed Automata with location invariants. In

this early work refinement of the timing behavior is allowed in a very restricted

sense: A refinement must spend less than or equal time in a given state as the

specification.

Later, [182] directly extends timed automata by allowing edges in the au-

tomata be either may or must. This means that while specifiers can express func-

tional variability over possible refinements they cannot express timing variability

separately: The semantics of refinement are given by applying the modality of

the edges to the infinite transition system in the operational semantics of the au-

89

tomata. This means that if a specification has a must edge that is enabled between

time t1 and t2, then any refinement must have an equivalent edge enabled for the

same time duration: All refinements must preserve the time-non-determinism of

the specification’s must edges.

[35] establish the decidability of refinement and consistency (i.e., does this

specification have a refinement?) of timed modal specifications. The timed for-

malism Bertrand et al. studied coincides with the original formulation of timed

automata which had accepting states (but no location invariants).

[56] extends timed-automata with may/must modality on the edges but with

the extra restriction that all edges labeled with input events are must edges and all

edges with output events are may edges. While this is a significant restriction it

allows for game-theoretic characterization of their semantics which in turn reveals

elegant algorithms for the various algebraic operators including quotient.

[34] studied another restricted form of timed modal specification where edges

in event-clock automata are extended with modality. Event-clock automata are a

restricted form of timed automata where there is a clock associated with each edge

label. Whenever an edge is taken, its associated clock is reset.

In [32] Benes et al. proposes a unique modal-specification for real-time sys-

tems where timing and functional variability are seperate. Instead of using clocks

and guards over clock values to model time, Benes et al. annotate the edges of

the labeled transition system with durations. The durations indicate the range of

time the source state of the edge is allowed to wait before an action is taken. Tim-

ing variability is achieved by indicating whether the durations are controllable or

uncontrollable. Controllable durations admit implementations that use a duration

equal or less than the duration. Implementations must keep the same durations for

90

all controllable durations. While [32] lets designers specify functional and timing

variability separately, the formalism of [32] does not offer any parallel composi-

tion operator.

Each of the timed specification theories described bove either doesn’t allow

for timing variability separate from functional variability or lacks a parallel com-

position operator (unlike TPMS). The specification theories of [182, 35, 56] and

[34] don’t separate timing from functional variability. This means that any imple-

mentation of their specifications must preserve all the timing behavior (including

non-determinism) of the specification. While [68] separates timing variability

from functional variability its notion of refinement only allows for “faster” imple-

mentations (TPMS is more flexible and allows the designer to write specifications

that allow, for example, not just faster but also more precise timing behavior). As

far as we know only the specification theory of [32] explicitly allows for timing

variability separate from functional variability. Unfortunately its lack of parallel

composition makes it unsuitable for reasoning about on-demand systems.

91

Chapter 4

The On-Demand Systems

Description Language

The design of the language used to specify the applications in an on-demand

ecosystem will impact the viability of that ecosystem. The language will have

a large role in determining what applications developers can express and verify,

what applications the regulators will admit to the ecosystem, and what devices

and algorithms users can combine into a functioning system.

In this chapter we propose the On-Demand Systems Description Language

(ODSDL). The ODSDL would be used by application developers to program ap-

plications and to specify what devices that application needs to operate correctly.

Device manufacturers would use the ODSDL to specify the behavior and capa-

bilities of their device. This chapter is organized as follows: In Section 4.1 we

lay down requirements that any language (or language framework) intended for

on-demand systems must satisfy. In Section 4.2, we give a high-level overview

ODSDL features and how those features help satisfy the previously described re-

92

quirements. In Section 4.3 we provide a sketch of the language itself and illustrate

how it would be used to program an example application. In Section 4.4 we give

denotational semantics for ODSDL programs and prove important determinism

properties.

4.1 Key Language Requirements

A language intended to program on-demand applications (i.e., define on-demand

systems) must enable predictability, compositional flexibility, provide adequate

amounts of extensibility and be portable. If not, the number and types of sys-

tems available for end-users to instantiate will be limited. If the number and types

of systems are limited, then the value of the on-demand approach is practically

diminished. In this section we will describe what we mean by predictability, com-

positional flexibility, and existensibility and how each impacts the systems ulti-

mately available to end-users. For portability, we follow the generally accepted

meaning (e.g., as used in [144] or [81]).

Predictability

When an application developer creates an application they are effectively defining

a set of systems users can create. Developers will not be able to test every com-

bination of allowed devices and their application. Instead, developers will have to

predict the possible behavior of these systems by analyzing the application itself

(i.e., treat the application as a model of the systems it defines). The detail at which

system behavior can be predicted will affect what types of systems developers can

get admitted to the ecosystem: The safety assesment of low(er)-criticality appli-

93

cations (e.g., smart-alarms [170, 107, 109]) will likely not depend on the detailed

behavior of the system while complex systems of higher-criticality (e.g., closed-

loop control of PCA) will require a detailed understanding of all the ways the

system’s software and devices can interact with each other and the environment

(i.e., patient).

The language used to define an on-demand system should include features

that allow the developer to control the behavior of the system’s software compo-

nents and how those software components interact with each other and connected

devices. Futhermore, the language must allow developers to model individual de-

vice behavior and extrapolate from the behavior models to the behavior of real

systems.

Compositional Flexibility

The compositional flexibility of an on-demand ecosystem is measured by its abil-

ity of the end-users to (safely) use different combinations of devices with the

same application. Compositional flexibility gives end-users more options in terms

of how they allocate (e.g., assign to patients) and procure devices, which in turn

can help drive down costs [1].

The compositional flexibility of an on-demand ecosystem will be affected by

the ecosystem’s standard device behavior language and the ecosystem’s notion of

application/device compatibility. Superficially, compositional flexibility and pre-

dictability seem to be at odds: Strict definitions of compatibility limit the number

of devices that can be used with a given application which in turn makes pre-

dicting overall system behavior “easier”. Conversely, permissive definitions of

compatibility mean more devices can be used with a given application but then

94

the application developer must account for more possible behaviors. Ideally, the

ecosystem should standardize on a language that lets application developers write

permissive requirements when possible, and strict requirements when necessary.

Extensibility

As discussed in the intro to this dissertation, creating large complex standards is

practically difficult. Instead of developing a large complex standard that defines

the behavior of each device type, a better approach would be to use a standard-

ized extensible language to describe device behavior. Ideally, the language would

be relatively simple yet expressive enough for application developers and device

manufacturers to specify the behavior of new devices at whatever level of detail

is needed. The main benefit of using a standard extensible language is less stan-

dardization effort. The ecosystem stakeholders only needs to come to a consensus

on the language itself. There would no need for the ecosystem consortium to de-

cide the standard behavior for each device type. If a device manufacturer wants to

produce a new device, there is no need for them to conform to a standard for that

type.

Extensibility frees the manufacturer to add new capability to the ecosystem

(via devices with new behavior). Likewise, application developers would not be

restricted rely one the behaviors defined by any standard. If they want to develop

a new application that requires new behavior out of a device they are free to do

so: They can partner with a device manufacturer to ensure that a device with that

behavior is available in the ecosystem. Then, if that application is successful,

other device manufacturers may decide to market devices that also offer that be-

havior. In this way, a standard extensible language for device behavior would let

95

the ecosystem grow organically with a minimum of standardization effort.

4.2 Key Language Features

The ODSDL addresses predictability, compositional flexibility, and extensibility

by incorporating (and tweaking) a number of previously studied concepts into a

single language. These concepts include the ability to specify the logical archi-

tecture of a system, write programs with logical execution time semantics, and

use a type of modal specification to specify device behavior. While there are three

concepts and three key language requirements there is not a direct mapping be-

tween these concepts and the requirements. Instead, each of these concepts helps

the ODSDL meet all of the requirements.

Logical Architecture Abstraction

Inspired by the AADL [65] and MetaH [175], the ODSDL gives application de-

velopers an abstraction by which they specify a system’s logical architecture. A

logical architecture specification is a description of a system’s functional com-

ponents (e.g., software modules, medical devices, etc.), how information flows

between those components, and abstractions that capture the “non-functional”

properties (e.g., timing) of those components. The logical architecture abstrac-

tion allows application developers to express different systems without specifying

particular hardware or hardware configurations which is necessary for application

portability.

96

Logical Execution Time Semantics & Input Determinism

The ODSDL extends Logical Execution Time (LET) semantics [80, 79] to systems

of (device/software) components connected via publish/subscribe [63] communi-

cations. In LET semantics each communication or computation is specified with

a delay d, or logical execution time. Each time a computation or communication

activates, it reads its inputs and does its computation in zero time, then writes its

outputs in zero time after d timeunits have elapsed [110]. LET semantics support

the portabilty of applications by abstracting away timing variabilities in the exe-

cution of an induced by a platform’s underlying scheduler, current system load, or

the speed of the processor (or network).

In addition to having LET timing semantics, the value-semantics (i.e., the se-

mantics of the computations themselves) in the ODSDL are deterministic: For a

given state and input, an ODSDL task will always compute the same result. Deter-

ministic value-semantics, combined with the LET semantics, ensure that ODSDL

applications are input-stream deterministic: For a given stream of (timed) input

events (e.g., sensor readings from devices), an application will always generate

the same stream of (timed) outputs (e.g., actuator commands). Input stream de-

terminism directly supports predictability because if developers verify & validate

the application using testing, they have assurance that the system will behave the

same in the field (at least for the tested inputs). Furthermore, input-sequence de-

terminism can aid automatic and exhaustive verification techniques: For example,

a model-checker would not have to explore as many possible system executions

or event interleavings [67].

97

Modal Specifications for Device Behavior

The ODSDL bases its device behavior specification sub-language on Time Para-

metric Modal Specifications (TPMS) (see Chapter 3) and uses weak-implementation

(see Definition 3.2.14) to define compatibility between applications and devices.

TPMS (and weak-implementation) directly supports predictability, compositional-

flexibility, and extensibility.

TPMS supports predictability by allowing the application developer to explic-

itly specify device behavior requirements and then directly analyze the composi-

tion of the application, device requirements specifications, suitable environment

model for safety: First, the developer would implement the application software,

specify its logical architecture, and declare the device behavior requirements. A

TIOA (a TPMS with no modal variabilty) model of the application software can

then be extracted from the implementation and composed with the device require-

ments TPMS and environment models. That composition can be fed into a model-

checker or other tool to verify that is satisfies the correct safety properties. If the

platforms use the weak-implementation relation to check for compatibility then

Theorems 3.2.3, 3.2.5, and 3.2.13 ensure us that all instantiated systems will sat-

isfy those same safety properties.

TPMS allow for compositional flexibility because they allow developers to di-

rectly control how permissive their specifications are by distinguishing between

required and allowed behavior. As their name suggests, required behaviors must

be present in all devices that satisfy a specification. Conversely, a device cannot

satisfy a specification if it includes more behavior that what is allowed. Applica-

tion developers can increase the permissiveness (and hence make their application

compatible with a wider range of devices) of their device requirements specifi-

98

cations by adding allowed behavior or reducing required behavior. Furthermore,

TPMS allow developers to start with permissive specifications and then iteratively

refine them (e.g., following the definition of weak-refinement) until they arrive at

a specififcation for which they can prove overall system safety.

TPMS support extensibility and enables small standards. If TPMS are used by

application developers and device manufacturers to describe behavior, the ecosys-

tem consortium will not have to standardize behavior for different device types.

As long as the consortium standardizes the syntax and the meaning of the action-

labels (i.e., the physical phenomenon each action-label represents) then the plat-

forms will be able to automatically determine if a device’s behavior meets the

needs of an application. Furthermore, if the ecosystem consortium chooses to

standardize basic behavior for each device type, they can do so with a “loose”

specification which may be easier to achieve consensus on. Then, if necessary,

different stakeholders can refine the specification as needed via modal-refinement

(analogous to a programmer extending an abstraction).

4.3 Core Language Elements

The ODSDL provides three core language elements: system declarations, module

declarations and device declarations. All three are needed to define a complete

ODSDL application. Device declarations would also be used standalone by device

manufacturers to specify their device’s behavior.

In this section we will illustrate the use of each of these elements by showing

how they would be used to implement a PCA safety interlock, i.e., an applica-

tion that automatically disables a PCA pump if the patient is at risk of overseda-

99

PCA Pump

Controller

Pulse Oximeter

drug infusion

bolus request

SpO2 signal

periodic SpO2 messages enable signal

Figure 4.1: Logical architecture of a closed-loop PCA safety interlock.

tion (Figure 4.1). The application uses two medical devices: a pulseoximeter and

PCA pump. The pulseoximeter periodically samples the patient’s blood oxygena-

tion (SpO2) and then transmits those values to the controller. The controller is a

software component that decides, based on received SpO2 values, whether or not

the patient is at risk for oversedation. If the controller deems the patient at risk,

then it will send a ‘disable’ message to the pump which will cause the pump to

ignore future bolus requests from the patient.

The PCA safety interlock example will help us show why the different ODSDL

language features are needed and how they are used to define an on-demand sys-

tem. First, The PCA safety interlock is a real-time system and the application de-

veloper must ensure timely delivery of the message which will in turn depend on

them ensuring timing characteristics of the whole control loop (sensor sampling

delays, network transmission, and controller computation). Second, the safety of

of the PCA safety interlock is also clearly dependent how how the devices them-

selves behave but tolerates some variability in behavior: For example, its perfectly

safe to use a pump that disables itself autonomously as long as it disables itself

100

when told to by the controller. Third, both devices ahve input/output interactions

with both the environment and network which lets us demonstrate how to define

device behavior in terms of basic physical signal and data-types.

4.3.1 System Declarations

〈system declaration〉 |= system 〈identifier〉{ 〈body〉 }

〈body〉 |= 〈components〉 〈interactions〉

〈components〉 |= 〈device〉; 〈components〉 | 〈module〉; 〈components〉 | ε

〈device〉 |= device 〈identifier〉 :〈type identifier〉

〈module〉 |= module 〈identifier〉 :〈type identifier〉

〈interactions〉 |= interactions { 〈interaction body〉 } | ε

〈interaction body〉 |= 〈interaction〉;〈interaction body〉 | ε

〈interaction〉 |= 〈identifier〉.〈identifier〉 flowsto 〈identifier〉.〈identifier〉 〈qos clause〉

〈qos clause〉 |= delay 〈number〉 | ε

Figure 4.2: Grammar for ODSDL system declarations

ODSDL system declarations are used by application developers to specify the

logical architecture of the system managed by their application: They specify the

types of devices their application needs, the software modules that are used, and

the possible flows of data and commands between devices and modules. The

grammar for system declarations is included in Figure 4.2.

System declarations always have two parts. In the first, needed devices and

software modules are declared. The declaration always associates an instance

with a type. This allows systems to use more than one of the same device or mod-

101

1 systemsystemsystem ClosedLoopPCA {

2 devicedevicedevice pca : PCAPump;

3 devicedevicedevice po : PulseOximeter;

4 modulemodulemodule controller : PCAController;

5 interactionsinteractionsinteractions{

6 controller.disable_cmd flowstoflowstoflowsto pca.disable delaydelaydelay 100;

7 po.spo2 flowstoflowstoflowsto controller.spo2_in delaydelaydelay 100;

8 }

9 }

Figure 4.3: Top level specification for the closed-loop PCA system

ule type. The module or device type name is always a reference to an ODSDL

(device or module) declaration of the same name. The second part of the decla-

ration is called the interactions block. Interactions are dataflows that specify the

publish/subscribe relationships that carry data and commands between module

and device ports. Each flow is always declared by identifying the source module

instance/port and destination module instance/port. Each input port of a device or

module can have at most one flow coming into it (this restriction simplifies the

input-deterministic semantics of the system). There is no restriction on the numbe

of flows leaving an output port. Flows have a single QoS parameter called delay.

The delay sets how long the platform will take to propagate the data or command

from the source to the destination in milliseconds. The delay is not a deadline:

it is an isochronal parameter meaning the message will arrive exactely after the

delay has elapsed.

The system declaration for the example closed-loop PCA system is shown

in Figure 4.3. The declaration lists the sub-components of the system and how

they will exchange data and command . Lines 2 & 3 declare that the system

102

will make use of two external devices; one with type PCAPump the other with

type PulseOximeter. Line 4 declares that one application module will be

used (of type PCAController). These modules are software units will execute

on the MAP. The types for both modules and devices are both references to the

appropriate module or device declarations.

The closed-loop PCA system has two dataflows: The pulse-oximeter will pe-

riodically publish sampled SpO2 values to the controller, which may cause the

controller to issue a command to disable the pump. Note that the interactions

block only consists of interactions between the devices and modules and not the

devices and the physical environment (e.g., the SpO2 signal, infusion rate, and

bolus event from Figure 4.1). Instead, device interactions with the physical envi-

ronment will be specifed in the device declarations themselves. Each dataflow in

the closed-loop PCA system has a delay of 100 which means that if the pulse-

oximeter sends a message at time t it will arrive at the input port of the controller

at t + 100 (likewise and command issued by the controller will arrive at the PCA

pump 100 milliseconds later.).

4.3.2 Module Declarations

Modules are the software units that implement the control/coordination algorithms

of an ODSDL application. Modules consist of input/output ports, state variables,

and a task.

The ports of a module are its logical interface to the rest of the system. Each

port is specified as either input (i.e., a destination for a dataflow) or an output

(source of a dataflow). The datatype of all ports is implicitly a long (i.e., a signed,

64-bit twos-complement integer). Each port is annotated with a minsep parame-

103

〈module〉 |= module { 〈module body〉 }

〈module body〉 |= 〈signature〉 〈globals〉 〈task spec〉

〈signature〉 |= net input 〈port declaration〉 〈signature〉

| net output 〈port declaration〉 〈signature〉

〈port declaration〉 |= 〈identifier〉 〈identifier〉 〈port timing〉

〈port timing〉 |= minsep n1 maxsep n2 | ε

〈vars〉 |= vars { 〈var list〉 }

〈var list〉 |= 〈var〉, 〈var list〉 | ε

〈var〉 |= 〈identifier〉:〈identifier〉

〈task spec〉 |= task activated 〈trigger〉

delay n { 〈task body〉 }

〈trigger〉 |= periodically n | by port 〈identifier〉

〈task body〉 |= 〈locals〉 〈stmt〉

〈stmt〉 |= 〈identifier〉 := 〈axepr〉 | 〈stmt〉;〈stmt〉 | if 〈bexpr〉 then 〈stmt〉 else 〈stmt〉

| while 〈bexpr〉 do 〈stmt〉

〈send〉 |= send(〈identifier〉, 〈aexpr〉)

〈aexpr〉 |= n | 〈identifier〉 | 〈aexpr〉+〈aexpr〉 | 〈aexpr〉-〈aexpr〉 | 〈aexpr〉*〈aexpr〉

〈bexpr〉 |= true | false | 〈aexp〉 = 〈aexp〉 | 〈aexp〉 ≤ 〈aexp〉

| 〈aexp〉 || 〈aexp〉 | 〈aexp〉 && 〈aexp〉

Figure 4.4: Grammar for ODSDL module descriptions

ter which declares the minimum separation between message arrivals on that port

in milliseconds. Minimum separation informs the platform scheduler on how of-

ten it might need to dispatch a task (if the module’s task is dispatched whenever a

new value arrives on the port). Input ports contain the last value received on that

port. Tasks can read (but not write) input ports as if the input ports are variables.

Each module has a single task which can be programmed to read data from

104

input ports, read and update state variables, and send data out the output ports.

The programmer has two options for how the task is dispatched: The module can

be dispatched periodically by the platform’s scheduler or when a new value arrives

on a particular port. Dispatch can be triggered by only one port. Programmers

must specify a delay (in milliseconds) for each module task. The delay must be

less than the task’s period. A task’s period is either specified directly (in the case

of periodically dispatched tasks) or the task inherits its period from the minsep

of the port that triggers it. Tasks can send data using the send operator. Tasks are

restricted from sending more than once out of the same port in the same execution:

the last sent value is what will be used. This restriction makes both resource

allocation easier for the plaform1.

Module tasks have LET semantics: When they are dispatched their execution

is “instantaneous” but all send events they generate will not happen until after

they task delay has elapsed. If a module receives values on a port at the same

time a task is to be dispatched, the port values are updated before the task is

dispatched. The LET semantics combined with the input port write/task dispatch

ordering ensures that modules are input deterministic: For a given stream of inputs

on the input ports, the module will always produce the same output stream on its

output ports.

Figure 4.5 shows the ODSDL module declaration for the PCAController.

The controller receives SpO2 measurements on its input port and generates disable

commands on its output port. The module has a single state variable, last spo2

1If we dropped this restriction then we would have to do static analysis of the task itself to

figure out how many times it could send out a port in the worst case. Furthermore, sending more

than once out of the same port at the same time instant means we would have to decide which

value the receiving port accepts.

105

1 modulemodulemodule PCAController {

2 netnetnet inputinputinput "spo2_in" Integer minsepminsepminsep 200 maxsepmaxsepmaxsep 700

3 netnetnet outputoutputoutput "disable_cmd" Event minsepminsepminsep 100 maxsepmaxsepmaxsep inf

4 varsvarsvars { }

5 tasktasktask activatedactivatedactivated periodicallyperiodicallyperiodically 200 delaydelaydelay 100{

6 ififif(spo2_in < 90){

7 sendsendsend("disable_cmd", "")

8 }

9 elseelseelse{ }

10 }

11 }

12 }

Figure 4.5: PCA Controller module declaration

which it uses to record the most recently received SpO2 reading. The process

of this module is very simple; it is activated periodically and samples the most

recently received value on the spo2 in port which it copies into the last spo2

state variable. If the SpO2 value is below some threshold it will send a disable

signal to the PCA pump. If a task activation is scheduled for the same instant as

when spo2 in receives an update the port will always be updated before task

activation. Because the task’s delay is 100, if it is dispatched at time t and if it

decides to send the disable command, the command will be sent at time t+ 100.

4.3.3 Device Declarations

Device declarations in the ODSDL have two uses. First, they are used by appli-

cation developers to specify the required and allowed behavior of the devices that

are used with their application. Second, device manufacturers use device declara-

tions to model the behavior of their devices. If the certification authority certifies

106

〈device declaration〉 |= device 〈identifier〉{ 〈body〉 }

〈body〉 |= 〈signature〉 〈clocks〉 〈parameters〉 〈constraints〉 〈vars〉 〈invariants〉 〈init〉

〈behavior〉

〈signature〉 |= net input 〈port declaration〉 〈signature〉

| net output 〈port declaration〉 〈signature〉

| sensor 〈identifier〉

| actuator 〈identifier〉 | ε

〈port declaration〉 |= 〈identifier〉 datatype 〈identifier〉 〈timing〉

〈timing〉 |= minsep 〈number〉 maxsep 〈number〉 | ε

〈clocks〉 |= clocks { 〈identifier list〉 }

〈invariants〉 |= invariants { 〈inv list〉 }

〈inv list〉 |= (〈expr〉,〈expr〉),〈inv list〉 | ε

〈parameters〉 |= parameters { 〈identifier list〉 }

〈constraints〉 |= constraints { 〈expr〉 }

〈vars〉 |= vars { 〈var list〉 }

〈var list〉 |= 〈var〉, 〈var list〉 | ε

〈var〉 |= 〈identifier〉:(〈number〉 〈number〉) | 〈identifier〉:(〈string list〉)

〈init〉 |= init (〈expr〉)

〈behavior〉 |= behavior (〈behaviors〉)

〈behaviors〉 |= 〈guarded update〉, 〈behaviors〉 | ε

〈guarded update〉 |= when 〈expr〉 andsync 〈action〉 then 〈modality〉 do 〈cexpr〉

〈action〉 |= 〈identifier〉! | 〈identifier〉? | 〈identifier〉!〈identifier〉

| 〈identifier〉?〈identifier〉

〈modality〉 |= may | must

Figure 4.6: Grammar for ODSDL device declarations

107

that the device implements the modeled behavior, the device declaration would be

embedded into the device itself. Then, each time the device is connected to a plat-

form it would register its device declaration with the platform where it can be used

for device/application compatibility checking. Device declarations are a syntactic

sugar for TPMS introduced in Chapter 3. The grammar for device declarations is

given in Figure 4.6.

Like module declarations, device declarations begin with a declaration of ports.

Unlike module declarations, device declarations have four types of ports: net

input, net output, sensor, and actuator. The net input and net

output port types are the same as in module declarations: They declare the logi-

cal interface the device exposes to the application over the network. The sensor

and actuator port types declare the device’s logical interface to its physical

environment. Sensors represent inputs from the environment while actuators are

treated as outputs. Unlike the network ports, sensors and actuators must be spec-

ified with a physical type. The physical types give the interpretation of a signal

on one of those ports. The physical types, their interpretation, units, and allowed

value ranges would be standardized by the ecosystem consortium.

The (required & allowed) behavior of devices are modeled using a guarded

command language version of TPMSs which allows developers to expression both

timing and functional variability in satisfying devices. Parameters, constraints on

parameters, clocks, and invariants are the same as in TPMSs. Device declarations

can have state variables and a valuation of the state variables correspond to a loca-

tion in TPMS. Programmers write transitions using guarded commands. Program-

mers express each transition as a predicate (guard) over device state (clocks &

state variables), synchronization actions over the device’s ports, may/must modal-

108

ity, and updates to the device state: When the guard is true the transition is enabled

and the updates happen in “0-time”.

Synchronization with ports is expressed using standard CSP [85] synchroniza-

tion syntax with data: p ! v denotes sending value (or value of variable) v out

port p. p ? v means receiving a value over port p into variable v. TPMS do not

explicity sending data as part of synchronization. ODSDL desugars into TPMS

by creating a special action label for each value that can be sent out of each port

(i.e., p ! 1 in a device declaration would translate into p1! in the corresponding

TPMS).

We chose not to restrict the language in a way to prevent modeling errors

such as deadlocks. For example, it is possible to specify a device that is not

ready to receive a signal from the application when the application sends it, which

will result in a deadlock. This is a tradeoff: Fewer restrictions make it easier

for the programmer to express certain types of behavior, but the programmer is

responsible for ensuring that their specifications don’t deadlock when composed.

In practice this may not be a significant issue as the model checker we developed

for TPMS can automatically check for deadlock freedom.

Figures 4.7 and 4.8 show the device requirements specification of the closed-

loop PCA application. The PulseOximeter samples SpO2 from the environ-

ment every 500 to 600 milliseconds then it emits the sampled data out of its spo2

port. Note how the constraints on the parameters allow for timing variability:

This specification allows for devices that are imprecise (e.g., non-deterministically

sample between every 500 to 600 milliseconds) or precise (e.g., samples every t

milliseconds where t is fixed and constrained by 500 ≤ t ≤ 600).

The PCAPump can receive a “disable” command from the network and a bolus

109

1 devicedevicedevice PCAPump {

2 netnetnet inputinputinput "disable" Event minsepminsepminsep 10 maxsepmaxsepmaxsep infinity

3 sensorsensorsensor "breq" physicaltypephysicaltypephysicaltype BolusRequest

4 actuatoractuatoractuator "rate" physicaltypephysicaltypephysicaltype FlowRateMlHour

5 clocksclocksclocks{ x }

6 parametersparametersparameters{ alpha, beta, gamma }

7 constraintsconstraintsconstraints{ alpha <= beta & beta <= 3 & gamma <= 4 }

8 varsvarsvars{

9 loc : ("idle", "starting", "disabled", "infusing")

10 }

11 invariantsinvariantsinvariants{

12 (loc = "starting", x <= beta),

13 (loc = "infusing", x <= gamma)

14 }

15 initinitinit{ loc = "idle", FlowRateMlHour = 0 }

16 behaviorbehaviorbehavior {

17 whenwhenwhen (loc = "idle") andsyncandsyncandsync ("breq") thenthenthen must dododo (loc := "starting", x

:= 0),

18 whenwhenwhen (loc = "idle") andsyncandsyncandsync ("disable") thenthenthen must dododo (loc := "disabled",

x := 0),

19 whenwhenwhen (loc = "starting" & alpha <= x) andsyncandsyncandsync ("rate" ! 10) thenthenthen must dododo

(loc := "infusing", x := 0),

20 whenwhenwhen (loc = "starting") andsyncandsyncandsync ("disable") thenthenthen must dododo (loc := "

disabled", x := 0),

21 whenwhenwhen (loc = "starting") andsyncandsyncandsync tau thenthenthen may dododo (loc := "disabled", x :=

0),

22 whenwhenwhen (loc = "infusing" & gamma = x) andsyncandsyncandsync ("rate" ! 0) thenthenthen must dododo (

loc := "idle"),

23 whenwhenwhen (loc = "disabled") andsyncandsyncandsync ("disable") thenthenthen must dododo (loc := "

disabled", x := 0),

24 whenwhenwhen (loc = "disabled") andsyncandsyncandsync tau thenthenthen may dododo (loc := "idle")

25 }

26 }

Figure 4.7: Requirements on PCA pump interfacing and behavior

110

1 devicedevicedevice PulseOximeter {

2 netnetnet outputoutputoutput "spo2" Integer

3 sensorsensorsensor "pspo2" physicaltypephysicaltypephysicaltype PercentBloodOxygenSaturation

4 clocksclocksclocks{ p }

5 parametersparametersparameters{ alpha, beta }

6 constraintsconstraintsconstraints{ 500 <= alpha & alpha <= beta & beta <= 600 }

7 varsvarsvars{

8 loc : ("sensing", "sending"),

9 lastval : Integer[0 .. 100]

10 }

11 invariantsinvariantsinvariants{

12 (loc = "sensing", x <= beta),

13 (loc = "sending", x <= 0)

14 }

15 initinitinit{ loc = "sensing" & lastval = 0 }

16 behaviorbehaviorbehavior {

17 whenwhenwhen (loc = "sensing" & x >= alpha) andsyncandsyncandsync ("pspo2" ? lastval) thenthenthen must

dododo (loc := "sending", x := 0),

18 whenwhenwhen (loc = "sensing") andsyncandsyncandsync ("spo2" ! lastval) thenthenthen must dododo (loc := "

sensing", x := 0)

19 }

20 }

Figure 4.8: Requirements on Pulse-Oximeter interfacing and behavior

request from its environment while it has an “infusionrate” port that outputs to the

environment. Note how the behavior specification gives the interpretation of these

commands. When the pump receives a “disable” command it sets the infusion rate

to 0 and moves into a state where it ignores subsequent bolus requests (line 24).

When the pump gets a bolus request it implements the bolus by increasing the

infusion rate for a bounded amount of time then it sets the rate back to 0. Note

how the PCAPump declaration expresses functional variability: The behavior on

line 27 is a may behavior. The pump may decide to abort a bolus for some internal

111

reason (e.g., due to some technical alert). However, if a pump does not exhibit

this behavior then it might still satisfy this declaration.

4.4 Semantics

In this section we give the semantics of ODSDL programs and prove that ODSDL

programs are input-deterministic. By program, we mean the parts of an ODSDL

specification whose execution is controlled by the platform, i.e., the software mod-

ules and the dataflows. Logically, the boundry of an ODSDL program is at the

input/output ports of devices: The output ports of the devices are the inputs to the

program, while the input ports of the devices are the outputs of the program.

4.4.1 Preliminaries

We define the semantics of ODSDL modules and dataflows denotationally over

streams of time-stamped event sets. Definition 4.4.1 gives the three types of events

a module or dataflow can create and/or react to: Modules and devices can send

values out of their output ports, modules and devices can receive values on input

ports. A dataflow can get send events on its input which are converted to receive

events on its output. Only modules can get schedule events on their inputs, which

denote the dispatch of the module task.

Definition 4.4.1 (Event). An event is one of send (m, p, v), recv (m, p, v),

sched (m) or update (m,x, n).

• send (m, p, v) denotes module m sending value v out port p.

• recv (m, p, v) denotes module m receiving value v on port p.

112

• sched (m) denotes the dispatch of module m’s task.

A stream is an infinite sequence. Our semantics require two types of streams

(event-streams and state-streams) so we first give a generic definition of streams

(Definition 4.4.2).

Definition 4.4.2 (A-Stream). An A stream is an infinite sequence of elements

from the set A. A-streams are co-inductively defined: If a ∈ A and s is an A-

stream then a :: s is an A-stream. An A-stream can be destructed using the head

(hd) and tail (tl) functions:

• hd (a :: s) = a.

• tl (a :: s) = s.

Timed-event streams are an infinite sequence of event sets each associated with

a timestamp (Definition 4.4.6). Each element of the stream is a tuple that denotes

what events happen when. For example the tuple

({recv (m, p1, 1) , recv (m, p2, 2)}, t) means that module m receives 1 on port p1

and 2 on port p2 at time t. Because the events that happen at time t are collected

into a set, there is no ordering condition between events; they all happen “simulta-

neously” at t. Note that the well-formedness condition ensures that time increases

discretely and uniformly.

Definition 4.4.3 (Timed-Event Stream). A timed-event stream is a stream where

each element is a tuple (E, t) where E is a set of events that occur at time t.

Timed-Event Streams must be well-formed. A stream s is well-formed if both:

1. hd (s) = (E, t) and hd (tl (s)) = (E ′, t+ 1).

113

2. tl (s) is well-formed.

If s is a timed-event stream then s (t) gives the set of events that happen at

time t: Let hd (s) = (E, ti). If ti = t then s (t) = E else s (t) = tl (s) (t).

The composition process used to define program semantics requires us to

“merge” two or more event streams into a single stream. Definition 4.4.4 gives a

precise definition of a function, merge, that takes two or more streams and merges

them. Informally, two or more streams are merged by constructing a new stream

whose event-set at each timestamp is the union of all the event-sets from the argu-

ment streams at that same timestamp.

Definition 4.4.4 (Stream Merge). merge : ES × ES → ES is a function that

takes two timed-event streams s1 and s2 and gives a new timed-event stream s3

where s3 (t) = s1 (t) ∪ s2 (t). Formally merge is defined co-inductively: Let

(E1, t) = hd (s1) and (E2, t) = hd (s2). Then merge (s1, s2) = (E1 ∪ E2, t) ::

merge (tl (s1) , tl (s2)). Note that merge is only defined for streams that are well-

formed and have the same initial timestamp. For convenience we often want to

merge more than two streams at once. The above definition can be generalized to

n > 2 arguments by iteratively merging pairs:

merge (s1, . . . , sn) = merge (. . .merge (. . . , sn−1) , sn)

ODSDL modules carry state. We call a snapshot of the module’s state a con-

figuration (Definition 4.4.5). Module variables include both programmer defined

variables and the module’s input ports (the input ports hold the last value they

received).

114

Definition 4.4.5 (Module Configuration). The configuration of a module is given

by Ω, which is a map of variables to values. If v is a variable, then Ω (v) is the

value of v in Ω.

Our semantics will relate module configurations to time. We do this via timed-

state streams (Definition 4.4.6).

Definition 4.4.6 (Timed-State Stream). A timed-state stream is a stream where

each element is a tuple (Ω, t) where Ω is a module configuration at time t. Timed-

State Streams must also be well-formed. A stream s is well-formed if both:

1. hd (s) = (Ω, t) and hd (tl (s)) = (Ω′, t+ 1)

2. tl (s) is well-formed.

4.4.2 Tasks

The a module’s task in the ODSDL is written in a language based on the simple

language IMP [185]. Unsuprisingly, the operational semantics of ODSDL tasks

largely mirrors the semantics of IMP a student would learn in their undegraduate

programming languages course (the operational semantics of ODSDL tasks are

given in Figure 4.9). The main difference from IMP is the addition of the send

construct. By definition, a module can’t send more than one value out the same

output at the same time. Rules Send1 and Send2 ensure that only the last value

passed to a send call is actually sent: The configuration of a task is given by

the triple 〈S,Ω, δ〉, where S is a program statement, Ω maps program variables

to values and δ is the set of send (m, p, v) events corresponding to the values the

module will send as a result of its task’s execution.

115

Definition 4.4.7 (Task Evaluation). If a module m’s task final configuration when

evaluated in state Ω is 〈S,Ω′, δ〉, then eval (m,Ω) = (δ,Ω′). The rules for task

evaluation are given in Figure 4.9. By convention a is used to denote an arithmatic

expression and b is used to denote a boolean expression.

4.4.3 Modules, Dataflows and Programs

Each dataflow is an ODSDL program is a simple stream processing process that

converts input send events into output receive events timeshifted by the delay of

that dataflow:

Definition 4.4.8 (Semantics of Dataflows). For a dataflow connector

c = i.j flowsto k.l delay d its semantics are defined by the greatest binary rela-

tion Rc between c’s input timed-event streams and its output timed-event streams

such that if (sin, sout) ∈ Rc then (E, t) = hd (sin), (E ′, t+ d) = hd (sout) and

E ′ = {recv (k, l, v) | send (i, j, v) ∈ E} and (tl (sin) , tl (sout)) ∈ Rc.

Dataflows are clearly input-deterministic:

Lemma 4.4.1 (Dataflows are Input Deterministic). For a dataflow conntector c let

Rc be defined as in Definition 4.4.8. If (sin, s
1
out) ∈ Rc and (sin, s

2
out) ∈ Rc then

s1
out = s2

out.

Proof. We proceed by co-induction on the streams. Let (Ein, t) = hd (sin).

Then there is only one possibilty for hd (sout) which is (E ′, t+ d) with E ′ =

{recv (k, l, v) | send (i, j, v) ∈ E} (when c connects i.j to k.l). We conclude the

proof by applying the co-induction hypothesis to show that if(
(Ein, t) :: tl (sin) , (E ′, t) :: tl

(
s1
out

))
∈ Rc

116

Lookup
Ω (x) = n

〈x,Ω, δ〉 → 〈n,Ω, δ〉

Sum
n3 = n1 + n2

〈n1 + n2,Ω, δ〉 → 〈n3,Ω, δ〉

Add1
〈a1,Ω, δ〉 → 〈a′1,Ω, δ〉

〈a1 + a2,Ω, δ〉 → 〈a′1 + a2,Ω, δ〉
Add2

〈a2,Ω, δ〉 → 〈a′2,Ω, δ〉
〈n+ a2,Ω, δ〉 → 〈n+ a′2,Ω, δ〉

Sequence1
〈s0,Ω, δ〉 → 〈s′0,Ω, δ〉

〈s0; s1,Ω, δ〉 → 〈s′0; s1,Ω, δ〉
Sequence2 〈{}; s1,Ω, δ〉 → 〈s1,Ω, δ〉

Cond
〈b,Ω, δ〉 → 〈b′,Ω, δ〉

〈if b then s0 else s1,Ω, δ〉 → 〈if b′ then s0 else s1,Ω, δ〉

CondTrue 〈if true then s0 else s1,Ω, δ〉 → 〈s0,Ω, δ〉

CondFalse 〈if false then s0 else s1,Ω, δ〉 → 〈s1,Ω, δ〉

While 〈while b do s,Ω, δ〉 → 〈if b then (s; while b do s) else {},Ω, δ〉

Assign1 〈x := n′,Ω, δ〉 → 〈{},Ω[x 7→ n′], δ〉

Assign2
〈a,Ω, δ〉 → 〈a′,Ω, δ〉

〈x := a,Ω, δ〉 → 〈x := a′,Ω, δ〉

Send1
U = {e | e = send (o, p, n) ∧ e ∈ δ}

〈send (n′, p) ,Ω, δ〉 → 〈{},Ω, (δ − U) ∪ send (o2,m.p, n
′)〉

Send2
〈a,Ω, δ〉 → 〈a′,Ω, δ〉

〈send (a, p) ,Ω, δ〉 → 〈send (a′, p) ,Ω, δ〉

Figure 4.9: Task Execution Semantics

117

and

(
(Ein, t) :: tl (sin) , (E ′, t) :: tl

(
s2
out

))
∈ Rc

then (E ′, t) :: tl (s1
out) = (E ′, t) :: tl (s2

out)

Each module is also a stream processing process (Definition 4.4.9). Each mod-

ule converts receive events on its input ports into send events on its output ports.

Note that at any time instant, modules execute tasks in a configuration where all

the input port updates for that time instant has been applied. Like dataflows, the

outputs resulting from a task computation are timeshifted by the module’s delay.

Definition 4.4.9 (Semantics of Modules). Let the input timed-event stream sin

of a module m be the merge of the input timed-event streams of its ports. The

semantics of a module m with a task-delay of d is defined by the greatest ternary

relationRm over the module’s input timed-event streams, timed-state streams, and

output timed-event streams satisfying:

• Let (Ein, t) = hd (sin), (Ω, t) = hd (sΩ) and (Eout, t+ d) = hd (sout).

• If (sin, sΩ, sout) ∈ Rm then either:

1. If sched (m) ∈ Ein then (Eout,Ω
′) = eval (Tm, update (Ein,Ω)) and

hd (tl (sΩ)) = (Ω′, t+ 1) and (tl (sin) , tl (sΩ, tl (sout))) ∈ Rm.

2. If m’s task is triggered by port p and recv (m, p, v) ∈ Ein then

(Eout,Ω
′) = eval (Tm, update (Ein,Ω)) and

hd (tl (sΩ)) = (Ω′, t+ 1) and (tl (sin) , tl (sΩ, tl (sout))) ∈ Rm.

118

3. If sched (m) /∈ Ein and m’s task is not triggered by any

recv (m, p, v) ∈ Ein then Eout = ∅ and Ω′ = update (Ein,Ω) and

hd (tl (sΩ)) = (Ω′, t+ 1) and (tl (sin) , tl (sΩ, tl (sout))) ∈ Rm.

For a given start state, modules are input-deterministic:

Lemma 4.4.2 (Modules are Input/State Deterministic). For a module m let Rm

be defined as in Definition 4.4.9. If (sin, s
1
Ω, s

1
out) ∈ Rm and (sin, s

2
Ω, s

2
out) ∈ Rm

and hd (s1
Ω) = hd (s2

Ω) then s1
out = s2

out and tl (s1
Ω) = tl (s2

Ω).

Proof. We proceed by co-induction on the streams. Let (Ein, t) = hd (sin) and

assume that hd (s1
Ω) = hd (s2

Ω) = (Ω, t). There are three cases to consider:

Case 1 (sched (m) ∈ Ein). Since hd (s1
Ω) = hd (s2

Ω), hd (s1
out) = hd (s2

out) =

(Eout, t+ d) with (Eout,Ω
′) = eval (Tm, update (Ein,Ω)) (because task evalua-

tion is deterministic relative to state and update (Ein,Ω) is unique). We also see

that hd (tl (s1
Ω)) = hd (tl (s2

Ω)) = (Ω′, t+ 1) because update (Ein,Ω) is unique.

Application of the co-inductive hypothesis lets us conclude that for

(
(Ein, t) :: tl (sin) , (Ω, t) :: (Ω′, t+ 1) :: tl

(
tl
(
s1

Ω

))
, (Eout, t+ d) :: s1

out

)
∈ Rm

and

(
(Ein, t) :: tl (sin) , (Ω, t) :: (Ω′, t+ 1) :: tl

(
tl
(
s2

Ω

))
, (Eout, t+ d) :: s2

out

)
∈ Rm

it is the case that (Eout, t+ d) :: s1
out = (Eout, t+ d) :: s2

out and (Ω′, t+ 1) ::

tl (tl (s1
Ω)) = (Ω′, t+ 1) :: tl (tl (s2

Ω)).

Case 2 (m’s task is triggered by port p and recv (m, p, v) ∈ Ein). Same as Case

1.

119

Case 3 (sched (m) /∈ Ein andm’s task is not triggered by any recv (m, p, v) ∈ Ein).

The proof proceeds as in the first two cases except with hd (s1
out) = hd (s2

out) =

(∅, t+ d).

The semantics of ODSDL programs are given by relating the inputs/outputs of

devices, modules and dataflows according to how they are interconnected in the

interactions block:

Definition 4.4.10 (Semantics of Programs). Let x be an ODSDL program with

the set of device specifications S, set of module instances M and set of dataflow

connectors C. Let t be the moment in time p is started. Then the semantics of

p are given by the greatest binary relation Rx over timed-event streams such that

(sin, sout) ∈ Rp when:

• Each module m ∈ M ’s input stream smin is the merge of all the output

streams of the connectors c such that c = i.j flowsto m.p and with m’s

task scheduling stream smsched. If m’s task is activated periodically with pe-

riod p, then ∀n∈N sched (m) ∈ smsched (tn). Otherwise ∀n≥t ∅ = smsched (n).

• The head of each module m ∈ M ’s state-stream is (Ω, t) where Ω maps

each variable to its initial value.

• Each connector c ∈ C’s input stream is equal to the output stream of module

(or device) m if c = m.j flowsto l.k.

• sin is the merge of all the input-streams of connectors c ∈ C such that

s.j flowsto m.k such that s ∈ S and m ∈M .

120

• sout is the merge of all the output-streams of connectors c ∈ C such that

m.j flowsto s.k such that s ∈ S and m ∈M .

Because dataflows and modules are input-deterministic, so are programs:

Theorem 4.4.3 (Programs are Input Deterministic). For a program p let Rp be

defined as in Definition 4.4.10. If (sin, s
1
out) ∈ Rp and (sin, s

2
out) ∈ Rp then

s1
out = s2

out.

Proof. Because the each of the modules m ∈M have their configurations initial-

ized to only one possible value all modules will map each input-stream to a unique

output-stream (Lemma 4.4.2), and connectors map each input-stream to a unique

output-stream (4.4.3) it follows from the Definition of Rp that s1
out = s2

out.

4.4.4 Devices

The semantics of device specificiations are given in terms of Time Parametric

Modal Specifications (Chapter 3). However, we do not need to go into details

to describe how the devices relate to the timed-input and output event streams

used here. Each device specification is fully captured by a digital TPMS of its

behavior. Each digital TPMS models a set of input-output timed automata (IOTA)

with digital semantics. We require each IOTA to be deadlock and timelock free,

thus each IOTA induces a set of infinite timed input and output words.

Definition 4.4.11 (Timed Word). A timed word is a (possibly infinite) sequence

of alternating actions and delays d ≥ 0 where d ∈ R. We say that a timed-word is

digital if it is always the case that d ∈ N. For example:

0→ a
5→ b

2→ . . .

121

Is a digital timed-word.

If a word w contains only delays and actions from a IOTA’s input alphabet we

say w is a timed-input word. Likewise if w contains only actions from the output

alphabet it is a timed-output word.

Each IOTA from an ODSDL device specification is input-enabled by construc-

tion so we can convert the timed-event output stream of an ODSDL program into

an infinite timed word over the specification’s inputs. Likewise we can convert

the timed-words over the outputs of a IOTA into an input timed-event stream for

the ODSDL program.

Definition 4.4.12 (Stream Semantics of Devices). Let X be the TPMS corre-

sponding to device specification D and let JX K be the set of IOTAs implied by

X . Let W be the union of all the timed words of all the IOTA in JX K. The the

stream semantics of device specification D is given by the greatest relation RD

that satisfies the following: (sin, sout) ∈ RD if sin is the timed-event stream cor-

responding to the input-projection of some infinite word wi ∈ W and sout is the

timed-event stream corresponding to the output projection of wi.

4.5 Related Work

Programs executing as part of a larger cyber-physical system typically have real-

time requirements: in order to be correct they must perform the correct computa-

tions at the correct time. This presents major challenges for program portability

and program verification. Real-time programs are typically not portable because

their timing is dependent on the processor and how the underlying operating sys-

tem allocates (i.e., schedules) processor time to different programs. If a real-time

122

program is run on a different processor or operating system it will have different

timing characteristics which in turn could cause the program to violate its timing

requirements. Even if a program meets its timing requirements (e.g., always com-

pletes before its deadline) execution non-determinism (e.g., caused by operating

scheduling decisions or speculative effects in the processor) can make it difficult

for developers to reproduce bugs or to relate testing results back to assurance

claims. Difficulties with portability and verifiability of real-time code drive up

the development costs for real-time software systems. Furthermore, the platform

approach to on-demand systems requires portable real-time programs.

In the 1990’s DARPA invested in the MetaH [177, 176] program to address

problems surrounding real-time program portability and verifiability. MetaH re-

sulted in a set of tools and programming constructs for the development of dis-

tributed real-time software systems. MetaH allowed developers to construct soft-

ware systems out of components that communicate through ports. Each compo-

nent may have a number of periodic or sporadic real-time tasks that do the actual

processing. Tasks in MetaH can read or write to their container component’s ports.

MetaH addresses time-determinism by assuming that tasks only share data via

ports, and that the results of a computation are only “visible” at a task’s deadline

(regardless when the computation actually finished). This ensures that computa-

tions are time-deterministic if all the tasks of the software system are schedulable

on the given platform. MetaH inspired the Architecture Analysis & Design Lan-

gauge (AADL) SAE standard [65] and many of MetaH’s features have found

their way into AADL.

In 2001 Henzinger et al. rediscovered many of MetaH’s determinism features

and included them in the Giotto programming language [80, 79]. In fact, it is

123

fairly accurate to think of Giotto as equivalent to the periodic subset of MetaH.

There are, however, two major differences betweem Giotto and the periodic subset

of MetaH. First, Henzinger et al. provide formal operational semantics for Giotto

programs. Second, Giotto is not coupled to an underlying scheduler (MetaH as-

sumed a form of rate-monotonic scheduling).

[58] describe the PTIDES deterministic programming model for distributed

real-time embedded software. PTIDES semantics are based on discrete event

simulation: Programs in PTIDES consist of actor components which can com-

municate with each other via ports and channels that link those ports. Whenever

a PTIDES actor sends a message it is timestamped. The timestamp is used by

the underlying PTIDES exection platform to ensure that each actor only processes

input messages in timestamp order [59, 189, 188]. Because receipt of a message

triggers actor computation, PTIDES supports aperiodic execution. Periodic exe-

cution can be achieved with a specialized clock actor that generates messages at

period boundaries. Because PTIDES programs consist of communicating actors

(as opposed to a collection of tasks) new schedulability techniques needed to be

devised to asses the schedulability of PTIDES programs. Christos Stergio estab-

lished the decidability of PTIDES scheduling in his PhD dissertation [169]. He

showed that in general schedulability is no harder than the reachability problem

for timed automata, and if only a subset of PTIDES is considered it is equivalent

to earliest deadline first schedulability analysis.

For on-demand systems we want a programming model that is deterministic,

has precise formal semantics, is easy (i.e., efficient) for paltforms to schedule,

provides familiar programming constructs and allows for both periodic and ape-

riodic computation. The programming model of MetaH (and AADL) don’t yet

124

have a complete and formal semantics. Giotto only allows periodic computation.

While PTIDES has discrete event semantics these are never precisely given. For

example it is unclear what should happen if an actor receives two events with

the same timestamp. Furthermore, PTIDES does not precisely couple model-time

with physical time: Actuators must receive their messages prior to the expiration

of the timestamp, but when the actuator acts on the message is undefined (presum-

ably it happens after, but not too long after, the timestamp). The actor construct

of PTIDES is also different from what most programmers are used to (i.e., tasks).

Furthermore, the schedulability analysis of PTIDES programs can be quite com-

plicated (both operationally and in terms of time-complexity) which is not suitable

for a platform that must perform schedulability analysis on-demand.

125

Chapter 5

A Prototype Medical Application

Platform

In this Chapter we describe the Medical Device Coordination Framework (MDCF)

and the MIDdleware Assurance Substrate (MIDAS). The combination of the MDCF

and MIDAS results in a prototype MAP implementation designed to demonstrate

the feasibility of key technologies essential to the viability of the MAP concept.

As discussed in Chapter 2, a MAP could host any number of safety- or privacy

critical applications. Ideally, the MAP certification criteria in a real on-demand

ecosystem would require that all MAPs satsify the following “high-assurance”

features:

1. Enforce a high degree of (potentially complete) of isolation and separation

between independent applications and system components.

2. Employee sound techniques to secure sensitive (i.e., private data) and deter-

mine the authenticity of devices and applications.

126

3. Utilize fault-tolerant (or fault resistant) hardware and algorithms.

4. Be verified & validated (possiiblly with formal, machine-checked, proofs)

to the highest level of assurance1.

While all the above are important for a real MAP, this chapter does not focus

on how each and every possible high assurance feature could be implemented and

incorporated into the MDCF/MIDAS. Indeed, many useful high assurance fea-

tures (such as those listed above) have been studied extensively in the literature

and in some cases are available in commercial products (see the related work Sec-

tion 5.6.1). Instead, this chapter focuses on describing the platform capabilities

that are both new and necessary to make our vision of a MAP ecosystem work.

A key challenge for any MAP is to provide determinism in a dynamic, open,

and distributed environment. Most distributed systems with strict determinism re-

quirements are designed assuming the system itself will be static (i.e., the tasks

and data-flows that comprise the “digital” portion of the system are fixed from the

factory). Consequently, most technology developed to enable determinism have

not been designed to work for systems that are dynamic, open, and distributed.

For example, the networking technology typically used in high assurance real-

time systems (e.g., the Time Triggered Architecture [113], Time Triggered Eth-

ernet, FlexRay [53], etc.) can provide the needed timing guarantees and inter-

component isolation but must be configured “offline”. Likewise, while there has

been a number of promising distributed deterministic programming models devel-

oped (e.g., PTIDES) their execution strategies require complex procedures (both

operationally and computationally) for schedulability analysis which makes on-

line admission control difficult.
1e.g., the criteria laid out for DO-178C Level A or EAL7

127

This chapter presents three contributions towards enabling strict determinism

in an open, dynamic, and distributed system. The first is the MIDAS. MIDAS

combines Software Defined Networking (SDN) [136] with a publish/subscribe

communications abstraction. MIDAS enables programmers to specify timing con-

straints on logical flows of data between producers and consumers. MIDAS then

enforces the timing constraints and specified isolation by reconfiguring the un-

derlying network packet switching infrastructure on the fly. The second contribu-

tion is a determinizing scheduler that implements the DLT semantics of ODSDL

programs. The resource demands of the execution strategy employeed by the de-

terminizing scheduler can be reduced to a traditional task-set specifciation which

enables the use of relatively simple schedulability analysis techniques. The third

contribution is a collection of minor modifications to existing real-time schedul-

ing techniques. These minor modifications are necessary for us to use classic

real-time scheduling theory with real COTS operating systems and networking

hardware.

This Chapter is organized as follows. Section 5.1 gives a functional overview

of the software architecture of the MDCF/MIDAS. Section 5.2 gives a detailed

overview of the MIDAS Channel-Service. The MIDAS Channel-Service provides

the hard real-time publish/subscribe communications primitives leveraged by the

determinizing scheduler to implement the DLT semantics in a distributed system.

Section 5.3 describes the overall operation of that determinizing scheduler and

how it achieves the LET semantics. Section 5.4 describes a variety of practical

scheduling techniques used by the MDCF/MIDAS to ensure that tasks and mes-

sages always meet their deadlines. Section 5.5 an evaluation and performance

assesment of the MDCF/MIDAS’ ability to guarantee deterministic application

128

Distributable Components

Application
Manger

Device
Manager Resource Manager

Determinizing Scheduler

Real-Time Message Bus

App1 App1 App1

Figure 5.1: MDCF Software Architecture.

execution.

5.1 MDCF Architecture and Functional Overview

The MDCF/MIDAS is a set of integrated services intended to run on top of a

traditional real-time operating system. These services work with each other, the

underlying hardware and operating system to manage the lifecycle of MAP ap-

plications and provide a predictable environement for those applications to exe-

cute in. Figure 5.1 shows the software architecture of the MDCF/MIDAS. The

MDCF/MIDAS is comprised of the MIDAS Real-Time Message Bus, a Device

Manager, an Application Manager, and a Resource Manager that supports the De-

terminizing Scheduler.

129

5.1.1 Real-Time Message Bus

The Real-Time Message Bus (RTMB) provides a publish/subscribe messaging

service and is used a number of ways by the MDCF/MIDAS components to com-

municate with other. Devices use the RTMB to communicate with the MDCF

via combination of public (i.e., atrium) and private topics (e.g., announce the de-

vice’s presence, engage in authentication, etc.). The Application Manager & Re-

source Manager use the RTMB as the underlying transport medium for ODSDL

dataflows. The RTMB leverages software defined networking (SDN), and in par-

ticular the OpenFlow protocol, to guarantee the timeliness of any time-critical

messages. The design and operation of the RTMB will be elaborated in Section

5.2.

5.1.2 Device Manager

The Device Manager manages the association lifecycle of devices used with MDCF

applications. Each stage of the association life-cycle of a device defines to what

extent it is available to be used by an application. Figure 5.2 is an illustration of

the MDCF device connection protocol and shows the relationship between each

stage (state) of the lifecycle. Transitions between states are either annotated with

CSP [85, 84] style communications across channels implemented with the RTMB

or locally detected events.

When a device is first plugged into the network it is in the Disconnected

state. Once the device detects it has been plugged in, it annouces itself to the

MDCF Device Manager and begins the process of authentication (state

Authenticating). Once the device has been successfully authenticated (i.e.,

130

the MDCF has validated the device’s certification credentials) the device trans-

mits its behavior specification and becomes “associated”, or available for with an

application (Associated). If the MDCF or RTMB detects a disruption in the

underlying network transport the device is considered Lost until the transport

medium has recovered.

After the device has transmitted its specification, but before the device can

be used with an application, the Device Manager will direct the RTMB to create

topics to carry any medical data streams the device may output. In general, a

single unique topic is created for each output port of the device’s specification

(see Figure 5.3). If the RTMB or Resource Manager cannot allocate the resources

to create the necessary topics the association process will halt.

5.1.3 Application Manager

The Application Manager controls the lifecycle of MDCF applications (see Figure

5.4). When a user wants to start an MDCF application they use the MDCF console

to select the desired application and the set of devices they wish to couple with

the application. The Application Manager first checks whether the application

and selected devices are compatible. If so, the MDCF works with the Resource

Manager and RTMB to perform admission control, i.e., it checks if it can ensure

that the application’s QoS requirements are always met given the application’s

resource needs and the current demand on the platform’s resources. If the appli-

cation QoS requirements can be met the platform reserves the necessary resources,

instantiates the application and then binds the application to the selected devices

(Figure 5.4). The binding process involves subscribing the application to the top-

ics corresponding to the devices publish ports and the devices to topics carrying

131

Disconnected

Authenticating

Authenticated

Associating

Lost

Reconnecting

Associated

to_mgr_atrium ! auth

 auth fail or timeout

from_mgr_atrium ?
 auth success

to_mgr_atrium ! device capabilites

from_mgr_atrium ?
topic assignment

 transport layer failure

to_mgr_atrium ! reconnect

 reconnect failed

reconnect
success

Figure 5.2: Device connection protocol

application to device messages. Figure 5.5 shows how the dataflow declaration

from the pulse-oximeter alarm is realized when an instance of the application is

bound to a PulseOximeter with UID 1.

5.1.4 Resource Manager

The Resource Manager ensures that every running application’s timing require-

ments will always be met and that they maintain their DLT semantics. The re-

source manager is comprised of two sub-systems:

132

PulseOximeter

spo2

PulseOximeter UID = 1

spo2 PulseOximeter1.spo2

Device Type Declaration

Device Instance topic mapping

Port Declaration
QoS:
 minsep = 490
 maxsep = 510
 datatype = int

Topic QoS:
 minsep = 490
 maxsep = 510
 datatype = int

unique topic created for
device instance by device
manager after successful
association

Device starts publishing
after topic creation

Figure 5.3: Relationship between a device’s logical data ports tand RTMB

topics.

1. A low-level scheduler that makes sure all tasks and messages complete prior

to their deadlines.

2. A high-level scheduler, which we call the determinizing scheduler, that ma-

nipulates when messages and the output of tasks become visible to imple-

ment the DLT semantics of ODSDL programs.

When a user requests the MDCF to start an application the Resource Manager

does admission control. First, it transforms the application’s timing specification

into a resource specification (e.g., task set). Second, it generates a resource con-

figuraton (e.g., prioritization) for the resource specification. Third, it checks the

resource configuration for feasibility (i.e., whether all timing requirements will

133

User selects
Application and

Devices

Application
and devices
compatible?

Can Guarantee
QoS?

Reserve Resources
Perform Mode Change

Bind
Devices and

start
Application

Notify User of
mismatch.

Notify User of
resource

unavailability

Notify User of mode
change failure

Yes Yes Succ.

No No Failure

Figure 5.4: Platform system instantiation process

be satisfied). If the configuration deemed feasible the resource configuration is

applied and the application is started.

After the application has started, the determinizing scheduler takes control

of application task execution and dispatch. The operation of the determinizing

scheduler is elaborated in Section 5.3 and the algorithms and scheduling tech-

niques used by the MDCF prototype are elaborated in Section 5.4.

134

po : PulseOximeter

spo2

gen : AlarmGenerator

spo2_in

Application Specification

PulseOximeter UID = 1

spo2

AlarmGenerator
Instance 0

spo2_inPulseOximeter1.spo2

Instantiated Application

delay = 50

subscribe relationship
QoS: minsep = 480, maxsep = 520, delay = 50

publish relationship
QoS: minsep = 490

Application module automatically
subscribed during application
instantiation

Figure 5.5: Example mapping of MDCF application dataflow declarations to

publish/subscribe relationships

5.2 The Real-Time Message Bus

The MIDAS Real-Time Message Bus (RTMB) is a publish/subscribe middleware

designed to enforce end-to-end real-time guarantees. The RTMB is able to do this

even if users change the configuration of the network during runtime (i.e., add or

remove nodes) or the network contains malicious nodes (i.e., nodes that attempt

disruption of legitimate applications with denial of service attacks). The RTMB is

able to do this because, unlike traditional real-time middleware, it uses recent soft-

ware defined networking technology to enforce resource allocation directly in the

network switches. Because the RTMB enforces timing behavior of network com-

munication directly in the network infrastructure (as opposed to asking the end

systems to politely share resources) its real-time guarantees are robust. If a de-

vice on the network becomes faulty and starts spamming the network with errant

135

packets, other devices or applications in the network will not notice. These fea-

tures make the RTMB appealing as the communications substrate for on-demand

systems and is why the MDCF uses the RTMB to implement the real-time com-

munications channels from ODSDL applications.

5.2.1 Publish Subscribe and Quality of Service

The publish/subscribe abstraction consists of publishers (producers of data), sub-

scribers (consumers of data) and topics (names used to organize the communi-

cations space). Publishers send updates to topics. As their name suggests, sub-

scribers choose to subscriber to certain topics. When a topic receives an update

from a publisher, that update is disseminated to all of that topic’s subscribers.

Figure 5.6 shows a system with one publisher, one topic and three subscribers.

Recall from Chapter 4 that the real-time channels in ODSDL have an asso-

ciated latency parameter and that the ports on module and device components

have minimum and max separation. Not coincidentally the RTMB publishers and

subscribers specify minimum and maximum update separation. Subscribers can

specify maximum end-to-end network latency. This latency describes the amount

of time it takes the network to transmit the whole update from the publisher to the

subscriber (see Definitions 5.2.1 and 5.2.2).

Definition 5.2.1 (Network Latency). Let PT be a publisher publishing to topic T
and ST be a subscriber to T . Let t1 be the moment PT starts transmitting message

m on the network and let t2 be the smallest time t after m has been fully received

by ST . The end-to-end network latency of m is L (ST ,m) = t2 − t1.

Definition 5.2.2 (Guaranteed Maximum End-to-End Latency). Let PT be a pub-

136

Topic Name: BoilerPressure
Data Type: int32

Publisher
minSep: 10 ms
maxSep: 15 ms

Subscriber A
maxSep: 20 ms
maxLatency: 5ms

Subscriber B
maxSep: 14 ms
maxLatency: 5ms

Subscriber C
maxSep: 15 ms
maxLatency: 1ms

Figure 5.6: Real-Time Publisher and Subscribers with QoS.

lisher publishing to topic T and ST be a subscriber to T . If ST requests a guaran-

teed maximum latency, denoted Lmax (ST), then ∀mL (ST ,m) ≤ Lmax (ST).

Note that the latency semantics of the RTMB are not quite the same as in

the ODSDL: latencies in the RTMB only concern the time it takes to move the

message across the network while in the ODSDL channel latency is the delay be-

tween the moment one software agent sends the message and the receiver receives

it. RTMB latency (i.e., network latency) is a component of ODSDL channel la-

tency which also includes the time it takes the message to move through the host’s

network stack and get deserialized.

Figure 5.6 illustrates how MIDAS will match QoS between publishers, sub-

scribers, and the underlying system. Subscriber A is admitted to the system

because its required maxSep (20ms) is greater than or equal to the publisher’s

(15ms).

In this example the RTMB has determined it can guarantee the requested maxi-

mum latency. Subscriber B is not admitted because it requires a maxSep of 14ms

which is smaller than the publisher’s. Finally, Subscriber C is not admitted to

the system only because the underlying middleware has determined that it cannot

137

guarantee C’s requested maximum end-to-end latency.

5.2.2 RTMB Overview

The RTMB achieves real-time guarantees on open networks built from COTS

equipment by handing complete control over the network to the middleware via

the OpenFlow [137] software defined networking protocol. Tight integration of

the middleware with OpenFlow provides several benefits. First, it gives the mid-

dleware complete control over how data packets on the network are forwarded,

prioritized, and rate-limited. Second, many COTS switches can be made Open-

Flow capable with a firmware update. This means that existing network deploy-

ments can be made OpenFlow capable (and therefore could be made suitable to

carry traffic for on-demand systems). Third, in many OpenFlow switches all

OpenFlow rule processing occurs at line rate. This means that the middleware

can affect configuration changes in the network without any appreciable loss of

network peformance.

We now describe the operation of an OpenFlow network. An OpenFlow net-

work consists of two types of entities: OpenFlow switches and OpenFlow con-

trollers. An OpenFlow hardware switch is a Layer 2/3 Ethernet switch that main-

tains a table of flow entries and actions.

The flow table associates each flow with an action set which tells the switch

how to handle a packet matching the flow. Table 5.1 shows an example flow table.

The table has two flow entries which match against input port, Ethernet address,

IP address and UDP port number. There are two actions associated with each

flow. While the OpenFlow specification describes a number of different actions

our prototype utilizes the enqueue and meter actions. The meter action requires

138

Input Port Datalink IP UDP Action

VLAN ID Src Dst Type Src Dst Src Port Dst Port

3 0 89ab 89ac IP 192.168.1.1 192.168.1.2 100 101 meter=1,enqueue=4:7

4 0 89ac 89ab IP 192.168.1.2 192.168.1.1 101 100 meter=2,enqueue=3:2

Table 5.1: Example OpenFlow flow table

the switch to apply traffic policing to the flow. The enqueue action requires the

switch to place the packet on an egress queue associated with a specific port during

forwarding.

When an OpenFlow switch receives a packet on one of its interfaces, it com-

pares that packet to its flow table. If the packet matches a flow table entry, it

applies the action set associated with that flow entry. If the packet does not match

an existing entry the switch performs what the OpenFlow protocol calls a packet-

in. When the switch performs a packet-in, it forwards the packet to the OpenFlow

controller (a piece software running on a server in the network). The controller

analyzes the packet and can execute any arbitrary algorithm to generate a new

flow rule. The controller can then update the switch’s flow table with the new

rule. Packet-in allows the OpenFlow controller to learn the topology of the net-

work (i.e., learn what ports on what switches different hosts are connected to)

and then effect complex routing, forwarding and QoS strategies with algorithms

implemented in a normal high level programming language like Java or C++.

We now provide an overview of how the RTMB provides real-time guarantees

on OpenFlow enabled COTS networks. The RTMB implements a Global Re-

source Manager (GRM) which contains a specialized OpenFlow controller. When

a publish-subscribe client comes online it first connects to the GRM. This al-

lows the GRM to learn where on the network the client is located (i.e., the switch

139

Openflow SwitchLogical Openflow Management ConnectionPhysical Ethernet Link

(a) Workstation

(b) Optical Sensor, real-time publisher

(c) roving monitoring station,
real-time subscriber

(d) fixed data-processing server,
real-time publihser & subscriber

(e) sensor platform, real-time
publisher

(f) real-time display,
real-time subscriber

RTMB Global Resource Manager

Figure 5.7: Deployment of the RTMB on an OpenFlow enabled network.

and port it is connected to). Then, when a client requests a subscription with

a specified QoS, the GRM will peform admission control. First, the scheduling

algorithm in the GRM will generate a new network configuration based on the

new QoS request. The new configuration is then analyzed by a schedulability test

which determines if any QoS constraints could be violated with that configuration

(see Section 5.4.2 for an example scheduling and schedulability algorithm). If a

violation is possible, the client is notified and their request is not granted. If QoS

is guaranteed in the new configuration, the GRM commits the network configu-

ration to the network using OpenFlow and then admits the client. Note that this

system architecture allows us to handle non publish-subscribe best effort traffic

(e.g., web-browsing) on the same network transparently; the GRM will automat-

ically map best effort traffic to the lowest priority queues on each switch. See

Figure 5.7 for an example RTMB deployment.

140

Publisher API Subscriber
API

Local Topic Manager Topic Queue

Serialization Deserialization

UDP /
Multicast
Sender

TCP / Unicast
Sender

TCP / Unicast
Receiver

UDP /
Multicast
Receiver

Client API Layer

Local Topic
Management

Layer

Data Coding Layer

Network
Interfacing

Layer

Figure 5.8: Client Library

5.2.3 Middleware Design

Now we describe the various software components in the RTMB. The RTMB

adopts a brokerless architecture and the functionality of middleware is separated

into two software stacks implemented in Java. The client library provides the

publish-subscribe abstraction to clients that wish to be publishers or subscribers.

The Global Resource Manager (GRM) runs on a server connected to the network

and is responsible for managing active topics, publishers, subscribers and the un-

derlying network configuration. Both the client library and GRM have features

specifically designed to enable automatic QoS guarantees.

Client Library

The architecture of the client library is illustrated in Figure 5.8. If the application

is a publisher, messages flow from the application to a local topic queue by way

141

of the local topic manager. This allows the client library to perform a zero-copy

transfer of data between publishers and subscriber that are running on the same

host. Each local topic queue always has a special subscriber: the data-coding

layer. The data-coding is responsible for serializing messages prior to transmis-

sion on the network. After a message has been serialized, a sender object transmits

it onto the network. The type of sender used depends on what transport protocol

was negotiated with the GRM. Symetrically, the receivers receive messages from

the network, pass those messages to the data coding layer where they are dese-

rialized and then placed on the appropriate topic queue. Subscribers are invoked

when the topic queue associated with their topic becomes non-empty.

The Client Library has one important feature used to support automatic QoS

guarantees: it statically infers the maximum serialized message sizes from mes-

sage types. When a publisher comes online it specifies the type of message it will

publish. The API passes this information to the topic management layer, which in

turn asks the data coding layer for message size bounds on that type. In our pro-

totype, the data coding layer uses Java reflection to determine the structure of the

type and infer the maximum number of bytes used to represent a message of that

type on the network.2 Maximum message size information is used by the GRM

when it performs the schedulability analysis of a network configuration.

2Our prototype currently only supports non-inductive types (e.g., record types) that can be

easily analyzed for size-bounds.

142

Global Resource Manager

The GRM (Figure 5.9) is responsible for orchestrating all activity on the network

to ensure that data is correctly propagated between publishers and subscibers. To

accomplish this, the GRM must maintain configuration information about the net-

work and implement the appropriate scheduling and network reconfiguration al-

gorithms. Because we are concerned with providing guaranteed timing, the GRM

must keep record of how switches in the network are interconnected, where clients

are plugged into the network, the performance characteristics of each switch, and

which multicast addresses are associated with what topics.

These various responsibilites are decomposed along module boundaries. Sev-

eral of these modules’ functions do not need to be extensively elaborated: the

client manager is a server process that handles client’s requests (e.g., to start pub-

lishing on a topic); and the topic manager maintains a record of active topics and

the network addresses associated with each topic, the OpenFlow controller imple-

ments the OpenFlow protocol and exposes a simple API to the flow scheduler to

reconfigure the network.

The flow scheduler implements the admission control, scheduling and network

reconfiguration algorithms used to ensure QoS constraints are not violated (see

Section 5.4.2).

We now elaborate the network graph and the switch model data in more de-

tail. The switch model database is a repository of performance and timing char-

acteristics for different models of OpenFlow switch. This information is vitally

important to the GRM; it needs to know how each switch in its network behaves.

The information in the switch model repository is created before the middleware

143

Topic
Manager

Client
Manager

Openflow
Controller

Flow
Scheduler

Switch Model
Database

Network
Graph

Figure 5.9: Global Resource Manager Architecture

is deployed on a network. In our protoype each switch model is represented by an

XML file that is read by the GRM when the GRM starts up. Each switch model

contains the model name of the switch, the number of ports on the switch, the

number of egress queues associated with each port, the bandwidth capacity, and

the number and precision of the hardware rate-limiters and the internal multiplex-

ing latency of the switch’s switching fabric.

The network graph maintains both static and dynamic network configuration

information. The static information is specified at deployment time; it defines

what switches are on the network (the model, etc.) and how they interconnect. The

dynamic information is either learned via OpenFlow (e.g., what ports on which

switch are specific client connected) or set by the flow scheduler.

Figure 5.10 illustrates a simple network graph. The network consists of two

switches. These switches are connected via an uplink cable on each of their port

1. Each switch is connected to two clients (denoted by dotted circles).

144

HP3500YL P3920

Client C

Client A Client B

Client D

Port 1 Port 1

Port 2

Port 3

Port 3

Port 4

Figure 5.10: Example Network Graph

5.3 Determinizing Scheduler

ODSDL semantics dictates that tasks and message transfers always take a pre-

dictable Logical Execution Time. If a module or device sends a message at time

t along a dataflow with delay D then the message should arrive at its destination

at precisely t + D. If a modules task, with a specified relative deadline D, starts at

time t, then its computations proceed as if the state of the input ports are frozen.

Then, the results of the computation manifiest at precisely t + D. In reality, the du-

ration it takes to transmit messages between devices and modules can vary from

moment to moment due to network loads and how the networking infrastructure

schedules network packets. Likewise, the actual execution time of a task can vary

significantly due to different program execution paths, the state of the underlying

processor (i.e., branch predictors, pipeline scheduling, cache and so on.) The Job

of the Determinizing Scheduler is to orchestrate the computation and communi-

cations of application processes so they behave according to the ODSDL LET

semantics.

145

At a high level, the Determinizing Scheduler works as follows. All ODSDL

application tasks and communications in the MDCF are separated into two types

of phases: A work phase where the bulk of the communications and computations

are performed and an I/O phase where the I/O of the application processes are

made visible to other processes or the environment. A Determinizing Scheduler

service is present on all the system components (i.e., the platform and devices)

and maintains a two-level scheduler. The top-level scheduler runs at the highest

system priority and will execute the lightweight microtasks corresponding to the

I/O phases of application processing. The bottom-level scheduler schedules tasks

associated with the work phase of application processes. The bottom-level sched-

uler can implement any scheduling discpline, as long as all tasks run at a priority

lower than the Determinizing Scheduler and all work-phase tasks finish prior to

their deadlines. As the work-phase tasks execute the MDCF runtime works with

the Determinizing Scheduler to trap all I/O operations (e.g., calls to the ODSDL

send function) and schedule a corresponding microtask to manifest the I/O event

at the appropriate time in the future.

How can the Determinizing Scheduler make the I/O events happen at the cor-

rect time? There are two obvious challenges. The first challenge is the time quanta

from ODSDL semantics: It is only 1 ms in duration. If microtask execution takes

to long or has to much jitter then event wont happen at the prescribed time. For-

tunately, as we will see, the microtasks can be engineered so they are both very

fast and predictable. They are fast because they typically only involve swapping

references. They are predictable because they dont involve much branching or

data. The second challenge has to do with time in a distributed environment. The

“correct time for an event as defined by the ODSDL semantics is a moment on a

146

global shared timeline. In reality, each component will have access to a different

clock which will not be perfectly synchronized. However, as long as all clocks

are synchronized within some ε s.t., ε ≤ 1/2 ms the Determinizing Scheduler can

manifest the I/O events when all clocks agree its the correct time.

There are two parts of this section. Section 5.3.1 gives an overview of the

operation of the Determinizing Scheduler as well as psuedocode describing its

functions. Section 5.3.2 makes a precise correctness claim and gives an informal

proof for the correctness of the Determinizing Scheduler.

5.3.1 Operation

(15, recv) (20, sched) (22, recv) (50, recv) (75, rcv) (95, sce) (99, snd)

(22, recv) (75, send)

(75, send)

(15, snd)

(15, snd)

(15, sched)

Sorted by increasing time

So
rte

d
by

 in
cr

ea
si

ng
 p

re
ce

de
nc

e

Current process queue

Figure 5.11: Example determinizer event queue.

The first-level of the Determinizing Scheduler runs at the highest system pri-

ority. It maintains a queue of microtask sets (Figure 5.11). Each microtask rep-

resents one ODSDL event (i.e., send, sched, recv). Each microtask set is times-

tamped indicating when the events in that queue should happen. Assuming all

clocks in the system are synchronized within ε, the first-level scheduler will wake

147

Algorithm 5 Update and (Re)Schedule Future Events
Precondition: (e, t) is an ODSDL event/timstamp pair where t > tnow .

Precondition: T is the event queue.

1: function SCHEDULEFUTURE((e, t))

2: tnext ←GETNEXTACTIVATION()

3: E ←M(t) . creates an empty queue at t if there is no entry for t

4: INSERTORDERED(E, e) . recv ordered before sched, snd

5: if t < tnext then

6: SETNEXTACTIVATION(t)

7: end if

8: end function

up after the local clock c equals t + ε to start processing the microtasks sched-

uled for time t. It will finish task processing before c equals t + (1 − ε). After

it has finished processing the events for time t it will sleep until it is time to pro-

cess the next batch of events. Algorithm 5 gives the function used by the MDCF

runtime to schedule microtasks. Algorithms 6 and 7 give procedures used by the

Determinizing Scheduler to process the pending microtask queue and execute the

microtasks. We will walk through each.

Algorithm 5 is used by the MDCF runtime to schedule microtasks. For exam-

ple, when a application task that was dispatched at t and with deadline D calls the

ODSDL send function, the MDCF runtime will schedule a send microtask for

time t + D. When the MDCF requests some microtask to be scheduled at time

t Algorithm 5 will find the microtask set with the matching timestamp (creating

one if non exists). If the new event must happen earlier than any event currently

in the queue the Determinizing Scheduler’s next wakeup time must be reset. Ob-

serve that each microtask set is actually partially ordered queues, with recv events

148

Algorithm 6 Process current events
Precondition: T is the microtask queue.

Precondition: The local clock c > tnow + ε

Postcondition: The local clock c < tnow + (1− ε)
1: function PROCESSCURRENT

2: E ←HEAD(T)

3: tnow ←GETTIMESTAMP(E)

4: INSERTORDERED(E, e) . recv ordered before sched, snd

5: for e ∈ E do

6: COMMIT(e, tnow)

7: end for

8: REMOVE(E, T)

9: tnext ← GETTIMESTAMP(HEAD(T))

10: SETNEXTACTIVATION(tnext)

11: SLEEPUNTILNEXTACTIVATION()

12: END FUNCTION

ordered before sched, snd events. This ordering ensures that events interleave in

the order defined by the ODSDL semantics.

Algorithm 6 is the main processing loop for the Determinizing Scheduler.

When it wakes up, it will locate the microtask set corresponding to the current

time. If the current timestamp is tnow, it will wakeup after the local clock reads

tnow + ε. The MDCF resource manager ensures that the Determinizing Scheduler

will have enough resources to finish by tnow + (1− ε). After microtask processing

is complete, the Determinizing Scheduler will set a timer to wake itself up for the

next timestamp then put itself to sleep.

Algorithm 7 gives the processing logic for each type of microtask. sched(m)

tasks cause the Determinizing Scheduler to dispatch the work-phase task of mod-

149

Algorithm 7 Commit Event Effect
Precondition: e is an event. t is the timestamp of the event. S is a set of tasks to dispatch now.

1: function COMMIT(e, t)

2: if e = sched(m) then

3: (P,D)←GETTASKSPEC(m)

4: if P ≥ 1 then . Is the task periodic?

5: SCHEDULEFUTURE((sched(m), t+ P))

6: end if

7: DISPATCH(m,D, COPY(m))

8: end if

9: if e = send(ms, ps, v) then

10: F ←GETFLOWS(m, p) . The flows leaving ms.ps.

11: for (md, pd, D) ∈ F do

12: if ISREMOTE(md) then

13: RTMBSEND(md, pd, D, t+D) . Timestamp message and send via the

RTMB.

14: else

15: SCHEDULEFUTURE((recv(md, pd, v), t+D))

16: end if

17: end for

18: end if

19: if e = recv(m, p, v) then

20: m.p← v

21: if TRIGGERSTASK(m, p) then

22: S ← S ∪ {sched(m)} . Need to dispatch task after all other effects have been

committed.

23: end if

24: end if

25: for sched(m) ∈ S do

26: (P,D)←GETTASKSPEC(m)

27: DISPATCH(m,D)

28: end for

29: end function
150

ule m to the bottom-level scheduler. If the task of m is periodic with period

P the Determinizing Scheduler will schedule another sched(m) microtask for P

milliseconds in the future. When the Determinizing Scheduler dispatches m’s

task it will give the task a copy of m’s input port state to work in. Running

the task with a copy ensures it executes with a snapshot of m’s state at time t.

The send(ms, ps, v) microtask involves the most processing: The Determinizing

Scheduler must retrieve all the data flows associated with port ms.ps and then

schedule a corresponding receive task D milliseconds in the future where D is the

specified delay of the flow. The relative complexity results from having to iterate

over all the flows associated with the port. Additionally, the logical destination

port of the flow may not be on the local processor. If the destination is not local

the Determinizing Scheduler will have to send a message to the remove destina-

tion. The message will contain the sent value (v) as well as a timestamp indicating

then the value should be logically received. The recv tasks are the simplest to pro-

cess: The Determinizing Scheduler sets the field variable of m representing port

p with the value v (if v is a complex or record type it can just update a reference).

5.3.2 Correctness

As mentioned at the start of Section 5.3 the ODSDL semantics define the timing

of events relative to a discrete global timeline but in reality the clocks distributed

througout the system will not always agree. So when we say that the Determiniz-

ing Scheduler implements the ODSDL’s LET semantics we actually mean that,

for a given execution of an ODSDL application, all the semantic events happen

and they happen when all the clocks think they should according to the local value

of their clocks. We call this notion logical execution time (LET) modulo clock syn-

151

chronization . First we make this notion precise (Definition 5.3.2), then we give an

informal proof that the Determinizing Scheduler implements LET modulo clock

synchronization.

Definition 5.3.1 (Unit Floor). The unit floor function bxcu gives the integer por-

tion of the number x assuming x is converted to a quantity in units u. For example

if x = 5.67 milliseconds (ms) then bxcms = 5.

The unit floor function (Definition 5.3.1) is for convenience. It lets us compare

the discrete value of two clocks regardless of their units.

Definition 5.3.2 (LET Modulo Clock Synchronization). Let C be the set of sys-

tem clocks. Let R be the relation defined by the semantic event and state of an

ODSDL program. That program is executing with Deterministic Logical Time

(DLT) modulo Clock-Sync if for each element (E, t) of the event streams of R

each event e ∈ E happens (i) and happens when ∀
c∈C
bccms = t (ii).

Essentially, Defition 5.3.2 means that if there is some event e supposed to

happen at time t according to the ODSDL semantics, it will happen when all

clocks in the system, rounded down to the nearest millisecond, read t.

Definition 5.3.3 (ε-Precise Real-Time Clock). An ε-precise real-time clock c is

counter that increases its value monotonically with a rate approximating 1. The

counter must be able to represent increments at least as small as ε. Futhermore

ε < 1/2 milliseconds.

Definition 5.3.4 (ε-synchronized clock). A set of ε-precise clocks C are ε-synchronized

if it is always the case that ∀
ci,cj∈C

| ci − cj |≤ ε.

152

Definiton 5.3.3 defines the type of real-time clock needed by the Determiniz-

ing Scheduler. We say that the the clock increases at a rate approximating 1 to

account for small variations seen in real physical clocks. We will require that

clocks have enough precision to represent the maximum discrepency (ε) between

clocks in the system. Definition 5.3.4 is a standard definition of clock synchro-

nization. We just require that the clocks be ε-precise and be synchronized within

ε.

Before we proceed with proving that the Determinizing Scheduler implements

logical execution time (LET) modulo clock synchronization, we need to establish

what moments of time synchronized clocks are guaranteed to read the same value

(Lemma 5.3.1).

Lemma 5.3.1 (ε-Offset Equality). Assume two clocks ci, cj are ε-synchronized

and ε < 1/2 millisecond. If an event happens at some time when ci = t s.t.

bcicms + ε < t < bcicms + (1− ε) then bcicms = bcjcms

Proof. Assume towards a contradiction that | ci − cj |≤ ε and for some valuation

of ci where it is the case that bcicms + ε < ci < bcicms + (1 − ε) but bcicms 6=
bcjcms. W.o.l.o.g. assume ci ≤ cj . Then cj ≤ ci + ε. Then it must be that

bcicms ≥ bci + εcms which is a contradiction because we have that bcicms + ε <

ci < bcicms + (1− ε) and ε < 1.

Now we can prove that the Determinizing Scheduler commits events at the

right time and when all clocks agree (Lemma 5.3.2).

Lemma 5.3.2 (The Determinizing Scheduler Commits Events at the Correct Time).

Let C be the set of system clocks. Assume all clocks ci, cj ∈ C are ε-precise and

| ci − cj |≤ ε. Let (E, t) be any timestamped queue of microtasks stored in the

153

Determinizing Scheduler’s pending microtask queue. Then each e ∈ E will be

started and finished processing when ∀
c∈C
bccms = t.

Proof. Observe that the Determinizing scheduler will start processing all micro-

tasks e ∈ E when the local clock c > t + ε and it will finish processing all the

tasks when c < t + (1 − ε). The conclusion follows by application of Lemma

5.3.1.

Finally, using Lemma 5.3.2 we prove the overall correctness of the Deter-

minizing Scheduler. The proof of Theorem 5.3.3 is straight forward. Since we

know that the Determinzing Scheduler will always execute the microtasks at the

right time (Lemma 5.3.2) we only need to check that it generates the correct ef-

fects for each type of event. The proof simply compares the effect required by the

semantics to the effect created by the scheduler.

Theorem 5.3.3 (The MDCF implements DLT modulo Clock Sync.). Let C be the

set of system clocks. Let R be the set of the merges of the input / output event

streams of an ODSDL program. Assume all clocks ci, cj ∈ C are ε-precise and

| ci− cj |≤ ε. Then for each element (E, t) of any event stream se ∈ R each event

e ∈ E happens (i) and happens when ∀
c∈C
bccms = t (ii).

Proof. Consider any element (E, t) of se from R.

• Case send (m1, p1, v) ∈ E. Recall that for a dataflow

f = m1.p1 flowsto m2.p2 delay d it must be the case there is some ele-

ment the event stream (E ′, t + d) and recv (m2, p2, v) ∈ E ′. We know by

the definition of Algorithm 7 that the Determinizing Scheduler will sched-

ule a microtask for recv (m2, p2, v) to happen at ti. We know by Lemma

154

5.3.2 that send (m1, p1, v) will be committed when ∀
c∈C
bccms = t and that

recv (m2, p2, v) will be committed when ∀
c∈C
bccms = ti

• Case recv (m1, p1, v) ∈ E. Recall that the semantics require that any task

scheduled at t see m1.p1 = v. By Algorithm 7 the Determinizing Scheduler

will always update m1.p1 = v before any tasks are dispatched because it

defers all task dispatches to the end of the processing cycle. Also recall that

updates to m1.p1 may trigger m1’s tasks at time t. By Algorithm 7 we know

that if an update tom1.p1 triggers the execution of the module’s task the task

will be dispatched at the end of the Determinizing Scheduler’s processing

cycle. By Lemma 5.3.2 we know that the task recv (m1, p1, v) will commit

when ∀
c∈C
bccms = t.

• Case sched (m) ∈ E. Recall that the semantics require all resulting send

event from the task execution happen at t + D (D is the task’s deadline).

By the definition the Determinizing Scheduler will dispatch the task for

module m at time t with a copy of the port variables from after all receive

events for t have been processed which ensures that the task will execute

in a state where the values of the ports are “frozen” to a value defined by

the semantics. All calls to send by ODSDL applications are trapped and

scheduled to happen at t + D therefore by Lemma 5.3.2 sched (m) will

commit when ∀
c∈C
bccms = t and all the resulting send events will commit

when ∀
c∈C
bccms = t+D.

155

5.4 Practical Real-Time Scheduling

The MDCF must schedule tasks and messages to ensure that all processing and

communication always completes before application specified deadlines. Unlike

many real-time systems whose configuration is fixed from the factory, the MDCF

is highly dynamic: as users start and stop applications the MDCF needs to auto-

matically (re)-allocate resources in a way that won’t disrupt the operation of the

other applications. Typically, this has been the domain of dynamic scheduling

algorithms such as Earliest Deadline First (EDF) [130] or Least Slack First [143].

Dynamic scheduling algorithms make scheduling decisions by reacting to the

state of the system. For example, in EDF, whenever a task activates or finishes,

the scheduler looks at all active tasks and sets the one with the closest impending

deadline to the highest priority. This makes it easy to add or remove new tasks at

runtime.

Unfortunately, many real-time operating systems and networking technolo-

gies do not implement a dynamic scheduling discipline. Instead, fixed-priority

scheduling is used. In fixed-priority scheduling, the system designer assigns each

task (or data-stream) a priority. Then, during runtime, the scheduler will use the

assigned priority to determine execution order. There have been several algo-

rithms and techniques developed to assign priorities in fixed-priority scheduling

such as Rate Monotonic (RM) [130] or Deadline Monotonic (DM) where priori-

ties are assigned with increasing task rate (i.e., period) or deadline.

If the number of available priorities were unbounded then that would not be

such a problem. Unfortunately most real operating systems and networking tech-

nologies only provide a limited number of distinct priority levels. For example,

the ethernet switches controlled by MIDAS typically only provide 8 different pri-

156

ority levels [187]. This presents a problem for the us: often the number of tasks

or data-flows required to support an application running on the MDCF are much

larger than the number of available priorities. This means tasks will have to share

priorities. This also means that as users start and stop applications priorities will

potentially need to be re-shuffled in a way that does not cause tasks or flows to

miss deadlines.

In this section we will show how to extend existing fixed priority scheduling

techniques to make them applicable to the dynamic environment the MDCF/MI-

DAS operates in. Specifically, we develop a priority assignment algorithm for

the limited priority setting that is asymptotically faster than the state-of-the-art.

Then we devise a simple priority reassignment protocol that ensures tasks or flows

will not miss deadlines during priority reassignment. Finally, we adapt existing

scheduling and schedulability techniques to work with the primitives and packet-

processing semantics of OpenFlow switches.

5.4.1 Fixed Priority Scheduling Techniques

In this section we review basic fixed-priority scheduling concepts from the real-

time scheduling literature and then develop a new priority assignment algorithm

for the limited priority environment.

Preemptive Fixed Priority, Real-Time Scheduling Problems and the Periodic

Task Model

Preemptive fixed priority scheduling is a scheduling discipline where each task

is assigned a priority. If the processor is executing some task and another task

arrives with higher priority then the original task is suspended (i.e., preempted)

157

and the processor starts executing the higher priority task.

Let T = {T0, T1, . . . , Tn} be a set of tasks with each Ti = (Pi, Ci, Di). Each

task defines an infinite sequence of job arrivals where Pi is the minimum sepa-

ration between consecutive arrivals, Ci is the number of timeunits it would take

to finish the job assuming there is no resource contention, and Di is the relative

deadline of each job. When Ti is specified with only Pi, Ci and Di then it is pos-

sible the the first job of all tasks arrive at the same moment. These task sets are

called synchronous. Sometimes a term Ji is associated with Ti to specify the re-

lease jitter of Ti. Sometimes a term Ai is used to specify the arrival offset of the

first job of Ti.

Response Time Analysis

Response Time Analysis (RTA) [25] is used to determine the worst case response

time of a task in a task set given how each task in the task set is prioritized.

Formally, given a task set T where each task Ti ∈ T is the tuple (Pi, Ci, Di) such

that Ti is the minimum separation between Ti’s release, Ci is the computation cost

of Ti and Di ≤ Pi is the deadline, the worst case response time of a task Ti is

determined by calculating the smallest Ri such that the following response time

equation is satisfied (hp (i) is the function that returns the set of tasks with priority

higher than Ti’s):

Ri = Ci +
∑

Tj∈hp(i)

⌈
Ri

Pj

⌉
Cj (5.1)

If Ri > Di then we say that Ti is not feasible. If one wants to determine what

Ti’s worst case response time would be if it were sharing priority level pwith other

tasks, the response time equation must be modified with an extra term accounting

158

Algorithm 8 RTA-based interference check
1: Let hp← {Tj ∈ τ |j < y} . j has a higher priority than i

2: Cp ←
∑

Tp∈pi
Cp . tasks at the same priority interfere with each other

3: R0
y ← Cy + Cp

4: while Rk+1
y > Rk

y ∧Rk+1
y ≤ Dy do

5: Rk+1
y ← Cy + Cp +

∑
Tj∈hp

⌈
Rk

y

Pj

⌉
Cj

6: end while

7: if Rk+1
y > Dy then

8: return true

9: else

10: return false

11: end if

for the extra delays caused by tasks executing at level p. If one assumes that jobs

sharing a priority level are executed in the order that they were dispatched then

the following equation can be used:

Ri =

∑
Ty∈p

Cy

+ Ci +
∑

Tj∈hp(i)

⌈
Ri

Pj

⌉
Cj (5.2)

Algorithm 8 implements the fixed point computation for equation 5.2 and then

checks whether Ri > Di.

Response Time Analysis can be used as the basis for a task-set schedulability

test: if all tasks in the set have a worst-case response time less then their deadline

under a priority assignment then the task-set is schedulable (also called feasible)

under that assignment. The RTA equations and algortihms described here are ex-

act which means that if RTA (Ti) = Ri then it is possible that there is a schedule

execution where Ti takes Ri to complete and there is no execution where Ti takes

more than Ri. Exact schedulability tests are useful because they provide a true

159

representation of worst-case resource usage which enables more efficient use of

resources. The downside of exact tests is their computational complexity: Ex-

act schedulability for fixed priority task sets is an NP-Hard problem. While the

fixed-point algorithm 8 usually converges quickly in practice the number of times

it needs to be called should be minimized, especially in interactive systems such

as the MDCF.

Deadline Monotonic Scheduling

Given a task set T as in Section 5.4.1, Deadline Monotonic (DM) scheduling

assigns higher priorities to tasks with smaller relative deadlines, i.e., if Di < Dj

then pri (Ti) > pri (Tj). If the tasks arrive synchronously without and release

jitter then DM scheduling is optimal in the sense that if there exists some priority

assignment under which a task set is feasible, then it will be feasible under the

DM assignment also. The proof of optimality is straight forward. It works by first

assuming there is some non-DM priority assignment under which T is feasible.

Then it is easy to show that the non-DM schedule can be transformed into the

DM schedule by swapping each out of order pair one by one. After each swap,

T is still feasible: Assume pri (Ti) > pri (Tj) and Di > Dj . Since T is feasible

under this assigment it must be the case that there is enough slack at pri (Tj) for

Tj to finish by Dj . If we swap the priorities of Ti and Tj we know that Tj will

still meet its deadline because there are fewer higher priority tasks to interfere

with it. Ti will still meet its deadline because there is was enough slack at its

new priority level for Ci + Cj to complete by Dj . Since Dj < Di we know

there is still enough free processor to complete Ci units of work by Di. Deadline

Monotonic scheduling is useful because it is fast: The priority assignment can

160

be determined simply by sorting the task set by the deadlines. Unfortunately

Deadline-Monotonic scheduling assumes that there exists at least one priority for

each task in the task set.

Audsely’s Algorithm

The one well-known method of finding a minimum priority assignment for fixed

priority scheduling is Audsley’s algorithm [27]. Audsleys algorithm is concep-

tually simple. Let n =| T |. Audsley’s algorithm proceeds by trying to find

some task Ti ∈ T that is feasible if all the remaining tasks in T are at a higher

priority. This can be checked by performing response time analysis for Ti with

hp (Ti) = T − Ti . If such a task is found, it is assigned priority n. This process

continues until no task can be found that is feasible at priority n. The algorithm

then proceeds to fill priority level n− 1 and so on (see Algorithm 9).

If an exact feasibility test is used then Audsley’s algorithm is optimal in two

ways. First, if there exists a feasible fixed priority assignment the algorithm will

find it. Second, it will always minimize the number of priority levels needed:

If there exists an assignment using 1 ≤ p ≤ n levels then the algorithm will

find an assignment with 1 ≤ p′ ≤ p levels. Unfortunately, as stated earlier,

exact feasibility tests have the potential to be expensive and Audsley’s algorithm

will perform O (n2) feasibility tests in the worst case. As it turns out Audsely’s

algorithm is more powerful than what is needed for the MDCF: the algorithm

will find optimal assignments for task sets specified with offsets for the arrival of

each task’s first job. As described in the next subsection if this assumption can be

relaxed (i.e., if it is possible for the first job of each task to arrive at the same time)

then we can get an order of magnitude theoretical speed up and get by with only

161

Algorithm 9 Audsley’s Algorithm
1: pri← ∅ . initial priority assignment

2: T′ ← T

3: for j ∈ [n . . . 1] do

4: unassigned← true

5: for Ti ∈ T′ do

6: if Ti is feasible with hp (Ti) = T′ − Ti then

7: prin← prin ∪ (Ti 7→ j)

8: T′ ← T′ − Ti
9: unassigned← false

10: end if

11: end for

12: if unassigned then

13: return ∅ . No feasible assignment exists

14: end if

15: end for

16: return pri

O (n) feasibility checks.

A Faster Priority Assignment Technique

If it is possible for the first job of all tasks to arrive at the same time then the

minimal priority assignment for implicit deadline task-sets can be determined with

only O (n) feasibility tests. The algorithm works as follows, first assign each

task Ti ∈ T a priority according to its Deadline Monotonic ordering. Then if

T is feasible under the Deadline Monotonic partition the ordering by greedily

combining priority levels from the lowest to the highest as long as the combination

does not cause any task to miss a deadline: Start from the lowest priority task Tn

162

Algorithm 10 Priority Partition Algorithm
1: pri = DM (T) . Start with the Deadline Monotonic assignment

2: n =| T |
3: p← n . p tracks current priority level

4: for i = (n− 1)→ 1 do

5: if Any task at p interferes with task Ti then

6: p← i

7: else

8: pri← pri [Ti 7→ p] . Reduces range (pri) by 1

9: end if

10: end for return pri

and check to see if T is still feasible when pri (Tn) = pri (Tn−1). If Tn and Tn−1

can share the same priority level reassign Tn−1 to Tn’s priority and then try to

merge Tn−2. If Tn may cause Tn−1 to violate its deadline then they cannot share a

priority level so the algorithm proceeds by trying to merge Tn−1 with Tn−2 and so

on (See the PriorityParition procedure in Algorithm 10).

It is easy to see that PriorityParition produces a feasible priority assignment:

Assume w.o.l.og that tasks Ti and Tj are merged onto the same priority level.

Assume that Ti had a higher deadline monotonic priority. Ti won’t cause Ti to miss

a deadline if they share a priority level because Ti already maximally interfered

with Tj due to its higher priority. Ti won’t miss a deadline due to Tj (or any other

task at the same priority) because PriorityParition would not have merged Tj with

Ti if that was the case.

The argument that PriorityParition applied to a deadline monotonic assign-

ment (DM-PriorityParition) minimizes the number of required priorities is less

obvious. It is sufficient to prove two facts: First, PriorityParition produces the

163

smallest order-preserving partitioning. An order-preserving partitioning preserves

the relative priority assignment of the original assignment up the partitioning:

Definition 5.4.1 (Order-Preserving Partitioning). pri′ = Partition (pri,T) is order-

preserving if for any Ti, Tj ∈ T, pri (Ti) < pri (Tj) implies that pri′ (Ti) ≤ pri′ (Tj)

Second, any partitioning can be converted to a deadline-monotonic order-

preserving partitioning that uses the same or fewer priority levels. What

Theorem 5.4.1. Let pri′ = Partition (pri,T). Let pri′′ be some other order-preserving

partitioning of pri, then pri′ uses the same or fewer priorities than pri′′ (i.e., range (pri′) ≤
range (pri′′)).

Proof. Assume range (pri′′) ≥ range (pri′). The proof proceeds by transforming

pri′′ into pri′. Because both pri′′ and pri′ are order-preserving the only way they

can differ is that there must be some task Ti in pri′′ at a higher relative priority

partition than in pri′. If Ti can be demoted in pri′′ then range (pri′′) will either

stay the same or get reduced by one. Note, that if Ti can be demoted in pri′′ then

PriorityParition would have made the same choice. The process of demotion can

be applied iteratively until pri′′ = pri.

Theorem 5.4.2. If pri′ is a feasible mapping of τ , then there exists a feasible

deadline monotonic mapping dm− pri such that |dm− pri| = |pri′|.

Proof. The proof works by transforming any feasible non-deadline monotonic

mapping of T, pri′ into a mapping pridm which preserves the deadline monotonic

ordering a while maintaining range (pri′) = range
(
pridm

)
. We use the following

dual index scheme to track the priority assignment of each task in the mapping:

Tij denotes the task that is assigned to the ith priority level (i.e., Tij ∈ pi) and

164

that Tij is the jth task in pi. In the following example, range (pri′) = 2 and each

priority level has two tasks:

pri′ = {T11 7→ 1, T12 7→ 1, T21 7→ 2, T22 7→ 2}

For the purposes of this proof assume that each list pi corresponding to the

tasks assigned to priority i in any partitioning is sorted according to the deadline

monotonic order (i.e., for the example pri′ above, D11 ≤ D12 and D21 ≤ D22).

Next imagine the list of tasks that would be created if each px s.t. x ∈ range (pri′)

were laid down in order, end to end. For example, if pri′ is the example mapping

above, then the imaginary list is:

{T11, T12, T21, T22}

In order to reason about that task list mathematically we define an index map-

ping function, IM (i, j, pri′,) which will allow us to recover the imaginary list

position of any mapped Txy.

IM (i, j, pri′,) =

(
i−1∑
x=1

|px|
)

+ j

For convenience we will also define the function Index (Tij, pri) which returns

the index of Tij in the original non-partitioned priority assignment pri:

Index (Tij, pri) = pri (Tij)

We can now define a mapping with deadline-monotonic ordering as follows:

The proof proceeds as follows: First assume there is some feasible mapping

pri′ such that:

165

∃Tij∈T pridm (Tij) 6= IM (i, j, pri′)

That is, pri′ does not preserve the deadline monotonic ordering. pri′ can be

transformed into the deadline monotonic mapping pridm
′

without any additional

priority levels by iteratively applying the following process:

1. Locate the lowest priority out of order task: Find the largest j and i s.t.

IM (i, j, pri′) 6= pridm (Tij).

2. The task found in step 1 is out of order because at least one task which would

have a lower deadline monotonic priority has been assigned to some higher

priority level in pri′. Find this task and reassign its priority to i. Formally,

move the task Txy s.t. x < i and Index
(
Txy, pri

dm′
)
> Index

(
Tij, pri

dm′
)

.

Figure 5.12 illustrates this step.

After repeated application of steps 1 & 2, pri′ will be transformed into the

deadline monotonic preserving mapping pridm
′
, and no new priority levels will be

required. Is the pridm
′

created by this transformation Feasible? Yes it is.

Each time task Txy is demoted to priority i the feasibility of any task Tij′ ∈
pi are not affected because they are already assumed feasible when subject to

interference from task Txy because the task set is feasible when Txy has higher

priority than any Tij′ . Can Txy miss any deadline after it has been demoted to

priority level i? No. Because pri′ is feasible then:

 ∑
Tij′∈pi

Cij′

 ≤ Dij − IDij

hp(i)

166

That is, the total cost of every task executing at priority level i plus the inter-

ference over [0, Dij] by higher priority tasks must be less than or equal to Tij’s

deadline. When Txy is removed from priority level x, and then add that task to

priority level i the equation now becomes:

 ∑
Tij′∈pi

Cij′

+ Cxy ≤ Dij − IDij

hp(i) + Cxy

because Txy no longer executes with a higher priority than i, but still con-

tributes at most one job’s worth of delay because each job at a given priority level

is executed in FIFO order.

Finally, because Txy was out of deadline monotonic order with respect to Tij

it must be the case that Dij ≤ Dxy. Therefore:

 ∑
Tij′∈pi

Cij′

+ Cxy ≤ Dxy − IDij

hp(i) + Cxy

Thus Txy will never miss a deadline if its priority is demoted from level x to

level i.

Finally, we can now prove that PriorityPartition
(
τ dmlist
)

is the feasible pri-

ority assignment of τ that uses the fewest number of priorities:

Theorem 5.4.3. If pri′ is any feasible priority assignment of T, then

range
(
pridm

′
)
≤ range (pri′).

Proof. The theorem follows directly from the optimality of the deadline mono-

tonic ordering and application of Theorem 5.4.2.

167

Figure 5.12: Reordering a task map.

A Simple Mode Change Protocol

Fixed priority scheduling, limited priority levels and minimial priority assign-

ments introduce a small wrinkle for systems that change their task-sets over the

course of their runtime (i.e., perform a scheduling mode change). The wrinkle

is this: due to the finite priorities, the priority assignment may assign a different

priority to the same task even if it executes in both the source mode and the target

mode. How do we ensure that task will still meet its deadline as new tasks are

added (or removed) and its priority modified? In general, solving this problem

is non-trivial and there are a number of complex mode change protocols that can

deal with this problem under a variety of different assumptions [165].

Fortunately, the MDCF only exhibits two types of scheduling mode changes:

tasks are added (i.e., when a new application is launched) or tasks are removed

(i.e., when an application exits). Assume that the source mode taskset T is feasible

under priority assignment pri and destination mode taskset T′ is feasible under pri′.

If T ⊆ T′ then the mode change can be performed simply by assigning each task

168

Ti ∈ T to priority pri′ (Ti) in reverse priority order (i.e., starting with the task

that has the lowest priority in the new mode). If T′ ⊆ T then the tasks should be

assigned in priority order.

5.4.2 Flow Scheduling

A valid flow scheduler must perform three tasks: First, when a subscriber comes

online and requests a subscription to an existing topic the flow scheduler must

generate a candidate network configuration using OpenFlow configuration primi-

tives. Second, the scheduler must analyze the new configuration and determine if

it guarantees the timing constraints of all admitted flows plus the new one. Third,

if the new configuration is acceptable the scheduler must reconfigure the network

carefully so no constraints of existing flows are violated during the reconfigura-

tion. All three of these activities are non-trivial: Distributed scheduling is known

to be NP-Hard if an optimal schedule is desired and there are no known exact

schedulability tests for the general network setting [41].

In light of these difficulties, we do not describe an optimal approach. Instead,

we focus on a strategy that is both fast (i.e., polynomial-time in the size of the

network), exploits the types of configuration primitives by OpenFlow, and allows

for the safe transition from one valid configuration to another. Analysis and im-

provement of the approach in terms of network utilization and schedulability is

left for future work. We start be describing how the strategy would apply to a

network consisting of a single switch, then extend it to the multi-switch case.

169

Single Switch Scheduling

The flow scheduler generates a candidate network configuration in several phases.

First, for each publish-subscribe relationship the flow scheduler queries the Open-

Flow controller to determine what switch port each publisher and is connected to

and the network address associated with a given topic. Then, for each publisher

P publishing to T , the flow scheduler configures a rate-limiter. The rate-limiter

is configured with a maximum burst size B and and maximum rate R, and is set

to apply to all packets that enter the switch on the port connected to P destined

to the network address associated with T . If a publisher P specifies a minimum

separation between each message of minSep, and maximum message size of M ,

then the burst size and rate are set as follows:

B = M, R =
M

minSep

This allows P to burst its entire message onto the network while ensuring that

P cannot overload the network if P becomes a babbling idiot.

Before we can describe how the flow scheduler prioritizes flows we need to

explain how to calculate upper bounds on the worst case latency of message. La-

tency in a switched network has a number of sources. The first is due to the

bandwidth of the network link. The second is due to the physical wire that con-

nects a network node to a switch: an electrical signal takes time to propagate along

a wire (in most networks the latency effects of the wires are small because they

are relatively short). The third is the multiplexing latency of the switch. Switch

multiplexing latency is the time it takes a switch to move a bit entering the switch

on one port to the output queue of another. On modern non-blocking switches

this is usually on the order of several microseconds. Finally, there is queuing la-

170

tency, which is the amount of time a message spends waiting in an egress queue.

In a modern switched Ethernet all these latencies are fixed (i.e., do not change

due to network load) except for queuing latency. Messages placed from different

flows placed on queues associated with the same switch port are in contention for

shared “forwarding resources.” We now formally define the fixed latency, queuing

latency, and end-to-end latency for a single switch.

Definition 5.4.2 (Wire Latency). The functionw (N1, N2) denotes the signal prop-

agation latency between network stations N1 and N2. A network station can be

either a switch, or a publisher/subscriber.

Definition 5.4.3 (Fixed Latency). Let f = (PT ,ST). Let the maximum message

size of a message publish to topic T be M . Then the fixed portion of the end-to-

end latency, denoted LF (PT ,ST), between PT and ST is:

LF (PT ,ST) =
M

C
+ w (PT , s) + w (ST , s) + smux (5.3)

where C is the network bandwidth and smux is the multiplexing latency of switch

s

Definition 5.4.4 (Queing Latency). Let (PT ,ST) be the flow from PT to ST ,

and let s (i) be the ith port on switch s which the flow is routed out of, then

the queuing latency of the flow (PT ,ST) with priority p at switch/port s (i) is

Q (PT ,ST , s (i) , p).

Definition 5.4.5 (End-to-End Latency). The end-to-end latency is the sum of the

fixed and queuing latency:

Le2e (PT ,ST) = LF (PT ,ST) +Q (PT ,ST , s (i) , p) (5.4)

171

How can we calculate Q (PT ,ST , s (i) , p)? We adapt an approximate tech-

nique for calculating the response time of a task under fixed priority scheduling

on a uniprocessor. In [36], Bini et al. provide a linear equation for calculating

an upperbound worst case response time of a task. Assuming Pi is the minimum

separation between consecutive arrivals of task Ti, Ei is the worst case execu-

tion time and hp (i) is the set of tasks assigned priority higher than Ti, then the

response time Ri is bounded from above by:

Rub
i =

Ei +
∑
j∈hp(i)

Ej

(
1− Ej

Pj

)
1−

∑
j∈hp(i)

Ej

Pj

(5.5)

This equation is useful in our application because the per-task workload ap-

proximations Bini et al. used to derive the response time bound also approximate

the traffic pattern of a flow conforming to a rate-limiter. We then transform Equa-

tion 5.6 into a worst-case bound on latency due to queuing by substituting mes-

sage sizes divided by bandwidth for execution cost, minSep for the periods, and

subtracting the overall message transmission cost for our flow3 Additionally, let

hp (p, s (i)) be the set of flows with priority higher than p at port i on switch s:

Q (PT ,ST , s (i) , p)
ub

=

MT
C +

∑
j∈hp(p,s(i))

Mj

C

(
1−

Bj
C

minSepj

)
1−

∑
j∈hp(p,s(i))

Bj
C

minSepj

− MT

C
(5.6)

We can now use the upper-bound on worst-case switch latency to determine

how to prioritize each flow. Common techniques for priority assignment in real-

3This is because the response time for a task also takes into account the execution time for that

task. We only want a upper bound on the interference.

172

time systems include the Rate Monotonic (RM) and Deadline Monotonic order-

ings (DM) [26]. Unfortunately, both RM and DM theory require that each flow

is assigned a unique priority. This is not possible on real networking hardware:

most Ethernet switches only provide 8 priority queues per port for egress traf-

fic. To overcome this limitation, we use Audsley’s Optimal Priority Assignment

(OPA) algorithm [24]. OPA has two desireable properties: It is optimal locally

(if a flow set will meet its latency requirement at a single switch under any fixed-

priority configuration it will also under OPA) and it minimizes the number or

priority levels required to schedule the flow set. Because each port of the switch

is independent in terms of its egress queueing, we only need to differentiate the

priorities of flows exiting the switch on the same port.

We now describe a version of Audsley’s OPA adapted to assign priorities to

flows in an OpenFlow switch. Our modified OPA takes as input a set of flows

(denoted F) forwarded out of the same port. OPA starts by attempting to as-

sign flows to the lowest priority level. If a flow f can exceeed its latency bounds

at a given priority level, OPA moves on and will attempt to assign that flow a

higher priority later. Conservatively, a flow (PT ,ST) can miss its latency bounds

if Q (PT ,ST , s (i) , p)ub + LF (PT ,ST) > Lmax (ST). If OPA exits before as-

signing a priority to every flow, then the flow set is not schedulable with any fixed

priority assignment. If the number of priority levels required to schedule F is

greater than the number of priorities provided by the switch, then the flow sched-

uler deems the flow set unschedulable.

Before admitting a new subscriber the flow scheduler must reconfigure the

network to accomodate the new flow without causing existing flows to violate

their latency requirements. Existing flows must be migrated to their new priorities

173

in a specific order to avoid priority inversions. To safely accomplish the recon-

figuration the flow scheduler maps existing priorities according to their priority

assignment in the new configuration: flows with lower priority are reprioritized

first.

Extension to Multi-switch

The prototype flow scheduler supports real-time guarantees on networks consist-

ing of

multiple switches by tranforming the distributed scheduling problem into a se-

quence of local (i.e., single switch) scheduling problems. Before we proceed we

modify Equations 5.7 and 5.4 to describe the sources of latency for a flow that is

forwarded through a sequence of switches. As in the single switch case there are

fixed and queuing sources of latency:

Definition 5.4.6 (Multiswitch Fixed Latency). Let ρ be a path of lengthm through

the network from PT to ST . Let Nk be the kth network node (switch or publish-

er/subscriber) on ρ.Let the maximum message size of a message publish to topic

T be M . Then the fixed portion of the end-to-end latency, denoted LρF (PT ,ST),

between PT and ST is:

LρF (PT ,ST) =
M

C
+
∑

1<k≤m

w (Nk−1, Nk) +
∑

1<k<m

smuxk (5.7)

Definition 5.4.7 (Multiswitch Queuing Latency Latency). Let ρ be a path through

the network with length m from PT to ST . Then the queuing latency due to all

the switches on ρ is the sum of all the queuing latencies of the switches along the

path:

174

Qρ (PT ,ST) =
∑

1<k<m

Q (PT ,ST , sk (i) , pk) (5.8)

Definition 5.4.8 (Total Multiswitch End-to-End Latency). Let ρ be a path through

the network crossing m switches. Then the total end-to-end latency due to both

fixed and queuing delays along ρ is:

Lρe2e (PT ,ST) = Qρ (PT ,ST) + LρF (PT ,ST) (5.9)

Given these equations for end-to-end latency for flows crossing multiple

switches we describe how MIDAS generates and applies network configurations

for multi-switch networks. As mentioned earlier in this section distributed schedul-

ing is in general quite difficult. Further complicating matters is that MIDAS must

be able to reconfigure the the entire network without causing any QoS constraint

violations for existing flows. This is challenging because the reconfiguration of an

upstream switch will impact the worst case load on downstream switches. Imagine

for example a simple network consisting of two switches s1 and s2. Now imagine

some flow f forwarded along the path s1, s2. Say that the minimum separation

between bursts of f at s1 is 20ms and the worst case queuing latency at s1 is 3ms.

This means that the minimum separtion that could be observed by s2 is 17ms (the

case where the first burst of f is delayed the maximum amount and then the sec-

ond burst is not delayed at all). Now assume a new flow f ′ is admitted to the

network and it is prioritized higher than f on s1. This will increase the worst-case

queuing latency of f (e.g., to 10ms) at s1 and further contract the worst-case burst

separation observed by s2 (down to 10ms).

We avoid having to calculate network-wide side effects each time a new sub-

scriber is admitted by transforming the distributed scheduling problem into a

175

sequence of local scheduling problems: When a subscriber ST requests a sub-

scription to T with a latency constraint Lmax (ST) we first calculate the short-

est unweighted path ρ between PT and ST . Next, we uniformly allot a portion

Lmax (ST) to each switch: for each switch sk in ρ we calculate Lmax (ST)sk

where:

Lmax (ST)sk =
Lmax (ST)− LρF (PT ,ST)

|ρ|
That is, we split the allowed queuing latency up evenly between all the switches

along ρ. We now recursively calculate the worst case minimum separation ob-

served at each switch on the path. Let minSepk be the minimum worst case

separation of bursts at switch sk then:

minSepk+1 = minSepk − Lmax (ST)sk

Finally, we apply the single switch schedulability, priority assignment and

network reconfiguration algorithms using each Lmax (ST)sk and minSepk for the

appropriate switch. Because we fixed the allotted switch queuing latency when

the flow as admitted, the minSepk values will never change.

5.5 Evaluation & Performance Assesment

This section describes the experimental results of an evaluation of some of the

MDCF / MIDAS’ key features.

5.5.1 Scheduling and Resource Reservation in the RTMB

176

Pica8 3920

Host B
Publishes T1

Host C
Publishes T2

Host A
Publishes T3

Subscribes T1,T2,T3

GRM

Eth0 Eth0

Et
h0

Et
h1

Et
h0

Port5 Port3 Port4

Port2

Port1

Figure 5.13: Experimental setup

We evalauted two aspects of MIDAS. First we wanted to see if the network

scheduling used in the MIDAS improved the timing performance relative to that

of a standard switch. Second, we wanted to see how robust the MIDAS timing

guarantees are. In order to evaluate these two aspects we deployed the MIDAS on

our OpenFlow test bench (Figure 5.13).

Our OpenFlow test-bench consists of 4 computers and an OpenFlow capa-

ble switch, a Pica8 P3290 [3]. Each of the 4 computers were plugged into the

switches’ data-plane ports (i.e., OpenFlow managed ports). The GRM was also

plugged into the control-plane port which carries OpenFlow management traffic.

Measuring end-to-end timing in a distributed network accurately is challenging

due to clock synchronization issues. We avoid these synchronization issues by

exploiting OpenFlow to let us run publisher’s and subscribers on the same hosts:

we add an OpenFlow rule that causes the switch to intercept packets from certain

flows, rewrite the packet headers, and then retransmit the packet back out the port

it arrived on. This allows us to ‘fool’ the client; it can publish to Tx and subscribe

to Ty but in reality it the messages being published to Tx are being sent back mod-

177

ified so they look as if they are from Ty. This allows us to compare the timestamps

of messages using the same system clock while still subjecting the message to the

same queuing, multiplexing and wire latencies it would experience if it was being

sent to another host.

All timing measurements we done on Host A. Host A was running real-time

Linux with IBM’s RTSJ-compliant Real-Time JVM. The RTMB client library

on Host A was scheduled with the highest system priority using RTSJ Java’s

NoHeapRealtimeThread’s to ensure that they would not be interfered with

by the Java garbage collector or other processes on the system. All timing mea-

surements were made by using the system’s millisecond precision real-time clock

API. Prior to running our experimental scenarios we lower-bounded the amount

of latency added by the Linux TCP/IP stack and the JVM by sending a message to

the loopback interface. This latency was consistently 1ms, which means that ob-

served latencies as recorded by the software are usually 1ms more than the actual

network latency.

For each experiment we used the same 3 publishers each publishing to a dif-

ferent topic (T1, T2, and T3) with a single host subscribing to each topic. Table

5.2 lists each topic, relevent QoS (minSep of the publisher and max latency from

the subscriber), and the bandwidth required by each. The publish-subscribe set

is designed to be representative of a demanding plug and play medical system:

T1 represents a high framerate/resolution video stream, T2 & T3 represent high

resolution data coming from ECG and EEG machines. For each experiment we

captured all messages received within a 10 second window and recorded their la-

tencies. During following discussion, we use Sx to denote the subscriber to topic

x and Px as the publisher to x.

178

Topic minSep Max. Latency Message Size (Bytes) Bandwidth

T1 3ms 2ms 192192 512.512mbit/s

T2 3ms 3ms 96000 256.000mbit/s

T3 11ms 8ms 64000 46.545mbit/s

TOTAL: 815.057mbit/s

Table 5.2: Experimental Publish-Subcribe Set

Scenario 1: Comparison to Best-Effort

Here we compare the performance of the middleware in two network settings. In

the first setting, we configure the Pica8 to behave like a normal L2/L3 switch (it

uses a fair-queueing strategy to forward ethernet frames in this mode). We call this

the ‘best-effort’ setting. In the second setting we place the network under control

of the MIDAS using the strategy of Section 5.4.2. We ran three experiments where

we observed the end-to-end latencies of messages published to each topic. In the

best-effort setting ST3 still met its latency constraints. The same was not true for

ST2 or ST1 . Due to space, we report the data concerning ST2:

Figure 5.14 shows the latency of each message over the observation window

for ST2 . Figure 5.15 shows the same for the MIDAS managed setting. Each point

on each graph represents the end-to-end latency of a single message sent to T2

and received by the subscriber. The x-axis is the moment (in milliseconds) that

the message was transmitted. The y-axis is the latency of that message. Even

accounting for jitters in the operating system and JVM the end-to-end deadline

of ST2 is repeatedly violated on the best-effort system (observe the number of

samples in the 5ms row of Figure 5.14). Additionally, ST2 never received 48%

179

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

La
te

n
cy

 (
m

s)

Transmission Moment

Observed Latency

Figure 5.14: Best Effort

of the messages that were sent. This is because the messages are quite large and

the egress queues can be overrun in the best effort setting. Any loss of a single

ethernet frame will result in the loss of the whole message. All messages arrived

in the MIDAS-managed setting. While it would be possible to reduce the message

drop rate in the best effort setting by causing the senders to retransmit on failure,

doing so would increase the effective latency of the message. Taking into account

the 1 ms latency added by the JVM and TCP/IP stack, no messages violated the

latency requirement when the MIDAS was managing the network configuration

(All samples in Figure 5.15 are 4ms or less).

Scenario 2: Fault Containment

In this scenario we modify the publishers to T1 and T2 so they simulate babbling

idiots (i.e., set theirminSep to 0) and we record the latencies of messages flowing

180

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

La
te

n
cy

 (
m

s)

Transmission Moment

Observed Latency

Figure 5.15: MIDAS

to T3. In this experiment the publishers were able to saturate a 1 gigabit per second

Ethernet link each. We modified PT1 and PT2 because MIDAS will configure

their respective flows with the highest priority which means they have the most

opportunity to starve the other flows if they misbehave. This represents a worst

case scenario for our approach. When run on the best effort network (i.e., with

no flow prioritization) PT1 and PT2 were able to starve enough of the network

forwarding capacity from the flow associated with PT3 to cause all messages to be

dropped. Figure 5.16 contains the observed latencies when MIDAS was managing

the network. Again, each point in the graph represents a single message. The y-

axis is latency of that message, and its x-value is the moment the message was

transmitted. Under MIDAS, no messages were dropped and all messages arrived

earlier than their required latency bounds, 8ms.

181

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

La
te

n
cy

 (
m

s)

Transmission Moment

Observed Latency

Figure 5.16: Latency bounds for ST3 when PT1 and PT2 are malfunctioning

5.5.2 Performance of the Determinizing Scheduler

We measure two aspects of our Determinizing Scheduler implementation. First,

we measure the worst case execution time (WCET) of each type of Determinizing

Scheduler microtask. The WCET time of the microtasks are important because

it will affect the schedulability of applications: If the MDCF/MIDAS is running

many applications at once, or those applications generate many I/O events, the

Determinizing Scheduler will have to execute many microtasks in a millisecond.

Second, we measure the level of timing determinism actually achieved by the

implementation.

Both evaluations were performed on the same hardware running and operat-

ing system combination. The hardware consisted of a workstation equipped with

an Intel Core i7-2600 and 8GB of RAM. The processor frequency was locked

182

at 3.5Ghz, hyperthreading was disabled and only one core was enabled. The

operating system was Ubuntu Linux 14.04LTS running the RT PREEMPT ker-

nel patchset enabling fully preemptive priority-based real-time scheduling. The

Java JVM used was IBM’s WebSphere RT 2.0. The MDCF/MIDAS software

architecture and implementation lets us map the Determinizing Scheduler to a

NoHeapRealtimeThread [40] to ensure that the Java garbage collector will

not interfere with the Determinizing Scheduler. All other application tasks were

mapped to RealtimeThreads [40] with a priority dictated by the MDCF/MI-

DAS Resource Manager.

Microtask WCET

We randomly generated a set of ODSDL applications and extracted a set of mi-

crotasks associated with the applications. While the Determinizing Scheduler em-

ployees three types of microtasks (one each for the ODSDL sched, send and recv

event) we actually tested 6 “categories” of task:

1. recv - data is received on a port.

2. sched(P) - periodic task is dispatched.

3. sched(A) - aperiodic task is dispatched.

4. send(1) - data is sent on a port with only one destination.

5. send(5) - data is sent on a port with 5 destinations.

6. send(10) - data is sent on a port with 10 destinations.

183

��

���

���

���

���

���

���

���

��� �������� �������� ������ ������ �������

�
�
�
�
�
���
�

�
�
��
�

�
��
��
��
�
�
�
�
�
�
�
�

��������������

Figure 5.17: Microtask execution times in microseconds.

We ran each extracted microtask 500 times and recorded the duration of each

execution. We used the Clock.getTime() methods exposed by the RTSJ run-

time which enabled us to record each execution time with microsecond precision.

Figure 5.17 shows the measured WCET for each task category. The upper and

lower bounds on execution time are indicated by the top and bottom whisker for

each category. The mean is indicated by the middle whisker and the boxes (when

present) show the range of the standard deviation.

On the test hardware our microtask implementation usually takes on the order

of 10 microseconds to execute. The cheapest microtask is for recv events because

the Determinizing Scheduler only needs to update a reference in the receiving

module. Both types of sched tasks are also cheap. sched(P) is slightly (several

microseconds) more expensive because it must calculate the next dispatch mo-

ment and schedule a new microtask while sched(A) only needs to dispatch a task.

184

The most expensive microtasks are typically for send events which makes sense

because a hash map datastructure must be accessed to retrieve the set of applica-

tion flows associated with the sending port. As expected, the cost of processing a

send event scales linearly with the number of flows associated with the port.

Depending on the mix of microtasks needed, these results indicate that modern

computing hardware can process 500 - 1000 microtasks in a given millisecond.

Recall though that these experiments were run with only a single core: Access

to multiple cores devoted to microtask processing potentially means even more

microtasks could be processed in a given millisecond on modern hardware as long

as datastructure locking is managed efficiently. Furthermore, these results reflect a

Java implementation. While modern Java compilers and JVMs offer competitive

performance relative to code generated from languages like C++ [129, 145], it

is possible that additional software optimzations, compiler optimizations, or a

different implementation language could shave microseconds from the costs of

each microtask.

Measured Application Determinism

Recall that the Determinizing Scheduler is designed to ensure that application

I/O events occur at the correct time, down to the millisecond, according to the

ODSDL’s semantics. Here, we evaluate our implementation’s ability to make

these I/O events happen at the right time. We randomly generated two ODSDL

applications each with 10 modules/tasks. Both applications were deemed schedu-

lable by the MDCF/MIDAS. One application had a task utilization U = 0.75,

while the other had U = 0.90. Figure 5.18 gives a template for the test mod-

ule. We used the UUniFast task-set generation method [37] to generate the period,

185

deadline, and cost parameters for each task in order to achieve the desired system

utilization.

1 modulemodulemodule DSTest {

2 netnetnet inputinputinput "input"

3 netnetnet outputoutputoutput "output"

4 varsvarsvars {i, a, b, c}

5 tasktasktask activatedactivatedactivated periodicallyperiodicallyperiodically [P] delaydelaydelay [D]{

6 i = 0

7 a = inputinputinput

8 whilewhilewhile(i < [I]){

9 b = a + c

10 c = b + a

11 iter = iter + 1

12 }

13 sendsendsend("output", c)

14 }

15 }

16 }

Figure 5.18: ODSL test module template. [I], [P] and [D] are set according

to the test parameters.

In order to have our test module tasks actually require the specied cost, we

measured the cost for one of the task’s loop’s iterations. We validated that the

task cost scaled linearly with an increase in the number of iterations (I). We then

set the appropriate number of iterations for each module to achieve its specified

execution cost.

Next, we randomly selected one task from each application to instrument. The

instrumentation recorded the moment each time a job of the task finished relative

to its deadline. We then ran each application for 1 minute using both the Deter-

minizing Scheduler and a standard Deadline Monotonic scheduler and recorded

186

�

��

��

��

��

��

��

� ��� ��� ��� ��� ����

�
�
�
�
�

���������������������������������������

����������������

(a) DM

�

��

��

��

��

��

��

��

� ��� ��� ��� ��� ����

�
�
�
�
�

���������������������������������������

����������������

(b) DM + Determinizing Scheduler

Figure 5.19: Task completion variability with 0.75 system utilization.

�

��

��

��

��

��

��

� ��� ��� ��� ��� ����

�
�
�
�
�

���������������������������������������

����������������

(a) DM

�

��

��

��

��

��

��

� ��� ��� ��� ��� ����

�
�
�
�
�

���������������������������������������

����������������

(b) DM + Determinizing Scheduler

Figure 5.20: Task completion variability with 0.90 system utilization.

the relative finishing times of the test tasks.

Figure 5.19 shows the results for the U = 0.75 application. As we can see,

when Deadline Monotonic scheduling is used the finish time of the task varied.

While most of the finish times were around 900 milliseconds prior to its deadline,

some jobs finished later. Under the Determinizing Scheduler, all jobs completed

at exactely the deadline.

The story repeats with the higher utilization (U = 0.90) application (Figure

5.20). Again, with the deadline monotonic scheduler the task job complete (and

187

hence output moment) can vary. In fact, this task exhibited more variability than

the task in the lower utilization application. Again, the Determinizing Scheduler

makes all the job completions manifest at the specified deadline.

These results demonstrate that the Determinizing Scheduler apprach is able to

achieve a very good level of determinism and predictability (down the the mil-

lisecond) even when using desktop class hardware, Linux, and Java as an imple-

mentation language.

5.6 Related Work

There are two important areas of related work. First, The role of a Medical Appli-

cation Platform as a trusted base was inspired by the “separation kernel” concept

that is becomming more commonplace in security and safety critical systems.

Second, the idea that the platform could orchestrate computation and communi-

cations activities in order to achieve a sort of logical time execution was inspired

by a number of other real-time systems research projects. We give a brief survey

of the related work in each area and explain how that work relates to our contri-

bution.

5.6.1 Separation Kernels

Separation kernels are like thin operating systems designed to partition or sepa-

rate the different software functions they are hosting. The goal of the paritioning

is to ensure that a software function in one partition cannot interfere with the

software residing in another unless the systems integrator explicitly allows it. The

concept of a separation kernel was first applied to security intensive systems. Later

188

the same concept (but with different features) was suggested for safety-critical

systems.

The Security Context

The first mention of a separation kernel was in a 1981 paper by John Rushby [162].

The separation kernel described by Rushby was intended to reduce the cost of

providing the assurance that a composite software system would not inadvertantly

leak data from high a security channel to a low security channel.

The composite software system consists of many individual software func-

tions. Some of these functions would be designed to only deal with low security

data, while other functions would process high security data. Clearly the software

functions that are destined to handle high security data should be exposed to as

much verification as is possible to assure that they will not mismange (i.e., leak)

that data.

But what about the low security software functions? If the composite software

system was constructed by linking the individual functions into a single program

execeutable then composite system as a whole would also need to be closely scru-

tinezed to ensure that low security functions do not somehow interfere with the

high security functions or otherwise gain access to classified data. Verification

of the composite system can be exponentially more complex (because one has

to worry about all the possible interactions between the individual components)

which results in a much higher verification cost.

The first core idea of the separation kernel is to mitigate the whole system veri-

fication cost by running each software function as a process isolated inside its own

partition. The job of the kernel, then, is to ensure that functions operating in one

189

partition cannot interfere or interact with functions inside another (unless explic-

itly allowed by the systems integrator). But how is this different than just running

each software function inside its own process on a modern operating system with

memory protection?

The second core idea of the separation kernel is simplicity. A modern oper-

ating system itself is very complex. If it exhibits a security vulnerability or an

implementation defect one process may be able to interfere with another in unex-

pected ways. A high level of assurance for individual software functions is useless

if the underlying operating system cannot be verified to the same level of assur-

ance. Unfortunately a full fledged operating system can be more complex than

the individual software functions that it hosts. Therefore a good separation ker-

nel should be simple as to reduce the cost of its own verification and validation.

Rushby was a proponent of a separation kernel whose design and implementation

could be fully and formally verified via formal mathematical proof. In theory, this

would bring a high level of assurance to the implementation and design of the ker-

nel. System integrators could then focus their verification and validation efforts

on the high security software functions under the assumption that the separation

kernel would ensure that the low security software functions would not acess a

high security function or channel.

Since Rushby’y 1981 paper there has been many ongoing efforts to create a

formally verified separation kernel. [157] proposes a technique for the formal

verification of a separation kernel. In 2006, Heitmeyer et al. [78] were able to

produce a formally verified separation kernel and provide a high level of assurance

with respect to the requirements laid out in the Common Criteria. More recently,

Klein et al. [111] were able to produce the formally verified separation kernel

190

seL4.

The Safety Context

Separation kernels for security work because they can enforce a useful negative

property: High security data cannot inadvertently flow from a high-sec partition

to a low-sec partition. Separation kernels are able to enforce this property because

they exist at a (low) level in the system software stack where they can mediate the

interactions between individual software functions and between software func-

tions and the underlying hardware.

While it is not exactely the same, there are significant parallels between the

challenges integrators of safety-critical systems face and those of security-critical

systems in terms of the cost of providing high assurance. Like security-critical

systems, modern safety critical systems can be composed of many software func-

tions. In any given system, each software function may have a different level of

criticality (i.e., some software functions may not have a safety-critical role while

other functions would). Thus if integrators want to combine a large number of

functions with a single computing platform they must either ensure that 1) the

composite system is verified to the highest level of assurance as a whole or 2)

verify each function indpendently and then use some lower-level mechanism to

ensure that the functions cannot interfere with each other in unexpected ways.

Option 2 requires some form of separation.

John Rushby recognized the utility of a separation kernel for safety critical

systems in 1986 [158]. In that paper Rushby makes a first attempt at formalizing

what it means to enforce a negative property but does not discuss actual enforce-

ment mechanisms. In the 1990’s there were efforts within the aviation industry

191

to standardize the separation services that a kernel could provide and how those

interfaces would present to sofware functions as APIs (see: [54]). Those efforts

culiminated in what we now know as Integrated Modular Avionics, or IMA [160].

We must note that IMA is a concept, not a specific set of technologies, even though

there are a variety of platforms and technologies on the market that offer “IMA”

capabilities.

Unlike security separation kernels, IMA platforms have to do more than just

ensure one software function cannot access (or corrupt) another’s data. Because

avionics have real-time requirements, the system integrator must ensure that each

real-time function has access to appropriate computing resources when it is needed.

Computing resources can be processor time, the network, sensors, and actuators.

To ensure that functions have access to processor time system IMA integrators

will typically use a RTOS that complies with the Application Executive (APEX)

ARINC 653 [17] standard. In addition to running each software function in its

own protected memory partition with its own memory region (space partitioning)

these RTOS ensure each function access to processor time by employing preemp-

tive cyclic scheduling. At integration time, the execution schedule for each func-

tion is chosen. Each function is allowed to process its tasks during its scheduled

execution slot. The RTOS will forcibly preempt any task that runs beyonds its

function’s execution slot. This ensures that a malfunctioning task of one function

cannot prevent a different function’s access to allocated processor time.

There are a variety of network technologies designed to be used as the commu-

nications substrate of IMA systems such as Avionic Full Duplex Ethernet [18, 4]

the Time Triggered Protocol [114], or the ARINC 629 data-bus. Like the APEX

compatible RTOS, all these networking technologies must be configured (i.e.,

192

choose the transmission schedule and/or priorities) during system integration to

ensure that each avionics function has access to networking resources at the right

time.

Integrated Modular Avionics have been successfully used facilitate systems

integration for a number of high profile aircraft including the Airbus A380 [94],

as well as the Boeing 787, C-130 and KC-767 Tanker [180].

5.6.2 Execution Strategies for Real-Time Determinism

In [81, 79] Henzinger et al. proposed the embedded-machine or e-machine. The e-

machine implements an execution strategy for real-time programs comprised of a

graph of periodic real-time tasks generated by the compilation of Giotto programs.

Like our determinzing scheduler, the e-machine separates task computation from

inter-task computation: The e-machine scheduler dispatches a task an keeps its

outputs until the task deadline at which point it moves the outputs to the next task’s

inputs and dispatches the next task. While [81] only supported periodic tasks,

there have been a number of extensions to support aperiodic and event driven

models [67]. Unlike the determinizing scheduler the various incarnations of the

e-machine are not designed for use in a distributed environment.

In [189], Zou et al. describe execution strategies for PTIDES [58, 59] pro-

grams based on Discrete Event Simulation. While the strategies described in [189]

can work in a distributed setting (unlike the e-machine) assesing their schedu-

lability is complicated relative to the Determinizing Scheduler. While the DS

transforms ODSDL into a set of aperiodic tasks where traditional scheduling tech-

niques can be used, [189] requires static analysis to determine causal relationships

between actors. Furthermore, current techniques to asses the schedulability for

193

PTIDES programms utilizing the complete PTIDES programming model depends

on a reduction to reachability in timed automata and make not be appropriate for

online schedulability analysis.

194

Chapter 6

Case Studies

6.1 Introduction

In this chapter we take two of the motivating examples from Chapter 2 and use

them as case-studies. The goal is to tie the work in the preceeding chapters to-

gether. We will use the case studies to illustrate how the regulatory framework

(Chapter 2), On-Demand Systems Description Language (ODSDL, Chapter 4)

and Medical Application Platform (MAP, Chapter 5) work together to provide

safety assurance for on-demand systems via a safety argument. Additionally, these

case studies will give us the opportunity to evaluate the performance ramifications

of a modal refinement (Section 3.2) based device/application compatibility check

using realistic device specifications.

This chapter is organized as follows:

First we will describe some key assumptions about the regulatory framework

and on-demand ecosystem (Section 6.2). These assumptions will be critical to un-

derstand why certain claims in each use-case’s safety arguments are justified. Un-

195

fortunately, as of this writing, there is no real regulatory framework as described

in Chapter 2. While our regulatory framework and ecosystem will be imaginary,

we will relate the key assumptions to realistic and/or concrete examples.

Next we will describe the case-studies (Sections 6.3 & 6.4). For each case-

study we will define the safety requirements and discuss scenario specific assump-

tions. We will then use the ODSDL to design an on-demand system to address the

clinical scenario and explain how the different features of the ODSDL help us in

our task. We will then construct an informal safety argument for the system. The

safety argument will illustrate how the regulatory framework, properties of the

ODSDL, and MAP combine to provide safety assurance for that particular sys-

tem specification. Because each safety argument is by its nature informal, there

is the possibility of assurance deficits (i.e., gaps that may make the argument un-

convincing). For each case study we will endeavor to identify important deficits

and discuss how the deficits may (or may not) be remedied.

Finally, we will benchmark our modal-refinement based compatibility check-

ing procedure using the device specifications from the case-studies (Section 6.5).

The goal of the benchmark is to ascertain how long checking modal refinement

takes for realistic specifications and to develop a preliminary understanding of its

practicality.

6.2 Ecosystem Assumptions

Here we make a number of assumptions about the ecosystem that apply to both

use-cases. These assumptions add detail to the basic processes outlined first in

Chapter 2.

196

ODSDL is Standard

We assume that the ODSDL is the standard used by application developers to

program applications and express requirements on device behavior, and it is used

by device manufacturers to specify how their device’s behave. Recall that the

ODSDL lets developers and manufacturers model device/environment interac-

tions with specific physical action types. These action types are just strings and

their physical meaning is not defined in the core ODSDL. Instead, it is the job

of the Ecosystem standards consortium to define a taxonomy of phsyical action

types, define the physical meaning of the action, and define the compliance crite-

ria for each action a device purports to generate or react to. We will give examples

in the case study specific ecosystem assumption sections later.

Furthermore, we assume that there is a certified Development and Verification

Environment (DVE) available to the ecosystem stakeholders (Figure 6.1). The

DVE enables an ecosystem specific form of Model Driven Development (MDD).

The DVE lets application developers program/specify their applications using

ODSDL. Then the developer can use the DVE to both automatically generate an

application bundle certified MAPs can execute as well as generate TPMS models

of the system that are suitable for model-checking, simulation, or other forms of

analysis.

Lastly, we assume that the notion of device/application compatibility used by

the ecosystem is that of weak modal-refinement between TPMSs (Section 3.2).

When a platform checks to see if the device chosen by the user is compatible with

an application is desugars the ODSDL specifications into TPMS specifications

and then checks whether the device TPMS weakly refines the requirements TPMS.

197

ODSDL
System

Specification

MDCF App Bundle

TPMS System Model

TPMS Environment
Model

TPMS System +
Environ.

ModalT
PDR (May Reach.)

Zone Graph (Must Reach.)

Imitator
PTA (May Reach.)

Exec. Code

TPMS Dev.
Spec.

PTA System +
Environ

Reach.
Prop.

Key:

Input

Auto. Gen.

External
Tool

Figure 6.1: Development & verification workflow in the Ecosystem’s ODSDL

Development & Verification Environment

Device Compliance

We assume that device manufacturers must follow some sort of MDD process

to design and implement their devices. In particular we assume that the device

manufacturers must design the “digital” (i.e., part the controls the sensors and

actuators) portion of their device by creating a timed-automata model and then

autogenerating an implementation with a tool like TIMES [9]. After the physical

implementation of the digital portion has been created, its timing characteristics

must be tested and verified to conform to the initial timed automata specification

following a process such as described in [97]. The portion of the device excluded

from the digital portion (i.e., the sensor and actuators) must be verified for com-

pliance according to specific criteria established for the sensor or actuator type.

We will discuss this more in detail in the ecosystem assumptions specific to each

use-case.

Furthermore we assume that each certified device properly implements the

ecopshere’s standard interoperability protocols and runs a local version of the de-

terminizing scheduler (Section 5.3): When connected, the device’s clock is al-

ways synchronized to the connected platform’s clock (within some ε), and when

198

the device receives a timestamped message carrying and ODSDL event, it won’t

manifest that event to the device’s control logic until the timestamp.

Platform Compliance

We assume that each certified platform properly executes ODSDL programs. This

includes properly implementing the ODSDL’s logical execution time semantics

and correctly implementing the procedure used to check modal refinement. Addi-

tionally, we assume that each platform is able to provide guarantees of separation

and isolation between concurrently running applications (e.g., [162, 7, 158, 160,

159]).

Furthermore, we assume that the correctness of the platform has been rigor-

ously verified, following the types of guidance for highly critical systems laid out

in, for example, the DO-178/254 guidance standards for avionics [98, 83, 146]

and the Common Criteria [154, 140]. 1. We also assume that, where possible, the

functional correctness of the platform software has been formally verified, e.g., as

in [111].

6.3 Laser-Ventilator Interlock

6.3.1 Scenario Specific Assumptions

Before we proceed with a description of our Laser/Ventilator interlock applica-

tion we need to make some assumptions. The first assumptions will concern the

1A discussion of what particular aspects of the referenced guidance should be applied is beyond

the scope of this dissertation. We merely assume that the platform is verified as extensively as any

other existing safety critical software system

199

clinical environment and the intended use of the application. Based on the sce-

nario assumptions we will devise the safety-property the application must satisfy.

Next, we will state some assumptions about the ecosystem compliance criteria for

laser-scalpels and ventilators. These assumptions about device compliance will

help the reader interpret the meaning of the ODSDL device requirements specifi-

cations used in the application, and they will be exploited in the safety argument

itself.

Clinical Environment & Intended Use

We assume that our application will only be designed to prevent surgical fires

and won’t try to protect the patient from O2 desaturation. We assume that the

anesthesiologist and the surgeon will still communicate during the procedure and

that the anesthesiologist will inform the surgeon if s/he should take a break from

cutting in order to let the ventilator run and increase the patient’s SpO2 level.

We also assume that the concentrated O2 in the patient’s airway dissipates

quickly after the ventilator has been stopped or paused. While the dissipating

is not instantaneous, we assume that is dissipates down to safe levels in under a

fraction of a second (though this may differ between patients, ventilator, and gas

mixture settings).

Laser/Ventilator Device Compliance

Table 6.1 contains a listing of the ODSDL physical type names we assume have

been standardized in our imaginary ecosystem. Each type is designated with a

name, and can represent a physical signal that is either just an event (i.e., “it

happened”) or an event that carries a value (i.e., “it changed its output to value

200

Physical Type Value/Event Description

LaserOutputWatts Value [0 . . . 100] Laser output energy in watts.

ReqPauseEvent Event When the pause request button is pressed.

ToggleOnEvent Event Pressure is applied to the laser activation button.

ToggleOffEvent Event Pressure is removed from the laser activation button.

VentFlowRateLSec Value [0 . . . 50] Gas flow rate in litres/second.

EmergencyBtn Event When the emergency button is pressed.

RateInputPanel Value [0 . . . 50] Req. flow rate received from device panel.

Table 6.1: Physical types used by devices in the Laser/Ventilator interlock

application.

v”).

We assume that if a laser scalpel has been certified its actual laser output will

match its specified output (LaserOutputWatts) within 2% if the laser is active.

We assume that if the laser specifes an output of 0 at discrete millisecond t (i.e.,

it is supposed to be turned off) it will physically disconnect the laser emitter from

the power circuit before t+ 1. This design requirement is verified by the certifica-

tion authority via manual inspection of each submitted laser-scalpel design. Req-

PauseEvent, ToggleOnEvent, and ToggleOffEvent are all events that represent

the physical signal generated when the surgeon presses one of two buttons on the

scalpel. ReqPauseEvent fires when the surgeon clicks a button for requesting

ventilator pause. ToggleOnEvent and ToggleOffEvent let use model a toggle

button: ToggleOnEvent fires when a button is depressed, ToggleOffEvent fires

when the surgeon lets off the button.

Likewise, we assume that if the ventilator has been certified its actual output

201

will match its specified output (VentFlowRateLSec) within some error. How-

ever, once the ventilator indicates that it should be stopped by discrete millisec-

ond t, the ventilator mechanism (usually a piston or some other pump) must have

its movement fully arrested by time t + 1. The RateInputPanel even represents

when the operator programs and commits a new ventilator flow rate (e.g., types in

a new rate and hits enter.) We must note that real ventilators expose many more

parameters than just “flow rate”. Typically, you can specify respiratory rate, FiO2

(amount of O2 delivered), tidal volume, pressure and many others [186]. In this

case study we focus on flow rate as the primary ventilation parameter to simplify

the presentation. EmergencyBtn is an event that represents when the operator

presses a button to activate an “emergency mode”. Emergency mode is intended

to disable the pause feature of the ventilator if one exists.

6.3.2 Application Design

Our safety interlock (see Figure 6.2) consists of a laser-scalpel (Figure 6.3), ven-

tilator (Figure 6.4), and two application software modules (Figure 6.5). The envi-

ronment consists of an operator and patient. At a high level, the interlock works

as follows: when the surgeon wishes to use the laser scalpel s/he will depress a

“request” button on the scalpel. The scalpel will send an event to the application

requesting for it to be enabled. When the application gets the activation request

it will first ask the ventilator to pause. After the ventilator pauses, the ventilator

will acknowledge the pause request to the application which will in turn send an

“enable” message to the scalpel. The laser scalpel will remain enabled (i.e., can

be turned on) until just before the ventilator resumes gas flow.

Whether or not this system satsifies its safety requirement (i.e., that the ven-

202

tilator is never on when the laser is) depends on the relative timing of the mode-

changes in the devices and the events received and generated by the application.

We will now discuss the specification of each component and how the specified

must behavior of each component helps satisfy the system safety requirement,

while any specified may behavior will not cause a violation.

The application requires that the laser-scalpel (Figure 6.3) start in a “disabled”

state (i.e., it will not react to the surgeon toggling the ‘on’ button). The scalpel

will only become receptive to the ‘on’ button after it has received an signal on

its allow network input port from the application and moved into the READY

control location. Once the scalpel is enabled the specification allows for some

timing variability in laser activation time (the parametric contraints on the invari-

ant of ACTIVATE and the guard leaving ACTIVATE). This variability is there to

account for possible power systems design differences between different scalpels:

Some designs may a longer take time to energize its circuits until a laser beam

is formed. Furthermore, some designs may be more or less predictable in terms

of their energizing time. This variability is not extended to the deactivation time:

it is required that the laser beam shutoff in the same millisecond as when the

btn off event occured. One critical aspect of laser specification is the amount

of time it remains enabled: The laser-scalpel will disable itself (and shutoff the

laser if active) once 4.979 seconds have elapsed since it was enabled. Why 4.979

seconds? As we will see our ventilator specification has the ventilator pause for 5

seconds and then resume, but due to variability in the ventilatory, network latency,

and application processing delays the ventilator may have already been paused for

up to 0.020 seconds before the laser scalpel gets enabled. Disabling the scalpel 1

millisecond early ensures that there is no overlap of time when both the laser and

203

Operator

Patient

laser: LaserScalpel

vent: Ventilator

pause: PauseModule

en: EnableModule

Clinical Scenario

System Specification

req_pause
button_on
button_off

req

allow
laser

req

pause

pause

pause_ackpause_ack

allow panel

output

latency = 5ms

latency = 5ms

latency = 5ms

latency = 5ms

task
deadline = 5ms

task
deadline = 5ms

Figure 6.2: Laser/ventilator clinical scenario and safety interlock system

specification.

ventilator are on.

In addition to the timing behavior just described, the ventilator specification

(Figure 6.4) also admits some functional variability. First, it allows the operator

to change its programmed flow rate via the device’s panel (the may edges labeled

panel ? rate). It also admits ventilators that allow the operator to put the

machine into an “emergency” state where it will ignore all future pause requests.

The ventilator spec also allows some timing variability in pausing (the paramet-

ric contraints in PAUSING) and sending the pause acknowledgement message

(the parametric constraints in PAUSE1). The variability in PAUSING accounts

for mechanical differences between different ventilators (e.g., some pump mech-

anisms may have inertia to overcome before they fully stop) while the variability

in PAUSE1 can account for internal processing differences.

The application software modules themselves are quite simple (Figure 6.5).

The task of each module activates when the module receives and input on the

204

DISAB
true

REQ
c 50c 50

WAIT
true

ACTIVATE
c 4979c 4979

t �t �

READY
c 4979c 4979

ACTIVE
c 4979c 4979

btn_req ?
c := 0c := 0

req !

allow ?

laser ! 5
t � ↵t � ↵

c < 4979c < 4979

actuators:
 laser : LaserOutputWatts

sensors:
 btn_req : ReqPauseEvent
 btn_on : ToggleOnEvent
 btn_off : ToggleOffEvent

vars:
 cc : Clock
 tt : Clock

params: ↵↵, ��

 0 ↵ � 150 ↵ � 15

net inputs:
 allow : Event

net outputs:
 req : Event

LaserScalpelSpec

DEACTIVA
t 0t 0

allow ?
c := 0c := 0

btn_on ?
c < 4979c < 4979
t := 0t := 0

btn_off ?
c < 4979c < 4979
t := 0t := 0

laser ! 0
c � 4979c � 4979

laser ! 0
c < 4979c < 4979

c � 4979c � 4979

allow ?

allow ?allow ?

allow ?

allow ?

c � 4979c � 4979

Figure 6.3: Requirements for laser behavior

input port and then sends an output 5 milliseconds later.

6.3.3 Safety Argument

Our safety argument for the Laser / Ventilator interlock application (Figure 6.6)

is an instatiation of the argument pattern from Section 2.4. We will describe each

node of the argument. The top-level goal of the argument (G: NoMutualActiva-

tion) is to argue that there is adequate assurance that all possible instantiations of

the the aser / Ventilator interlock application permitted by the ecosystem ensure

that the laser is never active when the ventilator flowing O2 to the patient.

The goal G: NoMutualActivation is discharged using the platform argu-

ment strategy (S: PlatArgSection 2.4) which requires that the property in ques-

tion is verified using a model-based reasoning step (G: ModelSat), and then that

205

ON
true

PAUSING
c ↵c ↵

PAUSED1
c �c �

PAUSED2
c 5000c 5000

EMERG2
c 5000c 5000

RESUME
c 0c 0

EMERG2
true

pause ?
c := 0c := 0

pause_ack !

emerg ?

emerg ?
emergency ?

emerg ?

output ! 0
c � �c � �
c := 0c := 0

output ! rate

panel ? rate

panel ? rate

panel ? rate

panel ? rate

panel ? rate
panel ? rate

pause ?

pause ?

pause ?

pause ?pause ?

pause ?

output ! rate

actuators:
 output : VentFlowRateLSec

sensors:
 emerg : EmergencyBtn
 panel : RateInputPanel

vars:
 rate : Int
 cc : Clock

params: ↵↵, ��, ��

 0 � ↵ 10 ^ 0 � 50 � ↵ 10 ^ 0 � 5

net inputs:
 pause : Event

net outputs:
 pause_ack : Event

VentilatorSpec

c := 0c := 0

Figure 6.4: Requirements for ventilator behavior

all the models used have their adequacy justified given the safety property, sys-

tem, and environment in question. Note that we take advantage of our imagined

ecosystem’s reliance on the ODSDL and the certified DVE toolchain: The S:

PlatArg strategy is used in the context of models are automatically derived from

the ODSDL application specification (except the environment model).

The model-based reasoning step is captured by the goal G: ModelsSat and

its sub-argument. We took the application TPMS model autogenerated by the

DVE and composed it with a handcrafted TPMS model of the environment to cre-

ate a closed-model of the system. The environment model (Env) had two state

variables that represented the current laser (Env.laser input) and ventilator

(Env.vent input) input levels. The environment model also non-deterministically

generated btn req, btn on and btn off events to the laser-scalpel.

We used model-checking to verify two important properties of the closed sys-

206

1 modulemodulemodule PauseModule {

2 netnetnet inputinputinput "req" datatypedatatypedatatype Event

minsepminsepminsep 100

3 netnetnet outputoutputoutput "pause" datatypedatatypedatatype Event

minsepminsepminsep 100

4 varsvarsvars { }

5 tasktasktask activatedactivatedactivated by port "req"

delaydelaydelay 5{

6 sendsendsend("pause")

7 }

8 }

(a) Pause module.

1 modulemodulemodule EnableModule {

2 netnetnet inputinputinput "pause_ack" datatypedatatypedatatype

Event minsepminsepminsep 100

3 netnetnet outputoutputoutput "allow" datatypedatatypedatatype Event

minsepminsepminsep 100

4 varsvarsvars { }

5 tasktasktask activatedactivatedactivated by port "pause_ack"

delaydelaydelay 5{

6 sendsendsend("allow")

7 }

8 }

(b) Enable module

Figure 6.5: Interlock software modules.

tem model:

• P1: The state Env.laser input > 0 ∧ Env.vent input > 0 is

not reachable.

• P2: The model does not have timelock.

P1 is simply a formalization of the mutual exclusion property from G: No-

MutualActivation. We checked P2 because the ODSDL device specification sub-

language does not prevent the application designer from committing any modeling

errors that result in deadlocks or timelocks. If the model had a timelock then the

model P1 could be vacuously true. We verified P1 & P2 using the PDR model-

checking engine in our tool ModalT. ModalT’s evidence includes a log file of the

model checking process as well as an inductive invariant over the model’s tran-

sition relation that implies that the bad states cannot be reached. The inductive

207

G: MutalExclusion
There is adequate assurance
that all possible instantiations
of LVapp ensure that the laser
is never active when the
ventilator is.

S: PlatArg
Argue via the
platform
approach.G: ModelSat

Under the composition of Env,
LVapp, Laser & Vent, the laser
is never active when the venter
is & there is no time lock

G: ModelsAdequate
The Env, LVapp, Laser, and
Vent models are adequate.

G: PlatformAssurance
There is adequate assurance
that all platforms in the
ecosphere will correctly
execute LVapp and will
correctly perform LVapp’s
device matching.

G: EnvAdq.
The environment model is
sound for checking the mutual
exclusion property.

G: LaserModelAdq.
The Laser model captures all
relevant behavior of compliant
and compatible pulse-
oximeters

G: LVappAlgModelAdq.
The application model captures
the relevant behavior

Cntxt: Models
The TPMS Automata
models derived from
the ODSDL spec:
Env, LVapp, Laser &
Vent

S: SimpleAllModel
The environment model just
records device model
outputs and non-
deterministically represents
all possible operator
behavior.

Ev: The Model
Spec

S: ModelBasedDevel.
Argue that the
executable code was
automatically generated
via the certified ODSDL
DVE tool-chain.

Ev: DVE
Log files generated
by the ODSDL
DVE tool-chain

S: ModelChecking
properties are verified
using model-checking

Ev: ModalT
UPPAAL model-
checking results.

& PDR Cert.

S: ReferenceEcoAssur.
The ecosphere platform
compliance criteria
meets an accepted level
of assurance for life-
critical apps.

Ev:
EcoPlatCompliance

Ref. to the
compliance criteria

for platforms

G:
VentModel
Sound

Cntxt: Ecosphere
The regulatory
framework of
Chapter 2 with the
assumptions of
Sections 7.2 &
7.4.1

Ev: Imitator
Imitator model-

checking results.

Figure 6.6: Assurance case fragment for the Laser / Ventilator Interlock ap-

plication.

208

invariant serves as a certificate and can be verified with an SMT solver that sup-

ports a theory of linear arithmetic over the reals. We also used the DVE to export

the TPMS model to the input-language supported by the Imitator model-checking

tool [10, 11, 12] which can check reachability of Paramteric Timed Automata

(PTAs) using parametric extensions of zone-graph methods [14, 13].

We argue the adequacy of the model-based reasoning in the sub-argument

rooted at goal G: ModelsAdequate. Our argument pattern requires us to justify

each model that we used. We justify our environment models by arguing that it

only needs to generate all possible operator inputs and correctly record the current

device mode. Since the model is simple, this can be verified by inspecting the

model itself (Ev: TheModelSpec).

Justifying the adequacy of the device models (G: LaserModelAdequate, G:

VentModelAdequate) is more interesting as that argument depends on the ecosys-

tem device certification criteria. Indeed, this part of the overall argument is critical

because it requires the application developer to show the connection between the

modeled universe and the real physical universe. We elaborate on the argument

for the laser model (G: LaserModelAdequate, Figure 6.7). G: LaserModelAd-

equate has two parts. The first part (G: CompatModelAdq.) is to show that

the models used in the model-based reasoning captures all the possible behav-

iors modeled by the specification of any compatible device. Since our imaginary

ecosystem uses modal refinement between TPMSs as its notion of compatibility,

and our models are TPMSs, this sub-goal is discharged with the property preser-

vation and compositional reasoning theorems of TPMS (Theorems 3.2.3, 3.2.9

and 3.2.13).

The second part (G: ImpModelAdq.) connects the behavioral spcification

209

the device presents with its actual possible physical behaviors via the Ecopshere

properties and certification criteria. For this system it is critical that when the

laser model says the laser is off it is not actually emitting any laser energy. Recall,

though, that the compliance criteria we have assumed for lasers allows for lasers

that don’t output exacetly what they specify. There is some error allowed for phys-

ical differences and/or defects in the laser emitting medium and supporting power

infrastructure. Also recall that the compliance criteria requires that when a laser

says it is off, its laser emitting sub-system must have its power source physically

disconnected and that to achieve certification, the physical disconnection must be

externally verified. Our argument for G: ImpModelAdq. concludes by arguing

that laser output is irrelevent when the laser is on, but that the ecosystem certifi-

cation criteria and processes gives a sufficient amount of assurance that the laser

will actually be off when it needs to be.

Potential Assurance Deficits

Here we will discuss two classes of deficits the reviewer might identify. The first

class concerns the specified safety property. The reviewer might judge that the

safety properties argued for in the safety case are incomplete or don’t reflect the

right tradeoff between risks and benefits.

One potential problem with the top-level safety requirement is that it ignores

the potential for O2 desaturation of the patient. If the surgeon keeps requesting a

ventilator pause, and if the anesthesiologist is inattentive, they can keep the ven-

tilator stopped indefinitely, eventually causing the SpO2 levels of the patient to

dangerous levels. This deficit can be dealt with in a number of ways. It may

be that the safety case reviewer with expert medical knowledge judges the risk

210

G: LaserModelAdq.
The Laser model captures all
relevant behavior of compliant
and compatible pulse-
oximeters

S: TPMSCompatDef
Modal refinement
ensures all compatible
behaviors of
implementations are
checked in the model
checking process

Ev: TPMSProperty
Preservation
Reference to
Theorems 4.1.6 &
4.1.4

Ev: TPMS
Compositionality
Reference to
Theorem 4.1.10

S:ArgueComplianceCriteria
The compliance criteria for
laser scalpels ensures the
relevant behavior is
captured.

S: GoalDecomp.
Argue each sub-
goal

G: ImpModelAdq.
The compliance criteria for
laser scalpels ensures that all
implementation specifications
captures the relevant behavior.

G: ImpModelAdq.
The Laser model captures all
behavior of compatible
implementation specifications.

G:
OffMeansCircuitDisconnect.
Compliant devices must
disconnect the lasing power
element when before their
specified output is 0 and
reconnect it only after it is > 0

G: OutputIrrelevent.
Any error in the output wattage
is allowed by the compliance is
irrelevant for this property.

Ev:
ComplianceCriteria
The certification
criteria for laser
emitting devices.

Ev: property
Reference to the
pharmokinetics of
opioids in the
expected patient pop.

Figure 6.7: Arguement fragment for the adequacy of the laser model.

211

of surgical fire large enough relative to the risk of desaturation that they allow

the deficit (i.e., the benefit of preventing fire outweighs the risk of accidental de-

saturation). Or, they may decide that the risk of desaturation is significant. If

they judge the desaturation risk significant enough, they can deny the certification

of the application and ask the application developer to redesign and satisfy extra

safety requirements (e.g.,, that the ventilator is never paused when the patient’s

SpO2 is below some expert defined threshold).

Another problem with our safety requirement is that it only targets the device

mode, rather than the physical state of the airway. Indeed, even if the ventilator

has been stopped, concentrated O2 may remain in the airway and contribute to

the fire hazard. The expert review may decide that the gases in the airway will

tend to dissipate fast enough and make the risk insignificant enough. On the other

hand, like with the previous example, they may want the developer to redesign

their application to ensure that the laser is not on when gases in the airway are

present.

The second class concerns the substance of the safety case itself: they might

not find the argument or its evidence compelling enough given the risks/benefits

to the clinical scenario. For example, the reviewer may judge that the compliance

criteria for either laser for verifying the “0” output is inadequate for this appli-

cation. For example, the compliance criteria might not make any mention of the

laser shutoff functions reliability, or if it does, it does not require a high-level of

reliability.

In addition to potential deficits linking the device’s modeled behavior to its

real behavior, the expert review might have reason to believe that the tools (e.g.,

ModalT, Imitator, or the DVE itself) used to design the application and perform

212

the model-based reasoning are not adequately trustworthy. For example, they

might not believe the tools are free from defects that can significantly impact the

results.

6.4 Closed-Loop Management of Patient Controlled

Analgesia

6.4.1 Scenario Specific Assumptions

Like with the Laser/Ventilator interlock application we need to state some as-

sumptions before we can proceed. As before, the first assumptions will concern

the clinical environment and the intended use of the application. Based on the sce-

nario assumptions we will devise the safety-property the application must satisfy.

Next, we will state some assumptions about the ecosystem compliance criteria for

pulse-oximeters and PCA pumps.

Clinical Environment & Intended Use

We assume that the PCA management application is designed to be used with pa-

tients convalescing in an ICU, or a Medical Surgical Stepdown Unit (MedSurg

Unit). We assume, based on risk/benefit analysis and knowledge of physiology,

that medical professionals are in agreement that an SpO2 level of 75% is an ac-

ceptable threshold between safe and dangerous respiratory function (i.e., that an

SpO2 < 75 is dangerous but ≥ 75 is safe).

We assume then, that our application’s safety goal is to keep the patients

SpO2 ≥ 75 at all times. We also assume that a simple linear model (the one

213

Physical Type Value/Event Description

PercentSpO2 Value [0 . . . 100] Blood oxygen saturation percentage (SpO2)

InfusionRateMlMin Value [0 . . . 1000] Infusion rate ml/Min.

BolusReqEvent Event Bolus requested by the patient.

GenAlarm Event A non-specific alarm event.

Table 6.2: Physical types used by devices in the PCA management applica-

tion.

of Figure 6.13) of patient pharmokinetics is sufficient, i.e.,, it represents a worst-

case scenario of a patient who is very susceptible to opiod induced respiratory

distress.

PCA Pump/Pulse Oximeter Compliance

Table 6.2 contains a listing of the ODSDL physical type names we assume have

been standardized in our imaginary ecosystem for pulse-oximeters and PCA pumps.

PercentSpO2 represents an event where the pulse-oximeter samples the cur-

rent SpO2 value from the environment. We assume that the ecosystem compliance

criteria allows from some small error (e.g., 2-3%) from an reference value gener-

ated by an approved pulse-oximeter calibration tool [90, 89]. The calibration tool

simulates the red and infra-red light emission/reflection characteristics of human

tissue for a given SpO2 value.

InfusionRateMlMin represents an event when the infusion rate of the pump

changes to a different value. We assume that all compliant pumps have been

tested for flow accurancy at each programmable value of flow. Due to the physical

214

Figure 6.8: Example trumpet curve. Taken from [171].

characteristics of the pump mechanism, it is not practically possible to have a

pump deliver precisely the flow rate it species. Typically, the accuracy of infusion

pumps are measured using “Trumpet curves” [148]. Trumpet curves (see example

in Figure 6.8) visualize the the maximum flow-rate error observed over a specific

window of time. They are called trumpet curves because the relative error over

a short window is much larger than over a long window, causing the graph to

resemble a trumpet. We assume that the compliance criteria for pumps is fairly

strict: The flow error can be no greater then 10% and must drop to less than 2%

after 100 milliseconds of infusion. BolusReqEvent represents an event that is

generated when the patient requests a bolus from the patient.

GenAlarm represents the activation of a non-specific technical alarm. The

alarm can result, for example, from the pump detecting some hazard such as air

bubbles in the infusion tube, some mechanism overheating, or the drug resevoir

becoming empty. Our assumed compliance criteria only requires that the device

generate an audible alarm at the same time as the event is fired.

215

6.4.2 Application Design

Our application for preventing PCA overdose (Figure 6.9) works as follows: The

pulse-oximeter periodically samples the patient’s SpO2 and then transmits the

(possibly averaged) sample to the application module (Figure 6.12). If the re-

ceived SpO2 value is < 95 then the application sends a signal to the pump’s

disable network port. Otherwise the it will send a signal to the pump’s enable

port. When the pump gets an enable signal it will become receptive to bolus re-

quests from the patient. If a bolus is active when the pump gets a disable signal

the infusion is stopped.

Unlike the laser/ventilator interlock, satisfaction of the safety requirement de-

pends on the possible interations between the devices, application code, and pa-

tient: It is impossible to asses whether or not the safety requirements are satis-

fied without coupling the system specification to some model of patient physiol-

ogy and behavior. So instead of walking through each specfication with the aim

of showing the reader why the system “is safe” we will simply give a functinal

overview of the specifications and discuss why certain behaviors are present. The

question of safety verification will be examined in depth later in the safety argu-

ment section.

Figure 6.10 gives the pulse-oximeter specification. This particular specifi-

cation does not admit any modal variability (i.e., there is no timing or func-

tional variability allowed). Every 100 milliseconds the pulse-oximeter samples

the SpO2 value from the patient and then stores the sample in a 2-history buffer.

If the SpO2 ≥ 95 the pulseoximeter will transmit the average of the buffer to the

application. If the SpO2 is < 95 then it will transmit the most recent sample. The

reasoning is that if the SpO2 is high the averaging effect will help avoid spurious

216

Patient

po: PulseOximeter

pca: PCAPump

mod: SafetyCheck

Clinical Scenario

System Specification

spo2spo2out

spo2

enable

enable

disable infusion

alarm

latency = 10ms

latency = 10ms

task
deadline = 80ms

disable

bolus_req

latency = 10ms

Figure 6.9: Closed-loop management of PCA clinical scenario and system

specification.

alarms, but if the SpO2 is low greater sensitivity is desired. While this specifi-

cation does not model any particular pulse-oximeter, it does capture the types of

behavior seen in real pulse-oximeters.

Figure 6.11 shows the specification for the PCA pump. The specification dic-

tates that the pump should not respond to patient bolus requests while it is dis-

abled. This specification admits both functional and timing modal variability.

The timing variability is designed to admit pumps with different pump mecha-

nisms: Different pump mechanisms can impact how long it could take to start or

stop an infusion. Observe the parametric timing constraints in STARTB, STOPB,

STOPBD, and STOPBDE. These locations are used to model the time it takes to

start and stop a bolus respectively. The starting locations are constrained with a

different set of parameters than the stopping locations to allow for pumps that take

a differnt amount of time to start vs. stop. The functional variability present in

the specification allows for pumps that can detect certain error conditions (e.g.,

217

SAMPLE
c 100c 100

sensors:
 spo2 : PercentSpO2

vars:
 cc : Clock
 sample1 : Int
 sample2 : Int = 100

net outputs:
 spo2out : Int

PulseOx

SEND
c 0c 0

c � 100c � 100
c := 0c := 0

spo2 ? sample1

spo2out ! (sample1 + sample2) / 2
sample1 >= 96

sample2 := sample1

spo2out ! sample1
sample1 < 96

sample2 := sample1

Figure 6.10: Requirements for pulse-oximeter behavior

bubbles in the infusion line) and automatically cease infusion.

Figure 6.12 shows the PCA management application’s software module. When-

ever it gets a new SpO2 sample it checks if it is above or below the safe threshold

and enables or disables the pump accordingly.

6.4.3 Safety Argument

Like the Laser/Ventilator interlock application, our safety argument for the PCA

management application (Figure 6.14) is an instatiation of the argument pattern

from Section 2.4. The top-level goal of the argument (G: NoOverinfusion) is to

argue that there is adequate assurance that all possible instantiations of the the

PCA management application permitted by the ecosystem prevents PCA therapy

from depressing the patient’s SpO2 levels to < 75%.

Like before, the top-level goal G: NoOverinfusion is discharged using the

platform argument strategy (S: PlatArgSection 2.4) which requires model-based

reasoning step (G: ModelSat), and then that all the models used have their ade-

quacy justified. Again, we take advantage of our imagined ecosystem’s reliance

218

DISAB
true

READY
true

STARTB
t �t �

STOPB
c �c �

BLSING
c 2000c 2000

STOPBD
c �c �

bolus_req ?
c := 0c := 0

actuators:
 inf : InfusionRateMlMin
 alarm : GenAlarm

sensors:
 bolus_req : BolusReqEvent

vars:
 cc : Clock

params: ↵↵, ��, ��, ��

 0 ↵ � 500 ↵ � 50

 0 � � 500 � � 50

net inputs:
 enable : Event
 disable : Event

PCAPumpSpec

STOPE
c �c �

disable ?

EMERG
true

alarm ?

alarm ?

alarm ?
c := 0c := 0

disable ?

enable ?

enable ?

inf ! 4
c � ↵c � ↵
c := 0c := 0

inf ! 0
c � �c � �

disable ?
c := 0c := 0

disable ?

enable ?

enable ?

c � 2000c � 2000
c := 0c := 0

disable ?

inf ! 0
c � �c � �

inf ! 0
c � �c � �

enable ?enable ?
disable?

enable ?
disable?

enable ?
disable?

Figure 6.11: Requirements for PCA pump behavior

on the ODSDL and the certified DVE toolchain: The S: PlatArg strategy is used

in the context of models are automatically derived from the ODSDL application

specification (except the patient model).

The model-based reasoning step is given in the sub-argument of goal G: Mod-

elsSat. We verified that the applications satisfies the desired property by using the

DVE toolchain to automatically extract ModalT TPMS and Imitator PTA models

from the ODSDL application specification. To model the patient’s physiology we

hand-crafted a TPMS model (Figure 6.13) of the patient behavior and pharmoki-

netics (i.e., the relationship between infusion rate, and the patient’s drug- and

SpO2 levels). This patient model is the same model used in [149, 21] and was

originally derived from a simple text-book model of opiod pharmokinetics.

The patient model is a “discrete simulation” of the patient’s opiod metabolism.

Each 100 milliseconds it takes a “simulation step”. At each step the current drug

219

1 modulemodulemodule SafetyCheck {

2 netnetnet inputinputinput "spo2" datatypedatatypedatatype Int minsepminsepminsep 100

3 netnetnet outputoutputoutput "enable" datatypedatatypedatatype Event minsepminsepminsep 100

4 netnetnet outputoutputoutput "disable" datatypedatatypedatatype Event minsepminsepminsep 100

5 varsvarsvars { }

6 tasktasktask activatedactivatedactivated by port "spo2" delaydelaydelay 80{

7 ififif("spo2" < 95){

8 sendsendsend("disable")

9 }

10 elseelseelse{

11 sendsendsend("enable")

12 }

13 }

14 }

Figure 6.12: SafetyCheck module for the PCA control application

level is computed by adding the current infusion rate to the current drug level

and substracted out the amount absorbed or metabolized away. The SpO2 level is

then computed by subtracting the drug level from 100. At any time, the infusion

pump can signal to the patient model of a rate change. Likewise, at any time, the

pulse-oximeter can sample the patient’s current SpO2 level. Patient behavior is

modeled with the value of the tolerance variable: If the drug level is less than

tolerance, the patient can request a PCA bolus. The patient model is always

receptive to alarm outputs from the pump (we have elided tese transitions from

Figure 6.13 for simplicity).

Like with the Laser/Ventilator application we use model-checking to verify

two properties:

• P1: Cannot reach a state such thatPatient.spo2 < 75.

220

WAIT
c 100c 100

output actions:
 spo2 : PercentSpO2
 bolus_req : Event

vars:
 cc : Clock
 curr_spo : Int = 100
 drug_level : Int = 0
 abs : Int = 2
 tolerance : Int = 3
 curr_rate : Int = 0

Patient Model

STEP
c 0c 0

c � 100c � 100
c := 0c := 0

drug_level = drug_level + cur_rate - abs

c := 0c := 0

bolus_req!
drug_level < tolerance

drug_level = drug_level + cur_rate - abs
c := 0c := 0

input actions:
 rate : PercentSpO2

spo2 ! curr_spo

spo2 ! curr_spo

Figure 6.13: TPMS model of patient behavior and opiod pharmokinetics.

• P2: Cannot reach a timelock.

and like with the Laser/Ventilator application we use the two model-checkers

ModalT and Imitator. Both tools verified that both P1 and P2 are satisfied by the

system model.

We justify the adequacy of the patient model (G: PatientAdq.) by arguing

the model is sound, i.e., real patients react much less agressively to opiod infusion

compared to the model. The idea being if the model patient does not experience

overdose, neither will a real patient. The evidence we use to support this argument

is a citation to a textbook on opiod pharmokinetics.

Figure 6.15 illustrates the argument supporting the adequacy of the pulse-

oximeter model (G: PulseOxModelAdq.). Like with the laser/ventilator appli-

cation there are two parts to the argument: That the model used in the model-

checking captures all the relevent behavior of the compatible device models and

that the behavior of the device models captures the relevent physical behavior of

the devices. Like before, the first part is discharged with an appeal to the relevent

221

G: NoOverInfusion
There is adequate assurance
that all possible instantiations
of PCAapp prevent ensure that
the patient’s SpO2 > 75

S: PlatArg
Argue via the
platform
approach.G: ModelSat

Under the composition of
Patient, PCAappModules,
Dataflow, PulseOx & PCA,
Patient.spo2 cannot be < 75 &
there is no time lock

G: ModelsAdequate
The Patient, PCAappAlg,
PulseOx, and PCA models are
adequate.

G: PlatformAssurance
There is adequate assurance
that all platforms in the
ecosphere will correctly
execute PCAapp and will
correctly perform PCAapp’s
device matching.

G: PatientAdq.
The patient model is sound for
checking for over-infusion.

G: PulseOxModelAdq.
The PulseOx model captures
all relevant behavior of
compliant and compatible
pulse-oximeters

G: PCAapAlgModelAdq.
The application model captures
the relevant behavior

Cntxt: Models
The TPMS Automata
models derived from
the ODSDL spec:
Patient,
PCAappModules,
Dataflow, PulseOx
& PCA

S:
AcceptedTextBookModel
The patient model is a
sound model to check for
respiratory depression.

Ev:
TextbookCitation
Reference showing
most patients react
less aggressively
than model.

S: ModelBasedDevel.
Argue that the
executable code was
automatically generated
via the certified ODSDL
DVE tool-chain.

Ev: DVE
Log files generated
by the ODSDL
DVE tool-chain

S: ModelChecking
properties are verified
using model-checking

Ev: ModalT
UPPAAL model-
checking results.

& PDR Cert.

S: ReferenceEcoAssur.
The ecosphere platform
compliance criteria
meets an accepted level
of assurance for life-
critical apps.

Ev:
EcoPlatCompliance

Ref. to the
compliance criteria

for platforms

G:
PcaModel
Sound

Cntxt: Ecosphere
The regulatory
framework of
Chapter 2 with the
assumptions of
Sections 7.2 &
7.4.1

Ev: Imitator
Imitator model-

checking results.

Figure 6.14: Assurance case fragment for the PCA management application.

222

theorems on TPMS refinement, property preservation, and compositional reason-

ing. For the second part we argue that any divergence from the modeled behavior

(in terms of timing or sensring errors) allowed by our ecosystem’s pulse-oximeter

compliance criteria is small and inconsequential relative the pharmokinetics and

patient physiology in question. For example, our assumed compliance criteria for

pulse-oximeter sensing error is +/-1 %. While this may allow a slight divergence

of the system’s modeled behavior with reality, it won’t make much practical dif-

ference to the health of the patient.

223

G: PulseOxModelAdq.
The PulseOx model captures
all relevant behavior of
compliant and compatible
pulse-oximeters

S: TPMSCompatDef
Modal refinement
ensures all compatible
behaviors of
implementations are
checked in the model
checking process

Ev: TPMSProperty
Preservation
Reference to
Theorems 4.1.6 &
4.1.4

Ev: TPMS
Compositionality
Reference to
Theorem 4.1.10

S:ArgueComplianceCriteria
The compliance criteria for
pulseoximeters ensures the
relevant behavior is
captured.

S: GoalDecomp.
Argue each sub-
goal

G: ImpModelAdq.
The compliance criteria for
pulseoximeters ensures that all
implementation specifications
captures the relevant behavior.

G: ImpModelAdq.
The PulseOx model captures
all behavior of compatible
implementation specifications.

G: TimeScaleGood.
 The 1ms resolution timescale
for compliance testing is
precise enough.

G: SensingErrorAdequate.
 Sensing error allowed by
compliance criteria is not large
enough to significantly mitigate
verification results

Ev:
ComplianceCriteria
The certification
criteria for
pulseoximeters

Ev:
TextbookReference
Reference to the
pharmokinetics of
opioids in the
expected patient pop.

Figure 6.15: Arguement fragment for the adequacy of the pulse-oximeter

model.

Potential Assurance Deficits

This safety argument for the PCA management application can harbor the same

kinds of deficits as those discussed for the laser/ventilator application. The review

might find fault with the top-level safety requirement (e.g., that it is incomplete).

224

They also might find fault with the argument used to justify the adequacy of the

device models or platform. We will not re-hash the same deficits for this argument.

Instead we will focus on a new deficit related to the substance of the argument

resulting from the top-level safety requirement.

Unlike the laser/ventilator application, the safety requirement for the PCA

management application is phrased in terms of the patient’s physiologic state:

The PCA must cause the patient’s SpO2 to drop below 75. For the laser/ventilator

application it is easy to have confidence that the environment model is justified

(its simple and records the modes of the devices). The same cannot be said for

the patient model used here. Modeling of human physiology is very difficult, and

most so called high-fidelity models are quite complex (e.g., tens of differential

equations with tens of variables interacting with non-linear dynamics). The situ-

ation is further complicated when one tries to model sick patients where multiple

disease states are interacting. An expert reviewer might simply not accept that our

patient model adequately or soundly captures the behavior of the patients in the

population our application targets.

6.5 Performance Evaluation

It is important to ascertain the performance implications of using modal refinement

of TPMS as our notion of application device compatibility. While the refinement

checking problem for TPMS is at least as hard as checking two timed automata

for timed (bi)-simulation (known to be an EXPTIME problem [48]), the algorithm

we present in Section 3.3.5 uses a number methods (symbolic zones and modern

SMT solver capability) to potentially decide modal refinement quickly in practice.

225

The goal of this section is report on how well an implementation of our algorithm

performs on the specifications used in our case studies.

6.5.1 Setup

For this evaluation, we implemented the scale insensitive refinement checking al-

gorithm from Section 3.3.5 using the Scala programming language. Zones were

maintained using a difference bound matrix [60, 33] library from the PRISM

model checker [116]. Our implementation used the Z3 SMT solver [57] version

4.4.2 to check for zone-closure and guess valid parameter values. Each refinement

check was run on a Linux workstation equipped with an Intel Core i7-4770 CPU

with 32GB of RAM. All timing information capture includes the time taken to

desugar an ODSDL specification into a TPMS and then run the actual refinement

checking algorithm on the TPMS.

For each device requirements specification we ran seven experiments which

we call Good, Tau1, Tau3, Tau5, BadConstant, BadArith and BadTrans. The

Good experiment simply took the device specification and transformed it into

a valid implementation by fixing appropriate parameter values and turning any

may transitions into must transitions. The Tau1, Tau3, and Tau5 are designed to

increase the state-space of the implementation with extra τ (silent) transitions that

do not affect the I/O behavior of the implementation. For each TauN experiment

we took the Good specification and interleaved in N =1,3 or 5 τ -transitions.

Each extra τ -transition has the affect of doubling the effective state space of the

device implementation specification.

For the BadX experiments we took the device implementation specification

created for Good and mutated it to create a bad implementation. BadConstant

226

randomly selected a constant used in a clock constraint and changed it to some

random value. BadArith randomly selected some arithmetic expression (e.g., used

in a state variable update or output action) and changed it by either changing the

operator or by extending the expression with some new operation. For BadTrans

randomly added a new transition.

6.5.2 Results

Figures 6.16 & 6.17 show the results for the Laser / Ventilator interlock system

specifications and Figures 6.18 & 6.19 show the results for the PCA management

system.

We immediately see that our refinement checking algorithm is able to decide

refinement in under 9 seconds under all experimental variations for 3 of the 4 de-

vice specifications. Also, in general, it takes longer to check the refinement of a

valid implementation. This extra time makes sense, because the algorithm must

build and check the entire product zone graph of the specification and implemen-

tation when the implementation is valid.

As expected, refinement checking takes much longer when the state-space

of the specification is large. This phenomenon is exemplified most with the

pulse-oximeter specification. The pulse-oximeter specification contains two state-

variables (in addition to the control location variable) that buffer the sampled

SpO2 readings from the patient. The buffer variables can take on 100 possible

values. Combined with the two control locations the specification’s discrete state-

space (ignoring clock valuations) is 20,000. Interleaving in the tau transitions

quickly causes the state-space to explode (remember the refinement checking al-

gorithm has to potentially check the cross-product of the states). Nevertheless,

227

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Good
Tau1

Tau3
Tau5

Bad Constant

Bad Arith

Bad Trans

T
im

e
 (

m
s)

Implementation

Refinement Check Time (ms) - Laser

762

1682
1492

3679

159 253
142

Figure 6.16: Refinement checking time - laser-scalpel specification.

refinement is still decided in just over 6 minutes for the Tau5 version of the pulse-

oximeter implementation. While this might be too slow for a compatibility check

at the bed side during a medical procedure, it is still probably fast enough for a

compatibility “pre”-check performed by hospital technical staff prior to use. A

less significant example of this phenomenon occurs with the ventilator specifica-

tion. The ventilator specification allows the operator to adjust the programmed

flow rate from the front panel (range of 1− 50). Even with this internal state, the

Tau5 version of the ventilator implementation is still checked for refinement in

about 8 seconds.

One interesting comparison is between the PCA pump and laser scalpel spec-

ifications. Both specifications don’t contain any significant discrete internal state

(the PCA pump has 8 control locations vs. the laser scalpel’s 7) yet checking the

228

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Good
Tau1

Tau3
Tau5

Bad Constant

Bad Arith

Bad Trans

T
im

e
 (

m
s)

Implementation

Refinement Check Time (ms) - Ventilator

1506

3243

5391

8094

301 110 232

Figure 6.17: Refinement checking time - ventilator specification.

valid implementations of the laser scalpel take signficantly longer. Why is this?

While we did not do any profiling of our algorithm the difference likely results

from the extra clock in the laser scalpel’s specification. More clocks mean the ex-

pression sent to the SMT solver must quantify over more variables and the DBMs

used to store the concretized zones have more dimensions. Furthermore, more

clocks are known to make zone graphs larger (to account for clock differences

that arise due to clock resets).

Finally, we observe that without exception, deciding modal refinement for in-

valid implementations was always very fast (just a fraction of a second). Why

is this? We believe that the speed results from the fact the algorithm essentially

does a breadth first search of the product statespace, and the types of errors we in-

troduced at the syntactic (ODSDL) level always manifest shallow in the semantic

229

 100

 200

 300

 400

 500

 600

 700

Good
Tau1

Tau3
Tau5

Bad Constant

Bad Arith

Bad Trans

T
im

e
 (

m
s)

Implementation

Refinement Check Time (ms) - PCAPump

290

372

529

696

158

226

186

Figure 6.18: Refinement checking time - PCA pump specification.

(TPMS) level.

6.6 Related Work

To our knowledge there has not been any case-studies illustrating how to design

and assess an application for an ecosystem of interoperable medical systems.

However, there has been numerous case-studies designed to study specific clin-

ical scenarios where automation could be applied. There have also been a number

of case-studies where investigators have examined some device specific issues re-

lated to interoperability. We will give a brief summary of the most relevent works.

In [104] Kim et al. looked at the laser surgery fire prevention scenario and

proposed a system that could preserve its safety properties even in the presence

230

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

Good
Tau1

Tau3
Tau5

Bad Constant

Bad Arith

Bad Trans

T
im

e
 (

m
s)

Implementation

Refinement Check Time (ms) - PulseOximeter

48214

107592

232930

367012

271 401 109

Figure 6.19: Refinement checking time - pulse-oximeter specification.

of network failures. Kim et al.’s system worked by synthesizing a coordination

protocol on the fly based on safety property predicates declared before runtime.

In [20, 19], Arney et al. looked at the problem of synchronizing an x-ray machine

with a ventilator. There, the problem is sometimes the surgeon wants to take a

chest x-ray while the patient is under artificial ventilation. Arney’s et al.’s system

sychronized the x-ray with the ventilator so the x-ray image was taken when the

patient’s lungs were at peak inspiration (i.e., moving the least). This capability

would allow surgeons to take x-rays without having to turn off the ventilator.

Bu et al. [45] examined a version of Kim et al.’s system and proposed a type of

runtime verification to detect when specified safety constraints were violated. Bu

et al.’s argument being that model-checking a system a priori can be impractical

and perhaps it is better to simply detect problems when they happen and alert the

231

operator rather than attempt to avoid problems altogether.

David Arney and colleagues also studied the problem of preventing overdose

due to PCA therapy [21]. Arney et al. designed several closed-loop control proto-

cols and verified different safety properties using both model-checking and simu-

lation. One of their protocols was designed to be resilient to network faults (i.e.,

the safety properties were preserved in the presence of dropped messages). Pajic

et al. published a much more detailed version [149] of the study that originally

appeared in [21].

Larson et al. looked at the requirements engineering process for infusion

pumps in [122] with a special eye towards requirements relating to interoper-

ability. Jakub Jedryszek expanded on [122] in his master’s thesis [95] where he

investigated how model driven development, in the context of AADL models,

could be applied to interoperable infusion pumps. Likewise, Shiwei Luan’s mas-

ters thesis [132] described the development of a modular infusion pump enabled

with interoperable capabilities.

232

Chapter 7

Conclusion

The goal of this dissertation was to illustrate how a collection of inter-related tech-

niques and technologies could help us achieve safe on-demand medical systems.

While the approach we described most likely isn’t the only way to achieve on-

demand system safety, it provides concrete technical details we hope can serve

as a foundation for future technical investigations and discussions on on-demand

system safety.

First we described the concept of “on-demand systems” and how they differ

from traditionally engineered systems. We identified three ways vendor neutral

on-demand capabilities could benefit healthcare: 1) Reduced medical errors and

clinician workload, 2) Device procurement flexibility for the Health Delivery Or-

ganization (HDO) and 3) Enable innovation by allowing smaller device and soft-

ware companies entry to the health-care technology market. We also identified

some key technical challenges. The list of challenges we identified is certainly

not complete (e.g.,, we do not address the security challenges facing connected

medical systems), but they are nonetheless important. We identified 1) Scalability

233

limitations in current regulatory frameworks, 2) Standardization of behavior and

3) Timing predictability in open & distributed dystems as three challenges that

must be overcome if we want a viable ecosystem of on-demand medical devices

and software. We argued that if we fail to overcome these challenges then the

viability of the on-demand concept will be diminished.

We set out to address these challenges with a number of inter-related tech-

nical solutions. First we proposed a regulatory framework and associated assur-

ance argument pattern. The regulatory framework makes application developers

ultimately responsible for the system safety argument and enables a sort of com-

positional reasoning for safety. Devices would get certified against an interface

(behavior) specification. Applications would specify their required devices and

timing constraints and would be certified assuming their requirements are always

satisfied. Specialized computing platforms called Medical Application Platforms

(MAPs) would form a trusted base and ensure that applications are only used with

compatible devices and that the timing constraints are always satisfied.

Then, we introduced Time Parametric Modal Specifications (TPMS). TPMS

were designed specifically as a device behavior specification language for use in

an on-demand ecosystem regulated by our framework. TPMS allow application

developers to precisely specify required behavior and device manufacturers to

precisely specified what behavior their device offers. TPMS allows for “loose”

specifications (i.e., the application developer can specify the acceptable timing and

functional variability of a device) and offers a notion of refinement that can relate

device behavior to application requirements. TPMS refinement enables the type

of top-down reasoning required by our regulatory framework because it preserves

safety properties.

234

Next we proposed the On-Demand Systems Description Language (ODSDL)

for application developers to write on-demand applications. The ODSDL lets

application developers specify the logical architecture of the system their appli-

cation creates (essentially they specify a virtual system). The ODSDL has two

features to support system predictability. First, it uses TPMS to explicitly specify

required device behavior. Second, it has predictable logical execution time seman-

tics (LET) which guarantees input deterministic exection of ODSDL applications.

We implemented a prototype Medical Application Platform with the MD-

CF/MIDAS and showed how the LET semantics of ODSDL applications can be

ensured in an open and dynamic “plug & play” environement. We described some

modifications of classical deadline-monotonic fixed priority scheduling theory

that enables its use in a dynamic and open environment. We assesed evaluated our

implementation and showed that the LET semantics were properly implemented

and that the prototype platform is resilient to “babbling idiot” faults.

Finally, we showed how each of the contributions above work together to en-

able system safety with two case-studies. We took two real clinical scenarios

(closed-loop management of PCA infusion and coordinating a laser scalpel/venti-

lator), designed applications to address each scenario’s safety requirement using

ODSDL, and then constructed a safety argument for each application assuming

our proposed regulatory framework exists. We then used the device specifications

created for the case-studies to evaulate the performance of our TPMS refinement

checker.

235

7.1 Discussion

7.1.1 Can we truly ensure safety?

While we believe the work presented in this dissertation can serve as a blueprint

of techniques that can help practitioners create safe on-demand systems, the work

presented here does not guarantee system safety. Our goal instead was to show

how an appropriately designed regulatory framework and associated technologies

would allow the application developer to constrain possible system behavior with

enough confidence to make a reasonable safety argument. The work presented

here does not prevent a designer from producing an unsafe application, nor does it

prevent the regulator from approving an unsafe application: If the developer does

bad model-based reasoning and the reviewer doesnt detect that bad reasoning, then

they may allow a flawed application on the market. Concrete examples of possible

assurance deficits were given with the case studies in Chapter 6. The flawed

application may then cause an accident when it is instantiated and controlling real

devices.

Should we not try and build on-demand systems for safety critical situations

until safety can be guaranteed? We think that perspective is unreasonable, es-

pecially considering the techniques, technology and current regulatory processes

cannot 100% guarantee the safety of traditionally engineered monolithic systems.

Indeed, even for current traditionally engineered monolithic systems, safety as-

sessment at some point comes down to (hopefully expert) judgement. Why is

this? Its simply not possible for a human (i.e., designer, engineer, regulator and

operator) to know everything. For a given system we cannot know, with 100%

certainty, how it will behave or what the complete list of hazards are or even a

236

complete notion of what “safe” is. Effectively, each time someone declares that

a system is safe they are actually doing a form a model based reasoning. While,

the “model” may not be a formal model, it still will be some approximation of

real-world behavior based on previous experience. Just like for our framework, it

is ultimately up to the reviewer to judge whether the models, evidence, and over-

all argument is sufficient given the intended use of the system and the associated

risk/benefit tradeoffs.

7.1.2 Do We Really Need Timing Guarantees?

A significant portion of this dissertation is devoted to describing how to make a

platform that can guarantee the timing distributed behavior of a system in an open

and dynamic environment. One may question whether strict timing guarantees

are really necessary to support plug & play medical applications and whether it

would be worth it to engineer a real platform capable of making those guarantees.

Indeed, many of the clinical algorithms proposed to address the clinical scenarios

enumerated by the MD PnP program are designed to tolerate deadline misses and

even network message drops (See, for example, [21, 149, 20] or [104]).

First, just because many applications don’t depend on strict timing guarantees

does not mean there aren‘t others that will. For example, many closed-loop control

applications (e.g., diabetic glucose control [151, 112, 51]) do not have currently

known solutions that are tolerant to deadline miss or network message loss.

Second, just because an application (or scenario) does not need timing guar-

antees does not mean it wont benefit from it. If a doctor or nurse deploys two

applications at the same time and these applications have significant mutual re-

source contention, so much so that deadlines are consistently missed, then those

237

applications will consistently be in a “failsafe” mode and not able to offer clinical

utility. Furthermore, guaranteed timing and other determinism features simplifies

the job of the application developer: They will have fewer behaviors they must

consider and anticipate during design [124].

7.1.3 The Cost and Benefit of Modal Refinement.

Some readers may question the wisdom of using refinement checking to check

the compatibility between applications and devices. While our case-studies show

that in practice refinement checking can be relatively quick, TPMS refinement

checking is at least an EXPTIME problem [48] and the decision procedures we

have presented need to unroll a zone-graph and are susceptible to the state space

explosion problem.

Our decision to use modal refinement as our compatibility relation is the con-

scious result of a trade off. It seems that, on the one hand we could standardize de-

vice behavior and make compatibility checking very easy (e.g., a developer could

simply specify they need a device by its standard “type name). But that approach

would mean all the stakeholders would need agree on the standard behavior for

each device type. As discussed in the introduction, we don’t have confidence such

a standard could be achieved in a timely manner.

On the other end of the spectrum is our approach, where we standardize a

simple language to model behavior and rely on potentially expensive procedures

to decide compatibility between an applications requirements and a devices ca-

pability. Is there some middle ground approach that doesn’t require a complete

standardization of device behavior but also doesnt need an expensive compatibil-

ity checking procedure? At this time the answer is not clear.

238

7.2 Gap Analysis & Future Work

Here we provide a combined “gap analysis” and future work section. The goal

of the gap analysis is to describe the “delta” between the current state of affairs

and what would be necessary to achieve safe medical device interoperability us-

ing the framework described in this dissertation. Unlike a traditional future work

section, which usually focuses on establishing a direction for technical research,

this section attempts to discuss the major technical and social gaps (which we fur-

ther refine into the categories of process and organization). Indeed, for the prob-

lem of safe medical device interoperability, it is likely impossible to completely

divorce the technical concerns of a solution from the social (e.g., regulatory) con-

text, therefore it is important to describe the current gaps on both fronts, and how

they inter-relate.

Table 7.1 provides a condensed summary of the gap analysis. Each row de-

scribes a requirement to make our framework work, a summary of the current (as

of this writing) status, suggestions for future work to remedy deficiencies in the

current status, and then an indication as to whether the gap would be addressed

by primarily social or technical means. For the rest of the gap analysis, we will

devote a subsection to discuss each row of Table 7.1.

7.2.1 Regulatory Support for Compositional Reasoning

Overall, the regulatory framework proposed in this dissertation is highly specu-

lative. As of the writing of this dissertation, we are not aware of any regulatory

framework that allows for compositional certification or approval: i.e., where in-

dividual components certified against an interface could be combined in such a

239

Requirement Current Status Needed Future Work Social or

Techni-

cal?

Regulatory support for

compositional reasoning.

Only monolithic and/or

”pairwise” medical de-

vice system approval.

Development and regu-

latory acceptance of in-

terop. device ecosys-

tem similar to that as de-

scribed in Chapter 2

Organ. &

Process

Suitable criteria for

device interface compli-

ance.

Various “academic” ap-

proaches exists.

Investigate what types of

evidence is needed to sup-

port an assurance argu-

ment.

Organ. &

Technical

Physiological models ap-

propriate for model based

reasoning.

Models exist that capture

patient physiologic at var-

ious levels of accuracy,

complexity and fidelity.

Develop models that are

amenable to model based

reasoning and adequately

capture patient dynamics.

Technical

Expressive formal device

interface language.

TPMS expresses the

timed-reactive behavior

of devices with variabil-

ity.

Extend TPMS to supports

hybrid behavior and other

non-func. properties.

Technical

Trustworthy devices. Cryptographic techniques

to validate device certi-

fication are well under-

stood.

Techniques to detect

device-interface behavior

divergence

Technical

Rigorously verified and

validated platforms.

Operating systems have

been formally verified for

data handling properties.

Investigate how to for-

mally specify and verify

non-functional properties

(e.g., timing).

Technical

Table 7.1: Requirements, current status and gaps.

240

way that enables compositional system level safety arguments. In the abstract, we

don’t believe that there are any serious technical reasons why such a regulatory

framework could not be adopted. The real challenge is organizational in nature:

all the various stakeholders would need to come together to form and manage

an interoperable component ecosystem such as described in Chapter 2. In prac-

tice, this could be quite difficult as all the stakeholders would need to come to

consensus on the interoperability protocol as well as the compliance criteria for

devices, applications and platforms. Each of these issues can be quite compli-

cated individually, together even more so. Additionally, different stake holders

will have difference incentives affecting how willing they will be to compromise

(e.g., device manufacturers will likely try to promote device compliance criteria

that favors their own devices).

Once an interoperability ecosystem has been formed, there is also the issue

of creating processes that lead to consistent enforcement. In practice the compli-

ance criteria agreed upon by the stakeholders will likely require some subjective

judgement on the part of the certifier (e.g., how do we know if the hazard list for a

specific device is complete?). It will be difficult for stakeholders to anticipate the

composite behavior of a system if the component compliance criteria is enforced

inconsistently. We believe that this is primarily a social challenge. It will re-

quire that the stakeholders properly train and monitor the individuals tasked with

certification.

Last but not least, the actual regulators will need to accept the certification

practices of a given ecosystem. The best way to address this challenge is again

through primarily social channels. For example, some regulatory agencies, such

as the US FDA, allow interested parties to make a regulatory submission for a

241

non-existant or imaginary product (FDA calls this a “Pre-IDE” [93]). A regula-

tory submission, based on the assumptions and ecosystem framework described in

this dissertation would help open a social channel to the regulator and help us get

feedback from the regulator and identify regulatory & legal hurdles for the adop-

tion of a interoperable ecosystem. Feedback from the mock submission could then

be used to refine the overall design of the ecosystem and help the stakeholders pro-

pose changes to any existing laws that are limiting the adoption of interoperable

medical systems.

7.2.2 Suitable Criteria for Device-Interface Compliance

This dissertation assumes that there exist “suitable” criteria for device-interface

compliance. Indeed, in Chapter 6 we give some specific examples for specific de-

vice types. Unfortunately, our examples are clearly incomplete; we only assume

as much is needed to help make the safety argument for the case study applica-

tions. In reality an ecosystem will need comprehensive certification criteria for all

the different device types. The challenge here is both organizational and techni-

cal. The organizational aspect comes the fact the different stakeholders will likely

need to compromise: Detailed and rigorous criteria are good in the sense that they

may enable better prediction of device and composite system behavior. On the

other hand, overly detailed and rigorous criteria may prove to onerous for certain

stakeholders, e.g., small device manufacturers without enough resources to meet

the criteria.

There is also the very important technical and scientific question of how to

relate device compliance evidence to assurance for device behavior. For example,

one may require that device manufacturers follow a model-driven development

242

process where they first specify their device’s behavior as a Timed Automata (TA).

Then a tool like TIMES [9] would be used to generate code that exhibits the

reactive and timing behavior specified by the TA. Now, if the device compliance

criteria only required the manufacturer to provide evidence that TIMES was used

to generate code from the model we probably shouldn’t have much confidence

that the specified timing behavior is perfectly achieved: timing divergence can

arise due to CPU non-determinism and other effects. Therefore, the code should

be tested on its hwardware platform to validate the timing behavior [96]. The

question then becomes, how much testing is needed to achieve the desired level

of confidence or assurance? Answering this question is a very important direction

for future scientific work.

7.2.3 Physiologic Models for Model Based Reasoning

Many medical applications will likely phrase some or all of their safety require-

ments in terms of the patient’s physiological state (e.g.,, our PCA case-study).

If safety requirements will be phrased in terms of the patient’s state and model

based reasoning must be used to verify & validate system safety, then we need

good patient models that can be incorporated into a model based reasoning frame-

work. Good patient models are primarily a technical challenge. While there are

physiologic models available for a wide variety of patient conditions and clinical

scenarios, their accuracy, fidelity, or complexity may not be appropriate for the

types of model based reasoning proposed in this dissertation. For example, the

patient model used in our PCA case-study is simplified approximation of patient

opiod pharmokinetics and likely misses out on certain safety relevant behaviors

found in real patients. Future work should focus on developing models that have

243

enough fidelity to capture adequate amounts of safety related behavior while still

being amenable to practical model based reasoning. Alternatively, the community

could also investigate new model-based reasoning techniques that can effectively

utilize many of the existing high-fidelity and complex models currently in the

medical literature.

7.2.4 Expressive formal device interface language

TPMS as presented in this dissertation only allow developers to model “digital”

system behavior with respect to real-valued clocks. When used as a behavior

specification formalism in our framework this limitation forces the developer to

informally associate idealized digital behavior with possible physical behaviors in

the assurance argument itself. This reliance on informal reasnoning is one source

of the assurance deficits we identified in our case studies. One important area of

future work is to extend TPMS with the ability to model hybrid dynamics and

non-functional properties including reliability and error.

The ability to fully model the hybrid dynamics of a device (e.g., use a dif-

ferential equation to model how the infusion rate of an infusion pump changes

in response to a rate setting change) would allow application developers to reduce

their reliance on informal reasoning. Likewise, support for non-functional proper-

ties such as reliability or error will help application developers make their device

requirements more precise.

Furthermore, as mentioned earlier in the discussion, deciding refinement be-

tween two TPMSs can be expensive. In our case-studies, we discovered that de-

ciding refinement is often quite quick, except when the discrete state-space of

the specification was large. More efficient refinement checking procedures (e.g.,

244

exploiting efficient symbolic model-checking techniques) would be very useful in

practice, and might be necessary to deal with complex specifications. Future work

should focus on extending TPMS with support for more non-functional properties

as well as more efficient models for analyzing TPMS specifications.

7.2.5 Trustworthy Devices

One critical assumption we make is that devices will behave “according” to their

interface specifications. We rely on the certificaiton process to exclude devices

that don’t conform to their interface from the ecosystem. While we can rely on

well understood crytographic techniques to automatically detect whether or not a

device has been certified, it is much less clear how to check if a device has been

mis-deployed, modified or tampered with after certification. A problem could be

as simple as the nurse connecting a device to the wrong patient (e.g., connecting

the pulse-oximeter used in the PCA-interlock application to a different patient

not actually undergoing PCA therapy). Or it could be as nefarious as an adversary

that maliciously and subtly alters the behavior of a device to drive the patient to an

unsafe zone. An important avenue for future technical work is to understand how

we could enable the platform to automatically detect if a device is being operated

outside its intended use (i.e., on the wrong patient) or if its behavior is diverging

from is specified interface.

7.2.6 Rigorously Verified & Validated Platforms

Our framework assumes that the underlying platform will operate correctly, i.e., it

will correctly perform the device application compatibility check and that it will

245

implement the LET semantics of the ODSDL. One important area of future work

is to understand how the “timing guarantee” or timing enforcement features of a

MAP could be formally verified. The separation property that separation kernels

like seL4 have been formally verified to satisfy are fundamentally about the state

of the system’s data [111]. Formal verification is enabled because the seman-

tics of the programming language used to implement the operating system, and

the semantics of the underlying CPU’s instruction set architecture (ISA) concern

data-manipulation. Formally proving that an operating system guarantees the tim-

ing behavior of its hosted applications seems to be fundamentally more difficult.

Neither the programming languages used to implement operating systems nor the

underlying CPU ISA typically include any aspect of timing behavior in their se-

mantics. While there has been some recent work formally verifying the worst case

timing behavior of operating system operations [39], anyone hoping to formally

verify an operating system that claims to offer application timing guarantees must

find a way to bridge the current semantic gap.

Another important area of future work: In Chapter 5 we listed a number of

features our prototype does not implement but a real MAP ought to have (Our

prototype focuses mainly on timing guarantees). These features include enforcing

time/space separation between applications, fault tolerant design, and a formally

verified implementation. While all of these types of features have been studied

extenstively in the literature it is not clear how all of these features would be im-

plemented in the same system. Furthermore its not clear if these features might

conflict. For example, our determinizing scheduler requires a single high priority

task to orchestrate all the I/O events of the running applications. The determiniz-

ing scheduler must be able to preempt an application at any time to service I/O

246

events. Most separation kernels [55] enforce time/space isolation by executing

each application partition for a pre-specified amount of time [181]. Incorporating

a determinizing scheduler (or any sort of scheduling system that can change the

system schedule dynamically) will impact the design of these operating systems

and may introduce “knock-on” effects with regards to the verification of their sep-

aration features.

247

Bibliography

[1] The value of medical device interoperability. Technical report. 94

[2] Standard for iso/ieee health informatics - point-of-care medical device com-

munication - part 10201: Domain information model. ISO/IEEE 11073-

10201:2004(E), pages 1–183, Jan 2005. 5

[3] Pica8 3290 Product Literature, 2013. 177

[4] Richard L Alena, Kenneth I Laws, Andre Goforth, and Fernando Figueroa.

Communications for integrated modular avionics. 2006. 192

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126:183–235, 1994. 41, 89

[6] Rajeev Alur, Thomas A Henzinger, and Moshe Y Vardi. Parametric real-

time reasoning. In Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing, pages 592–601. ACM, 1993. 65

[7] Jim Alves-Foss, Paul W Oman, Carol Taylor, and W Scott Harrison. The

mils architecture for high-assurance embedded systems. International jour-

nal of embedded systems, 2(3):239–247, 2006. 199

248

[8] Saeid Amini-Nik, Darren Kraemer, Michael L Cowan, Keith Gunaratne,

Puviindran Nadesan, Benjamin A Alman, and RJ Dwayne Miller. Ultrafast

mid-ir laser scalpel: protein signals of the fundamental limits to minimally

invasive surgery. PLoS One, 5(9):e13053, 2010. 15

[9] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and

Wang Yi. Times: a tool for schedulability analysis and code generation

of real-time systems. In Formal Modeling and Analysis of Timed Systems,

pages 60–72. Springer, 2003. 198, 243

[10] Étienne André. Imitator: A tool for synthesizing constraints on timing

bounds of timed automata. In Theoretical Aspects of Computing-ICTAC

2009, pages 336–342. Springer, 2009. 65, 66, 209

[11] Étienne André. Imitator ii: A tool for solving the good parameters problem

in timed automata. arXiv preprint arXiv:1011.0223, 2010. 66, 209

[12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. Im-

itator 2.5: A tool for analyzing robustness in scheduling problems. In FM

2012: Formal Methods, pages 33–36. Springer, 2012. 66, 209

[13] Étienne André, Yang Liu, Jun Sun, and Jin-Song Dong. Parameter syn-

thesis for hierarchical concurrent real-time systems. Real-Time Systems,

50(5-6):620–679, 2014. 65, 209

[14] Étienne André and Romain Soulat. The Inverse Method: Parametric Ver-

ification of Real-time Unbedded Systems. John Wiley & Sons, 2013. 65,

209

249

[15] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Nyman, and

Andrzej Wasowski. 20 years of modal and mixed specifications. European

Association for Theoretical Computer Science. Bulletin, (95), 2008. 36

[16] David B Apfelberg, Morton R Maser, Harvey Lash, and David N White.

Benefits of the co2 laser in oral hemangioma excision. Plastic and Recon-

structive Surgery, 75(1):46–50, 1985. 15

[17] ARINC653. Avionics application software standard interface - arinc 653,

2006. 192

[18] ARINC664. Aircraft data network - arinc 664, 2002. 192

[19] David Arney, Kunal Bhatia, Sanchit Bhatia, Michael Sutton, Tracy Rausch,

Joel Karlinsky, and Julian M Goldman. Design of an x-ray/ventilator syn-

chronization system in an integrated clinical environment. In Conference

proceedings:... Annual International Conference of the IEEE Engineering

in Medicine and Biology Society. IEEE Engineering in Medicine and Bi-

ology Society. Annual Conference, volume 2011, pages 8203–8206, 2010.

231

[20] David Arney, Julian M Goldman, Susan F Whitehead, and Insup Lee. Syn-

chronizing an x-ray and anesthesia machine ventilator: A medical device

interoperability case study. 2009. 7, 33, 231, 237

[21] David Arney, Miroslav Pajic, Julian M Goldman, Insup Lee, Rahul Mang-

haram, and Oleg Sokolsky. Toward patient safety in closed-loop medical

device systems. In Proceedings of the 1st ACM/IEEE International Con-

250

ference on Cyber-Physical Systems, pages 139–148. ACM, 2010. 7, 219,

232, 237

[22] David Arney, Krishna K Venkatasubramanian, Oleg Sokolsky, and Insup

Lee. Biomedical devices and systems security. In Engineering in Medicine

and Biology Society, EMBC, 2011 Annual International Conference of the

IEEE, pages 2376–2379. IEEE, 2011. 8

[23] Medical devices and medical systems - essential safety requirements

for equipment comprising the patient-centric integrated clinical environ-

ment (ice). http://enterprise.astm.org/filtrexx40.cgi?

+REDLINE_PAGES/F2761.htm. 3, 32

[24] N.C. Audsley and Y Dd. Optimal priority assignment and feasibility of

static priority tasks with arbitrary start times, 1991. 173

[25] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J

Wellings. Applying new scheduling theory to static priority pre-emptive

scheduling. Software Engineering Journal, 8(5):284–292, 1993. 158

[26] Neil C. Audsley. Deadline monotonic scheduling, 1990. 173

[27] Neil C Audsley. On priority assignment in fixed priority scheduling. Infor-

mation Processing Letters, 79(1):39–44, 1994. 161

[28] Anaheed Ayoub, BaekGyu Kim, Insup Lee, and Oleg Sokolsky. A safety

case pattern for model-based development approach. In NASA Formal

Methods, pages 141–146. Springer, 2012. 34

251

http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/F2761.htm
http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/F2761.htm

[29] Sebastian S Bauer, Uli Fahrenberg, Line Juhl, Kim G Larsen, Axel Legay,

and Claus Thrane. Quantitative refinement for weighted modal transition

systems. In Mathematical Foundations of Computer Science 2011, pages

60–71. Springer, 2011. 89

[30] James M Beck and Elizabeth D Azari. Fda, off-label use, and informed

consent: debunking myths and misconceptions. Food & Drug LJ, 53:71,

1998. 23

[31] Nikola Beneš, Ivana Černá, and Jan Křetı́nskỳ. Modal transition systems:

Composition and ltl model checking. In Automated Technology for Verifi-

cation and Analysis, pages 228–242. Springer, 2011. 88, 89

[32] Nikola Benes, Jan Kretı́nský, Kim Guldstrand Larsen, Mikael H. Møller,

and Jirı́ Srba. Dual-priced modal transition systems with time durations. In

LPAR, pages 122–137, 2012. 38, 90, 91

[33] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms

and tools. In Lectures on Concurrency and Petri Nets, pages 87–124, 2003.

43, 71, 74, 76, 226

[34] Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet.

Modal event-clock specifications for timed component-based design. Sci-

ence of Computer Programming, 77(12):1212–1234, 2012. 38, 90, 91

[35] Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet. Refinement

and consistency of timed modal specifications. In Language and Automata

Theory and Applications, pages 152–163. Springer, 2009. 38, 90, 91

252

[36] E. Bini, Thi Huyen Chau Nguyen, P. Richard, and S.K. Baruah. A response-

time bound in fixed-priority scheduling with arbitrary deadlines. Comput-

ers, IEEE Transactions on, 58(2):279 –286, feb. 2009. 172

[37] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedu-

lability tests. Real-Time Systems, 30(1-2):129–154, 2005. 185

[38] Jennifer Black and Philip Koopman. System safety as an emergent property

in composite systems. In Dependable Systems & Networks, 2009. DSN’09.

IEEE/IFIP International Conference on, pages 369–378. IEEE, 2009. 3

[39] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoud-

hury, and Gernot Heiser. Timing analysis of a protected operating system

kernel. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, pages

339–348. IEEE, 2011. 246

[40] Gregory Bollella and James Gosling. The real-time specification for java.

Computer, 33(6):47–54, 2000. 183

[41] Anne Bouillard, Laurent Jouhet, and Éric Thierry. Tight performance

bounds in the worst-case analysis of feed-forward networks. In INFOCOM,

2010 Proceedings IEEE, pages 1–9. IEEE, 2010. 169

[42] Aaron R Bradley. Understanding ic3. 67

[43] Aaron R Bradley. Sat-based model checking without unrolling. In Verifica-

tion, Model Checking, and Abstract Interpretation, pages 70–87. Springer,

2011. 67

253

[44] Laurence L Brunton, Bruce Chabner, and Björn C Knollmann. Goodman &

Gilman’s the pharmacological basis of therapeutics, volume 12. McGraw-

Hill Medical New York, 2011. 17

[45] Lei Bu, Qixin Wang, Xin Chen, Linzhang Wang, Tian Zhang, Jianhua

Zhao, and Xuandong Li. Toward online hybrid systems model checking of

cyber-physical systems’ time-bounded short-run behavior. ACM SIGBED

Review, 8(2):7–10, 2011. 231

[46] CM Callan. An analysis of complaints and complications with patient-

controlled analgesia. Patient-controlled analgesia, pages 139–150, 1990.

19

[47] R. Carroll, R. Cnossen, M. Schnell, and D. Simons. Continua: An in-

teroperable personal healthcare ecosystem. Pervasive Computing, IEEE,

6(4):90–94, 2007. 5

[48] Kārlis Čerāns. Decidability of bisimulation equivalences for parallel timer

processes. In Computer Aided Verification, pages 302–315. Springer, 1993.

78, 225, 238

[49] Kārlis Čerāns, Jens Chr Godskesen, and Kim G Larsen. Timed modal spec-

ificationtheory and tools. In Computer Aided Verification, pages 253–267.

Springer, 1993. 89

[50] Karlis Cerans, Jens Chr. Godskesen, and Kim Guldstrand Larsen. Timed

modal specification - theory and tools. In CAV, pages 253–267, 1993. 44

254

[51] Sanjian Chen, Matthew O’Kelly, James Weimer, Oleg Sokolsky, and Insup

Lee. An intraoperative glucose control benchmark for formal verification.

IFAC-PapersOnLine, 48(27):211–217, 2015. 237

[52] M. Clarke, D. Bogia, K. Hassing, L. Steubesand, T. Chan, and D. Ayya-

gari. Developing a standard for personal health devices based on 11073.

In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th

Annual International Conference of the IEEE, pages 6174–6176, 2007. 5

[53] FlexRay Consortium et al. Flexray communications system-protocol spec-

ification. Version, 2(1):198–207, 2005. 127

[54] A Cook. Arinc 653challenges of the present and future. Microprocessors

and Microsystems, 19(10):575–579, 1995. 192

[55] Alan Cudmore. Current and future flight operating systems. 2007. 247

[56] Alexandre David, Kim G Larsen, Axel Legay, Ulrik Nyman, and Andrzej

Wasowski. Timed i/o automata: a complete specification theory for real-

time systems. In Proceedings of the 13th ACM international conference on

Hybrid systems: computation and control, pages 91–100. ACM, 2010. 38,

90, 91

[57] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In

TACAS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag. 70,

226

[58] Patricia Derler, Thomas H Feng, Edward A Lee, Slobodan Matic, Hiren D

Patel, Yang Zheo, and Jia Zou. Ptides: A programming model for dis-

255

tributed real-time embedded systems. Technical report, DTIC Document,

2008. 124, 193

[59] Patricia Derler, Edward A Lee, and Slobodan Matic. Simulation and imple-

mentation of the ptides programming model. In Proceedings of the 2008

12th IEEE/ACM International Symposium on Distributed Simulation and

Real-Time Applications, pages 330–333. IEEE Computer Society, 2008.

124, 193

[60] David L Dill. Timing assumptions and verification of finite-state concurrent

systems. In Automatic verification methods for finite state systems, pages

197–212. Springer, 1989. 226

[61] ECRI Institute. Surgical fire prevention. https://www.ecri.org/

surgical_fires, 2014. Accessed: 2014-09-18. 16

[62] Kimberly K Egan and Lisa A Haile. Fda catches up with health it revolu-

tion. 2012. 4

[63] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys

(CSUR), 35(2):114–131, 2003. 97

[64] Harald Fecher and Heiko Schmidt. Comparing disjunctive modal transition

systems with an one-selecting variant. The Journal of Logic and Algebraic

Programming, 77(1):20–39, 2008. 89

[65] Peter H Feiler, David P Gluch, and John J Hudak. The architecture anal-

ysis & design language (aadl): An introduction. Technical report, DTIC

Document, 2006. 96, 123

256

https://www.ecri.org/surgical_fires
https://www.ecri.org/surgical_fires

[66] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation

for behavioural conformance in software product line architectures. In Pro-

ceedings of the ISSTA 2006 workshop on Role of software architecture for

testing and analysis, pages 39–48. ACM, 2006. 88

[67] Arkadeb Ghosal, Thomas A Henzinger, Christoph M Kirsch, and

Marco AA Sanvido. Event-driven programming with logical execution

times. In Hybrid Systems: Computation and Control, pages 357–371.

Springer, 2004. 97, 193

[68] Jens Chr Godskesen. Timed modal specifications. PhD thesis, PhD thesis,

Aalborg University, 1994. 38, 89, 91

[69] J Goldman. Advancing the adoption of medical device plug-and-play in-

teroperability to improve patient safety and healthcare efficiency. Medical

Device “Plug-and-Play” Interoperability Program, Tech. Rep, 2000. 2

[70] Julian M. Goldman. Getting connected to save lives. Biomedical Instru-

mentation & Technology, 39(3):174–174, 2005. 2

[71] Julian M Goldman. Medical device plug-and-play (md pnp) interoperabil-

ity standardization program development. Technical report, DTIC Docu-

ment, 2009. 3

[72] Julian M Goldman. Solving the interoperability challenge: Safe and reli-

able information exchange requires more from product designers. Pulse,

IEEE, 5(6):37–39, 2014. 8

257

[73] Julian M Goldman, Richard A Schrenker, Jennifer L Jackson, and Susan F

Whitehead. Plug-and-play in the operating room of the future. Journal

Information, 39(3), 2005. 5

[74] K Grifantini. plug and play hospitals: Medical devices that exchange data

could make hospitals safer, 2008. 14

[75] Matthew Grissinger. Misprogram a pca pump? its easy! Pharmacy and

Therapeutics, 33(10):567, 2008. 18

[76] Cheryl S Hankin, Jeff Schein, John A Clark, and Sunil Panchal. Adverse

events involving intravenous patient-controlled analgesia. American jour-

nal of health-system pharmacy, 64(14):1492–1499, 2007. 19

[77] John Hatcliff, Eugene Vasserman, Sandy Weininger, and Julian Goldman.

An overview of regulatory and trust issues for the integrated clinical envi-

ronment. Proceedings of HCMDSS 2011, 2011. 23, 34

[78] Constance L Heitmeyer, Myla Archer, Elizabeth I Leonard, and John

McLean. Formal specification and verification of data separation in a sepa-

ration kernel for an embedded system. In Proceedings of the 13th ACM con-

ference on Computer and communications security, pages 346–355. ACM,

2006. 190

[79] Thomas A Henzinger, Benjamin Horowitz, and Christoph M Kirsch.

Giotto: A time-triggered language for embedded programming. Proceed-

ings of the IEEE, 91(1):84–99, 2003. 97, 123, 193

258

[80] Thomas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch.

Giotto: A time-triggered language for embedded programming. In Embed-

ded Software, pages 166–184. Springer, 2001. 97, 123

[81] Thomas A Henzinger and Christoph M Kirsch. The embedded machine:

Predictable, portable real-time code. ACM Transactions on Programming

Languages and Systems (TOPLAS), 29(6):33, 2007. 93, 193

[82] Rodney W. Hicks, Vanja Sikirica, Winnie Nelson, Jeff R. Schein, and Di-

ane D. Cousins. Medication errors involving patient-controlled analge-

sia. American Journal of Health-System Pharmacy, 65(5):429–440, March

2008. 18, 19

[83] Vance Hilderman and Tony Baghi. Avionics certification: a complete guide

to DO-178 (software), DO-254 (hardware). Avionics Communications,

2007. 26, 199

[84] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1985. 130

[85] Charles Antony Richard Hoare. Communicating sequential processes.

Communications of the ACM, 21(8):666–677, 1978. 109, 130

[86] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reacha-

bility. In Theory and Applications of Satisfiability Testing–SAT 2012, pages

157–171. Springer, 2012. 67, 70

[87] Kryštof Hoder, Nikolaj Bjørner, and Leonardo De Moura. µz–an efficient

engine for fixed points with constraints. In Computer Aided Verification,

pages 457–462. Springer, 2011. 65

259

[88] Robert Matthew Hofmann. Modeling medical devices for plug-and-play

interoperability. PhD thesis, Citeseer, 2007. 3, 5

[89] Ch Hornberger, Ph Knoop, H Matz, F Dörries, E Konecny, H Gehring,

J Otten, R Bonk, H Frankenberger, P Wouters, et al. A prototype device for

standardized calibration of pulse oximeters ii. Journal of clinical monitor-

ing and computing, 17(3-4):203–209, 2002. 214

[90] Ch Hornberger, Ph Knoop, W Nahm, H Matz, E Konecny, H Gehring,

R Bonk, H Frankenberger, Geert Meyfroidt, Patrick Wouters, et al. A pro-

totype device for standardized calibration of pulse oximeters. Journal of

clinical monitoring and computing, 16(3):161–169, 2000. 214

[91] Jana Hudcova, Ewan McNicol, Cheng Quah, Joseph Lau, and Daniel B

Carr. Patient controlled intravenous opioid analgesia versus conventional

opioid analgesia for postoperative pain control: A quantitative systematic

review. Acute Pain, 7(3):115–132, 2005. 17

[92] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.

Linear parametric model checking of timed automata. In TACAS, pages

189–203, 2001. 71

[93] Ide approval process. http://www.fda.gov/MedicalDevices/

DeviceRegulationandGuidance/, 2015. 242

[94] Jean-Bernard Itier. A380 integrated modular avionics. 2009. 193

[95] Jakub Jedryszek. A model-driven development and verification approach

for medical devices. PhD thesis, Kansas State University, 2014. 232

260

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/

[96] Eunkyoung Jee, Insup Lee, and Oleg Sokolsky. Assurance cases in model-

driven development of the pacemaker software. In Leveraging Applications

of Formal Methods, Verification, and Validation, pages 343–356. Springer,

2010. 243

[97] Eunkyoung Jee, Shaohui Wang, Jeong Ki Kim, Jaewoo Lee, Oleg Sokolsky,

and Insup Lee. A safety-assured development approach for real-time soft-

ware. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2010 IEEE 16th International Conference on, pages 133–142.

IEEE, 2010. 198

[98] Leslie A Johnson. Do-178b, software considerations in airborne systems

and equipment certification. Crosstalk, October, 1998. 199

[99] Joint Commission. Sentinel event alert is-

sue 33: Patient controlled analgesia by proxy.

http://www.jointcommission.org/sentinelevents/sentineleventalert/, De-

cember 2004. 18, 19

[100] Joint Commission. Preventing patient-controlled analgesia overdose. Joint

Commission Perspectives on Patient Safety, page 11, October 2005. 18

[101] Dilsun K Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The

theory of timed i/o automata. 43

[102] Tim Kelly and Rob Weaver. The goal structuring notation–a safety argu-

ment notation. In Proceedings of the dependable systems and networks

2004 workshop on assurance cases. Citeseer, 2004. 30

261

[103] Tim P Kelly. Concepts and principles of compositional safety case con-

struction. Contract Research Report for QinetiQ COMSA/2001/1/1, 2001.

34

[104] Cheolgi Kim, Mu Sun, Sibin Mohan, Heechul Yun, Lui Sha, and Tarek F

Abdelzaher. A framework for the safe interoperability of medical devices in

the presence of network failures. In Proceedings of the 1st ACM/IEEE In-

ternational Conference on Cyber-Physical Systems, pages 149–158. ACM,

2010. 7, 33, 230, 237

[105] Yu Jin Kim, Sam Procter, John Hatcliff, Venkatesh-Prasad Ranganath, et al.

Ecosphere principles for medical application platforms. In Healthcare In-

formatics (ICHI), 2015 International Conference on, pages 193–198. IEEE,

2015. 3

[106] Hiroaki Kimura. Laser scalpel, May 12 1981. US Patent 4,266,549. 15

[107] Andrew King, Kelsea Fortino, Nobby Stevens, Shalin Shah, Margaret

Fortino-Mullen, and Insup Lee. Evaluation of a smart alarm for intensive

care using clinical data. In Engineering in Medicine and Biology Society

(EMBC), 2012 Annual International Conference of the IEEE, pages 166–

169. IEEE, 2012. 94

[108] Andrew King, Sam Procter, Daniel Andresen, John Hatcliff, Steve Warren,

William Spees, Raoul Jetley, Paul Jones, and Sandy Weininger. An open

test bed for medical device integration and coordination. In Proceedings of

the 31st International Conference on Software Engineering, 2009. 3

262

[109] Andrew L King, Alex Roederer, David Arney, Sanjian Chen, Margaret

Fortino-Mullen, Ana Giannareas, William Hanson III, Vanessa Kern,

Nicholas Stevens, Jonathan Tannen, et al. Gsa: a framework for rapid

prototyping of smart alarm systems. In Proceedings of the 1st ACM In-

ternational Health Informatics Symposium, pages 487–491. ACM, 2010.

94

[110] Christoph M Kirsch and Ana Sokolova. The logical execution time

paradigm. In Advances in Real-Time Systems, pages 103–120. Springer,

2012. 97

[111] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, et al. sel4: Formal verification of an os kernel. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, pages 207–220. ACM, 2009. 190, 199, 246

[112] Benjamin A Kohl, Sanjian Chen, Margaret Mullen-Fortino, and Insup Lee.

Evaluation and enhancement of an intraoperative insulin infusion protocol

via in-silico simulation. In Healthcare Informatics (ICHI), 2013 IEEE In-

ternational Conference on, pages 307–316. IEEE, 2013. 237

[113] Hermann Kopetz and Günther Bauer. The time-triggered architecture. Pro-

ceedings of the IEEE, 91(1):112–126, 2003. 127

[114] Hermann Kopetz and Günter Grunsteidl. Ttp-a time-triggered protocol for

fault-tolerant real-time systems. In Fault-Tolerant Computing, 1993. FTCS-

263

23. Digest of Papers., The Twenty-Third International Symposium on, pages

524–533. IEEE, 1993. 192

[115] Dina A Krenzischek, Colleen J Dunwoody, Rosemary C Polomano, and

James P Rathmell. Pharmacotherapy for acute pain: implications for prac-

tice. Pain Management Nursing, 9(1):22–32, 2008. 17

[116] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of

probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, edi-

tors, Proc. 23rd International Conference on Computer Aided Verification

(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011. 226

[117] L Landro. In just a flash, simple surgery can turn deadly. The Wall Street

Journal, 2012. 16

[118] Paul B Langevin, Vashti Hellein, Susan M Harms, William K Tharp,

C Cheung-Seekit, and S Lampotang. Synchronization of radiograph film

exposure with the inspiratory pause: Effect on the appearance of bedside

chest radiographs in mechanically ventilated patients. American journal of

respiratory and critical care medicine, 160(6):2067–2071, 1999. 13

[119] K.G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer

Science, 1988. LICS ’88., Proceedings of the Third Annual Symposium on,

pages 203–210, 1988. 88

[120] Kim G Larsen and Axel Legay. Quantitative modal transition systems.

In Recent Trends in Algebraic Development Techniques, pages 50–58.

Springer, 2013. 89

264

[121] Kim G Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O automata

for interface and product line theories. In Programming Languages and

Systems, pages 64–79. Springer, 2007. 37, 88

[122] Brian R Larson, John Hatcliff, and Patrice Chalin. Open source patient-

controlled analgesic pump requirements documentation. In Proceedings of

the 5th International Workshop on Software Engineering in Health Care,

pages 28–34. IEEE Press, 2013. 232

[123] Lucian L Leape. Reporting of adverse events. In N Engl J Med. Citeseer,

2002. 19

[124] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

238

[125] Kathy Lesh, Sandy Weininger, Julian M Goldman, Bob Wilson, and Glenn

Himes. Medical device interoperability-assessing the environment. In

hcmdss-mdpnp, pages 3–12. IEEE, 2007. 12

[126] Nancy Leveson. A new accident model for engineering safer systems.

Safety science, 42(4):237–270, 2004. 3

[127] Nancy Leveson. Perspective: The drawbacks in using the term’system

of systems’. Biomedical Instrumentation & Technology, 47(2):115–118,

2013. 3

[128] Nancy Leveson, Nicolas Dulac, Karen Marais, and John Carroll. Mov-

ing beyond normal accidents and high reliability organizations: a systems

approach to safety in complex systems. Organization Studies, 30(2-3):227–

249, 2009. 3

265

[129] JP Lewis and Ulrich Neumann. Performance of java versus c++. Computer

Graphics and Immersive Technology Lab, University of Southern Califor-

nia (January 2003), 2004. 185

[130] Chung Laung Liu and James W Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment. Journal of the ACM

(JACM), 20(1):46–61, 1973. 156

[131] Ann S Lofsky. Turn your alarms on. APSF Newsletter: The Official Journal

of the Anesthesia Patient Safety Foundation, 19(4):43, 2005. 13

[132] Shiwei Luan. Modularized PCA Pump Design for an ICE-informed Medi-

cal Device Coordination Framework. PhD thesis, Kansas State University,

2015. 232

[133] P. E. Macintyre. Safety and efficacy of patient-controlled analgesia. British

Journal of Anaesthesia, 87(1):36–46, 2001. 18

[134] Adam Marcus. Once a tech fantasy, plug-and-play or edges closer to reality.

Anesthesiology News, 33(1), 2007. 2

[135] Petr Matoušek. Tools for parametric verification. a comparison on a case

study. Journal of Universal Computer Science, 10(10):1469–1494, 2004.

66

[136] Nick McKeown. Software-defined networking. INFOCOM keynote talk,

17(2):30–32, 2009. 128

[137] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

266

enabling innovation in campus networks. SIGCOMM Comput. Commun.

Rev., 38(2):69–74, March 2008. 138

[138] Kenneth L McMillan. Interpolation and sat-based model checking. In Com-

puter Aided Verification, pages 1–13. Springer, 2003. 67

[139] Medical device “plug-and-play” interoperability program. http://

mdpnp.org/, 2008. 3, 7, 31

[140] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. A com-

mon criteria based security requirements engineering process for the devel-

opment of secure information systems. Computer standards & interfaces,

29(2):244–253, 2007. 199

[141] Eva L Menger. Dual-wavelength laser scalpel background of the invention,

December 20 1988. US Patent 4,791,927. 15

[142] Mike Mitka. Fda lays out rules for regulating mobile medical apps. JAMA,

310(17):1783–1784, 2013. 4

[143] Aloysius K Mok. Fundamental design problems of distributed systems for

the hard-real-time environment. 1983. 156

[144] James D Mooney. Bringing portability to the software process. 93

[145] José Eduardo Moreira, Samuel P Midkiff, and Manish Gupta. A compar-

ison of java, c/c++, and fortran for numerical computing. Antennas and

Propagation Magazine, IEEE, 40(5):102–105, 1998. 185

267

http://mdpnp.org/
http://mdpnp.org/

[146] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and

Benjamin Monate. Testing or formal verification: Do-178c alternatives

and industrial experience. Software, IEEE, 30(3):50–57, 2013. 199

[147] M Niskanen, S Purhonen, V Koljonen, A Ronkainen, and E Hirvonen. Fatal

inhalation injury caused by airway fire during tracheostomy. Acta anaes-

thesiologica scandinavica, 51(4):509–513, 2007. 15

[148] Thomas E Nolan and Hilton J Klein. Methods in vascular infusion biotech-

nology in research with rodents. ILAR Journal, 43(3):175–182, 2002. 215

[149] Miroslav Pajic, Rahul Mangharam, Oleg Sokolsky, David Arney, J Gold-

man, and Insup Lee. Model-driven safety analysis of closed-loop medical

systems. IEEE Transactions on Industrial Informatics, 2013. 33, 219, 232,

237

[150] Aircraft Data Network Part. 7-avionics full duplex switched ethernet (afdx)

network. ARINC Specification 664p7, 2005. 7

[151] Stephen D Patek, Sanjian Chen, Patrick Keith-Hynes, and Insup Lee. Dis-

tributed aspects of the artificial pancreas. In Communication, Control, and

Computing (Allerton), 2013 51st Annual Allerton Conference on, pages

543–550. IEEE, 2013. 237

[152] JE Paul, M sawhney, WS Beattie, and RF McLean. Critical incidents

amongst 10033 acute pain patients. Canadian Journal of Anesthesiology,

51:A22, 2004. 19

[153] Nathan W Pearlman, Gregory V Stiegmann, Virginia Vance, Lawrence W

Norton, Reginald CW Bell, Robin Staerkel, Charles W Van Way, and Ed-

268

ward J Bartle. A prospective study of incisional time, blood loss, pain, and

healing with carbon dioxide laser, scalpel, and electrosurgery. Archives of

surgery, 126(8):1018–1020, 1991. 15

[154] Charles P Pfleeger and Shari Lawrence Pfleeger. Security in computing.

Prentice Hall Professional Technical Reference, 2002. 199

[155] Jeffrey Plourde, David Arney, and Julian M Goldman. Openice: An

open, interoperable platform for medical cyber-physical systems. In Cyber-

Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on,

pages 221–221. IEEE, 2014. 3

[156] Patricia Quigley. F2761 and the integrated clinical environment. Standard-

ization News, 37(5):20, 2009. 3

[157] John Rushby. Proof of Separability—A verification technique for a class of

security kernels. In Proc. 5th International Symposium on Programming,

volume 137 of Lecture Notes in Computer Science, pages 352–367, Turin,

Italy, April 1982. Springer-Verlag. 190

[158] John Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure

Computing Systems, chapter 13, pages 210–220. Blackwell Scientific Pub-

lications, 1989. (Proceedings of a Symposium held in Glasgow, October

1986). 191, 199

[159] John Rushby. Noninterference, transitivity, and channel-control security

policies. SRI International, Computer Science Laboratory, 1992. 199

[160] John Rushby. Partitioning in avionics architectures: Requirements, mech-

anisms, and assurance. Technical report, DTIC Document, 2000. 192, 199

269

[161] John Rushby and Paul S Miner. Modular certification. 2002. 34

[162] John M Rushby. Design and verification of secure systems. In ACM

SIGOPS Operating Systems Review, volume 15, pages 12–21. ACM, 1981.

189, 199

[163] Steven R Salbu. Off-label use, prescription, and marketing of fda-approved

drugs: An assessment of legislative and regulatory policy. Fla. L. Rev.,

51:181, 1999. 23

[164] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore

Baker, Alan Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky,

and Aloysius K Mok. Real time scheduling theory: A historical perspec-

tive. Real-time systems, 28(2-3):101–155, 2004. 6

[165] Lui Sha, Ragunathan Rajkumar, John Lehoczky, and Krithi Ramamritham.

Mode change protocols for priority-driven preemptive scheduling. Real-

Time Systems, 1(3):243–264, 1989. 168

[166] David S Sheinbein and Robert G Loeb. Laser surgery and fire hazards

in ear, nose, and throat surgeries. Anesthesiology clinics, 28(3):485–496,

2010. 15

[167] Lee P Smith and Soham Roy. Device-related risk of airway fire in

oropharyngeal surgery. Otolaryngology–Head and Neck Surgery, 139(2

suppl):P70–P70, 2008. 15

[168] Randall S Stafford. Regulating off-label drug userethinking the role of the

fda. New England Journal of Medicine, 358(14):1427–1429, 2008. 23

270

[169] Christos Stergiou. Schedulability Analysis and Verification of Real-Time

Discrete-Event Systems. PhD thesis, EECS Department, University of Cal-

ifornia, Berkeley, Sep 2013. 124

[170] Nicholas Stevens, Ana Rosa Giannareas, Vanessa Kern, Adrian Viesca,

Margaret Fortino-Mullen, Andrew King, and Insup Lee. Smart alarms:

multivariate medical alarm integration for post cabg surgery patients. In

Proceedings of the 2nd ACM SIGHIT International Health Informatics

Symposium, pages 533–542. ACM, 2012. 94

[171] Katherine Summers. Principles and Methods of Testing Infusion Devices,

2014, (accessed February 3, 2016). xiii, 215

[172] Compliance Today. New Medical Equipment Safety of Interoperability

Standard AAMI/UL 2800 Being Developed. http://www.metlabs.

com/blog/product-safety/, 2013. [Online; accessed 2016]. 3

[173] Eugene Y Vasserman, Krishna K Venkatasubramanian, Oleg Sokolsky,

and Insup Lee. Security and interoperable-medical-device systems, part

2: Failures, consequences, and classification. Security & Privacy, IEEE,

10(6):70–73, 2012. 8

[174] Krishna K Venkatasubramanian, Eugene Y Vasserman, Oleg Sokolsky, and

Insup Lee. Security and interoperable medical device systems: Part 1. IEEE

security & privacy, 10(5):61, 2012. 8

[175] Steve Vestal. Metah programmer\’s manual. 1996. 96

271

http://www.metlabs.com/blog/product-safety/
http://www.metlabs.com/blog/product-safety/

[176] Steve Vestal. Metah support for real-time multi-processor avionics. In

Parallel and Distributed Real-Time Systems, 1997. Proceedings of the Joint

Workshop on, pages 11–21. IEEE, 1997. 123

[177] Steve Vestal and Pam Binns. Scheduling and communication in metah.

In Real-Time Systems Symposium, 1993., Proceedings., pages 194–200.

IEEE, 1993. 123

[178] Clinique veterinaire Villeray-Papineau. Laser surgery, (accessed February

3, 2016). 15

[179] Kim J. Vicente, Karima Kada-Bekhaled, Gillian Hillel, Andrea Cassano,

and Beverley A. Orser. Programming errors contribute to death from

patient-controlled analgesia: case report and estimate of probability. Cana-

dian Journal of Anesthesiology, 50(4):328–32, 2003. 18

[180] C.B. Watkins and R. Walter. Transitioning from federated avionics archi-

tectures to integrated modular avionics. In Digital Avionics Systems Con-

ference, 2007. DASC ’07. IEEE/AIAA 26th, pages 2.A.1–1–2.A.1–10, Oct

2007. 193

[181] Christopher B Watkins. Integrated modular avionics: Managing the allo-

cation of shared intersystem resources. In 25th Digital Avionics Systems

Conference, 2006 IEEE/AIAA, pages 1–12. IEEE, 2006. 247

[182] Carsten Weise and Dirk Lenzkes. Weak refinement for modal hybrid sys-

tems. In Hybrid and Real-Time Systems, pages 316–330. Springer, 1997.

38, 78, 79, 89, 91

272

[183] Carsten Weise and Dirk Lenzkes. Weak refinement for modal hybrid

systems. In Proceedings of the International Workshop on Hybrid and

Real-Time Systems, HART ’97, pages 316–330, London, UK, UK, 1997.

Springer-Verlag. 44, 78, 79, 82

[184] Susan F Whitehead and Julian M Goldman. Hospitals issue call for action

on medical device interoperability. Patient Safety & Quality Healthcare,

6:1, 2009. 3

[185] Glynn Winskel. The formal semantics of programming languages: an in-

troduction. MIT press, 1993. 115

[186] David W Woodruff. A quick guide to vent essentials. 2005. 202

[187] Qizhi Zhang and Weidong Zhang. Priority scheduling in switched indus-

trial ethernet. In American Control Conference, 2005. Proceedings of the

2005, pages 3366–3370. IEEE, 2005. 157

[188] Jia Zou, Joshua Auerbach, David F Bacon, and Edward A Lee. Ptides

on flexible task graph: real-time embedded systembuilding from theory to

practice. In ACM Sigplan Notices, volume 44, pages 31–40. ACM, 2009.

124

[189] Jia Zou, Slobodan Matic, Edward A Lee, Thomas Huining Feng, and Pa-

tricia Derler. Execution strategies for ptides, a programming model for

distributed embedded systems. In Real-Time and Embedded Technology

and Applications Symposium, 2009. RTAS 2009. 15th IEEE, pages 77–86.

IEEE, 2009. 124, 193

273

	University of Pennsylvania
	ScholarlyCommons
	1-1-2016

	Foundations for Safety-Critical on-Demand Medical Systems
	Andrew Lewis King
	Recommended Citation

	Foundations for Safety-Critical on-Demand Medical Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Introduction
	Motivation
	Challenges
	Contributions
	Organization

	Motivating Examples & a Regulatory Framework
	Introduction
	Motivating Examples
	Xray/Ventilator Coordination
	Laser-Ventilator Interlock
	Closed-Loop Management of Patient Controlled Analgesia

	A Platform-Oriented Ecosystem
	The Platform Argument Pattern
	Pattern Terms
	The Pattern

	Related Work

	Time Parametric Modal Specifications
	Notation Glossary
	Modal Specifications for Timing Variability
	Clocks
	Syntax and Semantics
	Modal Refinement
	Property Preservation
	Compositional Reasoning

	Symbolic Semantics and Verification
	Reduction to PTA Parameter Synthesis
	May Reachability as a Recursive Horn-Clause Problem
	Symbolic Semantics: Parametric Zone-Graphs
	Zone-Graph Symbolic Reachability Analysis
	Symbolic Modal Refinement Checking

	Related Work

	The On-Demand Systems Description Language
	Key Language Requirements
	Key Language Features
	Core Language Elements
	System Declarations
	Module Declarations
	Device Declarations

	Semantics
	Preliminaries
	Tasks
	Modules, Dataflows and Programs
	Devices

	Related Work

	A Prototype Medical Application Platform
	MDCF Architecture and Functional Overview
	Real-Time Message Bus
	Device Manager
	Application Manager
	Resource Manager

	The Real-Time Message Bus
	Publish Subscribe and Quality of Service
	RTMB Overview
	Middleware Design

	Determinizing Scheduler
	Operation
	Correctness

	Practical Real-Time Scheduling
	Fixed Priority Scheduling Techniques
	Flow Scheduling

	Evaluation & Performance Assesment
	Scheduling and Resource Reservation in the RTMB
	Performance of the Determinizing Scheduler

	Related Work
	Separation Kernels
	Execution Strategies for Real-Time Determinism

	Case Studies
	Introduction
	Ecosystem Assumptions
	Laser-Ventilator Interlock
	Scenario Specific Assumptions
	Application Design
	Safety Argument

	Closed-Loop Management of Patient Controlled Analgesia
	Scenario Specific Assumptions
	Application Design
	Safety Argument

	Performance Evaluation
	Setup
	Results

	Related Work

	Conclusion
	Discussion
	Can we truly ensure safety?
	Do We Really Need Timing Guarantees?
	The Cost and Benefit of Modal Refinement.

	Gap Analysis & Future Work
	Regulatory Support for Compositional Reasoning
	Suitable Criteria for Device-Interface Compliance
	Physiologic Models for Model Based Reasoning
	Expressive formal device interface language
	Trustworthy Devices
	Rigorously Verified & Validated Platforms

