
Volume 16 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: J. Csirik (Hungary)

Managing Editor: Z. Fülöp (Hungary)

Assistant to the Managing Editor: B. Tóth (Hungary)

Editors: L. Aceto (Denmark), M. Arató (Hungary), S. L. Bloom (USA), H. L. Bodlaender
(The Netherlands), W. Brauer (Germany), L. Budach (Germany), H. Bunke (Switzerland),
B. Courcel le (France), J. Demetrovics (Hungary), B. Dömölki (Hungary),
J. Engelfriet (The Netherlands), Z . Esik (Hungary), F. Gécseg (Hungary), J. Gruska
(Slovakia), B. Imreh (Hungary), H. Jürgensen (Canada), A. Kelemenová (Czech Republic),
L. Lovász (Hungary), G. Páun (Romania), A. Prékopa (Hungary), A. Salomaa (Finland),
L. Varga (Hungary), H. Vogler (Germany), G. Wöginger (Austria)

Szeged, 2004

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers
in the field of Computer Science. Contributions are accepted for review with the
understanding that the same work has not been published elsewhere.

Manuscripts must be in English and should be sent in triplicate to any of the
Editors. On the first page, the title of the paper, the name(s) and affiliation(s),
together with the mailing and electronic address(es) of the author(s) must appear.
An abstract summarizing the results of the paper is also required. References should
be listed in alphabetical order at the end of the paper in the form which can be
seen in any article already published in the journal. Manuscripts are expected to
be made with a great care. If typewritten, they should be typed double-spaced on
one side of each sheet. Authors are encouraged to use any available dialect of TgX.

After acceptance, the authors will be asked to send the manuscript's source TJrjX
file, if any, on a diskette to the Managing Editor. Having the T£jX file of the paper
can speed up the process of the publication considerably. Authors of accepted
contributions may be asked to send the original drawings or computer outputs
of figures appearing in the paper. In order to make a photographic reproduction
possible, drawings of such figures should be on separate sheets, in India ink, and
carefully lettered.

There are no page charges. Fifty reprints are supplied for each article published.

Publication information. Acta Cybernetica (ISSN 0324-721X) is published
by the Department of Informatics of the University of Szeged, Szeged, Hungary.
Each volume consists of four issues, two issues are published in a calendar year. For
2004 Numbers 3-4 of Volume 16 are scheduled. Subscription prices are available
upon request from the publisher. Issues are sent normally by surface mail except
to overseas countries where air delivery is ensured. Claims for missing issues are
accepted within six months of our publication date. Please address all requests
for subscription information to: Department of Informatics, University of Szeged,
H-6701 Szeged, P.O.Box 652, Hungary. Tel.: (36)-(62)-546-396, Fax:(36)-(62)-546-
397.

URL access. All these information and the contents of the last some
issues are available in the Acta Cybernetica home page at http://www.inf.u-
szeged.hu/kutatas / actacybernetica/.

EDITORIAL B O A R D

Editor-in-Chief: J. Csirik
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Managing Editor: Z. Fülöp
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Assistant to the Managing Editor:

B. Tóth
University of Szeged
Department of Computer Science
Szeged, Árpád tér 2.
H-6720 Hungary

Editors:

L. Aceto
Distributed Systems and Semantics
Department of Computer Science
Aalborg University
Fr. Bajersvej 7E
9220 Aalborg East, Denmark

M. Aratö
University of Debrecen
Department of Mathematics
Debrecen, P.O. Box 12
H-4010 Hungary

S. L. Bloom
Stevens Intitute of Technology
Department of Pure and Applied
Mathematics
Castle Point, Hoboken
New Jersey 07030, USA

H. L. Bodlaender
Department of Computer Science
Utrecht University.
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

F. Gécseg
University of Szeged
Department of Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

J. Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Dúbravska 9, Bratislava 84235
Slovakia

B. Imreh
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

H. Jürgensen
The University of Western Ontario
Department of Computer Science
Middlesex College, London, Ontario
Canada N6A 5B7

W . Brauer
Institut für Informatik
Technische Universität München
D-80290 München
Germany

A. Kelemenova
Institute of Mathematics and
Computer Science
Silesian University at Opava
761 01 Opava, Czech Republic

L. Budach
University of Postdam
Department of Computer Science
Am Neuen Palais 10
14415 Postdam, Germany

H. Bunke
Universität Bern
Institut für Informatik und
angewandte Mathematik
Längass strasse 51.
CH-3012 Bern, Switzerland

B. Courcelle
Université Bordeaux-1
LaBRI, 351 Cours de la Libération
33405 TALENCE Cedex
Prance

J. Demetrovics
MTA SZTAKI
Budapest, Lágymányosi u. 11.
H - l l l l Hungary

B. Dömölki
IQSOFT
Budapest, Teleki Blanka u. 15-17.
H-1142 Hungary

J. Engelfriet
Leiden University
LIACS
P.O. Box 9512, 2300 RA Leiden
The Netherlands

Z. Esik
University of Szeged
Department of Foundations of
Computer Science
Szeged, Aradi vértanúk tere 1.
H-6720 Hungary

L. Lovász
Eötvös Loránd University
Department of Computer Science
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

G. Päun
Institute of Mathematics
Romanian Academy
P.O.Box 1-764, RO-70700
Bucuresti, Romania

A. Prékopa;
Eötvös Loránd University
Department of Operations Research
Budapest, Kecskeméti u. 10-12.
H-1053 Hungary

A. Salomaa
University of Turku
Department of Mathematics
SF-20500 Turku 50, Finland

L. Varga
Eötvös Loránd University
Department of General Computer Science
Budapest, Pázmány Péter sétány 1 /c.
H-1117 Hungary

H. Vogler
Dresden University of Technology
Department of Computer Science
Foundations of Programming
D-01062 Dresden, Germany

G. Wöginger
Department of Matematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

Acta Cybernetica 16 (2004) 367-384.

A Uniform Approach to Test Computational
Complementarity

Elena Calude, Bruce Mills, and Lan Mills*

Abstract
Studies of computational complementarity properties in finite state inter-

active automata may shed light on the nature of both quantum and classical
computation. But, complementarity is difficult to test even for small-size au-
tomata. This paper introduces the concept of an observation graph of an
automaton which is used as the main tool for the design of an algorithm
which tests, in a uniform manner, two types of complementarity properties.
Implementations have been run on a standard desktop computer examining
all 5-state binary automata.

1 Two Computational Complementarity Princi-
ples

Building on Moore's "Gedanken" experiments, in [15, 14] complementarity was
modeled by means of finite automata. Two new computational complementarity
principles have been introduced and studied in [3, 6, 5, 4, 2] using Moore's automata.

To understand Moore's approach it is enough, at this stage, to say that the
machines we are going to consider are finite in the sense that they have a finite
number of states, a finite number of input symbols, and a finite number of output
symbols. Such a machine has a strictly deterministic behaviour: the current state
of the machine depends only on its previous state and previous input; the current
output depends only on the present state. A (simple) Moore experiment can be
described as follows: a copy of the machine will be experimentally observed, i.e.
the experimenter will input a finite sequence of input symbols to the machine and
will observe the sequence of output symbols. The correspondence between input
and output symbols depends on the particular chosen machine and on its initial
state. The experimenter will study the sequences of input and output symbols
and will try to conclude that "the machine being experimented on was in state
q at the beginning of the experiment".1 Moore's experiments have been studied

'Institute for Information and Mathematical Sciences, Massey University at Albany, Private
Bag 102904, NSMC, Auckland, New Zealand.
Email: {E. Calude, B. I . Mills, L. Hills}®massey. ac. nz

1This is often referred to as a state identification experiment.

367

368 Elena Calude, Bruce Mills, and Lan Mills

from a mathematical point of view by Various researchers, notably by Ginsburg [9],
Chaitin [7], Conway [8], and Brauer [1]. A comprehensive survey on testing finite
state machines is presented in [11].

In what follows we are going to use two non-equivalent concepts of computa-
tional complementarity based upon modeling finite automata (see [3]). Informally,
they can be expressed as follows. Consider the class of all elements of reality2 and
consider the following properties.

A Any two distinct elements of reality can be mutually distinguished by a suit-
ably chosen measurement procedure.

B For any element of reality, there exists a measurement which distinguishes
between this element and all the others. That is, a distinction between any
one of them and all the others is operational.

C There exists a measurement which distinguishes between any two elements of
reality. That is, a single pre-defined experiment exists to distinguish between
an arbitrary pair of elements of reality. (Classical case.)

Complementarity corresponds to the following cases:

CI Property A but not property B (and therefore not C) : The elements of reality
can be mutually distinguished by experiments, but one of these elements

• cannot be distinguished from all the other ones by any single experiment.

CII Property B but not property C : Any element of reality can be distinguished
from all the other ones by a single experiment, but there does not exist a
single experiment which distinguishes between any pair of distinct elements.

2 Moore Automata
A finite deterministic automaton consists of a finite set of states and a set of tran-
sitions from state to state that occur on input symbols chosen from some fixed
alphabet. For each symbol there is exactly one transition out of each state, possi-
ble back to the state itself. So, formally, a finite automaton consists of a finite set Q
of states, an input alphabet E, and a transition function 6 : Q x E —» Q. Sometimes
a fixed state, say 1, is considered to be the initial state, and a subset F of Q denotes
the final states. A Moore automaton is a finite deterministic automaton having an
output function f : Q O, where O is a finite set of output symbols. At each time
the automaton is in a given state q and is continuously emitting the output f(q).
The automaton remains in state q until it receives an input signal a, when it as-
sumes the state S(q, a) and starts emitting f(8(q, a)). In this paper we are going to
concentrate on the case of automata on a binary alphabet E = {0,1} having O = E.
So, from now on, a Moore automaton will be just a triple M = (Q, 6, /) . Let E* be
the set of all finite sequences (words) over the alphabet E, including the empty word

2The terms "elements of reality", "properties", and "observables" will be used as synonyms.

A Uniform Approach to Test Computational Complementarity 369

e (the neutral element in the semigroup of string concatenation); by E + we denote
E* \ {e}. The transition function 5 can be extended to a function 6 : Q x E* —» Q,
as follows: S(q,e) = q,S(q,aw) = 6(5(q,a),w),Vq G Q,a G T,,w 6 £*. The out-
put produced by an experiment started in state q with input sequence w G £*
is described by E(q,w), where E is the function E : Q x E* —» E* defined as
follows: E(q,e) = f{q), E{q,crw) = f(q)E(6(q,a),w),q G Q,a € T,,w G £*, and
f : Q —> 0(— E) is the output function. Consider, for example, Moore's automa-
ton, in which Q = {1,2,3,4}, E = {0,1}. The transition is given by the following
tables

Q a S(q,cr)
1 0 4
1 1 3
2 0 1
2 1 3

Q cr 5(q,cr)
3 0 4
3 1 4
4 0 2
4 1 2

Table 1.

and the output function is defined by / (1) = / (2) = / (3) = 0, / (4) = 1. The
following graphical representation will be consistently used in what follows:

Figure 1.

The experiment starting in state 1 with input sequence 000100010
leads to the output 0100010001. Indeed, £(1,000100010) =
/ (l) / (4) / (2) / (l) / (3) / (4) / (2) / (l) / (3) / (4) = 0100010001.

370 Elena Calude, Bruce Mills, and Lan Mills

From a mathematical point of view properties A, B, C can be expressed as
follows. Let M = (Q, S, /) be a Moore automaton. Following Moore [13] we shall
say that a state q is "indistinguishable" from a state q' (with respect to M) if every
experiment performed on M starting in state q produces the same outcome as it
would starting in state q'. Formally, E{q,x) = E(q',x), for all words x € £ + . A
pair of states will be said to be "distinguishable" if they are not "indistinguishable".

• The automaton M has property A if every pair of different states of M are
distinguishable, i.e. for every distinct states q, q' there exists a word w 6 £+

(depending upon q,q') such that E(q,w) ^ E(q',w). This is simply the
assertion that the automaton is minimal.

• The automaton M has property B if every state of M is distinguishable from
any other distinct state, i.e. for every state q there exists a word w €
(depending upon q) such that E(q,w) ^ E(q',w), for every state q' distinct
from q.

• The automaton M has property C if there exists an experiment distinguishing
between each different states of M, i.e. there exists a word w € E + such that
E(q,w) ± E(q',w), for every distinct states q,q'.

Of course, C implies B, which, in turn, implies A; none of the converse impli-
cations is true, hence we get CI, CII.

We continue with some examples of Moore automata having C, CI, and CII.
First, the automaton in Figure 2 has C as experiment 10 distinguishes between

any pair of distinct states.

4/0 3/1

1/1

0,1

Figure 2.

A Uniform Approach to Test Computational Complementarity 371

Moore's automaton in Figure 1 has A but non-B, hence CI (cf. [13]).
Every pair of distinct states can be distinguished by an experiment: states
1,2 by x = 0, states 1,3 by i = 1, states 1,4 by x = 0, states 2,3 by
x = 0, states 2,4 by x = 0, and states 3,4 by x = 0. However, there
is no (unique) experiment capable to distinguish between every pair of arbi-
trary distinct states. If the experiment starts with 1, i.e. x = lu, then
JE(1,X) = E(2,x), that is x cannot distinguish between the states 1,2 as
£(1,®) = £(1,1«) = f(l)f(S(l,l))E(S(l,l),u) = f(l)f(3)E(3,u) = 00E(3,u)
and E(2,x) = E(2,lu) = f(2)f(5(2,l))E(ô(2,l),u) = f(2)f(3)E(3,u) =
00E(3, u). If the experiment starts with 0, i.e. x = 0v,v £ £*, then x cannot distin-
guish between the states 1,3 as E(l,x) = £(l,0t;) = f(l)f(6(l,0))E(5(l,0),v) =
f(l)f{4)E(4,v) = 0lE(4,v) and E(3,x) = E(3,0v) = f(3)f(S(3,0))E(t(3,0),v) =
f(3)f(4)E(4,v) = 01E(4,v).

The automaton in Figure 3 has B but not C, hence CII. Indeed, the following
pairs of states are distinguishable by every experiment: (1,2), (1,4), (2,3), (3,4).
Accordingly, 1 is distinguishable from the other states by w = 0, 2 is distinguishable
by w = 1, 3 is distinguishable by w = 0 and 4 is distinguishable by w = 1, so the
automaton has property B. It does not have property C because any experiment w
which starts with 1, i.e. w = lx, x € £*, does not distinguish between 1 and 3, and
any experiment w which starts with 0, i.e. w = Oy, y G £*, does not distinguish
between 2 and 4.

4/0 3/1

Figure 3.

372 Elena Calude, Bruce Mills, and Lan Mills

3 An Algorithm for Testing Simultaneously CI
and CII

In this section we briefly review a few facts on partitions and present the algorithm
that is used to test properties A, B and C, which uses partitions defined on sets
of states of an automaton. An elegant algebraic theory for machine decomposition
based on the closed partition lattice of a machine is presented in [10] and efficient
algorithms for constructing the lattice are presented in [12]; here we construct a
different partition lattice testing the properties CI and CII, a different problem.

A partition P of a set Q is a set of non-empty disjoint sets whose union is Q.
Partitions are in an one-to-one onto correspondence with equivalence relations. In
particular, we will use the partition induced by the level sets of a map / : Q —* Q,
that is, the sets [7]/ = {x : f(x) = /(<?)}, <7 € Q.

Given two partitions Pi and P2 of Q, we say that Pi is no coarser than (or at
least as coarse as) Pi, written Pi < Pi if for every pi G P\ , there exists pi G P2
such that PI C p2. We say that Pi is coarser than PI if PI < Pi and PI ^ P2,
in symbols Pi < Pi- The term finer means the inverse relation of coarser. When
Pi < P2 we say that Pi is a refinement of Pi, or that Pi is a coarsening of P\.

Treating the above refinement relation as a partial order <, we see that the
greatest lower bound PI A Pi is the coarsest partition of Q that is a refinement of
both Pi and Pi. This operation, which we will call CCR (the coarsest common
refinment), can be conducted in principle by taking the intersection of all classes
in Pi with all classes in Pi, and then throwing out the empty sets.

Let Pi and Pi be two partitions of Q, and =1 and =2 be the corresponding
equivalences. Then the equivalence relation p = q defined by p =1 q and p =1 q,
corresponds to P\ A P2.

The level sets of the composition fog axe coarser than those of g; if g is invertible
then the level sets are the same. Let / x g : a —» (f(a),g(a)). Then, the level set
partition of / x g is the coarsest common refinement of / and g.

For an automaton M, we construct a graph, called an observation graph, which
describes how information about the state of machine changes with observations.

Each vertex R is a record p , where the two fields t and P are the configuration

of states under the transition function and the partition induced by the output
function respectively. The partition induced by t, 11(f), is given by the following
equivalence relation: i is equivalent to j modulo II(t) if f(t[i}) — f{t[j])-

An edge (\ h] [ti ~\\
lift i ' l ^ i)

belongs to the graph exactly when there exists

s G {0,1} such that t2 = 6(ti,s) and P2 = II(/ o t2) A Pi. Since the CCR of two
partitions is no coarser than either it is apparent that along any path through the

graph the partitions may become finer. The function ^ p ,s^j —• P, mapping

vertices into lattice of partitions, is monotonie.
If at the start of a path the condition Pi < t\ occurs, then, Pi = n(<î(ti, s)) A

A Uniform Approach to Test Computational Complementarity 373

Pi <U(5(t1,s)) = Tl(t2).

For any path ' il ' tn

. P i . . Pn .
' h " ' in
. Pi .

path

Finally, suppose that t
P

in the observation graph, Pn < Pi- For any

in the observation graph if Pi < II(ii), then Pn = Pi.

B] is a rooted sub-tree of the observation graph,

and P < II(i). The partition P is constant throughout the entire tree since each

node on the rooted sub-tree is the end point of a path starting at the root '

Consequently, the node t
P will be pruned (ignored).

The algorithm for testing properties A, B, and C for an automaton M generates
records that are nodes of an observation graph and checks whether the partitions
components of the nodes verify the conditions associated with the properties A,
B, and C. The algorithm has the following steps.

Step 1. Initialization of

• a vector Counter recording all non-repeating nodes generated so far

• a trimmed binary tree OG recording the nodes in the observational graph

• a vector TB recording those states for which the condition in property B is
currently verified, and a Boolean variable hasB that is true if Mhas property
B and false otherwise

• a table TA recording those states for which the condition in property A is
currently verified, and a Boolean variable has A that is true if Mhas property
A and false otherwise.

Step 2. Generate and test the first record

• Step 2.1. Generate the first record. The first record, say R, will be the root
of OG. Its two components are given by

- the vector of states (1,2 , . . . ,n) and
- the partition Pr, generated by the output function / ,

so R =

• Step 2.2

• Step 2.3

• Step 2.4

(1,2 , . . . , n)
PR

If M has C stop. Else:

Add the record to Counter

Update TA and has A

374 Elena Calude, Bruce Mills, and Lan Mills

• Step 2.5. Update TB and hasB

• Step 2.6. Add the record to OG

[Comment: We generate (from left to right) all children of non-pruned nodes. If no
child can be generated, we check the values of hasB and has A to determine whether
the automaton has B or A, then stop.]

Step 3. While there are children to be generated do

• Step 3.1. Generate the next record obtained from the left/right child, say
tN N
PN

Its two components are given by

— tn the vector of states (i i, i2, • •., in), obtained by applying the transition
function on each element of sequence of states in the parent node with
input letter 0 for the left child and 1 for the right child and

- the partition PN obtained by taking the CCR of the parent's partition
component and the partion of states induced by the output function on
tN

. • Step 3.2. If N is in Counter, then go to Step 3.1. Otherwise, add the current
record to Counter

• Step 3.3. If M has C, stop. Else:

• Step 3-4- Update TA and hasA

• Step 3.5. Update TB and hasB

• Step 3.6. If the record can be pruned, then go to Step 3.1

• Step 3.6. Add the node N to OG and go to Step 3.1

End of while loop.

If TA is false, then return non-A, stop; else, if TB is false, then return CI, stop;
else, retun CII, stop.

End of algorithm.

A Uniform Approach to Test Computational Complementarity 375

4 The Algorithm in Action
In this section we present some examples illustrating the algorithm presented in
the previous section.
Example 1. Let us run the algorithm on the automaton in Figure 1.

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables has A and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R = 1, 2, 3, 4
U-2,3} , {4}

Step 2.2 The record R does not satisfy C as PR ^ {1}, {2}, {3}, {4}

Step 2.3 Update Counter to [R]

Step 2.4 Update TA to

Step 2.5 Update TB to

0, 0, 0, 1
0, 0, 0, 1
0, 0, 0, 1
1, 1, 1,0

and hasA to false

and hasB to false

Step 2.6 Update' OG to (R,0)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is

4, 1, 4, 2
{1,3}, {2}, {4}

where two = (4,1,4,2) is obtained by applying the transition function on
1,2,3,4 to the input letter 0. The partition induced by the output function
on 4,1,4,2 is {1,3}, {2,4}. Taking the CCR between this partition and the
partition component of its parent, i.e. PR = {1,2,3}, {4}, we obtain the
partition component of N0. Therefore

P N 0 = { 1 , 3 } , { 2 , 4 } A { 1 , 2 , 3 } , { 4 } = { 1 , 3 } , { 2 } , { 4 }

376 Elena Calude, Bruce Mills, and Lan Mills

Step 3.2 As the current node, is not in Counter we add it:

Counter = N0}

Step 3.3 The current automaton has not C as

P J V O # { 1 } , { 2 } , { 3 } > { 4 }

Step 3.4 Update TA to

Step 3.5 Update TB to

Step 3.6 As

0, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 1, 1,0

and has A to false

and hasB to false

{ 1 , 3 } , { 2 } , { 4 } A { 1 , 3 } , { 2 } , { 4 } = { 1 , 3 } , { 2 } , { 4 }

it follows that
{ 1 , 3 } , { 2 , 4 } A P / v o = PNO

and therefore this record has to be pruned (as none of its children can bring
any new information)

Step 3 Generate next child

Second iteration:

Step 3.1 The next record, N\ is

3 , 3 , 4 , 2

{ 1 , 2 } , { 3 } , { 4 } J '

where IJVI = (3 , 3 , 4 , 2) is obtained by applying the transition function on
1,2,3,4 and the input letter 1. The partition induced by the output function
on 3 , 3 , 4 , 2 is { 1 , 2 , 4 } , { 3 } . Taking the CCR between this partition and the
partition component of the node's parent, i.e. PR = { 1 , 2 , 3 } , { 4 } , we obtain
the partition component of N\. Therefore

P N 1 = { 1 , 2 , 4 } , { 3 } A { 1 , 2 , 3 } , { 4 } = { 1 , 2 } , { 3 } , { 4 }

Step 3.2 As the current node is not in Counter we add it:

Counter = [Ä, N 0, N1]

A Uniform Approach to Test Computational Complementarity 377

Step 3.3 The current automaton has not C as

J W { 1 } , { 2 } , { 3 } , { 4 }

Step 3.4 Update TA to

Step 3.5 Update TB to

0, 1, 1, 1
1,0, 1, 1
1 , 1 , 0 , 1
1, 1 ,1 ,0

and hasA to true

0
1
1
1

and hasB to false

Step 3.6 As { 1 , 2 } , { 3 } , { 4 } A PN = { 1 , 2 } , { 3 } , { 4 } A { 1 , 2 } , { 3 } , { 4 } =

{ 1 , 2 } , { 3 } , { 4 } this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG = (R, 0) and Counter = (R,N0,N1), there is no child to generate,
stop. As hasA is true and hasB is false, the output is "the automaton has
cr.

Example 2. Let us run the algorithm on the automaton in Figure 2.

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R —
1 , 2 , 3 , 4

{ 1 - 3 } , { 2 , 4 }

Step 2.2 As PR / {1}, {2}, {3}, {4} the automaton has not C

Step 2.3 Update Counter = [R]

Step 2.4 Update TA to

0, 1, 0, 1
1,0, 1,0
0, 1, 0, 1
1, 0, 1, 0

and has A to false

378 Elena Calude, Bruce Mills, and Lan Mills

Step 2.5 Update TB to and hasB to false

Step 2.6 Update OG to

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, NO, is

4,3,2,1
. {1,3}, {2, 4}

where ijvo = (4,3,2,1) is obtained by applying the transition function on
1,2,3,4 to the input letter 0. The partition induced by the output function
on 4,3,2,1 is {1,3}, {2, 4}. Taking the CCR between this partition and the
partition component of its parent PR = {1,3}, {2,4}, we obtain the partition
component of N0:

PNO = { 1 , 3 } , { 2 , 4 } A P r = { 1 , 3 } , { 2 , 4 }

Step 3.2 As the current node is not in Counter we add it:

Counter = [R, 7V0]

Step 3.3 The current automaton has not C as

PN0 = { 1 } , { 2 } , { 3 } , { 4 }

0, 1, 0, 1
1,0, 1,0
0, 1, 0, 1
1,0, 1, 0

and has A to false

and hasB to false

Step 3.4 Update TA to

Step 3.5 Update TB to

Step 3.6 As

{ 1 } , { 2 } , { 3 } , { 4 } A P W P J V O

this record should not be pruned. Update OG = (R, N0, [R, 7V0])

A Uniform Approach to Test Computational Complementarity 379

Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is

2 , 2 , 1 , 1
{ 1 } , { 2 } , { 3 } , { 4 }

where t^i = (2,2,1,1) is obtained by applying the transition function on
states 1,2,3,4 and the input letter 1. The partition induced by the output
function on 2,2,1,1 is {1,2}, {3, 4}. Taking the CCR between this partition
and the partition component of the node's parent, i.e. PR = {1,3}, {2,4}, we
obtain the partition component of N1:

PNI = { 1 , 3 } , { 2 , 4 } A { 1 , 2 } , { 3 , 4 } = { 1 } , { 2 } , { 3 } , { 4 }

Step 3.2 The current node is not in Counter, so we add it:

Counter = NO, ATI]

Step 3.3 The current automaton has C as

PW1 = { 1 } , { 2 } , { 3 } , { 4 }

so the output is "the automaton has C".

Example 3. Let us run the algorithm on the automaton in Figure 3.

Step 1. Initialize OG to 0, Counter to the 0 vector, TA and TB, respectively, the
n x n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =

Step 2.2 The record R has not C as PR ± {1}, {2}, {3}, {4}

1,2, 3 ,4
{1,3}, {2,4}

Step 2.3 Update Counter = [P]

Step 2.4 Update TA to

0, 1,0, 1
1,0, 1,0
0, 1,0, 1
1 , 0 , 1 , 0

and hasA to false

380 Elena Calude, Bruce Mills, and Lan Mills

0

Step 2.5 Update TB to °

0

Step 2.6 Update OG to (Ä,0)

and hasB to false

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, iVO, is

1 , 2 , 2 , 2
{ 1 } , { 2 , 4 } , { 3 >

where t^o = (1,2,2,2) is obtained by applying the transition function on
states 1,2, 3,4 to the input letter 0. The partition induced by the output
function on 1,2,2,2 is {1}, {2,3,4}. Taking the CCR between this partition
and the partition component of its parent PR = {1,3}. {2,4} we obtain the
partition component of N0:

P N 0 = { 1 } , { 2 , 3 , 4 } A P R = { 1 } , { 2 , 4 } , { 3 }

*

Step 3.2 The current node is not in Counter, so we add it:

Counter = [i?, N0]

Step 3.3 The current automaton has not C as

PNO { ! } , { 2 } , { 3 } , { 4 }

Step 3.4 Update TA to

Step 3.5 Update TB to

0, 1, 1, 1
1 , 0 , 1 , 0
1, 1, 0, 1
1, 0, 1, 0

and hasA to false

and hasB to false

Step 3.6 As
{ ! } , { 2 , 3 , 4 } A P N O = PJVO

this record has to be pruned

;

A Uniform Approach to Test Computational Complementarity 381

Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is

1, 2, 1, 1
{1,3}, {2}, {4}

where t^i = (1,2,1,1) is obtained from applying the transition function on
states 1,2,3,4 and the input letter 1. The partition induced by the output
function on 2,1,1,1 is {1,3,4}, {2}. Taking the CCR between this partition
and the partition component of the node's parent PR = {1,3}, {2 ,4} we
obtain the partition component of N1:

PN1 = { 1 , 3 , 4 } , { 2 } A { 1 , 3 } , { 2 , 4 } = { 1 , 3 } , { 2 } , { 4 } .

Step 3.2 As the current node is not in Counter we add it:

Counter = [il, NO, N1]

Step 3.3 The current automaton has not C as

P W { 1 } , { 2 } , { 3 } , { 4 }

Step 3.4 Update TA to
0, 1, 1, 1
1,0, 1, 1
1, 1,0, 1
1, 1, 1, 0

and has A to true

and hasB to true Step 3.5 Update TB to

Step 3.6 As {1,3,4}, {2} A Pjv = Pjv this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG — (R,0) and Counter = [R,N0,NI], there is no child to generate,
stop. As has A is true and hasB is true, the automaton has property B, but
not C, so the output is "the automaton has CIF.

382 Elena Calude, Bruce Mills, and Lan Mills

5 Experimental Results
The proposed algorithm was implemented in C and the program3 was run on a
Pentium III, i686 processor using Redhat 8.0 Linux, 250 Mb of RAM. The aim was
to study the distributions of CI and CII over the set of all possible automata with
a given number of states and input/output symbols. Table 2 presents the results
of the main tests that have been done so far.

nx s # automata time
(sec) CI CII CII/CI

%
CI
%

CII
%

2 x 2 32 < 1 0 0 0 . 0 0
3 x 2 2916 < 2 0 0 0 0 0
4 x 2 524288 < 11 73728 30720 41.67 14.06 5.86
5 x 2 156250000 < 8435 46862400 19436160 41.47 29.99 12.44
4 x 3 452984832 < 14018 54577152 46227456 84.70 12.05 10.12

Table 2.

In the first column n x s stands for the class of automata with n states and s
input letters. Because of symmetries (the automaton (Q, 6, f) "is equivalent" to
the automaton (Q, S, 1 — /)) , the program actually tests only half of automata of
type n x s; the numbers of tested automata are shown in the second column. The
third column contains the time for processing all automata mentioned in the second
column. The numbers of automata verifying CI and CII are given in the next two
columns. The last three columns present the percentage of CII over CI and the
percentage of CI, respectively, CII, over the total number of automata processed.

We also tested automata with more than five states. For example, the 10-state
automaton in Table 3

9 ¿(9,0) s(q,i) m
1 2 1 0
2 3 2 0
3 4 3 0
4 5 4 0
5 6 5 0
6 7 6 0
7 8 7 0
8 9 8 0
9 9 10 0
10 10 10 1

Table 3.
3See http://wvw.massey.ac.nz/"bimills/obgraph.c for the program.

http://wvw.massey.ac.nz/%22bimills/obgraph.c

A Uniform Approach to Test Computational Complementarity 383

has A (00000001 distinguishes the pairs (i, j) for i = 1,2,3, j = 1 ,2 , . . . , 10 and i ^
j, 00001 distinguishes the pairs (4,5), (4,6), (4,7), (4,8), (4,9), 0001 distinguishes
the pairs (5,6), (5,7), (5,8), (5,9), 001 distinguishes the pairs (6,7), (6,8), (6,9), 01
distinguishes the pairs (7,8), (7,9), 1 distinguishes the pair (8,9) and e distinguishes
the pairs (i, 10) for i = 1 ,2 , . . . , 9), has B (as state 1 is distinguished from sill other
states by the word 00000001, state 2 by 000000101, state 3 by 00000101, state 4 by
0000101, state 5 by 000101, state 6 by 00101, state 7 by 0101, state 8 by 101, state
9 by 1, and state 10 by e) and has C (the word 101010101010101 distinguishes
every pair of distinct states). The algorithm has scanned 766 nodes in less than a
second.

6 Final Remarks
Based on the concept of observation graph of an automaton, new equivalent def-
initions have been given for two types of computational complementarity studied
in [3]. As a result, we proposed an algorithm for simultaneously determining these
properties. The algorithm has been shown in practice to be fast enough (on a
standard desktop machine) for testing all binary Moore machines up to five states.
Some other experiments reported in the paper illustrate the power of the algorithm.

Many problems remain open; for example, what is the complexity of the decision
problems CI, CII.

Acknowledgement
We are grateful to the anonymous referee for suggestions which improved the paper.

References
[1] Brauer, W. Automaten theorie. Teubner, Stuttgart, 1984.

[2] Calude, C. S., Calude, E. and §tefanescu, C. Computational complementarity
for Mealy automata, EATCS Bull. 66 (1998), 139-149.

[3] Calude, C., Calude, E., Svozil, K. and Yu, S. Physical versus computational
complementarity I. International Journal of Theoretical Physics 36 (1997),
1495-1523.

[4] Calude, C. S. and Lipponen, M. Computational complementarity and sofic
shifts, in X. Lin (ed.). Theory of Computing 98, Proceedings of the 4th Aus-
tralasian Theory Symposium, CATS'98, Springer-Verlag, Singapore, 1998,
277-290.

[5] Calude, E. and Lipponen, M. Minimal deterministic incomplete automata.
Journal of Universal Computer Science 11 (1997), 1180-1193.

384 Elena Calude, Bruce Mills, and Lan Mills

[6] Calude, E. and Lipponen, M. Deterministic incomplete automata: Simulation,
universality and complementarity, in C. S. Calude, J. Casti, and M. J. Dinneen

. (eds.). Unconventional Models of Computation, Springer-Verlag, Singapore,

. 1998,131-149.

[7] Chaitin, G. J. An improvement on a theorem by E. F. Moore. IEEE Trans-
actions on Electronic Computers EC-14 (1965), 466-467.

[8] Conway, J. H. Regular Algebra and Finite Machines. Chapman and Hall Ltd.,
London, 1971.

[9] Ginsburg, S. On the length of the smallest uniform experiment which dis-
tinguishes the terminal states of the machine. Journal of the Association for
Computing Machinery 5 (1958), 266-280.

[10] Hartmanis J. and Stearns R. E. Algebraic Structure Theory of Sequential
Machines,.Prentice-Hall, Englewood Cliffs, NJ, 1966.

[11] Lee, D. and Yannakakis, M. Principles and methods of testing finite state
machines—A survey, Proc. IEEE 84, 8, (1996),1089-1123.

[12] Lee, D: and Yannakakis, M. Closed partition lattice and machine decomposi-
tion, IEEE Transactions on Computers, 51, 2 (2002), 216-228.

[13] Moore, E. F. Gedanken-experiments on sequential machines, in C. E. Shan-
non and J. McCarthy (eds.). Automata Studies, Princeton University Press,
Princeton, 1956.

[14] Schaller, M. and Svozil, K. Automaton partition logic versus quantum logic.
International Journal of Theoretical Physics 34, 8 (1995), 1741-1750.

[15] Svozil, K. Randomness &Undecidability in Physics. World Scientific, Singa-
pore, 1993.

Received September, 2003

Acta Cybernetica 16 (2004) 385-397.

Two-Way Metalinear PC Grammar Systems and
Their Descriptional Complexity

Alexander Meduna*

Abstract
Besides a derivation step and a communication step, a two-way PC gram-

mar system can make a reduction step during which it reduces the right-hand
side of a context-free production to its left hand-side. This paper proves
that every non-unary recursively enumerable language is defined by a cen-
tralized two-way grammar system, F, with two metalinear components in a
very economical way. Indeed, T's master has only three nonterminals and
one communication production; furthermore, it produces all sentential forms
with no more than two occurrences of nonterminals. In addition, during ev-
ery computation, T makes a single communication step. Some variants of
two-way PC grammar systems are discussed in the conclusion of this paper.

1 Introduction
Over the past few years, the formal language theory has intensively investigated
many variants of PC grammar systems (see [12]), which consist of several simulta-
neously working and communicating components, represented by grammars. This
paper introduces another variant of this kind, called two-way PC grammar sys-
tems, which make three kinds of computational steps—derivation, reduction, and
communication. More precisely, a two-way PC grammar system, F, makes a deriva-
tion step as usual; that is, it rewrites the left-hand side of a production with its
right-hand side. During a reduction step, however, F rewrites the right-hand side
with the left hand-side. Finally, T makes a communication step in a usual PC-
grammar-system way; in addition, however, after making this step, it changes the
computational way from derivations to reductions or vice versa.

As reduction steps represent a mathematically natural modification of deriva-
tion steps, a discussion of two-way PC grammar systems surely deserves our atten-
tion from a theoretical viewpoint. From a practical viewpoint, this discussion is
important as well. Indeed, two-way PC grammar systems actually formalize com-
putational units combining both reduction and derivation steps, which frequently
occur in applied computer science. To give some specific examples, consider, for

* Department of Information Systems, Faculty of Information Technology, Brno University of
Technology, Bozetêchova 2, Brno 61266, Czech Republic

385

386 Alexander Med una

instance, compilers. A parser is often written so it actually represents a combi-
nation of a bottom-up parser for expressions and a top-down parser for general
program flow. While the former makes reductions, the latter makes derivations; as
a whole, the parser thus makes both. To give another example in this area, the
three-address code generation often consist of top-down syntax-directed generation
of abstract syntax tree followed by a bottom-up translation of this tree to the de-
sired three-address code. Again, both reductions and derivations take part in this
translation process as a whole. As a result, there surely exist both theoretically
and pragmatically sound reasons for investigating two-way PC grammar systems.

This paper narrows its attention to the centralized two-way metalinear PC
grammar systems working in a non-returning mode. That is, since they are cen-
tralized, only their first components, called the masters, can cause these systems
to make a communication step. Since they are metalinear, all their components
are represented by metaliner grammars. Finally, as they work in a non-returning
mode, after communicating, their components continue to process the current string
rather than return to their axioms. Regarding these systems, the present paper con-
centrates its discussion on their descriptional complexity because this complexity
represents an intensively studied area of today's formal language theory.

As its main result, this paper proves that the centralized two-way metalinear PC
grammar systems characterize the family of non-unary recursively enumerable lan-
guages in a very economical way. Indeed, every non-unary recursively enumerable
language is defined by a centralized two-way grammar system with two metalinear
components so that during every computation F makes a single communication
step. In addition, T's three-nonterminal master has only one production with a
communication symbol and each of its sentential forms contains no more than two
occurrences of nonterminals. In the conclusion of this paper, some terminating and
parallel variants of these two-way systems are introduced and analogical results to
the above characterization are achieved.

2 Preliminaries
This paper assumes that the reader is familiar with the formal language theory
(see [9], [14]). For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet,
V, V* represents the free monoid generated by V under the operation of concate-
nation. The unit of V* is denoted by e. Set V+ = V* — {e}; algebraically, V+ is
thus the free semigroup generated by V under the operation of concatenation. For
every w € V*, |ui| denotes the length of w. Furthermore, for every 0 < i < |io| and
L € V*, we introduce the following denotation:

• length(L) = (H :w e L}
• reversal(w) denotes the reversal of w
• reversal(L) = {reversal(ui) : w £ L}
• alph(io) denotes the set of letters occurring in w
• alph(L) = {a : a £ alph(u;) with w £ L}
• sym{w,i) denotes the ith symbol in w

Two-Way Metalinear PC Grammar Systems 387

• prefix(iy, i) denotes the set of w's prefixes of length i or less
• prefix(w) = prefix(iu, |i/;|)
• suffix(w, i) denotes the set of w's suffixes of length i or less
• suffix(w) = suffix(u;, |u/|)
• prefix(L) = { I : I £ prefix(TY) for some w £ L}
• suffix(L) = {x : x € suffix^) for some w £ L}

For every W CV, del(ui, W) denotes the word resulting from w by the deletion
of all symbols from W in w\ more formally, del(i/j, W) — p(u¡), where p is the
weak identity over V* defined as p(b) = e for every b £ W and p(a) — a for every
a £ V — W. Let keep(u>, W) denote the word resulting from w by the deletion
of all symbols from V — W in w\ more formally, keep(w, W) = 9(w), where 9 is
the weak identity over V* defined as 0(b) — e for every b £ V — W and 6(a) = a
for every a £ W. For instance, for w = abac, alph(uj) = {a, b,c}, prefix(u>, 2) =
{e, a, ab}, sym(u>, 3) = a, del(tx;, {a}) = be, keep(w, {a, b}) = aba.

A queue grammar (see [7]) is a sixtuple, Q = (V,T,W, F, s, P), where V and
W are alphabets satisfying V C\W = <l),T C V, F C W, s £ (V - T)(W - F), and
P Q (V x (W — F)) x (V* x W) is a finite relation such that for every a £ V, there
exists an element (a, b, x, c) £ P for some b £W — F,x £ V*, and c £ W. If u,v £
V*W such that u = arb,v = rzc,a £ V,r,z £ V*,b,c £ W, and (a,b,x,c) £ P,
then u v [(a, b, z, c)] in G or, simply, u => v. The language of Q, L(Q), is defined
as L(Q) = {w £ T* : s =$>* wf where / £ F}.

Now, we slightly modify the notion of a queue grammar. A left-extended queue
grammar is a sixtuple, Q = (V, T, W, F, s, P), where V, T, W, F, and s have the same
meaning as in a queue grammar. P C (V x (W — F)) x (V* x W) is a finite relation
(as opposed to an ordinary queue grammar, this definition does not require that
for every a £ V, there exists an element (a, b, x, c) £ P). Furthermore, assume that
0 V U W. If u,v£ V*{#}V*W so that u = w#arb, v = wa#rzc, a£V, r, z,w £
V*,b,c£ W, and (a, b, x, c) £ P, then u => u[(a, b, z, c)] in G or, simply, u => v. In
the standard manner, extend => to =>n, where n > 0; then, based on =>", define
and =>*. The language of Q, L(Q), is defined as L(Q) = {v £ T* : #s w#vf
for some w £ V* and / £ F}. Less formally, during every step of a derivation,
a left-extended queue grammar shifts the rewritten symbol over in this way, it
records the derivation history, which represents a property fulfilling a crucial role
in the proof of Lemma 4 in the next section.

3 Definitions
As already sketched in Section 1, this paper discusses grammar systems (see [1,
2, 3, 4, 5, 7]), concentrating its attention on PC grammar systems (see [6, 11,
12, 13, 15, 16]). The present section introduces a new version of these systems.
First, based on two-way A;-linear PC components, it defines two-way fc-linear n-PC
grammar systems. Then, it introduces several notions concerning them. Finally,
two examples are given.

388 Alexander Med una

Let k and n be two positive integers. A two-way fc-linear PC component is a
quadruple, G = (N,T,P,S), where N and T are two disjoint alphabets. Symbols
in N and T are referred to as nonterminal and terminals, respectively, and S G N
is the start symbol of G. Set M = N — {5 } . P is a finite set of productions such
that each r G P has one of these forms

• S —* x, where x G (T U M)* and x contains no more than fc occurrences of
symbols from M,

• A—> x, where A G M and x G T*MT* U T*.

Let u, v G (NUT)*. For every A —> x £ P, write uAv uxv and uxv r=> uAv,
d and r stand for a direct derivation and a direct reduction, respectively. To express
that G makes uAv uxv according to A —» x, write uAv uxv [A —> x];
uxv r=> uAv [A —> x] have an analogical meaning in terms of r=>. A two-way
k-linear n-PC grammar system is an n 4- 1-tuple

r = (Q,Gu...,Gn),

where Q — {qi : i = 1 , . . . , n}, whose members are called query symbols, and for
all i = 1 , . . . , n, Gi = (Q U Ni, T, Pi, Si) is a two-way fc-linear PC component such
that Q n (Ni U T) = 0 (notice that each Gi has the same terminal alphabet, T);
let q-Pi C Pi denote the set of all productions in Pi containing a query symbol. A
configuration is an n-tuple of the form (x i , . . . , x„) , where x* £ (Q U Ni U T)*, 1 <
i <n. The start configuration, s, is defined as s = (S i , . . . , Sn). Let © denote the
set of all configurations of T. For every x € 0 and i = 1,... ,n,i-x denotes its ith
component—-that is, if x = (x i , . . . ,X i , . . . ,x n) , then i-x = x». For every x 6 ©,
define the mapping x6 over {i-x : 1 < i < n) as X6(i-x) = zyz^... z^.^ where for
all 1 < h < |i-x|,

if for some qj £ Q,i = 1 , . . .,n, sym (i-x, h) = qj and alph(j-x) H Q — 0, then Zh —
j-x; otherwise (that is, sym(i-x,h) Q or alph(j-x) HQ / I),?/, - sym(i-x,h).

Let y, x £ 0 . Write

• y d=> x in r if i-y i-x in Gi or i-y = i-x with i-y,i-x € T*, for all
i = l,...,n;

• y x in T if i-y i-x in Gi or i-y = i-x with i-y, i-x G { S i } U T*, for all
i = l,...,n\

• y q=> x in T if i-x = y0(i-y) in Gi for all i = 1 , . . . , n.

Informally, T works in three computational m o d e s — r = > , which sym-
bolically represent a direct derivation, reduction, and communication, respectively.
Let l > € 0 ,1 < i < I, and ao h=> Qi ¡2=> oi2.. .ai_i ¡¡=> ai where lm £
{d,r,q}, 1 <m<l\ write ao =>* ai if li = d and each lp € {d, r, q},2 < p < I — 1,
satisfies:

• if lp = q then ¿p + i , /p_i € {d,r} and Zp+1 ^ lp-i,
• if lp G {d, r } then Zp+1 G {q,lP}.

Two-Way Metalinear PC Grammar Systems 389

Informally, after making a communication step, T changes the computational
mode from d to r and vice versa; after making a derivation or reduction step, it
does not. Consider ao =>* on that consists of I direct computational steps, ao ^
Qi /2=> »2 • • • <xi-i i,=> on, satisfying the above properties. Set /c(c*o =>* oil) =
{ a o , a i , . . . , aj} ; that is, K.(ao a;) denote the set of all configurations occurring
in ao =>* a/. Furthermore, for each I = 1 , . . . , n, set /t(i-ao =>* i-ai) = {¿-/3 : /3 £
«(ao a;)} . Finally, for each h = 1 , . . . ,n, h-computation(i-ao =>* i-ai) denote
h-ao ¿j => /i-ai (2=> h-a2 •.. h-ai-j ¡, /i-a; The language of T, L(r), is defined as

I (r) = {z € T* : a a in T with z = del(l-a, Si), for some a £ ©}.

Informally, L(l?) contains z £ T* if and only if there exists a € 0 such that a =>* a
in r and the deletion of each Si in 1 -a results in z. A computation a =>* a in T
with del(l-a, Si) 6 L(T) is said to be successful. By a two-way metalinear n-PC
grammar system, we refer to any two-way fc-linear n-PC grammar system, where
fc > 1.

Notice that after communicating, the components of the above systems continue
to process the current string rather than return to their axioms. In other words,
they work in the non-returning mode (see [7]). The returning mode is not discussed
in this paper.

For a two-way ^-linear PC grammar system, F = (Q,Gi,... ,Gn), we next
introduce some special notions.

Finite index. Let a x be any successful computation, in F, where x £ 0 ,
and let i £ {1 , . . . , n}. By i-index(cr =>* x), we denote the maximum number in
length(keep(«(t-er i-x),Ni)). If for every successful computation a =>* £ in
T, where £ £ ©, there exists k > 1 such that i-index(a =>* £) < k, Gi is of a
finite index. If Gi is of a finite index, index(Gi) denotes the minimum number h
satisfying i-index(a =>* £) < h, for every successful computation a =>* zu in T,
where o e 9 . By index(Gi) = oo, we express that Gi is not of a finite index.
If Gj is of a finite index for all j = 1, . . . , n, T is of a finite index and index(Y)
denotes the minimum number g satisfying index(Gi) < 9, for all / — 1 , . . . , n. By
index(T) — oo, we express that r is not of a finite index.

q-Degree. For a =4-* x in T, where x £ 0 , q-degree(a =4-* x) denotes the number of
communication steps (q=$>) in a =>* x. If for every computation a =>* £ in T, where
£ £ 0 , there exists k > 1 such that q-degree(a =>* £) < k, T is of a finite q-degree.
If r is of a finite ^-degree, q-degree(T) denotes the minimum number h satisfying
q-degree(a =>* £) < h, for every computation a =>•* £ in T; by q-degree{V) = oo,
we express that T is not of a finite q-degree.

Centralized Version. T is centralized if no query symbol occurs in any production of
Pi in Gi = (Ni, Ti, Pi, Si), for all i = 2 , . . . , n. In other words, only Pi can contain
some query symbols, so G\, called the master of T, is the only component that can
cause r to perform a communication step.

390 Alexander Med una

This paper concentrates its attention on the centralized version of two-way k-
linear 2-PC grammar systems. Therefore, we conclude this section by two examples
illustrating these systems.
Example 1. Consider the centralized two-way two-linear 2-PC grammar system,
G - ({gi ,92},Gi,G2) , where Gi = ({SI,A,B},T,PI,SI),G2 = ({S2,B,Y},T,
P2,S2),T = {a,b,c}, Pi = {Si - » A, A cA,A -» cq2,Q2 B,B q2,B
e, Si -> B}, and P2 = {S2 —> YB,B B,Y aYb, Y —> ab}.

For instance, F generates c3a3b3a3b3a3b3 as (Si,S2) d=> (A , Y B) ¿=> (cA,
aybS) d=> (ccA,aaYbbB) (cccq2,a3b3B) (c3a3b3B,a3b3B) r=> (c3a3b3q2,
a3b3B) (c3a3b3a3b3B, a3b3B) (c3a3b3a3b3q2,a3b3B) q=> ((?a3b3a3b3a3b3B,
a3b3B) r=> (c3 a3 b3 a3 b3 a3 b3 Si, a3 b3B) with d e l ^ a W i r W S i , Si) =
c W a W f t 3 .

Observe that L(T) = { ¿ V : a; £ H,j,i > 1, |x| = 2j } , where H = {anbn : n >
1}. Furthermore, notice that index(Gi) = 1 and index(G2) — 2, so T is of a finite
index. On the other hand, q-degree(T) = oo.
Example 2. Consider the centralized two-way one-linear 2-PC grammar system G =
({9i, 92}, Gi, G2) where Gx = ({Si, A, B}, T,PU Si), G2 = ({S2, B},T, P2, S 2) ,T =
{a, 6, c}, Pi = {Si -> A, A -> aAa, A ag2a, B 5c , Si -> B}, and P2 = {S2 ->
B,B - 6Pc}.

For instance, T makes (Si,S2) (A,-B) (aAa,bBc) d=> (aaq2aa,bbBcc)
(aabbBccaa, bbBcc) r=> (aabbBcaa,bBc) r=> (aabbSicaa, B).

Notice that L(T) = {an6"cman :n>m> 0},index(Gi) = l ,mdex(G2) = 1,
and q-degree(T) = 1.

4 Main Result
This section proves that every non-unary recursively enumerable language is defined
by a centralized two-way three-linear 2-PC grammar system, T = ({Q 2 } , Gi, G2),
such that index(Gi) = 2, index (G 2) = 3, and q-degree(T) = 1. As a result,
index (T) = 3. In addition, its three-nonterminal master, Gi, has only one produc-
tion containing a query symbol.

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L.

Proof. Recall that every recursively enumerable language is generated by a queue
grammar (see [8]). Clearly, for every queue grammar, there exists an equivalent
left-extended queue grammar. Thus, this lemma holds. •

Lemma 2. Let Q' be a left-extended queue grammar. Then, there exists a left-
extended queue grammar, Q = (V,T,W,F,s,R), such that L(Q') — L(Q), W =
XUYU{1}, where X, Y, {1} are pairwise disjoint, and every (a, b, x,c) £ R satisfies
either a eV-T,b&X,xG (V -T)*,c € X U {1} or a £ V - T, b £ Y U l,x £
T*,c £ Y.

Two-Way Metalinear PC Grammar Systems 391

Proof. See Lemma 1 in [10]. •

Consider the left-extended queue grammar Q — (V, T, W, F, s, R) from Lemma 2.
Its properties imply that Q generates every word in L(Q) so that it passes through
state 1. Before it enters 1, it generates only words over (V — T); after entering 1,
it generates only words over T. In greater detail, the next corollary expresses this
property, which fulfills a crucial role in the proof of Lemma 4.

Corollary 3. Q constructed in the proof of Lemma 2 generates every h G L(Q) in
this way

#ao9o
ao#zoÇi [(ao,Ço,2o,gi)]
a0ai#xi<72 ¡(01,91,21,92)]

aoai . . . ak#Xkqk+1 [(a*, 9fc> zk, 9fc+i)]
a 0 ai . . .afcafc+i#Xfc+iifiÇfc+2 [(afe+-i,9fc+i>!/i.9fc+2)]

=> aoai. . .ajtajt+i.. .afc+m_i
#Xfc+m-l2/l • • •ym-iqk+m [(a*;+m-l, 9fc+m-l, 2/m-l, 9fc+m)]

=i> aoai . . .akOk+1 • • .ak+m#yi • •-ymQk+m+1 [(afc+m,9fc+m,J/m,9fc+Tn+l)]

where k,m > l,a< G V - T for i = 0 , . . . , k + m,Xj G (V - T)* for
j = 1 ,...,k + m,s = a0qo,ajXj = Xj-iZj for j = 1,..., k, ai... akXk+i =
z0 • • • Zk,ak+1.. • ak+m = Zfc,9o,9i, • • • ,9fc+m 6 W-F andqk+m+1 € F, zi,..., Zk G
(V - T)*, yi, . . . , ym G T*, h = yiy2 • • • Vm-iym •

Lemma 4. Let Q be a left-extended queue grammar such that card(alph(L(Q))) >
2. Then, there exists a centralized two-way three-linear 2-PC grammar system, F =
({ Q 2 } , G i , G 2) , such that L(T) = L(Q),index(Gi) = 2,index(G2) = 3,index(T) =
3,q-degree(T) = 1. In addition, F 's master, G1 = ({Q2} U Ni,T, Pi, Si), satisfies
card(Ni) = 3 and q-Px = {A -> Q2}.

Proof. Let Q = (V,T,W,F,s,R) be a left-extended queue grammar such that
card(alph(L(Q))) > 2. Assume that {0,1} C alph(L(r))) n T. Furthermore,
without any loss of generality, assume that Q satisfies the properties described in
Lemma 2 and Corollary 3. Observe that there exist a positive integer, n, and an
injection, 1, from VW to ({0 ,1}" — 1") so that 1 remains an injection when its
domain is extended to (VW)* in the standard way (after this extension, t thus
represents an injection from (VW)* to ({0,1}" — 1")*); a proof of this observation
is simple and left to the reader. Based on u, define the substitution, u, from V to
({0 ,1}" — l n) as i/(a) = {t(aq) : q G W } for every a G V. Extend the domain
of v to V*. Furthermore, define the substitution, /x, from W to ({0, l } n — 1") as
^(q) = {reversal(t(aq)) : a G V} for every q G W. Extend the domain of ¡j, to W*.
Set o = 1".

392 Alexander Med una

Construction. Introduce the centralized two-way three-linear 2-PC grammar sys-
tem, r = ({ Q 2 } , G i . G a) , where Gx = (Q U Ni,T,PltSi),G2 = (N2,T, P2,S2),
Ni = { 5 i , A , y } , and Pi = {Si - » o,4o,Si -> oYo,A — Q2} U {A —
reversal(i)Ax : x 6 i(VW)} U {Y -> xYx : x 6 i(VW)}. P2 is constructed
as follows

1. if s = doqo, where ao £ V — T and qo £W — F, then add S2 —» Yu (qo, 1) tY
to P2, for all u £ v(oo) and t £ p(qo),

2. if (a,q,y ,p) G R, where a £ V-T,p,q£ W-F, and y £ (V-T)*, then add
(q, 1) —> u (p, 1) t to P2, for all u £ u(y) and t £ p(p),

3. for every q £ W — F, add (q, 1) -> o (q, 2) to P2 ,

4. if (a,q,y ,p) £ R, where a £ V — T,p,q £ W - F,y £ T*, then add (q, 2) ->
y(p,2)t to P2 , for all t £ p[p),

5. if (a, q, y,p) £ R, where a £ V - T,q £ W - F,y £ T*, and p £ F, then add
{q, 2) —» yo to P2,

6. add Y — Y to P2 ,

and N2 contains all symbols occurring in P2 that are not in T.

Basic Idea. Clearly, T's master, Gi = ({Q 2 }UJVi ,T ,Pi ,S i) , satisfies card(Ni) = 3
and q-P\ = {A —» Q2}. Every generation of y £ L(T) can be expressed as follows

(Si, 5 a)
d=> (oreversal(a0)A/30o, Y\o (qi, 1) reversal(/?0)Y)

(oreversal(ai)A/?iO, Y\\ (<72,1) reversal(/3i)Y)

d=> (oreversal(afc)A/?fco, Y\k (qk+1,1) reversal(/3fc)Y)
(0reversal(afc)A/3fc0, Y\kO (qk+1,2) reversal(/3fc)Y)

d=> (or ever sal (a t)Afik+10, Yxkoyi (qic+i,2) reversal(/3fc+i)Y)

d=> (oreversal(afe+m)<32^fc+mO, Yxkoyi.. • 2/moreversal(/?fc+m)Y)
q=> (oreversa\(ak+rn)Yak+moyi... ymoreversal(/?fc+m)Y/3fc+mo), C)
r=> (oprefix(reversal(ait+m), |afc+m| - n)Ysuffix(ak+m, K+ml - n)

oyi... ymoreversal{Pk+m)YPk+mo), C)

r=> (oYoyx... ymoYo, C)
r=>2 (Siy1...ymSi,C)

where k,m > 1, and for all e = 0 , . . . , k + m, ae £ v(ao . . . a e) , /3e £ p(qo ... qe),
ae = reversal (/3e), â G V - T, qi £ W - F, 1 < i < k + m, for all / = 0 , . . . , A; - 1,
Xf £ prefix(^(a0 . . .ae)) nprefix(x/+i),Xfc = a f e + m ,s = a0qQ,yi,... ,ym £ T*,

Two-Way Metalinear PC Grammar Systems 393

C = Yxkoyi . • . ymoreversal(/3 f c + m)Y,y = yi,...,ym, and R contains rules
(a0,qo,zo,qi), (01,91,21,92), • • •, (a>c+m, Çk+m, ym-i, qk+m+i) according to which Q
can make the generation of y described in Corollary 3. As a result, q-degree(T) = 1
and L (r) Ç L(Q). On the other hand, recall that Q generates every y G L(Q) as
described in Corollary 3. Then, we can easily construct the above generation of y
in T, so L(Q) Ç L(T). Therefore, L (r) = L(Q).

Formal Proof (Sketch). For brevity, the following rigorous proof omits some obvious
details, which the reader can easily fill in.

Claim 1. G generates every h G L(r) as follows (Si, ¿>2) d=>* (uAv,y) q=>
(•uyv, y) r=>* {h, y), where u, v G {0,1}*, y G {Y}(T U {0 ,1})* {Y} .

Proof. In Pi, the right-hand side of every production contains a symbol from Q U
N1, so during any successful computation, T makes at least one ç-step. The only
production by which G\ can cause T to make a q-step is A —> q2. A does not
occurr in N2 at all, and after the first application of A —» q2, G1 makes reductions
during which it can never obtain A in a sentential form. Thus, the first application
of A —* q2 is also the last application of this production. Therefore, T generates
every h G L(T) as follows (Si,S2) d=>* (uAv,y) q=> (uyv, y) r=>* (h, 2),where
u,v G {0 ,1 }*,y,z G (TU N)*. If y contains a symbol from N2 - (T U { Y }) , G x

can never remove them during (uyv,y) r=>* (h,z) by any rule from Pi, which
leads to a contradiction that h ^ L(r) . Thus, y, z G (T U {Y})* . Examine P2
to see that y,z G (T U {Y }) * implies y = z and y G { Y } (T U {0 ,1 }) * {Y } . As
a result, (Si ,S 2) d=>* (uAv,y) (uyv,y) (h,y), where u,v G {0 ,1 }* ,y G
{ Y } (T U { 0 , 1 }) * { Y } . •

The previous claim implies q-degree(T) = 1.

Claim 2. Let (S\,S2) (uAv,y) q=> (uyv,y) r=>* (h,y) in T, where h G
L(T),u,ve {0,1}*, y G { Y } (r u { 0 , l }) * { Y } . Then, v = reversal(u).

Proof. Examine 1-Pi. Observe that before the communicational step, G\ can use
only productions from {Si —» oAo}U{A —» reversal(z).Az : z G L(VW)}; therefore,
v = reversal(u). •

Claim 3. Let (Si,S2) d=>* (wÂreversal(u),y) (uyreversal(u),y) (h,y),
inT, where h G L(T),u,v G {0 ,1 }* ,y G { Y } (T U {0 ,1})* {Y} . Then, y =
Yreversal(ii)/mY.

Proof. Consider (wyreversal(u),y) r=>* (h,y). During 1 -computation((uy
reversal(u), y) r=>* (h, y)), G1 can use only productions from {Si —> o Y o } U { Y —»
xYx : x G I(VW)}. Thus, y — Yreversal(u)huY. •

Return to the proof of the lenima. Let

(Si ,S 2) (uAreversal(t.'), Yreversal(u) huY)
(uYreversal(uj^uYreversal(ti), Yreversal(u)ft,uY)

r=>* (h,Yreversal(u)huY)

394 Alexander Med una

in r , where u, v £ {0,1}*. Examine Pi and P2 to see that in greater detail this
computation can be expressed as

(Si,S2)
d=> (oreversal(a0) A0oo, Y\o (i i , 1) reversal(/?0)Y)

(oreversal(ai)>l/3io,yxi (<?2,1) reversal(/?i)Y)

(oreversal(ak)Apko, Y\k (<?fc+i, 1) reversal(/3 fc)Y)
(oreversal(a fc)A/3*o, Y\kO (qk+i, 2) reversal(/3 fc)Y)
(o r e v e r s a l Y x k O y i (qk+i,2) reversal(^ f c + i)Y)

(oreversal(a f c+m)(52/3fc+mo, Y^fcoyi • • • ymOreversa\(pk+m)Y)
(0reversal(a f c + m)Ya f c + m02 / i . . .ymoreversal(/3 f c + m)Y/? f c + mo), C)

r=> (oprefix(reversal(a f c + m) , |afc+rn| - n)Ysuffix(afe+m, |afc+m| - n)
oyi... ymoreversal(Pk+m)Ypk+mo), C)

r=> (oYoyi... ymoYo, C)
r=^2 (S i2 / i . . .y m 5i ,C)

where k, m > 1, and for all e = 0 , . . . , k + m, ote £ v(ao ... ae),Pe £ fi(qo ... qe),
ae = reversal(Pe),a,i £ V - T,qi € W - F, 1 < i < k + m, for all / =
0, ' . . . ,k — l,Xf £ prefix(z/(a0...ae)) n prefix(x/+i),Xfc = ak+m,s = a0q0,
2/i, • • •, Um £ T*, C = Yxkoyi • • • 2/moreversal(/?fc+m)y, h = yi,...,ym• Thus,
index(G\) = 2 , index(G2) = 3, and mdex(r) = 3. Recall that Xfc = Gfc+m- Con-
sider the derivation part of the above computation—that is,

2-computation((Si, S2) d=>* (oreversal(ak+m)Q2pk+mo, Yak+moyi...
ymoreversal(bk+m)Y))

Prom the construction of P2, the form of this computation implies that R
contains rules (ao,qo, zo,qi),(ai,qi,zi,q2),..., (ak+m,qk+m,ym-i,qk+m+i), where
s — aoqo, cijXj = Xj-iZj for j = 1 , . . . , k, a i . . . akxk+i = zo ... zk, ak+1... ak+m =
xfc, and qk+m+i € F, zu ..., zk £ (V - T)* , j / i , . . . ,ym £ T*,h = yiy2 • • • Vm-iVm-
As a result,

#ao9o
=> ao#xoqi
=> a 0 a i # x i q 2

aoai... dk#xkqk+i [(afc,9fc,Zfe,qfc+i)]
=> aoa i . . .akak+i#xk+iyiqk+2 [(afc+i,9fe+i,i/i,9fc+2)]

=> aoai... ajfcajfc+iajfc+m_i#Xfc+m_i2/i... ym-iqk+m

[(flfc+m-l, Qk+m-l,ym-l, 9fc+m)]
=> aoai... afcafe+iafc+m#yi... ymqk+m+i [(afe+m,9fe+m,ym,9fc+m+i)]

[(ao,<?o,z0,gi)]
[(oi,9i.zi,92)i

Two-Way Metalinear PC Grammar Systems 395

in Q. As h = ym ... Vm-iVm, h £ L(Q). Thus, L(T) C L(Q).
To prove L(Q) C L(r), recall that Q satisfies the properties described in

Lemma 2 and, therefore, generates every h £ L(Q) as described in Corollary 3.
Then, we can easily construct the generation of h in T that has the form described
above; a detailed version of this construction is left to the reader. Thus, h £ L(T),
so L(Q) C L(T).

Therefore, L(T) = L(Q). Recall that we have already established that
index(G i) = 2,index(G2) = 3,index(T) = 3, q — degree (T) = l,card(N\) — 3,
q-Pi = {AQ2}. Thus, Lemma 4 holds. •

Theorem 5. Let L be a recursively enumerable language such that card(alph(L))
> 2. Then, there exists a centralized two-way three-linear 2-PC grammar system,
r = ({<72}, Gi, G2), such that L(T) = L,index(G\) = 2,index(G2) = 3,index(T) =
3,q-degree(T) = 1, andT's master, G\ = (Q U Ni,T, Pi, Si), satisfies card(Ni) =
3,q-Pi = {A^Q2}.

Proof. This theorem follows from Lemmas 1,2, and 4. •

5 Some Variants
This concluding section discusses some variants of the centralized two-way metalin-
ear grammar systems.

Parallel variant. A parallel variant of a centralized two-way fc-linear PC gram-
mar system makes communication steps as defined in Section 4; however, during
derivation and reduction steps, it allows their components to simultaneously rewrite
the word at several places. More formally, let T = (Q,G 1,. . . ,Gn), where for all
i — 1 , . . . , n, Gi = (Q U Ni,T,Pi,Si) is a two-way fc-linear PC component. As be-
fore, for u, v € (Ni U T)* and A —» x £ Pi, write uAv ¿=> uxv and uxv => ruAv in
Gi. Let Xi, yi £ (N U T)*, where i = 1 , . . . , n, for some n > 1. If Xi d=> yi in Gi
for all i = 1 , . . . , n, write xi... xn par-d=> Vi • • • Vn in T. If Xi r=> yi in Gi for all
i = 1 , . . . , n, write Xi . . . Xfi par-r => Vi • • • Vn in T. To complete the definition of a
parallel centralized two-way fc-linear PC grammar system, modify the correspond-
ing definition given in Section 3 by substituting paT-d=> and par-r=> for d=> and
r=>, respectively. By parL(T), denote the language generated by a parallel two-way
fc-linear PC grammar system, T.

Theorem 6. Let L be a recursively enumerable language such that card(alph(L))
> 2. Then, there exists a parallel centralized two-way three-linear 2-PC grammar
system, r = ({CJ2}, Gi, G2), such that pa.rL(r) = L,index(Gi) = 2,index(G2) =
3,index(T) = 3,q-degree(T) = 1, andT's master, G1 = (QuNi,T, Pi, Si), satisfies
card(Ni) = 3 and q-Pi = {A Q2}.

Proof. Establish this theorem by analogy with the demonstration of Theorem 5.

396 Alexander Med una

Terminating mode. The theory of grammar systems has introduced several deriva-
tion modes, such as *-mode or the maximal code for CD grammar systems, and
studied the corresponding families of languages generated in these modes. In terms
of the grammar systems discussed in this paper, we also suggest a new derivation
mode; called the terminating mode. That is, for a centralized 2-PC two-way met-
alinear grammar system, T, introduced in Section 3, the language generated by V in
the terminating mode, tL(r) , is defined by this equivalence: L(T) contains z e T*
if and only if there exists a G © such that T makes a a but cannot make any
further computational step from a and the deletion of each Si in 1-a results in 2.

Theorem 7. Let L be a recursively enumerable language such that
card(alph(L))) > 2. Then, there exists a parallel centralized two-way three-linear
2-PC grammar system, T = ({Q2}, Gi, G2), such that tL(T) = L,index(G\) =
2,index(G2) = 3,index(T) = 3,q-degree(T) = 1, andT's master, Gi — (Q U
N1, T, Pi, Si), satisfies card(N^ = 4 and q-Px = {A Q2}.

Proof. Return to the centralized two-way metalinear 2-PC grammar system, T =
({Q2},Gi, G2), constructed in the proof of Lemma 4. Modify its master, G\ =
(Q U NuT,PuSi), as follows. First, add a new nonterminal, X, to N1. Then,
include {X X} U {X xYy \ x,y € i{VW),x ^ y} into Pi- Complete this
proof by analogy with the proofs of Lemma 4 and Theorem 5. •

Returning mode. As stated in Section 1, this paper considers only the non-
returning mode throughout. Reconsider the present study in terms of returning
mode (see [7]).

Acknowledgement
The author thanks the anonymous referee for several useful comments. The author
also gratefully acknowledge support of GACR grant 201/04/0441.

References
[1] Csuhaj-Varju, E.: Cooperating Grammar Systems. Power and Parameters,

LNCS 812, Springer, Berlin, 67-84, 1994. '

[2] Csuhaj-Varju, E.: Grammar Systems: a Multi-Agent Framework for Natural''1

Language Generation, in Gh. Paun (ed.), Artificial Life: Grammatical Models,
The Black Sea Univer. Press, Bucharest, 1995.

[3] Csuhaj-Varju, E. and Kelemen, J.: On the Power of Cooperation: a Regular
Representation of R.E. Languages, Theor. Computer Sci. 81, 305-310, 1991.

[4] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

Two-Way Metalinear PC Grammar Systems 397

[5] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Eco-Grammar Systems:
A Grammatical Framework for Life-like Interactions, Artificial Life 3, 27-38,
1996.

[6] Csuhaj-Varju, E. and Salomaa, A.: Networks of Language Processors: Parallel
Communicating Systems, EATCS Bulletin 66, 122-138, 1997.

[7] Dassow, J., Paun, Gh., and Rozenberg, G.: Grammar Systems. In Handbook of
Formal Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer,
Berlin 1997

[8] Kleijn, H. C. M. and Rozenberg, G.: On the Generative Power of Regular
Pattern Grammars, Acta Informática 20, 391-411, 1983.

[9] Meduna, A.: Automata and Languages: Theory and Applications, Springer,
London,2000.

[10] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, Interna-
tional Journal of Computer Mathematics 80, 679-687, 2003.

[11] Paun, Gh., Salomaa, A. and S. Vicolov, S.: On the Generative Capacity of
Parallel Communicating Grammar Systems, International Journal of Com-
puter Mathematics 45, 45-59, 1992.

[12] Paun, Gh. and Santean, L.: Parallel Communicating Grammar Systems: the
Regular Case, Ann. Univ. Buc., Ser. Matem.-Inform. 38, 55-63, 1989.

[13] Paun, Gh. and Santean, L.: Further Remarks about Parallel Communicating
Grammar Systems, International Journal of Computer Mathematics 34, 187-
203, 1990.

[14] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[15] Santean, L.: Parallel Communicating Systems, EATCS Bulletin, 160-171,
1990.

[16] Vaszil, G.: On simulating Non-returning PC grammar Systems with Returning
Systems, Theoretical Computer Science (209) 1-2, 319-329, 1998.

Received February, 2003

Acta Cybernetica 16 (2004) 399-409.

Retractable state-finite automata without outputs*

Attila Nagyt

Abstract
A homomorphism of an automaton A without outputs onto a subautoma-

ton B of A is called a retract homomorphism if it leaves the elements of B
fixed. An automaton A is called a retractable automaton if, for every subau-
tomaton B of A, there is a retract homomorphism of A onto B. In [1] and
[3], special retractable automata are examined. The purpose of this paper is
to give a construction for state-finite retractable automata without outputs.

In this paper, by an automaton we mean an automaton without outputs, that
is, a system A = (A, X, S) consisting of a non-empty state set A, a non-empty input
set X and a transition function S : A x X i-> A. If A has only one element then
the automaton A will be called trivial. The function 8 is extended to A x X* (X*
denotes the free monoid over X) as follows. If a is an arbitrary state of A then
S(a,e) = a for the empty word e, and 6(a,qx) = S(5(a,q),x) for every q G X*,
xeX.

If B is a non-empty subset of the state-set of an automaton A = {A, X, S)
such that S(b,x) e B for every b £ B and x e X, then B = (B,X,SB) is an
automaton, where 5b denotes the restriction of 6 to B x X. This automaton is
called a subautomaton (more precisely, an A-subautomaton) of A. A subautomaton
B of an automaton A is called a proper subautomaton of A if B is a proper subset
of A. A subautomaton B of an automaton A is said to be a minimal subautomaton
of A if B has no proper subautomaton. If a subautomaton B of an automaton
A has only one state then B is minimal; the state of B is called a trap of A.
If an automaton A = (A, X, 5) contains only one trap denoted by ao then A is
called a one-trap automaton (or an OT-automaton). This fact will be denoted by
(A, X, <5; ao). If an automaton A has a subautomaton which is contained in every
subautomaton of A then it is called the kernel of A. The kernel of A is denoted
by KerA.

Let A = (A, X, 5) be an automaton containing at most one trap. Let AP denote
the following set. A0 = A if A does not contain a trap or A is trivial; A0 = A— {ao}
if A is a non-trivial OT-automaton and ao is the trap of A. Consider the mapping
5° : A0 x X i-> A0 which is defined for a couple (a, x) € A0 x X if and only if

•Research supported by the Hungarian NFSR grant No T029525 and No T042481
t Department of Algebra, Institute of Mathematics, Budapest University of Technology and

Economics

399

400 Attila. Nagy

S(a,x) £ A0. In this case, let S°(a,x) = S(a,x). (A0, X , 5°) is a partial automaton
which will be denoted by A 0 .

An equivalence relation a of the state set A of an automaton A = (A, X, 5) is
called a congruence of A if, for every a,b £ A and x £ X, the assumption (a, b) € a
implies (S(a,x),S(b,x)) £ a. It is easy to see that if B is a subautomaton of an
automaton A then pg = {(a,b) £ A x A : a = b or a, b £ B} is a congruence of
A, which is called the Rees congruence of A induced by B. The factor automaton
A/ps is called the Rees factor automaton of A modulo B. If B is a subautomaton
of an automaton A then we may describe the Rees factor A/PS as the result of
collapsing B into a trap ao of the Rees factor, while the elements of A outside of B
retain their identity. Sometimes we can identify these elements a (a £ A — B) with
the one-element ps-class [a], that is, we can suppose that the state set of the Rees
factor is (A - B) U {ao}.

If a is a state of an automaton A, then the smallest subautomaton R(a) of A
containing the state a is called the principal subautomaton of A generated by a. It
is easy to see that R(a) = S(a, X*) — {¿(a,p) : p £ X*} . Clearly, every minimal
subautomaton of an automaton is principal.

The relation 1Z on an automaton A defined by 1Z = {(a, b) £ A x A : R(a) =
R(b)} is an equivalence relation on A. The 72,-class of A containing an element
a £ A is denoted by Ra. The subset R(a) - Ra is denoted by R[a). It is clear
that ,R[a] is either empty or (-R[a], X, <5/i[a]) is a subautomaton of A. The factor
automaton R { o } = R(a)/PR\a) is called a principal factor of A. We note that
if R[a] = 0 then R { a } is defined to be R(a). For example, if a is a trap then
R(a) = {a} and so R[a] = 0.

A mapping 4> (acting on the left) of the state set A of an automaton A =
{A,X, 6A) into the state set B of an automaton B = (B ,X,5B) is called a homo-
morphism of A into B if ^>(¿,4(0, x)) — 8B{4>{a),x) for every a £ A and x £ X.

A mapping (f> (acting on the left) of A3 into B° is called a partial homomorphism
of a partial automaton A 0 = (A0, X, <5°) into a partial automaton B° = (B°, X, S°B)
if, for every a £ A°, x £ X, the assumption ¿a(a, x) £ A0 implies 5B(<j>{a),x) £ B°
and 6B(<j>(a),x) = <f>(SA(a,x)).

Definition 1. A subautomaton B of an automaton A is said to be a retract sub-
automaton if there is a homomorphism of A onto B which leaves the elements of
B fixed- Such a homomorphism is called a retract homomorphism of A onto B.

Definition 2. An automaton A is called a retractable automaton if every subau-
tomaton of A is retract.
Lemma 1. Every subautomaton of a retractable automaton is retractable.

Proof. As a subautomaton C of a subautomaton B of an automaton A is also a
subautomaton of A, and the retriction of a retract homomorphism of A onto C to
B is a retract homomorphism of B onto C, our assertion is obvious. •

Lemma 2. If A is a retractable automaton and {a» : i £ 1} are elements of A
such that R(ai) C R(b) for an element b of A then there is an index j £ I such that
R(ai) C R(aj) for every i £ I.

Retractable state-finite automata without outputs 401

Proof. Let A = (A, X, 6) be a retractable automaton and {oj : i £ 1} be arbitrary-
elements of A such that R(a,i) C R(b) for an element b of A. Let R = Ui€jR(ai).
As R = (R, X, Sr) is a subautomaton of A, there is a retract homomorphism Xr
of A onto R. As A«(6) £ R, there is an index j £ I such that \r(b) £ R(aj). Then
AR(S(b,p)) = 6{XR(b),p) £ R{aj) for every p £ X*, and so AR(R{b)) C R(aj). As
R(di) C iJ f l R(b) (i £ I), we get R(a,i) = Afi(i?(aj)) C i?(a.,) for every i e I. •

Corollary 1. Every subautomaton of a principal subautomaton of a retractable
automaton is principal. In particular, for every state a of a retractable automaton
A, i?[a] is either empty or R[a] is a principal subautomaton of A.

Proof. Let B be a subautomaton of a principal subautomaton R(b) of a retractable
automaton A. Then R(a) C R(b) for every a £ B. By Lemma 2, there is an
element c £ B such that R(a) C R(c) for every a £ B. As B = Uaesi?(a), we get
B = R(c). •

Let T be a set with a partial ordering < such that every two-element subset of
T has a lower bound in T and every non-empty subset of T having an upper bound
in T contains a greatest element. Then T is a semilattice under multiplication * by
letting a * b (a,b £ T) be the (necessarily unique) greatest lower bound of a and b
in T. A semilattice which can be constructed as above is called a tree ([4]).

Corollary 2. A state-finite retractable automaton A contains a kernel if and only
if the principal subautomata of A form a tree with respect to inclusion.

Proof Let A be a state-finite retractable automaton. The inclusion (the inclusion
of the state-sets) is a partial ordering on the set T of all principal subautomata
of A. By Lemma 2, every non-empty subset of T having an upper bound in T
contains a greatest element. As every finite tree has a least element, T (which is
finite) is a tree if and only if it has a least element. As the least element of T is the
kernel of A, our proof is complete. •

Lemma 3. Every principal subautomaton of a state-finite retractable automaton
contains exactly one minimal subautomaton.

Proof. Prom the finiteness of the state set, it follows that every principal sub-
automaton contains a minimal subautomaton. As a minimal subautomaton is a
principal subautomaton, our assertion follows from Lemma 2. •

Lemma 4. If a\, <22 are states of a state-finite retractable automaton A — {A, X, 6) •
such that Bi C R(a\), Bi C R(a-i) for distinct minimal subautomata Bi and B2
of A then R(ai) n R{a2) = 0.

Proof. If c £ R(ai) fl R(a2) then, by Lemma 3, there is a minimal subautomaton
B of A such that B C R(c) C R(a 1) 0 R(a2). Using again Lemma 3, we get
B\ = B = B2 which is a contradiction. ' •

402 Attila. Nagy

If A j = (Ai, X,5i), i £ I are automata such that A{ fl Aj = 0 for every i ^ j,
then A = (A,X, ¿) is an automaton, where A = Uie/^t a n d 5(a,x) = 5i(a,x) for
every a & Ai and x € X. The automaton A is called the direct sum of the automata
Aj, i £ I.

Definition 3. We say that an automaton A is a strong direct sum of a family
of subautomata Ai, i £ I if A is a direct sum of Ai, i £ I and, for every couple
(i,j) £ / x I, there is a homomorphism of Ai into Aj.

Theorem 1. A strong direct sum of retractable automata is retractable.

Proof Assume that an automaton A = (A, X, 5) is a strong direct sum of automata
Ai = (Ai,X,Si), i £ I. Let 4>i,j be the corresponding homomorphism of Ai into
A j (i,j £ I). Let R be an arbitrary subautomaton of A. Let Ri = Rf) Ai. It is
clear that Ri is either empty or R j = (Ri, X, SRi) is a subautomaton of A¿. Let
A/j; denote a retract homomorphism of Ai onto R j if Ri ^ 0, and let ¿o denote a
fixed index, for which Ri0 ^ 0. We define a mapping AR of A onto R as follows. If
a £ Ai and Ri = 0, then let AR(a) = \Rio (<t>i,i0(a))', if a € -A» and Ri ^ 0, then let
AR(a) = XRi(a). It is clear that AR mapps A onto R and leaves the elements of R
fixed. To prove that AR is a homomorphism of A onto R, let i £ I, a £ Ai, x £ X
be arbitrary elements. In case ii* = 0,

XR(5(a,x)) = XRi^faioiSifax))) = XRi0(Si0 (^>iiio(a),x)) =

= Sio&Ri o (<f>i,i0(a))>x) = ¿(Afi(a),x),

and, in case Ri ^ 0,

A R(6(a,x)) = A Ri(6i(a,x)) = Si(XRi(a),x) = S(XR(a),x),

because a,5(a,x) £ Ai. Hence XR is a retract homomorphism of A onto R. Thus
the theorem is proved. •

Theorem 2. For a state-finite automaton A = (A, X, S), the following assertions
are equivalent:
(i) A is retractable;
(ii) A is a direct sum of finite many state-finite retractable automata containing
kernels being isomorphic to each other.
(Hi) A is a strong direct sum of finite many state-finite retractable automata con-
taining kernels.

Proof, (i) implies (ii): Assume that A is retractable. As A is finite, it has a
minimal subautomaton. Let {Bj, i = 1,2, . . . r } be the set of all distinct minimal
subautomata of A. Let Ai = Uae/i{.R(a) : Bi C R(a)}, i = 1 ,2, . . . ,r. It is clear
that Ai is a subautomaton of A and Bj is the kernel of A j for every i = 1 , . . . ,r.
By Lemma 3, for every principal subautomaton R(a) of A, there is a unique index
i such that Bi C R(a). Thus A = U¿=1Ai. By Lemma 4, Ai n Aj = 0 for every

Retractable state-finite automata without outputs 403

i ^ j. Hence A is a direct sum of the automata Aj, i = 1, . . . , r. By Lemma 1,
every automaton Ai is retractable. Let i,j 6 {1, 2 , . . . , r } be arbitrary. As Bj is a
minimal subautomaton of A, the retract homomorphism ABi of A onto B* maps
Bj onto Bi. Thus \BJ\ > \BI\. Similarly, \BT\ > \BJ\. Thus \BI\ = \BJ\ and the
restriction of ABj to Bi is an isomorphism of B* onto Bj . Thus (ii) is satisfied.

(ii) implies (iii): Assume that A is a direct sum of the state-finite retractable
automata A¿, i = 1,2,... ,r such that each of Ai contains a kernel Bi, and, for
every i,j G {1 ,2 , . . . , r} , there is an isomorphism cpij of B* onto Bj . It is easy to
see that defined by

$ij(a) = ^¿,j(ABi(a)), a e Ai

is a homomorphism of A j into Aj, where A b, denotes a retract homomorphism of
A j onto B». Thus A satisfies (iii).

(iii) implies (i): By Theorem 1, it is obvious. •

By the previous theorem, we concentrate our attention to state-finite retractable
automata containing a kernel. These automata will be described by Corollary 3
and Theorem 7. First consider some results and notions which will be needed for
us.

Lemma 5. Every principal factor of an automaton can contain at most one trap.

Proof. If i?[a] = 0 for a state a then the principal factor R { a } has a trap only that
case when a is a trap of A, that is, the principal factor is trivial. If il[a] ^ 0 then
R(b) — R(a) for every b € Ra = R(a) — il[o], and so R { a } contains only one trap,
namely the pR[a]-class R[a] of R(a). •

Definition 4. An automaton A = (A, X, S) is called strongly connected if, for every
couple (a, b) € A x A, there is a word p 6 X+ (X+ denotes the free semigroup over
X) such that b = S(a,p).

We note that every strongly connected automaton can contain only one subau-
tomaton, namely itself. We also note that if an automaton is trivial (has only one
state which is a trap) then it is strongly connected. If an automaton has at least
two state and has a trap then it is not strongly connected.

Definition 5. A non-trivial OT-automaton A = {A, X,5,ao) is called strongly
trap-connected if, for every couple (a,b) € A x A, a ^ a$, there is a wordp € X+

such that b = S (a, p).

We note that every strongly trap-connected automaton A = (A, X, ao) con-
tains only two subautomaton, namely itself and ({ao} ,X, <5{ao})- Moreover, for
every state a ^ ao of A there is a word p € such that a = S(a,p).

Definition 6. We say that a non-trivial OT-automaton A = (A, X, S\ao) is
strongly trapped if 5(a, x) — ao for every a £ A and x £ X.

404 Attila. Nagy

Theorem 3. Every principal factor of an automaton is either strongly connected
or strongly trap-connected or strongly trapped.

Proof. If .R[a] = 0 then R { a } = R(a) is strongly connected. If i?[a] ^ 0 then,
by Lemma 5, R { a } is a non-trivial OT-automaton. Let ao denote the trap of
R {a } . If |i?a| = 1, that is, i?{a} = {a,ao}, then R { a } is either strongly trapped
(if S(a,x) £ ii[a] in A, that is, S(a,x) = ao in R { a } for every x £ X) or strongly
trap-connected (if a = S(a, x) for some x 6 X). If |i?„| > 1 then, for every elements
b,c of Ra, c = S(b,p) for some p £ X+. Moreover, for every b £ Ra, there is a word
p £ X+ such that S(b,p) £ /¡![a] in A, that is, S(b,p) = ao in R {a } . Hence R{a} is
strongly trap-connected. •

Definition 7. An automaton A is called semiconnected if every principal factor of
A is either strongly connected or strongly trap-connected.

Theorem 4. An automaton A = (A, X, 6) is semiconnected if and only if every
subautomaton B of A satisfies the following: for every a £ B there are elements
b £ B and p £ X+ such that a = 8(b,p).

Proof, Let A = (A, X, 6) be a semiconnected automaton and B be a subautomaton
of A. Let a be an arbitrary element of B. Then R(a) C B. If a is a trap then
a = 5(a,x) for every x 6 X. Consider the case when a is not a trap. Then
\R(a)\ > 2. If R[a] = 0 then, by Theorem 3, R(a) = R { a } is strongly connected
which means that, for every b £ R(a) there is a word p £ X+ such that a = 5(b,p).
If .ft[a] ^ 0 then, by Theorem 3, R { a } is strongly trap-connected and so, for every
element b £ Ra, there is a word p £ X+ such that a = 6(b,p). Thus, in all cases,
there is a state b £ B and a word p £ X+ such that a = S(b,p).

Conversely, assume that every subautomaton of an automaton A satisfies the
condition of the theorem. We show that A is semiconnected. Let a be an arbitrary
element of A. If a is a trap of A then the principal factor R { a } is trivial (and so it
is strongly connected). Consider the case when a is not a trap of A. Then a is an
element of R { a } (and is not the trap of R {a}) . By Theorem 3, it is sufficient to show
that the principal factor R { a } is not strongly trapped. As R(a) is a subautomaton
of A, by the condition of the theorem, there are elements b £ R(a) p £ X* and
x £ X such that a = S(b,px) = 5(6(b,p),x) in A. It is clear that b' = 5(b,p) ^ i?[a]
and so a = S(b\ x) in R {a } . Thus R {a } is not strongly trapped. •

Definition 8. Let B = (B,X,5B) be a subautomaton of an automaton A =
(A,X,S). We say that A is a dilation of B if there is a mapping <f> of A onto
B which leaves the elements of B fixed and S(a,x) = 5B(<f>{a),x) for all a £ A and
x£X.

Theorem 5. Every dilation of a retractable automaton is retractable.

Proof. Let A = (A,X, S) be a dilation of a retractable subautomaton B =
(B,X,5b)- Then there is a mapping <f> of A onto B which leaves the elements
of B fixed and S(a, x) = 5B{4>(a), x) for every a £ A and x £ X. Let R be a subau-
tomaton of A. Then, for every c £ R and x £ X, 5(c,x) £ RC\B. Let \RT\B denote

Retractable state-finite automata without outputs 405

a retract homomorphism of B onto the subautomaton R f l B . Define a mapping
XR of A onto R as follows. Let AR(a) = a if a G R, and let AR(O) = AR , - IB (</>(<*)) IF

a £ R. We show that XR is a homomorpism of A onto R. Let a E A and x G X be
arbitrary elements. If a G R then

6(XR(a), x) = 5(a, x) = X R{5(a, x)).

Assume a £ R. Then

5(XR(a),x) = M-WiB(0(a)),x) =

= ^RNB{5B(<j>(a),x)) = XR(S(a,x)),

because A« (a), S(a, x) G B and the restriction of A R to B equals A RnB- Hence A R is
a homomorphism of A onto R. As AR leaves the elements of R fixed, it is a retract
homomorphism of A onto R. Consequently, A is a retractable automaton. •

Theorem 6. Every retractable automaton is a dilation of a semiconnected re-
tractable automaton.

Proof. Let A = (A, X, 6) be a retractable automaton and let B = 5(A,X). Then
B = (B, X, 5b) is a subautomaton of A and so there is a retract homomorphism <j>
of A onto B. Let a G A, x G X be arbitrary elements. Then 8(a, x) = <j>(5(a,x)) =
6B((f>(a),x). Hence A is a dilation of B. By Lemma 1, B is retractable. Let R be
an arbitrary subautomaton of B. If c G R is an arbitrary element, then c = 8(a, x)
for some a G A and x G X. Let AR denote the retract homomorphism of A onto
R. Then AR{a) G R and

Corollary 3. An automaton is retractable if and only if it is a dilation of a semi-
connected retractable automaton.

Theorem 2 shows that the state-finite retractable automata are exactly the di-
rect sums of finite many state-finite retractable automata such that each component
in a mentioned direct sum contains a kernel, and these kernels are isomorphic with
each other. Corollary 3 and the remark after Theorem 2 show that every component
in a direct sum is a dilation of a state-finite semiconnected retractable automaton
containing a kernel. Theorem 7 will show how we can construct the state-finite
semiconnected retractable automata containing a kernel. These results togethet
give a complete description of state-finite retractable automata.

Construction. Let T be a finite tree (under partial ordering <) with the least
element io• Let i >- j (i,j G T) denote the fact that i > j and, for every k G T,
i>k>j implies i = k or j = k.

c = XR(C) = AR(5{a, x)) = 6(XR(a), x).

Thus, by Theorem 4, B is semiconnected. •

Proof. By the previous two theorems, it is evident. •

406 Attila. Nagy

Let A j = (Ai, X, Si), i £T be a family of disjunct automata such that
(i) A i o is strongly connected and A j is a strongly trap-connected OT-automaton

for every i £ T with i ^ io-
(ii) Let <f>iti denote the identity mapping of Aj , and assume that, for every

i,j£T with i >- j, there is a partial homomorphism <pij of A° into A ° such that
(iii) for every i >- j there are elements a £ A? and x £ X such that ¿¿(a, x) £ A®

and Sj(<j>itj(a),x) £ .
For arbitrary elements i,j£T with i > j, define a partial homomorphism

of A° into as follows. = fa^ and, if i > j such that i >- fci >- .. ,kn X j
then let

= <t>kn,j O <£fc„_i,fcn 0 . . . 0 4>kltk2 ° <f>i,ki-

(We note that if i > j > k are arbitrary elements of T then «E»̂ = $jtk °
Let A = Uigr Define a transition function 6' : A x X i-» A as follows. If

a£ A° and x € X then let 5'(a,x) — ¿¿'[Q,i](i>i,i'[a,z](a),x)> where i'[a,x] denotes
the greatest element of the set {j £ T : 5j($itj(a), x) £ A°}.

It is easy to see that A = (A, X, 5') is an automaton which will be denoted by
(.A i , X , 5 i - , (j) i j , T) .
Theorem 7. A finite automaton is a semiconnected retractable automaton con-
taining a kernel if and only if it is isomorphic to an automaton (Ai,X,5i\<f>ij,T)
constructed as above.

Proof. Let R be a subautomaton of an automaton (Aj, X, Si; <f>ij ,T). As every au-
tomaton At (i £ T— {¿o}) is strongly trap-connected and A¿0 is strongly connected,
it follows that R = Ujgr-Aj for some non-empty subset F of T. We show that T
is an ideal of T, that is, i £ T and j < i together imply j £ T for all i,j £ T.
Let i be an arbitrary element of T such that i £ T, i ^ io- If j £ T with i y j
then, by (iii), there are elements a £ A° and x £ X such that 5i(a,x) £ and
Sj(<piij(a),x) £ A?. Then S'(a,x) £ A°r Hence A<] n R ± 0 which implies that
i j c i ? and so j £ r . This implies that T is an ideal of T. As T is a tree,

7r : ii—» max{7 £ T : 7 < i}

is a well-defined mapping of T onto F which leaves the elements of T fixed (in fact,
7r is a retract homomorphism of the semigroup T onto the ideal T of T (see [4])).
We define a retract homomorphism AR of A onto R. For an arbitrary element
a £ A, let

A R{a) = $ i i f f (i) (a)

if a € A°. It is easy to see that AR leaves the elements of R fixed. We prove that
Ar is a homomorphism of A onto R. Let x £ X, a £ A° be arbitrary elements.
Using S'(a,x) — <5i'[a,z](^t,t'[a,x](o),x) £ ^ and the fact that $i<[a,xU(i'[a,x]) i s

a partial homomorphism, we get

A R(6'(a,x)) = XR(5i>[atX}($iti>[a<x](a),x)) =

Retractable state-finite automata without outputs 407

Using $ i i 7 r (0(a) G A°n(i), we have

8'(XR(a),x) = 6'($iMi)(a),x) =

To prove that AR(8'(a, x)) = S'(XR(a), x), it is sufficient to show that

(7r(i))'[$i)7r (i) (a), x] = 7T(i'[a, 2]).

First, assume i'[a, x) > ir(i) (and so ir{i'[a,x)) = 7r(i)). As <j>i>[a,x),-n{.i) is a partial
homomorphism of A ° [a x] into and ¿¿<[a,x]($t,i<[a,x](a),x) G we get

¿ir(i)($i,ir(i)(a),aO = i7r(o($t'[o,i],7r(i)(^i,i'[o,i](a)).a;) =

and so
(7r(i))'[$i)W(i)(a),x] = tt(z) = ir{i'[a,x]).

Next, consider the case when ¿'[a,a;] < ir(i) (and so 7r(i'[a,x]) = i'[a,x}). If j £ T
with 7r(i) > j > i'[a, x] then we have

»«(<*)),- Sj($ij(a),z) $ A°.

Then
(7r(i))'[$i|ff(0(o),x] < i'\a,x\.

As
¿i'[«,x](^(0,i'[a.«](®i,,(i)(a)),x) = <5i'[o,x](^i,i'[a,x](a),2;) €

we get
(Tr(i))'[<i>ii7r(i)(a),x] > i'[a,x].

Hence
(7r(i))'[$iiW(i)(a),x] = i'[a,x] = tt (i'[a,x\).

Consequently, (7r(i))'[$iiir(i)(a),x] = ir(i'[a,x]) in both cases. Hence XR is a (re-
tract) homomorphism of A onto R. Thus A = (Ai,X,<j>i,j>T) is a retractable
automaton.

We show that A is semiconnected. If R is an arbitrary subautomaton of A,
then there is an ideal T of T such that R = UJ^RAJ (see above). Let a G R be
an arbitrary element. Then a £ A°k for some k G I\ As Ak is strongly connected
or strongly trap-connected, there are elements b G and p G X+ such that
a = 5k{b,p) = 5'(b,p). By Theorem 4, it means that A is semiconnected. As io is
contained in every ideal of T, A¿0 is the kernel of (A,, X, 5i; cfiij, T).

408 Attila. Nagy

Conversely, let A be a finite semiconnected retractable automaton containing
a kernel. Let Prf(A) denote the set of all principal factors of A. By Corollary
2, Prf(A) is a (finite) tree under partial ordering < defined by R { a } < R{6 } if
and only if R(a) C R(b). As A is semiconnected, the least element of Prf(A) is
strongly connected, the other ones are strongly trap-connected.

Let T be a set with |T| = \Prf(A)\. Denote a bijection of T onto Prf(A) by / .
Define a partial ordering < on T by i < j (i,j £ T) if and only if f(i) < f(j). Let
¿0 denote the least element of T. Clearly, T is a finite tree with the least element
¿o- For every element i G T, fix an element aj in A such that f(i) = R {a j } . (We
note that R{a j } = Rja.,} iff a* = aj iff i = j). As R{a j 0 } is strongly connected
and R{a j } is strongly trap-connected if i ^ IQ, condition (i) of the Construction is
satisfied.

Let Afi(0j.) (j € T) denote a fix retract homomorphism of A onto R(aj) . For
every i,j £ T with i X j, let Aij denote the restriction of to R(ai). It is
obvious that A ¿j is a retract homomorphism of R(aj) onto R (a j) for every i >z j,
(i,j £ T). Moreover, Aj,j is the identity mapping of R(aj), for every i £ T.
We show that Aij maps Rai into Raj. Let a £ Rai be an arbitrary element (so
R(a) — R(ai)). Then, for everyp G X*, Aij(6(a,p)) — 5(Xij(a),p). liXitj(a) was in
R[aj) then we would have Aij(5(a,p)) £ i?[aj] for every p £ X*, because R[aj] is a
subautomaton of A. This would imply that A¿,j (R(at)) C ii[aj] which is impossible,
because A itj maps R(ai) onto R(aj) = Raj U i? [a.̂] D R[aj]. Hence A ij maps Rai

into Raj and so A ¿j can be considered as a mapping of i?°{ai} into R°{aj}. If
5(a,x) £ Rai for some a G Rai and x £ X then 6(Xitj(a),x) — Xi:j(5(a,x)) £ Raj.
Hence Aj,j is a partial homomorphism of the partial automaton R° {a i } into the
partial automaton R° {a j } . Thus condition (ii) of the Construction is satisfied (for
A j = R{aj } , (pij = A i j) .

Assume i >- j. Let b £ Raj be an arbitrary element. Then ai^=b £ R(ai) and
so there is a word p = x\x2 •. • xn £ X+ (xi,x2, • •. xn £ X) such that b = S(ai}p).
Let m be the least index such that 6(ai,x\... xm) £ Raj. Consider an element a
of Rai (or of R 0 {a j }) as follows. Let a — ai if m = 1. Let a = S(ai, x\... x m _ i) if
m > 1. Then S(a,xm) g Rai (or S(a, xm) £ R°{at}). On the other hand,

8(Xij(a),xm) = Xij(S(a,xm)) =5(a,xm) £ Raj = R°{aj},

because Xij leaves the elements of R(aj) fixed. Thus (iii) of the Construction is
satisfied (for 4>i,j = Xij, x = xm).

For arbitrary elements i,j £ T with i > j, define the mapping as follows.
Let i>iti = At,i and, if i > j with i >- ki >- k2 X ... fcn X j then let

= ^fen ,i ° • • • ° ^¿,fcl •
It is clear that is a retract homomorphism of R(aj) onto R(a3) such that
it maps Rai into Ra]. Thus $ij can be considered as a partial homomorphism
of R° {a i } .into R 0 { o j } . Moreover, = o ^¿ j for every i,j,k £ T with
i>j>k.

Construct the automaton R = (i?{ai},X,<5j; Xij,T), where Si is the transitive
function of the factor automaton R{a i } induced by 8. It is clear that the state sets

Retractable state-finite automata without outputs 409

of the automata R and A are the same. We show that the transitive functions <5 of
A equals the transitive function 6' of R. Let i G T, a G Rai = i?0{ái}', i 6 X be
arbitrary elements. Assume S(a,x) G Raj (i > j)- Let k G T with i > k > j. Then
5(a,x) G fí[afc] C R(ak) and so

6($i<k(a),x) = $itk(S(a,x)) = 5(a,x) £ Rak = R°'{ak},

because $j,fc leaves the elements of R(ak) fixed. If j > k then

&{$itk(a),x) = $iifc(J(a,i)) =

. = $ j tk o <bitj(5(a,x)) = $jtk(ő(a,x)) G Rak = R°{ak},

because leaves the element 6(a,x) G Raj = fixed; and maps Raj

into Rak. Consequently i'[a,x] = j. Hence

6(a,x) = $ij(ő(a,x)) = ö($i,j(a),x) = őj($ij(ay,x) =

= ¿i'[a,x]($i,i'[a,x](a),aO = ő'(a,x).

Thus the theorem is proved. •

References
[1] Babcsányi, I. and A. Nagy, Boolean-type retractable automata, Publicationes

Mathematicae, Debrecen, 48/3-4 (1996), 193-200.

[2] Gécseg, F. and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó, Bu-
dapest, 1972.

[3] Nagy, A., Boolean-type retractable automata with traps, Acta Cybernetica,
Szeged, Tom. 10, Fasc. 1-2 (1991), 53-64.

[4] Tully, E.J., Semigroups in which each ideal is a retract, J. Austral Math. Soc.,
9 (1969), 239-245.

Received February, 2003

Acta Cybernetica 16 (2004) 411-425.

Relationally defined clones of tree functions
closed under selection or primitive recursion

Reinhard Pöschel* Alexander Semigrodskikhf and Heiko Vogler*

Abstract

We investigate classes of tree functions which are closed under composition
and primitive recursion or selection (a restricted form of recursion). The main
result is the characterization of those finitary relations Q (on the set of all trees
of a fixed signature) for which the clone of tree functions preserving g is closed
under selection. Moreover, it turns out that such clones Eire closed also under
primitive recursion.

Introduction
Classes of tree functions and primitive recursion for such functions were inves-
tigated, e.g., in [FiilHVV93], [EngV91], [Hup78], [Kla84]. In this paper a tree
function will be an operation / : Tn —> T on the set T of all trees of a given finite
signature (in general one allows trees of different signature).

If a class of operations is a clone (i.e. if it contains all projections and is closed
with respect to composition), then it can be described by invariant relations (cf.
e.g. [PosK79], [Pos80], [PosOl]).

In this paper we apply such results from clone theory and ask which finitary
relations characterize clones of tree functions that in addition axe closed under
primitive .recursion. The answer is given in Theorem 2.1 and shows that such
relations are easy to describe: they are direct products of order ideals of trees (an
order ideal contains with a tree also all its subtrees). Moreover it turns out that for
such clones the closure under primitive recursion is equivalent to a much weaker
closure (the so-called selection or S-closure, cf. 1.5) for which no real recursion is
necessary.

'Institute of Algebra, Dresden University of Technology (Germany),
poeschel f lmath.tu-dresden.de

tDepartment of-Algebra and Discrete Math., Ural State University, Ekaterinburg (Russia),
Alexander.SemigrodskikhOusu.ru
supported by DAAD (Deutscher Akademischer Austauschdienst)

* Institute of Theoretical Computer Science, Dresden University of Technology (Germany),
v o g l e r Q i n f . t u - d r e s d e n . d e

411

412 R. Pôschel, A. Semigrodskikh, and H. Vogler

1 Notions and Notation
Let N := {0 ,1 ,2 , . . . } denote the set of natural numbers and let N + := N \ {0}.

1.1. Clone theoretic notions and notation. Let T be an arbitrary set (later
we shall use only the set T of trees) and let Op (T) denote the set of all finitary
operations on T, i.e. functions of the form / : T n —• T (n £ N+). A set F C Op(T)
is called a clone if F contains all projections e" (n e N+ , i £ {1 , . . . , n}) defined by

e?(xi,...,xn) =Xi (1-11)

(for every x\,...,xn £ T) and if F is closed with respect to composition, i.e. for
every n-ary / £ F and m-ary gi,..., gn £ F the m-ary composition f(gi,..., gn)
defined by

xm)) (1.1.2)

also belongs to F, n,m £ N+. For technical reasons 0-ary operations will not be
considered in clones; they are replaced by unary constant operations, i.e., a constant
t £ T is replaced by the unary constant operation T —> T : x i—> t.

The least clone containing a given set F of operations over T will be denoted
by (F) . The projection e\ : T —> T : x > x is the identity mapping and will be
denoted simply by e. The clone (e) generated by e is the least clone: it consists
exactly of all projections.

We say that an n-ary operation / : Tn —> T preserves an m-ary relation g C Tm

(or, equivalently, that g is invariant for /) if c i , . . . , Cn 6 g implies f(ci,..., Cn) £ Q,
where

/(ci, • • • , CN) := (/ (c n , . . . ,C1„), . . . , /(Cmi, . . . ,CMN))

for m-tuples Ci = (cn ,Cmi), ...,CN- (cin,.. •, CMN) (see Fig.l).

(1.1.3)

r y
\pvinl

v y
C\ C3

\J
Cn

E Q E Q e e

S V) i - Î - ^ i m \ / (c n , . . . , c i „)

/
V ! /

f(Cl,...,Cn)
G 6

y(Cml) • • • ! <-7nn)

Figure 1: The operation / preserves the relation g

Rela.tiona.lly defined clones of tree functions . 413

The set of all operations preserving a given relation g (so-called polymorphisms)
will be denoted by

Pol £> := { / | / : Tn -> T preserves g, n G N+} . (1.1.4)

It is well-known from clone theory (but also easy to see) that Pole is always
a clone (e.g. [PosK79, 1.1.15]), moreover every clone on a finite set T can be
characterized as PolQ for some set Q of finitary relations ([PosK79, 1.2.1]), where

PolQ := p| Polg.
e€<3

For infinite T this remains true either if one considers so-called locally closed clones
or if infinitary relations are allowed. We do not go into details here and refer to
e.g. [Pos80], [PosOl].

We say that the i-th and j-th component of an m-ary relation g C T m coincide
(i,j G {1 , . . . , m}) if a,i = a,j for all elements (ai , . . . , am) £ g. A relation g is called
reduced if no two of its components coincide. A relation can always be reduced with-
out changing the set of polymorphisms: if the i-th and j-th component of g coincide
then Pole = Polg' where g' := {(ai,. . . ,aj_i ,aj+ i , . . . ,am) | (ai, . . . ,am) G e} is
obtained from g by deleting the j-th component. Thus we may consider reduced
relations only.

1.2. Trees and subtrees. This is a well-known concept in mathematics and
computer science; nevertheless we shall repeat it here in order to fix notions and
notation. Let E be a finite signature (or ranked alphabet), i.e. a finite set of symbols
such that to every symbol a £ E a rank (or arity) ra G N is assigned. Let
En := {a g E | ra = n} denote the set of all symbols of rank n (n G N). We
assume that Eo ^ 0. A tree (or ground term) over E is an expression which can be
obtained inductively by the following rules:

(0) Every <7 G Eo is a tree.

(1) If a G E r (r G N-|.) and if s i , . . . , sr are trees, then the expression cr(si, . . . , sr)
is also a tree.

If t is a tree of the form <r(.si,... ,sr) (according to (1)), then the trees s i , . . . , s r

are called maximal subtrees of t, and we write s< t if s is a maximal subtree of t.
A tree s is called subtree of a tree t, notation s < t, if s = t or if there is a finite
sequence SQ,. .. ,si of trees with

s = SQ< S I < . . . < si = t

(i.e., < is the transitive and reflexive closure of <). Note that a tree t G Eo has no
proper subtrees. As usual we write s < t if s <t and s ^ i .

From now on T will always denote the set of all trees over a fixed signature
E = (Er)rem.

414 R. Pôschel, A. Semigrodskikh, and H. Vogler

A subset I C T of trees is an order ideal (down-set) if it is closed with respect
to subtrees, i.e. if s < t and t £ I, then s £ I.

The height h(t) of a tree t is defined inductively on the structure of trees
(according to the above rules): h(t) := 0 for i £ Eo, and h(a(s\,..., s r)) :=
1 + max{ / i (s i) , . . . , h(sr)} for a £ E r (r £ N+) and si,...,sr £T. For k £ N let
Tfc denote the set of all trees in T of height < k.

1.3. Primitive recursion for tree functions. An operation / : T " —• T will
also be called tree function. Let n £ N+ and for every a £ E let ga : T n + 2 r " —> T
be an (n + 2rCT)-ary tree function. The (n + l)-ary tree function h : Tn+1 —> T
defined recursively (in its last argument) by

h(ai,... ,an,a) := ga(a\,..., a„) for a £ E0 , a i , . . . ,an £ T, (1.3.1)
h(ai,... ,an,cr(ti,... ,tr)) :=

9<J(cli, •• - ,an,ti,... , i r , / i (a i , . . . , a „ , i i) , . . . , h(ai,.. .,an,tr)) (1.3.2)
for a £ E r , r > 1, and a i,... ,an,t i,... ,tr £ T,

will be denoted by PR(ga-)cr€£; we say that h is obtained from (ga)a^T. by primitive
recursion (PR). By convention, equation 1.3.1 is considered as the special case
of 1.3.2 for r = 0.

A set F C Op(T) of tree functions is called PR-closed if PR(5CT)treE £ F
whenever ga £ F for all a £ E. For F C Op(T), by

((Fin

we shall denote the least set of tree functions which contains F and which is both, a
clone and PR-closed. The existence of {(_F)̂ R is guaranteed because the intersection
of PR-closed clones is again a PR-closed clone. Obviously, (F) C ((F))pR.

1.4 Examples, a) The least PR-closed clone is ((0))pR; by definition it must con-
tain all projections and we shall denote this clone also by ({e))̂ R. Lemma 2.4 and
Proposition 2.5 shall describe some further operations which also belong to ((e)^R.

b) Let ibase consist of all the constant tree functions constt : Tn —> T :
(ii ,...,£„) i-> t (t £ T), and all the top concatenations topCT : Tr —> T :
(i i , . . . ,tr) <r(ti,. ..,tr) (a £ E r , r e N+) . Then ((FbaseL i s t h e c l a s s PREC S

of all primitive recursive tree functions over E (cf. e.g. [EngV91, 4.6]).

We are particularly interested in the following very special form of primitive
recursion.

1.5. S-closure for tree functions. For a family {g'a)aeT, of (n + rv)-ary tree
functions g'a (cr £ E) we define

S(<?;)„6£ := PR(<?a)a6S (1.5.1)

Rela.tiona.lly defined clones of tree functions . 415

where g„ is the (n + 2rCT)-ary tree function defined by

(1.5.2)

for every a € i.e. we have in particular (for the (n + l)-ary tree function
h = s

ft(ai,... ,a„,cr(ii , . . . , i r„)) =
g<j(ai,... ,an,ti,...,tr<7, /i(ai,... ,an,ii),... ,h(ai,... ,an,tr<T))

= 9Uai>--->an'ti'--->tr<r)- (1-5.3)

Analogously to the PR-closure and the notation ((F))pR, we introduce the S-
closure of F (using the special primitive recursion S instead of PR) and let

IN

denote the least S-closed clone containing F. We call this S-closure also selection
closure because the functions ga just select and there is no real recursion (i.e. h is
not allowed to call itself recursively, see 1.3.2 and 1.5.3). By definition we have

((F% C (F l K (1.5.4)

and this inclusion is proper in general.

1.6 Remarks, a) If we write PR(g(T)a6£ (or S(g£)a6s) we assume that the oper-
ations ga (or g'a) are of arity n + 2ra (or n + r„) for some fixed n € N + .

b) Usually the definition of primitive recursion also includes the case n = 0
in 1.3. Then however the operations g„ are 0-ary constants for a G Eo (cf. 1.3.1)
which does not fit our convention not to consider 0-ary operations for clones (cf. 1.1).
Nevertheless the restriction to n > 1 is no loss of generality: In fact, let h:T —>T
be the unary tree function obtained from (1.3.1) and (1.3.2) in case n = 0 with given
constants ga € T for ra = 0 and operations ga : T2r" —> T for ra > 1. Further let
g'a : T1+2r° —> T be the operations obtained from ga by adding a fictitious variable
(at the first place), i.e. g'a := ga{el+2r",. •.,ej^r") for ra > 1, and g'a{a) := g„ for
ra = 0, a G T. Then, for h' := PR(p^) as given with 1.3, we have h = h'(e, e) and
h' = h(e2). Thus h belongs to a clone F if and only if h' does.

2 Clones Pol Q of tree functions closed under prim-
itive recursion

The following theorem is the main result of this paper. It characterizes finitary
relations g over trees with the property that the clone Pol g of tree functions is
closed with respect to primitive recursion.

2.1 Theorem. Let m € N+ and let g C Tm be a reduced relation. Then the
following conditions are equivalent:

416 R. Pôschel, A. Semigrodskikh, and H. Vogler

(i) ((Pol Q)Ir = Pol 0 ,

(ii) ((Pole%= Pole,

(iii) there exist order ideals I\,... ,Im CT such that g = I\ x • • • x Im .

2.2 Remarks. The tree functions in Pole with e as in 2.1 (iii) can easily be de-
scribed:

m
P o i e = P) Pol/ j

j=i
where Pol Ij is the set of tree functions preserving the order ideal Ij (considered
as unary relation on T), i.e. each / £ Pol Ij maps trees from Ij to trees which are
again in Ij.. By Theorem 2.1, every clone Pol Ij is PR-closed. Thus any intersection
- finite or infinite - of clones of the form Pol / for some order ideal I C T gives
a PR-closed clone. Consequently the implication (iii) = > (i) of Theorem 2.1 can
be generalized to infinitary relations g = Fljgj Ij (J being an infinite index set)
because Pole = Dje j Ij- However, the converse (i) = > (iii) does not remain
true for infinitary relations (cf. 3.3).

As mentioned in 1.1 the restriction to reduced relations is not a loss of generality,
however it is crucial for the formulation of Theorem 2.1. If g is not reduced then
it is no longer a direct product of order ideals (note I\ x h { (x i x) \ x £ / i }) .

In clone theory usually relations are even further reduced to relations without
"fictitious components". In the context of Theorem 2.1 we have: the j-th compo-
nent of g = h x • •• x Im is fictitious iff the order ideal Ij is trivial, i.e., Ij = T.
Relations which differ only in fictitious components determine the same clone Pol g.

In the remainder of this section we shall prove Theorem 2.1. Note that
2.1(i) = > (ii) is trivial because Pole C ((Polg)\ C ((Polg%R (cf. 1.5.4). We start
with the following more or less straightforward part:

Proof of 2.1 (¡ii) (i).

Let g = I\ x ••• x Im where . . . , Im C T are order ideals. Then Pole =
f l j l i Pol / j (cf. 2.2) and (iii) = > (i) of Theorem 2.1 follows from the following
lemma.

2.3 Lemma. Let I CT be an order ideal. Then ((Pol I\R = Pol I.

Proof. We have to show that Pol I is PR-closed. Let n £ N+ and, for every a € E,
let ga be an (n + 2rCT)-ary operation in Pol/ . We must show h € Pol / for the
(n-)- l)-ary operation h := P R ^ V e s , i.e., s\,... ,sn,s £ I implies

• - h(su...,sn,s)£l. (2.3.1)

Thus let s i , . . . , s„, s £ I. We show 2.3.1 for s £ Tit by induction on k:
For s = a £ So (i-e. k = 0) we have

' MSI> • • • > sn, S) = 9cT(SI, ...,sn) £ I

Rela.tiona.lly defined clones of tree functions . 417

because g„ £ Pol / by assumption and s\,..., sn £ I.
Now assume that 2.3.1 holds for every s £ Tk-i (k > 1). Let s £ Tk

be of the form s = <r(ii,... ,tr<7), ra > 1. Then ti,...,tTa £ Tk- i and we
get h(si,... ,sn,tj) £ I for j £ { 1 , . . . , 7 > } by induction hypothesis. Note that
iii • • • ,tr„ G I because I is an order ideal and a(ti,... ,tra) = s £ I by assumption.
Consequently

/ i (s i , . . . , s „ , s)

The part (ii) = > (iii) is crucial for the proof of Theorem 2.1. It is based on
Proposition 2.5 which might be of independent interest (as well as Lemma 2.4):
here we describe properties of the least S-closed clone ((e%.

2.4 Lemma. Let s,t £ T and s < t. Then there exists an operation fttS £ ((e)̂
such that ft,s{t) = s.

Proof. The case t = s is trivial (take ft,s '•= e)- Thus assume s < t.
At first we consider the case s< t, i.e. t has the form t = S(si,..., sk) with

Si = s and S £ Efc for some k > 1 and i £ { l , . . . , f c } . We construct a binary
operation h £ ((e)\ with h(t, t) = s. Define (g'^aex as follows:

will play no essential role in the following and could be chosen arbitrarily in ({e\.
Let h := S(<^)a6£ (cf. 1.5.1 and 1.3 with n = 1). Since all g'a are projections (and
therefore belong to (e)) we have h £ ({e%. Further we have

Choosing ftts := h(e, e) £ ({e)\ we have ft,s(t) = h(t,t) — s and consequently
ft,s £ ((e\ exists for s< t.

Finally, if s is not a maximal subtree of t, then there exists a chain

and as shown above for every j £ {0 ,1 , . . . , I - 1}, there exists f3j,sJ+i G ({e)\ with
fsj ,s j + i(s j) = Sj+i; thus the composition

= 5<r(si,..., Sn.ii! • • • ,tr<r,h(si,... ,sn,ti),.. .,h(s i,. ..,sn,tra)) £ I

because ga £ Pol I and every argument of ga belongs to I. •

h(t,t) = h(t,6(si,..., Sj,..., Sfe))
= 9s{t,si,... ,Si,... ,sk)
- Si = s.

s = si< ... < S I < SO = t

satisfies f(t) = s and belongs to ((e)\. •

418 R. Pôschel, A. Semigrodskikh, and H. Vogler

2.5 Proposition. For every k £ N, n,r £ N+ and every family (fbu...,br I
(bi,... ,bT) .£ T£) of n-ary operations in ([e\, there exists an (n + r)-ary oper-
ation h € {(e)^ such that for all a\,... ,an £ T and all b\,... ,br £ Tk we have

h(ai,... ,an,bi,... ,br) = fa &r(ai,... ,0«) . (2.5.1)

Proof. In order to get h we construct (by double induction and using S-closure)
auxiliary operations /ibi+1,...,6r £ ((e)\ satisfying the following statement R(k, n, r, i)
for i £ {0 ,1 , . . . , r}:

R(k,n,r,i) :

where

for every &i+i,... ,br £ Tk, there is an (n + ¿)-ary operation
hbi+i,...,br £ ((e\ such that for every a £ Tn and b i , . . . , bi £
Tk-.

,.-..,6r (a, bi, ...,bi) = fbu...,b r(a),

(/&i br | (bi,...,br)£T£) is an
arbitrary family of n-ary operations in ((e)\.

(2.5.2)

We shall use the convention that ¿¿+i, . . . , br is the empty sequence for i = r (i.e.,
hbi+i,...,br means h and g„x+1 br below will mean ga in case i = r). Therefore,
R(k,n,r,r) is nothing else than the statement of Proposition 2.5, and we are done
if we can prove

• V* € N Vn G N + Vr £ N + V(/fcl bjsatisfying (•) Vt € {0 ,1 , . . . , r} : R(k, n, r, i).
(2.5.3)

We prove 2.5.3 by induction on k.
0 Let n,r £ N + and (fbi,...,br \ (bi,...,bT) £ TQ) be a family of n-

ary operations in ((e\. Note that To = Eo. We prove R(0,n,r,i) for every i £
{0 ,1 , . . . , r } by induction on i.

i = 01 R(0, n, r, 0) trivially holds by defining

hbi,...,br •= hi,...,br € • (2.5.4)

i - 1 . Let i £ { 1 , . . . , r } and assume that i?(0, n,r,i — 1) holds, i.e., for
every bi,bi+i,...,br £ To there exists hbitbi+l,...,br £ {e))$ fulfilling 2.5.2 for every
a € T n and6i, . . . ,&t-i ST0 .
Now, let bi+1,..., br be arbitrary elements in To- For every a £ E we define the
(n + i — 1 +r f f)-ary operation g„%+ 1 , - ' b r as follows:

„bi+i,...,6r . _ J tl<r,bi+1,...,bT
• 1 on+i-\+ra

if a £ E0

otherwise
(2.5.5)

Rela.tiona.lly defined clones of tree functions . 419

All these operations are in ((e\ (for a G £o by induction hypothesis and otherwise
by definition). Then the (n + i)-ary operation hbi+li...tbr is defined by selection
closure as follows:

hbi+l,...,br :=S(9 b a i + 1 ' - ' b r) a ^ • (2-5.6)

Thus hbi+1,...tbr S ((elk> too. Moreover, condition 2.5.2 is satisfied because for every
b\,..., bi G To and a 6 Tn we have

hbi+u...,br(a,b i , . . . A) = ffb!+1 br(a,bu • • -M-i) by 2.5.6 (cf. 1.5.3)

= hbiybi+i,...,br(a,bi,.. -,&i-i) by 2.5.5
= fbl,...,br(a) by R(0,n,r,i — 1).

Thus R(0,n,r,i) holds for all n,r £ N+ and i € {0,1,. .. ,r} .
We can continue the induction on k.

Let k > 1. By induction we assume that R(k — 1 ,n',r',i') k- 1
holds for every n',r' G N + , every family {fbl:...,br, | (bi,---,br>) G of n'-
ary operations in ((e)̂ and every i' € { 0 , 1 , . , . , / } . Now, let n,r G N + and let
(/b, bT I (i>i, • • •,br) G Tjf) be a family of n-ary operations in ((e)^. We prove
R(k, n, r, i) for every ¿ G { 0 , l , . . . , r } b y induction on i.

prove R(k,n,r,i). Thus let bl+i,... ,br be arbitrary elements in Tfc. Let a G E
and consider the family Uti,...,tTa I •••>tra € Tk-1) of (n + i — l)-ary operations
given by

fH,...,tTa'-=hc(t-i,...,tr„),bi+u-,br- (2.5.7)

(Let us agree to include the case ra = 0 just by deleting all ti,... ,tr<r whenever
they appear, i.e. f := hatbi+1,...,br-) According to 2.5.7, all operations in this
family exist and belong to {(e\ by induction hypothesis R(k,n,r,i — 1) (note that
c(ii> • • • ,tr<r) G Tk for i i , . . . ,tTa G Tfc_i). Now, by induction hypothesis R(k —
1, n + i — 1, TV, ra), there exists an (n + i — 1 + ra)-ary operation g^+1< -'br g
such that

9bcri+1''br(ai,..., an+i-i,ti,.. .,tTa) = ftu...,tra (oi. • • • ,an+i-i) (2.5.8)

for every o i , . . . , an+*_i G T and ti,..., tTa G Tk-i (by our convention, it follows
from 2.5.7 and 2.5.8 that g*i+1>—br is defined for ra = 0 as in 2.5.5). Now, by S-
closure, we define the (n + z)-ary operation hbi+ 1,...,bT = S(ffb,+'' "'br)aeE as in 2.5.6.
Thus hbi+1 br S ({e)\. Moreover, let b\,..., 6,-1, h G Tk and let be of the form
bi = d{t\,... ,tTa) for some a G £, then t\,...,tra G Tk-1 and we have for every

420 R. Pôschel, A. Semigrodskikh, and H. Vogler

â £ Tn

hbi+ll...,br(à,bll. ..,bi) = g°i+l''br{â,b1,... A-i,ii, • • • ,Ua) by 2.5.6
by 2.5.8
by 2.5.7

= ft! tTa (M i , . . - , 6»— 1)
= K(tu...,tra), 6i+1,...,f>r(â, bi,..., bi-1)
= /&i,...,6r(â) by R(k,n,r,i — 1).

Thus R(k,n,r,i) also holds. Both inductions (on i and on k) are done and 2.5.3 is
proved. As mentioned before 2.5.3, this finishes the proof of Proposition 2.5. •

2.6 Remark. Prom the proofs it follows that 2.4 and 2.5 remain true if <{e\ is
substituted by ({e%>R-

Now we can proceed with the

Proof of 2.1 (ii) = > (iii).
Let g be an m-ary reduced relation (m £ N+) and ((Polg\ = Pole- We have to
show that g is of the form as indicated in 2.1(iii). For j £ {1,..., TO} let

be the set of all j-th components of g.
At first we show that every I3 is an order ideal. In fact, let s < t and t £ Ij,

then by Lemma 2.4 there exists an operation ft,s £ ({e\ C ((Polg}\ with ft,s{t) = s.
Applying ft,s to an m-tuple in g with t in its j-th component we get an m-tuple in
g with s in its j-th component, i.e. s £ Ij. Thus Ij is an order ideal.

Now we are going to show that g = Ii x • • • x Im which will finish the proof of
2.1 (ii) = > (iii) (and thus finish the proof of Theorem 2.1).

Let in £ h,---,tmm £ Im- We have to show (tn,... ,tmm) £ g. By 2.6.1
there exist elements (tij,... ,tjj,... ,tmj) £ g with tjj as j-th component (j £
{1 , . . . ,m}) , which we represent as columns of an (m x m)-matrix. If not all rows
are different then we can add some further, say r — m, columns, which we denote
by (tij,... ,tmj) £ g, j = m+ 1 , . . . ,r, such that now all rows of the corresponding
matrix A are pairwise different (this is possible because g is a reduced relation):

Let k be the maximal height of all trees Uj (i = 1 m, j = l , . . . , r) . By
Proposition 2.5 there exists a 2r-ary operation h £ {(e\ such that

Ij := {tj £ T | 3 i i , . . . ,tm : (ti , . . .,tj,. ..,tm)£g} (2.6.1)

A —
\tm i ... f, 'mm W /

h(ai,... ,ar,Ui,... ,tir) = ai (2.6.2)

Rela.tiona.lly defined clones of tree functions . 421

for every i £ {1 , . . . , m} and a i , . . . , a r £ T. In fact, in 2.5 take n = r, and let
fbu...,br = el FOR (6I> • • • A) = (tn, •••, kr), i € { 1 , . . . , M}, and arbitrary in ((E^
otherwise (e.g. f^,...,^ ei)- Consequently, the operation / defined by

/ (a i , . . . ,a r) h(ai,... , a r , a i , . . . ,ar) (2.6.3)

(i.e. / = h(e\,..., eTr, e\,..., err)) also belongs to {e\ C ((Pol g\ = Pol g.
Applying / to the matrix A row-wise we obtain (cf. 2.6.2 and 2.6.3) the m-tuple

(i n , . . . , imm); it must belong to g because all columns of A are in g and / preserves
Q. •

3 Further research and remarks
3.1. Connections between closure operators. For F C Op(T), let PR(F)
denote the set which contains F and all tree functions h = PR(p(T)(T6s with ga € F.
Further let PR n (F) := U?=1 PR^F), where PRX(F) := PR(F) and PR i + 1 (F) :=
PR(PR*(F)) (i e N+) . Then

oo
PR* F := [j PR*(F)

i= 1

is the least PR-closed set of tree functions containing F. The mapping F t—> PR* F
is a closure operator as well as F ^ (F) and F H~> By definition (cf. 1.3) we
have

(«nR) - «n,* mi* - an,
PR* « F L = ((FL ((PR* F l R = « F L .

It is still an open question how the iterations of the operators PR* or PR and (.)
behave in general. E.g. do we have

((FlR = PR*(... (PR*(PR*(F))^_) (3.1.1)
n

or ((F))pR = PR(. . . (PR(PR(F))) . . .) (3.1.2)

for a fixed finite number n of iterations of PR* or PR and (.)? Or, if the answer is
negative, for which F does this iteration stabilize after a finite number of steps?

For instance, if F = P R E C E (cf. 1.4b), then obviously {{F%,R = F. On the other
hand, if F = FBASE (cf. 1.4b), then (< F) L = (J ~ I W W = L C L I W I * ")

where (P R) N (F) and (P R *) N (F) is an abbreviation of the right side of 3.1.2
and 3.1.1, respectively. Here, in general, we really need the union over all n £ N+

(the first union reflects the GRZEGORCZYK-hierarchy).
Analogous questions arise with the closure i F \ instead of ((F)^R.

422 R. Pôschel, A. Semigrodskikh, and H. Vogler

3.2. Specialization to N. Let us specialize the signature E to the signature of the
natural numbers (N;succ, 0) with successor function n >—> succn (succn = n + 1)
and the constant 0. Then E = {succ, 0} and the set T of trees over a (cf. 1.2) can be
identified with N. Primitive recursion (as defined in 1.3) is just the usual primitive
recursion for operations on natural numbers. This case was studied in detail in,
e.g., [Pet57]. In [Sem02] Theorem 2.1 has been proved for this particular signature.
Then an order ideal in N is either a principal ideal or the whole set N. Thus
(cf. Remark 2.2), in order to describe PR-closed clones of the form Pole, o n e c a n

restrict to relations g that are the product of principal ideals Ij = {0 ,1 , . . . ,a^}
of N. Moreover, in [Sem02], it was proved that if Q is a set of finitary reduced
relations such that ((Pol<Q))pR = PolQ, then ((P o l = Pole for each relation
e £ Q. Further, the partially ordered set of clones of the form Pol Q, where Q is
as above, is isomorphic to the lattice of all subsets of N ordered by inclusion. In
addition, it was shown what happens if one considers only recursive or primitive
recursive polymorphisms instead of all possible polymorphisms.

It is still unknown how these results can be generalized to arbitrary tree func-
tions.

3.3. Generalization to infinitary relations. Theorem 2.1 shows that PR-closed
classes of tree functions characterizable by a finitary relation have a very simple
structure (cf. 2.2).

However, it was also mentioned in 2.2 that for infinitary relations g, ((Pol g))pR =
Pol e in general does not imply that g is the direct product of order ideals. To
give an example, consider the signature E = {succ, 0} as in 3.2 and the infinitary
(|N|-ary) relation g C N N defined by

e := {g £ NN | g is a unary primitive recursive function} .

Claim: Pol g is the set of all primitive recursive functions over N.
Proof of the claim:

At first recall that an operation / : N" —» N preserves g iff gi, • • • ,gn £ g implies
/(ffi, • • •, 9n) £ Q where f(gi, • • •, gn) : N —> N is the composition defined by

f(9i,---,9n){x) := f(gi(x),...,gn(x)) (3.3.1)

for x £ N; this is the obvious generalization of 1.1.3 to the infinitary case.
By definition, the composition f(gi, • • •, gn) of primitive recursive functions

/, <71,..., gn is again primitive recursive. Thus every primitive recursive / : N" —> N
preserves g, i.e., Pole contains the set of all primitive recursive functions on N.

Conversely, every / £ Pole is primitive recursive.
Indeed, let / £ Pole be unary, then / (e) 6 g because e £ g; thus f = f{e) is

also primitive recursive.
Now suppose that / £ Pole is n-ary, where n > 1. In this case, we use the

fact (see, for example, [Pet57]) that there exist unary primitive recursive functions
gi,g2 and a binary primitive recursive function h such that g\(h(x\,x2)) = x\ and

Rela.tiona.lly defined clones of tree functions . 423

g2(h(x1}x2)) = x2 for all xi,x2 £ N. Now define the functions

c2(x\,x2) := h(xi,x2), d+i(xi,... ,xi+1) := h(ci(xi,... , xi),x i +1) for i > 1,
h(x) := 9i(x), lj+i(x) := gi(lj(x)) for j £ N + ,
ri(x) := g2(x), rj+1{x) := g2{lj(x)) for j £ N+.

Clearly, the functions Cj+1, lj, and rj are primitive recursive for j £ N+ . It can
easily be checked that

r j (c i (xi , . . . , i i)) = Xi-j+i for j e N + and i > j, (3.3.2)
lj(cj+i(xi,...,xj+1))=xi f o r j e N + . (3.3.3)

Since / S Polg and in_i ,r-n_i ,r„_2, . . . e g we have

9 •= f(ln-i,rn-i,rn-2, • • • , r i) €

i.e., g is primitive recursive. Using 3.3.2 and 3.3.3, we get f(xi,... ,xn) =
g(cn(xi,..., xn)). Hence / is primitive recursive because it is a composition of
the primitive recursive functions g and c„. •

Prom the above claim we know ((Pol g))pR = Pol g. On the other hand, g is not
the direct product of order ideals of N.

Thus g is a counterexample to the straightforward generalization of Theorem 2.1
to infinitary relations and there arises the problem how this theorem could be
extended appropriately to infinitary relations.

3.4. C-closed clones. A clone F of tree functions shall be called C-closed if it
is PR-closed (i.e. {{F\R = F) and closed under iteration. The latter means (cf.
e.g. [Hup78]) that if / , h,gi,... ,gn are n-ary tree functions in F then every tree
function k : Tn —> T, which is definable by a program of the following form for
some t £ T, must also belong to F.

WHILE f(xi,...,xn) j=t
DO x i : = 0 i (x i , . . . , x n) ;

^n - = 9n{xi j • • •) xn)
OD;

OUTPUT h(x 1 , . . . , I „)

Note that here we consider only total operations k defined by iteration (while
in [Hup78] also partial operations are allowed). The C-closure is stronger than the
PR-closure, e.g., let ((F))c denote the smallest C-closed clone containing F, then,
as shown in [Hup78], ((Fbase))c is the set of all computable tree functions (for ¿"base
see 1.4b).

Nevertheless, as it was pointed out by the referee, clones of the form Pol g with
g as in Theorem 2.1 (iii) are C-closed. Thus Theorem 2.1 can be extended by an
additional equivalent condition

424 R. Pôschel, A. Semigrodskikh, and H. Vogler

(iv) ({Pol Q))c = Pol 0 .

Obviously ((F)\ C ((F))̂ r C ((F))C . It is an open question to characterize the
least and (if it exists) the largest closure which agrees with ((F)\,R (or equivalently
with IF)\, {(F))C) for clones of the form Polp- More precisely, let K. be the class
of all closure operators K : 5p(Op(T)) —> <p(Op(T)) on tree functions such that
K{Pole) = ((PolQ\r for all finitary relations Q C Tm (m e N+). Then

K0:F~ f| K(F)
KeK.

is the least closure operator in K., but it is not clear how it could be characterized
internally. Moreover, does there exist a largest closure operator in K.1

3.5. Further generalizations. The preservation (or invariance) property (cf. 1.1)
constitutes a Galois connection between sets of operations and relations. There
are many generalizations and modifications of this Galois connection changing the
operations and/or relations under consideration (see e.g. [PösOl]). A systematic
investigation of operations, their invariant relations and various closures, which are
of special interest for computer science, would be desirable. In connection with
tree functions and primitive recursion the class of partial tree functions may be
of particular interest. • Then, the C-closure (cf. 3.4) might play the role of the PR-
closure in Theorem 2.1. However note that the C-closure still can be extended
further: the condition that the operation / used in the iteration program in 3.4
belongs to F can be dropped (without changing the property that k preserves Q
whenever h, gi,... ,gn do).

Acknowledgements. The authors thank the referee for valuable hints and re-
marks, e.g. for drawing our attention to the S-closure and C-closure (discussed
in 1.5 and 3.4).

References
[EngV91] J. Engelfriet and H. Vogler. Modular tree transducers. Theoretical Com-

puter Science 78 (1991), 267-303.

[FÜ1HVV93] Z. Fülöp, F. Herrmann, S. Vágvölgyi, and H. Vogler. Tree transducers
. with external functions. Theoret. Comput. Sci. 108 (1993), 185-236.

[Hup78] Ü.L. Hupbach. Rekursive Funktionen in mehrsortigen Peano-Algebren.
EIK, 14 (1978), 491-506.

[Kla84] H.A. Klaeren. A constructive method for abstract algebraic software speci-
fication. Theoret. Comput. Sci. 30 (1984), 139-204.

[Pét57] R. Péter. Rekursive Funktionen. Akademie-Verlag 1957.

Rela.tiona.lly defined clones of tree functions . 425

[Pös80] R. Pöschel. A general Galois theory for operations and relations and con-
crete characterization of related algebraic structures. Report R-01/80, Zen-
tralinstitut für Mathematik und Mechanik, Akademie der Wissenschaften
der DDR, Berlin, 1980. (with German and Russian summaries), 101 pp.

[PösOl] R. Pöschel. Galois connections for operations and relations. Technical
Report MATH-AL-8-2001, TU Dresden, October 2001. (29 pages).

[PösK79] R. Pöschel and L.A. Kaluznin. Funktionen- und Relationenalgebren.
Deutscher Verlag der Wissenschaften, Berlin, 1979. Birkhäuser Verlag
Basel, Math. Reihe Bd. 67, 1979.

[Sem02] A.P. Semigrodskikh. On properties preserved by primitive recursion. Tech-
nical Report MATH-AL-12-2002, TU Dresden, August 2002. (22 pages).

Received December, 2002

Acta Cybernetica 16 (2004) 427-441.

Notes on the properties of dynamic programming
used in direct load control

Isto Aho*

Abstract
We analyze a dynamic programming (DP) solution for cutting overload in

•electricity consumption. We axe able to considerably improve the earlier DP
algorithms. Our improvements make the method practical so that it can be
used more often or, alternatively, new state variables can be added into the
state space to make the results more accurate.

1 Introduction
The shortage of electricity may cause a supplier to use direct load control (DLC);
the supplier may turn off the electricity from some of its customers or may start
generators to meet the demand. The goal is to minimize the losses by buying
the minimum amount of electricity from other suppliers to cover the demand after
DLC. A typical example of a control group is a residential appliance with electricity
heaters or air conditioners. When the supplier controls the devices, a consumption
peak called payback appears after the control period when the devices go back to
their normal state [1, 17].

Different solution methods for DLC include, e.g., DP [1, 7, 8, 18], linear pro-
gramming (LP) [12, 14], heuristics [1, 3], enumerative methods [8], and hybrids of
LP and DP [13]. Objectives include load reduction minimization [7, 8, 18], peak
load minimization [12, 13], production cost minimization [8, 18], and profit maxi-
mization [14]. Some of the decisions can be left to the customers [9]. DLC is often
combined with unit commitment and economic dispatch, and the applied methods
include, e.g., DP [4, 5, 6, 11] and evolutionary strategies [10]. See also [19].

Our method is related to that of [1, 7, 8, 14]. The present work improves
the results of [1] by focusing on DP. In our model, (small) electricity suppliers
group their customers based on the payback behavior: the payback shapes and
other properties to be presented are for groups. Thus, the suppliers end up with
a small number of controllable and prioritized groups. Our objective is between
load reduction minimization and peak load minimization, and it differs from the
objectives presented in the literature. We assume that the suppliers mainly buy

*Dept. of Computer and Information Sciences, University of Tampere, Tampere, Finland,
Isto.AhoSuta.fi

427

428 Isto Aho

the electricity they distribute. The above assumptions are realistic in Finland and
in some other European countries with small suppliers.

Purchase transactions of electricity and own production give optimum level to
be resold at each hour, while load over the optimum level has high price. If demand
is higher than our predefined level, we want to cut (expensive) "over loads". We
also use purchasing and reselling prices (time-of-use rates). Our solution can use
different objectives and, e.g., energy storages of [15, 16], without major modifica-
tions.

Sections 2 and 3 describe the model, optimization problem and the DP solution.
The main results concern the "wait states" and "alternative states" (state variables)
needed in DP. We build up a hierarchy of DP solutions so that it is possible to choose
between fast and inaccurate and slow but more accurate methods. Section 4 shows
how the number of wait states can be decreased to be about half of the number
used in [1]. State space can also be decreased with the multi-pass DP of [18], but
then one should be able to relax some constraints. Section 4 includes also the use
a fourth state variable (alternative states). Tests are reported in Section 5.

2 Control, payback, restrictions and goal function
The model given below is a slight simplification of the model used in [1]. Table 1
contains relevant symbols used in this work.

An interval [a, 6] is the set a, a + 1 , . . . , b (a < b) of integers. The length of an
interval [a, fc] is b — a + 1. A clipping situation s is a vector so, s i . . . , syv (N >
0) of reals representing the difference between electricity demand, and electricity
production and purchases in time interval [0,iV]. The domain [0, N] is called the
optimization interval and values Si are called either overload or underload. Overload
represents a situation where the demand is higher than combined production and

Table 1: Used symbols.

Clipping situation s = [so,Si , . . . , SN] Set of controls C
Prices P = [P0.Pi, • - • Control capacity cc

Revenue r = [ro ,r i , . . . rjv] Control length Cl

Length of hour H' Resting time cr

Time.interval or control [a,b] Minimum control length Cm
Loss of incomes R(s) Maximum control length CM
Optimal control plan R*(s) Maximum control times CT

Dynamic forward recursion R'(s, S',k + 1) Control time c 4

Stage change K'(s,S',S,k + l) Length of payback Pl

Wait state W Amount of payback" pc
Alternative state A Impact of a control /([o,6],8)(fe)

/ '(C,s) State (3 variable) S={Ct,W,Cl) Impacts of all controls
/([o,6],8)(fe)
/ '(C,s)

State (4 variable) S=(Ct,A,W,C')

"Amount of payback corresponds to capacity explaining the c-superscript.

Notes on the properties of dynamic programming used in direct load control 429

electricity purchases (si > 0), and underload represents a situation where combined
production and purchases of electricity is above the level of consumption (si < 0).
The element i of optimization interval [0,iV] is called a time point. The phrase
"time point i" is also used for the interval [i, ¿].

A time point i with overload has a positive real pi called the price (buying
price of electricity). Similarly, a time point i with underload has a positive real
rj, the revenue (selling price of electricity). The overload interval is an interval
[a, 6] C [0,N] with overload at every time point i G [a, 6]. The clipping situation is
partitioned into hours 0 = ai, a2,. .., a n + i = N, of equal length, i.e., a<+1 — ai —
a,i — a,i-i (2 < i < n). The length ai+i — a, of an hour is denoted by hl. Hour
i refers to the interval [ai,aj+i — 1]. Overloads (underloads), revenues and prices
do not change during an hour, because of the electricity trading system. Thus, we
have Sj = Sj+i, pj = Pj+i, and rj = r J + i , where j € [aj-i, a» — 1] (2 < i < n).

The total loss is

El —Pi Si, if Si > 0,
K(i,Si), where tf(Mi) = ^ ' (1)

ie[0)w] I r*Si> 0therwise'
Note that K(i,Si) < 0. If there is underload, we lose income (revenue) and if
there is overload, we have to pay some extra. We count the money lost, so its best
possible value is 0.

A group is used to decrease the overload with a control made for interval [a, b]
by turning electricity off (an auxiliary generator corresponds to a group). The
controlling capacity of a group, denoted by C°, is the amount the group can decrease
the load in an hour. The hours [ai,a, ai+i , . . . a3], where a» < a < ai+i
and aj-i < b < aj (and a < b), are affected by a control. Control amount is the
product of the controlling capacity Cc and of the control length b — a -I-1.

Function Pl : N —» N maps the control length b — a+1 to the length of a payback
and function Pc : 2n x N - t l describes the amount of the payback of control [a, b]
at time i. We always have Pc([a, 6], i) > 0, where i € [6 + 1, b + Pl(b — a + 1)], and
otherwise Pc([a, 6],i) = 0. Further, "in practice" we have

Pc([a,b},k) <Cc(b-a + 1)
k£[b+l,b+Pl(.b-a+l)]

meaning that a payback does not exceed the control amount.
Next we show the impact of a control [a, b] and its payback to clipping situation

s as a function I (functions I\ and used'in I are defined below). The hours to
be affected are [a*,a, 6, aj,b + Pl(b — a + 1), a{\. By function

'Sk, if 0 < k < ai, or ai<k<m,
sk + h(\a,b]){k), if Oi < fc < aj_i,
Sk + {h +I2)([a,&])(*:), if flj-i <k <aj:

sk + h([a, b})(k), if aj <k < ai

7([a,6],s)(fc)= <

430 Isto Aho

(0 < k < m) we obtain the control amount of a control [a, b] into the clipping
situation. The first line leaves the unaffected hours as they axe and the second line
calculates the effects of control. The third line is for both the control and payback
calculation, and the fourth line calculates the effects of payback. By /([a, 6],s) we
mean the new clipping situation obtained after control [a, 6].

The effects of control part having no payback are calculated with Ii :

h{\a,b])(k) =
-Cc(ai+1 - 1 - a 4-1)/hl, if aj < k < a i + i ,
—Cc, if aj+i < k < aj_i ,
—Cc(b - aj-\)/hl, if a.j-i < k < a,j.

(3)

The second line is for the hours between the starting and stopping hours, if any.
The first and the third lines handle the hours where the control starts and stops.
These hours may have partial control (in contrast to a full control lasting the whole
hour). Controls decrease the overload. Paybacks are calculated with /2:

I2([a,b])(k)

£
*:'=6+i
ak'+1-
£

Pc([a,b),k')
hl

1 Pc([a,b],k")
hl

k"=ak,

Pc([a,b),k')

k k' =ai _ 1 hl

if a.j-1 < k < a,j,

if j < k' < I - 1
and afc< < k < a,k'+1,

if a;_ 1 < k
<b + Pl(b — a + 1).

(4)

The payback starts in the first line, and in the third line we calculate the last
moments having payback. (Both may involve partial hours.) The second line
calculates the payback for hours, where each time point will get some payback.
The payback increases the overload.

It would simplify formulas (2)-(4) a bit if we were not to hourly even out the
effects. Another alternative is to let the overloads and underloads vary within the
hours and even out the loads when calculating the results. If the control starts and
stops in the same hour, we cannot directly apply (2). In this situation we calculate
the effects for the first hour with

aj-l
sfc - Cc(b - a + l)/hl + Pc(\a,b},k')/hl, where Oj_i < k < ah

k'=b+l
(5)

and the rest of the payback is calculated with the second line of /2- If the payback
starts and stops in the same hour, we have to make a correction similar to (5).
Energy storage capability is similar to payback: energy storing appears before
control while payback appears after the control.

Figure 1 shows two examples of a control. The vertical lines indicate hours.
The dotted line is a clipping situation without control and the straight line is a
clipping situation with control. The left picture shows the advantage of a control:
payback can "move" the overload to the next hour where the overload is cheaper.

Notes on the properties of dynamic programming used in direct load control 431

The combined effect of all controls C can be calculated recursively by the func-
tion

if C = 0. (6)

When all the effects of controls have been calculated, we can use (1) to find out the
value of the new clipping situation.

Next we look at the restrictions. First, the controls must be separate such that
for all [a, b], [c, d) e C we have

[a, 6] ^ [c, d\ =*> [a, 6] n [c, d] = 0. (7)

Further, during resting time it is not allowed to start a new control. Function
Cr : N —> N is increasing and it maps the length of a control to the length of a
resting time. So, for all [a, b], [c, d] e C we have

[o, 6] n [c, d] = 0=> [6 + l,& + C r (6 - a + l)]n[c,<i] = 0. (8)

Note that a new control can be started even if the payback still occurs, provided
that the resting time does not overlap with the new control. Usually, the resting
time is used to prevent a new control to start in the beginning of the payback, when
the need for extra electricity is the largest. If we start a new control at the end of
a payback, the change in the payback of the new control is so small that it is not
usually taken into account.

We also need the minimum and maximum control times Cm and CM, respec-
tively, which bound the length of control as

C m <b — a + 1 < CM. (9)

Sometimes we also restrict the number of control times b j€ C 1 by CT, a positive
integer.

We can suppose that at every time point k the price factor pk is (much) larger
than the revenue rk- By making controls we can affect the clipping situation, so
the optimization problem can be given in the form

N
m a x ^ i ? (f c , / (C , s)) (10)

C k=0

with restrictions (7)-(9).

432 Isto Aho

3 A DP solution
The problem (10) can be solved with DP by using two state variables corresponding
to the "control times and control length [1, 8, 7, 19]. The tests in [1] indicated that
it is possible to add at least one state variable to improve the results. In this work
we use the state variables control time C ' , wait state W and control length Cl.
As a result, we have a slower but more accurate system than those with two state
variables. The state variables are defined in finite integer domain.

In the state space we need the control length C', so that DP can form the
optimal control length and at the same time fulfill the restriction (9). In addition
to control length, Cl also contains the resting time. Without the control times, DP
complying with conditions (7)-(9) would find only one control. With these three
state variables we have one state of stage k € [0, N] as a triple (C , W, Cl)(k). The
phrase "stage k" refers to a time point. A system in state (Cl, W, Cl) is defined
to be the C'th control of length Cl with W time points delay before its start.
Our tests demonstrate that the three variable solution does not give the optimal
solution, if the the group has payback (see Section 5).

In practice we have to determine upper bound for the number of wait states W.
Theorem 2 gives an upper bound for W when the group does not have payback. If
the group does have payback, we assume that W can have hl — 1 (hl is the length
of an hour) different values. We also test other possibilities, see Section 5.

We denote S = (C , W, Cl) and S' = {C'\ W', C'1). The variables with primes
are "new" ones and the plain variables are "old", when we form the connections
between the "new" stage k + 1 and the "old" stage k. Function

R"{s,S',S,k + l) =

0, when (14)—(17),
-P', when (18),
£(/ ([«-C' .JfeJ.s)) -¿2(8) , when (19), U J

—oo, otherwise,

gives the change in the value, when moving from state (C\ W, Cl) of stage k into
state (C 4 , W', C'1) of stage k + 1. The first line is used when the value does not
change. The second line is used, when we start a new control and the third line
is applied, when we make a decision about the best control. The cost of making
a control is denoted by P'. The last line is used with every other values of the
variables S and S'\ They are impossible since they do not have any reasonable real
world interpretation.

The dynamic forward recursion equation is

R'(s, S', k + 1) = max. (R'(s, S, k) + R"{s, S', S,k + 1)) (12)

and

« ' (M C ' ^ . c ') , o) = (^ - t n C ' = H ' = C ' = 0 ' (13) I —oo, otherwise.

Notes on the properties of dynamic programming used in direct load control 433

wait state 1 \
wait state 3

wait state 5
~ ~~ \
_ __ \
\ v -

\
v -

wait
state 1

wait
state 2

wait
state 3

wait
state 4

control length 0

control length 2

control length 4
resting state 1
resting state 2

wait
state 1
on control
time 0

wait
state 1
on some
other control
time

Figure 2: The structure of the state space. Alternative states are similar to control
times, except that they do not choose the best control plan available.

When

C't = Ct + 1, W' = C'l= 0, 0 < W < hl — 2, , v
and Cr(Cm) + CM-1 <Cl <Cr(CM) + CM-1, U J

the control at stage k and in state (Cl, W, Cl) has stopped, which in turn increases
the amount of control times by one (C'1 = C4 +1) . The next control starts in state
(C 4 ,0 ,0) at stage k + 1. We add CM + 1 both for minimum and maximum resting
times, because Cl indexes the control length and the resting time (see Figure 2),
and because the states corresponding to the resting time are located next to the
control lengths (i.e., after state CM — 1). Note, that we restrict the number of wait
states by hl — 2 (wait states can get h.1 — 1 different values).

Moreover, it is possible that "old" optimal plan at stage k does not change (or
be better) when moving into stage k + 1, and so

C'4 = C\ W' = C'1 = 0, and W = Cl = 0. (15)

This is the only case with conditions (14) and (19), where DP (recursion formula
(12)) can make decisions about the path. If two paths give the same result, DP
(12) chooses the one with a later control. This does not have any impact on the
result, but in practice we usually want to do the controls as late as possible.

Figure 2 shows the state structure. Conditions (14) and (15) are shown on the
left. There we have several states, from which we choose the maximum. When

C"4 = C\ W' = W +1, and C'1 = Cl =0, (16)

we "move some information from the past" to new stage k+1. With this information
we can check what result can be achieved, if we choose the best path W stages ago
instead of some other control plan with the last control started in the interval

434 Isto Aho

[A; — W,k]. Figure 2 shows this in the middle, where a control time is depicted.
When

C'1 = C\ W' = W, C'1 =Cl + 1, and (Cl ± 1, C'1 ± CM + 1), (17)

we increase the control length (the control started Cl time points ago). When

C't = Ct W' = Wf a n (i i = c'1 =Cl +1, (18)

a new control starts. In this situation we add the cost of control P' to the result.
Finally, when

c'* = Cl W' = W, C'1 = CM + 1, and Cm <Cl < CM, (19)

we can calculate the impact of a legal control on a clipping situation. Figure 2
shows conditions (17)-(19) in the right.

For each state (Cl,W,Cl) and for each stage fc > 0, we save the connection
pointing to some state of the previous stage. The connections form a path. When
we have the values

B!{s,{Ct,W,Cl),N)

with appropriate values in Cl, W and Cl, we can form the control plan C by
traversing the path formed by the connections. The path is optimal with respect
to the state space used (but not with respect to the problem). Note that functions
R' and R" in equations (11)—(13) comply with the conditions (7)-(9).

4 The properties of the state space
Next we study the properties of the dynamic recursion formula (12)—(13). Consider
stage i. A local control for state (C l + 1,0,0) is a control formed at control time
C* + 1, stopped at stage j > i + Cr (C m) , and using the control plan formed at
stage i for state (C^OjO). Stages fc > i do not belong to the local control, provided
that we do not use the control plan of state (C t ,0,0)(i) at stage k. This means
that the wait states are not considered when forming a local control.

In the next theorem we suppose that all references to wait states have been
omitted from the conditions (14), (15), (18) and (19).

Theorem 1. State space (Cl, Cl) finds, for each stage i, the best local control
following stage i.

Proof. Consider the controls starting after stage i from state (Cl, 0) and using con-
trol plan C determined by i and (Cl, 0). The conditions (14) and (15) determine the
best control for state (Cf + l ,0) (j) , according to the equation (12). The condition
(14) gives the maximum because of the conditions (18) and (19). •

Corollary 1. State (1,0,0)(JV) gives the best control plan having one control.

Notes on the properties of dynamic programming used in direct load control 435

Note that the length and the amount of payback do not have any consequences
in the case of Theorem 1. State space (C l ,C l) gives sub-optimal results [1], which
can be improved with wait states (still being sub-optimal).

Let Ci, C j + i , . . . , CQ be the control plans of the control time Cl and the stages
(time points) i, i + 1 , . . . , a, respectively, i being the first time point of an hour. In
the next theorem we show that it is enough to choose between the control plans
Ci, Cj+i, • • •, C 0 , when forming a control [a,b]. This refers to the situation in
condition (14) of DP (12), where we check, how well the control plans of states
(C4, 0,0)(i), (C4,0,0)(i + 1) , . . . , (C4,0,0)(a) work with the control starting at time
point a.

Intuitively, the next theorem is based on the property that if the last control of
some control plan stops with resting time in the "previous hour", it will not have
any impact on the controls in the "present hour".

Theorem 2. Suppose there is no payback. Suppose further that we start a new
control from stage a for control time Ct, which will stop at stage b locally maxi-
mizing the control plan C 0 . Let i be the first moment of the hour containing a.
Now it is enough to choose (with the wait states) from the set of control plans
Ci, C i+ i , . . . , C a , when forming a new control [a, 6].

Proof. We show that it is not necessary to reach time points earlier than the start
of the present hour. Consider situations where it is possible to choose between
control plan C i - n of time point i — n (n > 1), and control plans Cj, C j + i , . . . , C a ,
when forming [a, 6]. Since DP (12) chooses always the maximum, the result of Cj
does not decrease when j increases. Thus, the result of Cj is at least that of Cj_n .
If we choose some of the control plans Ci_T l , . . . , C;_i to be used with a control
that starts at a, we obtain at least as good result with the control plan Cj. •

Note that the absence of payback and the fact that the resting time is coded
into the state space are crucial here. It follows from Theorem 2 that we need one
wait state at the first time point of an hour, two at the second time point and
finally hl — 1 at the last time point of an hour (hl is the length of an hour). In
other words, we need on the average (hl — l) /2 wait states at each time point. (In
[1] we used hl — 1 wait states at each time point.)

In general, the state space (C4, W, Cl) does not achieve the optimal result when
the length of payback is non-zero (a sample case is given in Section 5). We need at
least one more state variable to be able to form a better path [2, pp. 30-34]. With
variable A we check the non-maximum paths according to (12) for the three state
variable system.

A local alternative of stage i is a control which stops at the stage i including the
resting time and which is not chosen into the control plan. A three variable system
chooses the best alternative among several, as shown in the left side of Figure 2.
We set this to be the alternative state one. In the alternative state two, we choose
the second best path from the control time C4 for the first state of control time
C4 +1 . The third alternative state uses the third best path found so far and so on.

436 Isto Aho

Alternative states can be easily implemented. When looking for the best path,
we can cater the required amount of paths to find the Ath path. Moreover, the
solution (a path) given by the condition (15) has to be checked when we are looking
for the number of the best paths. The starting configuration (13) and the transition
conditions (14)-(19) work with alternative states without major modifications. The
initial solution is calculated only for the first alternative state and the conditions
(14)-(19) work inside an alternative state just as in the case of the three variable
system.

5 Tests
We first checked that Theorem 2 gives twice as fast method as the old DP. After
that, we wanted to see whether paybacks affect the solutions given by the new three
state variable DP. When we saw that paybacks do affect the results, we tried to
improve the accuracy by increasing the number of wait states.

Intuitively, the wait states starting at point a can only "look up" that far (to
point a) later on at the moment b. So if a is the beginning of an hour, we "do not
see" into the previous hour at moment b and cannot make a choice between earlier
control plans. When there is no payback, the number of wait states equaling to the
number of time points after a start of an hour is enough, because a control finished
in the previous hour does not affect the present hour to be cut. However, when we
are using payback, we need to be able to look further into the previous hours in
order to increase the accuracy. By adding c wait states, we directly reach earlier
moments. We are tempted to think that increasing c will improve the solution.
Our tests, however, show that while this is mostly true, there are exceptions.

In the tests we used a group shown in the upper left corner in Figure 3. We
tested the group with 5 different clipping situations. Tests 1-4 could be clipping
situations occurring in reality. They are similarly shaped and contain "morning
and afternoon" consumption peaks. The shapes are at different levels giving tests

Figure 3: Payback used in the tests and the test cases.

Notes on the properties of dynamic programming used in direct load control 437

seconds
50 test 3

40 test 5
test 4 30--
test 1

20
test 2

10

3 6 9 # c
Figure 4: Running times.

of different difficulty. Test 5 is artificial. When load curve is above 0, we have
overload that should be cut off. One tick stands for 1 MW. (Horizontal axis are for
time.)

Each hour is discretized into twelve time points. The group had 1.2 MW control
capacity (i.e., 0.1 for five minutes). The payback is two hours long, the minimum
control length is 30 minutes and the maximum control length is one hour. One
MW overload costs —99 000 and underload —900. Resting time is 10 minutes.

Figure 4 contains running times (in seconds) for the old DP solution and for
DPs with c = 0,1,2,3,5 and 11 (horizontal axis). Moreover, hl = 12. We see that
the running times increase almost linearly on the number of waits states. Table 2
contains the results for the tests used in Figure 3. Here we see that, in general, the
results improve if the number of wait states is increased.

In the second test, however, we see that increasing the number of wait states
has decreased the result between DPs with c = 3 and c = 5 (a locally better
solution is worse). This somewhat non-intuitive result follows from the fact that
our DP solutions do not fulfill the optimality principle usually stated for dynamic
programming solutions [2, p. 16]. Reason for this is that we cannot guarantee that
optimal solution at stage i entails optimal solution for the rest of the case. Payback
may affect later hours and decisions. This information should be available at the
moment when we are deciding the length of a control.

We did not use any alternative states in the test series reported in Table 2 and

Table 2: Solutions without alternative states.
Test old DP c = 0 c = l c = 3 c= 5 c = l l
1. -144478 -144478 -144 478 -144 478 -144 478 -144478
2. -15603 -15662 -15662 -15662 -15778 -15603
3. -368665 -371296 -370238 -368665 -368665 -368665
4. -174490 -175668 -175668 -175668 -175668 -174490
5. -9860 -9860 -9860 -9860 -9860 -9860

438 Isto Aho

Table 3: The best solutions with alternative states.
Test old DP c = 0 c = 1 c = 3 c = 5 c = 11
1. -144 478 -144 478 -144 478 -144 478 —144 478 -144 478
2. -15603 -15662 -15662 - 15 487 —15 487 -15 487
3. -368373 -369069 -368 046 -368 162 -368278 -368 373
4. -174 490 -175668 -175 543 -174 398 -174 398 -174 490
5. -8956 -8336 - 8 351 -8186 - 7 742 -7538

Figure 4. We run the same test series using 2, 5, 10 and 15 alternative states.
Table 3 contains the best solutions found among all the test series. Results were
improved in most of the cases, sometimes over 10%.

Test 5 informatively demonstrates how results improve as the number of wait
states or alternative states (or both) increases. The results and running times are
shown in Figures 5 and 6. We also tried DPs with 30 and 100 alternative states. DP
with 15 alternative states gives —8336, with 30 states —7872, and with 100 states
—7214, which is better than the solution given by 15 alternative and 11 additional
wait states (see Table 3). Our conclusion is that a clipping situation with many
overload intervals most likely benefits from the use of alternative states.

We also studied how alternative states and wait states together improve the
results and how they affect the running times. The left hand side of Figure 5
contains the results for different alternative state amounts (1, 2, 5, 10 and 15). As
the number of wait states is increased, the results improve in general. There are
exceptions where few wait states do worse than DP with c = 0 (see lines for A5
and A15). The number of additional wait states used is irrelevant for this instance,
when we used only one alternative state.

. On the right side the same data is plotted for five different additional wait
state amounts as well as for the old DP system. We conclude that the number
of alternative states is much more crucial for the results than the number of wait
states. Alternative states also improve the results of DP system with fixed amount

2 4 6 8 10 12
Figure 5: Wait and alternative states, results for test 5.

Notes on the properties of dynamic programming used in direct load control 439

Figure 6: Wait and alternative states, running times for test 5.

of wait states (in old DP c — hl — 1).
Figure 6 contains the running times for test 5. Execution decelerates almost

linearly as the number of alternative or wait states is increased. The number of
wait states in one hour is Yl'l^o (c + (a m ° d h1)) (where c = 0 , . . . , hl — 1 and a
is a moment). Hence, the increase of c by one gives hl — 1 additional wait states
for one hour. This is proportionally less than the increase brought by the increase
of the number of alternative states by one, which is the number of used wait states
in one hour. This explains why the increase of the number of alternative states
decelerates more the running times than the increase of the number of wait states.

6 Conclusions
In this work we have analyzed the properties of the state space of a dynamic
programming problem arising in direct load control, and quicker optimization al-
gorithms are formed without sacrificing the accuracy of the results when payback
is not used. Moreover, we have found practical ways to improve the results by
increasing the state space when payback is used. We have described (sub-optimal)
solutions for three and four state variables. If the result accuracy is not crucial,
one can drop wait states away, arriving to a faster two state variable solution of [8].

There are still open problems concerning the properties of state variable Cl.
They seem to behave in a way that enables us to reduce the number of states
used (for details, see [1]). Moreover, we conjecture that the control length Cl has
properties, by which we can further speed up the algorithms.

If there is enough time, it is possible to add a new state variable, called alterna-
tive state. With four state variables we achieve even better results, as is shown in
our tests. Most of the time, additional wait states as well as additional alternative
states improve the results. Hence, one can choose between fast inaccurate, and
accurate but slow solutions. Similar trade can be made between two, three and
four variable state spaces. The alternative states seem to improve the results also
in the cases occurring in production systems.

440 Isto Aho

Acknowledgment
The author is grateful to Erkki Màkinen for his time and comments and to an
anonymous referee whose valuable comments improved the quality of this work.

References
[1] Isto Aho, Harri Klapuri, Jukka Saarinen, and Erkki Màkinen. Optimal load

clipping with time of use rates. International Journal of Electrical Power &
Energy Systems, 20(4):269-280, May 1998.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 1996.

[3] R. Bhatnagar, J. Latimer, L.J. Hamant, A.A. Garcia, G. Gregg, and E. Chan.
On-line load control dispatch at Florida Power & Light. IEEE Transactions
on Power Systems, 3(3):1237-1243, August 1988.

[4] R. Bhatnagar and S. Rahman. Dispatch of direct load control for fuel cost min-
imization. IEEE Transactions on Power Systems, PWRS-1(4):96-102, Novem-
ber 1986.

[5] K. Bhattacharyya and M.L. Crow. A fuzzy logic based approach to direct load
control. IEEE Transactions on Power Systems, 11(2):708-714, May 1996.

[6] Douglas W. Caves and Joseph A. Herriges. Optimal dispatch of interruptible
and curtailable service options. Operations Research, 40(1):104-112, January-
February 1992.

[7] Wen-Chen Chu, Bin-Kwie Chen, and Chun-Kuei Fu. Scheduling of direct
load control to minimize load reduction for a utility suffering from generation

. shortage. IEEE Transactions on Power Systems, 8(4):1525-1530, November
1993.

[8] Arthur I. Cohen and Connie C. Wang. An optimization method for load
management scheduling. IEEE Transactions on Power Systems, 3(2):612-618,
May 1988.

[9] I.M. El-Amin, A.R. Al-Ali, and M.A. Suhail. Direct load control using a
programmable logic controller. Electric Power Systems Research, 52(3):211-
216, 1999.

[10] A.J. Gaul, E. Handschin, W. Hoffmann, and C. Lehmkóster. Establishing a
rule base for a hybrid es/xps approach to load management. IEEE Transac-
tions on Power Systems, 13(l):86-93, February 1998.

[11] Yuan-Yih Hsu and Chung-Ching Su. Dispatch of direct load control using
dynamic programming. IEEE Transactions on Power Systems, 6(3):1056-
1061, August 1991.

Notes on the properties of dynamic programming used in direct load control 441

[12] C.N. Kurucz, D. Brandt, and S. Sim. A linear programming model for reducing
system peak through customer load control programs. IEEE Transactions on
Power Systems, 11(4):1817-1824, November 1996.

[13] Jean-Charles Laurent, Guy Desaulniers, Roland P. Malhamé, and François
Soumis. A column generation method for optimal load management via control
of electric water heaters. IEEE Transactions on Power Systems, 10(3):1389-
1400, August 1995.

[14] Kah-Hoe Ng and Gerald B. Sheblé. Direct load control — a profit-based
load management using linear programming. IEEE Transactions on Power
Systems, 13(2):688-695, May 1998.

[15] B. Rautenbach and I.E. Lane. The multi-objective controller: a novel approach
to domestic hot water load control. IEEE Transactions on Power Systems,
11(4):1832-1837, November 1996.

[16] Paresh Rupanagunta, Martin L. Baughman, and Jerold W. Jones. Scheduling
of cool storage using non-linear programming techniques. IEEE Transactions
on Power Systems, 10(3):1279-1285, August 1995.

[17] Katsuyuki Tomiyama, John P. Daniel, and Satoru Ihara. Modeling air condi-
tioner load for power system studies. IEEE Transactions on Power Systems,
13(2):414-421, May 1998.

[18] Deh-chang Wei and Nanming Chen. Air conditioner direct load control by
multi-pass dynamic programming. IEEE Transactions on Power Systems,
10(1):307-313, February 1995.

[19] Allen J. Wood and Bruce F. Wollenberg. Power Generation, Operation and
Control. John Wiley k Sons, 1984.

Received November, 2002

Acta Cybernetica 16 (2004) 427-441.

On Computing the Hamming Distance

Gerzson Kéri* and Ákos Kisvölcsey*

Abstract
Methods for the fast computation of Hamming distance developed for the

case of large number of pairs of words are presented and discussed in the
paper. The connection of this subject to some questions about intersecting
sets and Hadamard designs is also considered.

Keywords: covering radius, Hamming distance, Hamming weight, intersecting sets,
minimum distance.

1 Introduction and notation
Let Z " denote the set of all n-tuples (x\,x2, • •. ,xn), where Zq = {0 ,1 , . . . , q — 1}.
The elements of the set Z™ are called words, and the Hamming distance d(x, y)
between two words x,y £ Z " is defined as the number of coordinates in which they
differ.

One may encounter the problem of determining the Hamming distance for a
large number of pairs of words in the same space. This is, for example, the case
when the minimum distance or the covering radius for a lot of codes Ci C Z "
are to be determined. (See also Section 6.) The Hamming distance and Hamming
weight find many applications also in cryptography [5]. For problems like this there
emerges the need for faster computation.

In the paper a general method is presented and discussed for the fast computa-
tion of the Hamming distance. This method is related to a problem of intersecting
sets.

We emphasize that the suggested (and applied) method is not faster than the
direct method if the Hamming distance is to be determined for only a small number
of pairs of words. It is proposed for application only if the number of pairs is large
enough.

The notation & is used for the bitwise "and" operation, XOR for the bitwise
"exclusive or" operation. The wgt function counts the number of 1-s in a binary

•Computer and Automation Research Institute, Hungarian Academy of Sciences, H - l l l l Bu-
dapest Kende u. 13-17, Hungary, e-mail: keriQsztaki.hu
Supported in part by the Hungarian National Research Fund OTKA, Grant No. T043276.

t Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest
Reáltanoda u. 13-15, Hungary, e-mail: ksvlcs0renyi.hu

443

444 Gerzson Kéri and Ákos Kisvölcsey

integer; it can be given by formula as

oo
wgt(a) = Y , (La/2feJ (m o d 2)) •

fc=o

The symmetric difference of two sets is denoted by A:

M B = (A n B)U (I n B) .

2 Hamming distance of q-ary vectors and
g-ary distance of integers

Clearly, there is a one-to-one correspondence between a word x = (x\,x2,
...,xs) e and a nonnegative integer n in the interval 0 < n < qa — 1:

s
x <—> n = y^Xjqs~l.

¿=i

We define the q-ary distance dq(a, b) of two nonnegative integers as the Hamming
* distance of the corresponding words in any space Z* where

s > max (logg(g + 1), logQ(6 + 1)).

We look for a fast way of computing the Hamming distance of words, stored in
the form of q-ary integers for a large number of pairs of words in the same space.
That means the computing of dq(a,b) for pairs of integers (a, b). This problem
arises, for example, when the minimum distance or the covering radius of many
codes are to be checked.

The minimum distance of a code C C is defined as

min{d(x,y) | x,y GC, x^y}.

The covering radius of a code C C Z* is the smallest positive integer R such
that for an arbitrary x € Z", there exists one (or more) y £ C with d(x,y) < R. In
other words,

R = maoc{d(x, C) | x 6 Zaq},

where
d(x,C) = min{ci(x,y) | y 6 C}.

On Computing the Hamming Distance 445

3 The binary case (q = 2)
Fast methods to calculate Hamming distances (and Hamming weights) in the binary
case are known from the literature, see e.g. [5] where the theme is discussed within
a more general context. There can be found many communications as well as
computer codes related to the subject also on the web.

Here, we describe in short the substance of the method as follows.
For q = 2, i. e. for binary numbers, clearly

d2(a,b) = wgt(a XOR b).

This fact suggests arranging the weights into an array consisting of the array
elements

wgt(l), wgt(2), . . . , w g t (2 L - l) ,

where the exponent L depends on the computational environment (available hard-
ware and software, programming language etc.).

The same method can be applied with a slight modification also for numbers
greater than 2L — 1 if we split them into 2 or more parts. If, e.g., n > 2l — I but
n < 22L — 1, then - referring to the identity

wgt(n) = wgt (Ln/(2L)J) + wgt (n (mod 2L)),

- we can use the formula

d2(a,b) = wgt (L(o XOR b)/{2L)\) + wgt ((a XOR b) (mod 2L)).

That way, an array of length 2L is enough for treating integers as large as we
want.

Note that the division by 2L can be performed simply by a right shift of the
dividend.

4 Method for the case q > 2
When q > 2, the g-ary distance dq(a,b) of two integers cannot be determined
immediately by the help of the weight function. What can be done is to have a
and b mapped to (longer) integers A and B such that

d2(A,B) = k • dq(a,b) for any a,beZ°,

where k is a positive integer, depending only on the value of q and the mapping.
For this purpose, let

ipq : Zq y Z2

with an appropriate t, a mapping having the property of

wgt(y>,(a) XOR ¥>,(£)) = * (1)

446 Gerzson Kéri and Ákos Kisvölcsey

for any pair a, /3 E Zq, a ^ /3 for a positive integer k.
Clearly, <pq generates a mapping of Z" to Z2l, if we apply ipq to all g-ary digits

of n < qL — 1. The corresponding mapping for q-ary integers can be written by the
formula

L-l
= (mod q)).

3=0
Now, for any a, b < qL — 1, wgt(y>9(a) XOR <pq((3)) = k implies

wgt ($q(a) X O R $, (6)) = k • dq(a, b),
From the point of view of effectiveness, the value of t should be kept ELS small

as possible.
The same problem can be translated to a problem with intersecting sets. For

this purpose, consider a set S consisting of t elements:

S = {ui,u2,...,ut}.

Consider also the binary representation of <pq(a) as

<pg(a) = (6i(a),62 (a) , . . . ,6 t (a))

for any a £ Zq, <pq(a) : Zq —> Z|.
Define the subsets Si, S2, • • •, Sq of 5 as follows:

U{ S 5 a +i if and only if 6j(a) = 1.

To find a mapping <fiq{a) having the property (1) is equivalent to find a set S and
q subsets Si, S2,..., Sq C S such that the cardinality of the symmetric differences

SiASj = (Si Sj)

is.constant for any pairs of Sl and Sj, provided i / j , where Si is used for S \
Si (i = l,2,...,q).

For the system of sets Si,S2,... ,Sq with the property described above, the
following notices can be taken.
1. Consider the sets

Ui = SiASi+i

for i = 0 , . . . , q — 1. Now, we have UQ = 0, and
\Ui\ = k

for i — 1 , . . . , q — 1. It is easy to see that UiAUj = SiASj, thus also \UiAUj\ = k
holds. Clearly, \UiAUj\ = \Ui\ + \U3\ - 2|[/t n Uj\, consequently,

for every i, j > 1, i ^ j. From this, it also follows that k must be even. So, we have
a fc-uniform family JJi,..., Uq-1 on the i-element ground set S, such that any pair

On Computing the Hamming Distance 447

of sets shares the same number of elements. By using linear algebraic methods,
Bose [2] proved that t > q — 1 for such set-systems. Later in the paper we show
that this bound can be achieved in some cases (cf. Examples 2, 3).
2. Assume now that t — q — 1. Ryser [7] showed that in this case every point in S
is contained in exactly k sets from Ui,..., Uq-\. By doubly counting the triplets
(u, Ui, Uj), where u eUiC\Uj, i ± j, we get

Prom this, we obtain q = 2k. Since k is even, if q is not divisible by 4, then t > q
must hold. Obviously, this bound can be achieved in any case (cf. Example 1).
3. Suppose that q is divisible by 4. Let q — 4A, k = 2A, where A is a positive
integer. What we want to find is a symmetric block design S\(2,2A, 4A — 1), that
is, a 2A-uniform set-system U\,..., on a t = 4A — 1-element ground set S,
such that every pair of sets has an intersection of size A. If we take the complement
sets Vi = S \Ui, then

W = 2A - 1,
and Vi n Vj = S \ (Ui U Uj). Since \U{ UC/,| = \Ui\ + \Uj\- | Ui nUj\ = 3A, we have

l^nV^I = A - l .

So, equivalently, we want to find a so-called Hadamard design S\-1(2,2A —1,4A—1).
It is known that such a system exists if and only if there is a Hadamard matrix
of order 4A. An Hadamard matrix of order m is an TO X M matrix H with entries
{ 1 , - 1 } such that its row vectors are orthogonal to each other, as well as its column
vectors, i.e., HHT = HTH = ml. It is conjectured that there is an Hadamard
matrix of order 4A for every positive integer A, and thus, we can have t = q — 1.

5 Examples
1. For arbitrary q > 2, we may choose t = q and ipq(a) = 2a.

Then, wgt (ipq(a) XOR tpq((3)) = 2 for a ^ /3.
In the terminology of intersecting sets

2. For q = 4, let t — 3 and <fi4(a) = 0,3,5,6 for a = 0,1,2,3, respectively.
Now, wgt (<Pi(a) XOR <fi4(0)) = 2 again for a^ /3.
In the terminology of intersecting sets

S = {U1,U2,U3}, Si — 0, S2 = {Ul,ti2}, 53 = {ui,u3}, S4 = {u2,u3}.

3. For q = 2 m + 1 , m > 1, the following recursion can be applied:

S = {ui,u2,u3}, S1 = { « ! } , S2 = W , S3 = {u3} .

(p2,a+i (2a - 1) = (22"* + 1) • ip2m(a)

448 Gerzson Kéri and Ákos Kisvölcsey

<p2m+1 (2a) = (22m - 1) • (<p2m (a) + 1).

In this case t = q — 1 = 2 m + 1 - 1 can be specified. The inequality

ip2m+\ (a) < 22 m + 1 _ 1 - 1 for 0 < a < 2 m + 1 - 1

can be proved by induction. The multiplier k assumes the value 2m .

6 Application of the method for checking the cov-
ering radius of codes

The methods described in the paper found an application in [4] for computing
the covering radii of a huge number of codes. This computation resulted in the
improvement of known lower bounds on the covering radii for several families of
codes. This way, general inequalities (sometimes equalities) were found for the
covering radii of an infinite number of codes; however, to obtain these results, a
finite (but very large) number of codes had to be considered and the covering radii
of more than 150 million codes were checked by using a computer.

This job could not have been completed within a reasonable time by applying
the direct method for the computation of the Hamming distance, i. e. by counting
the number of non-identical coordinates.

By using the weight function and the "exclusive or" operation, the check of
binary codes was completed 6-8 times faster than by the direct method. For ternary
and mixed ternary/binary codes, using the mapping ip and applying the weight
function for the transformed vectors resulted in an additional gain in the CPU
time. Thus, finally, the whole job of checking the covering radii of millions of codes
required about 30 days of CPU time (instead of 300 days or more, which would
have been required by applying the direct method).

.Finally, we summarize the computational aspects of the method applied for the
case of a mixed ternary/binary Hamming space. The process of the method needs
three initial steps as follows:

1. We start with storing in two arrays the powers of 2 and 3 for exponents
0 ,1 , . . . until these can be represented as long integers (arrays pow2 and
pow3).

2. The weights of binary integers are stored in another array wgt of long integers:

wgt(n) = sign (n & pow2(j)).
j> o

3. The values of $3(n) are stored also in an array of long integers:

L-1
$ 3 (n) = Y^2 3 k + (I™/3*-!)(mod 3).

k=0

On Computing the Hamming Distance 449

After these steps of initialization, the computation of Hamming distances is
done as follows.

For arbitrary words x, y of the mixed Hamming space Z^1 © these words
can be given as pairs consisting of a ternary and a binary integer:

Then, the Hamming distance d^^(x,y) is computed by using the formula

Acknowledgement
The authors are grateful to Patric R. J. Ostergard for his helpful comments and
suggestions. The first author would like to thank the Hungarian National Research
Fund (OTKA) for partial financial support (Grant No. T043276).

References
[1] I. Anderson, Combinatorics of finite sets, The Clarendon Press, Oxford Uni-

versity Press, New York (1987).

[2] R. C. Bose, A note on Fisher's inequality for balanced incomplete block designs,
Ann. Math. Statistics, Vol. 20 (1949) 619-620.

[3] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-
Holland, Amsterdam (1997).

[4] G. Kéri and P. R. J. Ostergard, Further results on the covering radius of small
codes, submitted for publication.

[5] H. Lipmaa and S. Moriai, Efficient Algorithms for Computing Differential
Properties of Addition, Fast Software Encryption '2001 (M. Matsui, ed.), Lec-
ture Notes in Computer Science Vol 2355., Springer-Verlag (2002), 336-350.

[6] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam (1977).

[7] H. J. Ryser, A note on a combinatorial problem, Proc. Amer. Math. Soc, Vol.
1 (1950) 422-424.

x = (xt, xb), y = (yt, yb)..

ds,2(x,y) =
wgt($(s t) XOR $(y t))

2 + wgt(xb XOR yb).

Received January, 2004

Acta Cybernetica 16 (2004) 427-441.

The Recycled Kaplansky's Game*

András Pluhár1"

Abstract

Motivated by the Nine Men Morris game, the achievement or hypergraph
games can be prolonged in the following way. After placing a prescribed
number of stones, the players pick some of these up and replace again. We
study the effect of this recycling for the fc-in-a-row game and some versions
of the Kaplansky's game.

Keywords : positional games, achievement games, hypergraphs, Kaplansky.

1 Introduction and Results
A large number of combinatorial games were created from the earliest civilizations
up to now; the authors of [7] try the impossible task of introducing a fraction of
these. In a fascinating class of those, two players, I and II (later on M and B),
put marks or move pieces on a board, while the outcome of the game depends on
achieving certain geometrical configurations. The most prominent examples are the
ageless Tic-Tac-Toe, the Nine Men's Morris, the Go-moku or its western variant,
the 5-in-a-row.

Plenty of interesting games are relatively young, such as the Hex, Bridgit, Shan-
non's switching game or the Hales-Jewett games. In the case of the so-called po-
sitional or achievement games the rules can be unified. Given a finite or infinite
set X (the "board"), the players alternately take elements of X (by marking or
putting pieces onto it physically), and there is a fixed H C 2X, the winning sets.
A player wins by taking all the elements of a winning set first. For this sub-class
we have a rich and beautiful theory.

Sometimes the players take p and q elements of X in turns, respectively. If
p ^ q, it is a biased game, otherwise it is called accelerated, see [4, 5, 6, 10, 11, 12].
Since I always wins or the game is a draw when p = q (see [7]), it also interesting
to consider the strong or Maker-Breaker version of a game. Here Maker (I) wins
by occupying a winning set, while Breaker (II) wins not by occupying such a set,
but preventing Maker of doing so.

*The author was partially supported by the OTKA Fund T34475.
^Department of Computer Science, University of Szeged, Arpad ter 2, H-6720 Szeged, Hungary,

e-mail: pluharQinf.u-szeged.hu

451

452 András Pluhár

However, this pattern does not fit for such games as the recently solved Connect-
4 or Nine Men's Morris, see [1, 2]. In the first case the available moves are restricted,
while the whole static approach of the positional games is abandoned in the second.
We shall address the issue of the second one and make an attempt to capture the
idea of movements for a game. For an arbitrary positional game let us define the
rules of the recycled versions as follows. For a natural number n the players make
the first n steps as before; this is the first phase. Then, in the second phase, they just
make moves with some of their earlier placed pieces in turns, instead of introducing
new ones.

In order to investigate the effect of recycling, let us define some games. The
first is the well-known k-in-a-row game (k € N), which is played by the two play-
ers on the infinite (chess)board, or graph paper. They alternately put their own
marks to previously unmarked squares, and whoever gets fc-consecutive marks first
(horizontally, vertically or diagonally) of his own, wins.

An interesting way to alter the k-in-a-row game is to relax the consecutiveness
condition. We shall call the game Lk(p, 1; n) (or line game for short) for which:

1. I and II mark p and 1 squares in every step, respectively.

2. I wins upon getting k, not necessary consecutive, marks in a line (horizontally,
vertically or diagonally), which is free of IPs marks.

3. the game terminates after n steps.

Then let RLk{p, 1; n) be the recycled version of Lk(p, 1;n).
Our third subject is the Kaplansky's game, where the players put their marks

on the Euclidean plane. Here I wins achieving k marks on a line, provided II
has no mark on that line. Now Kk(p,q) stands for the version in which I and II
marks p and q points, respectively. Let Kk(p, q\n) be the version which ends after
n round, and RKk(p,q;n) be its recycled version.

Before stating our theorems, let us recall some earlier results on these games.
The recycled k-in-a-row (no matter when does the second phase start) turns

out to be easy, because the decomposition methods utilized in [7] still work, and
give the same bounds. That is even the Maker-Breaker version of the recycled
fc-in-a-row game is a draw if k > 8.

Bounds for the games L/t(p, l ;n) and RLk(l, 1; n) are less obvious, we shall
prove:

Theorem 1. In the Maker-Breaker Lk(p, 1; n) game, Breaker wins if k> plog2 n +
p log2 p + 3p. On the other hand, Maker wins if p > 1 and k < c log2 n for some
c> 0.

Theorem 2. Breaker wins the Maker-Breaker RLk(1,1; n) game if k > 32 log2 n +
224.

In the version of Kleitman and Rothschild (see in [3]) I (II) wins by getting
k (I) points of a line while the opponent has none of that line, respectively. They

The Recycled Kaplansky's Game 453

prove that, given any k > 1, there is an l(k) such that II has a winning strategy
whenever I > l(k). Beck in [4] considers little different games; here I wins with k
points on a line, II with I, and I may mark p points on each turn, while II only
one per turn. Here II wins if I < ckplog(p 4- 1), for some c > 0. He has also shown
there exist C > c > 0, such that in Kk{l, 1; n): Maker wins if A; < clog2 n and
Breaker wins if k > C log2 n. For its recycled version we have the following result.

Theorem 3. Breaker wins the Maker-Breaker RKk(1, l ;n) game if k > cn1/3.

2 Proofs
2.1 Weight functions
In the proof of the Theorems 1, 2 and 3 we heavily use the weight function method,
which was developed in [5] and developed in [6] and [8]. First let us recall some
earlier definitions and results.

A pair of (X, H) is called a hypergraph if H C 2X. If (X, H) is a hypergraph,
then a (p, q, H) — game (or simply hypergraph game) is a game in which I selects
p and II select q previously unselected elements of X. The first, who takes all
elements of an A € H, wins. A (p,q,H)-game has a so-called Maker-Breaker
version in which I wins taking an edges of the hypergraph any time. One of the
most important result on such games is the Erdős-Selfridge theorem; one of its
generalization is due to József Beck.

MI
Theorem 4 ([5]). Breaker wins the (p,l,H) — game if J2AZH 2 p <

In our cases this theorem cannot be applied directly, since the hypergraphs
involved are infinite, and it is not known if Theorem 4 holds for recycled games.
The following lemma is also due to Beck (see [5]). We repeat the proof in order to
see the properties of the used weight function.

An edge A G H is active if Breaker has not taken any of its elements.

Lemma 1. Playing a (p,l,H) game, Breaker can assure that no active edge con-
tains more than p + plog2 \H\ elements taken by Maker.

Proof of Theorem 4- We may assume Maker starts the game. For any A £ H let
Afc(M) and Ak{B) be the number of elements in A, after Makers kth move, selected
by Maker and Breaker, respectively. Now, for an A E H

where A > 0, and for any x £ X let Wk(x) = The numbers Wk{A)
and Wk(x) are called the weight of A and x (in the /cth step), respectively. When
it does not cause confusion we may suppress the lower index.

Now selecting an element in the fcth step Breaker uses the greedy algorithm, i.e.
chooses an unselected element yk G X of maximum weight. Let xj+ 1 , . . . , xk+1 be

454 András Pluhár

the elements selected by Maker in the (k + l)st step and Wk = ^Zagh wk(A) be
the total sum. or potential. For k > 0, following inequality holds for the potential:

Wk ~ Wk(yk) + (AP - l)T£7jfc(yfe) > wk+1.

Indeed, Wk decreases by Wk{yk) upon selecting yk. The elements selected by I in the
(k + l)st step cause the biggest increase if Wk(xk+X) is maximal for 1 < I < p, and
for all A such that Wk(A) / Owe have xk+1 € A iff 6 A, 1 < I, m < p. Since
the increase in this case is just (Ap — 1)wk(yk), the inequality is proved. Setting
A = 21 /p , we get -Wk > Wk+i, k > 0, which justifies that Wk is called potential.

Particularly wx < (Ap - 1)|#| + |ff| < 2\H\. Since q = 1 and the elements of
H are the same size, the inequality ' < 1/2 leads to the inequality
2\H\ < 2lAl/p. Assume that Maker wins the game in the fcth step. This would imply
Wk > AW = 2'A ' /p , which contradicts the monotonicity of the potential. •

Proof of Lemma 1. Just take the logarithm of the inequality \A^MS> = Wk(A) <
Wk < 2\H\ that holds for any active edge A £ H. •

2.2 Proof of Theorem 1.
Let us recall that a line L means consecutive squares along an infinite line here
(horizontally, vertically or diagonally). Now we have infinitely many interacting
sets, so the weight function method does not seem to be helpful. The way to
overcome the difficulties is to change the definition of the weights. The price of
this is that the potential is no longer a decreasing function, but an increasing one.
However, we can control the growth, since the game lasts only n steps.

Let H be the set of all lines, and Lj(M) and Lj(B) the number of squares of
line L marked by Maker and Breaker after the jth step, respectively. Now the
weight function of L at the jth step:

w(L) = (Xh(M) i { L j { M) ~ 1 and Lj{B) = ° 3 \ 0 otherwise

where A = 2?.
For a square q,

WM)= Yl,
L€H,q€L

is the weight of q, and

L€H
is the total weight at the jth step.

Breaker applies the greedy selection. For the weight functions, similarly to the
proof of Theorem 4, we have

wj+l{Lj+1) < Wj{Lj).
Lj(M)> i LeH

The Recycled Kaplansky's Game 455

On the other hand, in each step the number of lines whose weight becomes positive
is at most 4p, and the weight of such a line is no more than Ap = 2. That is

Wj+1 < Wj 4- 8 p

holds for 0 < j < n, where wo = 0. That is if the line L is unblocked at step j
(i.e. Lj(B) = 0) and Lj — i than

Ai < 8pj <=> i < p{log2 j + log2 p + 3).

Since 0 < j < n, the first part of Theorem 1 follows.
The second part is fairly standard, we give just the sketch of its proof. In

fact, one (say vertical) winning direction is enough. Maker divides the game into
phases. For the sake of simplicity we omit to write the integer parts. In the first
phase Maker places n(p — 1)/p element in a row. Call a column i-free if it contains
i marks of Maker, but none of Breaker. At the end of the first phase the number of
1-free columns is at least n((p—l)/p)2. In the ith phase Maker uses up n((p — 1/p))1

new mark, each is placed to an i — 1-free column. It is easy to check that Maker
can reach the ith phase if n((p— 1)/p)% > 1, and uses up at most n marks. That is
an i-free column appears if i < clog2 n, where c is about (log2p — log2(p — 1))_ 1 .

•

2.3 Proof of Theorem 2.
Breaker divides the game into sub-phases. The first sub-phase is the first phase
of the game, then a sub-phase consists of n pair of moves. Defining the weight
function as before, but A = \/2, Breaker places every second mark (the active
marks) according to the greedy strategy and deposits the others arbitrarily, i.e.
in reserve). It may happen that one of Breakers reserved marks is already on the
square q, which is to be occupied by an active mark of Breaker. In that case Breaker
places the new mark arbitrarily (sends it into reserve), and the mark on the square
q becomes active.

Considering only the effect of Breakers active marks, the game reduces to the
game Lk{2,1, n). That is Lemma 1 applies, and for any line L if Lj(M) = i and
Lj(B) = 0, then i < 2(log2 j + 4) if 0 < j < n.

In the other sub-phases Breaker plays a fictitious game, and keeps the status
of his marks (active or reserved) strictly. The marks of Maker are indexed by the
numbers 1 ,2 , . . . , n. At the beginning of a sub-phase Breaker cannot see Makers
marks, and in the jth step Makers new mark and the mark indexed by j become
visible for Breaker as new moves. (If Maker moved the jth mark, only one mark
becomes visible.)

However Breaker responds only in every second step, using the marks from the
reserve. (Breaker does nothing in the odd steps. If picking up a mark and putting
back to the same place is permitted, it is easy. If it is not, Breaker designates a
mark at the very beginning, which is neither active nor reserved, and moves this
mark arbitrarily in the odd steps.)

456 András Pluhár

Trying the previous greedy strategy another difficulty arises. Breaker may not
occupy the square q of maximum weight because q has been already taken (by one
of Makers invisible marks or one of Breakers own reserve). Then, Breaker blocks
the lines going through q, using four marks. (See a similar idea in [12].) Now,
looking only Makers visible marks, if for a line L, Lj(M) = i and Lj(B) = 0 then
i < 16(log2 j + 7), since after at most 16 moves of Makers, Breaker may reply, and
Theorem 1 applies.

By the end of a sub-phase Makers all marks become visible, and a line L, which
contain more than 16(log2 n + 7) of them, is blocked by Breakers reserve. Finally,
Breaker starts the next sub-phase renaming his marks, the active ones become
reserved and vice versa.

Since the active marks control the invisible marks during a sub-phase, if for
a line L the sum of visible and invisible marks of Maker on L is i, and L is not
blocked (by the active marks or by the reserve), then i < 32(log2 n + 7). •

2.4 Proof of Theorem 3.
The most natural idea is to mimic the proof of Theorem 2.

Unfortunately it breaks down irreparably at the point where Breaker wants to
occupy, or at least block the point q, which is already taken. The problem is that
q can be the element of many lines, so Breaker cannot cancel the weight of q by
using only constantly many points.

To overcome this difficulty, we change the weight function and give a more
sophisticated analysis of it.

Let the weight of a line L after Maker jth move be

(L) = Í if Lj(M) > cin1 /3 and Lj(B) = 0
' — 0 otherwise

where X — y/2 and c\ > 0 will be specified later.
As before, for a point x, Wj (x) = Y2ieH xsl wj(L) is the weight of x, and

WJ = JZLZH wj(L) is the total weight at the jth step.
However, Breaker uses not only the greedy strategy, the recycled point also

have to be designated. When Breaker removes a point y, the total weight function
may grow. It grows iff there is a line L containing y such that Lj(M) > Cin1/3

and Lj(B) = 1. Obviously the number of such points cannot be bigger than the
number of lines containing at least c\nx/3 points of Maker. To estimate this, we
need a definition and a theorem of Szemerédi and Trotter.

An incidence of a point and a line is a pair (p, L), where p is a point, L is a line,
and p lies on L.

Theorem 5 ([14]). Let I denote the number of incidences of a set on n points
and m lines. Then I < c(n + m + (nro)2'3),

Let us note that László Székely published a new, more accessible proof of The-
orem 5, see in [13].

The Recycled Kaplansky's Game 457

An easy corollary of Theorem 5 is that there is a constant c2 such that the
number of lines containing at least k points of S is less than C2?i2/fc3 whenever
k < y/n.

That is if ci > c\'\ then the number of lines containing at least cin1 /3 points
of Maker is less than n. It means Breaker can always find a mark y such that its
removal does not affect the value of the total weight function. The steps of Maker
and Breaker are xi,x2, • • • and yi,y2, • • - Vi, respectively.

As before, for the weight function we have

Wj+2 < Wj - Wjiyj) - wj+1(yj+i) + Wj(xj+1) + wj+i(xj+i) + — N 2 / 3 A N L / 3 A " 1 / 3 + 1 . Cl

Here the term / (n) ^n2 / / 3An l / 3 + Anl/3 bounds the growth caused by the
lines that of weight becoming positive in the jth and (j + l)th steps. By the
argument of Theorem 4, Wj{yj) > Wj(xj+1) + Wj+i(xj+\), since A = \/2. We also
have Wj+i(yj+i) > Wj+\/n, since the number of positive weighted lines is less than
n, giving

Wj+2 < Wj - +f{n).

On the other hand, Wj+2 < Wj+i + f(n), or equivalently Wj+1 > Wj+2 — f(n).
That is the value of Wj+2 is bounded, since if > f(n), and then we have
Wj+2 < Wj. Prom here one gets that Wj+2 < (n + l) / (n) . It means that if for a
line L, Lj+2(M) = s and Lj+2(B) = 0, then (n + 1) / (n) > wj+2 > Xs. Taking the
logarithm of both sides, s < 2log2wj+2 < 2n1/3, provided n is big enough. •

2.5 Remarks and Open Questions
As we have seen, there is a large gap between the logarithmic lower and (^(n1/3)
upper bound what Maker can achieve in the recycled Kaplansky's game.

Question 1. Can the upper or lower bounds of Theorem 3 improved?

Even less is known about recycled hypergraph games in general. It is easy to
give example for which Breaker wins the first phase of the game, while Maker wins
the recycled version.

Question 2. Is there a hypergraph game won by Breaker, but Maker wins its re-
cycled version?

It is also interesting if the Erdos-Selfridge theorem extends to the recycled
games.

Question 3. Is it true ifY^AcH < 1, then Breaker wins the recycled version
of the (X,H) game?

Acknowledgments. Many thanks to Jozsef Beck.for the lots of help and encour-
agement. I would like to thank the useful advices of the unknown referee, too.

458 András Pluhár

References
[1] L. V. Allis, A Knowledge-Based Approach to Connect-Four. The Game is

Solved: White Wins. MSc thesis, Vrije Universiteit, The Netherlands, 1988.

[2] R. Gasser, Solving Nine Men's Morris, Computational Intelligence 12(1),
(1996) 24-41.

[3] D.J. Kleitman and B.L. Rothschild, A generalization of Kaplansky's game,
Discrete Math 2 (1972) 173-178.

[4] J. Beck, On a generalization of Kaplansky's game, Discrete Math 42 (1982)
27-35.

[5] J. Beck, On positional games, J. of Combinatorial Theory Series A 30 (1981),
117-133.

[6] J. Beck, Van der Waerden and Ramsey games, Combinatorica 1 (1981), 103-
116

[7] E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning Ways, Volume 2,
Academic Press, New York (1982), 667-693.

[8] P. Erdos and J. L. Selfridge, On a combinatorial game, J. Combinatorial
Theory Series B 14 (1973) 298-301.

[9] A.W. Hales and R.I. Jewett, Regularity and positional games, Trans. Amer.
Math. Soc. 106 (1963) 222-229; M.R. # 1265.

[10] A. Pluhar, Generalizations of the game k-in-a-row, Rutcor Research Reports
15-94 (1994).

[11] A. Pluhar, Generalized Harary Games, Acta Cybernetica 13 (1997) 77-84.

[12] A. Pluhar, The accelerated k-in-a-row, Theoretical Comp. Sci. 271 (1-2)
(2002) 865-875.

[13] L. A. Szekely, Crossing numbers and hard Erdos problems in discrete geom-
etry, Combin. Probab. Comput. 6 (1997), no. 3, 353-358.

[14] E. Szemeredi and W. T. Trotter Jr., Extremal problems in discrete geometry,
Combinatorica 3 (1983), no. 3-4, 381-392.

Received June, 2003

Acta Cybernetica 16 (2004) 427-441.

Distance Functional Dependencies in the Presence
of Complex Values

Sebastian Link* and Klaus-Dieter Schewe*

Abstract

Distance functional dependencies (dFDs) have been introduced in the
context of the relational data model as a generalisation of error-robust func-
tional dependencies (erFDs). An erFD is a dependency that still holds, if
errors are introduced into a relation, which cause the violation of an original
functional dependency. A dFD with a distance d = 2e + 1 corresponds to
an erFD with at most e errors in each tuple. Recently, an axiomatisation of
dFDs has been obtained.

Database theory, however, does no longer deal only with flat relations. Mod-
ern data models such as the higher-order Entity-Relationship model (HERM),
object oriented datamodels (OODM), or the extensible Meakup Language
(XML) provide constructors for complex values such as finite sets, multisets
and lists. In this article, dFDs with complex values are investigated. Based
on a generalisation of the HAmming distance for tuples to complex values,
which exploits a lattice structure on subattributes, the major achievement is
a finite axiomatisation of the new class of dependencies.

Keywords, functional dependencies, complex value data models, error-
robustness

1 Introduction
In [3] Demetrovics, Katona and Miklós introduced error-correcting keys in the
RDM and generalised them to error-correcting functional dependencies in [4]. In
both cases they studied the relationship of these dependencies to inclusion-free sets
of attributes and derived combinatorical results on the size of the elements in such
families. As these kinds of dependencies provide information about relations that is
stable under the introduction of errors, we prefer to talk of error-robust functional
dependencies (erFDs).

The work on error-robust functional dependencies is motivated by the fact that a
database user may be confronted with a relation that contains errors. It is presumed
that the user knows the structure of the relation schema, i.e. the attributes and

"Information Science Research Centre, Massey University, Private Bag 11222, Palmerston
North, New Zealand, [s.link|k.d.schewe]Omassey.ac.nz

459

460 Sebastian Link and Klaus-Dieter Schewe

the dependencies. There are various reasons for such errors to occur. For instance,
a relation may have been transmitted through a noisy channel, so knowing about
erFDs may help to localise the errors.

On the other hand, errors may have been introduced deliberately in order to hide
and secure data. Then the knowledge about erFDs permits drawing conclusions
about the errors. So the study of erFDs may lead to results on how reliable the used
data hiding mechanism is. Another reason for an errornous relation may be that
the data has been spoiled deliberately. Analogously to the case of using a noisy
transmission channel the knowledge about erFDs may help to detect the errors.

In the conclusion of [4, p.92] the authors pose the question, whether erFDs in
the RDM can be characterised, i.e., finitely axiomatised. As already shown in [4,
Prop. 1.1] erFDs are subsumed by another class of dependencies, called distance
functional dependencies (dFDs), where the distance refers to the Hamming distance
of tuples projected to the left hand side of the dependency. More precisely, an erFD
for the case of at most e errors in each tuple corresponds to a dFD with a distance
of at most 2e + 1. A finite axiomatisation of distance functional dependencies
for the RDM including the more general case of disjunctive distance functional
dependencies was achieved in [8].

Over the last decade the major focus of database theory has shifted from the
relational data model to data models with complex values rather than just tuples.
Examples are the higher-order Entity-Relationship model (HERM, [11]), object ori-
ented datamodels (OODM, [10]), or most recently the extensible Meakup Language
(XML, [1]). A natural question is, whether the theory of functional dependencies
and distance functional dependencies can be carried over to these data models.
For FDs this problem was addressed in [5] for finite sets, then generalised in [7] to
capture sets, lists and multisets, and in [6] to capture sets and disjoint unions. In
all these cases a finite axiomatisation could be achieved.

The aim of this paper is to generalise the notion and finite axiomatisation of
error-robust functional dependencies. In Section 2 we summarise the results from
[8] on dFDs in the relational data model, excluding the disjunctions. The Section
3 we introduce vthe fundamentals of nested attributes, which capture the gist of
higher-order data models. We present some results from [7] that will be needed
in this article. Section 4 introduces distance functional dependencies on nested
attributes and a sound set of derivation rules for such dependencies. Finally, the
completeness of this set of rules is proven.

2 Error-Robust Functional Dependencies in the
RDM

We assume familarity with fundamental definitions of the RDM and functional
dependencies in the RDM. One of many good sources is [9].

Suppose R is a relation schemai and r, r' are ii-relations. For e > 0 assume
that r' results from r by introducing, at most e errors per tuple. For simplicity
neglect the case that r' has less elements than r, so that we can avoid considering

Distance Functional Dependencies in the Presence of Complex Values 461

multisets of tuples instead of sets. We say that r satisfies the e-error-robust func-
tional dependency (e-erFD) X —> {e}Y with X, Y C R iff the introduction of errors
into r leading to r' would still allow to detect the functional dependency X —> Y.
Formally, for any tuple t' £ r' that corresponds to a tuple t £ r there must not
exist two tuples t\,t2 £ r, which both have a Hamming distance at most e from t,
such that ii[Y] / t2[Y] holds.

Recall that the Hamming distance of two tuples ii and t2 (denoted as W(fi, t2))
is the number of attributes B, on which ti[B] / t2[B} holds.

Definition 1. Let X, Y C R and e > 0. An e-error-robust functional dependency
(e-erFD) is an expression X —» {e}Y. An ii-relation r satisfies X —> {e}Y iff
for all ii-relations r' such that there is a bijection a between the tuples t £ r
and a(t) = t' £ r' with H(t,t') < e and all tuples t\,t2 £ r, t' £ r' we have
H{ti\X],t!\X)) < e A H (t 2 [X) , t ' [X }) < e tl[Y]=t2[Y}.

Obviously, for tuples ty,t2 £ r with H(t1[X},t2{X}) > 2e + l we obtain t[[X] /
ijt^], so these tuples cannot violate the functional dependency X —> Y on r'.
Conversely, for tuples t\,t2 £ r with TL{ti[X\,t2[X\) < 2e + 1 we may obtain
t'^X] = t'2[X) in r', so that the tuples violate the functional dependency X —* Y on
r'. Using this simple fact we obtain the following easy result (see [8], also compare
[4, Prop. 1.1]).

Proposition 1. An R-relation r satisfies X —* {e}Y iffH(tx[X],t2[X}) < 2e+l =$>
t\\Y\ — t2\Y\ holds for all tuples t\,t2 £ r.

As in [4, p.87] we take advantage of Proposition 1 to define another class of
dependencies, called d-distance functional dependencies, which will ease the task
of finding a finite axiomatisation.

Definition 2. Let X, Y C R and d > 0. A d-distance functional dependency
(d-dFD) is an expression X —> (d)Y. An ii-relation r satisfies X —> (d)Y iff we
have H(ti[X],h[X]) <d^> ti[Y] = t2[Y] for all tuples tut2 £ r.

As usual, we use the notation |=r X —> (d)Y, if r satisfies the dFD. If £ is a
set of dFDs, we say that E implies X —> (d)Y (notation: E |= X —> (d)Y) iff each
relation r satisfying all dFDs in E also satisfies X —> (d)Y. We denote by E* the
semantic hull of E, i.e. the set of all dFDs implied by E, i.e. E* = { X —»
(d)Y \ Z\=X^(d)Y}.

If we can find a finite, sound and complete set of rules and axioms that allows
us to derive E* out of E, then we also know how to obtain the semantic hull of a
set of erFDs. This follows from the following obvious corollary of Proposition 1.

Corollary 1. A relation r satisfies the erFD X —>• {e}Y iff r satisfies the dFD
X —> (2e+ 1)Y. In particular, 0-erFDs correspond to 1 -dFDs.

The main result on dFDs is the following theorem which was proven in a more
general form in [8]. Here we use again the standard notation whereby X, Y. Z,...
denote attribute sets, A,B,C,... denote attributes or attribute sets with just one
attribute, and union is denoted by juxtaposition [9].

462 Sebastian Link and Klaus-Dieter Schewe

Theorem 1. The following set ÎH of axioms and rules is sound and complete for
the implication of dFDs in the RDM:

(i) the reflexivity axiom — —— Y Ç X
X -» (1)Y

(ii) the weakening rule
X ^{d + l)Y

X -» (d)Y

(Hi) the strenqtheninq rule . ^ ^ ,— I X |< d
1 y X -> (d+ l)y 1 1

X (d)Y X -» {d)Z
(iv) the union rule

X -> {d)YZ

, , , , X -» (d)Y YY' {d')Z , ,
(v) the strong transitivity rule — —— \Y \< d

X —> (d)Z
, , , , , , , X - Ax -» (d)Y ... X-An-* (d)Y
(wJ the left strengthening rule — — — X =

X — > yd
{Au...,An}

i c Y
X - A -> (d)y

('uiij i/ie Ze/t weakening rule — j—ji j4êI

3 An Algebra of Nested Attributes
In this section we define our model of nested attributes, which covers the gist of
higher-order datamodels including HERM, the OODM and XML. In particular, we
investigate the structure of the set S(X) of subattributes of a given nested attribute
X , which will give us a Brouwer algebra [6, 7].

3.1 Nested Attributes
We start with a definition of simple attributes and values for them.

Definition 3. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A Eli. The elements of U are called simple attributes.

For the relational model a universe was enough, as a relation schema could be
defined by a subset R C U . For higher-order datamodels, however, we need nested
attributes. In the following definition we use a set C of labels, and tacitly assume
that the symbol A is neither a simple attribute nor a label, i.e. A ^WU£, and that
simple attributes and labels are pairwise different, i.e. U fl L = 0.

Definition 4. Let U be a universe and C a set of labels. The set N of nested
attributes (over U and C) is the smallest set with A £ M, U C J\f, and satisfying
the following properties:

Distance Functional Dependencies in the Presence of Complex Values 463

• for X G C and X[,..., X'n G M we have X(X[,.. .,X'n) G TV;

• for X G C and X ' g Af we have 6 N, G A/", and X(X') G TV'.

We call A a null attribute, X{X[,... ,X'n) a record attribute, X{X'} a set at-
tribute, X[X'} a list attribute, and X(X') a multiset attribute. As record, set, list
and multiset attributes have a unique leading label, say X , we often write simply
X to denote the attribute.

We can now extend the association dam from simple to nested attributes, i.e.
for each I eJVwe will define a set of values dom(X).

Definition 5. For each nested attribute X G N we get a domain dom(X) as
follows:

•• dom(X) — {T};

• dom{X{X[,...,X'n)) = {№ : vi,...,Xn : vn) \ Vi e dom(Xl) for i =
1 , . . . , n } with labels X i for the attributes X[-,

• dom(X{X'}) = { {vi , . . . ,vn} | Vi G dom(X') for i = 1 ,...,n}, i.e. each
element in dom(X{X'}) is a finite set with elements in dom(X')]

• dom{X{X')) = { [u i , . . . , v n] | Vi G dom(X') for i = l , . . . , n } , i.e. each ele-
ment in dom{X[X')) is a finite list with elements in dom(X');

• dom(X{X')) = {(i>i, . . . ,vn) | Vi G dom(X') for i = l , . . . , n } , i.e. each
element in dom(X(X')) is a finite multiset with elements in dom(X').

Note that the relational model is covered, if only the tuple constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X,
assuming that the universe U and the set of labels C are fixed. Instead of an
.R-relation r we will consider a finite set r C dom(X).

3.2 Subattributes
In the dependency theory for the relational model we exploited projections on
subsets X of a relation schema R. These are just special cases of projections on
subattributes. Therefore, we will define a partial order > on N. However, this
partial order will be defined on equivalence classes of attributes. We will identify
nested attributes, if we can identify their domains.

Definition 6. = is the smallest equivalence relation on Af satisfying the following
properties:

• A = X() ;

• X{X[,..., XU = X(X[,..., X'n, A);

• X(X[, ...,X'n)= X{X'aW,..-.,X'a{n)) for any permutation a;

464 Sebastian Link and Klaus-Dieter Schewe
n

• X(X'lt ...,X'n)= X(Ylt... ,Yn) iff x; s Yi for all i = 1, . . , ,n;

• X{X'} = X{Y} iff X' = Y;

• = iff X' = Y\

• X{X') = X{Y) iff X' = Y.

Basically, the equivalence definition states that A in record attributes can be
added or removed, and that order in record and union attributes does not matter.

In the following we identify Af with the set Af/= of equivalence classes. In
particular, we will write = instead of =, and in the following definition we should
say that Y is a subattribute of X iff X > Y holds for some X = X and Y = Y.

Definition 7. For X, Y £ N we say that Y is a subattribute of X, iff X > Y holds,
where > is the smallest partial order on N satisfying the following properties:

• X > A for all X e A/";

• X (Y i , . . . , y „) > for some injective a : { l , . . . , m } ->
{1 , . . . , n} and y f f (i) > X'a{i) for all 2 = 1 , . . . , m\

• > iff Y > X'-

• X[Y] >X[X'} i f f y >X'\

• X{Y)>X{X') iSY>X'.

Obviously, X > Y induces a projection map 7Ty : dom(X) —> dom(Y). For
X = Y we have X > Y and Y > X and the projection maps Vy and ir^ are
inverse to each other.

We use the notation <S(X) = {Z € N | X > Z} to denote the set of subattributes
of a nested attribute.X. It has been shown that S(X) carries the structure of a
Brouwer algebra [5, 6, 7].

Proposition 2. The set S(X) of subattributes carries the structure of a Brouwer
algebra, i.e. it is a distributive lattice utith a meet-operation l~l, a join-operation
U, a smallest element X, a largest element X, and relative pseudo-complements
Y Z = [~\{U \UUY >Z}.

Figure 1 as an example shows the Brouwer algebra S(AT(Xi{.A}, ^[.B])).

3.3 Ideals of Subattributes
We are dealing with several constructors for complex values at the same time. In
order to cope with the problems arising from this fact, we need some additional
notions that we will define in this subsection.

For the derivation rules for functional dependencies we need a notion of when
two subattributes are "nearly disjoint". This property is called semi-disjointness.

Distance Functional Dependencies in the Presence of Complex Values 465

X(X1{A},X2[B})

X M ^ J . X a l A]) X(X 1 {A} ,X 2 [B])

X (* I { A }) X(XI{A},X2[A]) X(X2[B))

X(Xi{A}) X(X2[X})

A

Figure 1: The lattice S(X(XI{J4}, X2[B]))

Definition 8. Two subattributes Y, Z 6 S(X) are called semi-disjoint iff one of
the following holds:

(i) Y > Z or Z > Y\

(ii) X = X(Xlt..., Xn), Y = X(Ylt..., Yn), Z = X(ZU ...,Zn) and Yt, Z, €
S(Xi) are semi-disjoint for all i = 1 , . . . , n;

(iii) X = X[X'\, Y = X\Y'\, Z = X[Z'\ and Y1, Z' e S(X') are semi-disjoint.

For the soundness proof in the next section we will need the following simple
fact about projections to semi-disjoint attributes.

Lemma 1. Let ti,t2 6 dom(X) for some nested attribute X € A/* such that
7Ty(ii) = 7Ty (¿2) and (ti) = tt*(t2) hold for semi-disjoint subattributes Y,ZG
S(X). Then also TtyuZ(ti) ~ nYuz(^) holds.

Proof. We use induction on X to show KyuZ(t\) = 7TyuZ(i2). The cases X = A
and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for
y > Z or Z > Y, as in these cases Y U Z is one of Y or Z.

For X = X(X1,...,Xn), semi-disjoint Y = X(Yu...,Yn) and Z =
X(Zi,...,Zn), and tj = (Xi : tn,...,Xn : tjn) (j = 1,2) we have n£(tu) =
TTy*(t2i) and = TT%(t2i), and y , Zi are semi-disjoint for all i = 1 , . . . ,n.
By induction TTy*uZ.(tu) = N$uZ.(t2I), which implies TTyuZ(ti) = TTyuZ(t2).

For X = X[X'\ and semi-disjoint Y = X[Y') and Z = X[Z'\) the subattributes
y 'and Z' of X' are also semi-disjoint. Furthermore, for tj — [tji,... ,tjnj] (j = 1,2)
we must have ni = n2 and ny',(tik) = ity>(t2k) and itz, (tik) = (^fc) for
all k = l , . . . , n i . By induction we get also iry,u Z ,(tu) = (£2fc) for all
k = l , . . . , n i , i.e. 7r^uz(ii) = n$uZ{t2). •

466 Sebastian Link and Klaus-Dieter Schewe

As <S(X) is a lattice, it makes sense to investigate ideals and filters. The fol-
lowing notion of an HL-ideal will be central for the completeness proof in the next
section.

Definition 9. Let X e J V . An HL-ideal on S(X) is a subset T C S(X) with the
following properties:

(i) A G JF;

(ii) if Y € T and Z G S(X) with Y > Z, then Z £ T\

(iii) if Y, Z G T are semi-disjoint, then Y U Z G T.

The key step in the completeness proof for dFDs in the RDM in [8] consists in
the construction of a relation with exactly two tuples, which coincide exactly on a
given set of attributes. While this is trivial for the RDM, the presence of complex
values requires a similar result. However, instead of a set of attributes we now have
to deal with an HL-ideal. This result — denoted Central Lemma in [6] — provides
the major difficulty for the axiomatisation of functional dependencies in [5], [7] and
[6].

The following theorem states this result for the case that we deal with records,
lists, sets and multisets. The non-trivial lengthy proof is contained in [7].

Theorem 2. Let X G N and T be an HL-ideal on S(X). Then there exist
tut2 G dom(X) with 7r£(ii) = tt £(t2) iffY &F.

4 Distance Functional Dependencies on Nested
Attributes

Our major goal is to generalise Theorem 1 to dFDs on nested attributes. Therefore,
we first have to generalise FDs and dFDs to this case. For the latter ones the major
difficulty is to define a generalisation of the Hamming distance for complex values.

4.1 A Generalised Distance Function on Complex Values
Let us first define ordinary functional dependencies. As a set of attributes in the
RDM corresponds to a single record attribute, the first idea is to replace sets of
attributes by a single subattribute. While this is sufficient for records and lists, it is
not a good idea for sets and multisets. The reason is that the well known extension
rule in Armstrong's axiomatisation for FDs in the RDM does not generalise in this
way [5]. Therefore, we have to consider sets of subattributes instead.

Definition 10. Let X € N. A functional dependency (FD) on S(X) is an expres-
sion y — Z with y,ZC S(X).

Let r be an instance of X. We say that r satisfies the FD y —> Z on S(X)
(notation: r |= y -> Z) iff for all tut2 G r with 7r£(*i) = n${t2) for all Y G y we
also have 7rf (ii) = 7rf (t2) for all Z G Z.

Distance Functional Dependencies in the Presence of Complex Values 467

Now recall, that the difference between a FD and a dFD in the RDM was
that we replaced the equality on the left hand side by a bound on the Hamming
distance bewtwen two tuples with the distance d = 1 corresponding to the case of
an ordinary FD. The Hamming distance counts the number of attributes, on which
two tuples differ. These attributes form some kind of a "basis" in the sense that
each subset of a relation schema can be constructed as a union of singleton sets
containing just one attribute.

In order to generalise the distance notion to complex values, we therefore need
a basis made of subattributes.

Definition 11. Let X £ N. The subattribute basis of X is the smallest subset
B{X) C S{X) such that each Y £ S(X) can be written in the form Y = |J Y'

Y'€BY

for some By Q B(X).

The subattribute basis of a simple record attribute would just give us the simple
attributes. Therefore, considering the subattribute basis suggests to be a good
choice to replace the set of attributes in the definition of the distance function.
However, in order to cope properly with sets ans multisets, we need to close B(X)
under the join of attributes that are not semi-disjoint.

Definition 12. Let X £ N. The Hamming basis of X is the smallest subset
C(X) C S(X) with B(X) C C(X) such that for all non-semi-disjoint Y,Z £ C{X)
we also have Y U Z £ C(X).

The following is an easy implication of Lemma 1.
Lemma 2. Let ii, ¿2 € dom(X) for some nested attribute X and Y £ X. If
7Ty,(ii) = 7rY'{h) holds for all Y' £ C(Y), then also 7Ty (ii) = 7Ty (i2) holds.

Proof. According to the definition of the subattribute basis B(X) and the Hamming
basis C(X) we can write Y in the form Y = [_} Y' for some subset Cy C C(X).

veCy
By definition the elements in Cy are pairwise semi-disjoint. As t\ and £2 coincide
on all elements of Cy, the also coincide on Y by Lemma 1. •

Now we can use the Hamming basis of X to define the distance of two complex
values i i , i 2 € dom(X).

Definition 13. Let X £ N and t\,t2 € dom(X). The Hamming distance H(ti, t2)
between ii and t2 is defined as H(ti,t2) = |{Y £ C(X) | ny(ti) ^ fly (i2)}|, i-e- 35

the number of subattributes in the Hamming basis, on which t\ and t2 differ.

This leads us straightforward to the generalisation of dFDs on a nested attribute.

Definition 14. Let X £ N be a nested attribute and d > 1. A d-distance
functional dependency (dFD) on S(X) is an expression of the form ^ —» (d)Z with
y,zcs(x).

Let r be an instance of X. We say that r satisfies the dFD y —> (d)Z on <S(X)
(notation: r |= y (d)Z) iff for all tut2 £ r with H{ir${ti),7r£(t2)) < d for all
Y £y we also have (ii) = 7r $ (t2) for all Z £ Z.

468 Sebastian Link and Klaus-Dieter Schewe

As before, we use |= to denote implication of dFDs and E* to denote the se-
mantic hull of a set E of dFDs.

4.2 Sound Derivation Rules

Using the definitions from the last subsection we will show now that derivation
rules similar to the ones in Theorem 1 are sound for the implication of dFDs on
nested attributes. Before we can define this set of derivation rules, we need a few
more notation.

For Y e y C S(X) let J. Y = {Y' \ Y' maximal with Y > Y'}. Furthermore,
if y = { n , . . . , Yfc}, write l y = { { y / , - . . , Yfc'} | Y(Gl Y, for one t and Y/ =
Yj for all j / i). In particular we have a mapping y t—> Y/ and we can define ki =
\C(Yi)\- |C(Y/)|. We use this to define k(y,y') = max A:» for y' = {Y{,..., Yfc'} 6|
y .

Theorem 3. Let X G Ai be a nested attribute. The following rules are sound for
the implication of dFDs on S(X):

reflexivity axiom:

lambda axiom:

subattribute axiom:

join axiom:

weakening rule:

strengthening rule:

union rule:

strong transitivity rule:

left strengthening rule:

left weakening rule:

z ç y

0^(d){ A}

{Y} - (1){Z}
Y > Z

{ Y , Z } - > (1) { Y U Z }
y^{d+l)Z

Y, Z semi-disjoint

y -> (d)Z
y -» (d)Z max{|C(Y)| | Y e y} < d

y~*(d+l)Z
y —> (d)Z\ y^(d)Z2

y (d)Zi U 2 2

y (d)Z Z U Z' -> (d')U
y -> {d)U

(1)

(2)

(3)

(4)

(5)

(6)

(7)

yi^(d-h)Z ... ym^(d-km)Z
y {d)Z

for \ y = {yu... , 3 ^ } and ki = k(y,yi)
y (d + k)Z

y, I { i) z Y e i y , k = k(y, y')

max{|C(Z)| I Y G Z'} < d'

(8)

(9)

(10)

Distance Functional Dependencies in the Presence of Complex Values 469

Proof. In the following let r be an instance of X, i.e. r C dom(X). The soundness
of the weakening rule (5) is obvious.

For the soundness of the reflexivity axiom (1) let ti,t2 6 r with
W(7Ty (ii), 7Ty (i2)) < 1 for all Y G y. That is, t\ and t2 coincide on all subat-
tributes in C(Y) for all Y G y. As Z C y holds, they must also coincide on all
subattributes in C(Z) for all Z G Z.

The soundness of the lambda-axiom (2) is obvious, as any t\,t2 G r coincide on
A.

If ii and t2 coincide on all subattributes in C(Y), they also coincide on Y by
Lemma 2, and as Y > Z, they must also coincide on Z, which proves the soundness
of the subattribute-axiom (3).

Similarly, (ti),-n$ {t2)) < 1 and 7r£(t2)) < 1 implies that
and t2 coincide on all subattributes in C(Y) U C(Z). By Lemma 2 they must also
coincide on Y and Z. As Y, Z are semi-disjoint, we obtain 7TyuZ(ti) = TTyuZ(t2)
by Lemma 1, which proves the soundness of the join-axiom (4).

For the soundness of the strengthening rule (6) take t\,t2 G r with
W(7r£(ti),7r£(ia)) < d + 1 for all Y G y. As W(7r£(ii),7r£(t2)) < |C(Y)| < d
for all Y G the premise implies -k^ (¿i) = ^z (̂ 2) for all Z G Z as claimed.

For the soundness of the union rule (7) take ti,t2 G r with Hi^y (¿1), ^yit2)) <
d for all Y G y. The premises of the rule imply ir^ (t 1) = ir^ (t2) for all Z G Zj
(j = 1,2), which trivially implies irf (ii) = 7rf (t2) for all Z G Zi U Z2 .

In order to prove the soundness of the strong transitivity rule (8) take again
h,t2 G r with "ft(7Ty (ii),7Ty (i2)) < d for all Y G y . The first premise of the rule
implies tt£(fi) = 7rf (i2) for all Z £ Z. For Z' G Z' we have 7i(7rf,(ii),7rf,(i2)) <
|C(2')I < Hence W(7rf(ii),7rf(i2)) < d' for all Z G Z U Z ' . The second premise
of the rule gives the desired (ij) = 7Ty (i2) for all U &U.

Now take again i i , i2 € r with H(n$(ti), n$(t2)) < d for all Y G y . Unless
Ky{h) = 7r£(i2) there must exist some y t G| ^ with W(7Ty,(ii),7Ty,(i2)) < d - k i
for all Y ' G X , and we can apply the corresponding premise of the left strengthening
rule (9) to conclude (t\) = TT^ (t2) for all Z G Z, which proves the soundness of
this rule.

Finally, for the soundness of the left weakening rule (10) take again t\,t2 G r
with W(7r£,(ii),7r£,(i2)) < d for all Y' G y'. Hence, H(ir$(ti),Tr$(t2)) < d + 1 for
all Y & y. Applying the premise of the rule leads to (t\) = (t2) for all Z G Z
as claimed. •

4.3 Completeness
As usual, given a set of axioms and rules and a set E of dFDs, we let E + denote
the syntactic hull of E, i.e. the set of all dFDs that can be derived from E using the
axioms and rules in Eft. In the following we take iR as the axioms and rules from
Theorem 3. This theorem already states the soundness of 9t, i.e. E + C E*.

A set of axioms and rules is called complete iff E* C E + holds. Our final goal
is to show the completeness of the rules in £K. Theorem 2 will turn out to be the
key for the completeness proof in this section.

470 Sebastian Link and Klaus-Dieter Schewe

Theorem 4. The set iH of axioms and rules from Theorem 3 is complete for the
implication of dFDs on nested attributes.

Proof. Let X 6 Af be a nested attribute, and let E denote a set of dFDs on <S(-X").
In order to show E* C E + let y - » [d)Z $ E+.

Let d be minimal with this property. Then, according to rule (6) we can assume
that |C(Y)| > d— 1 for at least one Y & y. Otherwise, we would have max{|C(Y)| |
Y £ y} < d — I. As d is minimal, we have y (d — l)Z G E + , and applying the
strengthening rule (6) would result in the contradiction y —> (d)Z G E + .

Due to the union rule (7) there must b'e some Z G Z with y —> (d){Z) £ E + .
Then, applying the left strengthening rule (9) k times with k < d — 1 — which is
possible, as |C(Y)| > d — 1 for at least one Y G y — we find some y' G|fc y with
y - (1){Z} i E+.

Now take y'+ = {U \ Y (1){U} G E+}, so Z $ Y+, but due to the
reflexivity axiom (1) we have y' C y'+.

Obviously, due to the lambda axiom (2), the subattribute axiom (3) and the
join axiom (4) y'+ is an HL-ideal in the Brouwer algebra S(X). Applying Theorem
2 to y + we obtain an instance r = {ii , t2} such that TTy(ti) = irf) (t2) holds iff
U G y'+.

Hence, r ^ y' (1){Z}, and applying the sound left weakening rule (10) k
times we obtain r ^ y —» (d){Z). From the soundness of the reflexivity axiom (1)
we further obtain r y (d)Z.

We now show r E. So let U —> (d')V G E. We consider two cases:

(i) Assume max{|C(i/)| | U G K} < d'. Due to the lambda rule (2) we have
y' —> (1){A) G E + . Using the strong transitivity rule (8) with Z' = U, we
obtain y' -> (1)V G E+, hence V C Due to the construction of r we
obtain n$(ti) - 7r$(t2) for all V e V , which shows r |= U (d')V.

(ii) Next assume max{|C(i7)| | U G U} > d'. We show r \= U' (1)V, whenever
U' Glfc' U with k' <d' - 1, and U' - » (1)V G E+ results from applying the
left weakening rule (10) k' times.
Then the soundness of the left strengthening rule (9) implies r U —> (d')V
as desired.
We distinguish again two subcases:

(a) If U' % y'+, we have 7r^,(ii) / Tr^,(i2) for at least one U' G U\ which
immediately implies r \= U' —» (1)V.

(b) If U' C y,+ , we have Y -> (l) { t / ' } G E+ for all U' G U'. Using the union
rule (7) we conclude y' (l)U' G E+, and further y' (1)V G E+ by
applying the strong transitivity rule (8).
Hence V C / + , which implies r (= U' -> (1)V as desired.

Now r f= E*, but r y
proof.

(d)Z. Hence y —» (d)Z ^ E*, which completes the
•

Distance Functional Dependencies in the Presence of Complex Values 471

5 Conclusion
In this article we presented a finite axiomatisation of distance functional depen-
dencies on nested attributes. This result generalises a corresponding result for the
RDM that was achieved (in a more general form) in [8].

The major tasks to solve this problem were generalising the Hamming distance
from tuples to arbitrary complex values, and constructing values that coincide
exactly on a given ideal of subattributes. The latter problem was solved in [7] with
solutions to a subcase contained in [5].

For the generalisation of the Hamming distance we used the "Hamming basis",
which results from the subattribute basis by adding the joins of all non-semi-disjoint
subattributes. This preserves the Hamming distance on flat tuples as a special
case. That is, the new Hamming distance counts the number of subattributes in
the Hamming basis, on which two values differ.

Alternatively, we could have chosen all subattributes instead of just those in the
Hamming basis. Looking through the proofs in this article, this would not have
affected the finite axiomatisation. However, we would have obtained a distance
function with significant jumps.

We might still feel that the new distance function is still too coarse, as it cannot
express counting. For instance, two sets with elements in the domain of a simple
attribute either have distance 0, i.e. they are equal, or 1, i.e. they are different but
both non-empty, or 2, i.e. they are different and one of thre sets is empty. However,
the same problem appears already with functional dependencies, and thus, has to
be solved in a larger context.

References
[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: Prom Relations to

Semistructured Data and XML. Morgan Kaufmann Publishers 2000.

[2] W.W. Armstrong. Dependency Structures of Database Relationships. Infor-
mation Processing vol. 74: 580-583, 1974.

[3] J. Demetrovics, G.O.H. Katona, D. Miklos. Error-Correcting Keys in Re-
lational Databases, in K.-D. Schewe, B. Thalheim (Eds.). Foundations of
Information and Knowledge Systems. First International Symposium, FoIKS
2000. Springer-Verlag, LNCS vol. 1762: 88-93. Berlin 2000.

[4] J. Demetrovics, G.O.H. Katona, D. Miklos. Functional Dependencies in Pres-
ence of Errors, in T. Eiter, K.-D. Schewe (Eds.). Foundations of Informa-
tion and Knowledge Systems. Second International Symposium, FoIKS 2002.
Springer-Verlag, LNCS vol. 2284: 85-92. Berlin 2002.

[5] S. Hartmann, A. Hoffmann, S. Link, K.-D. Schewe. Axiomatizing Functional
Dependencies in the Higher-Order Entity-Relationship Model. Information
Processing Letters vol. 87 (2003): 133-137.

472 Sebastian Link and Klaus-Dieter Schewe

[6] S. Hartmann, S. Link, K.-D. Schewe. Weak Functional Dependencies in Higher-
Order Datamodels - The Case of the Union Constructor, in D. Seipel, J. M.
Turull Torres (Eds.). Foundations of Information and Knowledge Systems.
Third International Symposium, FoIKS 2004 • Springer-Verlag LNCS vol. 2942:
117-134. Berlin 2004.

[7] S. Hartmann, S. Link, K.-D. Schewe. Axiomatisation of Functional Dependen-
cies in the Presence of Records, Lists, Sets and Multisets. Massey University
2003. submitted for publication.

[8] S. Hartmann, S. Link, K.-D. Schewe, B.Thalheim. Error-Robust Functional
Dependencies. Massey University 2002. submitted for publication.

[9] J. Paredaens, P. De Bra, M. Gyssens, D. Van Gucht. The Structure of the
Relational Database Model. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin Heidelberg 1989.

[10] K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented
databases. Acta Cybernetica vol. 11 (4): 49-85, 1993.

[11] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer-Verlag, Berlin Heidelberg 2000.

Received October, 2002

Acta Cybernetica 16 (2004) 427-441.

Some Problems Related to Keys and the
Boyce-Codd Normal Form

Vu Due Thi* and Nguyen Hoang Son*

Abstract
The aim of this paper is to investigate the connections between minimal

keys and antikeys for special Sperner-systems by hypergraphs. The Boyce-
Codd normal form and some related problems are also studied in this paper.

1 Introduction
In the relational datamodel, one of the important concepts is the functional de-
pendency. Several types of families of functional dependencies which satisfy some
conditions are known under the name of normal forms (NFs). The most desirable
NF is Boyce-Codd NF (BCNF) that has been investigated in a lot of papers (see
[2, 8, 9, 10]). The minimal keys and set of antikeys are interesting concepts in the
relational datamodel (see, e.g., [11, 12]). A set of minimal keys and set of antikeys
form Sperner-systems. Sperner-systems and sets of minimal keys are equivalent in
the sense that for an arbitrary Sperner-system K a family of functional dependen-
cies F can be constructed so that the minimal keys of F are exactly the elements
of K (see [5]).

Hypergraph theory (see, e.g., [3]) is an important subfield of discrete mathe-
matics with many relevant applications in both theoretical and applied computer
science. The transversal and the minimal transversal of a hypergraph are important
concepts in this theory, on one hand.

The paper is structured as follows: in the second section, some necessary defi-
nitions and results about hypergraph theory are given.

In Section 3, transformations of the notions and the results of Section 2 con-
cerning hypergraphs to relational databases are shown. We prove that the set of all
prime attributes is the set of all independent attributes of a given relation scheme.
We give an effective algorithm finding a BCNF relation r such that r represents a
given BCNF relation scheme s (i.e., KT = Ks, where Kr and K3 are sets of all min-
imal keys of r and s). We aslo give an effective algorithm which from a given BCNF

* Institute of Information Technology, National Centre for Natural Science and Technology of
Vietnam, 18 Hoang Quoc Viet, Hanoi, Vietnam

t Department of Mathematics, College of Sciences, Hue University, Vietnam

473

474 Vu Due Thi and Nguyen Hoang Son

relation r finds a BCNF relation scheme s such that Kr = Ks. Section 4, we study
the connections between minimal keys and antikeys for special Sperner-system by
hypergraphs.

2 Basic definitions and results
In this section we start with some basic definitions and results on hypergraphs.

Definition 2.1. Let R be a nonempty finite set and put V(R) for the family of
all subsets of R (its power set). The family Tí = {Ei : Ei £ V(R),i = l,...,m} is
called a hypergraph over R if Ei / 0 holds for all i (in [3] it is required that the
union of EiS is R, in this paper we do not require this).

The elements of R are called vertices, and the sets E\,..., Em the edges of the
hypergraph Tí.

A hypergraph Tí is called simple if it satisfies Vi?i, Ej £ Tí: Ei C Ej => Ei = Ej.
It can be seen that simple hypergraphs are Sperner-systems.

One can see easily that the family m(Ti) = {Ei £ Tí : fiEj £ Tí : Ej C Ei} is a
simple hypergraph, and that m(Ti) is uniquely determined by Tí.

Definition 2.2. Let H be a hypergraph over R. A setT C R is called a transversal
of Tí (sometimes it is called hitting set) if it meets all edges of Tí, i.e., \/E £ Tí :
TC\E / 0. Denote by Trs(Ti) the family of all transversals of Tí. A transversal T
of Tí is called minimal if no proper subset T' of T is a transversal.

The family of all minimal transversals of Tí called the transversal hypergraph
of H, and denoted by Tr(Ti). Clearly, Tr(Tí) is a simple hypergraph.

The following algorithm finds the family of all minimal transversals of a given
hypergraph (by induction).
Algorithm 2.1. (Demetrovics and Thi [7]).
Input: Let Tí — {¿?i,..., Em} be a hypergraph over R.
Output: Tr(Ti).
Method:
Step 0: We set Lx := { {a } : a £ Ei}. It is obvious that Li = Tr({Ei}).
Step q+1: (q < m) Assume that

Lq = Sq U {Bi, ...,Btq),

where Bi fl Eq+1 = 0,i = 1, and 5 , = {A £ Lq : A f l ^ + i / 0}.
For each i (i = 1,..., tq) constructs the set {Bi U {6} : b £ Eq+1}. Denote them

by ^ , . . . , ^ (¿ = 1,...,*,). Let

Lq+1 = Sq U {A], : A £ Sq => A £ A*,, 1 < i < tq, 1 < p < n}.

Theorem 2.1. (Demetrovics and Thi [7]). For every q (1 < q < m) Lq =
Tr{{Ew..., Eg}), i.e., Lm = Tr{H).

Some Problems Related to Keys and the Boyce-Codd Normal Form 475

It can be seen that the determination of Tr(H) based on our algorithm does
not depend on the order of E\,..., Em.
Remark 2.1. (Demetrovics and Thi [7]). Denote Lq = Sq U {Bi,...,Btq}, and
lq(1 < Q < m — 1) be the number of elements of Lq. It can be seen that the
worst-case time complexity of our algorithm is

m-1
0(\R\2 Y, tguv),

9=0

where lo = to = 1 and

J lq tqy if lq !> tq\
itlq = tq.

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known
that the size of arbitrary simple hypergraph over R cannot be greater than ,
where n = |ii|. ci™^2' is asymptotically equal to 2n+1/2/(7r.n)1/2. Prom this, the
worst-case time complexity of our algorithm cannot be more than exponential in the
number of attributes. In cases for which lq < lm(q = 1,..., TO — 1), it is easy to see
that the time complexity of our algorithm is not greater than £>(|ii|2|W||TV(W)|2).
Thus, in these cases this algorithm finds Tr(H) in polynomial time in \R\, \7i\ and
\Tr(Ji)\. Obviously, if the number of elements of H is small, then this algorithm is
very effective. It only requires polynomial time in |i?|.

The above algorithm reminds that in [3], but its form seems to be more conve-
nient for our applications.

The following proposition is obvious.

Proposition 2.1. (Demetrovics and Thi [7]). The time complexity of finding
Tr{H) of a given hypergraph H is (in general) exponential in the number of el-
ements of R.

Proposition 2.1 is still true for a simple hypergraph.
However, if we restrict the number of edges of a hypergraph, then the time

complexity of finding Tr(H) of a given hypergraph H is polynomial time.
Algorithm 2.2.
Input: Let H = {Ei,..., Ek} be a simple hypergraph over R, where k is a constant.
Output: Tr{H).
Method:
Step 1: We construct the set

G = { { e i } U ... U {ek} :ei&Ei,l<i< k}.

Step 2: Compute
m (g) = {Ei&g -.flEj GQ-.Ej c Ei}.

Step 3: Let Tr{H) = m{g).

476 Vu Due Thi and Nguyen Hoang Son

It is obvious that m{G) = Tr{TL). Furthermore, Q 2 Tr(Ti), and \G\ <
Hence, in this case Algorithm 2.2 finds Tr(Ti) in polynomial time. Clearly, if k is
small, then our algorithm is very effective.

Definition 2.3. Let R be a set and R' C R a subset of it. Then R' denotes R — R'.
Let H be a hypergraph over R. Then Ti — {E : E G Ti} is called the comlemented
hypergraph ofH.

It is known [3] that if Ti is a hypergraph, then Ti = Tt, and Ti is simple iff Ti is
simple.

3 Boyce-Codd normal form and transversals
Definition 3.1. Let R = {ai,...,an} be a nonempty finite set of attributes. A
functional dependency (FD) is a statement of form X —> Y, where X,Y C R. The
FD X —> Y holds in a relation r = {hi,..., hm} over R if

(VhM hj G r)((Va G X){hi(a) = hj{a)) => (V6 G Y){tn{b) = hj(b))).

We also say that r satisfies the FD X —> Y.
Let Fr be a family of all FDs that holds in r. Then F = Fr satisfies

• (Fl) X X G F,
(F2) {X -> Y G F, Y Z G F) => (X - » Z G F),
(F3) (X y G F, X C V, W C Y) =» {V W G F),
(F4) (X Y £ F, V̂ ^ W G F) => {X U V — Y U W G F).

A family.of FDs satisfying (Fl) - (F4) is called a /-family over R.
Clearly, Fr is a /-family over R. It is known [1] that if F is an arbitrary/-family,

then there is a relation r over R such that Fr = F.
Given a family F of FDs over R, there exists a unique minimal /-family F+

that contains F. It can be seen that F+ contains all FDs which can be derived
from F by the rules (Fl) - (F4).

A relation scheme s is a pair (R , F) , where R is a set of attributes, and F is
a set of FDs over R. Denote X+ = {a G R : X -> {a } G F+}. X+ is called the
closure of X over s. It is clear that, X -> Y G F + iff Y C X+.

Clearly, if s = (R, F) is a relation scheme, then there is a relation r over R such
that Fr — F+ (see, [1]).

Let r be a relation, s = (R, F) be a relation scheme over R and A C R. Then
A is a key of r (a key of s) if A —* R G Fr(A —> R G F+). A is a minimal key of
r(s) if A is a key of r(s) and any proper subset of A is not a key of r(s).

Denote Kr(Ks) the set of all minimal keys of r(s). It can be seen that Kr, Ks

are simple hypergraphs over R.

Definition 3.2. Let s = (R,F) be a relation scheme over R. We say that
an attribute a G R is prime if it belongs to a minimal key of s, and nonprime
otherwises = (R, F) is in BCNF if A {a} 0 F+ for A+ ± R, a £ A.

Some Problems Related to Keys and the Boyce-Codd Normal Form 477

If a relation scheme is changed to a relation we have the definition of BCNF for
relation.

Let s be a relation scheme and r a relation over R. We say that r represents s
if Kr = Ks.

Definition 3.3. Let r be a relation over R, and Er the equality set of r, i.e.
Er = {Eij : 1 < i < j < |r|}, where Eij = {a G R : hi(a) = hj(a)}. Let
Tr — {E^ G Er : T'Epg G Er : E^ C Epq}. Then Tr is called the maximal equality
system ofr.

Definition 3.4. LetK be a simple hypergraph over R. We define the set of antikeys
of K, denoted by K~l, as follows:

K-1 = {AcR:(B&K)=>(B£A) and (A C C) => (35 G K)(B C C)}.

It is easy to see that K~l is also a simple hypergraph over R.
In this paper, we always assume that if a simple hypergraph plays the role of

the set of minimal keys (antikeys), then this simple hypergraph is not empty (does
not contain R).

Definition 3.5. Let s = (R,F) be a relation scheme and r a relation over R. For
every A C R, set 1(A) = {a G R : A —> {a} ^ F + } . Then 1(A) is called an
independent set of s. For r, put 1(A) — {a € R: A —> {a} ^ Fr}. Denote by Is the
family of all independent sets of s.

Set m(s) = {B G Is • B ± 0, fiC G Is : C C B). m(s) is called the family of all
minimal independent sets of s. Clearly, m(s) is a simple hypergraph over R.

It can be seen that A is a key of s if and only if 1(A) = 0.
Denote by Ir and m(r) the family of all independent sets and the family of all

minimal independent sets of r.
The following result was discovered in [7].

Theorem 3.1. (Demetrovics and Thi [7]). Let s = (R,F) be a relation scheme
over R. Then

Tr(Ks) = m(s).

It is known [3] that if Ti, Q are two simple hypergraphs over R, then H = Tr(Q)
if and only if Q = Tr(7i). From this we obtain

Corollary 3.1. Let s = (R,F) be a relation scheme over R. Then

K3 = Tr(m(s)).

Definition 3.6. Let s = (R,F) be a relation scheme over R. We say that an
attribute a G R is independent if it belongs to an independent set of s, and dependent
otherwise.

Denote by Dn the set of all dependent attributes of s. Clearly, R — Dn is the
set of all independent attributes of s.

478 Vu Due Thi and Nguyen Hoang Son

Lemma 3.1. Let Tí be a simple hypergraph over R. Then

U Tr(Ti) = U Tí.

Proof. Assume that a £ UTr(Ti). Hence, there exists a minimal transversal T of
Tí such that a £ T. From this, we obtain a £ E, E 6 Tí. This means that a £ UTi.
Consequently, UTr(H) C UTí holds.

Conversely, if a £ UTí then there is E & Tí such that a £ E. From this, according
to the definition of transversal hypergraph of Tí there exists T £ Tr(Ti) such that
a £ T, i.e. a £ UTr(H). Hence, UH C UTr(H). The proof is complete. •

From Lemma 3.1 we obtain the following

Corollary 3.2. Let s = (R, F) be a relation scheme over R, m(s) be a family of
all independent sets of s. Then

UTr(m(s)) = U m(s).

Theorem 3.2. Let s = (R,F) be a relation scheme over R. Then

U Ks = R-Dn.

Proof. Assume that a is an element of R — Dn, i.e., there exists an 1(A) £ m(s)
such that.a £ 1(A). Hence, a £ Um(s). By Corollary 3.2 we attain a £ UTr(m(s)).
By Theorem 3.1 we also obtain a £ UK s . Thus, R — Dn C UJis.

Conversely, suppose that a £ UKS. Thus, by Corollary 3.1 and Corollary 3.2
a £ Um(s). Hence, there exists an 1(A) £ m(s) such that a £ 1(A), i.e., a £ R—Dn.
Consequently, UKs C R — Dn.

The theorem is proved. •

Minimal keys and antikeys are related as follows:

Proposition 3.1. Let s = (R,F) be a relation scheme over R. Then

K^ = tv(K7).

Proof. Assume X £ K~l. From Definition 3.4 we have that for every minimal key
K, K - X ¿ 0, thus I n i i ^ O . Which implies that X £ Trs(Ks). On the other
hand, according to the definition of antikey set, we have

X U { a } D K,

where a £ AT and K £ Ks, which implies that (X — {a }) C\K = 0. Consequently,
X £ Tr(K3), i.e., X £ Tr(Ks). Hence, we have Kj1 C Tr(Ks).

Conversely, suppose that Y £ Tr(Ks). Then Y is not superset of any minimal
keys. Clearly, for all a £ Y, Y - {a} £ Trs(Ks), i.e. (Y - {a}) n K = 0. This means
that

Y U {b} 2 K,

for all b £ Y. Consequently, Tr(Ks) C K~l.
The proposition is proved. •

Some Problems Related to Keys and the Boyce-Codd Normal Form 479

Remark 3.1. Let s = (R, F) be a relation scheme over R. Set Zs = {̂ 4+ : A Ç R},
i.e., Zs is the set of all closures of s. Put Ts = {A £ Zs : A ± R, fiB £ Z3 : A C B).
Hence, Ts is the set of all maximal elements of Zs — {R}. By the definition of the
independent set of s, we can see that Ts = {R — B : B £ m(s)}.

Prom Theorem 3.1, Proposition 3.1 and Remark 3.1 we have

Proposition 3.2. Let s = (R,F) be a relation scheme over R. Then

Tr{Ks) = Ts

The Proposition 3.2 means that for all A £ Tr(Ks) : A+ = A and A=£ R.
Remark 3.2. Let r be a relation over R. From r we compute Er. We construct the
maximal equality system Tr of r. Then we have Tr = (see, e.g., [8]). Denote
elements of Tr by A\,..., At.

Set Mr = {B : B / 0 , 5 = Ai - {a} : a £ R,i = 1, ...,t}. Denote elements of
Mr by B\,..., Bi. We construct a relation r' = {/io, hi,..., hi} as follows:

for all a£R, h0{a) = 0,Vi = 1,...,/

if a € Bi,
otherwise.

Clearly, r' is in BCNF and Kr = Kr>.
We give the following algorithm that from a given relation scheme s constructs

a relation r such that r represents s.
Algorithm 3.1.
Input: a BCNF relation scheme s =< R,F>.
Output: a BCNF relation r such that Kr = Ks.
Method:
Step 1: From s compute Ks.
Step 2: By Algorithm 2.1 we construct the set Tr(Ks).
Step 3: Compute Tr(Ks). Denote elements of Tr(Ks) by A\,..., At.
Step 4: Set Qs = {B : B / 0, B = Ai - {a} : a € R, i = 1,2,..., t}. Denote elements
of Qs by By,..., B{.
Step 5: Construct a relation r = {/to, hi,..., hi} as follows:

for all a £ R,h0(a) = 0,Vi = I,...,I

0, if a e Bi,
ï otherwise.

Based on Proposition 3.1, Remark 3.2 and Proposition 3.2 we have Kr = Ks

and r is in BCNF. It is easy to see that the time complexity of Algorithm 3.1 is
exponential in the number of attributes.

Let r be a relation over R. Let Nr = {Nij : 1 < i < j < |r|}, where Ntj = {a £
R : hi(a) ^ hj(a)}. Then Nr is called the nonequality set of r.

480 Vu Due Thi and Nguyen Hoang Son

Let Mr — {A £ Nr :/BB £ Nr : B C A}. Mr is called the minimal nonequality
system of r.

The following result was discovered in [7].

Theorem 3.3. (Demetrovics and Thi [7]). Let r be a relation over R. Then
Kr = Tr(Mr), where Mr is the minimal nonequality system ofr.

Prom Theorem 3.3 we have an effective application of Theorem 3.3, which is the
following algorithm finding a BCNF relation scheme s such that Ks = Kr from a
given relation r in BCNF.
Algorithm 3.2.
Input: Let r be a BCNF relation over R.
Output: a BCNF relation scheme s =< R,F> such that Ks = Kr.
Method:
Step 1: From r compute Nr.

' Step 2: From Nr compute the minimal nonequality system Mr.
Step 3: By Algorithm 2.1 constructs Tr(Mr). Clearly, Kr = Tr(M r) .
Step 4- Denoting elements of KT by Ai,..., Am. We construct a relation scheme as
follows: s =< R, F >, where F = {A\ —> R,..., Am —^ R}.

Clearly, s is in BCNF and Ks — Kr- The time complexity of this algorithm is
the time complexity of Algorithm 2.1. In many cases this algorithm is very effective
(see Remark 2.1).

4 Special Sperner-systems and transversals
The notion of saturated Sperner-system is defined in [6] as follows:

Definition 4.1. (Demetrovics [6]). A Sperner-system K over R is saturated if for
any A C R, K U { A } is not a Sperner-system.

Now we are going to give a new characterization of saturate Sperner-systems.
To do this, we need the following definition:

Definition 4.2. Let Ti and Q be two hypergraphs over R. Then H > Q iff for every
H EH there exists G £ Q such that H D G, and H <Q iff for every H £ TC there
exists G £ G such that H C G.

From this definition we obtain the following:

Proposition 4.1. Let H ^ 0 and Q be two hypergraphs over R. Then
(1) %>H and 0 < 7i.
(2)H> {0}.
(3){(&}<n.
(4) H>Q (resp. H <Q) does not imply Q < H (resp. Q > U.
(5) H< {R} iff R&H.
(6) Ti C 5 does not imply H <Q.

Some Problems Related to Keys and the Boyce-Codd Normal Form 481

Proof.
(1) It is obvious from Definition 4.2.
(2) Since Ti is hypergraph, we have (2).
(3) By similar arguments we also have (3).

(4) We give a counterexample. Let R = {a, b, c}. Consider the hypergraphs

•H = {{a, &}}, g = { {a } , {b}, {c}, {a, b, c } } .

It holds that U > g (resp. H < G), but it does not hold that g < H (resp.
g > Tt).
(5) Prom definition of hypergraphs and Definition 4.2 we obtain (5).
(6) We give a counterexample. Let R = {a, 6}. Consider the hypergraphs

w = {{o}>, £? = {{*},{&}}•

It holds that H C g, but it does not hold that U <Q.
The proposition is proved. •

Remark 4.1. > and < are transitive on the hypergraphs on R.

Theorem 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if Tr(K) < K.

Proof. Let K be a saturated Sperner-system. Suppose that there exists an A G
Tr(K) such that for every B G K,A <f_ B. By Proposition 3.1 and Definition 3.4
we have K U {A} , a Sperner-system. Which contradicts the hypothesis that K is
saturated. Consequently, Tr(K) < K.

Conversely, suppose that Tr(K) < K, but K is not saturated. Hence, there
exists an A C R such that K U {A} is a Sperner-system. Because R K, for every
C G K we have C C R. Thus, we can construct B such that A C B, K U {B} is
a Sperner-system and for every D(B C D), there exists C G K such that D D C.
Which implies that B G K~l. This contradicts the hypothesis Tr(K) < K, i.e.,
for every A G K~l (because Tr(K) = K~l), there exists B G K such that Ac B.
Consequently, K is saturated. The theorem is proved. •

Definition 4.3. Let K be a Sperner-system over R. We say that K is embedded
if for every A G K there is a B G H such that A C B, where H_1 = K.

Prom Proposition 3.1, Theorem 4.1 we have the following

Proposition 4.2. Let K be a Sperner-system over R. Then K is saturated if and
only ifTr(K) is embedded.

Prom Proposition 3.1 and Proposition 4.2 the following corollary is immediate:

Corollary 4.1. Let K be a Sperner-system over R. Then K is saturated if and
only if K~l is embedded.

Corollary 4.1 was shown in [12].

482 Vu Due Thi and Nguyen Hoang Son

Definition 4.4. Let K be a Spemer-system over R. We say that K is inclusive if
for every A £ K, there exists a B £ such that B C A.

From Proposition 3.1, Definition 4.2 and Definition 4.4, the following proposi-
tion is evident.

Proposition 4.3. Let K be a Sperner-system over R. Then K is inclusive if and
only if K> ¥F{K).

Remark 4.2. (Demetrovics [4]). If K is an arbitrary Sperner-system over R, then
there is a relation scheme s = (R, F) such that K = Ks.

Theorem 4.2. Let K be a Sperner-system over R. Then K is inclusive if and
only if Tr(Tr(K)) < Tr(K).

Proof Suppose that K is an inclusive Sperner-system, but there exists an A £
Tr(Tr(K)) such that for every B £ Tr(K), A <£ B. Hence, Tr(K) U { A } is a
Sperner-system. By Remark 4.2, for K there is a relation scheme s such that
K = Ks. If A+ C R then according to Proposition 3.2 there exists C £ Tr{K) such
that A+ C C, which contradicts the fact that Tr(K) U { A } is a Sperner-system.
Consequently, A is a key of s. It is obvious that there is a minimal key A' (A' C A)
such that A! £ K. Thus, Tr(K) U {A1} is a Sperner-system. By Proposition 4.3,
this is a contradiction. Consequently, Tr(Tr(K)) < Tr(K).

Conversely, assume that Tr(Tr(K)) < Tr(K). By Proposition 4.2, we obtain
which Tr(K) is saturated. From this, Proposition 3.2 and Proposition 4.3, we have
K, an inclusive Sperner-system. The theorem is proved. •

From Theorem 4.2, Definition 4.3, Proposition 4.2 and Proposition 3.1, we have
the following

Corollary 4.2. K is an inclusive Sperner-system if and only if K~l is a saturated
one.

Corollary 4.2 was shown in [12].
From Corollary 4.1 and Corollary 4.2 the following corollary is obvious:

Corollary 4.3. Let K be a Sperner-system over R. Denote H a Sperner-system
for which H = K. Then the followings are equivalent:

(1) K is saturated,
(2) K~l is embedded,
(3) H is inclusive.

References .
[1] Armstrong W. W., Dependency Structure of Database Relationship, Informa-

tion Processing 74, North-Holland Pub. Co. (1974) 580-583.

Some Problems Related to Keys and the Boyce-Codd Normal Form 483

[2] Beeri C., Bernstein P. A., Computational Problems Related to the Design of
Normal Form Relation Scheme, ACM Trans, on Database Syst. 4, 1 (1979)
30-59.

[3] Berge C., Hypergraphs: Combinatorics of Finite Sets, North - Holland, Ams-
terdam (1989).

[4] Demetrovics 3.,Logical and structural investigation of relation datamodel, MTA
SZTAKI Tanulm-ányok, 114 (1980), 1-97 (in Hungarian).

[5] Demetrovics J., On the equivalence of candidate keys with Sperner systems,
Acta Cybernetica 4, (1979), 247-252.

[6] Demetrovics J., F üredi Z., Katona G., A függőségek és az individumok száma
közötti kapcsolat összetett adatrendszerek esetén, Alkalmazott Matematikai
Lapok 9 (1983),13-21.

[7] Demetrovics J., Thi V. D., Describing Candidate Keys by Hypergraphs, Com-
puters and Artificial Intelligence 18, 2 (1999), 191-207.

[8] Demetrovics J., Thi V.D., On the time complexity of algorithms related to
Boyce-Codd normal form, SERDICA-Bulgaricae Mathematicae Publicationes,
19, (1993), 134-144.

[9] Demetrovics J., Thi V. D., Some computational problems related to Boyce-Codd
normal form, Annales Univ. Sei. Budapest. Sect. Comp. 19, (2000), 119-132.

[10] Gottlob G., Libkin L., Investigations on Armstrong relations, denpendency
inference, and excluded functional dependencies, Acta Cybernetica Hungary
9, 4 (1990), 385-402.

[11] Lucchesi C. L., Osborn S. L., Candidate keys for relations, J. Comput. Syst.
Seien. 17, 2 (1978), 270-279.

[12] Thi V. D., Minimal keys and Antikeys, Acta Cybernetica 7, 4 (1986), 361-371.

Received January, 2004

Acta Cybernetica 16 (2004) 427-441.

Relationships Between Closure Operations and
Choice Functions - Equivalent Descriptions of a

Family of Functional Dependencies

Nghia D. Vu*

Abstract
The family of functional dependencies plays an important role in the re-

lational database. The main goal of this paper is to investigate closure op-
erations and choice functions. They are equivalent descriptions of family of
functional dependencies. The main properties of and relationship between
closure operations and choice functions are presented in this paper.

1 Introduction
The motivation of this study is equivalent descriptions of family of functional de-
pendencies (FDs). FDs play a significant role in the implementations of relational
database model. which was defined by E.F Codd. However, relational database
is still one of the most powerful databases. One of the most important branches
in the theory of relational database is that dealing with the design of database
schemes. This branch is based on the theory of FDs and constraints. Armstrong
observed that FDs give rise to closure operations on the set of attributes. And he
shows that closure operation is an equivalent description of family of FDs, that is,
the family of all FDs satisfying Armstrong axiom stated in next section. That the
family of FDs can be described by closure operations on the attributes' set plays
a very important role in theory of relational database. Because this representation
was successfully applied to find many properties of FDs, studying those properties
of closure operations is indirect way of finding that of the family of FDs. Besides
closure operations, there are some other representations of family of FDs. Such as,
the closed sets of a closure form a semilattice. And the semilattice with greatest
elements gives an equivalent description of FDs. The closure operations, and other
equivalent descriptions of family of FDs have been studied widely by Armstrong
[Ar], Beeri, Dowd, Fagin aiid Statman [BDFS], and H. Mannila and K.J.Raiha
[MR]. More, see [DK2], [DHLM], [DT3], and [Li]. Studying equivalent descriptions
of family of FDs helps us to understand deeper the family FDs and widens the

"Institute of Information Technology of Vietnam, Department of Database Management Sys-
tem, 18 I loan g Quoc Viet, Hanoi, Vietnam, email: nghiavu8cse.buffalo.edu

485

486 Nghia D. Vu

study of it. Closure operation is widely known and considered the representation
of family of functional dependencies most studied. Among equivalent descriptions
of functional dependencies, the properties of choice functions are not developed well
enough in contrast to those of closure operations. Moreover, a closure operation
can be derived from a choice function and vice versa. Thus, by studying properties
of choice function satisfying reverse inclusion was studied in connection with the
theory of rational behavior of individuals and groups. For the study on choice func-
tion and relationship between closure operations and choice functions, see [DHLM]
and [Li].

For relation schemes s =< U,F > and t —< U, V >, where U is a set of
attributes and F and V sets of FDs over U, we are always able to build a closure
L\(A) on F, for every A is a set of attributes on U. However, if we build L2(Li(A))
on V, we find out that a meet-semilattice can not be formed from this computation.
That is, we can not form a relation scheme from this computation. We are going to
show in this paper what condition that provide to build the composition L\(L,2(A))
such that a relation scheme can be formed from this composition. In other words,
what is necessary and sufficient conditions that make sure L\(L2{A)) is a closure.
We find this result through the studies of choice functions. Besides that, many
properties of choice functions will be studies in depth. The interaction of choice
functions and closure operations also are investigated widely in this paper. We
also study the relationship between choice functions and FDs. Those results can
be used to build many algorithm problems related to choice functions and closure
operation and family of FDs.

Direct product of decomposition of a closure operation plays an important role
in the theory and practice of relational database. If we consider a relation of
database as a matrix, a row contains the data of one individual, the estimation
of the minimum cardinality of rows of such matrix is very valuable in practice of
relational database. The studies of estimation of the minimum cardinality of rows
for direct product of decomposition of a closure operation can be found variously
in [DFK], [Li], [DK2]. In this paper we present the new notion and properties of
direct product of decomposition of choice function.

In the next section some necessary definitions and facts about relational
database, some equivalent descriptions of family of functional dependencies besides
choice function and closure operation theory are given.

The result of this paper is presented in the third section. They are organized
into six parts as follows.

Part 1 represents necessary and sufficient condition of composition of choice
functions to be a choice function. The studies of composition of closure operations
has been shown through those of choice functions. The main result of this paper
will be presented in depth in Part 1.

The^direct product of decomposition of a choice function is in Part 2.
It will be proposed in Part 3 to study some fundamental properties of a composi-

tion of closure operations and choice functions. We are giving important properties
of intersection, union, and composition of choice functions, which will be fully in-
vestigated in depth in Part 1.

Relationships Between Closure Operations and Choice Functions. 487

In Part 4, we show relationship between and interactive properties of closure
operations and choice functions. In this section we consider the closure for which
choice function defined in next section satisfies some additional properties.

In Part 5, we are presenting a class of special choice functions, which is very
useful in the studying of combinatorial problems related to choice functions and
closure operations.

Part 6 gives some special relationship between choice functions and family of
FDs, which helps us intensively into algorithm problems on building choice func-
tions and closure operations. Since the theoretical result presented here are pre-
liminary. Thus many open problems in the studies of choice functions and closure
operation will be shown in this paper.

2 Basic Definitions
Let us give some formal definitions that are used in the next sections. Those well-
known concepts in relational database given in this section can be found in [Ar,
BB, BDFS, DK2, DTI, and Ul].

A relational database system of the scheme R(a\,..., an) is considered as a table,
where columns correspond to the attributes ai 's while the row are n—tuples of
relation r. Let X and Y be nonempty sets of attributes in R. We say that instance
r of R satisfies the FD if two tuples agree on the values in attributes X, they must
also agree on the values in attributes Y. Here is the formal mathematical definition
of FDs.

Definition 2.1. Let U = {ai,...,an} be a nonempty finite set of attributes. A
functional dependency is a statement of the form A —> B, where A, B Ç U. The FD
A B holds in a relation R = {h\,..., hm} over U ifVhi, hj G Rwe have hi(a) = hj(a)
for all a £ A implies hi(b) = hj(b) for all b G B. We also say that R satisfies the
FDA^B.

Let FR be a family of all FDs that hold in R.

Definition 2.2. Then F = FR satisfies.
(1)A^AeF,
(2) (A ^ B eF,B -» Cf F) ==> (A —> C G F),
(3) (A - » B £ F,A C C, D C B) =» (C D e F),
(4) (A - » B G F, C -» D G F) (A U C -» B U D G F).

A family of FDs satisfying (l)-(4) is called an f-family over U.
Clearly, FR is an f-family over U. It is known [Ar] that if F is an arbitrary

f-family, then there is a relation R over U such that FR = F.
Given a family F of FDs over U, there exits a unique minimal f-family F+ that

contains F. It can be seen that F+ contains all FDs which can be derived from F
by the rules (l)-(4).

Définition 2.3. A relation scheme s is a pair < U,F >, where U is a set of
attributes, and F is a set of FDs over U.

488 Nghia D. Vu

Denote A+ = {a : A —> {a} G A+ is called the closure of A over s. It is
clear that A —> B £ F+ iff B C A+. Clearly, if s = < U, F > is a relation scheme,
then there is a relation R over U such that FR = F+ (see, [Ar]).

Definition 2.4. Let U be a nonempty finite set of attributes and P(U) its power
set. A map L : P(U) —* P(U) is called a closure operation (closure for short) over
U if it satisfies the following conditions:

. (1)AC L{A), (Extensiveness Property)
,(2)A C B implies L(A) C L(B), (Monotonicity Property)

• (3) L(L(A)) = L{A). (Closure Property)
Let s =< U,F > be a relation scheme. Set L(A) = {a : A —• {a} € i*1"1"}, we

can see that L is a closure over U.

Theorem 2.1. [Ar] If F is a f-family and if LF — {a: a £ U and A —> {a} G F},
then Lp is a closure. Inversely, if L is a closure, there exists only a f-family F
over U such that L = LF, and F = {A B : A,B CU,B C L(A)}.

Let L C P(U). L is called a meet-irreducible family over U (sometimes it is
called a family of members which are not intersection of two other members) if
A, B,C G L, then A = BC implies A = B or A = C.

. Let I C P(U), U G I, and A,B £ I Af)B £ I. I is called a meet-semilattice
over U. Let M C P(U).

Denote M+ = { f W : M' C M}. We say that M is a generator of I if M+ = I.
Note that U £ M+ but not in M, by convention it is the intersection of the empty
collection of sets. Denote N = {A £ I : A ± D{A' £ I : Ac >1'}}. In [DK2] it is
proved that N is the unique minimal generator of I.

It can be seen that N is a family of members which are not intersections of two
other members.

Let I be a closure operation over U. Denote Z(L) = {A : L(A) — ^4} and
N{L) = {A £ Z(L) : A ¿ D{A' £ Z(L) : A C A'}}. Z(L) is called the family of
closed sets of L. We say that N(L) is the minimal generator of L.

It is shown [DK2] that if N is a meet-irreducible family then there is a closure
L such that N is the minimal generator of it.

Theorem 2.2. [Ar] There is an on-to-one correspondence between meet- irre-
ducible families and f-families on U.

Theorem 2.3. [DK2] There is a 1-1 correspondence between meet-irreducible
families and meet-semilattices on U.

Definition 2.5. Let M C P(U). M is called a Sperner system over U if A, B £ M,
then A is not a subset of B.

Definition 2.6. Let U be a nonempty finite set of attributes. A family M =
{(>1, {a}) : A C U, a £ U} is called a maximal family of attributes over R iff the
following conditions are satisfied:

(1) a i A,

Relationships Between Closure Operations and Choice Functions. 489

(2) For all (B, {6}) eM,a<£ B and A C B implyA = B.
(3) 3(B, {6}) £ M : a ^ B,a b, and LaUB is a Sperner system over R, where

La = {A: (A, {a}) £ M}.

Remark 2.1.

- It is possible that there are (A, {a}), (B, {6}) £ M such that a ^ b, but
A = B.

- It can be seen that by (1) and (2) for eacha £ U, La is a Sperner system over
U. It is possible that La is an empty Sperner system.

- Let U be a nonempty finite set of attribute and P{U) its power set. According
to Definition 2.6 we can see that given a family Y C P(U) x P(U) there
is a polynomial time algorithm deciding whether Y is a maximal family of
attribute over U.

Let L be a closure over R. Denote Z(L) = {A : L(A) = A} and M(L) = {(A, {A }) :
A i A, A £ Z(L) and B £ Z{L),A C B,A£B imply A = B}.

Z(L) is called the family of closed sets of L. It can be seen that for each
(A, {a}) £ M(L).Ais a maximal closed set which doesn't contain a.

It is possible that there are (A, {a}), (B, {b}) £ M(L) such that a ^ b, but
A — B.

The following theorem which shows that closure operations and maximal fami-
lies of attributes determine each other uniquely.

Theorem 2.4. [DT4] LetL be a closure operation over U. Then M(L) is a
maximal family of attributes over U. Conversely, if M is a maximal family of
attributes overU, then there exists exactly one closure operation L over U so that
M(L) = M, where for all B £ P(U)

{ n A if 3A £ L(M) : B C A,
H(B) = I BCA

[R otherwise,

and L(M) = {a : (a, {a}) € M}.

Now, we introduce the following concept.

Definition 2.7. LetY £ P(U) x P(U). We say that Y is a minimal family overU
if the following conditions are satisfied:

(1) V(A, B), (A',B ') £ F : A c B C U, A c A' implies B C B', A C B' implies
BCB',

(2) Put U{Y) = {B : (A, B) eY} . For each B e U(Y) and C such that C c B
and there is no B' £ U(Y) : C C B' C B, there is an A £ L(B) : A C C,
where L(B) = {A : {A,B) £ 7 } .

490 Nghia D. Vu

Remark 2.2.

-U £ U{Y).

- From A C B' implies B C B' there is no a B' £ U(Y) such that A c B' C B
and A = A' implies B = B'.

- Because A C A! implies B C B' and A = A! implies B = B', we can be see
that L(B) is a Sperner system over R and by (2) L(B) ^ 0.

Let I be a meet-semilattice over R. Put M*(7) = { (A, B) : 3C £ I such that
A C C,A ± n{C : C £ I, A C C},B = n { C : C £ I, A C C } } . Set M(I) =
{ (A, B) £ M*(I) : there does not exist {A', B) £ M*(I) such that A' C A}.

Theorem 2.5. [DT4] Let I be a meet-semilattice over U. ThenM(I)is a minimal
family overU. Conversely, if Y is a minimal family over U, then there is exactly
one meet-semilattice I so that M(I) = Y, where I = { C C R : V(A, B) £ Y : A C
C implies B C C}.

Let Z be an intersection semilattice on U and suppose that H C U, H (£. Zhold
and Z U {H} is also closed under intersection. Consider the sets A satisfying
A £ Z,H C A. The intersection of all of these sets is in Z therefore it is different
form H. Denote it by L(H). H C L(H) is obvious. Let H(Z) denote the set of all
pairs (H , L (H)) where H c U, H ^ Z, but Z U {H} is closed under intersection.
The following theorem characterize the possible sets H(Z):

Theorem 2.6. [DK1] The set {(Ai,Bi)\i — l , . . . ,m} is equal to H(Z) for some
intersection semilattice Z iff the following conditions are satisfied:

AiC-BiC U, Ai ± Bi,

Ai Aj implies either Bi C Aj, or Aj C Bi,

Ai C Bj implies Bi C Bj,

for any i and C C U satisfying Ai C C C Bi(Ai / C / Bi).
There is a j such that either C = Aj or Aj C C, Bj <£ C,C <£. Bj all hold.

The set of pair (Ai ,Bi) satisfying those condition above is called an extension.
Its definition is not really beautiful but it is needed in some application. On the
other hand it is also an equivalent notion to the closures:

Theorem 2.7. [DKlj Z —> H(Z) is a bijection between the set of intersection
semilattices and the set of extensions.

Definition 2.8. Let U be a nonempty finite set of attributes and P{U) its power
set. A map C : P{U) —> P{U) is called a choice function, if every A £ P(U) , then
C(A) C A.

Relationships Between Closure Operations and Choice Functions. 491

U is interpreted as a set of alternatives, A as a set of alternatives given to the
decision-maker to choose the best and C(A) as a choice of the best alternatives
among A.

Let L be a closure operation, we define C and H associated with L as follows:

C(A) = U-L(U-A), (*)

and
H(A) — AC\ L(U — A). (**)

We can easily prove that C(A) and H(A) are two choice functions. And we
name C(A) choice function - 1 (for short, CF-I), and H(A) choice function - II (for
short, CF-II).

Theorem 2.8. The relationship like (*) is considered as a 1-1 correspondence
between closures and choice functions, which satisfies the following two conditions:
For every A,BCU,

(1) If C (A) CBC A, then C{A) = C{B) (Out Casting Property),

(2) If AC B , then C{A) C C(B) (Monotonicity Property).

Theorem 2.9. The relationship like (**) is considered as a 1-1 correspondence
between closures and choice functions, which satisfies the following two conditions:
For every A, B C U,

(1) If If H{A) CBC A, then H(A) = H{B) (Out Casting Property),

(2) If AC B , then H(B) n A C H(A) (Heredity Property).

We also note that both C and H uniquely determine the closure L as the
following ,

L{A) = U - C(U - A) and H(A) = AliL(U- A).

For every A C U, the sets C(A) and H(A) form a partition of A, that is, C(A) U
H{A) = A , and C(A) D H{A) = 0.

Theorem 2.10. There is a 1-1 correspondence between CFs - I and closure oper-
ations on U.

Theorem 2.11. There is a 1-1 correspondence between CFs - II and closure op-
erations on U.

492 Nghia D. Vu

3 Results
3.1 Properties of and Relationship between Composition of

Closure Operations and CFs - I and - II
First of all, we are giving the formal definition of composition of functions.

Definition 3.1. Let f and g be two functions (e.g. closure operations, CFs - I, or
II) on U, and we determine a map T as a composition of f and g the following:

T(X) = f(g(X)) = f.g(X) = fg{X) for every XCU.

In this section we are going to answer two questions. The first one is: given
many CFs - I (or II), what can be said about the composition of those CFs - I (or
II). In other words, what is necessary and sufficient conditions that provide , that
composition to be a CF - I (or II). The second one is: what is the relationship
between that composition of CFs - I (or II) and that of closure operations. And if
we can find the necessary and sufficient conditions that provide that composition
of closure operations to be closure operation through those of CFs - I(or II).

With the same questions, however, first we are going to investigate problems
with two choice functions. For convenient, we show the results of CFs - II. We will
soon see that

Theorem 3.1. Let H\ and H2 be CFs-II on U, then composition H1H2 and H2H1
are a CFs-II on U, and HXH2 = H2HX = Hi n H2.

However, to achieve this result, we necessarily prove those following Lemmas
and Propositions. First we need to prove the following Proposition:

Proposition 3.1. Let Hi and H2 be CFs - II on U, then for all XCU,

Hi{X) n H2{X) is a CF- II on U.

To prove Hi fl H2 is a CF - II, we need to prove the following.

Lemma 3.1. Let L1 and L2 be closure operations on U, then for all XCU,

Li(X) n L2(X) is a closure operation on U. ©
Proof. Assume Li and L2 be two closure operations on U, then for all X C U, it is
easy to obtain that X C Li(X) n L2(X) since X C Li(X) and X C L2(X). Now,
to prove the Monotonicity Property of L\{X) fl L2(X), for every X C Y, we have
Li(X) C Li(Y) and L2(X) C L2(Y). Therefore, Li(X)nL2(X) C Lx{Y)nL2{Y),
so LI(~)L2 satisfies Monotonicity Property. Then, we have to prove Closure Property
of Li n L2 • We always have X C Li(X) D L2(X) C Li(X). Using Monotonicity
Property of Li, we attain Li(X) C Li(Li(X) D L2(X)) C Li(Li(X)) = Li(X).
That means Lx(X) = Li{Li{X) n L2{X)). Similarly, we attain that L2{X) =
L2{Li{X)nL2{X)). Therefore, Li(X)nL2(X) = L1(L1(X)nL2(X))n(L2(Li(X)n
L2(X)). That is, Li D L2 satisfies Closure Property, so Lx n is a closure on U.
The proof is completed. •

Relationships Between Closure Operations and Choice Functions. 493

Now we axe moving on proving Proposition 3.1.

Proof of Proposition 3.1. Assume Hi and H2 be CFs - II on U, then for all X C
U, we have Hi(X) = X n Li(U - X), and H2(X) = X n L2(U - X), with Li
and L2 two closure operations corresponding to Hi and H2 respectively. Thus
Hi(X)f\H2(X) = (X(~\L\(U — X))C\(XC\L2(U — X)) - XnLx{U-X)nL2(i/-X).
However, due to Lemma 3.1, Li(U — X)<lL2(U — X) is a closure operation, that is,
there exists a closure operation L3 such that — X) = Li(U — X) f]L2(U — X).
Thus ,C i (X)nC 2 (X) = XnL3(U-X) = C 3 (X) , with C3 is a CF - II corresponding
to L3. The proof is completed. •

Before proving Theorem 3.1, we need to prove the follows.

Lemma 3.2. Let Hi and H2 be CFs - II on U, then
1) HiH2 = H2HiH2.
2) H2Hi = HiH2Hi

Proof. Assume Hi and H2 be CFs - II on U. Then for all X C U,Hi(X) =
X n Li(U - X) and H2(X) = X n L2{U - X), with Li and L2 two closure op-
erations corresponding to Hi and H2 respectively. HiH2(X) = Hi(H2(X)) =
X n L2{U - X) n Li(U -Xn L2{U - X)) C X. Due to Heredity Property of CFs
- II for H2, we obtain H2{X) n HxH2{X) C H2(HiH2(X)). By using HiH2(X) =
Hi(H2(X)) C H2(X), we attain HxH2{X) C H2{HxH2{X)) C HiH2(X). Hence
HxH2(X) = H2(HiH2(X)), that is, HiH2 = H2HXH2. Similarly, we obtain
H2Hi = H{H2Hi .The proof is completed. •

Lemma 3.3. Let Hi and H2 be CFs - II on U, then following is equivalence:
1)HiCH2

2)HiH2 = Hi

Proof.
(1 —» 2). Assume Hx and H2 be CFs-II on U and Hi C H2. Since Hl is a CF-II,
Hi must satisfy Out Casting property: if Ht(X) C Y C X , then Hx{X) = HX(Y).
Therefore, we have Hi C H2 or Hy{X) C H2{X) C X for every X C U, so
Hi(H2(X)) = Hi(X) or we conclude that HXH2 = Hi.

(2 1). Assume Hi and H2 be Ci's - II on U and H\H2 = Hi. Since H\ and H2

are CFs - II, according to Definition of choice function, we have HXH2 C H2, but
HiH2 = Hi, so we have Hi C H2. The proof is completed. •

Easily, we obtain the following Corollary.

Corollary 3.1. IfH is a CF - II on U, then HH = H.

Proof of Theorem 3.1. Assume Hx and H2 be CFs - II on U. Then for all X C
U, H2(X) C X . Due to Heredity Property of CF - II for Hi, we obtain Hi(X) n
H2(X) C Hi(H2(X)). Besides that, Hi(H2(X)) C H2(X) C X , we obtain Hi n
H2(X) C HiH2(X) C X . By Proposition 3.1, Hi(X) fl H2(X) is a CF - II. Using

494 Nghia D. Vu

Out Casting Property for Hi n H2, we achieve Hi n H2(H1H2{X)) = Hi n H2(X)
or Hi(HiH2(X)) n H2(HlH2(X)) = HlC\H2{X). Due to Corollary 3.1, we obtain
Hi(HiH2{X)) = HiH2(X), and Lemma 3.2, we obtain HxH2{X) = H2HiH2(X).
Therefore, we attain that HiH2(X) = Hi n H2{X), that is H\H2 = Hi n H2.That
means HiH2 is a CF-II. Similarly, we obtain H2HX = H\ Pi H2 and H2Hi is a
CF-II. The proof is completed. •

We can generalize Theorem 3.1 by the following
Generalization 3.1. Let Hi be CFs - II on U with i = 1 —> n , then
HiiHi2....Hnn_i)Hin is a CFs - II on U, and

n
HnHi2...Hin=pi Hi

i=1

with {Hn,Hi2.,..., Hi(n_i),Hin} be permutations of {Hi, H2,.., i/(n_i), Hn}.

Thus, for CFs - II, a composition of CFs - II is always a CF - II. Now we move
on the composition of CFs - 1 before investigating on closure operations.

Theorem 3.2. Let Cx and C2 be CFs - I on U. A composition of Ci and C2,
denoted as C\C2, is a CF - I if and only if

CiC2Ci = C\C2.

However, before proving Theorem 3.2, we need to have the following Lemmas.

Lemma 3.4. Let Ci and C2 be CF-Is on U. Then
1) CiC2 c Ci,
2) CiC2 C C2,
3) C2Ci CCi,
4) C2Ci c C2.

Due to Definition of choice function, and Monotonicity Property of CFs - II,
clearly we obtain that Lemma.

Lemma 3.5. Let Ci and C2 be CFs - I on U, then following is equivalence:
1) Ci c C2,
2)CiC2 = Ci.

Proof The proof of this Lemma is similar to that of Lemma 3.3. •

Easily, we obtain the following Corollary.

Corollary 3.2. If C is a CF - I on U, then CC = C.

Now we move on proving Theorem 3.2.

Relationships Between Closure Operations and Choice Functions. 495

Proof Theorem 3.2. Assume Cx and C2 be CFs-I on U and the composition C1C2
also a CF - I. Due to Lemma 3.4, we have CiC2 (X) C Ci{X) C X. Due to Out
Casting Property of composition CiC2, we have CiC2Ci(X) = CxC2(X).

Inversely, assume C\ and C2 be CFs-I on U and the composition C\C2 satisfying
that C\C2C\ = CXC2. For all X C U, it is clear to obtain that C\{C2{X)) C
C2(X) C X. It means C\C2 is a choice function. Now, to prove the Monotonicity
Property of the composition CXC2. For every I C Y , using Monotonicity Property
of C i and C 2 , we have C2{X) C C2{Y), then CX{C2{X)) C CX{C2{Y)). That means
that CXC2 satisfies Monotonicity Property. Then, we have to prove Out Casting
Property of the composition CXC2. For all X and Y C U,CXC2(X) C Y C X,
we need to prove that CXC2(X) — CXC2(Y). Using Monotonicity Property of
CX, we obtain that C2{CXC2(X)) C C2{Y) C C2(X). Applying Monotonicity
Property o f Ci once again, we have CX(C2CXC2(X)) C CX(C2(Y)) C CX(C2{X)).
However, CXC2CX = CXC2. Therefore, CXC2C2{X) C CXC2{Y) C CXC2{X).. Due
to Corollary 3.2, we obtain that CXC2{X) C CXC2{Y) C CXC2(X) That means
CXC2(X) = CXC2(Y). That is, CXC2 satisfies Out Casting Property, so CXC2 is a
CF-I on U. The proof is completed. •

We generalize the Theorem above.
Generalization 3.2. Let CX,C2,.., and Cn be CFs-I on U. A composition of
CX,C2, ...,and Cn, denoted as CxC2....Cn-XCn, is a CF-I if and only if

cxc2...cn-xcncxc2....cn-x = cxc2...cn-xcn.
Proof. We prove this Generalization by induction. It is obvious for n = 1. The
Theorem 3.2 proves the case that n = 2.

For n = k, we assume that Ci,C2 , . . , and Ck be CFs-I on U, and the com-
position of Ci,C2,..., and Cfc, denoted as CxC2....Ck-XCk, is a CF - I. We need
to prove that, for n = k + 1, the composition CxC2....CkCk+x is a CF - I iff
CxC2...CkCk+xCxC2....Ck = CxC2...CkCk+x. Surely, since CxC2....Ck-XCk is a C F
-1, by using Theorem 3.2, we obtain that the composition CxC2....CkCk+X is a CF
- 1 iff CxC2...CkCk+xCxC2....Ck = CxC2...CkCk+x. The proof is completed. •

Now we move on the relationship between the composition of closure operations
and CFs -1. We have the following Theorem.

Theorem 3.3. Let Lx and L2 be closure operations and Cx and C2 be CF-Is
corresponding to Lx and L2 respectively on U. The following are equivalent:

1) CXC2 is a CF-I,
2)LXL2 is a closure operation.

Proof. (1 —> 2). Assume Lx and L2 be closure operations, and Cx and C2 be CF-
Is corresponding to Lx and L2 respectively on U and CXC2 is a closure operation.
Then for all X C U, we have Lx{X) = U-Cx(U-X), and L2(X) = U-C2(U-X).
Thus, LxL2(X) = Lx(L2(X)) = U-CX(U-(U- C2(U - X))) = U- CX{C2(U -
X)) = U — CXC2(U — X). However, CXC2 is a closure operation. Therefore.

496 Nghia D. Vu

there exists a closure operation C3 such that CZ(U — X) = C\C2{U — X). Thus,
LXL2{X) = U — C3{U — X) = LZ(X), with L3 a closure operation corresponding
to C3 . That is L1L2 is a closure operation. The proof is completed.

(2 —» 1). Assume L\ and L2 be closure operations and C\ and C2 be CF-
Is corresponding to L\ and L2 respectively on U and L\L2 is a closure operation.
Then for all X C U, we have CI(X) = U-LI(U-X), and C2(X) = U-L2(U-X).
Thus, C i C 2 (X) = CI(C2(X)) = U- LI(U - (U - L2{U - X))) = U- Li (L 2 (t / -
X)) = U — L\L2(U — X) . However, L\L2 is a closure operation. Therefore,
there exists a closure operation L3 such that L3(C/ — X) = L\L2(U — X) . Thus,
C\C2(X) = U — L3(U — X) = CS{X), with C3 a choice function-I corresponding
to L3. That is C\C2 is a CF-I. The proof is completed. •

It can be seen that.
Generalization 3.3. Let L, be closure operations and {C , } be CFs - 1 correspond-
ing to Li respectively on U, with i = 1 —> n. The following are equivalent:

1) L\L2...Ln is a closure operation
2) CIC2...CN is a CF-I

And we also have LiL 2 . . .Ln (X) = U - CIC2...CN{U - X) and C*E2,..CN{X) =
U — L\L2..:LN(U — X).

Through Theorem 3.2 and 3.3, it is easy to obtain the fallowing Theorem.

Theorem 3.4. Let L\ and, L2 be closure operations ori U. A composition of L\
and L2, denoted as L\L2, is a closure operation if qnd only if

L\L2L\ = L\L2.

For generalization, we have the same conclusion for following Generalization as
Generalization 3.2.
Generalization 3.4. Let LI,L2, .., and LN be closure operations on U. A compos-
ite function of L\, L2,..., and LN, denoted as LiL2Ln_iLn , is a closure operation
if and only if

3.2 Direct Product of CFs - I and - II
The direct product of closure operations plays very important role in theory of
relational database, especially in combinatorial problems. Plenty of properties re-
lated to direct product of closure operation can be found in [DFK] and [Li]. By
relationship and interaction between closure operations and choice functions, we
introduce the new definitions of direct product of choice function-Is as well as -lis.
First of all, we have the following.

Theorem 3.5. [Li] Let L\ and L2 be closure operations on the disjoint ground
sets U\ and U2 respectively. The direct product of closure operations L\ x L2 is
defined as following

Relationships Between Closure Operations and Choice Functions. 497

(Lx x L2)(X) = Lx(X П U\) U L2(X П U2), X С Ui U U2.

Then (Li x L2)(X) is a closure operations on UiUU2.

Here we give the Generalization of above Theorem.
Generalization 3.5. Let {Li\ i = 1 —> n} be closure operations on the disjoint
ground sets Ui respectively. The direct product of those closure operations L\ x
L2 x ... x Ln is defined as following

n
(Li x L2 X . . . x Ln){X) = (J Li{X П Щ

i = l

with X С Ui U U2 U ... U [/„.
Then (L\ x L2 x ... x Ln)(X) is a closure operation on U\ U U2 U ... U Un.

Theorem 3.6. Let Cx and C2 be CFs - I on the disjoint ground sets Ux and U2

respectively. The direct product of CFs - I, Cx x C2, is defined as following

(Ci x C2)(X) = Ci(X П Ui) U C2(X П U2), XCUi U U2.

Then (Ci x C2)(X) is a CF - I onUiU U2.

Proof. For all X С Ui II U2, {Cx x C2)(X) = Cx(X П Ux) U C2(X n U2) C (J i n
Ux) U (X П U2) С 1 П (Ux U U2) = X. Thus, {Cx x C2)(X) С X. For every X and
Y С Ui U U2 and X С Y, then X П Ux С Y П Ui , and X П U2 С Y П U2. By
using Monotonicity Property of Ci and C2, we obtain Cx(Xr\Ux) С C\(YC\U\) and
C2(XnV2) С C2{YP\U2). Hence Cx(XC\Ux)llC2(XC[U2) С Cx(YnUx)l)C2(YnU2),
that is/^A - C2)(X) С (Сi x C2)(Y) or (Cx x C2) satisfies Monotonicity Property.
Now we need to show that (Cx x C2)(X) satisfies the Out Casting Property also.
That is, for every X, Y С Ux U U2 and (Cx x C2)(X) = Cx(X П Ux) U C2(X П U2) С
У С X, we need to show that (Ci x C2)(X) = (Cx x C2){Y). Since У С X, we have
(Ci x C2)(Y) С (CI x C2)(X). And it is obvious that Cx(X П Ux) С Cx{X П Ux) U
C2{XC\U2) С У. Thus, we have Cx{XnUx)nUx С YnUx or Cx(XC\Ux) С YnUx.
Using Monotonicity Property of Cx, we have Cx{Cx(X П Ux)) С CX(Y П Ux) or
Cx(X П Ux) С CX(Y П Ux) due to Corollary 3.2. Similarly, we obtain C2(X П Ui) С
C2(Y П Ui). Therefore Сi(X П Ui) U C2(X П U2) С Ci(Y П Ui) U C2(Y П U2) or
(CI x C2)(X) С (Ci x C2)(Y). Hence (CI x C2)(X) = (Ci x C2)(Y). The proof is
completed. •

Generalization 3.6. Let {Ci\ i = 1 —> n} be CFs - 1 with on the disjoint ground
sets {Ui} respectively. The direct product of CFs -1, Cx x C2 x ... x C„, is defined
as following 71

(CI X C2 X ... X Cn){X) = |J Ci(X П Ui)
i= 1

with X С Ux U U2 U ... U Un.
Then (Ci x C2 x ... x Cn){X) is a CF - 1 on Ux U U2 U ... U Un.

498 Nghia D. Vu

T h e o r e m 3.7. Let Hx and H2 be CFs - II on the disjoint ground sets Ux and U2

respectively. The direct product of CFs - II, Hi x H2, is defined as follouring

{Hi x H2)(X) = Hi(X П Ui) U H2{X П U2), XCUiU U2.

Then (Hi x H2){X) is a CF - II on Ui U U2.

Proof. For all X С Ux U U2, {Hi x H2){X) = Hx(X П Ux) U H2(X П U2) C (X n
Ui) U (J i n U2) С X П (Ui U U2) = X. Thus, {Hi x H2){X) С X. For every X
and У С Ui U U2 and X С Y, we need to prove that (Hi x H2) satisfies Heredity
Property. Since X С Y, we have X П Ui С Y П Ui, and X П U2 С Y П U2. By using
Heredity Property of Hi and H2, we obtain Hi(YnUi)n(XnUi) С Hi(XnUi) or
Hi(Y П Ui) П X С Hi(X П Ui). Similarly, we have H2(Y П U2)C\X С H2(X П U2).
Hence, (HX(Y П Ui) П X) U (H2(Y П U2) П X) С Hi(X П Ui) U H2(X П U2), then
(Hi(Yr\Ui)UH2(YnU2))nX С Hi(XnUi)\JH2(X<lU2) that is, (HixH2)(Y)nX С
(Hi x H2)(X) or (Hi x H2) satisfies Heredity Property.

Now we need to show that (Hi x H2)(X) satisfies the Out Casting Property
also. That is, for every X and Y С Ui U U2 and (Нг x H2)(X) = Hx(X П Ux) U
H2(X П U2) С У С X, we need to show that (Hx x H2)(X) = (Hx x Я 2) (У) .
It is obvious that Hx(X n Ux) С Hx(X П Ux) U H2(X П U2) С У С X . Then
Нг(Х П Ui) П Ui С У П Ux С X П Ux or Hi(X П Ui) С У n Ui С X П Ux. Using
Out Casting Property of Hx, we obtain Hx(X П Ui) = Hi(Y П Ui). Similarly, we
attain H2(X П U2) = Я 2 (У П U2). Therefore Hx(X П Ux) U H2(X П U2) = HX(Y П
Ui) U H2(Y П U2) or (Hi x H2)(X) = (Hi x Я 2) (У) . The proof is completed. •

Generalization 3.7. Let {Hi\ i — 1 —> n} be CFs - II with on the disjoint ground
sets Ui respectively. The direct product of CFs - II, Hi x Я 2 x ... x Hn, is defined
as following n

(Hi x H2 x . . . x Hn)(X) = (J Hi(X П Ui)
¿=1

with X С Ui U U2 U ... U Un.
. Then (Hi x H2 x ... x Hn)(X) is a CF - II on Ui U U2 U ... U Un.

3.3 Properties of CFs - I and - II and Closure Operations
Propos i t ion 3.2. Let Ci and C2 be CFs-I on U, then for all X С U,

Cx (X) U C2(X) is a CF-I on U.

Proof. Assume Cx and C 2 be CFs-I on U, then for all X С U, it is easy to obtain
that Ci(X) U C2(X) С X since C i (X) С X and C2(X) С X. Now, to prove the
Monotonicity Property of Ci U C2 , for every X С У , we have Ci(X) С Ci(Y) and
C2(X) С C2(Y). Therefore, Ci(X) U C2(X) С Ci(Y) U С 2 (У) , so Cx U C2 satisfies
Monotonicity Property. Then, we have to prove Out Casting Property of Cx U C2.
We always have Cx(X) С Cx(X) U C2(X) CY CX. Using Out Casting Property

Relationships Between Closure Operations and Choice Functions. 499

of Ci, we attain Ci(X) = Ci(Y). Similarly, we attain that C2(X) = C2(Y) from
C2(X) C Ci (X) U C 2 (X) c y c X . Therefore, Ci U C2(X) = Ci U C2(Y) . That
is, C\ U C2 satisfies Out Casting Property, so C\ U C2 is a CF-I on U. The proof is
completed. •

Proposition 3.3. Let H\ and H2 be CFs-II on U, then for all X C U,

Hi(X) U H2{X) is a CF-II on U.

Proof. Assume Hi and H2 be CFs-II on U. Similarly to above proof, for all X C U
it is clear to obtain that Hi(X) U H2(X) C X since Hx{X) C X and H2{X) C X.
Now, to prove the Heredity Property of Hi U H2, for every X C Y, we have
Hi(Y)DX C Hi(X) and H2(Y)nX C H2{X). Therefore, Xn(Hi(Y)UH2(Y)) C
Hi (X) U H2(X), so Hi U H2 satisfies Heredity Property. For Out Casting Property
of Hi U H2 , we prove the same as the proof of Proposition 3.2. The proof is
completed. •

From Proposition 3.3, we lead to the following Lemmas.

Lemma 3.6. Let Li and L2 be closure operations on U, then for all X C U,

Li(X) U L2(X) is a closure operation on U.

Proof. Assume Li and L2 be closure operations on U, then for all X C U, we
have Li(X) = X U HX{U - X), L2(X) = X U H2(U - X), with Hi and H2 two
choice function-IIs corresponding to Li and L2 respectively. Thus Li(X)\JL2(X) —
X\JHi{U-X)l)H2(U-X). However, due to Proposition 3.3, Hi{U-X)\jH2(U-X)
is a CF - II, that is, there exists a choice function H3 such that H^U — X) =
Hi{U-X)UH2(U-X). Thus, Li(X)UL2{X) = XL)H3(U-X) = L3(X), with
L3 a closure operation corresponding to H3. The proof is completed. •

Using similar method of above proof, we can achieve two following.

Lemma 3.7. Let Ci and C2 be CFs - I on U, then for all X C U,

Ci (X) D C2(X) is a CF - Ion U.

Proof. Assume Ci and C2 be CFs - I on U, then for all X C {/, we have C\(X) =
U — Li(JJ—X),andC2(X) = U — L2(U — X),withLi and L2 two closure operations
corresponding to Ci and C2 respectively. Thus Ci(X) D C2(X) = (U — LX{U —
X))n(U-L2(U-X)) = U-Li(U-X)UL2(U-X) . However, due to Lemma 3.6,
Li(U—X)L>L2(U—X) is a closure operation, that is, there exists a closure operation
L3 such that L3(U - X) = Li(U -X)U L2{U - X) . Thus, Ci(X) U C2{X) =
U — L3(U — X) = C3(X) , with C3 a CF - I corresponding to L3. The proof is
completed. •

Proposition 3.4. Let H be a CF-II on U. Then for all X C U, we have

H{X)nH(Y) C H(X fl Y).

500 Nghia D. Vu

Proof. For all X and Y CU, due to Monotonicity Property of closure operations,
we easily obtain L{X) n L(Y) C L(X U Y). Therefore, L(U - X) n L(U - Y) C
L((U - X) U (U - Y)). Using L((U - X) U (U - Y)) = L(U - X n Y), we have
L(U — X) n L(U — y) C L(U-XC\Y). Hence, (X n Y) fl L(U - X) n L(U - Y) C
(X n y) n L ((i 7 - X n y) or H(X)f\H{Y) C H(XnY). The proof is completed. •

Similarly, we obtain the follow

Proposition 3.5. Let H be a CF-II on U. Then for all X CU, we have H(X U
Y) C H(X)UH{Y).

Proof. For all X and Y CU, due to Monotonicity Property of closure operations,
we easily obtain L(X n 7) C L{X) n L(Y). Therefore, L((U - X) n (U - y)) C
L(U - X) n L(U - Y). Using L{{U - X) n {U - Y)) = L(U - X U y) , we have
L(U - X U Y) C L(U - X) n L(U - K). Hence, (X U Y) fl L{(U -X\JY) C
(X U Y) n L(U -X)C\ L(U - Y) or H(X n Y) C (X n L(U - X) n L[U - y)) U
(y nL{U - X) n L(U - Y)) C (X nL(U - X)) U (7 n L(U - Y)) = H(X) U H{Y).
The proof is completed. •

Lemma 3.8. Let H\ and be CFs-II on U. Then
1) HiH2 C H2

2) H2Hr C Hi

Since Hi and H2 are a CFs-II , it is obvious to have above Lemma.

Lemma 3.9. Let Hi and H2 be CFs - II on U, then
1) Hi n H2 C HiH2

2) Hi<lH2C H2Hi

Proof. Assume Hi and H2 be CFs - II on U. Then for all X C U,H2{X) C X.
Due to Heredity Property of CFs-II, we obtain Hi(X)nH2{X) C Hi\H2{X)), that
is, Hi H H2 C HiH2. Similarly, we achieve Hi D H2 C H2HX. •

Proposition 3.6. Let Hx and H2 be CFs - II on U, then Hr C\H2 = HiC\HiH2 =
H2 n H2Hi.

In order to prove this Proposition, we need to have the following Lemma.

Lemma 3.10. Let Hx and H2 be CFs - II on U, then Hi n H2 = Hi(Hi n H2) =
H2(HinH2).

Proof. Assume H\ and H2 be CFs - II on U. Then for all X C U, we always
have Hi(X) n H2(X) C H2(X). Due to Heredity Property of CF-IIs, we obtain
Hi{H2{X))DHi(X)r\H2(X) C Hi{Hi(X)r\H2{X)). According to Lemma 3.9, we
obtain Hi(X) n H2(X) C Hi(Hi(X) n H2(X)). However, Hi(Hi(X) n H2(X)) C
Hi{X) n H2(X). Hence, Hi(Hi(X) fl H2(X)) = Hi{X) n H2(X), that is, Hi n
H2 = Hi{Hi n H2). Similarly, we achieve Hx n H2 = H2(Hl n H2). The proof is
completed. •

Relationships Between Closure Operations and Choice Functions. 501

Proof of Proposition 3.6. Assume HX and H2 be CFs - II on U. For all X G
U due to Proposition 3.4 and Corollary 3.1, we obtain H\{X) fl Hi(H2(X)) C
Hi(Hi(X)nH2(X)). However, HlC\H2 = Hi(H1nH2) according to Lemma 3.10,
and Hi n H2 C H\H2 due to Lemma 3.9. Therefore, Hx(X) n Hx{X) n H2(X) C
Hi(X) n Hi{H2{X)) C Hi(X) n H2{X). Then, Hi(X) n Hi(H2(X)) = Hi{X) n
H2(X), that is, Hi n H2 = Hi n HXH2. Similarly, we obtain Hi n H2 = H2 nH 2 H X .
The proof is completed. . •

From Proposition 3.6, it is clear to obtain the follow.

Corollary 3.3. Let Hi and, H2 be CFs - II on U, then Hif\H2 = HiDH2(HinH2).

3.4 Interaction between Closure Operations and CFs - I
Let I be a closure and £ a corresponding full family of FDs. We recall that an FD
X —> Z £ T, iff Z C. L(X). In this section, we consider the closures for which CF -
I and -II defined in section 0 satisfy some additional properties. We are now going
to give some properties.

Proposition 3.7. Let L and C be a closure operation and a CF-I corresponding
to Lrespectively on U. The following are equivalent:

1) C(XUY) = C(X)UC(Y),
2) L(X n y) = L(X) n L{Y),
3) X —> Z and Y Z are FDs from £ iff X n Y -> Z.

Proof. (1 -> 2). Let C satisfies 1). Then for all X,Y C U : L(X n Y) = U -
C(U - X n Y) = U - C((U - X) U (¡7 - Y)) = U - C{U - X) U C{U — Y) =
(U - C(U - X)) n (U - C(U - y)) = L(X) n L{Y). That is, L satisfies 2).

(2 1) Let L satisfies 2). Then for all X,Y C U : C (X u y) = U-L(U-X\JY) =
U - L((U -X)n(U-Y)) = U- L(U -X)n L{U -Y) = (U- L(U - X)) u (17-
L(U - Y)) = C(X) U C(Y). That is, C satisfies 1).

(2 <-> 3) Let L satisfies 2). Then for all X, Y C U : L(X n Y) = L(X) n L(Y). For
Z £ L(X n Y) iff X n y Z. And Z G L(X) n L(Y), that means Z G L(X) and
Z G L(Y) iff X -> Z and Y -> Z. •

Proposition 3.8. Let L and C be a closure operation and a CF-I corresponding
to L respectively on TJ. The following are equivalent:

1) C(XnY) = C(X)r\C(Y),
2) L(X U y) = ¿ (X) U L(Y).

Proof. (1 -> 2). Let C satisfies 1). Then for all X, Y C U : L(X U Y) = U -
C(U - X U Y) - U - C({U - X) C\ (U - Y)) — U — C(U - X) n C(U - Y) =
(U - C{U - X)) U {U - C(U - Y)) = L(X) U L(Y). That is, L satisfies 2).

(2 — 1) Let L satisfies 2). Then for all X, Y C U : C (X n Y) = U-L{U-XnY) =
U - L((U - X) U (U - Y)) = U - L(U - X) U L{U - Y) = (U - L(U - X)) n (U -
L(U - Y)) = C(X) n C(Y). That is, C satisfies 1)". •

502 Nghia D. Vu

Proposition 3.9. Let Lx and L2 be closure operations and Cx and C2 be CF-Is
corresponding to Lx and L2 respectively on U. The following are equivalent:

1) Ci(X) n C2{X) C CxC2(X)
2) LxL2{X) C Lx{X)UL2(X)

Proof. (1 -> 2). Let Ci and C2 satisfy 1). Then for all X C U : LxL2(X) = U -
CxC2(U-X) C U — CX(U — X)C\C2(U—X) = (U-Cx(U-X))ll(U-C2(U-X)) =
Lx(X) U L2(X). That is, Lx and L2 satisfy 2).

(2 -> 1). Let Lx and L2 satisfy 2). Then for all X C U : Cx(X) n C2{X) =
(U-Lx(U-X))n{U-L2(U-X)) = U-Lx(U-X)UL2(U-X) C U-LxL2(U-X) =
CxC2(X). That is, Ci and C2 satisfy 1). •

3.5 Special cases of Choice Function-Is and -lis
Theorem 3.8. Let consider a partition V : {VX,V2, V 3 , . . . , Vn}, that is, Vi fl Vj = 0 ,
•with i ± j. Let construct a set

n
W{A) = A n (J Vi

t=i

for all ACU. Then, W(A) is a CF-I on U.

Proof. For all A C U, it is clear that W(A) C A. Now we need to prove that W
satisfies Monotonicity and Out Casting Property. We have

n n
W(A) = An\JVi = \J(AnVi)

¿ = 1 i = l

n n n n

=» W(W(A)) = U (A n U Vi)nVj = JJ(jJ (A n Vin^-))
j = l ¿ = 1 j = l i = l

n
= U(AnVi) = W(A),

i=l

since Vl n Vj = 0, for i ^ j. For A C B, it is obvious that A n Vi C B n K, then

n n
IJ (A n Vi) C (J (B n Vi).
»=1 ¿=1

Thus, W(A) C W(B), so W satisfies Monotonicity Property.
To prove Out Casting Property of W, let assume W(A) CBCA,v/e have show

that W(A) = W(B). Using Monotonicity Property of W, we attain W(W(A)) C
W{B) C W(A). However, W{W{A)) = W{A), we lead to that W(A) = W(B).
The proof is completed. •

Relationships Between Closure Operations and Choice Functions. 503

We can illustrate W(A) as the sura of all intersections of A and Vi , for i = 1 —»
n. Here is a property of W.

Proposition 3.10. Let consider partition ofV : {Vi, Vj, V3..., Vn}, that is, ViHVj —
0, with i ± j, and partition ofT: {Ti,T2,T3...,Tm}, that is, TinTj = 0, with i ± j.
For all AÇU, let construct two CF-I as the following:

n
Cx(A) = A n | J V i ,

¿=1
m

Ci(A)=An\jTj.
3=1

Then, Ci(A) n C2(A) = C1C2(A), and both also are CF-Is.

Proof. For all A Ç U, we have
n m n m

Ci (A) n C2(A) = (A n (J Vi) n (A n U Tj) = A n (|J Vf D (J Tj)
i= 1 j = l 1=1 j=l
m n

= (An{jTj)n\JVj=C1C2(A).
j=1 i=l

However,
i V i I V tit ff«r

Сг(А) П C2(A) = А П (IJ Vi П |J Tj) = A n (J(IJ Ts П Vi).
¿=1 j=1 ¿=1 j=1

It is easy to see that, for every x фу ,
m m

(U ^ n v I) n ((j T i n v w) = 0.
j = 1 3 = 1

That is, {(|JTj П Vi)\i = 1 —> n,j = 1 —» m} is a partition. Due to Theorem
3.10, we conclude that Ci{A) П C2(A) as well as СгС2(А) is a CF-I. The proof is
completed. •

Let us define WC(A), the complementary set of W(A), as WC(A) = A - W(A),
that is

n n n n
WC(A) = A - А П IJ Vi = (A - A) U (Л - (J Vi) = A - (J VI = f| (A - Vi).

¿=1 ¿=1 t=l i=l

Since W(A) is a CF-I, and CF-I and CF-II of A form a partition of A, for every
A Q U , we lead to the following Theorem.

504 Nghia D. Vu

Theorem 3.9. Let consider partition ofV : {Vi, V2, V3..., V^}, that is, V{ n Vj = 0,
with i ^ j. Let construct a set

Tl
WC(A) = F](A-VI)

t=i

for all AC u. Then, WC(A) is a CF-II on U.

3.6 Discussion and Open Problems
Given a set of F of functional dependencies over U and the attribute set X C U, so
the functional dependencies closure of X, L(X), is the set {A C U\X —» A G F}. It
turns out that this set is independent of the underlying attribute set U. We have
known that two types of choice function -I and -II associated with L as follows:

C{A) = U — L(U — A), a n d H { A) = ANL(U- A).

Thus, given a set of F of functional dependencies, we define, X CU, choice-I and
-II of X as follows:

HF(X) = XN{ACU\(U-X)^ AEF} (1)

CF(X) = U-{ACU\{U-X)^ AEF} (2)

It can be seen the following Propositions.

Proposition 3.11. Let F be a set of functional dependencies and X —> Y an
functional dependency. Then X —> Y € F iffY <£. CF(U — X).

Proposition 3.12. Let F be a set of functional dependencies and X —> Y an
functional dependency. Then X —> Y G F and Y ^ X iffY C HP(U — X).

Now we move to compute CF(X) and HP(X). First of all, we now mention
about the Algorithm of computing a closure from a set of functional dependencies
and X a set of attributes.

In [BB], we were known the Algorithm to computing closure operation, by
using relation between choice functions and closure operation, we can easily build
Algorithm to compute choice functions.

Even though we already have an algorithm to compute closure of X , from the
Theorem 3.4 above as follows: Let L\ and L2 be closure operations on U. A
composite function of L\ and L2, denoted as L\L2, is a closure operation if and
only if

L\L2L\ = L\L2.

Open problems are set up as following:

Relationships Between Closure Operations and Choice Functions. 505

Open Problem 1. Let s =< U,F > and t = < U, V > two relation schemes, where
U is a set of attributes and F and V are two different sets of FDs over U. We define
F+ and V+ be a set of all FDs that can be derived from F and V respectively.

1) Is it possible build a closure L\ and a closure L2 from F+ and V+ respectively
such that LXL2 = L\L2LI?

2) If so, how can we design L\L2 ? In other word, how can we design a relation
scheme w =< U, H > from which we can build H+ , from which we can
design the closure LIL2 = L\L2L\1

3) If so, is it possible to generalize this design for more than two closure opera-
tions?

Open Problem 2. A similar problem as above, but for choice -I and -II of X.

Open Problem 3. Algorithm problems related to union and intersection for choice
-I and -II and closures.

Open Problem 4. Generalize those theories presented in this paper to mutilvalued
dependencies.

References
[Ar] Armstrong W.W., Dependency Structures of Database Relationships. In-

formation Processing 74, Holland Publ. Co., 1974, 580-583.

[BB] Beeri C., Bernstein P. A., Computational problems related to the design
of normal form relation schemes. ACM Trans, on Database Syst. 4, 1,
1979, 30-59.

[BDFS] Beeri C., Dowd M., Fagin R., Staman R., On the Stucture of Armstrong
relations for Functional Dependencies. J. ACM 31, 1, 1984, 30-46.

[DFK] Demetrovics J., Furedi Z., Katona G.O.H., Minimum matrix representa-
tion of closure operations. Discrete Applied Mathematics, North Holland
11, 1985, 115-128.

[DK1] Demetrovics J., Katona G.O.H., Extremal combinatorial problems of
databases. In: MFDBS'87, 1st Symposium on Mathematical Fundamen-
tal of Database Systems, Dresden, GDR, January, 1987, Lecture Notes in
Computer Science, Berlin: Spinger 1987, 99-127.

[DK2] Demetrovics J., Katona G.O.H., A survey of some combinatorial results
concerning functional dependencies in database relations. Annals of Math-
ematics and Artificial Intelligence, 7, 1993, 63-82.

506 Nghia D. Vu

[DLM] Demetrovics J., Libkin L., Muchnik I.B. Functional dependencies in rela-
tional databases: A lattice point of view. Discrete Applied Mathematics,
North Holland, 40, 1992, 155-185.

[DHLM] Demetrovics J., Hencsey G., Libkin L., Muchnik I.B., Normal Form Re-
lation Schemes: A New Charaterization. Acta Cybernetica, Hungary, 10,
3, 1992, 141-153.

[DTI] Demetrovics J., Thi V.D., On algorithms for generating Armstrong rela-
tions and inferring functional dependencies in the Relational datamodel.
Computers and Mathematics with Applications , Greate Britain, 26, 4,
1993, 43-55.

[DT2] Demetrovics J., Thi V.D., Some results about normal forms for functional
dependencies in the relational data model. Discrete Applied Mathematics,
North Holland, 69, 1996, 61-74.

[DT3] Demetrovics J., Thi V.D., Describing Candidate Keys by Hypergraphs.
Computer and Artificial Intelligence , V.18, N. 2, 1999, 191-207.

[DT4] Demetrovics J., Thi V.D., Family of functional dependencies and its
equivalent descriptions. J. Computer and Math with Application, Great
Britain, 29, 4, 1995, 101-109.

[Li] Libkin L., Direct Product Decomposition of Lattices, Closures and Rela-
tion Schemes. Discrete Mathematics, North Holland, 112, 1993, 119-138

[MR] Mannila H., Raiha K. J., On The Complexity of Inffering Functional
Dependencies. Discrete Applied Mathematics, North Holland., 40, 1992,
237-243.

[RG] Ramakrishnan R., Gehrke J., Database Management Systems. The Mc-
Graw - Hill, 2000.

[Ul] Ullman J., Principles of Database and Knowledge Base Systems, VoL 1.
Computer Science Press, 1988.

Received September, 2003

CONTENTS

Elena Calude, Bruce Mills, and Lan Mills: A Uniform Approach to Test
Computational Complementarity 367

Alexander Meduna: Two-Way Metalinear PC Grammar Systems and Their
Descriptional Complexity 385

Attila Nagy: Retractable state-finite automata without outputs 399
R. Póschel, A. Semigrodskikh, and H. Vogler: Relationally defined clones of

tree functions closed under selection or primitive recursion 411
Isto Aho: Notes on the properties of dynamic programming used in direct

load control 427
Gerzson Kéri and Akos Kisvólcsey: On Computing the Hamming Distance . 443
András Pluhár: The Recycled Kaplansky's Game 451
Sebastian Link and Klaus-Dieter Schewe: Distance Functional Dependencies

in the Presence of Complex Values 459
Vu Due Thi and Nguyen Hoang Son: Some Problems Related to Keys and

the Boyce-Codd Normal Form 473
Nghia D. Vu: Relationships Between Closure Operations and Choice Func-

tions - Equivalent Descriptions of a Family of Functional Dependencies . 485

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

