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A Uniform Approach to Test Computational 
Complementarity 

Elena Calude, Bruce Mills, and Lan Mills* 

Abstract 
Studies of computational complementarity properties in finite state inter-

active automata may shed light on the nature of both quantum and classical 
computation. But, complementarity is difficult to test even for small-size au-
tomata. This paper introduces the concept of an observation graph of an 
automaton which is used as the main tool for the design of an algorithm 
which tests, in a uniform manner, two types of complementarity properties. 
Implementations have been run on a standard desktop computer examining 
all 5-state binary automata. 

1 Two Computational Complementarity Princi-
ples 

Building on Moore's "Gedanken" experiments, in [15, 14] complementarity was 
modeled by means of finite automata. Two new computational complementarity 
principles have been introduced and studied in [3, 6, 5, 4, 2] using Moore's automata. 

To understand Moore's approach it is enough, at this stage, to say that the 
machines we are going to consider are finite in the sense that they have a finite 
number of states, a finite number of input symbols, and a finite number of output 
symbols. Such a machine has a strictly deterministic behaviour: the current state 
of the machine depends only on its previous state and previous input; the current 
output depends only on the present state. A (simple) Moore experiment can be 
described as follows: a copy of the machine will be experimentally observed, i.e. 
the experimenter will input a finite sequence of input symbols to the machine and 
will observe the sequence of output symbols. The correspondence between input 
and output symbols depends on the particular chosen machine and on its initial 
state. The experimenter will study the sequences of input and output symbols 
and will try to conclude that "the machine being experimented on was in state 
q at the beginning of the experiment".1 Moore's experiments have been studied 

'Institute for Information and Mathematical Sciences, Massey University at Albany, Private 
Bag 102904, NSMC, Auckland, New Zealand. 
Email: {E. Calude, B. I . Mills, L. Hills}®massey. ac. nz 

1This is often referred to as a state identification experiment. 
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from a mathematical point of view by Various researchers, notably by Ginsburg [9], 
Chaitin [7], Conway [8], and Brauer [1]. A comprehensive survey on testing finite 
state machines is presented in [11]. 

In what follows we are going to use two non-equivalent concepts of computa-
tional complementarity based upon modeling finite automata (see [3]). Informally, 
they can be expressed as follows. Consider the class of all elements of reality2 and 
consider the following properties. 

A Any two distinct elements of reality can be mutually distinguished by a suit-
ably chosen measurement procedure. 

B For any element of reality, there exists a measurement which distinguishes 
between this element and all the others. That is, a distinction between any 
one of them and all the others is operational. 

C There exists a measurement which distinguishes between any two elements of 
reality. That is, a single pre-defined experiment exists to distinguish between 
an arbitrary pair of elements of reality. (Classical case.) 

Complementarity corresponds to the following cases: 

CI Property A but not property B (and therefore not C ) : The elements of reality 
can be mutually distinguished by experiments, but one of these elements 

• cannot be distinguished from all the other ones by any single experiment. 

CII Property B but not property C : Any element of reality can be distinguished 
from all the other ones by a single experiment, but there does not exist a 
single experiment which distinguishes between any pair of distinct elements. 

2 Moore Automata 
A finite deterministic automaton consists of a finite set of states and a set of tran-
sitions from state to state that occur on input symbols chosen from some fixed 
alphabet. For each symbol there is exactly one transition out of each state, possi-
ble back to the state itself. So, formally, a finite automaton consists of a finite set Q 
of states, an input alphabet E, and a transition function 6 : Q x E —» Q. Sometimes 
a fixed state, say 1, is considered to be the initial state, and a subset F of Q denotes 
the final states. A Moore automaton is a finite deterministic automaton having an 
output function f : Q O, where O is a finite set of output symbols. At each time 
the automaton is in a given state q and is continuously emitting the output f(q). 
The automaton remains in state q until it receives an input signal a, when it as-
sumes the state S(q, a) and starts emitting f(8(q, a)). In this paper we are going to 
concentrate on the case of automata on a binary alphabet E = {0,1} having O = E. 
So, from now on, a Moore automaton will be just a triple M = (Q, 6, / ) . Let E* be 
the set of all finite sequences (words) over the alphabet E, including the empty word 

2The terms "elements of reality", "properties", and "observables" will be used as synonyms. 



A Uniform Approach to Test Computational Complementarity 369 

e (the neutral element in the semigroup of string concatenation); by E + we denote 
E* \ {e}. The transition function 5 can be extended to a function 6 : Q x E* —» Q, 
as follows: S(q,e) = q,S(q,aw) = 6(5(q,a),w),Vq G Q,a G T,,w 6 £*. The out-
put produced by an experiment started in state q with input sequence w G £* 
is described by E(q,w), where E is the function E : Q x E* —» E* defined as 
follows: E(q,e) = f{q), E{q,crw) = f(q)E(6(q,a),w),q G Q,a € T,,w G £*, and 
f : Q —> 0(— E) is the output function. Consider, for example, Moore's automa-
ton, in which Q = {1,2,3,4}, E = {0,1}. The transition is given by the following 
tables 

Q a S(q,cr) 
1 0 4 
1 1 3 
2 0 1 
2 1 3 

Q cr 5(q,cr) 
3 0 4 
3 1 4 
4 0 2 
4 1 2 

Table 1. 

and the output function is defined by / (1 ) = / (2) = / (3 ) = 0, / (4 ) = 1. The 
following graphical representation will be consistently used in what follows: 

Figure 1. 

The experiment starting in state 1 with input sequence 000100010 
leads to the output 0100010001. Indeed, £(1,000100010) = 
/ ( l ) / ( 4 ) / ( 2 ) / ( l ) / ( 3 ) / ( 4 ) / ( 2 ) / ( l ) / ( 3 ) / ( 4 ) = 0100010001. 
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From a mathematical point of view properties A, B, C can be expressed as 
follows. Let M = (Q, S, / ) be a Moore automaton. Following Moore [13] we shall 
say that a state q is "indistinguishable" from a state q' (with respect to M) if every 
experiment performed on M starting in state q produces the same outcome as it 
would starting in state q'. Formally, E{q,x) = E(q',x), for all words x € £ + . A 
pair of states will be said to be "distinguishable" if they are not "indistinguishable". 

• The automaton M has property A if every pair of different states of M are 
distinguishable, i.e. for every distinct states q, q' there exists a word w 6 £+ 

(depending upon q,q') such that E(q,w) ^ E(q',w). This is simply the 
assertion that the automaton is minimal. 

• The automaton M has property B if every state of M is distinguishable from 
any other distinct state, i.e. for every state q there exists a word w € 
(depending upon q) such that E(q,w) ^ E(q',w), for every state q' distinct 
from q. 

• The automaton M has property C if there exists an experiment distinguishing 
between each different states of M, i.e. there exists a word w € E + such that 
E(q,w) ± E(q',w), for every distinct states q,q'. 

Of course, C implies B, which, in turn, implies A; none of the converse impli-
cations is true, hence we get CI, CII. 

We continue with some examples of Moore automata having C, CI, and CII. 
First, the automaton in Figure 2 has C as experiment 10 distinguishes between 

any pair of distinct states. 

4/0 3/1 

1/1 

0,1 

Figure 2. 
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Moore's automaton in Figure 1 has A but non-B, hence CI (cf. [13]). 
Every pair of distinct states can be distinguished by an experiment: states 
1,2 by x = 0, states 1,3 by i = 1, states 1,4 by x = 0, states 2,3 by 
x = 0, states 2,4 by x = 0, and states 3,4 by x = 0. However, there 
is no (unique) experiment capable to distinguish between every pair of arbi-
trary distinct states. If the experiment starts with 1, i.e. x = lu, then 
JE(1,X) = E(2,x), that is x cannot distinguish between the states 1,2 as 
£(1,®) = £(1,1«) = f(l)f(S(l,l))E(S(l,l),u) = f(l)f(3)E(3,u) = 00E(3,u) 
and E(2,x) = E(2,lu) = f(2)f(5(2,l))E(ô(2,l),u) = f(2)f(3)E(3,u) = 
00E(3, u). If the experiment starts with 0, i.e. x = 0v,v £ £*, then x cannot distin-
guish between the states 1,3 as E(l,x) = £(l,0t;) = f(l)f(6(l,0))E(5(l,0),v) = 
f(l)f{4)E(4,v) = 0lE(4,v) and E(3,x) = E(3,0v) = f(3)f(S(3,0))E(t(3,0),v) = 
f(3)f(4)E(4,v) = 01E(4,v). 

The automaton in Figure 3 has B but not C, hence CII. Indeed, the following 
pairs of states are distinguishable by every experiment: (1,2), (1,4), (2,3), (3,4). 
Accordingly, 1 is distinguishable from the other states by w = 0, 2 is distinguishable 
by w = 1, 3 is distinguishable by w = 0 and 4 is distinguishable by w = 1, so the 
automaton has property B. It does not have property C because any experiment w 
which starts with 1, i.e. w = lx, x € £*, does not distinguish between 1 and 3, and 
any experiment w which starts with 0, i.e. w = Oy, y G £*, does not distinguish 
between 2 and 4. 

4/0 3/1 

Figure 3. 
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3 An Algorithm for Testing Simultaneously CI 
and CII 

In this section we briefly review a few facts on partitions and present the algorithm 
that is used to test properties A, B and C, which uses partitions defined on sets 
of states of an automaton. An elegant algebraic theory for machine decomposition 
based on the closed partition lattice of a machine is presented in [10] and efficient 
algorithms for constructing the lattice are presented in [12]; here we construct a 
different partition lattice testing the properties CI and CII, a different problem. 

A partition P of a set Q is a set of non-empty disjoint sets whose union is Q. 
Partitions are in an one-to-one onto correspondence with equivalence relations. In 
particular, we will use the partition induced by the level sets of a map / : Q —* Q, 
that is, the sets [7]/ = {x : f(x) = /(<?)}, <7 € Q. 

Given two partitions Pi and P2 of Q, we say that Pi is no coarser than (or at 
least as coarse as) Pi, written Pi < Pi if for every pi G P\ , there exists pi G P2 
such that PI C p2. We say that Pi is coarser than PI if PI < Pi and PI ^ P2, 
in symbols Pi < Pi- The term finer means the inverse relation of coarser. When 
Pi < P2 we say that Pi is a refinement of Pi, or that Pi is a coarsening of P\. 

Treating the above refinement relation as a partial order <, we see that the 
greatest lower bound PI A Pi is the coarsest partition of Q that is a refinement of 
both Pi and Pi. This operation, which we will call CCR (the coarsest common 
refinment), can be conducted in principle by taking the intersection of all classes 
in Pi with all classes in Pi, and then throwing out the empty sets. 

Let Pi and Pi be two partitions of Q, and =1 and =2 be the corresponding 
equivalences. Then the equivalence relation p = q defined by p =1 q and p =1 q, 
corresponds to P\ A P2. 

The level sets of the composition fog axe coarser than those of g; if g is invertible 
then the level sets are the same. Let / x g : a —» (f(a),g(a)). Then, the level set 
partition of / x g is the coarsest common refinement of / and g. 

For an automaton M, we construct a graph, called an observation graph, which 
describes how information about the state of machine changes with observations. 

Each vertex R is a record p , where the two fields t and P are the configuration 

of states under the transition function and the partition induced by the output 
function respectively. The partition induced by t, 11(f), is given by the following 
equivalence relation: i is equivalent to j modulo II(t) if f(t[i}) — f{t[j])-

An edge (\ h ] [ ti ~\\ 
lift i ' l ^ i ) 

belongs to the graph exactly when there exists 

s G {0,1} such that t2 = 6(ti,s) and P2 = II(/ o t2) A Pi. Since the CCR of two 
partitions is no coarser than either it is apparent that along any path through the 

graph the partitions may become finer. The function ^ p ,s^j —• P, mapping 

vertices into lattice of partitions, is monotonie. 
If at the start of a path the condition Pi < t\ occurs, then, Pi = n(<î(ti, s)) A 
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Pi <U(5(t1,s)) = Tl(t2). 

For any path ' il ' tn 

. P i . . Pn . 
' h " ' in 
. Pi . 

path 

Finally, suppose that t 
P 

in the observation graph, Pn < Pi- For any 

in the observation graph if Pi < II(ii), then Pn = Pi. 

B ] is a rooted sub-tree of the observation graph, 

and P < II(i). The partition P is constant throughout the entire tree since each 

node on the rooted sub-tree is the end point of a path starting at the root ' 

Consequently, the node t 
P will be pruned (ignored). 

The algorithm for testing properties A, B, and C for an automaton M generates 
records that are nodes of an observation graph and checks whether the partitions 
components of the nodes verify the conditions associated with the properties A, 
B, and C. The algorithm has the following steps. 

Step 1. Initialization of 

• a vector Counter recording all non-repeating nodes generated so far 

• a trimmed binary tree OG recording the nodes in the observational graph 

• a vector TB recording those states for which the condition in property B is 
currently verified, and a Boolean variable hasB that is true if Mhas property 
B and false otherwise 

• a table TA recording those states for which the condition in property A is 
currently verified, and a Boolean variable has A that is true if Mhas property 
A and false otherwise. 

Step 2. Generate and test the first record 

• Step 2.1. Generate the first record. The first record, say R, will be the root 
of OG. Its two components are given by 

- the vector of states (1,2 , . . . ,n) and 
- the partition Pr, generated by the output function / , 

so R = 

• Step 2.2 

• Step 2.3 

• Step 2.4 

(1,2 , . . . , n ) 
PR 

If M has C stop. Else: 

Add the record to Counter 

Update TA and has A 
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• Step 2.5. Update TB and hasB 

• Step 2.6. Add the record to OG 

[Comment: We generate (from left to right) all children of non-pruned nodes. If no 
child can be generated, we check the values of hasB and has A to determine whether 
the automaton has B or A, then stop.] 

Step 3. While there are children to be generated do 

• Step 3.1. Generate the next record obtained from the left/right child, say 
tN N 
PN 

Its two components are given by 

— tn the vector of states (i i, i2, • •., in), obtained by applying the transition 
function on each element of sequence of states in the parent node with 
input letter 0 for the left child and 1 for the right child and 

- the partition PN obtained by taking the CCR of the parent's partition 
component and the partion of states induced by the output function on 
tN 

. • Step 3.2. If N is in Counter, then go to Step 3.1. Otherwise, add the current 
record to Counter 

• Step 3.3. If M has C, stop. Else: 

• Step 3-4- Update TA and hasA 

• Step 3.5. Update TB and hasB 

• Step 3.6. If the record can be pruned, then go to Step 3.1 

• Step 3.6. Add the node N to OG and go to Step 3.1 

End of while loop. 

If TA is false, then return non-A, stop; else, if TB is false, then return CI, stop; 
else, retun CII, stop. 

End of algorithm. 



A Uniform Approach to Test Computational Complementarity 375 

4 The Algorithm in Action 
In this section we present some examples illustrating the algorithm presented in 
the previous section. 
Example 1. Let us run the algorithm on the automaton in Figure 1. 

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the 
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean 
variables has A and hasB to false 

Step 2 Generate the first record 

Step 2.1 Generate the record R = 1, 2, 3, 4 
U-2,3} , {4} 

Step 2.2 The record R does not satisfy C as PR ^ {1}, {2}, {3}, {4} 

Step 2.3 Update Counter to [R] 

Step 2.4 Update TA to 

Step 2.5 Update TB to 

0, 0, 0, 1 
0, 0, 0, 1 
0, 0, 0, 1 
1, 1, 1,0 

and hasA to false 

and hasB to false 

Step 2.6 Update' OG to (R,0) 

Step 3 Generate the next child 

First iteration: 

Step 3.1 The next record, N0, is 

4, 1, 4, 2 
{1,3}, {2}, {4} 

where two = (4,1,4,2) is obtained by applying the transition function on 
1,2,3,4 to the input letter 0. The partition induced by the output function 
on 4,1,4,2 is {1,3}, {2,4}. Taking the CCR between this partition and the 
partition component of its parent, i.e. PR = {1,2,3}, {4}, we obtain the 
partition component of N0. Therefore 

P N 0 = { 1 , 3 } , { 2 , 4 } A { 1 , 2 , 3 } , { 4 } = { 1 , 3 } , { 2 } , { 4 } 
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Step 3.2 As the current node, is not in Counter we add it: 

Counter = N0} 

Step 3.3 The current automaton has not C as 

P J V O # { 1 } , { 2 } , { 3 } > { 4 } 

Step 3.4 Update TA to 

Step 3.5 Update TB to 

Step 3.6 As 

0, 1, 0, 1 
1, 0, 1, 1 
0, 1, 0, 1 
1, 1, 1,0 

and has A to false 

and hasB to false 

{ 1 , 3 } , { 2 } , { 4 } A { 1 , 3 } , { 2 } , { 4 } = { 1 , 3 } , { 2 } , { 4 } 

it follows that 
{ 1 , 3 } , { 2 , 4 } A P / v o = PNO 

and therefore this record has to be pruned (as none of its children can bring 
any new information) 

Step 3 Generate next child 

Second iteration: 

Step 3.1 The next record, N\ is 

3 , 3 , 4 , 2 

{ 1 , 2 } , { 3 } , { 4 } J ' 

where IJVI = ( 3 , 3 , 4 , 2 ) is obtained by applying the transition function on 
1,2,3,4 and the input letter 1. The partition induced by the output function 
on 3 , 3 , 4 , 2 is { 1 , 2 , 4 } , { 3 } . Taking the CCR between this partition and the 
partition component of the node's parent, i.e. PR = { 1 , 2 , 3 } , { 4 } , we obtain 
the partition component of N\. Therefore 

P N 1 = { 1 , 2 , 4 } , { 3 } A { 1 , 2 , 3 } , { 4 } = { 1 , 2 } , { 3 } , { 4 } 

Step 3.2 As the current node is not in Counter we add it: 

Counter = [Ä, N 0, N1] 
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Step 3.3 The current automaton has not C as 

J W { 1 } , { 2 } , { 3 } , { 4 } 

Step 3.4 Update TA to 

Step 3.5 Update TB to 

0, 1, 1, 1 
1,0, 1, 1 
1 , 1 , 0 , 1 
1, 1 ,1 ,0 

and hasA to true 

0 
1 
1 
1 

and hasB to false 

Step 3.6 As { 1 , 2 } , { 3 } , { 4 } A PN = { 1 , 2 } , { 3 } , { 4 } A { 1 , 2 } , { 3 } , { 4 } = 

{ 1 , 2 } , { 3 } , { 4 } this record has to be pruned 

Step 3 Generate the next child 

Third iteration: 

As OG = (R, 0) and Counter = (R,N0,N1), there is no child to generate, 
stop. As hasA is true and hasB is false, the output is "the automaton has 
cr. 

Example 2. Let us run the algorithm on the automaton in Figure 2. 

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the 
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean 
variables hasA and hasB to false 

Step 2 Generate the first record 

Step 2.1 Generate the record R — 
1 , 2 , 3 , 4 

{ 1 - 3 } , { 2 , 4 } 

Step 2.2 As PR / {1}, {2}, {3}, {4} the automaton has not C 

Step 2.3 Update Counter = [R] 

Step 2.4 Update TA to 

0, 1, 0, 1 
1,0, 1,0 
0, 1, 0, 1 
1, 0, 1, 0 

and has A to false 
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Step 2.5 Update TB to and hasB to false 

Step 2.6 Update OG to 

Step 3 Generate the next child 

First iteration: 

Step 3.1 The next record, NO, is 

4,3,2,1 
. {1,3}, {2, 4} 

where ijvo = (4,3,2,1) is obtained by applying the transition function on 
1,2,3,4 to the input letter 0. The partition induced by the output function 
on 4,3,2,1 is {1,3}, {2, 4}. Taking the CCR between this partition and the 
partition component of its parent PR = {1,3}, {2,4}, we obtain the partition 
component of N0: 

PNO = { 1 , 3 } , { 2 , 4 } A P r = { 1 , 3 } , { 2 , 4 } 

Step 3.2 As the current node is not in Counter we add it: 

Counter = [R, 7V0] 

Step 3.3 The current automaton has not C as 

PN0 = { 1 } , { 2 } , { 3 } , { 4 } 

0, 1, 0, 1 
1,0, 1,0 
0, 1, 0, 1 
1,0, 1, 0 

and has A to false 

and hasB to false 

Step 3.4 Update TA to 

Step 3.5 Update TB to 

Step 3.6 As 

{ 1 } , { 2 } , { 3 } , { 4 } A P W P J V O 

this record should not be pruned. Update OG = (R, N0, [R, 7V0]) 
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Step 3 Generate the next child 

Second iteration: 

Step 3.1 The next record, N1, is 

2 , 2 , 1 , 1 
{ 1 } , { 2 } , { 3 } , { 4 } 

where t^i = (2,2,1,1) is obtained by applying the transition function on 
states 1,2,3,4 and the input letter 1. The partition induced by the output 
function on 2,2,1,1 is {1,2}, {3, 4}. Taking the CCR between this partition 
and the partition component of the node's parent, i.e. PR = {1,3}, {2,4}, we 
obtain the partition component of N1: 

PNI = { 1 , 3 } , { 2 , 4 } A { 1 , 2 } , { 3 , 4 } = { 1 } , { 2 } , { 3 } , { 4 } 

Step 3.2 The current node is not in Counter, so we add it: 

Counter = NO, ATI] 

Step 3.3 The current automaton has C as 

PW1 = { 1 } , { 2 } , { 3 } , { 4 } 

so the output is "the automaton has C". 

Example 3. Let us run the algorithm on the automaton in Figure 3. 

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the 
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean 
variables hasA and hasB to false 

Step 2 Generate the first record 

Step 2.1 Generate the record R = 

Step 2.2 The record R has not C as PR ± {1}, {2}, {3}, {4} 

1,2, 3 ,4 
{1,3}, {2,4} 

Step 2.3 Update Counter = [P] 

Step 2.4 Update TA to 

0, 1,0, 1 
1,0, 1,0 
0, 1,0, 1 
1 , 0 , 1 , 0 

and hasA to false 
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0 

Step 2.5 Update TB to ° 

0 

Step 2.6 Update OG to (Ä,0) 

and hasB to false 

Step 3 Generate the next child 

First iteration: 

Step 3.1 The next record, iVO, is 

1 , 2 , 2 , 2 
{ 1 } , { 2 , 4 } , { 3 > 

where t^o = (1,2,2,2) is obtained by applying the transition function on 
states 1,2, 3,4 to the input letter 0. The partition induced by the output 
function on 1,2,2,2 is {1}, {2,3,4}. Taking the CCR between this partition 
and the partition component of its parent PR = {1,3}. {2,4} we obtain the 
partition component of N0: 

P N 0 = { 1 } , { 2 , 3 , 4 } A P R = { 1 } , { 2 , 4 } , { 3 } 

* 

Step 3.2 The current node is not in Counter, so we add it: 

Counter = [i?, N0] 

Step 3.3 The current automaton has not C as 

PNO { ! } , { 2 } , { 3 } , { 4 } 

Step 3.4 Update TA to 

Step 3.5 Update TB to 

0, 1, 1, 1 
1 , 0 , 1 , 0 
1, 1, 0, 1 
1, 0, 1, 0 

and hasA to false 

and hasB to false 

Step 3.6 As 
{ ! } , { 2 , 3 , 4 } A P N O = PJVO 

this record has to be pruned 

; 
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Step 3 Generate the next child 

Second iteration: 

Step 3.1 The next record, N1, is 

1, 2, 1, 1 
{1,3}, {2}, {4} 

where t^i = (1,2,1,1) is obtained from applying the transition function on 
states 1,2,3,4 and the input letter 1. The partition induced by the output 
function on 2,1,1,1 is {1,3,4}, {2}. Taking the CCR between this partition 
and the partition component of the node's parent PR = {1,3}, {2 ,4} we 
obtain the partition component of N1: 

PN1 = { 1 , 3 , 4 } , { 2 } A { 1 , 3 } , { 2 , 4 } = { 1 , 3 } , { 2 } , { 4 } . 

Step 3.2 As the current node is not in Counter we add it: 

Counter = [il, NO, N1] 

Step 3.3 The current automaton has not C as 

P W { 1 } , { 2 } , { 3 } , { 4 } 

Step 3.4 Update TA to 
0, 1, 1, 1 
1,0, 1, 1 
1, 1,0, 1 
1, 1, 1, 0 

and has A to true 

and hasB to true Step 3.5 Update TB to 

Step 3.6 As {1,3,4}, {2} A Pjv = Pjv this record has to be pruned 

Step 3 Generate the next child 

Third iteration: 

As OG — (R,0) and Counter = [R,N0,NI], there is no child to generate, 
stop. As has A is true and hasB is true, the automaton has property B, but 
not C, so the output is "the automaton has CIF. 
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5 Experimental Results 
The proposed algorithm was implemented in C and the program3 was run on a 
Pentium III, i686 processor using Redhat 8.0 Linux, 250 Mb of RAM. The aim was 
to study the distributions of CI and CII over the set of all possible automata with 
a given number of states and input/output symbols. Table 2 presents the results 
of the main tests that have been done so far. 

nx s # automata time 
(sec) CI CII CII/CI 

% 
CI 
% 

CII 
% 

2 x 2 32 < 1 0 0 0 . 0 0 
3 x 2 2916 < 2 0 0 0 0 0 
4 x 2 524288 < 11 73728 30720 41.67 14.06 5.86 
5 x 2 156250000 < 8435 46862400 19436160 41.47 29.99 12.44 
4 x 3 452984832 < 14018 54577152 46227456 84.70 12.05 10.12 

Table 2. 

In the first column n x s stands for the class of automata with n states and s 
input letters. Because of symmetries (the automaton (Q, 6, f) "is equivalent" to 
the automaton (Q, S, 1 — / ) ) , the program actually tests only half of automata of 
type n x s; the numbers of tested automata are shown in the second column. The 
third column contains the time for processing all automata mentioned in the second 
column. The numbers of automata verifying CI and CII are given in the next two 
columns. The last three columns present the percentage of CII over CI and the 
percentage of CI, respectively, CII, over the total number of automata processed. 

We also tested automata with more than five states. For example, the 10-state 
automaton in Table 3 

9 ¿(9,0) s(q,i) m 
1 2 1 0 
2 3 2 0 
3 4 3 0 
4 5 4 0 
5 6 5 0 
6 7 6 0 
7 8 7 0 
8 9 8 0 
9 9 10 0 
10 10 10 1 

Table 3. 
3See http://wvw.massey.ac.nz/"bimills/obgraph.c for the program. 

http://wvw.massey.ac.nz/%22bimills/obgraph.c
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has A (00000001 distinguishes the pairs (i, j) for i = 1,2,3, j = 1 ,2 , . . . , 10 and i ^ 
j, 00001 distinguishes the pairs (4,5), (4,6), (4,7), (4,8), (4,9), 0001 distinguishes 
the pairs (5,6), (5,7), (5,8), (5,9), 001 distinguishes the pairs (6,7), (6,8), (6,9), 01 
distinguishes the pairs (7,8), (7,9), 1 distinguishes the pair (8,9) and e distinguishes 
the pairs (i, 10) for i = 1 ,2 , . . . , 9), has B (as state 1 is distinguished from sill other 
states by the word 00000001, state 2 by 000000101, state 3 by 00000101, state 4 by 
0000101, state 5 by 000101, state 6 by 00101, state 7 by 0101, state 8 by 101, state 
9 by 1, and state 10 by e) and has C (the word 101010101010101 distinguishes 
every pair of distinct states). The algorithm has scanned 766 nodes in less than a 
second. 

6 Final Remarks 
Based on the concept of observation graph of an automaton, new equivalent def-
initions have been given for two types of computational complementarity studied 
in [3]. As a result, we proposed an algorithm for simultaneously determining these 
properties. The algorithm has been shown in practice to be fast enough (on a 
standard desktop machine) for testing all binary Moore machines up to five states. 
Some other experiments reported in the paper illustrate the power of the algorithm. 

Many problems remain open; for example, what is the complexity of the decision 
problems CI, CII. 
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Two-Way Metalinear PC Grammar Systems and 
Their Descriptional Complexity 

Alexander Meduna* 

Abstract 
Besides a derivation step and a communication step, a two-way PC gram-

mar system can make a reduction step during which it reduces the right-hand 
side of a context-free production to its left hand-side. This paper proves 
that every non-unary recursively enumerable language is defined by a cen-
tralized two-way grammar system, F, with two metalinear components in a 
very economical way. Indeed, T's master has only three nonterminals and 
one communication production; furthermore, it produces all sentential forms 
with no more than two occurrences of nonterminals. In addition, during ev-
ery computation, T makes a single communication step. Some variants of 
two-way PC grammar systems are discussed in the conclusion of this paper. 

1 Introduction 
Over the past few years, the formal language theory has intensively investigated 
many variants of PC grammar systems (see [12]), which consist of several simulta-
neously working and communicating components, represented by grammars. This 
paper introduces another variant of this kind, called two-way PC grammar sys-
tems, which make three kinds of computational steps—derivation, reduction, and 
communication. More precisely, a two-way PC grammar system, F, makes a deriva-
tion step as usual; that is, it rewrites the left-hand side of a production with its 
right-hand side. During a reduction step, however, F rewrites the right-hand side 
with the left hand-side. Finally, T makes a communication step in a usual PC-
grammar-system way; in addition, however, after making this step, it changes the 
computational way from derivations to reductions or vice versa. 

As reduction steps represent a mathematically natural modification of deriva-
tion steps, a discussion of two-way PC grammar systems surely deserves our atten-
tion from a theoretical viewpoint. From a practical viewpoint, this discussion is 
important as well. Indeed, two-way PC grammar systems actually formalize com-
putational units combining both reduction and derivation steps, which frequently 
occur in applied computer science. To give some specific examples, consider, for 

* Department of Information Systems, Faculty of Information Technology, Brno University of 
Technology, Bozetêchova 2, Brno 61266, Czech Republic 
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instance, compilers. A parser is often written so it actually represents a combi-
nation of a bottom-up parser for expressions and a top-down parser for general 
program flow. While the former makes reductions, the latter makes derivations; as 
a whole, the parser thus makes both. To give another example in this area, the 
three-address code generation often consist of top-down syntax-directed generation 
of abstract syntax tree followed by a bottom-up translation of this tree to the de-
sired three-address code. Again, both reductions and derivations take part in this 
translation process as a whole. As a result, there surely exist both theoretically 
and pragmatically sound reasons for investigating two-way PC grammar systems. 

This paper narrows its attention to the centralized two-way metalinear PC 
grammar systems working in a non-returning mode. That is, since they are cen-
tralized, only their first components, called the masters, can cause these systems 
to make a communication step. Since they are metalinear, all their components 
are represented by metaliner grammars. Finally, as they work in a non-returning 
mode, after communicating, their components continue to process the current string 
rather than return to their axioms. Regarding these systems, the present paper con-
centrates its discussion on their descriptional complexity because this complexity 
represents an intensively studied area of today's formal language theory. 

As its main result, this paper proves that the centralized two-way metalinear PC 
grammar systems characterize the family of non-unary recursively enumerable lan-
guages in a very economical way. Indeed, every non-unary recursively enumerable 
language is defined by a centralized two-way grammar system with two metalinear 
components so that during every computation F makes a single communication 
step. In addition, T's three-nonterminal master has only one production with a 
communication symbol and each of its sentential forms contains no more than two 
occurrences of nonterminals. In the conclusion of this paper, some terminating and 
parallel variants of these two-way systems are introduced and analogical results to 
the above characterization are achieved. 

2 Preliminaries 
This paper assumes that the reader is familiar with the formal language theory 
(see [9], [14]). For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, 
V, V* represents the free monoid generated by V under the operation of concate-
nation. The unit of V* is denoted by e. Set V+ = V* — {e}; algebraically, V+ is 
thus the free semigroup generated by V under the operation of concatenation. For 
every w € V*, |ui| denotes the length of w. Furthermore, for every 0 < i < |io| and 
L € V*, we introduce the following denotation: 

• length(L) = ( H :w e L} 
• reversal(w) denotes the reversal of w 
• reversal(L) = {reversal(ui) : w £ L} 
• alph(io) denotes the set of letters occurring in w 
• alph(L) = {a : a £ alph(u;) with w £ L} 
• sym{w,i) denotes the ith symbol in w 
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• prefix(iy, i) denotes the set of w's prefixes of length i or less 
• prefix(w) = prefix(iu, |i/;|) 
• suffix(w, i) denotes the set of w's suffixes of length i or less 
• suffix(w) = suffix(u;, |u/|) 
• prefix(L) = { I : I £ prefix(TY) for some w £ L} 
• suffix(L) = {x : x € suffix^) for some w £ L} 

For every W CV, del(ui, W) denotes the word resulting from w by the deletion 
of all symbols from W in w\ more formally, del(i/j, W) — p(u¡), where p is the 
weak identity over V* defined as p(b) = e for every b £ W and p(a) — a for every 
a £ V — W. Let keep(u>, W) denote the word resulting from w by the deletion 
of all symbols from V — W in w\ more formally, keep(w, W) = 9(w), where 9 is 
the weak identity over V* defined as 0(b) — e for every b £ V — W and 6(a) = a 
for every a £ W. For instance, for w = abac, alph(uj) = {a, b,c}, prefix(u>, 2) = 
{e, a, ab}, sym(u>, 3) = a, del(tx;, {a} ) = be, keep(w, {a, b}) = aba. 

A queue grammar (see [7]) is a sixtuple, Q = (V,T,W, F, s, P), where V and 
W are alphabets satisfying V C\W = <l),T C V, F C W, s £ (V - T)(W - F), and 
P Q (V x (W — F)) x (V* x W) is a finite relation such that for every a £ V, there 
exists an element (a, b, x, c) £ P for some b £W — F,x £ V*, and c £ W. If u,v £ 
V*W such that u = arb,v = rzc,a £ V,r,z £ V*,b,c £ W, and (a,b,x,c) £ P, 
then u v [(a, b, z, c)] in G or, simply, u => v. The language of Q, L(Q), is defined 
as L(Q) = {w £ T* : s =$>* wf where / £ F}. 

Now, we slightly modify the notion of a queue grammar. A left-extended queue 
grammar is a sixtuple, Q = (V, T, W, F, s, P), where V, T, W, F, and s have the same 
meaning as in a queue grammar. P C (V x (W — F)) x (V* x W) is a finite relation 
(as opposed to an ordinary queue grammar, this definition does not require that 
for every a £ V, there exists an element (a, b, x, c) £ P). Furthermore, assume that 
# 0 V U W. If u,v£ V*{#}V*W so that u = w#arb, v = wa#rzc, a£V, r, z,w £ 
V*,b,c£ W, and (a, b, x, c) £ P, then u => u[(a, b, z, c)] in G or, simply, u => v. In 
the standard manner, extend => to =>n, where n > 0; then, based on =>", define 
and =>*. The language of Q, L(Q), is defined as L(Q) = {v £ T* : #s w#vf 
for some w £ V* and / £ F}. Less formally, during every step of a derivation, 
a left-extended queue grammar shifts the rewritten symbol over in this way, it 
records the derivation history, which represents a property fulfilling a crucial role 
in the proof of Lemma 4 in the next section. 

3 Definitions 
As already sketched in Section 1, this paper discusses grammar systems ( see [1, 
2, 3, 4, 5, 7]), concentrating its attention on PC grammar systems (see [6, 11, 
12, 13, 15, 16]). The present section introduces a new version of these systems. 
First, based on two-way A;-linear PC components, it defines two-way fc-linear n-PC 
grammar systems. Then, it introduces several notions concerning them. Finally, 
two examples are given. 
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Let k and n be two positive integers. A two-way fc-linear PC component is a 
quadruple, G = (N,T,P,S), where N and T are two disjoint alphabets. Symbols 
in N and T are referred to as nonterminal and terminals, respectively, and S G N 
is the start symbol of G. Set M = N — {5 } . P is a finite set of productions such 
that each r G P has one of these forms 

• S —* x, where x G (T U M)* and x contains no more than fc occurrences of 
symbols from M, 

• A—> x, where A G M and x G T*MT* U T*. 

Let u, v G (NUT)*. For every A —> x £ P, write uAv uxv and uxv r=> uAv, 
d and r stand for a direct derivation and a direct reduction, respectively. To express 
that G makes uAv uxv according to A —» x, write uAv uxv [A —> x]; 
uxv r=> uAv [A —> x] have an analogical meaning in terms of r=>. A two-way 
k-linear n-PC grammar system is an n 4- 1-tuple 

r = (Q,Gu...,Gn), 

where Q — {qi : i = 1 , . . . , n}, whose members are called query symbols, and for 
all i = 1 , . . . , n, Gi = (Q U Ni, T, Pi, Si) is a two-way fc-linear PC component such 
that Q n (Ni U T) = 0 (notice that each Gi has the same terminal alphabet, T); 
let q-Pi C Pi denote the set of all productions in Pi containing a query symbol. A 
configuration is an n-tuple of the form (x i , . . . , x„) , where x* £ (Q U Ni U T)*, 1 < 
i <n. The start configuration, s, is defined as s = ( S i , . . . , Sn). Let © denote the 
set of all configurations of T. For every x € 0 and i = 1,... ,n,i-x denotes its ith 
component—-that is, if x = ( x i , . . . ,X i , . . . ,x n ) , then i-x = x». For every x 6 ©, 
define the mapping x6 over {i-x : 1 < i < n) as X6(i-x) = zyz^... z^.^ where for 
all 1 < h < |i-x|, 

if for some qj £ Q,i = 1 , . . .,n, sym (i-x, h) = qj and alph(j-x) H Q — 0, then Zh — 
j-x; otherwise (that is, sym(i-x,h) Q or alph(j-x) HQ / I),?/, - sym(i-x,h). 

Let y, x £ 0 . Write 

• y d=> x in r if i-y i-x in Gi or i-y = i-x with i-y,i-x € T*, for all 
i = l,...,n; 

• y x in T if i-y i-x in Gi or i-y = i-x with i-y, i-x G { S i } U T*, for all 
i = l,...,n\ 

• y q=> x in T if i-x = y0(i-y) in Gi for all i = 1 , . . . , n. 

Informally, T works in three computational m o d e s — r = > , which sym-
bolically represent a direct derivation, reduction, and communication, respectively. 
Let l > € 0 ,1 < i < I, and ao h=> Qi ¡2=> oi2.. .ai_i ¡¡=> ai where lm £ 
{d,r,q}, 1 <m<l\ write ao =>* ai if li = d and each lp € {d, r, q},2 < p < I — 1, 
satisfies: 

• if lp = q then ¿p + i , /p_i € {d,r} and Zp+1 ^ lp-i, 
• if lp G {d, r } then Zp+1 G {q,lP}. 



Two-Way Metalinear PC Grammar Systems 389 

Informally, after making a communication step, T changes the computational 
mode from d to r and vice versa; after making a derivation or reduction step, it 
does not. Consider ao =>* on that consists of I direct computational steps, ao ^ 
Qi /2=> »2 • • • <xi-i i,=> on, satisfying the above properties. Set /c(c*o =>* oil) = 
{ a o , a i , . . . , aj} ; that is, K.(ao a;) denote the set of all configurations occurring 
in ao =>* a/. Furthermore, for each I = 1 , . . . , n, set /t(i-ao =>* i-ai) = {¿-/3 : /3 £ 
«(ao a;)} . Finally, for each h = 1 , . . . ,n, h-computation(i-ao =>* i-ai) denote 
h-ao ¿j => /i-ai (2=> h-a2 •.. h-ai-j ¡, /i-a; The language of T, L(r), is defined as 

I ( r ) = {z € T* : a a in T with z = del(l-a, Si), for some a £ ©}. 

Informally, L(l?) contains z £ T* if and only if there exists a € 0 such that a =>* a 
in r and the deletion of each Si in 1 -a results in z. A computation a =>* a in T 
with del(l-a, Si) 6 L(T) is said to be successful. By a two-way metalinear n-PC 
grammar system, we refer to any two-way fc-linear n-PC grammar system, where 
fc > 1. 

Notice that after communicating, the components of the above systems continue 
to process the current string rather than return to their axioms. In other words, 
they work in the non-returning mode (see [7]). The returning mode is not discussed 
in this paper. 

For a two-way ^-linear PC grammar system, F = (Q,Gi,... ,Gn), we next 
introduce some special notions. 

Finite index. Let a x be any successful computation, in F, where x £ 0 , 
and let i £ {1 , . . . , n}. By i-index(cr =>* x), we denote the maximum number in 
length(keep(«(t-er i-x),Ni)). If for every successful computation a =>* £ in 
T, where £ £ ©, there exists k > 1 such that i-index(a =>* £) < k, Gi is of a 
finite index. If Gi is of a finite index, index(Gi) denotes the minimum number h 
satisfying i-index(a =>* £) < h, for every successful computation a =>* zu in T, 
where o e 9 . By index(Gi) = oo, we express that Gi is not of a finite index. 
If Gj is of a finite index for all j = 1, . . . , n, T is of a finite index and index(Y) 
denotes the minimum number g satisfying index(Gi) < 9, for all / — 1 , . . . , n. By 
index(T) — oo, we express that r is not of a finite index. 

q-Degree. For a =4-* x in T, where x £ 0 , q-degree(a =4-* x) denotes the number of 
communication steps (q=$>) in a =>* x. If for every computation a =>* £ in T, where 
£ £ 0 , there exists k > 1 such that q-degree(a =>* £) < k, T is of a finite q-degree. 
If r is of a finite ^-degree, q-degree(T) denotes the minimum number h satisfying 
q-degree(a =>* £) < h, for every computation a =>•* £ in T; by q-degree{V) = oo, 
we express that T is not of a finite q-degree. 

Centralized Version. T is centralized if no query symbol occurs in any production of 
Pi in Gi = (Ni, Ti, Pi, Si), for all i = 2 , . . . , n. In other words, only Pi can contain 
some query symbols, so G\, called the master of T, is the only component that can 
cause r to perform a communication step. 
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This paper concentrates its attention on the centralized version of two-way k-
linear 2-PC grammar systems. Therefore, we conclude this section by two examples 
illustrating these systems. 
Example 1. Consider the centralized two-way two-linear 2-PC grammar system, 
G - ({gi ,92},Gi,G2) , where Gi = ({SI,A,B},T,PI,SI),G2 = ({S2,B,Y},T, 
P2,S2),T = {a,b,c}, Pi = {Si - » A, A cA,A -» cq2,Q2 B,B q2,B 
e, Si -> B}, and P2 = {S2 —> YB,B B,Y aYb, Y —> ab}. 

For instance, F generates c3a3b3a3b3a3b3 as (Si,S2) d=> ( A , Y B ) ¿=> (cA, 
aybS) d=> (ccA,aaYbbB) (cccq2,a3b3B) (c3a3b3B,a3b3B) r=> (c3a3b3q2, 
a3b3B) (c3a3b3a3b3B, a3b3B) (c3a3b3a3b3q2,a3b3B) q=> ((?a3b3a3b3a3b3B, 
a3b3B) r=> (c3 a3 b3 a3 b3 a3 b3 Si, a3 b3B) with d e l ^ a W i r W S i , Si) = 
c W a W f t 3 . 

Observe that L(T) = { ¿ V : a; £ H,j,i > 1, |x| = 2j } , where H = {anbn : n > 
1}. Furthermore, notice that index(Gi) = 1 and index(G2) — 2, so T is of a finite 
index. On the other hand, q-degree(T) = oo. 
Example 2. Consider the centralized two-way one-linear 2-PC grammar system G = 
({9i, 92}, Gi, G2) where Gx = ({Si, A, B}, T,PU Si), G2 = ({S2, B},T, P2, S 2 ) ,T = 
{a, 6, c}, Pi = {Si -> A, A -> aAa, A ag2a, B 5c , Si -> B}, and P2 = {S2 -> 
B,B - 6Pc}. 

For instance, T makes (Si,S2) (A,-B) (aAa,bBc) d=> (aaq2aa,bbBcc) 
(aabbBccaa, bbBcc) r=> (aabbBcaa,bBc) r=> (aabbSicaa, B). 

Notice that L(T) = {an6"cman :n>m> 0},index(Gi) = l ,mdex(G2) = 1, 
and q-degree(T) = 1. 

4 Main Result 
This section proves that every non-unary recursively enumerable language is defined 
by a centralized two-way three-linear 2-PC grammar system, T = ( {Q 2 } , Gi, G2), 
such that index(Gi) = 2, index (G 2) = 3, and q-degree(T) = 1. As a result, 
index (T) = 3. In addition, its three-nonterminal master, Gi, has only one produc-
tion containing a query symbol. 

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L. 

Proof. Recall that every recursively enumerable language is generated by a queue 
grammar (see [8]). Clearly, for every queue grammar, there exists an equivalent 
left-extended queue grammar. Thus, this lemma holds. • 

Lemma 2. Let Q' be a left-extended queue grammar. Then, there exists a left-
extended queue grammar, Q = (V,T,W,F,s,R), such that L(Q') — L(Q), W = 
XUYU{1}, where X, Y, {1} are pairwise disjoint, and every (a, b, x,c) £ R satisfies 
either a eV-T,b&X,xG (V -T)*,c € X U {1} or a £ V - T, b £ Y U l,x £ 
T*,c £ Y. 
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Proof. See Lemma 1 in [10]. • 

Consider the left-extended queue grammar Q — (V, T, W, F, s, R) from Lemma 2. 
Its properties imply that Q generates every word in L(Q) so that it passes through 
state 1. Before it enters 1, it generates only words over (V — T); after entering 1, 
it generates only words over T. In greater detail, the next corollary expresses this 
property, which fulfills a crucial role in the proof of Lemma 4. 

Corollary 3. Q constructed in the proof of Lemma 2 generates every h G L(Q) in 
this way 

#ao9o 
ao#zoÇi [(ao,Ço,2o,gi)] 
a0ai#xi<72 ¡(01,91,21,92)] 

aoai . . . ak#Xkqk+1 [(a*, 9fc> zk, 9fc+i)] 
a 0 ai . . .afcafc+i#Xfc+iifiÇfc+2 [(afe+-i,9fc+i>!/i.9fc+2)] 

=> aoai. . .ajtajt+i.. .afc+m_i 
#Xfc+m-l2/l • • •ym-iqk+m [(a*;+m-l, 9fc+m-l, 2/m-l, 9fc+m)] 

=i> aoai . . .akOk+1 • • .ak+m#yi • •-ymQk+m+1 [(afc+m,9fc+m,J/m,9fc+Tn+l)] 

where k,m > l,a< G V - T for i = 0 , . . . , k + m,Xj G (V - T)* for 
j = 1 ,...,k + m,s = a0qo,ajXj = Xj-iZj for j = 1,..., k, ai... akXk+i = 
z0 • • • Zk,ak+1.. • ak+m = Zfc,9o,9i, • • • ,9fc+m 6 W-F andqk+m+1 € F, zi,..., Zk G 
(V - T)*, yi, . . . , ym G T*, h = yiy2 • • • Vm-iym • 

Lemma 4. Let Q be a left-extended queue grammar such that card(alph(L(Q))) > 
2. Then, there exists a centralized two-way three-linear 2-PC grammar system, F = 
( { Q 2 } , G i , G 2 ) , such that L(T) = L(Q),index(Gi) = 2,index(G2) = 3,index(T) = 
3,q-degree(T) = 1. In addition, F 's master, G1 = ({Q2} U Ni,T, Pi, Si), satisfies 
card(Ni) = 3 and q-Px = {A -> Q2}. 

Proof. Let Q = (V,T,W,F,s,R) be a left-extended queue grammar such that 
card(alph(L(Q))) > 2. Assume that {0,1} C alph(L(r))) n T. Furthermore, 
without any loss of generality, assume that Q satisfies the properties described in 
Lemma 2 and Corollary 3. Observe that there exist a positive integer, n, and an 
injection, 1, from VW to ( {0 ,1}" — 1") so that 1 remains an injection when its 
domain is extended to (VW)* in the standard way (after this extension, t thus 
represents an injection from (VW)* to ( {0,1}" — 1")*); a proof of this observation 
is simple and left to the reader. Based on u, define the substitution, u, from V to 
( {0 ,1}" — l n ) as i/(a) = {t(aq) : q G W } for every a G V. Extend the domain 
of v to V*. Furthermore, define the substitution, /x, from W to ({0, l } n — 1") as 
^(q) = {reversal(t(aq)) : a G V} for every q G W. Extend the domain of ¡j, to W*. 
Set o = 1". 
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Construction. Introduce the centralized two-way three-linear 2-PC grammar sys-
tem, r = ( { Q 2 } , G i . G a ) , where Gx = (Q U Ni,T,PltSi),G2 = (N2,T, P2,S2), 
Ni = { 5 i , A , y } , and Pi = {Si - » o,4o,Si -> oYo,A — Q2} U {A — 
reversal(i)Ax : x 6 i(VW)} U {Y -> xYx : x 6 i(VW)}. P2 is constructed 
as follows 

1. if s = doqo, where ao £ V — T and qo £W — F, then add S2 —» Yu (qo, 1) tY 
to P2, for all u £ v(oo) and t £ p(qo), 

2. if (a,q,y ,p ) G R, where a £ V-T,p,q£ W-F, and y £ (V-T)*, then add 
(q, 1) —> u (p, 1) t to P2, for all u £ u(y) and t £ p(p), 

3. for every q £ W — F, add (q, 1) -> o (q, 2) to P2 , 

4. if (a,q,y ,p) £ R, where a £ V — T,p,q £ W - F,y £ T*, then add (q, 2) -> 
y(p,2)t to P2 , for all t £ p[p), 

5. if (a, q, y,p) £ R, where a £ V - T,q £ W - F,y £ T*, and p £ F, then add 
{q, 2) —» yo to P2, 

6. add Y — Y to P2 , 

and N2 contains all symbols occurring in P2 that are not in T. 

Basic Idea. Clearly, T's master, Gi = ( {Q 2 }UJVi ,T ,Pi ,S i ) , satisfies card(Ni) = 3 
and q-P\ = {A —» Q2}. Every generation of y £ L(T) can be expressed as follows 

(Si, 5 a ) 
d=> (oreversal(a0)A/30o, Y\o (qi, 1) reversal(/?0)Y) 

(oreversal(ai)A/?iO, Y\\ (<72,1) reversal(/3i)Y) 

d=> (oreversal(afc)A/?fco, Y\k (qk+1,1) reversal(/3fc)Y) 
(0reversal(afc)A/3fc0, Y\kO (qk+1,2) reversal(/3fc)Y) 

d=> (or ever sal (a t)Afik+10, Yxkoyi (qic+i,2) reversal(/3fc+i)Y) 

d=> (oreversal(afe+m)<32^fc+mO, Yxkoyi.. • 2/moreversal(/?fc+m)Y) 
q=> (oreversa\(ak+rn)Yak+moyi... ymoreversal(/?fc+m)Y/3fc+mo), C) 
r=> (oprefix(reversal(ait+m), |afc+m| - n)Ysuffix(ak+m, K+ml - n) 

oyi... ymoreversal{Pk+m)YPk+mo), C) 

r=> (oYoyx... ymoYo, C) 
r=>2 (Siy1...ymSi,C) 

where k,m > 1, and for all e = 0 , . . . , k + m, ae £ v(ao . . . a e ) , /3e £ p(qo ... qe), 
ae = reversal (/3e), â  G V - T, qi £ W - F, 1 < i < k + m, for all / = 0 , . . . , A; - 1, 
Xf £ prefix(^(a0 . . .ae)) nprefix(x/+i),Xfc = a f e + m ,s = a0qQ,yi,... ,ym £ T*, 
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C = Yxkoyi . • . ymoreversal(/3 f c + m)Y,y = yi,...,ym, and R contains rules 
(a0,qo,zo,qi), (01,91,21,92), • • •, (a>c+m, Çk+m, ym-i, qk+m+i) according to which Q 
can make the generation of y described in Corollary 3. As a result, q-degree(T) = 1 
and L ( r ) Ç L(Q). On the other hand, recall that Q generates every y G L(Q) as 
described in Corollary 3. Then, we can easily construct the above generation of y 
in T, so L(Q) Ç L(T). Therefore, L ( r ) = L(Q). 

Formal Proof (Sketch). For brevity, the following rigorous proof omits some obvious 
details, which the reader can easily fill in. 

Claim 1. G generates every h G L(r) as follows (Si, ¿>2) d=>* (uAv,y) q=> 
(•uyv, y) r=>* {h, y), where u, v G {0,1}*, y G {Y}(T U {0 ,1} )* {Y} . 

Proof. In Pi, the right-hand side of every production contains a symbol from Q U 
N1, so during any successful computation, T makes at least one ç-step. The only 
production by which G\ can cause T to make a q-step is A —> q2. A does not 
occurr in N2 at all, and after the first application of A —» q2, G1 makes reductions 
during which it can never obtain A in a sentential form. Thus, the first application 
of A —* q2 is also the last application of this production. Therefore, T generates 
every h G L(T) as follows (Si,S2) d=>* (uAv,y) q=> (uyv, y) r=>* (h, 2),where 
u,v G {0 ,1 }*,y,z G (TU N)*. If y contains a symbol from N2 - (T U { Y } ) , G x 

can never remove them during (uyv,y) r=>* (h,z) by any rule from Pi, which 
leads to a contradiction that h ^ L(r ) . Thus, y, z G (T U {Y} )* . Examine P2 
to see that y,z G (T U {Y } ) * implies y = z and y G { Y } ( T U {0 ,1 } ) * {Y } . As 
a result, (Si ,S 2 ) d=>* (uAv,y) (uyv,y) (h,y), where u,v G {0 ,1 }* ,y G 
{ Y } ( T U { 0 , 1 } ) * { Y } . • 

The previous claim implies q-degree(T) = 1. 

Claim 2. Let (S\,S2) (uAv,y) q=> (uyv,y) r=>* (h,y) in T, where h G 
L(T),u,ve {0,1}*, y G { Y } ( r u { 0 , l } ) * { Y } . Then, v = reversal(u). 

Proof. Examine 1-Pi. Observe that before the communicational step, G\ can use 
only productions from {Si —» oAo}U{A —» reversal(z).Az : z G L(VW)}; therefore, 
v = reversal(u). • 

Claim 3. Let (Si,S2) d=>* (wÂreversal(u),y) (uyreversal(u),y) (h,y), 
inT, where h G L(T),u,v G {0 ,1 }* ,y G { Y } ( T U {0 ,1} )* {Y} . Then, y = 
Yreversal(ii)/mY. 

Proof. Consider (wyreversal(u),y) r=>* (h,y). During 1 -computation((uy 
reversal(u), y) r=>* (h, y)), G1 can use only productions from {Si —> o Y o } U { Y —» 
xYx : x G I(VW)}. Thus, y — Yreversal(u)huY. • 

Return to the proof of the lenima. Let 

(Si ,S 2 ) (uAreversal(t.'), Yreversal(u) huY) 
(uYreversal(uj^uYreversal(ti), Yreversal(u)ft,uY) 

r=>* (h,Yreversal(u)huY) 
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in r , where u, v £ {0,1}*. Examine Pi and P2 to see that in greater detail this 
computation can be expressed as 

(Si,S2) 
d=> (oreversal(a0) A0oo, Y\o ( i i , 1) reversal(/?0)Y) 

(oreversal(ai)>l/3io,yxi (<?2,1) reversal(/?i)Y) 

(oreversal(ak)Apko, Y\k (<?fc+i, 1) reversal(/3 fc)Y) 
(oreversal(a fc)A/3*o, Y\kO (qk+i, 2) reversal(/3 fc)Y) 
( o r e v e r s a l Y x k O y i (qk+i,2) reversal(^ f c + i )Y) 

(oreversal(a f c+m)(52/3fc+mo, Y^fcoyi • • • ymOreversa\(pk+m)Y) 
(0reversal(a f c + m)Ya f c + m02 / i . . .ymoreversal(/3 f c + m)Y/? f c + mo), C) 

r=> (oprefix(reversal(a f c + m ) , |afc+rn| - n)Ysuffix(afe+m, |afc+m| - n) 
oyi... ymoreversal(Pk+m)Ypk+mo), C) 

r=> (oYoyi... ymoYo, C) 
r=^2 (S i2 / i . . .y m 5i ,C) 

where k, m > 1, and for all e = 0 , . . . , k + m, ote £ v(ao ... ae),Pe £ fi(qo ... qe), 
ae = reversal(Pe),a,i £ V - T,qi € W - F, 1 < i < k + m, for all / = 
0, ' . . . ,k — l,Xf £ prefix(z/(a0...ae)) n prefix(x/+i),Xfc = ak+m,s = a0q0, 
2/i, • • •, Um £ T*, C = Yxkoyi • • • 2/moreversal(/?fc+m)y, h = yi,...,ym• Thus, 
index(G\) = 2 , index(G2 ) = 3, and mdex(r) = 3. Recall that Xfc = Gfc+m- Con-
sider the derivation part of the above computation—that is, 

2-computation((Si, S2) d=>* (oreversal(ak+m)Q2pk+mo, Yak+moyi... 
ymoreversal(bk+m)Y)) 

Prom the construction of P2, the form of this computation implies that R 
contains rules (ao,qo, zo,qi),(ai,qi,zi,q2),..., (ak+m,qk+m,ym-i,qk+m+i), where 
s — aoqo, cijXj = Xj-iZj for j = 1 , . . . , k, a i . . . akxk+i = zo ... zk, ak+1... ak+m = 
xfc, and qk+m+i € F, zu ..., zk £ (V - T )* , j / i , . . . ,ym £ T*,h = yiy2 • • • Vm-iVm-
As a result, 

#ao9o 
=> ao#xoqi 
=> a 0 a i # x i q 2 

aoai... dk#xkqk+i [(afc,9fc,Zfe,qfc+i)] 
=> aoa i . . .akak+i#xk+iyiqk+2 [(afc+i,9fe+i,i/i,9fc+2)] 

=> aoai... ajfcajfc+iajfc+m_i#Xfc+m_i2/i... ym-iqk+m 

[(flfc+m-l, Qk+m-l,ym-l, 9fc+m)] 
=> aoai... afcafe+iafc+m#yi... ymqk+m+i [(afe+m,9fe+m,ym,9fc+m+i)] 

[(ao,<?o,z0,gi)] 
[(oi,9i.zi,92)i 
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in Q. As h = ym ... Vm-iVm, h £ L(Q). Thus, L(T) C L(Q). 
To prove L(Q) C L(r), recall that Q satisfies the properties described in 

Lemma 2 and, therefore, generates every h £ L(Q) as described in Corollary 3. 
Then, we can easily construct the generation of h in T that has the form described 
above; a detailed version of this construction is left to the reader. Thus, h £ L(T), 
so L(Q) C L(T). 

Therefore, L(T) = L(Q). Recall that we have already established that 
index(G i) = 2,index(G2) = 3,index(T) = 3, q — degree (T) = l,card(N\) — 3, 
q-Pi = {AQ2}. Thus, Lemma 4 holds. • 

Theorem 5. Let L be a recursively enumerable language such that card(alph(L)) 
> 2. Then, there exists a centralized two-way three-linear 2-PC grammar system, 
r = ({<72}, Gi, G2), such that L(T) = L,index(G\) = 2,index(G2) = 3,index(T) = 
3,q-degree(T) = 1, andT's master, G\ = (Q U Ni,T, Pi, Si), satisfies card(Ni) = 
3,q-Pi = {A^Q2}. 

Proof. This theorem follows from Lemmas 1,2, and 4. • 

5 Some Variants 
This concluding section discusses some variants of the centralized two-way metalin-
ear grammar systems. 

Parallel variant. A parallel variant of a centralized two-way fc-linear PC gram-
mar system makes communication steps as defined in Section 4; however, during 
derivation and reduction steps, it allows their components to simultaneously rewrite 
the word at several places. More formally, let T = (Q,G 1,. . . ,Gn), where for all 
i — 1 , . . . , n, Gi = (Q U Ni,T,Pi,Si) is a two-way fc-linear PC component. As be-
fore, for u, v € (Ni U T)* and A —» x £ Pi, write uAv ¿=> uxv and uxv => ruAv in 
Gi. Let Xi, yi £ (N U T)*, where i = 1 , . . . , n, for some n > 1. If Xi d=> yi in Gi 
for all i = 1 , . . . , n, write xi... xn par-d=> Vi • • • Vn in T. If Xi r=> yi in Gi for all 
i = 1 , . . . , n, write Xi . . . Xfi par-r => Vi • • • Vn in T. To complete the definition of a 
parallel centralized two-way fc-linear PC grammar system, modify the correspond-
ing definition given in Section 3 by substituting paT-d=> and par-r=> for d=> and 
r=>, respectively. By parL(T), denote the language generated by a parallel two-way 
fc-linear PC grammar system, T. 

Theorem 6. Let L be a recursively enumerable language such that card(alph(L)) 
> 2. Then, there exists a parallel centralized two-way three-linear 2-PC grammar 
system, r = ({CJ2}, Gi, G2), such that pa.rL(r) = L,index(Gi) = 2,index(G2) = 
3,index(T) = 3,q-degree(T) = 1, andT's master, G1 = (QuNi,T, Pi, Si), satisfies 
card(Ni) = 3 and q-Pi = {A Q2}. 

Proof. Establish this theorem by analogy with the demonstration of Theorem 5. 
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Terminating mode. The theory of grammar systems has introduced several deriva-
tion modes, such as *-mode or the maximal code for CD grammar systems, and 
studied the corresponding families of languages generated in these modes. In terms 
of the grammar systems discussed in this paper, we also suggest a new derivation 
mode; called the terminating mode. That is, for a centralized 2-PC two-way met-
alinear grammar system, T, introduced in Section 3, the language generated by V in 
the terminating mode, tL(r) , is defined by this equivalence: L(T) contains z e T* 
if and only if there exists a G © such that T makes a a but cannot make any 
further computational step from a and the deletion of each Si in 1-a results in 2. 

Theorem 7. Let L be a recursively enumerable language such that 
card(alph(L))) > 2. Then, there exists a parallel centralized two-way three-linear 
2-PC grammar system, T = ({Q2}, Gi, G2), such that tL(T) = L,index(G\) = 
2,index(G2) = 3,index(T) = 3,q-degree(T) = 1, andT's master, Gi — (Q U 
N1, T, Pi, Si), satisfies card(N^ = 4 and q-Px = {A Q2}. 

Proof. Return to the centralized two-way metalinear 2-PC grammar system, T = 
({Q2},Gi, G2), constructed in the proof of Lemma 4. Modify its master, G\ = 
(Q U NuT,PuSi), as follows. First, add a new nonterminal, X, to N1. Then, 
include {X X} U {X xYy \ x,y € i{VW),x ^ y} into Pi- Complete this 
proof by analogy with the proofs of Lemma 4 and Theorem 5. • 

Returning mode. As stated in Section 1, this paper considers only the non-
returning mode throughout. Reconsider the present study in terms of returning 
mode (see [7]). 
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Retractable state-finite automata without outputs* 

Attila Nagyt 

Abstract 
A homomorphism of an automaton A without outputs onto a subautoma-

ton B of A is called a retract homomorphism if it leaves the elements of B 
fixed. An automaton A is called a retractable automaton if, for every subau-
tomaton B of A, there is a retract homomorphism of A onto B. In [1] and 
[3], special retractable automata are examined. The purpose of this paper is 
to give a construction for state-finite retractable automata without outputs. 

In this paper, by an automaton we mean an automaton without outputs, that 
is, a system A = (A, X, S) consisting of a non-empty state set A, a non-empty input 
set X and a transition function S : A x X i-> A. If A has only one element then 
the automaton A will be called trivial. The function 8 is extended to A x X* (X* 
denotes the free monoid over X) as follows. If a is an arbitrary state of A then 
S(a,e) = a for the empty word e, and 6(a,qx) = S(5(a,q),x) for every q G X*, 
xeX. 

If B is a non-empty subset of the state-set of an automaton A = {A, X, S) 
such that S(b,x) e B for every b £ B and x e X, then B = (B,X,SB ) is an 
automaton, where 5b denotes the restriction of 6 to B x X. This automaton is 
called a subautomaton (more precisely, an A-subautomaton) of A. A subautomaton 
B of an automaton A is called a proper subautomaton of A if B is a proper subset 
of A. A subautomaton B of an automaton A is said to be a minimal subautomaton 
of A if B has no proper subautomaton. If a subautomaton B of an automaton 
A has only one state then B is minimal; the state of B is called a trap of A. 
If an automaton A = (A, X, 5) contains only one trap denoted by ao then A is 
called a one-trap automaton (or an OT-automaton). This fact will be denoted by 
(A, X, <5; ao). If an automaton A has a subautomaton which is contained in every 
subautomaton of A then it is called the kernel of A. The kernel of A is denoted 
by KerA. 

Let A = (A, X, 5) be an automaton containing at most one trap. Let AP denote 
the following set. A0 = A if A does not contain a trap or A is trivial; A0 = A— {ao} 
if A is a non-trivial OT-automaton and ao is the trap of A. Consider the mapping 
5° : A0 x X i-> A0 which is defined for a couple (a, x) € A0 x X if and only if 
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S(a,x) £ A0. In this case, let S°(a,x) = S(a,x). (A0, X , 5°) is a partial automaton 
which will be denoted by A 0 . 

An equivalence relation a of the state set A of an automaton A = (A, X, 5) is 
called a congruence of A if, for every a,b £ A and x £ X, the assumption (a, b) € a 
implies (S(a,x),S(b,x)) £ a. It is easy to see that if B is a subautomaton of an 
automaton A then pg = {(a,b) £ A x A : a = b or a, b £ B} is a congruence of 
A, which is called the Rees congruence of A induced by B. The factor automaton 
A/ps is called the Rees factor automaton of A modulo B. If B is a subautomaton 
of an automaton A then we may describe the Rees factor A/PS as the result of 
collapsing B into a trap ao of the Rees factor, while the elements of A outside of B 
retain their identity. Sometimes we can identify these elements a (a £ A — B) with 
the one-element ps-class [a], that is, we can suppose that the state set of the Rees 
factor is (A - B) U {ao}. 

If a is a state of an automaton A, then the smallest subautomaton R(a) of A 
containing the state a is called the principal subautomaton of A generated by a. It 
is easy to see that R(a) = S(a, X*) — {¿(a,p) : p £ X*} . Clearly, every minimal 
subautomaton of an automaton is principal. 

The relation 1Z on an automaton A defined by 1Z = {(a, b) £ A x A : R(a) = 
R(b)} is an equivalence relation on A. The 72,-class of A containing an element 
a £ A is denoted by Ra. The subset R(a) - Ra is denoted by R[a). It is clear 
that ,R[a] is either empty or (-R[a], X, <5/i[a]) is a subautomaton of A. The factor 
automaton R { o } = R(a)/PR\a) is called a principal factor of A. We note that 
if R[a] = 0 then R { a } is defined to be R(a). For example, if a is a trap then 
R(a) = {a} and so R[a] = 0. 

A mapping 4> (acting on the left) of the state set A of an automaton A = 
{A,X, 6A) into the state set B of an automaton B = (B ,X,5B ) is called a homo-
morphism of A into B if ^>(¿,4(0, x)) — 8B{4>{a),x) for every a £ A and x £ X. 

A mapping (f> (acting on the left) of A3 into B° is called a partial homomorphism 
of a partial automaton A 0 = (A0, X, <5°) into a partial automaton B° = (B°, X, S°B) 
if, for every a £ A°, x £ X, the assumption ¿a(a, x) £ A0 implies 5B(<j>{a),x) £ B° 
and 6B(<j>(a),x) = <f>(SA(a,x)). 

Definition 1. A subautomaton B of an automaton A is said to be a retract sub-
automaton if there is a homomorphism of A onto B which leaves the elements of 
B fixed- Such a homomorphism is called a retract homomorphism of A onto B. 

Definition 2. An automaton A is called a retractable automaton if every subau-
tomaton of A is retract. 
Lemma 1. Every subautomaton of a retractable automaton is retractable. 

Proof. As a subautomaton C of a subautomaton B of an automaton A is also a 
subautomaton of A, and the retriction of a retract homomorphism of A onto C to 
B is a retract homomorphism of B onto C, our assertion is obvious. • 

Lemma 2. If A is a retractable automaton and {a» : i £ 1} are elements of A 
such that R(ai) C R(b) for an element b of A then there is an index j £ I such that 
R(ai) C R(aj) for every i £ I. 
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Proof. Let A = (A, X, 6) be a retractable automaton and {oj : i £ 1} be arbitrary-
elements of A such that R(a,i) C R(b) for an element b of A. Let R = Ui€jR(ai). 
As R = (R, X, Sr) is a subautomaton of A, there is a retract homomorphism Xr 
of A onto R. As A«(6) £ R, there is an index j £ I such that \r(b) £ R(aj). Then 
AR(S(b,p)) = 6{XR(b),p) £ R{aj) for every p £ X*, and so AR(R{b)) C R(aj). As 
R(di) C iJ f l R(b) (i £ I), we get R(a,i) = Afi(i?(aj)) C i?(a.,) for every i e I. • 

Corollary 1. Every subautomaton of a principal subautomaton of a retractable 
automaton is principal. In particular, for every state a of a retractable automaton 
A, i?[a] is either empty or R[a] is a principal subautomaton of A. 

Proof. Let B be a subautomaton of a principal subautomaton R(b) of a retractable 
automaton A. Then R(a) C R(b) for every a £ B. By Lemma 2, there is an 
element c £ B such that R(a) C R(c) for every a £ B. As B = Uaesi?(a), we get 
B = R(c). • 

Let T be a set with a partial ordering < such that every two-element subset of 
T has a lower bound in T and every non-empty subset of T having an upper bound 
in T contains a greatest element. Then T is a semilattice under multiplication * by 
letting a * b (a,b £ T) be the (necessarily unique) greatest lower bound of a and b 
in T. A semilattice which can be constructed as above is called a tree ([4]). 

Corollary 2. A state-finite retractable automaton A contains a kernel if and only 
if the principal subautomata of A form a tree with respect to inclusion. 

Proof Let A be a state-finite retractable automaton. The inclusion (the inclusion 
of the state-sets) is a partial ordering on the set T of all principal subautomata 
of A. By Lemma 2, every non-empty subset of T having an upper bound in T 
contains a greatest element. As every finite tree has a least element, T (which is 
finite) is a tree if and only if it has a least element. As the least element of T is the 
kernel of A, our proof is complete. • 

Lemma 3. Every principal subautomaton of a state-finite retractable automaton 
contains exactly one minimal subautomaton. 

Proof. Prom the finiteness of the state set, it follows that every principal sub-
automaton contains a minimal subautomaton. As a minimal subautomaton is a 
principal subautomaton, our assertion follows from Lemma 2. • 

Lemma 4. If a\, <22 are states of a state-finite retractable automaton A — {A, X, 6) • 
such that Bi C R(a\), Bi C R(a-i) for distinct minimal subautomata Bi and B2 
of A then R(ai) n R{a2) = 0. 

Proof. If c £ R(ai) fl R(a2) then, by Lemma 3, there is a minimal subautomaton 
B of A such that B C R(c) C R(a 1) 0 R(a2). Using again Lemma 3, we get 
B\ = B = B2 which is a contradiction. ' • 
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If A j = (Ai, X,5i), i £ I are automata such that A{ fl Aj = 0 for every i ^ j, 
then A = (A,X, ¿) is an automaton, where A = Uie/^t a n d 5(a,x) = 5i(a,x) for 
every a & Ai and x € X. The automaton A is called the direct sum of the automata 
Aj, i £ I. 

Definition 3. We say that an automaton A is a strong direct sum of a family 
of subautomata Ai, i £ I if A is a direct sum of Ai, i £ I and, for every couple 
(i,j) £ / x I, there is a homomorphism of Ai into Aj. 

Theorem 1. A strong direct sum of retractable automata is retractable. 

Proof Assume that an automaton A = (A, X, 5) is a strong direct sum of automata 
Ai = (Ai,X,Si), i £ I. Let 4>i,j be the corresponding homomorphism of Ai into 
A j (i,j £ I). Let R be an arbitrary subautomaton of A. Let Ri = Rf) Ai. It is 
clear that Ri is either empty or R j = (Ri, X, SRi) is a subautomaton of A¿. Let 
A/j; denote a retract homomorphism of Ai onto R j if Ri ^ 0, and let ¿o denote a 
fixed index, for which Ri0 ^ 0. We define a mapping AR of A onto R as follows. If 
a £ Ai and Ri = 0, then let AR(a) = \Rio (<t>i,i0(a))', if a € -A» and Ri ^ 0, then let 
AR(a) = XRi(a). It is clear that AR mapps A onto R and leaves the elements of R 
fixed. To prove that AR is a homomorphism of A onto R, let i £ I, a £ Ai, x £ X 
be arbitrary elements. In case ii* = 0, 

XR(5(a,x)) = XRi^faioiSifax))) = XRi0(Si0 (^>iiio(a),x)) = 

= Sio&Ri o (<f>i,i0(a))>x) = ¿(Afi(a),x), 

and, in case Ri ^ 0, 

A R(6(a,x)) = A Ri(6i(a,x)) = Si(XRi(a),x) = S(XR(a),x), 

because a,5(a,x) £ Ai. Hence XR is a retract homomorphism of A onto R. Thus 
the theorem is proved. • 

Theorem 2. For a state-finite automaton A = (A, X, S), the following assertions 
are equivalent: 
(i) A is retractable; 
(ii) A is a direct sum of finite many state-finite retractable automata containing 
kernels being isomorphic to each other. 
(Hi) A is a strong direct sum of finite many state-finite retractable automata con-
taining kernels. 

Proof, (i) implies (ii): Assume that A is retractable. As A is finite, it has a 
minimal subautomaton. Let {Bj, i = 1,2, . . . r } be the set of all distinct minimal 
subautomata of A. Let Ai = Uae/i{.R(a) : Bi C R(a)}, i = 1 ,2, . . . ,r. It is clear 
that Ai is a subautomaton of A and Bj is the kernel of A j for every i = 1 , . . . ,r. 
By Lemma 3, for every principal subautomaton R(a) of A, there is a unique index 
i such that Bi C R(a). Thus A = U¿=1Ai. By Lemma 4, Ai n Aj = 0 for every 
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i ^ j. Hence A is a direct sum of the automata Aj, i = 1, . . . , r. By Lemma 1, 
every automaton Ai is retractable. Let i,j 6 {1, 2 , . . . , r } be arbitrary. As Bj is a 
minimal subautomaton of A, the retract homomorphism ABi of A onto B* maps 
Bj onto Bi. Thus \BJ\ > \BI\. Similarly, \BT\ > \BJ\. Thus \BI\ = \BJ\ and the 
restriction of ABj to Bi is an isomorphism of B* onto Bj . Thus (ii) is satisfied. 

(ii) implies (iii): Assume that A is a direct sum of the state-finite retractable 
automata A¿, i = 1,2,... ,r such that each of Ai contains a kernel Bi, and, for 
every i,j G {1 ,2 , . . . , r} , there is an isomorphism cpij of B* onto Bj . It is easy to 
see that defined by 

$ij(a) = ^¿,j(ABi(a)), a e Ai 

is a homomorphism of A j into Aj, where A b, denotes a retract homomorphism of 
A j onto B». Thus A satisfies (iii). 

(iii) implies (i): By Theorem 1, it is obvious. • 

By the previous theorem, we concentrate our attention to state-finite retractable 
automata containing a kernel. These automata will be described by Corollary 3 
and Theorem 7. First consider some results and notions which will be needed for 
us. 

Lemma 5. Every principal factor of an automaton can contain at most one trap. 

Proof. If i?[a] = 0 for a state a then the principal factor R { a } has a trap only that 
case when a is a trap of A, that is, the principal factor is trivial. If il[a] ^ 0 then 
R(b) — R(a) for every b € Ra = R(a) — il[o], and so R { a } contains only one trap, 
namely the pR[a]-class R[a] of R(a). • 

Definition 4. An automaton A = (A, X, S) is called strongly connected if, for every 
couple (a, b) € A x A, there is a word p 6 X+ (X+ denotes the free semigroup over 
X) such that b = S(a,p). 

We note that every strongly connected automaton can contain only one subau-
tomaton, namely itself. We also note that if an automaton is trivial (has only one 
state which is a trap) then it is strongly connected. If an automaton has at least 
two state and has a trap then it is not strongly connected. 

Definition 5. A non-trivial OT-automaton A = {A, X,5,ao) is called strongly 
trap-connected if, for every couple (a,b) € A x A, a ^ a$, there is a wordp € X+ 

such that b = S (a, p). 

We note that every strongly trap-connected automaton A = (A, X, ao) con-
tains only two subautomaton, namely itself and ({ao} ,X, <5{ao})- Moreover, for 
every state a ^ ao of A there is a word p € such that a = S(a,p). 

Definition 6. We say that a non-trivial OT-automaton A = (A, X, S\ao) is 
strongly trapped if 5(a, x) — ao for every a £ A and x £ X. 
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Theorem 3. Every principal factor of an automaton is either strongly connected 
or strongly trap-connected or strongly trapped. 

Proof. If .R[a] = 0 then R { a } = R(a) is strongly connected. If i?[a] ^ 0 then, 
by Lemma 5, R { a } is a non-trivial OT-automaton. Let ao denote the trap of 
R {a } . If |i?a| = 1, that is, i?{a} = {a,ao}, then R { a } is either strongly trapped 
(if S(a,x) £ ii[a] in A, that is, S(a,x) = ao in R { a } for every x £ X) or strongly 
trap-connected (if a = S(a, x) for some x 6 X). If |i?„| > 1 then, for every elements 
b,c of Ra, c = S(b,p) for some p £ X+. Moreover, for every b £ Ra, there is a word 
p £ X+ such that S(b,p) £ /¡![a] in A, that is, S(b,p) = ao in R {a } . Hence R{a} is 
strongly trap-connected. • 

Definition 7. An automaton A is called semiconnected if every principal factor of 
A is either strongly connected or strongly trap-connected. 

Theorem 4. An automaton A = (A, X, 6) is semiconnected if and only if every 
subautomaton B of A satisfies the following: for every a £ B there are elements 
b £ B and p £ X+ such that a = 8(b,p). 

Proof, Let A = (A, X, 6) be a semiconnected automaton and B be a subautomaton 
of A. Let a be an arbitrary element of B. Then R(a) C B. If a is a trap then 
a = 5(a,x) for every x 6 X. Consider the case when a is not a trap. Then 
\R(a)\ > 2. If R[a] = 0 then, by Theorem 3, R(a) = R { a } is strongly connected 
which means that, for every b £ R(a) there is a word p £ X+ such that a = 5(b,p). 
If .ft[a] ^ 0 then, by Theorem 3, R { a } is strongly trap-connected and so, for every 
element b £ Ra, there is a word p £ X+ such that a = 6(b,p). Thus, in all cases, 
there is a state b £ B and a word p £ X+ such that a = S(b,p). 

Conversely, assume that every subautomaton of an automaton A satisfies the 
condition of the theorem. We show that A is semiconnected. Let a be an arbitrary 
element of A. If a is a trap of A then the principal factor R { a } is trivial (and so it 
is strongly connected). Consider the case when a is not a trap of A. Then a is an 
element of R { a } (and is not the trap of R {a}) . By Theorem 3, it is sufficient to show 
that the principal factor R { a } is not strongly trapped. As R(a) is a subautomaton 
of A, by the condition of the theorem, there are elements b £ R(a) p £ X* and 
x £ X such that a = S(b,px) = 5(6(b,p),x) in A. It is clear that b' = 5(b,p) ^ i?[a] 
and so a = S(b\ x) in R {a } . Thus R {a } is not strongly trapped. • 

Definition 8. Let B = (B,X,5B) be a subautomaton of an automaton A = 
(A,X,S). We say that A is a dilation of B if there is a mapping <f> of A onto 
B which leaves the elements of B fixed and S(a,x) = 5B(<f>{a),x) for all a £ A and 
x£X. 

Theorem 5. Every dilation of a retractable automaton is retractable. 

Proof. Let A = (A,X, S) be a dilation of a retractable subautomaton B = 
(B,X,5b)- Then there is a mapping <f> of A onto B which leaves the elements 
of B fixed and S(a, x) = 5B{4>(a), x) for every a £ A and x £ X. Let R be a subau-
tomaton of A. Then, for every c £ R and x £ X, 5(c,x) £ RC\B. Let \RT\B denote 



Retractable state-finite automata without outputs 405 

a retract homomorphism of B onto the subautomaton R f l B . Define a mapping 
XR of A onto R as follows. Let AR(a) = a if a G R, and let AR(O) = AR , - IB (</>(<*)) IF 

a £ R. We show that XR is a homomorpism of A onto R. Let a E A and x G X be 
arbitrary elements. If a G R then 

6(XR(a), x) = 5(a, x) = X R{5(a, x)). 

Assume a £ R. Then 

5(XR(a),x) = M-WiB(0(a)),x) = 

= ^RNB{5B(<j>(a),x)) = XR(S(a,x)), 

because A« (a), S(a, x) G B and the restriction of A R to B equals A RnB- Hence A R is 
a homomorphism of A onto R. As AR leaves the elements of R fixed, it is a retract 
homomorphism of A onto R. Consequently, A is a retractable automaton. • 

Theorem 6. Every retractable automaton is a dilation of a semiconnected re-
tractable automaton. 

Proof. Let A = (A, X, 6) be a retractable automaton and let B = 5(A,X). Then 
B = (B, X, 5b) is a subautomaton of A and so there is a retract homomorphism <j> 
of A onto B. Let a G A, x G X be arbitrary elements. Then 8(a, x) = <j>(5(a,x)) = 
6B((f>(a),x). Hence A is a dilation of B. By Lemma 1, B is retractable. Let R be 
an arbitrary subautomaton of B. If c G R is an arbitrary element, then c = 8(a, x) 
for some a G A and x G X. Let AR denote the retract homomorphism of A onto 
R. Then AR{a) G R and 

Corollary 3. An automaton is retractable if and only if it is a dilation of a semi-
connected retractable automaton. 

Theorem 2 shows that the state-finite retractable automata are exactly the di-
rect sums of finite many state-finite retractable automata such that each component 
in a mentioned direct sum contains a kernel, and these kernels are isomorphic with 
each other. Corollary 3 and the remark after Theorem 2 show that every component 
in a direct sum is a dilation of a state-finite semiconnected retractable automaton 
containing a kernel. Theorem 7 will show how we can construct the state-finite 
semiconnected retractable automata containing a kernel. These results togethet 
give a complete description of state-finite retractable automata. 

Construction. Let T be a finite tree (under partial ordering < ) with the least 
element io• Let i >- j (i,j G T) denote the fact that i > j and, for every k G T, 
i>k>j implies i = k or j = k. 

c = XR(C) = AR(5{a, x)) = 6(XR(a), x). 

Thus, by Theorem 4, B is semiconnected. • 

Proof. By the previous two theorems, it is evident. • 
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Let A j = (Ai, X, Si), i £T be a family of disjunct automata such that 
(i) A i o is strongly connected and A j is a strongly trap-connected OT-automaton 

for every i £ T with i ^ io-
(ii) Let <f>iti denote the identity mapping of Aj , and assume that, for every 

i,j£T with i >- j, there is a partial homomorphism <pij of A° into A ° such that 
(iii) for every i >- j there are elements a £ A? and x £ X such that ¿¿(a, x) £ A® 

and Sj(<j>itj(a),x) £ . 
For arbitrary elements i,j£T with i > j, define a partial homomorphism 

of A° into as follows. = fa^ and, if i > j such that i >- fci >- .. ,kn X j 
then let 

= <t>kn,j O <£fc„_i,fcn 0 . . . 0 4>kltk2 ° <f>i,ki-

(We note that if i > j > k are arbitrary elements of T then «E»̂  = $jtk ° 
Let A = Uigr Define a transition function 6' : A x X i-» A as follows. If 

a£ A° and x € X then let 5'(a,x) — ¿¿'[Q,i](i>i,i'[a,z](a),x)> where i'[a,x] denotes 
the greatest element of the set {j £ T : 5j($itj(a), x) £ A°}. 

It is easy to see that A = (A, X, 5') is an automaton which will be denoted by 
( .A i , X , 5 i - , ( j ) i j , T ) . 
Theorem 7. A finite automaton is a semiconnected retractable automaton con-
taining a kernel if and only if it is isomorphic to an automaton (Ai,X,5i\<f>ij,T) 
constructed as above. 

Proof. Let R be a subautomaton of an automaton (Aj, X, Si; <f>ij ,T). As every au-
tomaton At (i £ T— {¿o}) is strongly trap-connected and A¿0 is strongly connected, 
it follows that R = Ujgr-Aj for some non-empty subset F of T. We show that T 
is an ideal of T, that is, i £ T and j < i together imply j £ T for all i,j £ T. 
Let i be an arbitrary element of T such that i £ T, i ^ io- If j £ T with i y j 
then, by (iii), there are elements a £ A° and x £ X such that 5i(a,x) £ and 
Sj(<piij(a),x) £ A?. Then S'(a,x) £ A°r Hence A<] n R ± 0 which implies that 
i j c i ? and so j £ r . This implies that T is an ideal of T. As T is a tree, 

7r : ii—» max{7 £ T : 7 < i} 

is a well-defined mapping of T onto F which leaves the elements of T fixed (in fact, 
7r is a retract homomorphism of the semigroup T onto the ideal T of T (see [4])). 
We define a retract homomorphism AR of A onto R. For an arbitrary element 
a £ A, let 

A R{a) = $ i i f f ( i ) ( a ) 

if a € A°. It is easy to see that AR leaves the elements of R fixed. We prove that 
Ar is a homomorphism of A onto R. Let x £ X, a £ A° be arbitrary elements. 
Using S'(a,x) — <5i'[a,z](^t,t'[a,x](o),x) £ ^ and the fact that $i<[a,xU(i'[a,x]) i s 

a partial homomorphism, we get 

A R(6'(a,x)) = XR(5i>[atX}($iti>[a<x](a),x)) = 
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Using $ i i 7 r ( 0(a) G A°n(i), we have 

8'( XR(a),x) = 6'($iMi)(a),x) = 

To prove that AR(8'(a, x)) = S'(XR(a), x), it is sufficient to show that 

(7r(i))'[$i)7r (i) (a), x] = 7T(i'[a, 2]). 

First, assume i'[a, x) > ir(i) (and so ir{i'[a,x)) = 7r(i)). As <j>i>[a,x),-n{.i) is a partial 
homomorphism of A ° [ a x ] into and ¿¿<[a,x]($t,i<[a,x](a),x) G we get 

¿ir(i)($i,ir(i)(a),aO = i7r(o($t'[o,i],7r(i)(^i,i'[o,i](a)).a;) = 

and so 
(7r(i))'[$i)W(i)(a),x] = tt(z) = ir{i'[a,x]). 

Next, consider the case when ¿'[a,a;] < ir(i) (and so 7r(i'[a,x]) = i'[a,x}). If j £ T 
with 7r(i) > j > i'[a, x] then we have 

»«(<*)),- Sj($ij(a),z) $ A°. 

Then 
(7r(i))'[$i|ff(0(o),x] < i'\a,x\. 

As 
¿i'[«,x](^(0,i'[a.«](®i,,(i)(a)),x) = <5i'[o,x](^i,i'[a,x](a),2;) € 

we get 
(Tr(i))'[<i>ii7r(i)(a),x] > i'[a,x]. 

Hence 
(7r(i))'[$iiW(i)(a),x] = i'[a,x] = tt (i'[a,x\). 

Consequently, (7r(i))'[$iiir(i)(a),x] = ir(i'[a,x]) in both cases. Hence XR is a (re-
tract) homomorphism of A onto R. Thus A = (Ai,X,<j>i,j>T) is a retractable 
automaton. 

We show that A is semiconnected. If R is an arbitrary subautomaton of A, 
then there is an ideal T of T such that R = UJ^RAJ (see above). Let a G R be 
an arbitrary element. Then a £ A°k for some k G I\ As Ak is strongly connected 
or strongly trap-connected, there are elements b G and p G X+ such that 
a = 5k{b,p) = 5'(b,p). By Theorem 4, it means that A is semiconnected. As io is 
contained in every ideal of T, A¿0 is the kernel of (A,, X, 5i; cfiij, T). 
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Conversely, let A be a finite semiconnected retractable automaton containing 
a kernel. Let Prf(A) denote the set of all principal factors of A. By Corollary 
2, Prf(A) is a (finite) tree under partial ordering < defined by R { a } < R{6 } if 
and only if R(a) C R(b). As A is semiconnected, the least element of Prf(A) is 
strongly connected, the other ones are strongly trap-connected. 

Let T be a set with |T| = \Prf(A)\. Denote a bijection of T onto Prf(A) by / . 
Define a partial ordering < on T by i < j (i,j £ T) if and only if f(i) < f(j). Let 
¿0 denote the least element of T. Clearly, T is a finite tree with the least element 
¿o- For every element i G T, fix an element aj in A such that f(i) = R {a j } . (We 
note that R{a j } = Rja.,} iff a* = aj iff i = j). As R{a j 0 } is strongly connected 
and R{a j } is strongly trap-connected if i ^ IQ, condition (i) of the Construction is 
satisfied. 

Let Afi(0j.) (j € T) denote a fix retract homomorphism of A onto R(aj) . For 
every i,j £ T with i X j, let Aij denote the restriction of to R(ai). It is 
obvious that A ¿j is a retract homomorphism of R(aj) onto R ( a j ) for every i >z j, 
(i,j £ T). Moreover, Aj,j is the identity mapping of R(aj), for every i £ T. 
We show that Aij maps Rai into Raj. Let a £ Rai be an arbitrary element (so 
R(a) — R(ai)). Then, for everyp G X*, Aij(6(a,p)) — 5(Xij(a),p). liXitj(a) was in 
R[aj) then we would have Aij(5(a,p)) £ i?[aj] for every p £ X*, because R[aj] is a 
subautomaton of A. This would imply that A¿,j (R(at)) C ii[aj] which is impossible, 
because A itj maps R(ai) onto R(aj) = Raj U i? [a.̂  ] D R[aj]. Hence A ij maps Rai 

into Raj and so A ¿j can be considered as a mapping of i?°{ai} into R°{aj}. If 
5(a,x) £ Rai for some a G Rai and x £ X then 6(Xitj(a),x) — Xi:j(5(a,x)) £ Raj. 
Hence Aj,j is a partial homomorphism of the partial automaton R° {a i } into the 
partial automaton R° {a j } . Thus condition (ii) of the Construction is satisfied (for 
A j = R{aj } , (pij = A i j ) . 

Assume i >- j. Let b £ Raj be an arbitrary element. Then ai^=b £ R(ai) and 
so there is a word p = x\x2 •. • xn £ X+ (xi,x2, • •. xn £ X) such that b = S(ai}p). 
Let m be the least index such that 6(ai,x\... xm) £ Raj. Consider an element a 
of Rai (or of R 0 {a j } ) as follows. Let a — ai if m = 1. Let a = S(ai, x\... x m _ i ) if 
m > 1. Then S(a,xm) g Rai (or S(a, xm) £ R°{at}). On the other hand, 

8(Xij(a),xm) = Xij(S(a,xm)) =5(a,xm) £ Raj = R°{aj}, 

because Xij leaves the elements of R(aj) fixed. Thus (iii) of the Construction is 
satisfied (for 4>i,j = Xij, x = xm). 

For arbitrary elements i,j £ T with i > j, define the mapping as follows. 
Let i>iti = At,i and, if i > j with i >- ki >- k2 X ... fcn X j then let 

= ^fen ,i ° • • • ° ^¿,fcl • 
It is clear that is a retract homomorphism of R(aj) onto R(a3) such that 
it maps Rai into Ra]. Thus $ij can be considered as a partial homomorphism 
of R° {a i } .into R 0 { o j } . Moreover, = o ^¿ j for every i,j,k £ T with 
i>j>k. 

Construct the automaton R = (i?{ai},X,<5j; Xij,T), where Si is the transitive 
function of the factor automaton R{a i } induced by 8. It is clear that the state sets 
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of the automata R and A are the same. We show that the transitive functions <5 of 
A equals the transitive function 6' of R. Let i G T, a G Rai = i?0{ái}', i 6 X be 
arbitrary elements. Assume S(a,x) G Raj (i > j)- Let k G T with i > k > j. Then 
5(a,x) G fí[afc] C R(ak) and so 

6($i<k(a),x) = $itk(S(a,x)) = 5(a,x) £ Rak = R°'{ak}, 

because $j,fc leaves the elements of R(ak) fixed. If j > k then 

&{$itk(a),x) = $iifc(J(a,i)) = 

. = $ j tk o <bitj(5(a,x)) = $jtk(ő(a,x)) G Rak = R°{ak}, 

because leaves the element 6(a,x) G Raj = fixed; and maps Raj 

into Rak. Consequently i'[a,x] = j. Hence 

6(a,x) = $ij(ő(a,x)) = ö($i,j(a),x) = őj($ij(ay,x) = 

= ¿i'[a,x]($i,i'[a,x](a),aO = ő'(a,x). 

Thus the theorem is proved. • 
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Relationally defined clones of tree functions 
closed under selection or primitive recursion 

Reinhard Pöschel* Alexander Semigrodskikhf and Heiko Vogler* 

Abstract 

We investigate classes of tree functions which are closed under composition 
and primitive recursion or selection (a restricted form of recursion). The main 
result is the characterization of those finitary relations Q (on the set of all trees 
of a fixed signature) for which the clone of tree functions preserving g is closed 
under selection. Moreover, it turns out that such clones Eire closed also under 
primitive recursion. 

Introduction 
Classes of tree functions and primitive recursion for such functions were inves-
tigated, e.g., in [FiilHVV93], [EngV91], [Hup78], [Kla84]. In this paper a tree 
function will be an operation / : Tn —> T on the set T of all trees of a given finite 
signature (in general one allows trees of different signature). 

If a class of operations is a clone (i.e. if it contains all projections and is closed 
with respect to composition), then it can be described by invariant relations (cf. 
e.g. [PosK79], [Pos80], [PosOl]). 

In this paper we apply such results from clone theory and ask which finitary 
relations characterize clones of tree functions that in addition axe closed under 
primitive .recursion. The answer is given in Theorem 2.1 and shows that such 
relations are easy to describe: they are direct products of order ideals of trees (an 
order ideal contains with a tree also all its subtrees). Moreover it turns out that for 
such clones the closure under primitive recursion is equivalent to a much weaker 
closure (the so-called selection or S-closure, cf. 1.5) for which no real recursion is 
necessary. 
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1 Notions and Notation 
Let N := {0 ,1 ,2 , . . . } denote the set of natural numbers and let N + := N \ {0}. 

1.1. Clone theoretic notions and notation. Let T be an arbitrary set (later 
we shall use only the set T of trees) and let Op (T) denote the set of all finitary 
operations on T, i.e. functions of the form / : T n —• T (n £ N+). A set F C Op(T) 
is called a clone if F contains all projections e" (n e N+ , i £ {1 , . . . , n}) defined by 

e?(xi,...,xn) =Xi (1-11) 

(for every x\,...,xn £ T) and if F is closed with respect to composition, i.e. for 
every n-ary / £ F and m-ary gi,..., gn £ F the m-ary composition f(gi,..., gn) 
defined by 

xm)) (1.1.2) 

also belongs to F, n,m £ N+. For technical reasons 0-ary operations will not be 
considered in clones; they are replaced by unary constant operations, i.e., a constant 
t £ T is replaced by the unary constant operation T —> T : x i—> t. 

The least clone containing a given set F of operations over T will be denoted 
by (F) . The projection e\ : T —> T : x > x is the identity mapping and will be 
denoted simply by e. The clone (e) generated by e is the least clone: it consists 
exactly of all projections. 

We say that an n-ary operation / : Tn —> T preserves an m-ary relation g C Tm 

(or, equivalently, that g is invariant for / ) if c i , . . . , Cn 6 g implies f(ci,..., Cn) £ Q, 
where 

/(ci, • • • , CN) := ( / ( c n , . . . ,C1„), . . . , /(Cmi, . . . ,CMN)) 

for m-tuples Ci = ( cn , . . . .Cmi), ...,CN- (cin,.. •, CMN) (see Fig.l). 

(1.1.3) 

r y 
\pvinl 

v y 
C\ C3 

\J 
Cn 

E Q E Q e e 

S V ) i - Î - ^ i m \ / ( c n , . . . , c i „ ) 

/ 
V ! / 

f(Cl,...,Cn) 
G 6 

y(Cml) • • • ! <-7nn) 

Figure 1: The operation / preserves the relation g 
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The set of all operations preserving a given relation g (so-called polymorphisms) 
will be denoted by 

Pol £> := { / | / : Tn -> T preserves g, n G N+} . (1.1.4) 

It is well-known from clone theory (but also easy to see) that Pole is always 
a clone (e.g. [PosK79, 1.1.15]), moreover every clone on a finite set T can be 
characterized as PolQ for some set Q of finitary relations ([PosK79, 1.2.1]), where 

PolQ := p| Polg. 
e€<3 

For infinite T this remains true either if one considers so-called locally closed clones 
or if infinitary relations are allowed. We do not go into details here and refer to 
e.g. [Pos80], [PosOl]. 

We say that the i-th and j-th component of an m-ary relation g C T m coincide 
(i,j G {1 , . . . , m}) if a,i = a,j for all elements (ai , . . . , am) £ g. A relation g is called 
reduced if no two of its components coincide. A relation can always be reduced with-
out changing the set of polymorphisms: if the i-th and j-th component of g coincide 
then Pole = Polg' where g' := {(ai,. . . ,aj_i ,aj+ i , . . . ,am) | (ai, . . . ,am) G e} is 
obtained from g by deleting the j-th component. Thus we may consider reduced 
relations only. 

1.2. Trees and subtrees. This is a well-known concept in mathematics and 
computer science; nevertheless we shall repeat it here in order to fix notions and 
notation. Let E be a finite signature (or ranked alphabet), i.e. a finite set of symbols 
such that to every symbol a £ E a rank (or arity) ra G N is assigned. Let 
En := {a g E | ra = n} denote the set of all symbols of rank n (n G N). We 
assume that Eo ^ 0. A tree (or ground term) over E is an expression which can be 
obtained inductively by the following rules: 

(0) Every <7 G Eo is a tree. 

(1) If a G E r (r G N-|.) and if s i , . . . , sr are trees, then the expression cr(si, . . . , sr) 
is also a tree. 

If t is a tree of the form <r(.si,... ,sr) (according to (1)), then the trees s i , . . . , s r 

are called maximal subtrees of t, and we write s< t if s is a maximal subtree of t. 
A tree s is called subtree of a tree t, notation s < t, if s = t or if there is a finite 
sequence SQ,. .. ,si of trees with 

s = SQ< S I < . . . < si = t 

(i.e., < is the transitive and reflexive closure of < ). Note that a tree t G Eo has no 
proper subtrees. As usual we write s < t if s <t and s ^ i . 

From now on T will always denote the set of all trees over a fixed signature 
E = (Er)rem. 
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A subset I C T of trees is an order ideal (down-set) if it is closed with respect 
to subtrees, i.e. if s < t and t £ I, then s £ I. 

The height h(t) of a tree t is defined inductively on the structure of trees 
(according to the above rules): h(t) := 0 for i £ Eo, and h(a(s\,..., s r ) ) := 
1 + max{ / i (s i ) , . . . , h(sr)} for a £ E r (r £ N+) and si,...,sr £T. For k £ N let 
Tfc denote the set of all trees in T of height < k. 

1.3. Primitive recursion for tree functions. An operation / : T " —• T will 
also be called tree function. Let n £ N+ and for every a £ E let ga : T n + 2 r " —> T 
be an (n + 2rCT)-ary tree function. The (n + l)-ary tree function h : Tn+1 —> T 
defined recursively (in its last argument) by 

h(ai,... ,an,a) := ga(a\,..., a„) for a £ E0 , a i , . . . ,an £ T, (1.3.1) 
h(ai,... ,an,cr(ti,... ,tr)) := 

9<J(cli, •• - ,an,ti,... , i r , / i ( a i , . . . , a „ , i i ) , . . . , h(ai,.. .,an,tr)) (1.3.2) 
for a £ E r , r > 1, and a i,... ,an,t i,... ,tr £ T, 

will be denoted by PR(ga-)cr€£; we say that h is obtained from (ga)a^T. by primitive 
recursion (PR). By convention, equation 1.3.1 is considered as the special case 
of 1.3.2 for r = 0. 

A set F C Op(T) of tree functions is called PR-closed if PR(5CT)treE £ F 
whenever ga £ F for all a £ E. For F C Op(T), by 

((Fin 

we shall denote the least set of tree functions which contains F and which is both, a 
clone and PR-closed. The existence of {(_F)̂ R is guaranteed because the intersection 
of PR-closed clones is again a PR-closed clone. Obviously, ( F ) C ((F))pR. 

1.4 Examples, a) The least PR-closed clone is ((0))pR; by definition it must con-
tain all projections and we shall denote this clone also by ({e))̂ R. Lemma 2.4 and 
Proposition 2.5 shall describe some further operations which also belong to ((e)^R. 

b) Let ibase consist of all the constant tree functions constt : Tn —> T : 
(ii ,...,£„) i-> t (t £ T), and all the top concatenations topCT : Tr —> T : 
( i i , . . . ,tr) <r(ti,. ..,tr) (a £ E r , r e N+ ) . Then ((FbaseL i s t h e c l a s s PREC S 

of all primitive recursive tree functions over E (cf. e.g. [EngV91, 4.6]). 

We are particularly interested in the following very special form of primitive 
recursion. 

1.5. S-closure for tree functions. For a family {g'a)aeT, of (n + rv)-ary tree 
functions g'a (cr £ E) we define 

S(<?;)„6£ := PR(<?a)a6S (1.5.1) 
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where g„ is the (n + 2rCT)-ary tree function defined by 

(1.5.2) 

for every a € i.e. we have in particular (for the (n + l)-ary tree function 
h = s 

ft(ai,... ,a„,cr(ii , . . . , i r„)) = 
g<j(ai,... ,an,ti,...,tr<7, /i(ai,... ,an,ii),... ,h(ai,... ,an,tr<T)) 

= 9Uai>--->an'ti'--->tr<r)- (1-5.3) 

Analogously to the PR-closure and the notation ((F))pR, we introduce the S-
closure of F (using the special primitive recursion S instead of PR) and let 

IN 

denote the least S-closed clone containing F. We call this S-closure also selection 
closure because the functions ga just select and there is no real recursion (i.e. h is 
not allowed to call itself recursively, see 1.3.2 and 1.5.3). By definition we have 

((F% C ( F l K (1.5.4) 

and this inclusion is proper in general. 

1.6 Remarks, a) If we write PR(g(T)a6£ (or S(g£)a6s) we assume that the oper-
ations ga (or g'a) are of arity n + 2ra (or n + r„) for some fixed n € N + . 

b) Usually the definition of primitive recursion also includes the case n = 0 
in 1.3. Then however the operations g„ are 0-ary constants for a G Eo (cf. 1.3.1) 
which does not fit our convention not to consider 0-ary operations for clones (cf. 1.1). 
Nevertheless the restriction to n > 1 is no loss of generality: In fact, let h:T —>T 
be the unary tree function obtained from (1.3.1) and (1.3.2) in case n = 0 with given 
constants ga € T for ra = 0 and operations ga : T2r" —> T for ra > 1. Further let 
g'a : T1+2r° —> T be the operations obtained from ga by adding a fictitious variable 
(at the first place), i.e. g'a := ga{el+2r",. •.,ej^r") for ra > 1, and g'a{a) := g„ for 
ra = 0, a G T. Then, for h' := PR(p^) as given with 1.3, we have h = h'(e, e) and 
h' = h(e2). Thus h belongs to a clone F if and only if h' does. 

2 Clones Pol Q of tree functions closed under prim-
itive recursion 

The following theorem is the main result of this paper. It characterizes finitary 
relations g over trees with the property that the clone Pol g of tree functions is 
closed with respect to primitive recursion. 

2.1 Theorem. Let m € N+ and let g C Tm be a reduced relation. Then the 
following conditions are equivalent: 
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(i) ((Pol Q)Ir = Pol 0 , 

(ii) ((Pole%= Pole, 

(iii) there exist order ideals I\,... ,Im CT such that g = I\ x • • • x Im . 

2.2 Remarks. The tree functions in Pole with e as in 2.1 (iii) can easily be de-
scribed: 

m 
P o i e = P) Pol/ j 

j=i 
where Pol Ij is the set of tree functions preserving the order ideal Ij (considered 
as unary relation on T), i.e. each / £ Pol Ij maps trees from Ij to trees which are 
again in Ij.. By Theorem 2.1, every clone Pol Ij is PR-closed. Thus any intersection 
- finite or infinite - of clones of the form Pol / for some order ideal I C T gives 
a PR-closed clone. Consequently the implication (iii) = > (i) of Theorem 2.1 can 
be generalized to infinitary relations g = Fljgj Ij (J being an infinite index set) 
because Pole = Dje j Ij- However, the converse (i) = > (iii) does not remain 
true for infinitary relations (cf. 3.3). 

As mentioned in 1.1 the restriction to reduced relations is not a loss of generality, 
however it is crucial for the formulation of Theorem 2.1. If g is not reduced then 
it is no longer a direct product of order ideals (note I\ x h { (x i x) \ x £ / i } ) . 

In clone theory usually relations are even further reduced to relations without 
"fictitious components". In the context of Theorem 2.1 we have: the j-th compo-
nent of g = h x • •• x Im is fictitious iff the order ideal Ij is trivial, i.e., Ij = T. 
Relations which differ only in fictitious components determine the same clone Pol g. 

In the remainder of this section we shall prove Theorem 2.1. Note that 
2.1(i) = > (ii) is trivial because Pole C ((Polg)\ C ((Polg%R (cf. 1.5.4). We start 
with the following more or less straightforward part: 

Proof of 2.1 (¡ii) (i). 

Let g = I\ x ••• x Im where . . . , Im C T are order ideals. Then Pole = 
f l j l i Pol / j (cf. 2.2) and (iii) = > (i) of Theorem 2.1 follows from the following 
lemma. 

2.3 Lemma. Let I CT be an order ideal. Then ((Pol I\R = Pol I. 

Proof. We have to show that Pol I is PR-closed. Let n £ N+ and, for every a € E, 
let ga be an (n + 2rCT)-ary operation in Pol/ . We must show h € Pol / for the 
(n-)- l)-ary operation h := P R ^ V e s , i.e., s\,... ,sn,s £ I implies 

• - h(su...,sn,s)£l. (2.3.1) 

Thus let s i , . . . , s„, s £ I. We show 2.3.1 for s £ Tit by induction on k: 
For s = a £ So (i-e. k = 0) we have 

' MSI> • • • > sn, S) = 9cT(SI, ...,sn) £ I 
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because g„ £ Pol / by assumption and s\,..., sn £ I. 
Now assume that 2.3.1 holds for every s £ Tk-i (k > 1). Let s £ Tk 

be of the form s = <r(ii,... ,tr<7), ra > 1. Then ti,...,tTa £ Tk- i and we 
get h(si,... ,sn,tj) £ I for j £ { 1 , . . . , 7 > } by induction hypothesis. Note that 
iii • • • ,tr„ G I because I is an order ideal and a(ti,... ,tra) = s £ I by assumption. 
Consequently 

/ i ( s i , . . . , s „ , s ) 

The part (ii) = > (iii) is crucial for the proof of Theorem 2.1. It is based on 
Proposition 2.5 which might be of independent interest (as well as Lemma 2.4): 
here we describe properties of the least S-closed clone ((e%. 

2.4 Lemma. Let s,t £ T and s < t. Then there exists an operation fttS £ ((e)̂  
such that ft,s{t) = s. 

Proof. The case t = s is trivial (take ft,s '•= e)- Thus assume s < t. 
At first we consider the case s< t, i.e. t has the form t = S(si,..., sk) with 

Si = s and S £ Efc for some k > 1 and i £ { l , . . . , f c } . We construct a binary 
operation h £ ((e)\ with h(t, t) = s. Define (g'^aex as follows: 

will play no essential role in the following and could be chosen arbitrarily in ({e\. 
Let h := S(<^)a6£ (cf. 1.5.1 and 1.3 with n = 1). Since all g'a are projections (and 
therefore belong to (e)) we have h £ ({e%. Further we have 

Choosing ftts := h(e, e) £ ({e)\ we have ft,s(t) = h(t,t) — s and consequently 
ft,s £ ((e\ exists for s< t. 

Finally, if s is not a maximal subtree of t, then there exists a chain 

and as shown above for every j £ {0 ,1 , . . . , I - 1}, there exists f3j,sJ+i G ({e)\ with 
fsj ,s j + i( s j ) = Sj+i; thus the composition 

= 5<r(si,..., Sn.ii! • • • ,tr<r,h(si,... ,sn,ti),.. .,h(s i,. ..,sn,tra)) £ I 

because ga £ Pol I and every argument of ga belongs to I. • 

h(t,t) = h(t,6(si,..., Sj,..., Sfe)) 
= 9s{t,si,... ,Si,... ,sk) 
- Si = s. 

s = si< ... < S I < SO = t 

satisfies f(t) = s and belongs to ((e)\. • 
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2.5 Proposition. For every k £ N, n,r £ N+ and every family (fbu...,br I 
(bi,... ,bT) .£ T£) of n-ary operations in ([e\, there exists an (n + r)-ary oper-
ation h € {(e)^ such that for all a\,... ,an £ T and all b\,... ,br £ Tk we have 

h(ai,... ,an,bi,... ,br) = fa &r(ai,... ,0«) . (2.5.1) 

Proof. In order to get h we construct (by double induction and using S-closure) 
auxiliary operations /ibi+1,...,6r £ ((e)\ satisfying the following statement R(k, n, r, i) 
for i £ {0 ,1 , . . . , r}: 

R(k,n,r,i) : 

where 

for every &i+i,... ,br £ Tk, there is an (n + ¿)-ary operation 
hbi+i,...,br £ ((e\ such that for every a £ Tn and b i , . . . , bi £ 
Tk-. 

,.-..,6r (a, bi, ...,bi) = fbu...,b r(a), 

(/&i br | (bi,...,br)£T£) is an 
arbitrary family of n-ary operations in ((e)\. 

(2.5.2) 

We shall use the convention that ¿¿+i, . . . , br is the empty sequence for i = r (i.e., 
hbi+i,...,br means h and g„x+1 br below will mean ga in case i = r). Therefore, 
R(k,n,r,r) is nothing else than the statement of Proposition 2.5, and we are done 
if we can prove 

• V* € N Vn G N + Vr £ N + V(/fcl bjsatisfying (•) Vt € {0 ,1 , . . . , r} : R(k, n, r, i). 
(2.5.3) 

We prove 2.5.3 by induction on k. 
0 Let n,r £ N + and (fbi,...,br \ (bi,...,bT) £ TQ) be a family of n-

ary operations in ((e\. Note that To = Eo. We prove R(0,n,r,i) for every i £ 
{0 ,1 , . . . , r } by induction on i. 

i = 01 R(0, n, r, 0) trivially holds by defining 

hbi,...,br •= hi,...,br € • (2.5.4) 

i - 1 . Let i £ { 1 , . . . , r } and assume that i?(0, n,r,i — 1) holds, i.e., for 
every bi,bi+i,...,br £ To there exists hbitbi+l,...,br £ {e))$ fulfilling 2.5.2 for every 
a € T n and6i, . . . ,&t-i ST0 . 
Now, let bi+1,..., br be arbitrary elements in To- For every a £ E we define the 
(n + i — 1 +r f f)-ary operation g„%+ 1 , - ' b r as follows: 

„bi+i,...,6r . _ J tl<r,bi+1,...,bT 
• 1 on+i-\+ra 

if a £ E0 

otherwise 
(2.5.5) 
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All these operations are in ((e\ (for a G £o by induction hypothesis and otherwise 
by definition). Then the (n + i)-ary operation hbi+li...tbr is defined by selection 
closure as follows: 

hbi+l,...,br :=S(9 b a i + 1 ' - ' b r ) a ^ • (2-5.6) 

Thus hbi+1,...tbr S ((elk> too. Moreover, condition 2.5.2 is satisfied because for every 
b\,..., bi G To and a 6 Tn we have 

hbi+u...,br(a,b i , . . . A) = ffb!+1 br(a,bu • • -M-i) by 2.5.6 (cf. 1.5.3) 

= hbiybi+i,...,br(a,bi,.. -,&i-i) by 2.5.5 
= fbl,...,br(a) by R(0,n,r,i — 1). 

Thus R(0,n,r,i) holds for all n,r £ N+ and i € {0,1,. .. ,r} . 
We can continue the induction on k. 

Let k > 1. By induction we assume that R(k — 1 ,n',r',i') k- 1 
holds for every n',r' G N + , every family {fbl:...,br, | (bi,---,br>) G of n'-
ary operations in ((e)̂  and every i' € { 0 , 1 , . , . , / } . Now, let n,r G N + and let 
(/b, bT I (i>i, • • •,br) G Tjf) be a family of n-ary operations in ((e)^. We prove 
R(k, n, r, i) for every ¿ G { 0 , l , . . . , r } b y induction on i. 

prove R(k,n,r,i). Thus let bl+i,... ,br be arbitrary elements in Tfc. Let a G E 
and consider the family Uti,...,tTa I •••>tra € Tk-1) of (n + i — l)-ary operations 
given by 

fH,...,tTa'-=hc(t-i,...,tr„),bi+u-,br- (2.5.7) 

(Let us agree to include the case ra = 0 just by deleting all ti,... ,tr<r whenever 
they appear, i.e. f := hatbi+1,...,br-) According to 2.5.7, all operations in this 
family exist and belong to {(e\ by induction hypothesis R(k,n,r,i — 1) (note that 
c(ii> • • • ,tr<r) G Tk for i i , . . . ,tTa G Tfc_i). Now, by induction hypothesis R(k — 
1, n + i — 1, TV, ra), there exists an (n + i — 1 + ra)-ary operation g^+1< -'br g 
such that 

9bcri+1''br(ai,..., an+i-i,ti,.. .,tTa) = ftu...,tra (oi. • • • ,an+i-i) (2.5.8) 

for every o i , . . . , an+*_i G T and ti,..., tTa G Tk-i (by our convention, it follows 
from 2.5.7 and 2.5.8 that g*i+1>—br is defined for ra = 0 as in 2.5.5). Now, by S-
closure, we define the (n + z)-ary operation hbi+ 1,...,bT = S(ffb,+'' "'br)aeE as in 2.5.6. 
Thus hbi+1 br S ({e)\. Moreover, let b\,..., 6,-1, h G Tk and let be of the form 
bi = d{t\,... ,tTa) for some a G £, then t\,...,tra G Tk-1 and we have for every 
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â £ Tn 

hbi+ll...,br(à,bll. ..,bi) = g°i+l''br{â,b1,... A-i,ii, • • • ,Ua) by 2.5.6 
by 2.5.8 
by 2.5.7 

= ft! tTa ( M i , . . - , 6»— 1 ) 
= K(tu...,tra), 6i+1,...,f>r(â, bi,..., bi-1) 
= /&i,...,6r(â) by R(k,n,r,i — 1). 

Thus R(k,n,r,i) also holds. Both inductions (on i and on k) are done and 2.5.3 is 
proved. As mentioned before 2.5.3, this finishes the proof of Proposition 2.5. • 

2.6 Remark. Prom the proofs it follows that 2.4 and 2.5 remain true if <{e\ is 
substituted by ({e%>R-

Now we can proceed with the 

Proof of 2.1 (ii) = > (iii). 
Let g be an m-ary reduced relation (m £ N+ ) and ((Polg\ = Pole- We have to 
show that g is of the form as indicated in 2.1(iii). For j £ {1,..., TO} let 

be the set of all j-th components of g. 
At first we show that every I3 is an order ideal. In fact, let s < t and t £ Ij, 

then by Lemma 2.4 there exists an operation ft,s £ ({e\ C ((Polg}\ with ft,s{t) = s. 
Applying ft,s to an m-tuple in g with t in its j-th component we get an m-tuple in 
g with s in its j-th component, i.e. s £ Ij. Thus Ij is an order ideal. 

Now we are going to show that g = Ii x • • • x Im which will finish the proof of 
2.1 (ii) = > (iii) (and thus finish the proof of Theorem 2.1). 

Let in £ h,---,tmm £ Im- We have to show (tn,... ,tmm) £ g. By 2.6.1 
there exist elements (tij,... ,tjj,... ,tmj) £ g with tjj as j-th component ( j £ 
{1 , . . . ,m}) , which we represent as columns of an (m x m)-matrix. If not all rows 
are different then we can add some further, say r — m, columns, which we denote 
by (tij,... ,tmj) £ g, j = m+ 1 , . . . ,r, such that now all rows of the corresponding 
matrix A are pairwise different (this is possible because g is a reduced relation): 

Let k be the maximal height of all trees Uj (i = 1 m, j = l , . . . , r ) . By 
Proposition 2.5 there exists a 2r-ary operation h £ {(e\ such that 

Ij := {tj £ T | 3 i i , . . . ,tm : (ti , . . .,tj,. ..,tm)£g} (2.6.1) 

A — 
\tm i ... f, 'mm W / 

h(ai,... ,ar,Ui,... ,tir) = ai (2.6.2) 
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for every i £ {1 , . . . , m} and a i , . . . , a r £ T. In fact, in 2.5 take n = r, and let 
fbu...,br = el FOR (6I> • • • A ) = (tn, •••, kr), i € { 1 , . . . , M}, and arbitrary in ((E^ 
otherwise (e.g. f^,...,^ ei)- Consequently, the operation / defined by 

/ ( a i , . . . ,a r) h(ai,... , a r , a i , . . . ,ar) (2.6.3) 

(i.e. / = h(e\,..., eTr, e\,..., err)) also belongs to {e\ C ((Pol g\ = Pol g. 
Applying / to the matrix A row-wise we obtain (cf. 2.6.2 and 2.6.3) the m-tuple 

( i n , . . . , imm); it must belong to g because all columns of A are in g and / preserves 
Q. • 

3 Further research and remarks 
3.1. Connections between closure operators. For F C Op(T), let PR(F) 
denote the set which contains F and all tree functions h = PR(p(T)(T6s with ga € F. 
Further let PR n (F ) := U?=1 PR^F), where PRX(F) := PR(F) and PR i + 1 (F) := 
PR(PR*(F)) (i e N+) . Then 

oo 
PR* F := [ j PR*(F) 

i= 1 

is the least PR-closed set of tree functions containing F. The mapping F t—> PR* F 
is a closure operator as well as F ^ (F) and F H~> By definition (cf. 1.3) we 
have 

(«nR) - «n,* mi* - an, 
PR* « F L = ( (FL ((PR* F l R = « F L . 

It is still an open question how the iterations of the operators PR* or PR and (.) 
behave in general. E.g. do we have 

((FlR = PR*(... (PR*(PR*(F))^_) (3.1.1) 
n 

or ((F))pR = PR(. . . (PR(PR(F)) ) . . . ) (3.1.2) 

for a fixed finite number n of iterations of PR* or PR and (.)? Or, if the answer is 
negative, for which F does this iteration stabilize after a finite number of steps? 

For instance, if F = P R E C E (cf. 1.4b), then obviously {{F%,R = F. On the other 
hand, if F = FBASE (cf. 1.4b), then ( < F ) L = ( J ~ I W W = L C L I W I * " ) 

where ( P R ) N ( F ) and ( P R * ) N ( F ) is an abbreviation of the right side of 3.1.2 
and 3.1.1, respectively. Here, in general, we really need the union over all n £ N+ 

(the first union reflects the GRZEGORCZYK-hierarchy). 
Analogous questions arise with the closure i F \ instead of ((F)^R. 
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3.2. Specialization to N. Let us specialize the signature E to the signature of the 
natural numbers (N;succ, 0) with successor function n >—> succn (succn = n + 1) 
and the constant 0. Then E = {succ, 0} and the set T of trees over a (cf. 1.2) can be 
identified with N. Primitive recursion (as defined in 1.3) is just the usual primitive 
recursion for operations on natural numbers. This case was studied in detail in, 
e.g., [Pet57]. In [Sem02] Theorem 2.1 has been proved for this particular signature. 
Then an order ideal in N is either a principal ideal or the whole set N. Thus 
(cf. Remark 2.2), in order to describe PR-closed clones of the form Pole, o n e c a n 

restrict to relations g that are the product of principal ideals Ij = {0 ,1 , . . . ,a^} 
of N. Moreover, in [Sem02], it was proved that if Q is a set of finitary reduced 
relations such that ((Pol<Q))pR = PolQ, then ( ( P o l = Pole for each relation 
e £ Q. Further, the partially ordered set of clones of the form Pol Q, where Q is 
as above, is isomorphic to the lattice of all subsets of N ordered by inclusion. In 
addition, it was shown what happens if one considers only recursive or primitive 
recursive polymorphisms instead of all possible polymorphisms. 

It is still unknown how these results can be generalized to arbitrary tree func-
tions. 

3.3. Generalization to infinitary relations. Theorem 2.1 shows that PR-closed 
classes of tree functions characterizable by a finitary relation have a very simple 
structure (cf. 2.2). 

However, it was also mentioned in 2.2 that for infinitary relations g, ((Pol g))pR = 
Pol e in general does not imply that g is the direct product of order ideals. To 
give an example, consider the signature E = {succ, 0} as in 3.2 and the infinitary 
(|N|-ary) relation g C N N defined by 

e := {g £ NN | g is a unary primitive recursive function} . 

Claim: Pol g is the set of all primitive recursive functions over N. 
Proof of the claim: 

At first recall that an operation / : N" —» N preserves g iff gi, • • • ,gn £ g implies 
/(ffi, • • •, 9n) £ Q where f(gi, • • •, gn) : N —> N is the composition defined by 

f(9i,---,9n){x) := f(gi(x),...,gn(x)) (3.3.1) 

for x £ N; this is the obvious generalization of 1.1.3 to the infinitary case. 
By definition, the composition f(gi, • • •, gn) of primitive recursive functions 

/, <71,..., gn is again primitive recursive. Thus every primitive recursive / : N" —> N 
preserves g, i.e., Pole contains the set of all primitive recursive functions on N. 

Conversely, every / £ Pole is primitive recursive. 
Indeed, let / £ Pole be unary, then / (e) 6 g because e £ g; thus f = f{e) is 

also primitive recursive. 
Now suppose that / £ Pole is n-ary, where n > 1. In this case, we use the 

fact (see, for example, [Pet57]) that there exist unary primitive recursive functions 
gi,g2 and a binary primitive recursive function h such that g\(h(x\,x2)) = x\ and 
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g2(h(x1}x2)) = x2 for all xi,x2 £ N. Now define the functions 

c2(x\,x2) := h(xi,x2), d+i(xi,... ,xi+1) := h(ci(xi,... , xi),x i +1) for i > 1, 
h(x) := 9i(x), lj+i(x) := gi(lj(x)) for j £ N + , 
ri(x) := g2(x), rj+1{x) := g2{lj(x)) for j £ N+. 

Clearly, the functions Cj+1, lj, and rj are primitive recursive for j £ N+ . It can 
easily be checked that 

r j (c i (xi , . . . , i i ) ) = Xi-j+i for j e N + and i > j, (3.3.2) 
lj(cj+i(xi,...,xj+1))=xi f o r j e N + . (3.3.3) 

Since / S Polg and in_i ,r-n_i ,r„_2, . . . e g we have 

9 •= f(ln-i,rn-i,rn-2, • • • , r i ) € 

i.e., g is primitive recursive. Using 3.3.2 and 3.3.3, we get f(xi,... ,xn ) = 
g(cn(xi,..., xn)). Hence / is primitive recursive because it is a composition of 
the primitive recursive functions g and c„. • 

Prom the above claim we know ((Pol g))pR = Pol g. On the other hand, g is not 
the direct product of order ideals of N. 

Thus g is a counterexample to the straightforward generalization of Theorem 2.1 
to infinitary relations and there arises the problem how this theorem could be 
extended appropriately to infinitary relations. 

3.4. C-closed clones. A clone F of tree functions shall be called C-closed if it 
is PR-closed (i.e. {{F\R = F) and closed under iteration. The latter means (cf. 
e.g. [Hup78]) that if / , h,gi,... ,gn are n-ary tree functions in F then every tree 
function k : Tn —> T, which is definable by a program of the following form for 
some t £ T, must also belong to F. 

WHILE f(xi,...,xn) j=t 
DO x i : = 0 i ( x i , . . . , x n ) ; 

^n - = 9n{xi j • • • ) xn) 
OD; 

OUTPUT h(x 1 , . . . , I „ ) 

Note that here we consider only total operations k defined by iteration (while 
in [Hup78] also partial operations are allowed). The C-closure is stronger than the 
PR-closure, e.g., let ((F))c denote the smallest C-closed clone containing F, then, 
as shown in [Hup78], ((Fbase))c is the set of all computable tree functions (for ¿"base 
see 1.4b). 

Nevertheless, as it was pointed out by the referee, clones of the form Pol g with 
g as in Theorem 2.1 (iii) are C-closed. Thus Theorem 2.1 can be extended by an 
additional equivalent condition 
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(iv) ({Pol Q))c = Pol 0 . 

Obviously ((F)\ C ((F))̂ r C ((F))C . It is an open question to characterize the 
least and (if it exists) the largest closure which agrees with ((F)\,R (or equivalently 
with IF)\, {(F))C) for clones of the form Polp- More precisely, let K. be the class 
of all closure operators K : 5p(Op(T)) —> <p(Op(T)) on tree functions such that 
K{Pole) = ((PolQ\r for all finitary relations Q C Tm (m e N+). Then 

K0:F~ f| K(F) 
KeK. 

is the least closure operator in K., but it is not clear how it could be characterized 
internally. Moreover, does there exist a largest closure operator in K.1 

3.5. Further generalizations. The preservation (or invariance) property (cf. 1.1) 
constitutes a Galois connection between sets of operations and relations. There 
are many generalizations and modifications of this Galois connection changing the 
operations and/or relations under consideration (see e.g. [PösOl]). A systematic 
investigation of operations, their invariant relations and various closures, which are 
of special interest for computer science, would be desirable. In connection with 
tree functions and primitive recursion the class of partial tree functions may be 
of particular interest. • Then, the C-closure (cf. 3.4) might play the role of the PR-
closure in Theorem 2.1. However note that the C-closure still can be extended 
further: the condition that the operation / used in the iteration program in 3.4 
belongs to F can be dropped (without changing the property that k preserves Q 
whenever h, gi,... ,gn do). 

Acknowledgements. The authors thank the referee for valuable hints and re-
marks, e.g. for drawing our attention to the S-closure and C-closure (discussed 
in 1.5 and 3.4). 
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Notes on the properties of dynamic programming 
used in direct load control 

Isto Aho* 

Abstract 
We analyze a dynamic programming (DP) solution for cutting overload in 

•electricity consumption. We axe able to considerably improve the earlier DP 
algorithms. Our improvements make the method practical so that it can be 
used more often or, alternatively, new state variables can be added into the 
state space to make the results more accurate. 

1 Introduction 
The shortage of electricity may cause a supplier to use direct load control (DLC); 
the supplier may turn off the electricity from some of its customers or may start 
generators to meet the demand. The goal is to minimize the losses by buying 
the minimum amount of electricity from other suppliers to cover the demand after 
DLC. A typical example of a control group is a residential appliance with electricity 
heaters or air conditioners. When the supplier controls the devices, a consumption 
peak called payback appears after the control period when the devices go back to 
their normal state [1, 17]. 

Different solution methods for DLC include, e.g., DP [1, 7, 8, 18], linear pro-
gramming (LP) [12, 14], heuristics [1, 3], enumerative methods [8], and hybrids of 
LP and DP [13]. Objectives include load reduction minimization [7, 8, 18], peak 
load minimization [12, 13], production cost minimization [8, 18], and profit maxi-
mization [14]. Some of the decisions can be left to the customers [9]. DLC is often 
combined with unit commitment and economic dispatch, and the applied methods 
include, e.g., DP [4, 5, 6, 11] and evolutionary strategies [10]. See also [19]. 

Our method is related to that of [1, 7, 8, 14]. The present work improves 
the results of [1] by focusing on DP. In our model, (small) electricity suppliers 
group their customers based on the payback behavior: the payback shapes and 
other properties to be presented are for groups. Thus, the suppliers end up with 
a small number of controllable and prioritized groups. Our objective is between 
load reduction minimization and peak load minimization, and it differs from the 
objectives presented in the literature. We assume that the suppliers mainly buy 

*Dept. of Computer and Information Sciences, University of Tampere, Tampere, Finland, 
Isto.AhoSuta.fi 
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the electricity they distribute. The above assumptions are realistic in Finland and 
in some other European countries with small suppliers. 

Purchase transactions of electricity and own production give optimum level to 
be resold at each hour, while load over the optimum level has high price. If demand 
is higher than our predefined level, we want to cut (expensive) "over loads". We 
also use purchasing and reselling prices (time-of-use rates). Our solution can use 
different objectives and, e.g., energy storages of [15, 16], without major modifica-
tions. 

Sections 2 and 3 describe the model, optimization problem and the DP solution. 
The main results concern the "wait states" and "alternative states" (state variables) 
needed in DP. We build up a hierarchy of DP solutions so that it is possible to choose 
between fast and inaccurate and slow but more accurate methods. Section 4 shows 
how the number of wait states can be decreased to be about half of the number 
used in [1]. State space can also be decreased with the multi-pass DP of [18], but 
then one should be able to relax some constraints. Section 4 includes also the use 
a fourth state variable (alternative states). Tests are reported in Section 5. 

2 Control, payback, restrictions and goal function 
The model given below is a slight simplification of the model used in [1]. Table 1 
contains relevant symbols used in this work. 

An interval [a, 6] is the set a, a + 1 , . . . , b (a < b) of integers. The length of an 
interval [a, fc] is b — a + 1. A clipping situation s is a vector so, s i . . . , syv (N > 
0) of reals representing the difference between electricity demand, and electricity 
production and purchases in time interval [0,iV]. The domain [0, N] is called the 
optimization interval and values Si are called either overload or underload. Overload 
represents a situation where the demand is higher than combined production and 

Table 1: Used symbols. 

Clipping situation s = [so,Si , . . . , SN] Set of controls C 
Prices P = [P0.Pi, • - • Control capacity cc 

Revenue r = [ro ,r i , . . . rjv] Control length Cl 

Length of hour H' Resting time cr 

Time.interval or control [a,b] Minimum control length Cm 
Loss of incomes R( s) Maximum control length CM 
Optimal control plan R*( s) Maximum control times CT 

Dynamic forward recursion R'(s, S',k + 1) Control time c 4 

Stage change K'(s,S',S,k + l) Length of payback Pl 

Wait state W Amount of payback" pc 
Alternative state A Impact of a control /([o,6],8)(fe) 

/ '( C,s) State (3 variable) S={Ct,W,Cl) Impacts of all controls 
/([o,6],8)(fe) 
/ '( C,s) 

State (4 variable) S=(Ct,A,W,C') 

"Amount of payback corresponds to capacity explaining the c-superscript. 
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electricity purchases (si > 0), and underload represents a situation where combined 
production and purchases of electricity is above the level of consumption (si < 0). 
The element i of optimization interval [0,iV] is called a time point. The phrase 
"time point i" is also used for the interval [i, ¿]. 

A time point i with overload has a positive real pi called the price (buying 
price of electricity). Similarly, a time point i with underload has a positive real 
rj, the revenue (selling price of electricity). The overload interval is an interval 
[a, 6] C [0,N] with overload at every time point i G [a, 6]. The clipping situation is 
partitioned into hours 0 = ai, a2,. .., a n + i = N, of equal length, i.e., a<+1 — ai — 
a,i — a,i-i (2 < i < n). The length ai+i — a, of an hour is denoted by hl. Hour 
i refers to the interval [ai,aj+i — 1]. Overloads (underloads), revenues and prices 
do not change during an hour, because of the electricity trading system. Thus, we 
have Sj = Sj+i, pj = Pj+i, and rj = r J + i , where j € [aj-i, a» — 1] (2 < i < n). 

The total loss is 

El —Pi Si, if Si > 0, 
K(i,Si), where tf(Mi) = ^ ' (1) 

ie[0)w] I r*Si> 0therwise' 
Note that K(i,Si) < 0. If there is underload, we lose income (revenue) and if 
there is overload, we have to pay some extra. We count the money lost, so its best 
possible value is 0. 

A group is used to decrease the overload with a control made for interval [a, b] 
by turning electricity off (an auxiliary generator corresponds to a group). The 
controlling capacity of a group, denoted by C°, is the amount the group can decrease 
the load in an hour. The hours [ai,a, ai+i , . . . a3], where a» < a < ai+i 
and aj-i < b < aj (and a < b), are affected by a control. Control amount is the 
product of the controlling capacity Cc and of the control length b — a -I-1. 

Function Pl : N —» N maps the control length b — a+1 to the length of a payback 
and function Pc : 2n x N - t l describes the amount of the payback of control [a, b] 
at time i. We always have Pc([a, 6], i) > 0, where i € [6 + 1, b + Pl(b — a + 1)], and 
otherwise Pc([a, 6],i) = 0. Further, "in practice" we have 

Pc([a,b},k) <Cc(b-a + 1) 
k£[b+l,b+Pl(.b-a+l)] 

meaning that a payback does not exceed the control amount. 
Next we show the impact of a control [a, b] and its payback to clipping situation 

s as a function I (functions I\ and used'in I are defined below). The hours to 
be affected are [a*,a, 6, aj,b + Pl(b — a + 1), a{\. By function 

'Sk, if 0 < k < ai, or ai<k<m, 
sk + h(\a,b]){k), if Oi < fc < aj_i, 
Sk + {h +I2)([a,&])(*:), if flj-i <k <aj: 

sk + h([a, b})(k), if aj <k < ai 

7([a,6],s)(fc)= < 
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(0 < k < m) we obtain the control amount of a control [a, b] into the clipping 
situation. The first line leaves the unaffected hours as they axe and the second line 
calculates the effects of control. The third line is for both the control and payback 
calculation, and the fourth line calculates the effects of payback. By /([a, 6],s) we 
mean the new clipping situation obtained after control [a, 6]. 

The effects of control part having no payback are calculated with Ii : 

h{\a,b])(k) = 
-Cc(ai+1 - 1 - a 4-1 )/hl, if aj < k < a i + i , 
—Cc, if aj+i < k < aj_i , 
—Cc(b - aj-\)/hl, if a.j-i < k < a,j. 

(3) 

The second line is for the hours between the starting and stopping hours, if any. 
The first and the third lines handle the hours where the control starts and stops. 
These hours may have partial control (in contrast to a full control lasting the whole 
hour). Controls decrease the overload. Paybacks are calculated with /2: 

I2([a,b])(k) 

£ 
*:'=6+i 
ak'+1-
£ 

Pc([a,b),k') 
hl 

1 Pc([a,b],k") 
hl 

k"=ak, 

Pc([a,b),k') 

k k' =ai _ 1 hl 

if a.j-1 < k < a,j, 

if j < k' < I - 1 
and afc< < k < a,k'+1, 

if a;_ 1 < k 
<b + Pl(b — a + 1). 

(4) 

The payback starts in the first line, and in the third line we calculate the last 
moments having payback. (Both may involve partial hours.) The second line 
calculates the payback for hours, where each time point will get some payback. 
The payback increases the overload. 

It would simplify formulas (2)-(4) a bit if we were not to hourly even out the 
effects. Another alternative is to let the overloads and underloads vary within the 
hours and even out the loads when calculating the results. If the control starts and 
stops in the same hour, we cannot directly apply (2). In this situation we calculate 
the effects for the first hour with 

aj-l 
sfc - Cc(b - a + l)/hl + Pc(\a,b},k')/hl, where Oj_i < k < ah 

k'=b+l 
(5) 

and the rest of the payback is calculated with the second line of /2- If the payback 
starts and stops in the same hour, we have to make a correction similar to (5). 
Energy storage capability is similar to payback: energy storing appears before 
control while payback appears after the control. 

Figure 1 shows two examples of a control. The vertical lines indicate hours. 
The dotted line is a clipping situation without control and the straight line is a 
clipping situation with control. The left picture shows the advantage of a control: 
payback can "move" the overload to the next hour where the overload is cheaper. 
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The combined effect of all controls C can be calculated recursively by the func-
tion 

if C = 0. (6) 

When all the effects of controls have been calculated, we can use (1) to find out the 
value of the new clipping situation. 

Next we look at the restrictions. First, the controls must be separate such that 
for all [a, b], [c, d) e C we have 

[a, 6] ^ [c, d\ =*> [a, 6] n [c, d] = 0. (7) 

Further, during resting time it is not allowed to start a new control. Function 
Cr : N —> N is increasing and it maps the length of a control to the length of a 
resting time. So, for all [a, b], [c, d] e C we have 

[o, 6] n [c, d] = 0=> [6 + l,& + C r ( 6 - a + l)]n[c,<i] = 0. (8) 

Note that a new control can be started even if the payback still occurs, provided 
that the resting time does not overlap with the new control. Usually, the resting 
time is used to prevent a new control to start in the beginning of the payback, when 
the need for extra electricity is the largest. If we start a new control at the end of 
a payback, the change in the payback of the new control is so small that it is not 
usually taken into account. 

We also need the minimum and maximum control times Cm and CM, respec-
tively, which bound the length of control as 

C m <b — a + 1 < CM. (9) 

Sometimes we also restrict the number of control times b j€ C 1 by CT, a positive 
integer. 

We can suppose that at every time point k the price factor pk is (much) larger 
than the revenue rk- By making controls we can affect the clipping situation, so 
the optimization problem can be given in the form 

N 
m a x ^ i ? ( f c , / ( C , s ) ) (10) 

C k=0 

with restrictions (7)-(9). 
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3 A DP solution 
The problem (10) can be solved with DP by using two state variables corresponding 
to the "control times and control length [1, 8, 7, 19]. The tests in [1] indicated that 
it is possible to add at least one state variable to improve the results. In this work 
we use the state variables control time C ' , wait state W and control length Cl. 
As a result, we have a slower but more accurate system than those with two state 
variables. The state variables are defined in finite integer domain. 

In the state space we need the control length C', so that DP can form the 
optimal control length and at the same time fulfill the restriction (9). In addition 
to control length, Cl also contains the resting time. Without the control times, DP 
complying with conditions (7)-(9) would find only one control. With these three 
state variables we have one state of stage k € [0, N] as a triple ( C , W, Cl)(k). The 
phrase "stage k" refers to a time point. A system in state (Cl, W, Cl) is defined 
to be the C'th control of length Cl with W time points delay before its start. 
Our tests demonstrate that the three variable solution does not give the optimal 
solution, if the the group has payback (see Section 5). 

In practice we have to determine upper bound for the number of wait states W. 
Theorem 2 gives an upper bound for W when the group does not have payback. If 
the group does have payback, we assume that W can have hl — 1 (hl is the length 
of an hour) different values. We also test other possibilities, see Section 5. 

We denote S = ( C , W, Cl) and S' = {C'\ W', C'1). The variables with primes 
are "new" ones and the plain variables are "old", when we form the connections 
between the "new" stage k + 1 and the "old" stage k. Function 

R"{s,S',S,k + l) = 

0, when (14)—(17), 
-P', when (18), 
£( / ( [«-C' .JfeJ.s)) -¿2(8) , when (19), U J 

—oo, otherwise, 

gives the change in the value, when moving from state (C\ W, Cl) of stage k into 
state (C 4 , W', C'1) of stage k + 1. The first line is used when the value does not 
change. The second line is used, when we start a new control and the third line 
is applied, when we make a decision about the best control. The cost of making 
a control is denoted by P'. The last line is used with every other values of the 
variables S and S'\ They are impossible since they do not have any reasonable real 
world interpretation. 

The dynamic forward recursion equation is 

R'(s, S', k + 1) = max. (R'(s, S, k) + R"{s, S', S,k + 1)) (12) 

and 

« ' ( M C ' ^ . c ' ) , o ) = ( ^ - t n C ' = H ' = C ' = 0 ' (13) I —oo, otherwise. 
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Figure 2: The structure of the state space. Alternative states are similar to control 
times, except that they do not choose the best control plan available. 

When 

C't = Ct + 1, W' = C'l= 0, 0 < W < hl — 2, , v 
and Cr(Cm) + CM-1 <Cl <Cr(CM) + CM-1, U J 

the control at stage k and in state (Cl, W, Cl) has stopped, which in turn increases 
the amount of control times by one (C'1 = C4 +1) . The next control starts in state 
(C 4 ,0 ,0) at stage k + 1. We add CM + 1 both for minimum and maximum resting 
times, because Cl indexes the control length and the resting time (see Figure 2), 
and because the states corresponding to the resting time are located next to the 
control lengths (i.e., after state CM — 1). Note, that we restrict the number of wait 
states by hl — 2 (wait states can get h.1 — 1 different values). 

Moreover, it is possible that "old" optimal plan at stage k does not change (or 
be better) when moving into stage k + 1, and so 

C'4 = C\ W' = C'1 = 0, and W = Cl = 0. (15) 

This is the only case with conditions (14) and (19), where DP (recursion formula 
(12)) can make decisions about the path. If two paths give the same result, DP 
(12) chooses the one with a later control. This does not have any impact on the 
result, but in practice we usually want to do the controls as late as possible. 

Figure 2 shows the state structure. Conditions (14) and (15) are shown on the 
left. There we have several states, from which we choose the maximum. When 

C"4 = C\ W' = W +1, and C'1 = Cl =0, (16) 

we "move some information from the past" to new stage k+1. With this information 
we can check what result can be achieved, if we choose the best path W stages ago 
instead of some other control plan with the last control started in the interval 
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[A; — W,k]. Figure 2 shows this in the middle, where a control time is depicted. 
When 

C'1 = C\ W' = W, C'1 =Cl + 1, and (Cl ± 1, C'1 ± CM + 1), (17) 

we increase the control length (the control started Cl time points ago). When 

C't = Ct W' = Wf a n ( i i = c'1 =Cl +1, (18) 

a new control starts. In this situation we add the cost of control P' to the result. 
Finally, when 

c'* = Cl W' = W, C'1 = CM + 1, and Cm <Cl < CM, (19) 

we can calculate the impact of a legal control on a clipping situation. Figure 2 
shows conditions (17)-(19) in the right. 

For each state (Cl,W,Cl) and for each stage fc > 0, we save the connection 
pointing to some state of the previous stage. The connections form a path. When 
we have the values 

B!{s,{Ct,W,Cl),N) 

with appropriate values in Cl, W and Cl, we can form the control plan C by 
traversing the path formed by the connections. The path is optimal with respect 
to the state space used (but not with respect to the problem). Note that functions 
R' and R" in equations (11)—(13) comply with the conditions (7)-(9). 

4 The properties of the state space 
Next we study the properties of the dynamic recursion formula (12)—(13). Consider 
stage i. A local control for state (C l + 1,0,0) is a control formed at control time 
C* + 1, stopped at stage j > i + Cr (C m ) , and using the control plan formed at 
stage i for state (C^OjO). Stages fc > i do not belong to the local control, provided 
that we do not use the control plan of state (C t ,0,0)(i) at stage k. This means 
that the wait states are not considered when forming a local control. 

In the next theorem we suppose that all references to wait states have been 
omitted from the conditions (14), (15), (18) and (19). 

Theorem 1. State space (Cl, Cl) finds, for each stage i, the best local control 
following stage i. 

Proof. Consider the controls starting after stage i from state (Cl, 0) and using con-
trol plan C determined by i and (Cl, 0). The conditions (14) and (15) determine the 
best control for state (Cf + l ,0) ( j ) , according to the equation (12). The condition 
(14) gives the maximum because of the conditions (18) and (19). • 

Corollary 1. State (1,0,0)(JV) gives the best control plan having one control. 
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Note that the length and the amount of payback do not have any consequences 
in the case of Theorem 1. State space (C l ,C l ) gives sub-optimal results [1], which 
can be improved with wait states (still being sub-optimal). 

Let Ci, C j + i , . . . , CQ be the control plans of the control time Cl and the stages 
(time points) i, i + 1 , . . . , a, respectively, i being the first time point of an hour. In 
the next theorem we show that it is enough to choose between the control plans 
Ci, Cj+i, • • •, C 0 , when forming a control [a,b]. This refers to the situation in 
condition (14) of DP (12), where we check, how well the control plans of states 
(C4, 0,0)(i), (C4,0,0)(i + 1 ) , . . . , (C4,0,0)(a) work with the control starting at time 
point a. 

Intuitively, the next theorem is based on the property that if the last control of 
some control plan stops with resting time in the "previous hour", it will not have 
any impact on the controls in the "present hour". 

Theorem 2. Suppose there is no payback. Suppose further that we start a new 
control from stage a for control time Ct, which will stop at stage b locally maxi-
mizing the control plan C 0 . Let i be the first moment of the hour containing a. 
Now it is enough to choose (with the wait states) from the set of control plans 
Ci, C i+ i , . . . , C a , when forming a new control [a, 6]. 

Proof. We show that it is not necessary to reach time points earlier than the start 
of the present hour. Consider situations where it is possible to choose between 
control plan C i - n of time point i — n (n > 1), and control plans Cj, C j + i , . . . , C a , 
when forming [a, 6]. Since DP (12) chooses always the maximum, the result of Cj 
does not decrease when j increases. Thus, the result of Cj is at least that of Cj_n . 
If we choose some of the control plans Ci_T l , . . . , C;_i to be used with a control 
that starts at a, we obtain at least as good result with the control plan Cj. • 

Note that the absence of payback and the fact that the resting time is coded 
into the state space are crucial here. It follows from Theorem 2 that we need one 
wait state at the first time point of an hour, two at the second time point and 
finally hl — 1 at the last time point of an hour (hl is the length of an hour). In 
other words, we need on the average (hl — l ) /2 wait states at each time point. (In 
[1] we used hl — 1 wait states at each time point.) 

In general, the state space (C4, W, Cl) does not achieve the optimal result when 
the length of payback is non-zero (a sample case is given in Section 5). We need at 
least one more state variable to be able to form a better path [2, pp. 30-34]. With 
variable A we check the non-maximum paths according to (12) for the three state 
variable system. 

A local alternative of stage i is a control which stops at the stage i including the 
resting time and which is not chosen into the control plan. A three variable system 
chooses the best alternative among several, as shown in the left side of Figure 2. 
We set this to be the alternative state one. In the alternative state two, we choose 
the second best path from the control time C4 for the first state of control time 
C4 +1 . The third alternative state uses the third best path found so far and so on. 
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Alternative states can be easily implemented. When looking for the best path, 
we can cater the required amount of paths to find the Ath path. Moreover, the 
solution (a path) given by the condition (15) has to be checked when we are looking 
for the number of the best paths. The starting configuration (13) and the transition 
conditions (14)-(19) work with alternative states without major modifications. The 
initial solution is calculated only for the first alternative state and the conditions 
(14)-(19) work inside an alternative state just as in the case of the three variable 
system. 

5 Tests 
We first checked that Theorem 2 gives twice as fast method as the old DP. After 
that, we wanted to see whether paybacks affect the solutions given by the new three 
state variable DP. When we saw that paybacks do affect the results, we tried to 
improve the accuracy by increasing the number of wait states. 

Intuitively, the wait states starting at point a can only "look up" that far (to 
point a) later on at the moment b. So if a is the beginning of an hour, we "do not 
see" into the previous hour at moment b and cannot make a choice between earlier 
control plans. When there is no payback, the number of wait states equaling to the 
number of time points after a start of an hour is enough, because a control finished 
in the previous hour does not affect the present hour to be cut. However, when we 
are using payback, we need to be able to look further into the previous hours in 
order to increase the accuracy. By adding c wait states, we directly reach earlier 
moments. We are tempted to think that increasing c will improve the solution. 
Our tests, however, show that while this is mostly true, there are exceptions. 

In the tests we used a group shown in the upper left corner in Figure 3. We 
tested the group with 5 different clipping situations. Tests 1-4 could be clipping 
situations occurring in reality. They are similarly shaped and contain "morning 
and afternoon" consumption peaks. The shapes are at different levels giving tests 

Figure 3: Payback used in the tests and the test cases. 
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Figure 4: Running times. 

of different difficulty. Test 5 is artificial. When load curve is above 0, we have 
overload that should be cut off. One tick stands for 1 MW. (Horizontal axis are for 
time.) 

Each hour is discretized into twelve time points. The group had 1.2 MW control 
capacity (i.e., 0.1 for five minutes). The payback is two hours long, the minimum 
control length is 30 minutes and the maximum control length is one hour. One 
MW overload costs —99 000 and underload —900. Resting time is 10 minutes. 

Figure 4 contains running times (in seconds) for the old DP solution and for 
DPs with c = 0,1,2,3,5 and 11 (horizontal axis). Moreover, hl = 12. We see that 
the running times increase almost linearly on the number of waits states. Table 2 
contains the results for the tests used in Figure 3. Here we see that, in general, the 
results improve if the number of wait states is increased. 

In the second test, however, we see that increasing the number of wait states 
has decreased the result between DPs with c = 3 and c = 5 (a locally better 
solution is worse). This somewhat non-intuitive result follows from the fact that 
our DP solutions do not fulfill the optimality principle usually stated for dynamic 
programming solutions [2, p. 16]. Reason for this is that we cannot guarantee that 
optimal solution at stage i entails optimal solution for the rest of the case. Payback 
may affect later hours and decisions. This information should be available at the 
moment when we are deciding the length of a control. 

We did not use any alternative states in the test series reported in Table 2 and 

Table 2: Solutions without alternative states. 
Test old DP c = 0 c = l c = 3 c= 5 c = l l 
1. -144478 -144478 -144 478 -144 478 -144 478 -144478 
2. -15603 -15662 -15662 -15662 -15778 -15603 
3. -368665 -371296 -370238 -368665 -368665 -368665 
4. -174490 -175668 -175668 -175668 -175668 -174490 
5. -9860 -9860 -9860 -9860 -9860 -9860 
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Table 3: The best solutions with alternative states. 
Test old DP c = 0 c = 1 c = 3 c = 5 c = 11 
1. -144 478 -144 478 -144 478 -144 478 —144 478 -144 478 
2. -15603 -15662 -15662 - 15 487 —15 487 -15 487 
3. -368373 -369069 -368 046 -368 162 -368278 -368 373 
4. -174 490 -175668 -175 543 -174 398 -174 398 -174 490 
5. -8956 -8336 - 8 351 -8186 - 7 742 -7538 

Figure 4. We run the same test series using 2, 5, 10 and 15 alternative states. 
Table 3 contains the best solutions found among all the test series. Results were 
improved in most of the cases, sometimes over 10%. 

Test 5 informatively demonstrates how results improve as the number of wait 
states or alternative states (or both) increases. The results and running times are 
shown in Figures 5 and 6. We also tried DPs with 30 and 100 alternative states. DP 
with 15 alternative states gives —8336, with 30 states —7872, and with 100 states 
—7214, which is better than the solution given by 15 alternative and 11 additional 
wait states (see Table 3). Our conclusion is that a clipping situation with many 
overload intervals most likely benefits from the use of alternative states. 

We also studied how alternative states and wait states together improve the 
results and how they affect the running times. The left hand side of Figure 5 
contains the results for different alternative state amounts (1, 2, 5, 10 and 15). As 
the number of wait states is increased, the results improve in general. There are 
exceptions where few wait states do worse than DP with c = 0 (see lines for A5 
and A15). The number of additional wait states used is irrelevant for this instance, 
when we used only one alternative state. 

. On the right side the same data is plotted for five different additional wait 
state amounts as well as for the old DP system. We conclude that the number 
of alternative states is much more crucial for the results than the number of wait 
states. Alternative states also improve the results of DP system with fixed amount 

2 4 6 8 10 12 
Figure 5: Wait and alternative states, results for test 5. 
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Figure 6: Wait and alternative states, running times for test 5. 

of wait states (in old DP c — hl — 1). 
Figure 6 contains the running times for test 5. Execution decelerates almost 

linearly as the number of alternative or wait states is increased. The number of 
wait states in one hour is Yl'l^o ( c + ( a m ° d h1)) (where c = 0 , . . . , hl — 1 and a 
is a moment). Hence, the increase of c by one gives hl — 1 additional wait states 
for one hour. This is proportionally less than the increase brought by the increase 
of the number of alternative states by one, which is the number of used wait states 
in one hour. This explains why the increase of the number of alternative states 
decelerates more the running times than the increase of the number of wait states. 

6 Conclusions 
In this work we have analyzed the properties of the state space of a dynamic 
programming problem arising in direct load control, and quicker optimization al-
gorithms are formed without sacrificing the accuracy of the results when payback 
is not used. Moreover, we have found practical ways to improve the results by 
increasing the state space when payback is used. We have described (sub-optimal) 
solutions for three and four state variables. If the result accuracy is not crucial, 
one can drop wait states away, arriving to a faster two state variable solution of [8]. 

There are still open problems concerning the properties of state variable Cl. 
They seem to behave in a way that enables us to reduce the number of states 
used (for details, see [1]). Moreover, we conjecture that the control length Cl has 
properties, by which we can further speed up the algorithms. 

If there is enough time, it is possible to add a new state variable, called alterna-
tive state. With four state variables we achieve even better results, as is shown in 
our tests. Most of the time, additional wait states as well as additional alternative 
states improve the results. Hence, one can choose between fast inaccurate, and 
accurate but slow solutions. Similar trade can be made between two, three and 
four variable state spaces. The alternative states seem to improve the results also 
in the cases occurring in production systems. 



440 Isto Aho 

Acknowledgment 
The author is grateful to Erkki Màkinen for his time and comments and to an 
anonymous referee whose valuable comments improved the quality of this work. 

References 
[1] Isto Aho, Harri Klapuri, Jukka Saarinen, and Erkki Màkinen. Optimal load 

clipping with time of use rates. International Journal of Electrical Power & 
Energy Systems, 20(4):269-280, May 1998. 

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena 
Scientific, 1996. 

[3] R. Bhatnagar, J. Latimer, L.J. Hamant, A.A. Garcia, G. Gregg, and E. Chan. 
On-line load control dispatch at Florida Power & Light. IEEE Transactions 
on Power Systems, 3(3):1237-1243, August 1988. 

[4] R. Bhatnagar and S. Rahman. Dispatch of direct load control for fuel cost min-
imization. IEEE Transactions on Power Systems, PWRS-1(4):96-102, Novem-
ber 1986. 

[5] K. Bhattacharyya and M.L. Crow. A fuzzy logic based approach to direct load 
control. IEEE Transactions on Power Systems, 11(2):708-714, May 1996. 

[6] Douglas W. Caves and Joseph A. Herriges. Optimal dispatch of interruptible 
and curtailable service options. Operations Research, 40(1):104-112, January-
February 1992. 

[7] Wen-Chen Chu, Bin-Kwie Chen, and Chun-Kuei Fu. Scheduling of direct 
load control to minimize load reduction for a utility suffering from generation 

. shortage. IEEE Transactions on Power Systems, 8(4):1525-1530, November 
1993. 

[8] Arthur I. Cohen and Connie C. Wang. An optimization method for load 
management scheduling. IEEE Transactions on Power Systems, 3(2):612-618, 
May 1988. 

[9] I.M. El-Amin, A.R. Al-Ali, and M.A. Suhail. Direct load control using a 
programmable logic controller. Electric Power Systems Research, 52(3):211-
216, 1999. 

[10] A.J. Gaul, E. Handschin, W. Hoffmann, and C. Lehmkóster. Establishing a 
rule base for a hybrid es/xps approach to load management. IEEE Transac-
tions on Power Systems, 13(l):86-93, February 1998. 

[11] Yuan-Yih Hsu and Chung-Ching Su. Dispatch of direct load control using 
dynamic programming. IEEE Transactions on Power Systems, 6(3):1056-
1061, August 1991. 



Notes on the properties of dynamic programming used in direct load control 441 

[12] C.N. Kurucz, D. Brandt, and S. Sim. A linear programming model for reducing 
system peak through customer load control programs. IEEE Transactions on 
Power Systems, 11(4):1817-1824, November 1996. 

[13] Jean-Charles Laurent, Guy Desaulniers, Roland P. Malhamé, and François 
Soumis. A column generation method for optimal load management via control 
of electric water heaters. IEEE Transactions on Power Systems, 10(3):1389-
1400, August 1995. 

[14] Kah-Hoe Ng and Gerald B. Sheblé. Direct load control — a profit-based 
load management using linear programming. IEEE Transactions on Power 
Systems, 13(2):688-695, May 1998. 

[15] B. Rautenbach and I.E. Lane. The multi-objective controller: a novel approach 
to domestic hot water load control. IEEE Transactions on Power Systems, 
11(4):1832-1837, November 1996. 

[16] Paresh Rupanagunta, Martin L. Baughman, and Jerold W. Jones. Scheduling 
of cool storage using non-linear programming techniques. IEEE Transactions 
on Power Systems, 10(3):1279-1285, August 1995. 

[17] Katsuyuki Tomiyama, John P. Daniel, and Satoru Ihara. Modeling air condi-
tioner load for power system studies. IEEE Transactions on Power Systems, 
13(2):414-421, May 1998. 

[18] Deh-chang Wei and Nanming Chen. Air conditioner direct load control by 
multi-pass dynamic programming. IEEE Transactions on Power Systems, 
10(1):307-313, February 1995. 

[19] Allen J. Wood and Bruce F. Wollenberg. Power Generation, Operation and 
Control. John Wiley k Sons, 1984. 

Received November, 2002 





Acta Cybernetica 16 (2004) 427-441. 

On Computing the Hamming Distance 

Gerzson Kéri* and Ákos Kisvölcsey* 

Abstract 
Methods for the fast computation of Hamming distance developed for the 

case of large number of pairs of words are presented and discussed in the 
paper. The connection of this subject to some questions about intersecting 
sets and Hadamard designs is also considered. 

Keywords: covering radius, Hamming distance, Hamming weight, intersecting sets, 
minimum distance. 

1 Introduction and notation 
Let Z " denote the set of all n-tuples (x\,x2, • •. ,xn), where Zq = {0 ,1 , . . . , q — 1}. 
The elements of the set Z™ are called words, and the Hamming distance d(x, y) 
between two words x,y £ Z " is defined as the number of coordinates in which they 
differ. 

One may encounter the problem of determining the Hamming distance for a 
large number of pairs of words in the same space. This is, for example, the case 
when the minimum distance or the covering radius for a lot of codes Ci C Z " 
are to be determined. (See also Section 6.) The Hamming distance and Hamming 
weight find many applications also in cryptography [5]. For problems like this there 
emerges the need for faster computation. 

In the paper a general method is presented and discussed for the fast computa-
tion of the Hamming distance. This method is related to a problem of intersecting 
sets. 

We emphasize that the suggested (and applied) method is not faster than the 
direct method if the Hamming distance is to be determined for only a small number 
of pairs of words. It is proposed for application only if the number of pairs is large 
enough. 

The notation & is used for the bitwise "and" operation, XOR for the bitwise 
"exclusive or" operation. The wgt function counts the number of 1-s in a binary 

•Computer and Automation Research Institute, Hungarian Academy of Sciences, H - l l l l Bu-
dapest Kende u. 13-17, Hungary, e-mail: keriQsztaki.hu 
Supported in part by the Hungarian National Research Fund OTKA, Grant No. T043276. 

t Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest 
Reáltanoda u. 13-15, Hungary, e-mail: ksvlcs0renyi.hu 

443 



444 Gerzson Kéri and Ákos Kisvölcsey 

integer; it can be given by formula as 

oo 
wgt(a) = Y , (La/2feJ ( m o d 2 ) ) • 

fc=o 

The symmetric difference of two sets is denoted by A: 

M B = ( A n B )U ( I n B ) . 

2 Hamming distance of q-ary vectors and 
g-ary distance of integers 

Clearly, there is a one-to-one correspondence between a word x = (x\,x2, 
...,xs) e and a nonnegative integer n in the interval 0 < n < qa — 1: 

s 
x <—> n = y^Xjqs~l. 

¿=i 

We define the q-ary distance dq(a, b) of two nonnegative integers as the Hamming 
* distance of the corresponding words in any space Z* where 

s > max (logg(g + 1), logQ(6 + 1)). 

We look for a fast way of computing the Hamming distance of words, stored in 
the form of q-ary integers for a large number of pairs of words in the same space. 
That means the computing of dq(a,b) for pairs of integers (a, b). This problem 
arises, for example, when the minimum distance or the covering radius of many 
codes are to be checked. 

The minimum distance of a code C C is defined as 

min{d(x,y) | x,y GC, x^y}. 

The covering radius of a code C C Z* is the smallest positive integer R such 
that for an arbitrary x € Z", there exists one (or more) y £ C with d(x,y) < R. In 
other words, 

R = maoc{d(x, C) | x 6 Zaq}, 

where 
d(x,C) = min{ci(x,y) | y 6 C}. 
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3 The binary case (q = 2) 
Fast methods to calculate Hamming distances (and Hamming weights) in the binary 
case are known from the literature, see e.g. [5] where the theme is discussed within 
a more general context. There can be found many communications as well as 
computer codes related to the subject also on the web. 

Here, we describe in short the substance of the method as follows. 
For q = 2, i. e. for binary numbers, clearly 

d2(a,b) = wgt(a XOR b). 

This fact suggests arranging the weights into an array consisting of the array 
elements 

wgt(l), wgt(2), . . . , w g t ( 2 L - l ) , 

where the exponent L depends on the computational environment (available hard-
ware and software, programming language etc.). 

The same method can be applied with a slight modification also for numbers 
greater than 2L — 1 if we split them into 2 or more parts. If, e.g., n > 2l — I but 
n < 22L — 1, then - referring to the identity 

wgt(n) = wgt (Ln/(2L)J) + wgt (n (mod 2L)), 

- we can use the formula 

d2(a,b) = wgt (L(o XOR b)/{2L)\) + wgt ((a XOR b) (mod 2L)). 

That way, an array of length 2L is enough for treating integers as large as we 
want. 

Note that the division by 2L can be performed simply by a right shift of the 
dividend. 

4 Method for the case q > 2 
When q > 2, the g-ary distance dq(a,b) of two integers cannot be determined 
immediately by the help of the weight function. What can be done is to have a 
and b mapped to (longer) integers A and B such that 

d2(A,B) = k • dq(a,b) for any a,beZ°, 

where k is a positive integer, depending only on the value of q and the mapping. 
For this purpose, let 

ipq : Zq y Z2 

with an appropriate t, a mapping having the property of 

wgt(y>,(a) XOR ¥>,(£)) = * (1) 
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for any pair a, /3 E Zq, a ^ /3 for a positive integer k. 
Clearly, <pq generates a mapping of Z" to Z2l, if we apply ipq to all g-ary digits 

of n < qL — 1. The corresponding mapping for q-ary integers can be written by the 
formula 

L-l 
= (mod q)). 

3=0 
Now, for any a, b < qL — 1, wgt(y>9(a) XOR <pq((3)) = k implies 

wgt ($q(a) X O R $ , ( 6 ) ) = k • dq(a, b), 
From the point of view of effectiveness, the value of t should be kept ELS small 

as possible. 
The same problem can be translated to a problem with intersecting sets. For 

this purpose, consider a set S consisting of t elements: 

S = {ui,u2,...,ut}. 

Consider also the binary representation of <pq(a) as 

<pg(a) = (6i(a),62 (a) , . . . ,6 t (a)) 

for any a £ Zq, <pq(a) : Zq —> Z|. 
Define the subsets Si, S2, • • •, Sq of 5 as follows: 

U{ S 5 a +i if and only if 6j(a) = 1. 

To find a mapping <fiq{a) having the property (1) is equivalent to find a set S and 
q subsets Si, S2,..., Sq C S such that the cardinality of the symmetric differences 

SiASj = (Si Sj) 

is.constant for any pairs of Sl and Sj, provided i / j , where Si is used for S \ 
Si (i = l,2,...,q). 

For the system of sets Si,S2,... ,Sq with the property described above, the 
following notices can be taken. 
1. Consider the sets 

Ui = SiASi+i 

for i = 0 , . . . , q — 1. Now, we have UQ = 0, and 
\Ui\ = k 

for i — 1 , . . . , q — 1. It is easy to see that UiAUj = SiASj, thus also \UiAUj\ = k 
holds. Clearly, \UiAUj\ = \Ui\ + \U3\ - 2|[/t n Uj\, consequently, 

for every i, j > 1, i ^ j. From this, it also follows that k must be even. So, we have 
a fc-uniform family JJi,..., Uq-1 on the i-element ground set S, such that any pair 
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of sets shares the same number of elements. By using linear algebraic methods, 
Bose [2] proved that t > q — 1 for such set-systems. Later in the paper we show 
that this bound can be achieved in some cases (cf. Examples 2, 3). 
2. Assume now that t — q — 1. Ryser [7] showed that in this case every point in S 
is contained in exactly k sets from Ui,..., Uq-\. By doubly counting the triplets 
(u, Ui, Uj), where u eUiC\Uj, i ± j, we get 

Prom this, we obtain q = 2k. Since k is even, if q is not divisible by 4, then t > q 
must hold. Obviously, this bound can be achieved in any case (cf. Example 1). 
3. Suppose that q is divisible by 4. Let q — 4A, k = 2A, where A is a positive 
integer. What we want to find is a symmetric block design S\(2,2A, 4A — 1), that 
is, a 2A-uniform set-system U\,..., on a t = 4A — 1-element ground set S, 
such that every pair of sets has an intersection of size A. If we take the complement 
sets Vi = S \Ui, then 

W = 2A - 1, 
and Vi n Vj = S \ (Ui U Uj). Since \U{ UC/,| = \Ui\ + \Uj\- | Ui nUj\ = 3A, we have 

l^nV^I = A - l . 

So, equivalently, we want to find a so-called Hadamard design S\-1(2,2A —1,4A—1). 
It is known that such a system exists if and only if there is a Hadamard matrix 
of order 4A. An Hadamard matrix of order m is an TO X M matrix H with entries 
{ 1 , - 1 } such that its row vectors are orthogonal to each other, as well as its column 
vectors, i.e., HHT = HTH = ml. It is conjectured that there is an Hadamard 
matrix of order 4A for every positive integer A, and thus, we can have t = q — 1. 

5 Examples 
1. For arbitrary q > 2, we may choose t = q and ipq(a) = 2a. 

Then, wgt (ipq(a) XOR tpq((3)) = 2 for a ^ /3. 
In the terminology of intersecting sets 

2. For q = 4, let t — 3 and <fi4(a) = 0,3,5,6 for a = 0,1,2,3, respectively. 
Now, wgt (<Pi(a) XOR <fi4(0)) = 2 again for a^ /3. 
In the terminology of intersecting sets 

S = {U1,U2,U3}, Si — 0, S2 = {Ul,ti2}, 53 = {ui,u3}, S4 = {u2,u3}. 

3. For q = 2 m + 1 , m > 1, the following recursion can be applied: 

S = {ui,u2,u3}, S1 = { « ! } , S2 = W , S3 = {u3} . 

(p2,a+i (2a - 1) = (22"* + 1) • ip2m(a) 
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<p2m+1 (2a) = (22m - 1) • (<p2m (a) + 1). 

In this case t = q — 1 = 2 m + 1 - 1 can be specified. The inequality 

ip2m+\ (a) < 22 m + 1 _ 1 - 1 for 0 < a < 2 m + 1 - 1 

can be proved by induction. The multiplier k assumes the value 2m . 

6 Application of the method for checking the cov-
ering radius of codes 

The methods described in the paper found an application in [4] for computing 
the covering radii of a huge number of codes. This computation resulted in the 
improvement of known lower bounds on the covering radii for several families of 
codes. This way, general inequalities (sometimes equalities) were found for the 
covering radii of an infinite number of codes; however, to obtain these results, a 
finite (but very large) number of codes had to be considered and the covering radii 
of more than 150 million codes were checked by using a computer. 

This job could not have been completed within a reasonable time by applying 
the direct method for the computation of the Hamming distance, i. e. by counting 
the number of non-identical coordinates. 

By using the weight function and the "exclusive or" operation, the check of 
binary codes was completed 6-8 times faster than by the direct method. For ternary 
and mixed ternary/binary codes, using the mapping ip and applying the weight 
function for the transformed vectors resulted in an additional gain in the CPU 
time. Thus, finally, the whole job of checking the covering radii of millions of codes 
required about 30 days of CPU time (instead of 300 days or more, which would 
have been required by applying the direct method). 

.Finally, we summarize the computational aspects of the method applied for the 
case of a mixed ternary/binary Hamming space. The process of the method needs 
three initial steps as follows: 

1. We start with storing in two arrays the powers of 2 and 3 for exponents 
0 ,1 , . . . until these can be represented as long integers (arrays pow2 and 
pow3). 

2. The weights of binary integers are stored in another array wgt of long integers: 

wgt(n) = sign (n & pow2(j)). 
j> o 

3. The values of $3(n) are stored also in an array of long integers: 

L-1 
$ 3 ( n ) = Y^2 3 k + (I™/3*-!)(mod 3). 

k=0 
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After these steps of initialization, the computation of Hamming distances is 
done as follows. 

For arbitrary words x, y of the mixed Hamming space Z^1 © these words 
can be given as pairs consisting of a ternary and a binary integer: 

Then, the Hamming distance d^^(x,y) is computed by using the formula 
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The Recycled Kaplansky's Game* 

András Pluhár1" 

Abstract 

Motivated by the Nine Men Morris game, the achievement or hypergraph 
games can be prolonged in the following way. After placing a prescribed 
number of stones, the players pick some of these up and replace again. We 
study the effect of this recycling for the fc-in-a-row game and some versions 
of the Kaplansky's game. 

Keywords : positional games, achievement games, hypergraphs, Kaplansky. 

1 Introduction and Results 
A large number of combinatorial games were created from the earliest civilizations 
up to now; the authors of [7] try the impossible task of introducing a fraction of 
these. In a fascinating class of those, two players, I and II (later on M and B), 
put marks or move pieces on a board, while the outcome of the game depends on 
achieving certain geometrical configurations. The most prominent examples are the 
ageless Tic-Tac-Toe, the Nine Men's Morris, the Go-moku or its western variant, 
the 5-in-a-row. 

Plenty of interesting games are relatively young, such as the Hex, Bridgit, Shan-
non's switching game or the Hales-Jewett games. In the case of the so-called po-
sitional or achievement games the rules can be unified. Given a finite or infinite 
set X (the "board"), the players alternately take elements of X (by marking or 
putting pieces onto it physically), and there is a fixed H C 2X, the winning sets. 
A player wins by taking all the elements of a winning set first. For this sub-class 
we have a rich and beautiful theory. 

Sometimes the players take p and q elements of X in turns, respectively. If 
p ^ q, it is a biased game, otherwise it is called accelerated, see [4, 5, 6, 10, 11, 12]. 
Since I always wins or the game is a draw when p = q (see [7]), it also interesting 
to consider the strong or Maker-Breaker version of a game. Here Maker (I) wins 
by occupying a winning set, while Breaker (II) wins not by occupying such a set, 
but preventing Maker of doing so. 
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However, this pattern does not fit for such games as the recently solved Connect-
4 or Nine Men's Morris, see [1, 2]. In the first case the available moves are restricted, 
while the whole static approach of the positional games is abandoned in the second. 
We shall address the issue of the second one and make an attempt to capture the 
idea of movements for a game. For an arbitrary positional game let us define the 
rules of the recycled versions as follows. For a natural number n the players make 
the first n steps as before; this is the first phase. Then, in the second phase, they just 
make moves with some of their earlier placed pieces in turns, instead of introducing 
new ones. 

In order to investigate the effect of recycling, let us define some games. The 
first is the well-known k-in-a-row game (k € N), which is played by the two play-
ers on the infinite (chess)board, or graph paper. They alternately put their own 
marks to previously unmarked squares, and whoever gets fc-consecutive marks first 
(horizontally, vertically or diagonally) of his own, wins. 

An interesting way to alter the k-in-a-row game is to relax the consecutiveness 
condition. We shall call the game Lk(p, 1; n) (or line game for short) for which: 

1. I and II mark p and 1 squares in every step, respectively. 

2. I wins upon getting k, not necessary consecutive, marks in a line (horizontally, 
vertically or diagonally), which is free of IPs marks. 

3. the game terminates after n steps. 

Then let RLk{p, 1; n) be the recycled version of Lk(p, 1;n). 
Our third subject is the Kaplansky's game, where the players put their marks 

on the Euclidean plane. Here I wins achieving k marks on a line, provided II 
has no mark on that line. Now Kk(p,q) stands for the version in which I and II 
marks p and q points, respectively. Let Kk(p, q\n) be the version which ends after 
n round, and RKk(p,q;n) be its recycled version. 

Before stating our theorems, let us recall some earlier results on these games. 
The recycled k-in-a-row (no matter when does the second phase start) turns 

out to be easy, because the decomposition methods utilized in [7] still work, and 
give the same bounds. That is even the Maker-Breaker version of the recycled 
fc-in-a-row game is a draw if k > 8. 

Bounds for the games L/t(p, l ;n) and RLk(l, 1; n) are less obvious, we shall 
prove: 

Theorem 1. In the Maker-Breaker Lk(p, 1; n) game, Breaker wins if k> plog2 n + 
p log2 p + 3p. On the other hand, Maker wins if p > 1 and k < c log2 n for some 
c> 0. 

Theorem 2. Breaker wins the Maker-Breaker RLk( 1,1; n) game if k > 32 log2 n + 
224. 

In the version of Kleitman and Rothschild (see in [3]) I (II) wins by getting 
k (I) points of a line while the opponent has none of that line, respectively. They 
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prove that, given any k > 1, there is an l(k) such that II has a winning strategy 
whenever I > l(k). Beck in [4] considers little different games; here I wins with k 
points on a line, II with I, and I may mark p points on each turn, while II only 
one per turn. Here II wins if I < ckplog(p 4- 1), for some c > 0. He has also shown 
there exist C > c > 0, such that in Kk{l, 1; n): Maker wins if A; < clog2 n and 
Breaker wins if k > C log2 n. For its recycled version we have the following result. 

Theorem 3. Breaker wins the Maker-Breaker RKk( 1, l ;n) game if k > cn1/3. 

2 Proofs 
2.1 Weight functions 
In the proof of the Theorems 1, 2 and 3 we heavily use the weight function method, 
which was developed in [5] and developed in [6] and [8]. First let us recall some 
earlier definitions and results. 

A pair of (X, H) is called a hypergraph if H C 2X. If (X, H) is a hypergraph, 
then a (p, q, H) — game (or simply hypergraph game) is a game in which I selects 
p and II select q previously unselected elements of X. The first, who takes all 
elements of an A € H, wins. A (p,q,H)-game has a so-called Maker-Breaker 
version in which I wins taking an edges of the hypergraph any time. One of the 
most important result on such games is the Erdős-Selfridge theorem; one of its 
generalization is due to József Beck. 

MI 
Theorem 4 ([5]). Breaker wins the (p,l,H) — game if J2AZH 2 p < 

In our cases this theorem cannot be applied directly, since the hypergraphs 
involved are infinite, and it is not known if Theorem 4 holds for recycled games. 
The following lemma is also due to Beck (see [5]). We repeat the proof in order to 
see the properties of the used weight function. 

An edge A G H is active if Breaker has not taken any of its elements. 

Lemma 1. Playing a (p,l,H) game, Breaker can assure that no active edge con-
tains more than p + plog2 \H\ elements taken by Maker. 

Proof of Theorem 4- We may assume Maker starts the game. For any A £ H let 
Afc(M) and Ak{B) be the number of elements in A, after Makers kth move, selected 
by Maker and Breaker, respectively. Now, for an A E H 

where A > 0, and for any x £ X let Wk(x) = The numbers Wk{A) 
and Wk(x) are called the weight of A and x (in the /cth step), respectively. When 
it does not cause confusion we may suppress the lower index. 

Now selecting an element in the fcth step Breaker uses the greedy algorithm, i.e. 
chooses an unselected element yk G X of maximum weight. Let xj+ 1 , . . . , xk+1 be 
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the elements selected by Maker in the (k + l)st step and Wk = ^Zagh wk(A) be 
the total sum. or potential. For k > 0, following inequality holds for the potential: 

Wk ~ Wk(yk) + (AP - l)T£7jfc(yfe) > wk+1. 

Indeed, Wk decreases by Wk{yk) upon selecting yk. The elements selected by I in the 
(k + l)st step cause the biggest increase if Wk(xk+X) is maximal for 1 < I < p, and 
for all A such that Wk(A) / Owe have xk+1 € A iff 6 A, 1 < I, m < p. Since 
the increase in this case is just (Ap — 1 )wk(yk), the inequality is proved. Setting 
A = 21 /p , we get -Wk > Wk+i, k > 0, which justifies that Wk is called potential. 

Particularly wx < (Ap - 1)|#| + |ff| < 2\H\. Since q = 1 and the elements of 
H are the same size, the inequality ' < 1/2 leads to the inequality 
2\H\ < 2lAl/p. Assume that Maker wins the game in the fcth step. This would imply 
Wk > AW = 2'A ' /p , which contradicts the monotonicity of the potential. • 

Proof of Lemma 1. Just take the logarithm of the inequality \A^MS> = Wk(A) < 
Wk < 2\H\ that holds for any active edge A £ H. • 

2.2 Proof of Theorem 1. 
Let us recall that a line L means consecutive squares along an infinite line here 
(horizontally, vertically or diagonally). Now we have infinitely many interacting 
sets, so the weight function method does not seem to be helpful. The way to 
overcome the difficulties is to change the definition of the weights. The price of 
this is that the potential is no longer a decreasing function, but an increasing one. 
However, we can control the growth, since the game lasts only n steps. 

Let H be the set of all lines, and Lj(M) and Lj(B) the number of squares of 
line L marked by Maker and Breaker after the jth step, respectively. Now the 
weight function of L at the jth step: 

w(L) = ( Xh(M) i { L j { M ) ~ 1 and Lj{B) = ° 3 \ 0 otherwise 

where A = 2?. 
For a square q, 

WM)= Yl, 
L€H,q€L 

is the weight of q, and 

L€H 
is the total weight at the jth step. 

Breaker applies the greedy selection. For the weight functions, similarly to the 
proof of Theorem 4, we have 

wj+l{Lj+1) < Wj{Lj). 
Lj(M)> i LeH 
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On the other hand, in each step the number of lines whose weight becomes positive 
is at most 4p, and the weight of such a line is no more than Ap = 2. That is 

Wj+1 < Wj 4- 8 p 

holds for 0 < j < n, where wo = 0. That is if the line L is unblocked at step j 
(i.e. Lj(B) = 0) and Lj — i than 

Ai < 8pj <=> i < p{log2 j + log2 p + 3). 

Since 0 < j < n, the first part of Theorem 1 follows. 
The second part is fairly standard, we give just the sketch of its proof. In 

fact, one (say vertical) winning direction is enough. Maker divides the game into 
phases. For the sake of simplicity we omit to write the integer parts. In the first 
phase Maker places n(p — 1 )/p element in a row. Call a column i-free if it contains 
i marks of Maker, but none of Breaker. At the end of the first phase the number of 
1-free columns is at least n((p—l)/p)2. In the ith phase Maker uses up n((p — 1/p))1 

new mark, each is placed to an i — 1-free column. It is easy to check that Maker 
can reach the ith phase if n((p— 1 )/p)% > 1, and uses up at most n marks. That is 
an i-free column appears if i < clog2 n, where c is about (log2p — log2(p — 1))_ 1 . 

• 

2.3 Proof of Theorem 2. 
Breaker divides the game into sub-phases. The first sub-phase is the first phase 
of the game, then a sub-phase consists of n pair of moves. Defining the weight 
function as before, but A = \/2, Breaker places every second mark (the active 
marks) according to the greedy strategy and deposits the others arbitrarily, i.e. 
in reserve). It may happen that one of Breakers reserved marks is already on the 
square q, which is to be occupied by an active mark of Breaker. In that case Breaker 
places the new mark arbitrarily (sends it into reserve), and the mark on the square 
q becomes active. 

Considering only the effect of Breakers active marks, the game reduces to the 
game Lk{2,1, n). That is Lemma 1 applies, and for any line L if Lj(M) = i and 
Lj(B) = 0, then i < 2(log2 j + 4) if 0 < j < n. 

In the other sub-phases Breaker plays a fictitious game, and keeps the status 
of his marks (active or reserved) strictly. The marks of Maker are indexed by the 
numbers 1 ,2 , . . . , n. At the beginning of a sub-phase Breaker cannot see Makers 
marks, and in the jth step Makers new mark and the mark indexed by j become 
visible for Breaker as new moves. (If Maker moved the jth mark, only one mark 
becomes visible.) 

However Breaker responds only in every second step, using the marks from the 
reserve. (Breaker does nothing in the odd steps. If picking up a mark and putting 
back to the same place is permitted, it is easy. If it is not, Breaker designates a 
mark at the very beginning, which is neither active nor reserved, and moves this 
mark arbitrarily in the odd steps.) 
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Trying the previous greedy strategy another difficulty arises. Breaker may not 
occupy the square q of maximum weight because q has been already taken (by one 
of Makers invisible marks or one of Breakers own reserve). Then, Breaker blocks 
the lines going through q, using four marks. (See a similar idea in [12].) Now, 
looking only Makers visible marks, if for a line L, Lj(M) = i and Lj(B) = 0 then 
i < 16(log2 j + 7), since after at most 16 moves of Makers, Breaker may reply, and 
Theorem 1 applies. 

By the end of a sub-phase Makers all marks become visible, and a line L, which 
contain more than 16(log2 n + 7) of them, is blocked by Breakers reserve. Finally, 
Breaker starts the next sub-phase renaming his marks, the active ones become 
reserved and vice versa. 

Since the active marks control the invisible marks during a sub-phase, if for 
a line L the sum of visible and invisible marks of Maker on L is i, and L is not 
blocked (by the active marks or by the reserve), then i < 32(log2 n + 7). • 

2.4 Proof of Theorem 3. 
The most natural idea is to mimic the proof of Theorem 2. 

Unfortunately it breaks down irreparably at the point where Breaker wants to 
occupy, or at least block the point q, which is already taken. The problem is that 
q can be the element of many lines, so Breaker cannot cancel the weight of q by 
using only constantly many points. 

To overcome this difficulty, we change the weight function and give a more 
sophisticated analysis of it. 

Let the weight of a line L after Maker jth move be 

( L ) = Í if Lj(M) > cin1 /3 and Lj(B) = 0 
' — 0 otherwise 

where X — y/2 and c\ > 0 will be specified later. 
As before, for a point x, Wj (x) = Y2ieH xsl wj(L) is the weight of x, and 

WJ = JZLZH wj(L) is the total weight at the jth step. 
However, Breaker uses not only the greedy strategy, the recycled point also 

have to be designated. When Breaker removes a point y, the total weight function 
may grow. It grows iff there is a line L containing y such that Lj(M) > Cin1/3 

and Lj(B) = 1. Obviously the number of such points cannot be bigger than the 
number of lines containing at least c\nx/3 points of Maker. To estimate this, we 
need a definition and a theorem of Szemerédi and Trotter. 

An incidence of a point and a line is a pair (p, L), where p is a point, L is a line, 
and p lies on L. 

Theorem 5 ([14]). Let I denote the number of incidences of a set on n points 
and m lines. Then I < c(n + m + (nro)2'3), 

Let us note that László Székely published a new, more accessible proof of The-
orem 5, see in [13]. 
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An easy corollary of Theorem 5 is that there is a constant c2 such that the 
number of lines containing at least k points of S is less than C2?i2/fc3 whenever 
k < y/n. 

That is if ci > c\'\ then the number of lines containing at least cin1 /3 points 
of Maker is less than n. It means Breaker can always find a mark y such that its 
removal does not affect the value of the total weight function. The steps of Maker 
and Breaker are xi,x2, • • • and yi,y2, • • - Vi, respectively. 

As before, for the weight function we have 

Wj+2 < Wj - Wjiyj) - wj+1(yj+i) + Wj(xj+1) + wj+i(xj+i) + — N 2 / 3 A N L / 3 A " 1 / 3 + 1 . Cl 

Here the term / (n ) ^n2 / / 3An l / 3 + Anl/3 bounds the growth caused by the 
lines that of weight becoming positive in the jth and (j + l)th steps. By the 
argument of Theorem 4, Wj{yj) > Wj(xj+1) + Wj+i(xj+\), since A = \/2. We also 
have Wj+i(yj+i) > Wj+\/n, since the number of positive weighted lines is less than 
n, giving 

Wj+2 < Wj - +f{n). 

On the other hand, Wj+2 < Wj+i + f(n), or equivalently Wj+1 > Wj+2 — f(n). 
That is the value of Wj+2 is bounded, since if > f(n), and then we have 
Wj+2 < Wj. Prom here one gets that Wj+2 < (n + l ) / (n) . It means that if for a 
line L, Lj+2(M) = s and Lj+2(B) = 0, then (n + 1 ) / (n) > wj+2 > Xs. Taking the 
logarithm of both sides, s < 2log2wj+2 < 2n1/3, provided n is big enough. • 

2.5 Remarks and Open Questions 
As we have seen, there is a large gap between the logarithmic lower and (^(n1/3) 
upper bound what Maker can achieve in the recycled Kaplansky's game. 

Question 1. Can the upper or lower bounds of Theorem 3 improved? 

Even less is known about recycled hypergraph games in general. It is easy to 
give example for which Breaker wins the first phase of the game, while Maker wins 
the recycled version. 

Question 2. Is there a hypergraph game won by Breaker, but Maker wins its re-
cycled version? 

It is also interesting if the Erdos-Selfridge theorem extends to the recycled 
games. 

Question 3. Is it true ifY^AcH < 1, then Breaker wins the recycled version 
of the (X,H) game? 
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Distance Functional Dependencies in the Presence 
of Complex Values 

Sebastian Link* and Klaus-Dieter Schewe* 

Abstract 

Distance functional dependencies (dFDs) have been introduced in the 
context of the relational data model as a generalisation of error-robust func-
tional dependencies (erFDs). An erFD is a dependency that still holds, if 
errors are introduced into a relation, which cause the violation of an original 
functional dependency. A dFD with a distance d = 2e + 1 corresponds to 
an erFD with at most e errors in each tuple. Recently, an axiomatisation of 
dFDs has been obtained. 

Database theory, however, does no longer deal only with flat relations. Mod-
ern data models such as the higher-order Entity-Relationship model (HERM), 
object oriented datamodels (OODM), or the extensible Meakup Language 
(XML) provide constructors for complex values such as finite sets, multisets 
and lists. In this article, dFDs with complex values are investigated. Based 
on a generalisation of the HAmming distance for tuples to complex values, 
which exploits a lattice structure on subattributes, the major achievement is 
a finite axiomatisation of the new class of dependencies. 

Keywords, functional dependencies, complex value data models, error-
robustness 

1 Introduction 
In [3] Demetrovics, Katona and Miklós introduced error-correcting keys in the 
RDM and generalised them to error-correcting functional dependencies in [4]. In 
both cases they studied the relationship of these dependencies to inclusion-free sets 
of attributes and derived combinatorical results on the size of the elements in such 
families. As these kinds of dependencies provide information about relations that is 
stable under the introduction of errors, we prefer to talk of error-robust functional 
dependencies (erFDs). 

The work on error-robust functional dependencies is motivated by the fact that a 
database user may be confronted with a relation that contains errors. It is presumed 
that the user knows the structure of the relation schema, i.e. the attributes and 
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the dependencies. There are various reasons for such errors to occur. For instance, 
a relation may have been transmitted through a noisy channel, so knowing about 
erFDs may help to localise the errors. 

On the other hand, errors may have been introduced deliberately in order to hide 
and secure data. Then the knowledge about erFDs permits drawing conclusions 
about the errors. So the study of erFDs may lead to results on how reliable the used 
data hiding mechanism is. Another reason for an errornous relation may be that 
the data has been spoiled deliberately. Analogously to the case of using a noisy 
transmission channel the knowledge about erFDs may help to detect the errors. 

In the conclusion of [4, p.92] the authors pose the question, whether erFDs in 
the RDM can be characterised, i.e., finitely axiomatised. As already shown in [4, 
Prop. 1.1] erFDs are subsumed by another class of dependencies, called distance 
functional dependencies (dFDs), where the distance refers to the Hamming distance 
of tuples projected to the left hand side of the dependency. More precisely, an erFD 
for the case of at most e errors in each tuple corresponds to a dFD with a distance 
of at most 2e + 1. A finite axiomatisation of distance functional dependencies 
for the RDM including the more general case of disjunctive distance functional 
dependencies was achieved in [8]. 

Over the last decade the major focus of database theory has shifted from the 
relational data model to data models with complex values rather than just tuples. 
Examples are the higher-order Entity-Relationship model (HERM, [11]), object ori-
ented datamodels (OODM, [10]), or most recently the extensible Meakup Language 
(XML, [1]). A natural question is, whether the theory of functional dependencies 
and distance functional dependencies can be carried over to these data models. 
For FDs this problem was addressed in [5] for finite sets, then generalised in [7] to 
capture sets, lists and multisets, and in [6] to capture sets and disjoint unions. In 
all these cases a finite axiomatisation could be achieved. 

The aim of this paper is to generalise the notion and finite axiomatisation of 
error-robust functional dependencies. In Section 2 we summarise the results from 
[8] on dFDs in the relational data model, excluding the disjunctions. The Section 
3 we introduce vthe fundamentals of nested attributes, which capture the gist of 
higher-order data models. We present some results from [7] that will be needed 
in this article. Section 4 introduces distance functional dependencies on nested 
attributes and a sound set of derivation rules for such dependencies. Finally, the 
completeness of this set of rules is proven. 

2 Error-Robust Functional Dependencies in the 
RDM 

We assume familarity with fundamental definitions of the RDM and functional 
dependencies in the RDM. One of many good sources is [9]. 

Suppose R is a relation schemai and r, r' are ii-relations. For e > 0 assume 
that r' results from r by introducing, at most e errors per tuple. For simplicity 
neglect the case that r' has less elements than r, so that we can avoid considering 
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multisets of tuples instead of sets. We say that r satisfies the e-error-robust func-
tional dependency (e-erFD) X —> {e}Y with X, Y C R iff the introduction of errors 
into r leading to r' would still allow to detect the functional dependency X —> Y. 
Formally, for any tuple t' £ r' that corresponds to a tuple t £ r there must not 
exist two tuples t\,t2 £ r, which both have a Hamming distance at most e from t, 
such that ii[Y] / t2[Y] holds. 

Recall that the Hamming distance of two tuples ii and t2 (denoted as W(fi, t2)) 
is the number of attributes B, on which ti[B] / t2[B} holds. 

Definition 1. Let X, Y C R and e > 0. An e-error-robust functional dependency 
(e-erFD) is an expression X —» {e}Y. An ii-relation r satisfies X —> {e}Y iff 
for all ii-relations r' such that there is a bijection a between the tuples t £ r 
and a(t) = t' £ r' with H(t,t') < e and all tuples t\,t2 £ r, t' £ r' we have 
H{ti\X],t!\X)) < e A H ( t 2 [ X ) , t ' [ X } ) < e tl[Y]=t2[Y}. 

Obviously, for tuples ty,t2 £ r with H(t1[X},t2{X}) > 2e + l we obtain t[[X] / 
ijt^], so these tuples cannot violate the functional dependency X —> Y on r'. 
Conversely, for tuples t\,t2 £ r with TL{ti[X\,t2[X\) < 2e + 1 we may obtain 
t'^X] = t'2[X) in r', so that the tuples violate the functional dependency X —* Y on 
r'. Using this simple fact we obtain the following easy result (see [8], also compare 
[4, Prop. 1.1]). 

Proposition 1. An R-relation r satisfies X —* {e}Y iffH(tx[X],t2[X}) < 2e+l =$> 
t\\Y\ — t2\Y\ holds for all tuples t\,t2 £ r. 

As in [4, p.87] we take advantage of Proposition 1 to define another class of 
dependencies, called d-distance functional dependencies, which will ease the task 
of finding a finite axiomatisation. 

Definition 2. Let X, Y C R and d > 0. A d-distance functional dependency 
(d-dFD) is an expression X —> (d)Y. An ii-relation r satisfies X —> (d)Y iff we 
have H(ti[X],h[X]) <d^> ti[Y] = t2[Y] for all tuples tut2 £ r. 

As usual, we use the notation |=r X —> (d)Y, if r satisfies the dFD. If £ is a 
set of dFDs, we say that E implies X —> (d)Y (notation: E |= X —> (d)Y) iff each 
relation r satisfying all dFDs in E also satisfies X —> (d)Y. We denote by E* the 
semantic hull of E, i.e. the set of all dFDs implied by E, i.e. E* = { X —» 
(d)Y \ Z\=X^(d)Y}. 

If we can find a finite, sound and complete set of rules and axioms that allows 
us to derive E* out of E, then we also know how to obtain the semantic hull of a 
set of erFDs. This follows from the following obvious corollary of Proposition 1. 

Corollary 1. A relation r satisfies the erFD X —>• {e}Y iff r satisfies the dFD 
X —> (2e+ 1)Y. In particular, 0-erFDs correspond to 1 -dFDs. 

The main result on dFDs is the following theorem which was proven in a more 
general form in [8]. Here we use again the standard notation whereby X, Y. Z,... 
denote attribute sets, A,B,C,... denote attributes or attribute sets with just one 
attribute, and union is denoted by juxtaposition [9]. 
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Theorem 1. The following set ÎH of axioms and rules is sound and complete for 
the implication of dFDs in the RDM: 

(i) the reflexivity axiom — —— Y Ç X 
X -» (1)Y 

(ii) the weakening rule 
X ^{d + l)Y 

X -» (d)Y 

(Hi) the strenqtheninq rule . ^ ^ ,— I X |< d 
1 y X -> (d+ l)y 1 1 

X (d)Y X -» {d)Z 
(iv) the union rule 

X -> {d)YZ 

, , , , X -» (d)Y YY' {d')Z , , 
(v) the strong transitivity rule — —— \Y \< d 

X —> (d)Z 
, , , , , , , X - Ax -» (d)Y ... X-An-* (d)Y 
(wJ the left strengthening rule — — — X = 

X — > yd 
{Au...,An} 

i c Y 
X - A -> (d)y 

('uiij i/ie Ze/t weakening rule — j—ji j4êI 

3 An Algebra of Nested Attributes 
In this section we define our model of nested attributes, which covers the gist of 
higher-order datamodels including HERM, the OODM and XML. In particular, we 
investigate the structure of the set S(X) of subattributes of a given nested attribute 
X , which will give us a Brouwer algebra [6, 7]. 

3.1 Nested Attributes 
We start with a definition of simple attributes and values for them. 

Definition 3. A universe is a finite set U together with domains (i.e. sets of 
values) dom(A) for all A Eli. The elements of U are called simple attributes. 

For the relational model a universe was enough, as a relation schema could be 
defined by a subset R C U . For higher-order datamodels, however, we need nested 
attributes. In the following definition we use a set C of labels, and tacitly assume 
that the symbol A is neither a simple attribute nor a label, i.e. A ^WU£, and that 
simple attributes and labels are pairwise different, i.e. U fl L = 0. 

Definition 4. Let U be a universe and C a set of labels. The set N of nested 
attributes (over U and C) is the smallest set with A £ M, U C J\f, and satisfying 
the following properties: 
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• for X G C and X[,..., X'n G M we have X(X[,.. .,X'n) G TV; 

• for X G C and X ' g Af we have 6 N, G A/", and X(X') G TV'. 

We call A a null attribute, X{X[,... ,X'n) a record attribute, X{X'} a set at-
tribute, X[X'} a list attribute, and X(X') a multiset attribute. As record, set, list 
and multiset attributes have a unique leading label, say X , we often write simply 
X to denote the attribute. 

We can now extend the association dam from simple to nested attributes, i.e. 
for each I eJVwe will define a set of values dom(X). 

Definition 5. For each nested attribute X G N we get a domain dom(X) as 
follows: 

•• dom(X) — {T}; 

• dom{X{X[,...,X'n)) = {№ : vi,...,Xn : vn) \ Vi e dom(Xl) for i = 
1 , . . . , n } with labels X i for the attributes X[-, 

• dom(X{X'}) = { {vi , . . . ,vn} | Vi G dom(X') for i = 1 ,...,n}, i.e. each 
element in dom(X{X'}) is a finite set with elements in dom(X')] 

• dom{X{X')) = { [ u i , . . . , v n ] | Vi G dom(X') for i = l , . . . , n } , i.e. each ele-
ment in dom{X[X')) is a finite list with elements in dom(X'); 

• dom(X{X')) = {(i>i, . . . ,vn) | Vi G dom(X') for i = l , . . . , n } , i.e. each 
element in dom(X(X')) is a finite multiset with elements in dom(X'). 

Note that the relational model is covered, if only the tuple constructor is used. 
Thus, instead of a relation schema R we will now consider a nested attribute X, 
assuming that the universe U and the set of labels C are fixed. Instead of an 
.R-relation r we will consider a finite set r C dom(X). 

3.2 Subattributes 
In the dependency theory for the relational model we exploited projections on 
subsets X of a relation schema R. These are just special cases of projections on 
subattributes. Therefore, we will define a partial order > on N. However, this 
partial order will be defined on equivalence classes of attributes. We will identify 
nested attributes, if we can identify their domains. 

Definition 6. = is the smallest equivalence relation on Af satisfying the following 
properties: 

• A = X() ; 

• X{X[,..., XU = X(X[,..., X'n, A); 

• X(X[, ...,X'n)= X{X'aW,..-.,X'a{n)) for any permutation a; 
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• X(X'lt ...,X'n)= X(Ylt... ,Yn) iff x; s Yi for all i = 1, . . , ,n; 

• X{X'} = X{Y} iff X' = Y; 

• = iff X' = Y\ 

• X{X') = X{Y) iff X' = Y. 

Basically, the equivalence definition states that A in record attributes can be 
added or removed, and that order in record and union attributes does not matter. 

In the following we identify Af with the set Af/= of equivalence classes. In 
particular, we will write = instead of =, and in the following definition we should 
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y. 

Definition 7. For X, Y £ N we say that Y is a subattribute of X, iff X > Y holds, 
where > is the smallest partial order on N satisfying the following properties: 

• X > A for all X e A/"; 

• X ( Y i , . . . , y „ ) > for some injective a : { l , . . . , m } -> 
{1 , . . . , n} and y f f ( i ) > X'a{i) for all 2 = 1 , . . . , m\ 

• > iff Y > X'-

• X[Y] >X[X'} i f f y >X'\ 

• X{Y)>X{X') iSY>X'. 

Obviously, X > Y induces a projection map 7Ty : dom(X) —> dom(Y). For 
X = Y we have X > Y and Y > X and the projection maps Vy and ir^ are 
inverse to each other. 

We use the notation <S(X) = {Z € N | X > Z} to denote the set of subattributes 
of a nested attribute.X. It has been shown that S(X) carries the structure of a 
Brouwer algebra [5, 6, 7]. 

Proposition 2. The set S(X) of subattributes carries the structure of a Brouwer 
algebra, i.e. it is a distributive lattice utith a meet-operation l~l, a join-operation 
U, a smallest element X, a largest element X, and relative pseudo-complements 
Y Z = [~\{U \UUY >Z}. 

Figure 1 as an example shows the Brouwer algebra S(AT(Xi{.A}, ^[.B])). 

3.3 Ideals of Subattributes 
We are dealing with several constructors for complex values at the same time. In 
order to cope with the problems arising from this fact, we need some additional 
notions that we will define in this subsection. 

For the derivation rules for functional dependencies we need a notion of when 
two subattributes are "nearly disjoint". This property is called semi-disjointness. 
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X(X1{A},X2[B}) 

X M ^ J . X a l A ] ) X(X 1 {A} ,X 2 [B] ) 

X ( * I { A } ) X(XI{A},X2[A]) X(X2[B)) 

X(Xi{A}) X(X2[X}) 

A 

Figure 1: The lattice S(X(XI{J4}, X2[B])) 

Definition 8. Two subattributes Y, Z 6 S(X) are called semi-disjoint iff one of 
the following holds: 

(i) Y > Z or Z > Y\ 

(ii) X = X(Xlt..., Xn), Y = X(Ylt..., Yn), Z = X(ZU ...,Zn) and Yt, Z, € 
S(Xi) are semi-disjoint for all i = 1 , . . . , n; 

(iii) X = X[X'\, Y = X\Y'\, Z = X[Z'\ and Y1, Z' e S(X') are semi-disjoint. 

For the soundness proof in the next section we will need the following simple 
fact about projections to semi-disjoint attributes. 

Lemma 1. Let ti,t2 6 dom(X) for some nested attribute X € A/* such that 
7Ty(ii) = 7Ty (¿2) and (ti) = tt*(t2) hold for semi-disjoint subattributes Y,ZG 
S(X). Then also TtyuZ(ti) ~ nYuz(^) holds. 

Proof. We use induction on X to show KyuZ(t\) = 7TyuZ(i2). The cases X = A 
and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for 
y > Z or Z > Y, as in these cases Y U Z is one of Y or Z. 

For X = X(X1,...,Xn), semi-disjoint Y = X(Yu...,Yn) and Z = 
X(Zi,...,Zn), and tj = (Xi : tn,...,Xn : tjn) (j = 1,2) we have n£(tu) = 
TTy*(t2i) and = TT%(t2i), and y , Zi are semi-disjoint for all i = 1 , . . . ,n. 
By induction TTy*uZ.(tu) = N$uZ.(t2I), which implies TTyuZ(ti) = TTyuZ(t2). 

For X = X[X'\ and semi-disjoint Y = X[Y') and Z = X[Z'\) the subattributes 
y 'and Z' of X' are also semi-disjoint. Furthermore, for tj — [tji,... ,tjnj] (j = 1,2) 
we must have ni = n2 and ny',(tik) = ity>(t2k) and itz, (tik) = (^fc) for 
all k = l , . . . , n i . By induction we get also iry,u Z ,(tu) = (£2fc) for all 
k = l , . . . , n i , i.e. 7r^uz(ii) = n$uZ{t2). • 
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As <S(X) is a lattice, it makes sense to investigate ideals and filters. The fol-
lowing notion of an HL-ideal will be central for the completeness proof in the next 
section. 

Definition 9. Let X e J V . An HL-ideal on S(X) is a subset T C S(X) with the 
following properties: 

(i) A G JF; 

(ii) if Y € T and Z G S(X) with Y > Z, then Z £ T\ 

(iii) if Y, Z G T are semi-disjoint, then Y U Z G T. 

The key step in the completeness proof for dFDs in the RDM in [8] consists in 
the construction of a relation with exactly two tuples, which coincide exactly on a 
given set of attributes. While this is trivial for the RDM, the presence of complex 
values requires a similar result. However, instead of a set of attributes we now have 
to deal with an HL-ideal. This result — denoted Central Lemma in [6] — provides 
the major difficulty for the axiomatisation of functional dependencies in [5], [7] and 
[6]. 

The following theorem states this result for the case that we deal with records, 
lists, sets and multisets. The non-trivial lengthy proof is contained in [7]. 

Theorem 2. Let X G N and T be an HL-ideal on S(X). Then there exist 
tut2 G dom(X) with 7r£(ii) = tt £(t2) iffY &F. 

4 Distance Functional Dependencies on Nested 
Attributes 

Our major goal is to generalise Theorem 1 to dFDs on nested attributes. Therefore, 
we first have to generalise FDs and dFDs to this case. For the latter ones the major 
difficulty is to define a generalisation of the Hamming distance for complex values. 

4.1 A Generalised Distance Function on Complex Values 
Let us first define ordinary functional dependencies. As a set of attributes in the 
RDM corresponds to a single record attribute, the first idea is to replace sets of 
attributes by a single subattribute. While this is sufficient for records and lists, it is 
not a good idea for sets and multisets. The reason is that the well known extension 
rule in Armstrong's axiomatisation for FDs in the RDM does not generalise in this 
way [5]. Therefore, we have to consider sets of subattributes instead. 

Definition 10. Let X € N. A functional dependency (FD) on S(X) is an expres-
sion y — Z with y,ZC S(X). 

Let r be an instance of X. We say that r satisfies the FD y —> Z on S(X) 
(notation: r |= y -> Z) iff for all tut2 G r with 7r£(*i) = n${t2) for all Y G y we 
also have 7rf (ii) = 7rf (t2) for all Z G Z. 
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Now recall, that the difference between a FD and a dFD in the RDM was 
that we replaced the equality on the left hand side by a bound on the Hamming 
distance bewtwen two tuples with the distance d = 1 corresponding to the case of 
an ordinary FD. The Hamming distance counts the number of attributes, on which 
two tuples differ. These attributes form some kind of a "basis" in the sense that 
each subset of a relation schema can be constructed as a union of singleton sets 
containing just one attribute. 

In order to generalise the distance notion to complex values, we therefore need 
a basis made of subattributes. 

Definition 11. Let X £ N. The subattribute basis of X is the smallest subset 
B{X) C S{X) such that each Y £ S(X) can be written in the form Y = |J Y' 

Y'€BY 

for some By Q B(X). 

The subattribute basis of a simple record attribute would just give us the simple 
attributes. Therefore, considering the subattribute basis suggests to be a good 
choice to replace the set of attributes in the definition of the distance function. 
However, in order to cope properly with sets ans multisets, we need to close B(X) 
under the join of attributes that are not semi-disjoint. 

Definition 12. Let X £ N. The Hamming basis of X is the smallest subset 
C(X) C S(X) with B(X) C C(X) such that for all non-semi-disjoint Y,Z £ C{X) 
we also have Y U Z £ C(X). 

The following is an easy implication of Lemma 1. 
Lemma 2. Let ii, ¿2 € dom(X) for some nested attribute X and Y £ X. If 
7Ty,(ii) = 7rY'{h) holds for all Y' £ C(Y), then also 7Ty (ii) = 7Ty (i2) holds. 

Proof. According to the definition of the subattribute basis B(X) and the Hamming 
basis C(X) we can write Y in the form Y = [_} Y' for some subset Cy C C(X). 

veCy 
By definition the elements in Cy are pairwise semi-disjoint. As t\ and £2 coincide 
on all elements of Cy, the also coincide on Y by Lemma 1. • 

Now we can use the Hamming basis of X to define the distance of two complex 
values i i , i 2 € dom(X). 

Definition 13. Let X £ N and t\,t2 € dom(X). The Hamming distance H(ti, t2) 
between ii and t2 is defined as H(ti,t2) = |{Y £ C(X) | ny(ti) ^ fly (i2)}|, i-e- 35 

the number of subattributes in the Hamming basis, on which t\ and t2 differ. 

This leads us straightforward to the generalisation of dFDs on a nested attribute. 

Definition 14. Let X £ N be a nested attribute and d > 1. A d-distance 
functional dependency (dFD) on S(X) is an expression of the form ^ —» (d)Z with 
y,zcs(x). 

Let r be an instance of X. We say that r satisfies the dFD y —> (d)Z on <S(X) 
(notation: r |= y (d)Z) iff for all tut2 £ r with H{ir${ti),7r£(t2)) < d for all 
Y £y we also have (ii) = 7r $ (t2) for all Z £ Z. 
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As before, we use |= to denote implication of dFDs and E* to denote the se-
mantic hull of a set E of dFDs. 

4.2 Sound Derivation Rules 

Using the definitions from the last subsection we will show now that derivation 
rules similar to the ones in Theorem 1 are sound for the implication of dFDs on 
nested attributes. Before we can define this set of derivation rules, we need a few 
more notation. 

For Y e y C S(X) let J. Y = {Y' \ Y' maximal with Y > Y'}. Furthermore, 
if y = { n , . . . , Yfc}, write l y = { { y / , - . . , Yfc'} | Y( Gl Y, for one t and Y/ = 
Yj for all j / i). In particular we have a mapping y t—> Y/ and we can define ki = 
\C(Yi)\- |C(Y/)|. We use this to define k(y,y') = max A:» for y' = {Y{,..., Yfc'} 6| 
y . 

Theorem 3. Let X G Ai be a nested attribute. The following rules are sound for 
the implication of dFDs on S(X): 

reflexivity axiom: 

lambda axiom: 

subattribute axiom: 

join axiom: 

weakening rule: 

strengthening rule: 

union rule: 

strong transitivity rule: 

left strengthening rule: 

left weakening rule: 

z ç y 

0^(d){ A} 

{Y} - (1 ){Z} 
Y > Z 

{ Y , Z } - > ( 1 ) { Y U Z } 
y^{d+l)Z 

Y, Z semi-disjoint 

y -> (d)Z 
y -» (d)Z max{|C(Y)| | Y e y} < d 

y~*(d+l)Z 
y —> (d)Z\ y^(d)Z2 

y (d)Zi U 2 2 

y (d)Z Z U Z' -> (d')U 
y -> {d)U 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

yi^(d-h)Z ... ym^(d-km)Z 
y {d)Z 

for \ y = {yu... , 3 ^ } and ki = k(y,yi) 
y (d + k)Z 

y, I { i ) z Y e i y , k = k(y, y') 

max{|C(Z)| I Y G Z'} < d' 

(8) 

(9) 

(10) 
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Proof. In the following let r be an instance of X, i.e. r C dom(X). The soundness 
of the weakening rule (5) is obvious. 

For the soundness of the reflexivity axiom (1) let ti,t2 6 r with 
W(7Ty (ii), 7Ty (i2)) < 1 for all Y G y. That is, t\ and t2 coincide on all subat-
tributes in C(Y) for all Y G y. As Z C y holds, they must also coincide on all 
subattributes in C(Z) for all Z G Z. 

The soundness of the lambda-axiom (2) is obvious, as any t\,t2 G r coincide on 
A. 

If ii and t2 coincide on all subattributes in C(Y), they also coincide on Y by 
Lemma 2, and as Y > Z, they must also coincide on Z, which proves the soundness 
of the subattribute-axiom (3). 

Similarly, (ti),-n$ {t2)) < 1 and 7r£(t2)) < 1 implies that 
and t2 coincide on all subattributes in C(Y) U C(Z). By Lemma 2 they must also 
coincide on Y and Z. As Y, Z are semi-disjoint, we obtain 7TyuZ(ti) = TTyuZ(t2) 
by Lemma 1, which proves the soundness of the join-axiom (4). 

For the soundness of the strengthening rule (6) take t\,t2 G r with 
W(7r£(ti),7r£(ia)) < d + 1 for all Y G y. As W(7r£(ii),7r£(t2)) < |C(Y)| < d 
for all Y G the premise implies -k^ (¿i) = ^z (̂ 2) for all Z G Z as claimed. 

For the soundness of the union rule (7) take ti,t2 G r with Hi^y (¿1), ^yit2)) < 
d for all Y G y. The premises of the rule imply ir^ (t 1) = ir^ (t2) for all Z G Zj 
(j = 1,2), which trivially implies irf (ii) = 7rf (t2) for all Z G Zi U Z2 . 

In order to prove the soundness of the strong transitivity rule (8) take again 
h,t2 G r with "ft(7Ty (ii),7Ty (i2)) < d for all Y G y . The first premise of the rule 
implies tt£(fi) = 7rf (i2) for all Z £ Z. For Z' G Z' we have 7i(7rf,(ii),7rf,(i2)) < 
|C(2')I < Hence W(7rf(ii),7rf(i2)) < d' for all Z G Z U Z ' . The second premise 
of the rule gives the desired (ij) = 7Ty (i2) for all U &U. 

Now take again i i , i2 € r with H(n$(ti), n$(t2)) < d for all Y G y . Unless 
Ky{h) = 7r£(i2) there must exist some y t G| ^ with W(7Ty,(ii),7Ty,(i2)) < d - k i 
for all Y ' G X , and we can apply the corresponding premise of the left strengthening 
rule (9) to conclude (t\) = TT^ (t2) for all Z G Z, which proves the soundness of 
this rule. 

Finally, for the soundness of the left weakening rule (10) take again t\,t2 G r 
with W(7r£,(ii),7r£,(i2)) < d for all Y' G y'. Hence, H(ir$(ti),Tr$(t2)) < d + 1 for 
all Y & y. Applying the premise of the rule leads to (t\) = (t2) for all Z G Z 
as claimed. • 

4.3 Completeness 
As usual, given a set of axioms and rules and a set E of dFDs, we let E + denote 
the syntactic hull of E, i.e. the set of all dFDs that can be derived from E using the 
axioms and rules in Eft. In the following we take iR as the axioms and rules from 
Theorem 3. This theorem already states the soundness of 9t, i.e. E + C E*. 

A set of axioms and rules is called complete iff E* C E + holds. Our final goal 
is to show the completeness of the rules in £K. Theorem 2 will turn out to be the 
key for the completeness proof in this section. 
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Theorem 4. The set iH of axioms and rules from Theorem 3 is complete for the 
implication of dFDs on nested attributes. 

Proof. Let X 6 Af be a nested attribute, and let E denote a set of dFDs on <S(-X"). 
In order to show E* C E + let y - » [d)Z $ E+. 

Let d be minimal with this property. Then, according to rule (6) we can assume 
that |C(Y)| > d— 1 for at least one Y & y. Otherwise, we would have max{|C(Y)| | 
Y £ y} < d — I. As d is minimal, we have y (d — l)Z G E + , and applying the 
strengthening rule (6) would result in the contradiction y —> (d)Z G E + . 

Due to the union rule (7) there must b'e some Z G Z with y —> (d){Z) £ E + . 
Then, applying the left strengthening rule (9) k times with k < d — 1 — which is 
possible, as |C(Y)| > d — 1 for at least one Y G y — we find some y' G|fc y with 
y - (1 ){Z} i E+. 

Now take y'+ = {U \ Y (1){U} G E+}, so Z $ Y+, but due to the 
reflexivity axiom (1) we have y' C y'+. 

Obviously, due to the lambda axiom (2), the subattribute axiom (3) and the 
join axiom (4) y'+ is an HL-ideal in the Brouwer algebra S(X). Applying Theorem 
2 to y + we obtain an instance r = {ii , t2} such that TTy(ti) = irf) (t2) holds iff 
U G y'+. 

Hence, r ^ y' (1 ){Z}, and applying the sound left weakening rule (10) k 
times we obtain r ^ y —» (d){Z). From the soundness of the reflexivity axiom (1) 
we further obtain r y (d)Z. 

We now show r E. So let U —> (d')V G E. We consider two cases: 

(i) Assume max{|C(i/)| | U G K} < d'. Due to the lambda rule (2) we have 
y' —> (1){A) G E + . Using the strong transitivity rule (8) with Z' = U, we 
obtain y' -> (1)V G E+, hence V C Due to the construction of r we 
obtain n$(ti) - 7r$(t2) for all V e V , which shows r |= U (d')V. 

(ii) Next assume max{|C(i7)| | U G U} > d'. We show r \= U' (1)V, whenever 
U' Glfc' U with k' <d' - 1, and U' - » (1)V G E+ results from applying the 
left weakening rule (10) k' times. 
Then the soundness of the left strengthening rule (9) implies r U —> (d')V 
as desired. 
We distinguish again two subcases: 

(a) If U' % y'+, we have 7r^,(ii) / Tr^,(i2) for at least one U' G U\ which 
immediately implies r \= U' —» (1)V. 

(b) If U' C y,+ , we have Y -> ( l ) { t / ' } G E+ for all U' G U'. Using the union 
rule (7) we conclude y' (l)U' G E+, and further y' (1)V G E+ by 
applying the strong transitivity rule (8). 
Hence V C / + , which implies r (= U' -> (1)V as desired. 

Now r f= E*, but r y 
proof. 

(d)Z. Hence y —» (d)Z ^ E*, which completes the 
• 
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5 Conclusion 
In this article we presented a finite axiomatisation of distance functional depen-
dencies on nested attributes. This result generalises a corresponding result for the 
RDM that was achieved (in a more general form) in [8]. 

The major tasks to solve this problem were generalising the Hamming distance 
from tuples to arbitrary complex values, and constructing values that coincide 
exactly on a given ideal of subattributes. The latter problem was solved in [7] with 
solutions to a subcase contained in [5]. 

For the generalisation of the Hamming distance we used the "Hamming basis", 
which results from the subattribute basis by adding the joins of all non-semi-disjoint 
subattributes. This preserves the Hamming distance on flat tuples as a special 
case. That is, the new Hamming distance counts the number of subattributes in 
the Hamming basis, on which two values differ. 

Alternatively, we could have chosen all subattributes instead of just those in the 
Hamming basis. Looking through the proofs in this article, this would not have 
affected the finite axiomatisation. However, we would have obtained a distance 
function with significant jumps. 

We might still feel that the new distance function is still too coarse, as it cannot 
express counting. For instance, two sets with elements in the domain of a simple 
attribute either have distance 0, i.e. they are equal, or 1, i.e. they are different but 
both non-empty, or 2, i.e. they are different and one of thre sets is empty. However, 
the same problem appears already with functional dependencies, and thus, has to 
be solved in a larger context. 
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Some Problems Related to Keys and the 
Boyce-Codd Normal Form 

Vu Due Thi* and Nguyen Hoang Son* 

Abstract 
The aim of this paper is to investigate the connections between minimal 

keys and antikeys for special Sperner-systems by hypergraphs. The Boyce-
Codd normal form and some related problems are also studied in this paper. 

1 Introduction 
In the relational datamodel, one of the important concepts is the functional de-
pendency. Several types of families of functional dependencies which satisfy some 
conditions are known under the name of normal forms (NFs). The most desirable 
NF is Boyce-Codd NF (BCNF) that has been investigated in a lot of papers (see 
[2, 8, 9, 10]). The minimal keys and set of antikeys are interesting concepts in the 
relational datamodel (see, e.g., [11, 12]). A set of minimal keys and set of antikeys 
form Sperner-systems. Sperner-systems and sets of minimal keys are equivalent in 
the sense that for an arbitrary Sperner-system K a family of functional dependen-
cies F can be constructed so that the minimal keys of F are exactly the elements 
of K (see [5]). 

Hypergraph theory (see, e.g., [3]) is an important subfield of discrete mathe-
matics with many relevant applications in both theoretical and applied computer 
science. The transversal and the minimal transversal of a hypergraph are important 
concepts in this theory, on one hand. 

The paper is structured as follows: in the second section, some necessary defi-
nitions and results about hypergraph theory are given. 

In Section 3, transformations of the notions and the results of Section 2 con-
cerning hypergraphs to relational databases are shown. We prove that the set of all 
prime attributes is the set of all independent attributes of a given relation scheme. 
We give an effective algorithm finding a BCNF relation r such that r represents a 
given BCNF relation scheme s (i.e., KT = Ks, where Kr and K3 are sets of all min-
imal keys of r and s). We aslo give an effective algorithm which from a given BCNF 

* Institute of Information Technology, National Centre for Natural Science and Technology of 
Vietnam, 18 Hoang Quoc Viet, Hanoi, Vietnam 

t Department of Mathematics, College of Sciences, Hue University, Vietnam 
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relation r finds a BCNF relation scheme s such that Kr = Ks. Section 4, we study 
the connections between minimal keys and antikeys for special Sperner-system by 
hypergraphs. 

2 Basic definitions and results 
In this section we start with some basic definitions and results on hypergraphs. 

Definition 2.1. Let R be a nonempty finite set and put V(R) for the family of 
all subsets of R (its power set). The family Tí = {Ei : Ei £ V(R),i = l,...,m} is 
called a hypergraph over R if Ei / 0 holds for all i (in [3] it is required that the 
union of EiS is R, in this paper we do not require this). 

The elements of R are called vertices, and the sets E\,..., Em the edges of the 
hypergraph Tí. 

A hypergraph Tí is called simple if it satisfies Vi?i, Ej £ Tí: Ei C Ej => Ei = Ej. 
It can be seen that simple hypergraphs are Sperner-systems. 

One can see easily that the family m(Ti) = {Ei £ Tí : fiEj £ Tí : Ej C Ei} is a 
simple hypergraph, and that m(Ti) is uniquely determined by Tí. 

Definition 2.2. Let H be a hypergraph over R. A setT C R is called a transversal 
of Tí (sometimes it is called hitting set) if it meets all edges of Tí, i.e., \/E £ Tí : 
TC\E / 0. Denote by Trs(Ti) the family of all transversals of Tí. A transversal T 
of Tí is called minimal if no proper subset T' of T is a transversal. 

The family of all minimal transversals of Tí called the transversal hypergraph 
of H, and denoted by Tr(Ti). Clearly, Tr(Tí) is a simple hypergraph. 

The following algorithm finds the family of all minimal transversals of a given 
hypergraph (by induction). 
Algorithm 2.1. (Demetrovics and Thi [7]). 
Input: Let Tí — {¿?i,..., Em} be a hypergraph over R. 
Output: Tr(Ti). 
Method: 
Step 0: We set Lx := { {a } : a £ Ei}. It is obvious that Li = Tr({Ei}). 
Step q+1: (q < m) Assume that 

Lq = Sq U {Bi, ...,Btq), 

where Bi fl Eq+1 = 0,i = 1, and 5 , = {A £ Lq : A f l ^ + i / 0}. 
For each i (i = 1,..., tq) constructs the set {Bi U {6} : b £ Eq+1}. Denote them 

by ^ , . . . , ^ ( ¿ = 1,...,*,). Let 

Lq+1 = Sq U {A], : A £ Sq => A £ A*,, 1 < i < tq, 1 < p < n}. 

Theorem 2.1. (Demetrovics and Thi [7]). For every q (1 < q < m) Lq = 
Tr{{Ew..., Eg}), i.e., Lm = Tr{H). 
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It can be seen that the determination of Tr(H) based on our algorithm does 
not depend on the order of E\,..., Em. 
Remark 2.1. (Demetrovics and Thi [7]). Denote Lq = Sq U {Bi,...,Btq}, and 
lq( 1 < Q < m — 1) be the number of elements of Lq. It can be seen that the 
worst-case time complexity of our algorithm is 

m-1 
0(\R\2 Y, tguv), 

9=0 

where lo = to = 1 and 

J lq tqy if lq !> tq\ 
itlq = tq. 

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known 
that the size of arbitrary simple hypergraph over R cannot be greater than , 
where n = |ii|. ci™^2' is asymptotically equal to 2n+1/2/(7r.n)1/2. Prom this, the 
worst-case time complexity of our algorithm cannot be more than exponential in the 
number of attributes. In cases for which lq < lm(q = 1,..., TO — 1), it is easy to see 
that the time complexity of our algorithm is not greater than £>(|ii|2|W||TV(W)|2). 
Thus, in these cases this algorithm finds Tr(H) in polynomial time in \R\, \7i\ and 
\Tr(Ji)\. Obviously, if the number of elements of H is small, then this algorithm is 
very effective. It only requires polynomial time in |i?|. 

The above algorithm reminds that in [3], but its form seems to be more conve-
nient for our applications. 

The following proposition is obvious. 

Proposition 2.1. (Demetrovics and Thi [7]). The time complexity of finding 
Tr{H) of a given hypergraph H is (in general) exponential in the number of el-
ements of R. 

Proposition 2.1 is still true for a simple hypergraph. 
However, if we restrict the number of edges of a hypergraph, then the time 

complexity of finding Tr(H) of a given hypergraph H is polynomial time. 
Algorithm 2.2. 
Input: Let H = {Ei,..., Ek} be a simple hypergraph over R, where k is a constant. 
Output: Tr{H). 
Method: 
Step 1: We construct the set 

G = { { e i } U ... U {ek} :ei&Ei,l<i< k}. 

Step 2: Compute 
m ( g ) = {Ei&g -.flEj GQ-.Ej c Ei}. 

Step 3: Let Tr{H) = m{g). 
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It is obvious that m{G) = Tr{TL). Furthermore, Q 2 Tr(Ti), and \G\ < 
Hence, in this case Algorithm 2.2 finds Tr(Ti) in polynomial time. Clearly, if k is 
small, then our algorithm is very effective. 

Definition 2.3. Let R be a set and R' C R a subset of it. Then R' denotes R — R'. 
Let H be a hypergraph over R. Then Ti — {E : E G Ti} is called the comlemented 
hypergraph ofH. 

It is known [3] that if Ti is a hypergraph, then Ti = Tt, and Ti is simple iff Ti is 
simple. 

3 Boyce-Codd normal form and transversals 
Definition 3.1. Let R = {ai,...,an} be a nonempty finite set of attributes. A 
functional dependency (FD) is a statement of form X —> Y, where X,Y C R. The 
FD X —> Y holds in a relation r = {hi,..., hm} over R if 

(VhM hj G r)((Va G X){hi(a) = hj{a)) => (V6 G Y){tn{b) = hj(b))). 

We also say that r satisfies the FD X —> Y. 
Let Fr be a family of all FDs that holds in r. Then F = Fr satisfies 

• (Fl) X X G F, 
(F2) {X -> Y G F, Y Z G F) => (X - » Z G F), 
(F3) (X y G F, X C V, W C Y) =» {V W G F), 
(F4) (X Y £ F, V̂  ^ W G F) => {X U V — Y U W G F). 

A family.of FDs satisfying (Fl) - (F4) is called a /-family over R. 
Clearly, Fr is a /-family over R. It is known [1] that if F is an arbitrary/-family, 

then there is a relation r over R such that Fr = F. 
Given a family F of FDs over R, there exists a unique minimal /-family F+ 

that contains F. It can be seen that F+ contains all FDs which can be derived 
from F by the rules (Fl) - (F4). 

A relation scheme s is a pair ( R , F ) , where R is a set of attributes, and F is 
a set of FDs over R. Denote X+ = {a G R : X -> {a } G F+}. X+ is called the 
closure of X over s. It is clear that, X -> Y G F + iff Y C X+. 

Clearly, if s = (R, F) is a relation scheme, then there is a relation r over R such 
that Fr — F+ (see, [1]). 

Let r be a relation, s = (R, F) be a relation scheme over R and A C R. Then 
A is a key of r (a key of s) if A —* R G Fr(A —> R G F+). A is a minimal key of 
r(s) if A is a key of r(s) and any proper subset of A is not a key of r(s). 

Denote Kr(Ks) the set of all minimal keys of r(s). It can be seen that Kr, Ks 

are simple hypergraphs over R. 

Definition 3.2. Let s = (R,F) be a relation scheme over R. We say that 
an attribute a G R is prime if it belongs to a minimal key of s, and nonprime 
otherwises = (R, F) is in BCNF if A {a} 0 F+ for A+ ± R, a £ A. 
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If a relation scheme is changed to a relation we have the definition of BCNF for 
relation. 

Let s be a relation scheme and r a relation over R. We say that r represents s 
if Kr = Ks. 

Definition 3.3. Let r be a relation over R, and Er the equality set of r, i.e. 
Er = {Eij : 1 < i < j < |r|}, where Eij = {a G R : hi(a) = hj(a)}. Let 
Tr — {E^ G Er : T'Epg G Er : E^ C Epq}. Then Tr is called the maximal equality 
system ofr. 

Definition 3.4. LetK be a simple hypergraph over R. We define the set of antikeys 
of K, denoted by K~l, as follows: 

K-1 = {AcR:(B&K)=>(B£A) and (A C C) => (35 G K)(B C C)}. 

It is easy to see that K~l is also a simple hypergraph over R. 
In this paper, we always assume that if a simple hypergraph plays the role of 

the set of minimal keys (antikeys), then this simple hypergraph is not empty (does 
not contain R). 

Definition 3.5. Let s = (R,F) be a relation scheme and r a relation over R. For 
every A C R, set 1(A) = {a G R : A —> {a} ^ F + } . Then 1(A) is called an 
independent set of s. For r, put 1(A) — {a € R: A —> {a} ^ Fr}. Denote by Is the 
family of all independent sets of s. 

Set m(s) = {B G Is • B ± 0, fiC G Is : C C B). m(s) is called the family of all 
minimal independent sets of s. Clearly, m(s) is a simple hypergraph over R. 

It can be seen that A is a key of s if and only if 1(A) = 0. 
Denote by Ir and m(r) the family of all independent sets and the family of all 

minimal independent sets of r. 
The following result was discovered in [7]. 

Theorem 3.1. (Demetrovics and Thi [7]). Let s = (R,F) be a relation scheme 
over R. Then 

Tr(Ks) = m(s). 

It is known [3] that if Ti, Q are two simple hypergraphs over R, then H = Tr(Q) 
if and only if Q = Tr(7i). From this we obtain 

Corollary 3.1. Let s = (R,F) be a relation scheme over R. Then 

K3 = Tr(m(s)). 

Definition 3.6. Let s = (R,F) be a relation scheme over R. We say that an 
attribute a G R is independent if it belongs to an independent set of s, and dependent 
otherwise. 

Denote by Dn the set of all dependent attributes of s. Clearly, R — Dn is the 
set of all independent attributes of s. 
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Lemma 3.1. Let Tí be a simple hypergraph over R. Then 

U Tr(Ti) = U Tí. 

Proof. Assume that a £ UTr(Ti). Hence, there exists a minimal transversal T of 
Tí such that a £ T. From this, we obtain a £ E, E 6 Tí. This means that a £ UTi. 
Consequently, UTr(H) C UTí holds. 

Conversely, if a £ UTí then there is E & Tí such that a £ E. From this, according 
to the definition of transversal hypergraph of Tí there exists T £ Tr(Ti) such that 
a £ T, i.e. a £ UTr(H). Hence, UH C UTr(H). The proof is complete. • 

From Lemma 3.1 we obtain the following 

Corollary 3.2. Let s = (R, F) be a relation scheme over R, m(s) be a family of 
all independent sets of s. Then 

UTr(m(s)) = U m(s). 

Theorem 3.2. Let s = (R,F) be a relation scheme over R. Then 

U Ks = R-Dn. 

Proof. Assume that a is an element of R — Dn, i.e., there exists an 1(A) £ m(s) 
such that.a £ 1(A). Hence, a £ Um(s). By Corollary 3.2 we attain a £ UTr(m(s)). 
By Theorem 3.1 we also obtain a £ UK s . Thus, R — Dn C UJis. 

Conversely, suppose that a £ UKS. Thus, by Corollary 3.1 and Corollary 3.2 
a £ Um(s). Hence, there exists an 1(A) £ m(s) such that a £ 1(A), i.e., a £ R—Dn. 
Consequently, UKs C R — Dn. 

The theorem is proved. • 

Minimal keys and antikeys are related as follows: 

Proposition 3.1. Let s = (R,F) be a relation scheme over R. Then 

K^ = tv(K7). 

Proof. Assume X £ K~l. From Definition 3.4 we have that for every minimal key 
K, K - X ¿ 0, thus I n i i ^ O . Which implies that X £ Trs(Ks). On the other 
hand, according to the definition of antikey set, we have 

X U { a } D K, 

where a £ AT and K £ Ks, which implies that (X — {a } ) C\K = 0. Consequently, 
X £ Tr(K3), i.e., X £ Tr(Ks). Hence, we have Kj1 C Tr(Ks). 

Conversely, suppose that Y £ Tr(Ks). Then Y is not superset of any minimal 
keys. Clearly, for all a £ Y, Y - {a} £ Trs(Ks), i.e. (Y - {a} ) n K = 0. This means 
that 

Y U {b} 2 K, 

for all b £ Y. Consequently, Tr(Ks) C K~l. 
The proposition is proved. • 
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Remark 3.1. Let s = (R, F) be a relation scheme over R. Set Zs = {̂ 4+ : A Ç R}, 
i.e., Zs is the set of all closures of s. Put Ts = {A £ Zs : A ± R, fiB £ Z3 : A C B). 
Hence, Ts is the set of all maximal elements of Zs — {R}. By the definition of the 
independent set of s, we can see that Ts = {R — B : B £ m(s)}. 

Prom Theorem 3.1, Proposition 3.1 and Remark 3.1 we have 

Proposition 3.2. Let s = (R,F) be a relation scheme over R. Then 

Tr{Ks) = Ts 

The Proposition 3.2 means that for all A £ Tr(Ks) : A+ = A and A=£ R. 
Remark 3.2. Let r be a relation over R. From r we compute Er. We construct the 
maximal equality system Tr of r. Then we have Tr = (see, e.g., [8]). Denote 
elements of Tr by A\,..., At. 

Set Mr = {B : B / 0 , 5 = Ai - {a} : a £ R,i = 1, ...,t}. Denote elements of 
Mr by B\,..., Bi. We construct a relation r' = {/io, hi,..., hi} as follows: 

for all a£R, h0{a) = 0,Vi = 1,...,/ 

if a € Bi, 
otherwise. 

Clearly, r' is in BCNF and Kr = Kr>. 
We give the following algorithm that from a given relation scheme s constructs 

a relation r such that r represents s. 
Algorithm 3.1. 
Input: a BCNF relation scheme s =< R,F>. 
Output: a BCNF relation r such that Kr = Ks. 
Method: 
Step 1: From s compute Ks. 
Step 2: By Algorithm 2.1 we construct the set Tr(Ks). 
Step 3: Compute Tr(Ks). Denote elements of Tr(Ks) by A\,..., At. 
Step 4: Set Qs = {B : B / 0, B = Ai - {a} : a € R, i = 1,2,..., t}. Denote elements 
of Qs by By,..., B{. 
Step 5: Construct a relation r = {/to, hi,..., hi} as follows: 

for all a £ R,h0(a) = 0,Vi = I,...,I 

0, if a e Bi, 
ï otherwise. 

Based on Proposition 3.1, Remark 3.2 and Proposition 3.2 we have Kr = Ks 

and r is in BCNF. It is easy to see that the time complexity of Algorithm 3.1 is 
exponential in the number of attributes. 

Let r be a relation over R. Let Nr = {Nij : 1 < i < j < |r|}, where Ntj = {a £ 
R : hi(a) ^ hj(a)}. Then Nr is called the nonequality set of r. 
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Let Mr — {A £ Nr :/BB £ Nr : B C A}. Mr is called the minimal nonequality 
system of r. 

The following result was discovered in [7]. 

Theorem 3.3. (Demetrovics and Thi [7]). Let r be a relation over R. Then 
Kr = Tr(Mr), where Mr is the minimal nonequality system ofr. 

Prom Theorem 3.3 we have an effective application of Theorem 3.3, which is the 
following algorithm finding a BCNF relation scheme s such that Ks = Kr from a 
given relation r in BCNF. 
Algorithm 3.2. 
Input: Let r be a BCNF relation over R. 
Output: a BCNF relation scheme s =< R,F> such that Ks = Kr. 
Method: 
Step 1: From r compute Nr. 

' Step 2: From Nr compute the minimal nonequality system Mr. 
Step 3: By Algorithm 2.1 constructs Tr(Mr). Clearly, Kr = Tr(M r) . 
Step 4- Denoting elements of KT by Ai,..., Am. We construct a relation scheme as 
follows: s =< R, F >, where F = {A\ —> R,..., Am —^ R}. 

Clearly, s is in BCNF and Ks — Kr- The time complexity of this algorithm is 
the time complexity of Algorithm 2.1. In many cases this algorithm is very effective 
(see Remark 2.1). 

4 Special Sperner-systems and transversals 
The notion of saturated Sperner-system is defined in [6] as follows: 

Definition 4.1. (Demetrovics [6]). A Sperner-system K over R is saturated if for 
any A C R, K U { A } is not a Sperner-system. 

Now we are going to give a new characterization of saturate Sperner-systems. 
To do this, we need the following definition: 

Definition 4.2. Let Ti and Q be two hypergraphs over R. Then H > Q iff for every 
H EH there exists G £ Q such that H D G, and H <Q iff for every H £ TC there 
exists G £ G such that H C G. 

From this definition we obtain the following: 

Proposition 4.1. Let H ^ 0 and Q be two hypergraphs over R. Then 
(1) %>H and 0 < 7i. 
(2)H> {0}. 
(3){(&}<n. 
(4) H>Q (resp. H <Q) does not imply Q < H (resp. Q > U. 
(5) H< {R} iff R&H. 
(6) Ti C 5 does not imply H <Q. 
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Proof. 
(1) It is obvious from Definition 4.2. 
(2) Since Ti is hypergraph, we have (2). 
(3) By similar arguments we also have (3). 

(4) We give a counterexample. Let R = {a, b, c}. Consider the hypergraphs 

•H = {{a, &}}, g = { {a } , {b}, {c}, {a, b, c } } . 

It holds that U > g (resp. H < G), but it does not hold that g < H (resp. 
g > Tt). 
(5) Prom definition of hypergraphs and Definition 4.2 we obtain (5). 
(6) We give a counterexample. Let R = {a, 6}. Consider the hypergraphs 

w = {{o}>, £? = {{*},{&}}• 

It holds that H C g, but it does not hold that U <Q. 
The proposition is proved. • 

Remark 4.1. > and < are transitive on the hypergraphs on R. 

Theorem 4.1. Let K be a Sperner-system over R. Then K is saturated if and 
only if Tr(K) < K. 

Proof. Let K be a saturated Sperner-system. Suppose that there exists an A G 
Tr(K) such that for every B G K,A <f_ B. By Proposition 3.1 and Definition 3.4 
we have K U {A} , a Sperner-system. Which contradicts the hypothesis that K is 
saturated. Consequently, Tr(K) < K. 

Conversely, suppose that Tr(K) < K, but K is not saturated. Hence, there 
exists an A C R such that K U {A} is a Sperner-system. Because R K, for every 
C G K we have C C R. Thus, we can construct B such that A C B, K U {B} is 
a Sperner-system and for every D(B C D), there exists C G K such that D D C. 
Which implies that B G K~l. This contradicts the hypothesis Tr(K) < K, i.e., 
for every A G K~l (because Tr(K) = K~l), there exists B G K such that Ac B. 
Consequently, K is saturated. The theorem is proved. • 

Definition 4.3. Let K be a Sperner-system over R. We say that K is embedded 
if for every A G K there is a B G H such that A C B, where H_1 = K. 

Prom Proposition 3.1, Theorem 4.1 we have the following 

Proposition 4.2. Let K be a Sperner-system over R. Then K is saturated if and 
only ifTr(K) is embedded. 

Prom Proposition 3.1 and Proposition 4.2 the following corollary is immediate: 

Corollary 4.1. Let K be a Sperner-system over R. Then K is saturated if and 
only if K~l is embedded. 

Corollary 4.1 was shown in [12]. 
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Definition 4.4. Let K be a Spemer-system over R. We say that K is inclusive if 
for every A £ K, there exists a B £ such that B C A. 

From Proposition 3.1, Definition 4.2 and Definition 4.4, the following proposi-
tion is evident. 

Proposition 4.3. Let K be a Sperner-system over R. Then K is inclusive if and 
only if K> ¥F{K). 

Remark 4.2. (Demetrovics [4]). If K is an arbitrary Sperner-system over R, then 
there is a relation scheme s = (R, F) such that K = Ks. 

Theorem 4.2. Let K be a Sperner-system over R. Then K is inclusive if and 
only if Tr(Tr(K)) < Tr(K). 

Proof Suppose that K is an inclusive Sperner-system, but there exists an A £ 
Tr(Tr(K)) such that for every B £ Tr(K), A <£ B. Hence, Tr(K) U { A } is a 
Sperner-system. By Remark 4.2, for K there is a relation scheme s such that 
K = Ks. If A+ C R then according to Proposition 3.2 there exists C £ Tr{K) such 
that A+ C C, which contradicts the fact that Tr(K) U { A } is a Sperner-system. 
Consequently, A is a key of s. It is obvious that there is a minimal key A' (A' C A) 
such that A! £ K. Thus, Tr(K) U {A1} is a Sperner-system. By Proposition 4.3, 
this is a contradiction. Consequently, Tr(Tr(K)) < Tr(K). 

Conversely, assume that Tr(Tr(K)) < Tr(K). By Proposition 4.2, we obtain 
which Tr(K) is saturated. From this, Proposition 3.2 and Proposition 4.3, we have 
K, an inclusive Sperner-system. The theorem is proved. • 

From Theorem 4.2, Definition 4.3, Proposition 4.2 and Proposition 3.1, we have 
the following 

Corollary 4.2. K is an inclusive Sperner-system if and only if K~l is a saturated 
one. 

Corollary 4.2 was shown in [12]. 
From Corollary 4.1 and Corollary 4.2 the following corollary is obvious: 

Corollary 4.3. Let K be a Sperner-system over R. Denote H a Sperner-system 
for which H = K. Then the followings are equivalent: 

(1) K is saturated, 
(2) K~l is embedded, 
(3) H is inclusive. 
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Relationships Between Closure Operations and 
Choice Functions - Equivalent Descriptions of a 

Family of Functional Dependencies 

Nghia D. Vu* 

Abstract 
The family of functional dependencies plays an important role in the re-

lational database. The main goal of this paper is to investigate closure op-
erations and choice functions. They are equivalent descriptions of family of 
functional dependencies. The main properties of and relationship between 
closure operations and choice functions are presented in this paper. 

1 Introduction 
The motivation of this study is equivalent descriptions of family of functional de-
pendencies (FDs). FDs play a significant role in the implementations of relational 
database model. which was defined by E.F Codd. However, relational database 
is still one of the most powerful databases. One of the most important branches 
in the theory of relational database is that dealing with the design of database 
schemes. This branch is based on the theory of FDs and constraints. Armstrong 
observed that FDs give rise to closure operations on the set of attributes. And he 
shows that closure operation is an equivalent description of family of FDs, that is, 
the family of all FDs satisfying Armstrong axiom stated in next section. That the 
family of FDs can be described by closure operations on the attributes' set plays 
a very important role in theory of relational database. Because this representation 
was successfully applied to find many properties of FDs, studying those properties 
of closure operations is indirect way of finding that of the family of FDs. Besides 
closure operations, there are some other representations of family of FDs. Such as, 
the closed sets of a closure form a semilattice. And the semilattice with greatest 
elements gives an equivalent description of FDs. The closure operations, and other 
equivalent descriptions of family of FDs have been studied widely by Armstrong 
[Ar], Beeri, Dowd, Fagin aiid Statman [BDFS], and H. Mannila and K.J.Raiha 
[MR]. More, see [DK2], [DHLM], [DT3], and [Li]. Studying equivalent descriptions 
of family of FDs helps us to understand deeper the family FDs and widens the 
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study of it. Closure operation is widely known and considered the representation 
of family of functional dependencies most studied. Among equivalent descriptions 
of functional dependencies, the properties of choice functions are not developed well 
enough in contrast to those of closure operations. Moreover, a closure operation 
can be derived from a choice function and vice versa. Thus, by studying properties 
of choice function satisfying reverse inclusion was studied in connection with the 
theory of rational behavior of individuals and groups. For the study on choice func-
tion and relationship between closure operations and choice functions, see [DHLM] 
and [Li]. 

For relation schemes s =< U,F > and t —< U, V >, where U is a set of 
attributes and F and V sets of FDs over U, we are always able to build a closure 
L\(A) on F, for every A is a set of attributes on U. However, if we build L2(Li(A)) 
on V, we find out that a meet-semilattice can not be formed from this computation. 
That is, we can not form a relation scheme from this computation. We are going to 
show in this paper what condition that provide to build the composition L\(L,2(A)) 
such that a relation scheme can be formed from this composition. In other words, 
what is necessary and sufficient conditions that make sure L\(L2{A)) is a closure. 
We find this result through the studies of choice functions. Besides that, many 
properties of choice functions will be studies in depth. The interaction of choice 
functions and closure operations also are investigated widely in this paper. We 
also study the relationship between choice functions and FDs. Those results can 
be used to build many algorithm problems related to choice functions and closure 
operation and family of FDs. 

Direct product of decomposition of a closure operation plays an important role 
in the theory and practice of relational database. If we consider a relation of 
database as a matrix, a row contains the data of one individual, the estimation 
of the minimum cardinality of rows of such matrix is very valuable in practice of 
relational database. The studies of estimation of the minimum cardinality of rows 
for direct product of decomposition of a closure operation can be found variously 
in [DFK], [Li], [DK2]. In this paper we present the new notion and properties of 
direct product of decomposition of choice function. 

In the next section some necessary definitions and facts about relational 
database, some equivalent descriptions of family of functional dependencies besides 
choice function and closure operation theory are given. 

The result of this paper is presented in the third section. They are organized 
into six parts as follows. 

Part 1 represents necessary and sufficient condition of composition of choice 
functions to be a choice function. The studies of composition of closure operations 
has been shown through those of choice functions. The main result of this paper 
will be presented in depth in Part 1. 

The^direct product of decomposition of a choice function is in Part 2. 
It will be proposed in Part 3 to study some fundamental properties of a composi-

tion of closure operations and choice functions. We are giving important properties 
of intersection, union, and composition of choice functions, which will be fully in-
vestigated in depth in Part 1. 
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In Part 4, we show relationship between and interactive properties of closure 
operations and choice functions. In this section we consider the closure for which 
choice function defined in next section satisfies some additional properties. 

In Part 5, we are presenting a class of special choice functions, which is very 
useful in the studying of combinatorial problems related to choice functions and 
closure operations. 

Part 6 gives some special relationship between choice functions and family of 
FDs, which helps us intensively into algorithm problems on building choice func-
tions and closure operations. Since the theoretical result presented here are pre-
liminary. Thus many open problems in the studies of choice functions and closure 
operation will be shown in this paper. 

2 Basic Definitions 
Let us give some formal definitions that are used in the next sections. Those well-
known concepts in relational database given in this section can be found in [Ar, 
BB, BDFS, DK2, DTI, and Ul]. 

A relational database system of the scheme R(a\,..., an) is considered as a table, 
where columns correspond to the attributes ai 's while the row are n—tuples of 
relation r. Let X and Y be nonempty sets of attributes in R. We say that instance 
r of R satisfies the FD if two tuples agree on the values in attributes X, they must 
also agree on the values in attributes Y. Here is the formal mathematical definition 
of FDs. 

Definition 2.1. Let U = {ai,...,an} be a nonempty finite set of attributes. A 
functional dependency is a statement of the form A —> B, where A, B Ç U. The FD 
A B holds in a relation R = {h\,..., hm} over U ifVhi, hj G Rwe have hi(a) = hj(a) 
for all a £ A implies hi(b) = hj(b) for all b G B. We also say that R satisfies the 
FDA^B. 

Let FR be a family of all FDs that hold in R. 

Definition 2.2. Then F = FR satisfies. 
(1)A^AeF, 
(2) (A ^ B eF,B -» Cf F) ==> (A —> C G F), 
(3) (A - » B £ F,A C C, D C B) =» (C D e F), 
(4) (A - » B G F, C -» D G F) (A U C -» B U D G F). 

A family of FDs satisfying (l)-(4) is called an f-family over U. 
Clearly, FR is an f-family over U. It is known [Ar] that if F is an arbitrary 

f-family, then there is a relation R over U such that FR = F. 
Given a family F of FDs over U, there exits a unique minimal f-family F+ that 

contains F. It can be seen that F+ contains all FDs which can be derived from F 
by the rules (l)-(4). 

Définition 2.3. A relation scheme s is a pair < U,F >, where U is a set of 
attributes, and F is a set of FDs over U. 
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Denote A+ = {a : A —> {a} G A+ is called the closure of A over s. It is 
clear that A —> B £ F+ iff B C A+. Clearly, if s = < U, F > is a relation scheme, 
then there is a relation R over U such that FR = F+ (see, [Ar]). 

Definition 2.4. Let U be a nonempty finite set of attributes and P(U) its power 
set. A map L : P(U) —* P(U) is called a closure operation (closure for short) over 
U if it satisfies the following conditions: 

. (1)AC L{A), (Extensiveness Property) 
,(2)A C B implies L(A) C L(B), (Monotonicity Property) 

• (3) L(L(A)) = L{A). (Closure Property) 
Let s =< U,F > be a relation scheme. Set L(A) = {a : A —• {a} € i*1"1"}, we 

can see that L is a closure over U. 

Theorem 2.1. [Ar] If F is a f-family and if LF — {a: a £ U and A —> {a} G F}, 
then Lp is a closure. Inversely, if L is a closure, there exists only a f-family F 
over U such that L = LF, and F = {A B : A,B CU,B C L(A)}. 

Let L C P(U). L is called a meet-irreducible family over U (sometimes it is 
called a family of members which are not intersection of two other members) if 
A, B,C G L, then A = BC implies A = B or A = C. 

. Let I C P(U), U G I, and A,B £ I Af)B £ I. I is called a meet-semilattice 
over U. Let M C P(U). 

Denote M+ = { f W : M' C M}. We say that M is a generator of I if M+ = I. 
Note that U £ M+ but not in M, by convention it is the intersection of the empty 
collection of sets. Denote N = {A £ I : A ± D{A' £ I : Ac >1'}}. In [DK2] it is 
proved that N is the unique minimal generator of I. 

It can be seen that N is a family of members which are not intersections of two 
other members. 

Let I be a closure operation over U. Denote Z(L) = {A : L(A) — ^4} and 
N{L) = {A £ Z(L) : A ¿ D{A' £ Z(L) : A C A'}}. Z(L) is called the family of 
closed sets of L. We say that N(L) is the minimal generator of L. 

It is shown [DK2] that if N is a meet-irreducible family then there is a closure 
L such that N is the minimal generator of it. 

Theorem 2.2. [Ar] There is an on-to-one correspondence between meet- irre-
ducible families and f-families on U. 

Theorem 2.3. [DK2] There is a 1-1 correspondence between meet-irreducible 
families and meet-semilattices on U. 

Definition 2.5. Let M C P(U). M is called a Sperner system over U if A, B £ M, 
then A is not a subset of B. 

Definition 2.6. Let U be a nonempty finite set of attributes. A family M = 
{(>1, {a}) : A C U, a £ U} is called a maximal family of attributes over R iff the 
following conditions are satisfied: 

(1) a i A, 
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(2) For all (B, {6}) eM,a<£ B and A C B implyA = B. 
(3) 3(B, {6}) £ M : a ^ B,a b, and LaUB is a Sperner system over R, where 

La = {A: (A, {a}) £ M}. 

Remark 2.1. 

- It is possible that there are (A, {a}), (B, {6}) £ M such that a ^ b, but 
A = B. 

- It can be seen that by (1) and (2) for eacha £ U, La is a Sperner system over 
U. It is possible that La is an empty Sperner system. 

- Let U be a nonempty finite set of attribute and P{U) its power set. According 
to Definition 2.6 we can see that given a family Y C P(U) x P(U) there 
is a polynomial time algorithm deciding whether Y is a maximal family of 
attribute over U. 

Let L be a closure over R. Denote Z(L) = {A : L(A) = A} and M(L) = {(A, {A } ) : 
A i A, A £ Z(L) and B £ Z{L),A C B,A£B imply A = B}. 

Z(L) is called the family of closed sets of L. It can be seen that for each 
(A, {a}) £ M(L).Ais a maximal closed set which doesn't contain a. 

It is possible that there are (A, {a}), (B, {b}) £ M(L) such that a ^ b, but 
A — B. 

The following theorem which shows that closure operations and maximal fami-
lies of attributes determine each other uniquely. 

Theorem 2.4. [DT4] LetL be a closure operation over U. Then M(L) is a 
maximal family of attributes over U. Conversely, if M is a maximal family of 
attributes overU, then there exists exactly one closure operation L over U so that 
M(L) = M, where for all B £ P(U) 

{ n A if 3A £ L(M) : B C A, 
H(B) = I BCA 

[ R otherwise, 

and L(M) = {a : (a, {a}) € M}. 

Now, we introduce the following concept. 

Definition 2.7. LetY £ P(U) x P(U). We say that Y is a minimal family overU 
if the following conditions are satisfied: 

(1) V(A, B), (A',B ' ) £ F : A c B C U, A c A' implies B C B', A C B' implies 
BCB', 

(2) Put U{Y) = {B : (A, B) eY} . For each B e U(Y) and C such that C c B 
and there is no B' £ U(Y) : C C B' C B, there is an A £ L(B) : A C C, 
where L(B) = {A : {A,B) £ 7 } . 
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Remark 2.2. 

-U £ U{Y). 

- From A C B' implies B C B' there is no a B' £ U(Y) such that A c B' C B 
and A = A' implies B = B'. 

- Because A C A! implies B C B' and A = A! implies B = B', we can be see 
that L(B) is a Sperner system over R and by (2) L(B) ^ 0. 

Let I be a meet-semilattice over R. Put M*(7) = { (A, B) : 3C £ I such that 
A C C,A ± n{C : C £ I, A C C},B = n { C : C £ I, A C C } } . Set M(I) = 
{ (A, B) £ M*(I) : there does not exist {A', B) £ M*(I) such that A' C A}. 

Theorem 2.5. [DT4] Let I be a meet-semilattice over U. ThenM(I)is a minimal 
family overU. Conversely, if Y is a minimal family over U, then there is exactly 
one meet-semilattice I so that M(I) = Y, where I = { C C R : V(A, B) £ Y : A C 
C implies B C C}. 

Let Z be an intersection semilattice on U and suppose that H C U, H (£. Zhold 
and Z U {H} is also closed under intersection. Consider the sets A satisfying 
A £ Z,H C A. The intersection of all of these sets is in Z therefore it is different 
form H. Denote it by L(H). H C L(H) is obvious. Let H(Z) denote the set of all 
pairs ( H , L ( H ) ) where H c U, H ^ Z, but Z U {H} is closed under intersection. 
The following theorem characterize the possible sets H(Z): 

Theorem 2.6. [DK1] The set {(Ai,Bi)\i — l , . . . ,m} is equal to H(Z) for some 
intersection semilattice Z iff the following conditions are satisfied: 

AiC-BiC U, Ai ± Bi, 

Ai Aj implies either Bi C Aj, or Aj C Bi, 

Ai C Bj implies Bi C Bj, 

for any i and C C U satisfying Ai C C C Bi(Ai / C / Bi). 
There is a j such that either C = Aj or Aj C C, Bj <£ C,C <£. Bj all hold. 

The set of pair (Ai ,Bi) satisfying those condition above is called an extension. 
Its definition is not really beautiful but it is needed in some application. On the 
other hand it is also an equivalent notion to the closures: 

Theorem 2.7. [DKlj Z —> H(Z) is a bijection between the set of intersection 
semilattices and the set of extensions. 

Definition 2.8. Let U be a nonempty finite set of attributes and P{U) its power 
set. A map C : P{U) —> P{U) is called a choice function, if every A £ P(U) , then 
C(A) C A. 
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U is interpreted as a set of alternatives, A as a set of alternatives given to the 
decision-maker to choose the best and C(A) as a choice of the best alternatives 
among A. 

Let L be a closure operation, we define C and H associated with L as follows: 

C(A) = U-L(U-A), (*) 

and 
H(A) — AC\ L(U — A). (**) 

We can easily prove that C(A) and H(A) are two choice functions. And we 
name C(A) choice function - 1 (for short, CF-I), and H(A) choice function - II (for 
short, CF-II). 

Theorem 2.8. The relationship like (*) is considered as a 1-1 correspondence 
between closures and choice functions, which satisfies the following two conditions: 
For every A,BCU, 

(1) If C (A) CBC A, then C{A) = C{B) (Out Casting Property), 

(2) If AC B , then C{A) C C(B) (Monotonicity Property). 

Theorem 2.9. The relationship like (**) is considered as a 1-1 correspondence 
between closures and choice functions, which satisfies the following two conditions: 
For every A, B C U, 

(1) If If H{A) CBC A, then H(A) = H{B) (Out Casting Property), 

(2) If AC B , then H(B) n A C H(A) (Heredity Property). 

We also note that both C and H uniquely determine the closure L as the 
following , 

L{A) = U - C(U - A) and H(A) = AliL(U- A). 

For every A C U, the sets C(A) and H(A) form a partition of A, that is, C(A) U 
H{A) = A , and C(A) D H{A) = 0. 

Theorem 2.10. There is a 1-1 correspondence between CFs - I and closure oper-
ations on U. 

Theorem 2.11. There is a 1-1 correspondence between CFs - II and closure op-
erations on U. 
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3 Results 
3.1 Properties of and Relationship between Composition of 

Closure Operations and CFs - I and - II 
First of all, we are giving the formal definition of composition of functions. 

Definition 3.1. Let f and g be two functions (e.g. closure operations, CFs - I, or 
II) on U, and we determine a map T as a composition of f and g the following: 

T(X) = f(g(X)) = f.g(X) = fg{X) for every XCU. 

In this section we are going to answer two questions. The first one is: given 
many CFs - I (or II), what can be said about the composition of those CFs - I (or 
II). In other words, what is necessary and sufficient conditions that provide , that 
composition to be a CF - I (or II). The second one is: what is the relationship 
between that composition of CFs - I (or II) and that of closure operations. And if 
we can find the necessary and sufficient conditions that provide that composition 
of closure operations to be closure operation through those of CFs - I(or II). 

With the same questions, however, first we are going to investigate problems 
with two choice functions. For convenient, we show the results of CFs - II. We will 
soon see that 

Theorem 3.1. Let H\ and H2 be CFs-II on U, then composition H1H2 and H2H1 
are a CFs-II on U, and HXH2 = H2HX = Hi n H2. 

However, to achieve this result, we necessarily prove those following Lemmas 
and Propositions. First we need to prove the following Proposition: 

Proposition 3.1. Let Hi and H2 be CFs - II on U, then for all XCU, 

Hi{X) n H2{X) is a CF- II on U. 

To prove Hi fl H2 is a CF - II, we need to prove the following. 

Lemma 3.1. Let L1 and L2 be closure operations on U, then for all XCU, 

Li(X) n L2(X) is a closure operation on U. © 
Proof. Assume Li and L2 be two closure operations on U, then for all X C U, it is 
easy to obtain that X C Li(X) n L2(X) since X C Li(X) and X C L2(X). Now, 
to prove the Monotonicity Property of L\{X) fl L2(X), for every X C Y, we have 
Li(X) C Li(Y) and L2(X) C L2(Y). Therefore, Li(X)nL2(X) C Lx{Y)nL2{Y), 
so LI(~)L2 satisfies Monotonicity Property. Then, we have to prove Closure Property 
of Li n L2 • We always have X C Li(X) D L2(X) C Li(X). Using Monotonicity 
Property of Li, we attain Li(X) C Li(Li(X) D L2(X)) C Li(Li(X)) = Li(X). 
That means Lx(X) = Li{Li{X) n L2{X)). Similarly, we attain that L2{X) = 
L2{Li{X)nL2{X)). Therefore, Li(X)nL2(X) = L1(L1(X)nL2(X))n(L2(Li(X)n 
L2(X)). That is, Li D L2 satisfies Closure Property, so Lx n is a closure on U. 
The proof is completed. • 
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Now we axe moving on proving Proposition 3.1. 

Proof of Proposition 3.1. Assume Hi and H2 be CFs - II on U, then for all X C 
U, we have Hi(X) = X n Li(U - X), and H2(X) = X n L2(U - X), with Li 
and L2 two closure operations corresponding to Hi and H2 respectively. Thus 
Hi(X)f\H2(X) = (X(~\L\(U — X))C\(XC\L2(U — X)) - XnLx{U-X)nL2(i/-X). 
However, due to Lemma 3.1, Li(U — X)<lL2(U — X) is a closure operation, that is, 
there exists a closure operation L3 such that — X) = Li(U — X) f]L2(U — X). 
Thus ,C i (X )nC 2 (X ) = XnL3(U-X) = C 3 (X) , with C3 is a CF - II corresponding 
to L3. The proof is completed. • 

Before proving Theorem 3.1, we need to prove the follows. 

Lemma 3.2. Let Hi and H2 be CFs - II on U, then 
1) HiH2 = H2HiH2. 
2) H2Hi = HiH2Hi 

Proof. Assume Hi and H2 be CFs - II on U. Then for all X C U,Hi(X) = 
X n Li(U - X) and H2(X) = X n L2{U - X), with Li and L2 two closure op-
erations corresponding to Hi and H2 respectively. HiH2(X) = Hi(H2(X)) = 
X n L2{U - X) n Li(U -Xn L2{U - X ) ) C X. Due to Heredity Property of CFs 
- II for H2, we obtain H2{X) n HxH2{X) C H2(HiH2(X)). By using HiH2(X) = 
Hi(H2(X)) C H2(X), we attain HxH2{X) C H2{HxH2{X)) C HiH2(X). Hence 
HxH2(X) = H2(HiH2(X)), that is, HiH2 = H2HXH2. Similarly, we obtain 
H2Hi = H{H2Hi .The proof is completed. • 

Lemma 3.3. Let Hi and H2 be CFs - II on U, then following is equivalence: 
1)HiCH2 

2)HiH2 = Hi 

Proof. 
(1 —» 2). Assume Hx and H2 be CFs-II on U and Hi C H2. Since Hl is a CF-II, 
Hi must satisfy Out Casting property: if Ht(X) C Y C X , then Hx{X) = HX(Y). 
Therefore, we have Hi C H2 or Hy{X) C H2{X) C X for every X C U, so 
Hi(H2(X)) = Hi(X) or we conclude that HXH2 = Hi. 

(2 1). Assume Hi and H2 be Ci's - II on U and H\H2 = Hi. Since H\ and H2 

are CFs - II, according to Definition of choice function, we have HXH2 C H2, but 
HiH2 = Hi, so we have Hi C H2. The proof is completed. • 

Easily, we obtain the following Corollary. 

Corollary 3.1. IfH is a CF - II on U, then HH = H. 

Proof of Theorem 3.1. Assume Hx and H2 be CFs - II on U. Then for all X C 
U, H2(X) C X . Due to Heredity Property of CF - II for Hi, we obtain Hi(X) n 
H2(X) C Hi(H2(X)). Besides that, Hi(H2(X)) C H2(X) C X , we obtain Hi n 
H2(X) C HiH2(X) C X . By Proposition 3.1, Hi(X) fl H2(X) is a CF - II. Using 
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Out Casting Property for Hi n H2, we achieve Hi n H2(H1H2{X)) = Hi n H2(X) 
or Hi(HiH2(X)) n H2(HlH2(X)) = HlC\H2{X). Due to Corollary 3.1, we obtain 
Hi(HiH2{X)) = HiH2(X), and Lemma 3.2, we obtain HxH2{X) = H2HiH2(X). 
Therefore, we attain that HiH2(X) = Hi n H2{X), that is H\H2 = Hi n H2.That 
means HiH2 is a CF-II. Similarly, we obtain H2HX = H\ Pi H2 and H2Hi is a 
CF-II. The proof is completed. • 

We can generalize Theorem 3.1 by the following 
Generalization 3.1. Let Hi be CFs - II on U with i = 1 —> n , then 
HiiHi2....Hnn_i)Hin is a CFs - II on U, and 

n 
HnHi2...Hin=pi Hi 

i=1 

with {Hn,Hi2.,..., Hi(n_i),Hin} be permutations of {Hi, H2,.., i/(n_i), Hn}. 

Thus, for CFs - II, a composition of CFs - II is always a CF - II. Now we move 
on the composition of CFs - 1 before investigating on closure operations. 

Theorem 3.2. Let Cx and C2 be CFs - I on U. A composition of Ci and C2, 
denoted as C\C2, is a CF - I if and only if 

CiC2Ci = C\C2. 

However, before proving Theorem 3.2, we need to have the following Lemmas. 

Lemma 3.4. Let Ci and C2 be CF-Is on U. Then 
1) CiC2 c Ci, 
2) CiC2 C C2, 
3) C2Ci CCi, 
4) C2Ci c C2. 

Due to Definition of choice function, and Monotonicity Property of CFs - II, 
clearly we obtain that Lemma. 

Lemma 3.5. Let Ci and C2 be CFs - I on U, then following is equivalence: 
1) Ci c C2, 
2)CiC2 = Ci. 

Proof The proof of this Lemma is similar to that of Lemma 3.3. • 

Easily, we obtain the following Corollary. 

Corollary 3.2. If C is a CF - I on U, then CC = C. 

Now we move on proving Theorem 3.2. 
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Proof Theorem 3.2. Assume Cx and C2 be CFs-I on U and the composition C1C2 
also a CF - I. Due to Lemma 3.4, we have CiC2 (X) C Ci{X) C X. Due to Out 
Casting Property of composition CiC2, we have CiC2Ci(X) = CxC2(X). 

Inversely, assume C\ and C2 be CFs-I on U and the composition C\C2 satisfying 
that C\C2C\ = CXC2. For all X C U, it is clear to obtain that C\{C2{X)) C 
C2(X) C X. It means C\C2 is a choice function. Now, to prove the Monotonicity 
Property of the composition CXC2. For every I C Y , using Monotonicity Property 
of C i and C 2 , we have C2{X) C C2{Y), then CX{C2{X)) C CX{C2{Y)). That means 
that CXC2 satisfies Monotonicity Property. Then, we have to prove Out Casting 
Property of the composition CXC2. For all X and Y C U,CXC2(X) C Y C X, 
we need to prove that CXC2(X) — CXC2(Y). Using Monotonicity Property of 
CX, we obtain that C2{CXC2(X)) C C2{Y) C C2(X). Applying Monotonicity 
Property o f Ci once again, we have CX(C2CXC2(X)) C CX(C2(Y)) C CX(C2{X)). 
However, CXC2CX = CXC2. Therefore, CXC2C2{X) C CXC2{Y) C CXC2{X).. Due 
to Corollary 3.2, we obtain that CXC2{X) C CXC2{Y) C CXC2(X) That means 
CXC2(X) = CXC2(Y). That is, CXC2 satisfies Out Casting Property, so CXC2 is a 
CF-I on U. The proof is completed. • 

We generalize the Theorem above. 
Generalization 3.2. Let CX,C2,.., and Cn be CFs-I on U. A composition of 
CX,C2, ...,and Cn, denoted as CxC2....Cn-XCn, is a CF-I if and only if 

cxc2...cn-xcncxc2....cn-x = cxc2...cn-xcn. 
Proof. We prove this Generalization by induction. It is obvious for n = 1. The 
Theorem 3.2 proves the case that n = 2. 

For n = k, we assume that Ci,C2 , . . , and Ck be CFs-I on U, and the com-
position of Ci,C2,..., and Cfc, denoted as CxC2....Ck-XCk, is a CF - I. We need 
to prove that, for n = k + 1, the composition CxC2....CkCk+x is a CF - I iff 
CxC2...CkCk+xCxC2....Ck = CxC2...CkCk+x. Surely, since CxC2....Ck-XCk is a C F 
-1, by using Theorem 3.2, we obtain that the composition CxC2....CkCk+X is a CF 
- 1 iff CxC2...CkCk+xCxC2....Ck = CxC2...CkCk+x. The proof is completed. • 

Now we move on the relationship between the composition of closure operations 
and CFs -1. We have the following Theorem. 

Theorem 3.3. Let Lx and L2 be closure operations and Cx and C2 be CF-Is 
corresponding to Lx and L2 respectively on U. The following are equivalent: 

1) CXC2 is a CF-I, 
2)LXL2 is a closure operation. 

Proof. (1 —> 2). Assume Lx and L2 be closure operations, and Cx and C2 be CF-
Is corresponding to Lx and L2 respectively on U and CXC2 is a closure operation. 
Then for all X C U, we have Lx{X) = U-Cx(U-X), and L2(X) = U-C2(U-X). 
Thus, LxL2(X) = Lx(L2(X)) = U-CX(U-(U- C2(U - X))) = U- CX{C2(U -
X)) = U — CXC2(U — X). However, CXC2 is a closure operation. Therefore. 
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there exists a closure operation C3 such that CZ(U — X) = C\C2{U — X). Thus, 
LXL2{X) = U — C3{U — X) = LZ(X), with L3 a closure operation corresponding 
to C3 . That is L1L2 is a closure operation. The proof is completed. 

(2 —» 1). Assume L\ and L2 be closure operations and C\ and C2 be CF-
Is corresponding to L\ and L2 respectively on U and L\L2 is a closure operation. 
Then for all X C U, we have CI(X) = U-LI(U-X), and C2(X) = U-L2(U-X). 
Thus, C i C 2 ( X ) = CI(C2(X)) = U- LI(U - (U - L2{U - X ) ) ) = U- Li (L 2 ( t / -
X ) ) = U — L\L2(U — X) . However, L\L2 is a closure operation. Therefore, 
there exists a closure operation L3 such that L3(C/ — X) = L\L2(U — X ) . Thus, 
C\C2(X) = U — L3(U — X) = CS{X), with C3 a choice function-I corresponding 
to L3. That is C\C2 is a CF-I. The proof is completed. • 

It can be seen that. 
Generalization 3.3. Let L, be closure operations and {C , } be CFs - 1 correspond-
ing to Li respectively on U, with i = 1 —> n. The following are equivalent: 

1) L\L2...Ln is a closure operation 
2) CIC2...CN is a CF-I 

And we also have LiL 2 . . .Ln (X) = U - CIC2...CN{U - X) and C*E2,..CN{X) = 
U — L\L2..:LN(U — X). 

Through Theorem 3.2 and 3.3, it is easy to obtain the fallowing Theorem. 

Theorem 3.4. Let L\ and, L2 be closure operations ori U. A composition of L\ 
and L2, denoted as L\L2, is a closure operation if qnd only if 

L\L2L\ = L\L2. 

For generalization, we have the same conclusion for following Generalization as 
Generalization 3.2. 
Generalization 3.4. Let LI,L2, .., and LN be closure operations on U. A compos-
ite function of L\, L2,..., and LN, denoted as LiL2 . . . .Ln_iLn , is a closure operation 
if and only if 

3.2 Direct Product of CFs - I and - II 
The direct product of closure operations plays very important role in theory of 
relational database, especially in combinatorial problems. Plenty of properties re-
lated to direct product of closure operation can be found in [DFK] and [Li]. By 
relationship and interaction between closure operations and choice functions, we 
introduce the new definitions of direct product of choice function-Is as well as -lis. 
First of all, we have the following. 

Theorem 3.5. [Li] Let L\ and L2 be closure operations on the disjoint ground 
sets U\ and U2 respectively. The direct product of closure operations L\ x L2 is 
defined as following 
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(Lx x L2)(X) = Lx(X П U\) U L2(X П U2), X С Ui U U2. 

Then (Li x L2)(X) is a closure operations on UiUU2. 

Here we give the Generalization of above Theorem. 
Generalization 3.5. Let {Li\ i = 1 —> n} be closure operations on the disjoint 
ground sets Ui respectively. The direct product of those closure operations L\ x 
L2 x ... x Ln is defined as following 

n 
(Li x L2 X . . . x Ln){X) = ( J Li{X П Щ 

i = l 

with X С Ui U U2 U ... U [/„. 
Then (L\ x L2 x ... x Ln)(X) is a closure operation on U\ U U2 U ... U Un. 

Theorem 3.6. Let Cx and C2 be CFs - I on the disjoint ground sets Ux and U2 

respectively. The direct product of CFs - I, Cx x C2, is defined as following 

(Ci x C2)(X) = Ci(X П Ui) U C2(X П U2), XCUi U U2. 

Then (Ci x C2)(X) is a CF - I onUiU U2. 

Proof. For all X С Ui II U2, {Cx x C2)(X) = Cx(X П Ux) U C2(X n U2) C ( J i n 
Ux) U (X П U2) С 1 П (Ux U U2) = X. Thus, {Cx x C2)(X) С X. For every X and 
Y С Ui U U2 and X С Y, then X П Ux С Y П Ui , and X П U2 С Y П U2. By 
using Monotonicity Property of Ci and C2, we obtain Cx(Xr\Ux) С C\(YC\U\) and 
C2(XnV2) С C2{YP\U2). Hence Cx(XC\Ux)llC2(XC[U2) С Cx(YnUx)l)C2(YnU2), 
that is/^A - C2)(X) С (Сi x C2)(Y) or (Cx x C2) satisfies Monotonicity Property. 
Now we need to show that (Cx x C2)(X) satisfies the Out Casting Property also. 
That is, for every X, Y С Ux U U2 and (Cx x C2)(X) = Cx(X П Ux) U C2(X П U2) С 
У С X, we need to show that (Ci x C2)(X) = (Cx x C2){Y). Since У С X, we have 
(Ci x C2)(Y) С (CI x C2)(X). And it is obvious that Cx(X П Ux) С Cx{X П Ux) U 
C2{XC\U2) С У. Thus, we have Cx{XnUx)nUx С YnUx or Cx(XC\Ux) С YnUx. 
Using Monotonicity Property of Cx, we have Cx{Cx(X П Ux)) С CX(Y П Ux) or 
Cx(X П Ux) С CX(Y П Ux) due to Corollary 3.2. Similarly, we obtain C2(X П Ui) С 
C2(Y П Ui). Therefore Сi(X П Ui) U C2(X П U2) С Ci(Y П Ui) U C2(Y П U2) or 
(CI x C2)(X) С (Ci x C2)(Y). Hence (CI x C2)(X) = (Ci x C2)(Y). The proof is 
completed. • 

Generalization 3.6. Let {Ci\ i = 1 —> n} be CFs - 1 with on the disjoint ground 
sets {Ui} respectively. The direct product of CFs -1, Cx x C2 x ... x C„, is defined 
as following 71 

(CI X C2 X ... X Cn){X) = |J Ci(X П Ui) 
i= 1 

with X С Ux U U2 U ... U Un. 
Then (Ci x C2 x ... x Cn){X) is a CF - 1 on Ux U U2 U ... U Un. 
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T h e o r e m 3.7. Let Hx and H2 be CFs - II on the disjoint ground sets Ux and U2 

respectively. The direct product of CFs - II, Hi x H2, is defined as follouring 

{Hi x H2)(X) = Hi(X П Ui) U H2{X П U2), XCUiU U2. 

Then (Hi x H2){X) is a CF - II on Ui U U2. 

Proof. For all X С Ux U U2, {Hi x H2){X) = Hx(X П Ux) U H2(X П U2) C ( X n 
Ui) U ( J i n U2) С X П (Ui U U2) = X. Thus, {Hi x H2){X) С X. For every X 
and У С Ui U U2 and X С Y, we need to prove that (Hi x H2) satisfies Heredity 
Property. Since X С Y, we have X П Ui С Y П Ui, and X П U2 С Y П U2. By using 
Heredity Property of Hi and H2, we obtain Hi(YnUi)n(XnUi) С Hi(XnUi) or 
Hi(Y П Ui) П X С Hi(X П Ui). Similarly, we have H2(Y П U2)C\X С H2(X П U2). 
Hence, (HX(Y П Ui) П X) U (H2(Y П U2) П X) С Hi(X П Ui) U H2(X П U2), then 
(Hi(Yr\Ui)UH2(YnU2))nX С Hi(XnUi)\JH2(X<lU2) that is, (HixH2)(Y)nX С 
(Hi x H2)(X) or (Hi x H2) satisfies Heredity Property. 

Now we need to show that (Hi x H2)(X) satisfies the Out Casting Property 
also. That is, for every X and Y С Ui U U2 and (Нг x H2)(X) = Hx(X П Ux) U 
H2(X П U2) С У С X, we need to show that (Hx x H2)(X) = (Hx x Я 2 ) (У ) . 
It is obvious that Hx(X n Ux) С Hx(X П Ux) U H2(X П U2) С У С X . Then 
Нг(Х П Ui) П Ui С У П Ux С X П Ux or Hi(X П Ui) С У n Ui С X П Ux. Using 
Out Casting Property of Hx, we obtain Hx(X П Ui) = Hi(Y П Ui). Similarly, we 
attain H2(X П U2) = Я 2 ( У П U2). Therefore Hx(X П Ux) U H2(X П U2) = HX(Y П 
Ui) U H2(Y П U2) or (Hi x H2)(X) = (Hi x Я 2 ) (У) . The proof is completed. • 

Generalization 3.7. Let {Hi\ i — 1 —> n} be CFs - II with on the disjoint ground 
sets Ui respectively. The direct product of CFs - II, Hi x Я 2 x ... x Hn, is defined 
as following n 

(Hi x H2 x . . . x Hn)(X) = ( J Hi(X П Ui) 
¿=1 

with X С Ui U U2 U ... U Un. 
. Then (Hi x H2 x ... x Hn)(X) is a CF - II on Ui U U2 U ... U Un. 

3.3 Properties of CFs - I and - II and Closure Operations 
Propos i t ion 3.2. Let Ci and C2 be CFs-I on U, then for all X С U, 

Cx ( X ) U C2(X) is a CF-I on U. 

Proof. Assume Cx and C 2 be CFs-I on U, then for all X С U, it is easy to obtain 
that Ci(X) U C2(X) С X since C i ( X ) С X and C2(X) С X. Now, to prove the 
Monotonicity Property of Ci U C2 , for every X С У , we have Ci(X) С Ci(Y) and 
C2(X) С C2(Y). Therefore, Ci(X) U C2(X) С Ci(Y) U С 2 (У) , so Cx U C2 satisfies 
Monotonicity Property. Then, we have to prove Out Casting Property of Cx U C2. 
We always have Cx(X) С Cx(X) U C2(X) CY CX. Using Out Casting Property 
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of Ci, we attain Ci(X) = Ci(Y). Similarly, we attain that C2(X) = C2(Y) from 
C2(X) C Ci (X) U C 2 (X) c y c X . Therefore, Ci U C2(X) = Ci U C2(Y) . That 
is, C\ U C2 satisfies Out Casting Property, so C\ U C2 is a CF-I on U. The proof is 
completed. • 

Proposition 3.3. Let H\ and H2 be CFs-II on U, then for all X C U, 

Hi(X) U H2{X) is a CF-II on U. 

Proof. Assume Hi and H2 be CFs-II on U. Similarly to above proof, for all X C U 
it is clear to obtain that Hi(X) U H2(X) C X since Hx{X) C X and H2{X) C X. 
Now, to prove the Heredity Property of Hi U H2, for every X C Y, we have 
Hi(Y)DX C Hi(X) and H2(Y)nX C H2{X). Therefore, Xn(Hi(Y)UH2(Y)) C 
Hi (X) U H2(X), so Hi U H2 satisfies Heredity Property. For Out Casting Property 
of Hi U H2 , we prove the same as the proof of Proposition 3.2. The proof is 
completed. • 

From Proposition 3.3, we lead to the following Lemmas. 

Lemma 3.6. Let Li and L2 be closure operations on U, then for all X C U, 

Li(X) U L2(X) is a closure operation on U. 

Proof. Assume Li and L2 be closure operations on U, then for all X C U, we 
have Li(X) = X U HX{U - X), L2(X) = X U H2(U - X), with Hi and H2 two 
choice function-IIs corresponding to Li and L2 respectively. Thus Li(X)\JL2(X) — 
X\JHi{U-X)l)H2(U-X). However, due to Proposition 3.3, Hi{U-X)\jH2(U-X) 
is a CF - II, that is, there exists a choice function H3 such that H^U — X) = 
Hi{U-X)UH2(U-X). Thus, Li(X)UL2{X) = XL)H3(U-X) = L3(X), with 
L3 a closure operation corresponding to H3. The proof is completed. • 

Using similar method of above proof, we can achieve two following. 

Lemma 3.7. Let Ci and C2 be CFs - I on U, then for all X C U, 

Ci (X) D C2(X) is a CF - Ion U. 

Proof. Assume Ci and C2 be CFs - I on U, then for all X C {/, we have C\(X) = 
U — Li(JJ—X),andC2(X) = U — L2(U — X),withLi and L2 two closure operations 
corresponding to Ci and C2 respectively. Thus Ci(X) D C2(X) = (U — LX{U — 
X))n(U-L2(U-X)) = U-Li(U-X)UL2(U-X) . However, due to Lemma 3.6, 
Li(U—X)L>L2(U—X) is a closure operation, that is, there exists a closure operation 
L3 such that L3(U - X) = Li(U -X)U L2{U - X) . Thus, Ci(X) U C2{X) = 
U — L3(U — X) = C3(X) , with C3 a CF - I corresponding to L3. The proof is 
completed. • 

Proposition 3.4. Let H be a CF-II on U. Then for all X C U, we have 

H{X)nH(Y) C H(X fl Y). 
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Proof. For all X and Y CU, due to Monotonicity Property of closure operations, 
we easily obtain L{X) n L(Y) C L(X U Y). Therefore, L(U - X ) n L(U - Y) C 
L((U - X) U (U - Y)). Using L((U - X) U (U - Y)) = L(U - X n Y), we have 
L(U — X ) n L(U — y ) C L(U-XC\Y). Hence, (X n Y) fl L(U - X) n L(U - Y) C 
( X n y ) n L ( ( i 7 - X n y ) or H(X)f\H{Y) C H(XnY). The proof is completed. • 

Similarly, we obtain the follow 

Proposition 3.5. Let H be a CF-II on U. Then for all X CU, we have H(X U 
Y) C H(X)UH{Y). 

Proof. For all X and Y CU, due to Monotonicity Property of closure operations, 
we easily obtain L(X n 7 ) C L{X) n L(Y). Therefore, L((U - X) n (U - y)) C 
L(U - X) n L(U - Y). Using L{{U - X) n {U - Y)) = L(U - X U y ) , we have 
L(U - X U Y) C L(U - X) n L(U - K). Hence, (X U Y) fl L{(U -X\JY) C 
(X U Y) n L(U -X)C\ L(U - Y) or H(X n Y) C (X n L(U - X ) n L[U - y ) ) U 
(y nL{U - X) n L(U - Y)) C (X nL(U - X)) U ( 7 n L(U - Y)) = H(X) U H{Y). 
The proof is completed. • 

Lemma 3.8. Let H\ and be CFs-II on U. Then 
1) HiH2 C H2 

2) H2Hr C Hi 

Since Hi and H2 are a CFs-II , it is obvious to have above Lemma. 

Lemma 3.9. Let Hi and H2 be CFs - II on U, then 
1) Hi n H2 C HiH2 

2) Hi<lH2C H2Hi 

Proof. Assume Hi and H2 be CFs - II on U. Then for all X C U,H2{X) C X. 
Due to Heredity Property of CFs-II, we obtain Hi(X)nH2{X) C Hi\H2{X)), that 
is, Hi H H2 C HiH2. Similarly, we achieve Hi D H2 C H2HX. • 

Proposition 3.6. Let Hx and H2 be CFs - II on U, then Hr C\H2 = HiC\HiH2 = 
H2 n H2Hi. 

In order to prove this Proposition, we need to have the following Lemma. 

Lemma 3.10. Let Hx and H2 be CFs - II on U, then Hi n H2 = Hi(Hi n H2) = 
H2(HinH2). 

Proof. Assume H\ and H2 be CFs - II on U. Then for all X C U, we always 
have Hi(X) n H2(X) C H2(X). Due to Heredity Property of CF-IIs, we obtain 
Hi{H2{X))DHi(X)r\H2(X) C Hi{Hi(X)r\H2{X)). According to Lemma 3.9, we 
obtain Hi(X) n H2(X) C Hi(Hi(X) n H2(X)). However, Hi(Hi(X) n H2(X)) C 
Hi{X) n H2(X). Hence, Hi(Hi(X) fl H2(X)) = Hi{X) n H2(X), that is, Hi n 
H2 = Hi{Hi n H2). Similarly, we achieve Hx n H2 = H2(Hl n H2). The proof is 
completed. • 
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Proof of Proposition 3.6. Assume HX and H2 be CFs - II on U. For all X G 
U due to Proposition 3.4 and Corollary 3.1, we obtain H\{X) fl Hi(H2(X)) C 
Hi(Hi(X)nH2(X)). However, HlC\H2 = Hi(H1nH2) according to Lemma 3.10, 
and Hi n H2 C H\H2 due to Lemma 3.9. Therefore, Hx(X) n Hx{X) n H2(X) C 
Hi(X) n Hi{H2{X)) C Hi(X) n H2{X). Then, Hi(X) n Hi(H2(X)) = Hi{X) n 
H2(X), that is, Hi n H2 = Hi n HXH2. Similarly, we obtain Hi n H2 = H2 nH 2 H X . 
The proof is completed. . • 

From Proposition 3.6, it is clear to obtain the follow. 

Corollary 3.3. Let Hi and, H2 be CFs - II on U, then Hif\H2 = HiDH2(HinH2). 

3.4 Interaction between Closure Operations and CFs - I 
Let I be a closure and £ a corresponding full family of FDs. We recall that an FD 
X —> Z £ T, iff Z C. L(X). In this section, we consider the closures for which CF -
I and -II defined in section 0 satisfy some additional properties. We are now going 
to give some properties. 

Proposition 3.7. Let L and C be a closure operation and a CF-I corresponding 
to Lrespectively on U. The following are equivalent: 

1) C(XUY) = C(X)UC(Y), 
2) L(X n y ) = L(X) n L{Y), 
3) X —> Z and Y Z are FDs from £ iff X n Y -> Z. 

Proof. (1 -> 2). Let C satisfies 1). Then for all X,Y C U : L(X n Y) = U -
C(U - X n Y) = U - C((U - X) U (¡7 - Y)) = U - C{U - X) U C{U — Y) = 
(U - C(U - X)) n (U - C(U - y ) ) = L(X) n L{Y). That is, L satisfies 2). 

(2 1) Let L satisfies 2). Then for all X,Y C U : C ( X u y ) = U-L(U-X\JY) = 
U - L((U -X)n(U-Y)) = U- L(U -X)n L{U -Y) = (U- L(U - X ) ) u (17-
L(U - Y)) = C(X) U C(Y). That is, C satisfies 1). 

(2 <-> 3) Let L satisfies 2). Then for all X, Y C U : L(X n Y) = L(X) n L(Y). For 
Z £ L(X n Y) iff X n y Z. And Z G L(X) n L(Y), that means Z G L(X) and 
Z G L(Y) iff X -> Z and Y -> Z. • 

Proposition 3.8. Let L and C be a closure operation and a CF-I corresponding 
to L respectively on TJ. The following are equivalent: 

1) C(XnY) = C(X)r\C(Y), 
2) L(X U y ) = ¿ ( X ) U L(Y). 

Proof. (1 -> 2). Let C satisfies 1). Then for all X, Y C U : L(X U Y) = U -
C(U - X U Y) - U - C({U - X) C\ (U - Y)) — U — C(U - X) n C(U - Y ) = 
(U - C{U - X)) U {U - C(U - Y)) = L(X) U L(Y). That is, L satisfies 2). 

(2 — 1) Let L satisfies 2). Then for all X, Y C U : C ( X n Y ) = U-L{U-XnY) = 
U - L((U - X) U (U - Y)) = U - L(U - X ) U L{U - Y) = (U - L(U - X ) ) n (U -
L(U - Y)) = C(X) n C(Y). That is, C satisfies 1)". • 
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Proposition 3.9. Let Lx and L2 be closure operations and Cx and C2 be CF-Is 
corresponding to Lx and L2 respectively on U. The following are equivalent: 

1) Ci(X) n C2{X) C CxC2(X) 
2) LxL2{X) C Lx{X)UL2(X) 

Proof. (1 -> 2). Let Ci and C2 satisfy 1). Then for all X C U : LxL2(X) = U -
CxC2(U-X) C U — CX(U — X)C\C2(U—X) = (U-Cx(U-X))ll(U-C2(U-X)) = 
Lx(X) U L2(X). That is, Lx and L2 satisfy 2). 

(2 -> 1). Let Lx and L2 satisfy 2). Then for all X C U : Cx(X) n C2{X) = 
(U-Lx(U-X))n{U-L2(U-X)) = U-Lx(U-X)UL2(U-X) C U-LxL2(U-X) = 
CxC2(X). That is, Ci and C2 satisfy 1). • 

3.5 Special cases of Choice Function-Is and -lis 
Theorem 3.8. Let consider a partition V : {VX,V2, V 3 , . . . , Vn}, that is, Vi fl Vj = 0 , 
•with i ± j. Let construct a set 

n 
W{A) = A n (J Vi 

t=i 

for all ACU. Then, W(A) is a CF-I on U. 

Proof. For all A C U, it is clear that W(A) C A. Now we need to prove that W 
satisfies Monotonicity and Out Casting Property. We have 

n n 
W(A) = An\JVi = \J(AnVi) 

¿ = 1 i = l 

n n n n 

=» W(W(A)) = U (A n U Vi)nVj = JJ(jJ (A n Vin^-)) 
j = l ¿ = 1 j = l i = l 

n 
= U(AnVi) = W(A), 

i=l 

since Vl n Vj = 0, for i ^ j. For A C B, it is obvious that A n Vi C B n K, then 

n n 
IJ (A n Vi) C (J (B n Vi). 
»=1 ¿=1 

Thus, W(A) C W(B), so W satisfies Monotonicity Property. 
To prove Out Casting Property of W, let assume W(A) CBCA,v/e have show 

that W(A) = W(B). Using Monotonicity Property of W, we attain W(W(A)) C 
W{B) C W(A). However, W{W{A)) = W{A), we lead to that W(A) = W(B). 
The proof is completed. • 
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We can illustrate W(A) as the sura of all intersections of A and Vi , for i = 1 —» 
n. Here is a property of W. 

Proposition 3.10. Let consider partition ofV : {Vi, Vj, V3..., Vn}, that is, ViHVj — 
0, with i ± j, and partition ofT: {Ti,T2,T3...,Tm}, that is, TinTj = 0, with i ± j. 
For all AÇU, let construct two CF-I as the following: 

n 
Cx(A) = A n | J V i , 

¿=1 
m 

Ci(A)=An\jTj. 
3=1 

Then, Ci(A) n C2(A) = C1C2(A), and both also are CF-Is. 

Proof. For all A Ç U, we have 
n m n m 

Ci (A) n C2(A) = (A n (J Vi) n (A n U Tj) = A n (|J Vf D (J Tj) 
i= 1 j = l 1=1 j=l 
m n 

= (An{jTj)n\JVj=C1C2(A). 
j=1 i=l 

However, 
i V i I V tit ff«r 

Сг(А) П C2(A) = А П (IJ Vi П |J Tj) = A n (J(IJ Ts П Vi). 
¿=1 j=1 ¿=1 j=1 

It is easy to see that, for every x фу , 
m m 

( U ^ n v I ) n ( ( j T i n v w ) = 0. 
j = 1 3 = 1 

That is, {(|JTj П Vi)\i = 1 —> n,j = 1 —» m} is a partition. Due to Theorem 
3.10, we conclude that Ci{A) П C2(A) as well as СгС2(А) is a CF-I. The proof is 
completed. • 

Let us define WC(A), the complementary set of W(A), as WC(A) = A - W(A), 
that is 

n n n n 
WC(A) = A - А П IJ Vi = (A - A) U (Л - (J Vi) = A - (J VI = f| (A - Vi). 

¿=1 ¿=1 t=l i=l 

Since W(A) is a CF-I, and CF-I and CF-II of A form a partition of A, for every 
A Q U , we lead to the following Theorem. 
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Theorem 3.9. Let consider partition ofV : {Vi, V2, V3..., V^}, that is, V{ n Vj = 0, 
with i ^ j. Let construct a set 

Tl 
WC(A) = F](A-VI) 

t=i 

for all AC u. Then, WC(A) is a CF-II on U. 

3.6 Discussion and Open Problems 
Given a set of F of functional dependencies over U and the attribute set X C U, so 
the functional dependencies closure of X, L(X), is the set {A C U\X —» A G F}. It 
turns out that this set is independent of the underlying attribute set U. We have 
known that two types of choice function -I and -II associated with L as follows: 

C{A) = U — L(U — A), a n d H { A ) = ANL(U- A). 

Thus, given a set of F of functional dependencies, we define, X CU, choice-I and 
-II of X as follows: 

HF(X) = XN{ACU\(U-X)^ AEF} (1) 

CF(X) = U-{ACU\{U-X)^ AEF} (2) 

It can be seen the following Propositions. 

Proposition 3.11. Let F be a set of functional dependencies and X —> Y an 
functional dependency. Then X —> Y € F iffY <£. CF(U — X). 

Proposition 3.12. Let F be a set of functional dependencies and X —> Y an 
functional dependency. Then X —> Y G F and Y ^ X iffY C HP(U — X). 

Now we move to compute CF(X) and HP(X). First of all, we now mention 
about the Algorithm of computing a closure from a set of functional dependencies 
and X a set of attributes. 

In [BB], we were known the Algorithm to computing closure operation, by 
using relation between choice functions and closure operation, we can easily build 
Algorithm to compute choice functions. 

Even though we already have an algorithm to compute closure of X , from the 
Theorem 3.4 above as follows: Let L\ and L2 be closure operations on U. A 
composite function of L\ and L2, denoted as L\L2, is a closure operation if and 
only if 

L\L2L\ = L\L2. 

Open problems are set up as following: 
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Open Problem 1. Let s =< U,F > and t = < U, V > two relation schemes, where 
U is a set of attributes and F and V are two different sets of FDs over U. We define 
F+ and V+ be a set of all FDs that can be derived from F and V respectively. 

1) Is it possible build a closure L\ and a closure L2 from F+ and V+ respectively 
such that LXL2 = L\L2LI? 

2) If so, how can we design L\L2 ? In other word, how can we design a relation 
scheme w =< U, H > from which we can build H+ , from which we can 
design the closure LIL2 = L\L2L\1 

3) If so, is it possible to generalize this design for more than two closure opera-
tions? 

Open Problem 2. A similar problem as above, but for choice -I and -II of X. 

Open Problem 3. Algorithm problems related to union and intersection for choice 
-I and -II and closures. 

Open Problem 4. Generalize those theories presented in this paper to mutilvalued 
dependencies. 
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