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Abstract
The model-driven development of systems involves multiple models, metamodels and transformations, and relationships
between them. A bidirectional transformation (bx) is usually defined as a means of maintaining consistency between “two (or
more)” models. This includes cases where one model may be generated from one or more others, as well as more complex
(“symmetric”) cases where models record partially overlapping information. In recent years, binary bx, those relating two
models, have been extensively studied. Multiary bx, those relating more than two models, have received less attention. In
this paper, we consider how a multiary consistency relation may be defined in terms of binary consistency relations and how
consistency restoration may be carried out on a network of models and relationships between them. In particular, we consider
the circumstances under which we can prove non-interference between several bidirectional transformations that impact on
the same model and how the use of a more refined notion of consistency can help in cases where this is not possible. In the
process, we develop an abstract theory of parts of a model that are read or modified by a bidirectional transformation. We
relate the work to megamodelling and discuss further research that is needed.

Keywords Model-driven development · Bidirectional transformation · Consistency · Megamodel · Model decomposition ·
Non-interference

1 Introduction

Model-driven development (MDD) has achieved some suc-
cess; but it has not yet transformed software development,
and a transformation is badly needed. The demand for soft-
ware, and especially for changes to software, outstrips the
availability of skilled software engineers who can build the
software and effect the changes. Communication between
stakeholders (who knowwhat changes are required) and soft-
ware engineers (who can effect the changes) is a bottleneck
which today’s agile development methods cannot fully over-
come.

MDD’s key aim is the separation of concerns intomodels,
so that people can work with models that record all and only
the information they need to make their decisions. Just to
give a few examples, the development of a software system
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might involve: a design model in UML; the UML meta-
model; a database schema; some code; a test suite; a safety
model; a model recording the user’s navigation through the
user interface; etc. Each model is adapted to the needs of its
users, so that they can work with maximum efficiency and
effectiveness. However, the contents of the models are not
independent: a decision which one stakeholder makes, and
records in their model, may necessitate a change in another
model, so that a suitable consistency relationship between
them ismaintained, in order that the eventual software system
produced may correctly incorporate the decisions recorded
in all the models. For example, if a class is deleted from a
UML model, tests of that class may need to be deleted from
a test suite. It is possible to maintain all the relationships
between the models manually, using human communication
between the stakeholders. However, this manual process is
painful, expensive and error-prone. It may result in much of
the benefit of separation of concerns being lost.

In MDD, models are, as far as possible, related instead
by model transformations.1 Because circumstances do not

1 Note that, just as we use a broad notion of “model” that includes
metamodels, code, etc., our notion of “transformation” can cover the
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usually permit finishing work on one model before start-
ing work on another, these often have to be bidirectional
transformations (bx). Here, despite the namewhich indicates
where most attention has so far been directed, a bidirectional
transformation may in fact relate any number of models;
it is an automated means of restoring consistency between
them. (The termmodel synchronisation is also used, although
sometimes this is reserved for the case that both of two
models are changed [12,37].) Note that restoring consistency
typically requires using information about the current state of
all the models, not just regenerating one. This is because typ-
ically, each model includes some information which is held
in it and nowhere else. Such information cannot, by defini-
tion, be generated from the other models. Therefore, when a
model needs to be changed to bring it into consistency with
changes in other models, its own current state has to be part
of the input to the consistency restoration process, so that
important information unique to it is not lost in the process.

In most formalisms, a bx may be used in several modes,
e.g. to check whether models are consistent, or to hold a
given collection of models fixed while restoring consistency
by modifying the rest. The ideal is that a single artefact (e.g.
a triple graph grammar (TGG) [29] or a QVT-R transforma-
tion [26]) records the bx developer’s decisions about how to
carry out all of these tasks, so as to minimise the duplication
of information. Much research has been done on the prop-
erties that a bx should have, such as how to ensure that the
way it carries out its several tasks is coherent. The most basic
of these properties are correctness (when a bx restores con-
sistency, the resulting models are, indeed, consistent) and
hippocraticness (if the models are already consistent, then
restoring consistency changes nothing).

Let us imagine a world in which the Bx community has
achieved its aims. We have developed powerful, usable bx
languages which are well supported by tools and are taught
to every undergraduate. Mainstream software is typically
developed by cooperating groups of experts in all relevant
fields. Each group of experts works with a model precisely
adapted to their needs: it records all and only the information
they need to have in mind to make their decisions. Ulti-
mately, deployed software is produced automatically from
these models.

What kind of bx do we have in such a setting, and how
tightly must an organisation control exactly when the bx are
used to restore consistency between models? If there are n
models (including the deployed software system itself), we
may argue, consistency is ultimately an n-ary relation: but
we are unlikely to specify it as such, because to do so is tan-
tamount to designing the complete software, and if we knew

Footnote1 continued
automatic maintenance of any relation between models: e.g. confor-
mance between a model and a metamodel.

how todo that,wewouldnot need themodels in thefirst place.
More likely,whatwewill have in our imagined futureworld is
a collection of models, somehow related by bx, each relating
some of themodels. Some of these bxmay be bought off-the-
shelf, while others are developed specially for the project.

This, however, raises many questions which have not yet
been addressed. The aim of the paper is to begin to address
them, though we will not complete that undertaking in this
one paper. They include:

– Granted that we do not expect a single bx to relate all the
models, howmanymodels dowe expect a bx to relate?Do
we limit the notions of consistency that can be expressed,
if we insist that consistency of the whole collection of
models is expressed in terms of consistency of pairs of
those models? Under what assumptions? Does it matter?

– How can we talk about a collection of models, connected
by bx? Can we model this as a network whose nodes
are models and whose (hyper)edges are bx? What does
it mean to restore consistency of such a network?

– Under what circumstances can we restore consistency of
a collection of models related by bx? How?

– What flexibility do we have in varying our consistency
restoration procedure? When are we guaranteed to get
the same result, regardless of how we do it?

– What if we cannot fully restore consistency to the col-
lection of models after one set of changes, before more
changes begin to happen?

The main contributions of this paper are:

• We clarify the senses in which multi-directional transfor-
mations, are or are not, formally required in order to be
able to express consistency of collections of more than
twomodels.Wedemonstrate that this depends onwhether
it is permitted to add extra models or refine the consis-
tency relation. In the process, wemake some connections
with the mature field of constraint solving.

• Weconsider the restoration of consistency in a network of
models connected bybinary bx.Wedemonstrate that con-
sistency restoration may be impossible to achieve at all,
or impossible to achieve using the consistency restora-
tion functions of the network’s binary bx, and that even
if it can be achieved, different ways of achieving it may
give different results. We study some special cases where
positive results are obtainable.

• We study in detail the situation inwhich two bidirectional
transformationsmay act on the samemodelwithout inter-
fering with one another. We give two equivalent sets of
sufficient conditions for this.

• In doing so, we formally define a notion of part of a
model, which gives a vocabulary for talking about what
a bx reads and what it modifies. Our definition of part
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is very general, capturing not only structural parts, but
otherways to identify some, but not all, of the information
contained in a model: formally a part is an equivalence
relation on a set of models.

• We show, perhaps counter-intuitively (it was counter to
the author’s initial intuition, anyway), that the conditions
we showed were sufficient for non-interference are not
also necessary.

• Wediscuss the need to tolerate inconsistency at times and
the role played by partial bx in doing so.

• We relate the work to megamodelling and other parts of
the literature and discuss how our findings, especially the
negative ones, motivate future work in that direction.

1.1 Paper organisation

After an example (Sect. 2), Sect. 3 discusses how the desired
consistency between models is expressed, and the implica-
tions of limiting ourselves to expressing consistency between
just two models at a time. (The reader who is already happy
with that limitation could skip Sect. 3.) Before we turn to
how consistency is restored, Sect. 4 suggests we sometimes
need to tolerate inconsistency and discusses the implication
for restoring consistency in the presence of many models.
Section 5 formalises networks of bx and introduces key con-
cepts of restoring consistency in such networks. Section 6
concerns the important property of non-interference between
several bx that impact the same model, and Sect. 7 goes on
to give sufficient conditions for this to hold and discusses
why these are not also necessary conditions. Section 8 is
about how to discuss less ideal cases where non-interference
may not hold, making use of work on bidirectional transfor-
mations that may not perfectly restore consistency but may
nevertheless have useful properties. Section 9 considers some
situations inwhich consistency restoration in networks is fea-
sible. Section 10 discusses various strands of related work,
beyond what has been covered along the way. Section 11
concludes.

This paper is an extended version of [32], which was pre-
sented at MODELS’17. Sections 7 and 8 are new; examples,
proofs, explanation and discussion have been added through-
out.

1.2 Notation

We use R, S, etc. (sometimes subscripted) both for consis-
tency relations and (later) for bx. Model sets are denoted M ,
N …or A, B, …. (These may be the sets of all models in
appropriate modelling languages, but in this paper we do not
need to concern ourselves with modelling languages.) Mod-
els are denoted by lower case versions of the same letter, e.g.
model n in model set N ; for a collection, or tuple, of models

UML metamodelUML model

Code Tests

Safety model

Fig. 1 A small megamodel

we write m, or 〈mk〉 if we need to talk about the individual
models.

As “bidirectional transformation”, abbreviated bx, has
hitherto beenwidely used to include artefacts aiming tomain-
tain consistencybetweenmore than twomodels,wenowneed
to be careful about terminology. When it relates two models,
a bx maintains a binary consistency relation, that is, a rela-
tion on two model sets. When we want to talk specifically
about bx that relate more than two models, we will use the
term multi-directional transformation, abbreviatedmultx. A
multx maintains a multiary consistency relation, that is, a
relation on an arbitrary number of model sets. We prefer the
termmultiary to n-ary because it makes clear there is no fixed
arity n.

2 Motivating example

We have alluded to a grand vision of how bx might be used
in the future to move decisions about software wholesale out
of the hands of software developers into those of stakehold-
ers. Here, though, we use a more familiar example. Figure 1
shows what we may regard as a (small) megamodel, such
as may arise in today’s development. All the relationships
shown as dotted lines between the models in the diagram
may be formalised as bx. The UMLmodel is consistent with
the UML metamodel iff it conforms to it; the relationship
between the UML model and the code is standard roundtrip-
ping. The relationship between the code, the tests and the
safety model is more interesting and illustrates a case where
megamodels may use non-binary relationships. Suppose that
the safety model records (among other things) whether the
system is considered safety critical. Let us say that if it is
safety critical, there is a coverage criterion that must be sat-
isfied; perhaps, that every line of the code must be exercised
by some test. That is, the relationship between the code and
the tests depends on the safetymodel, or to put it anotherway,
the consistency relationship between tests, code and safety
model is ternary.
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Remark 1 We do not necessarily expect that all the relation-
ships between the models are recorded in the diagram: it is
likely that there are also non-automated dependencies. These
are not recorded in the diagram because there is no advantage
to including them: if the changes to one model are somehow
correlated with the changes to another, but the correlation is
not formalised in any way, then any automated restoration of
consistency in the network cannot take it into consideration.
Instead it must just take both models as it finds them.

Remark 2 This example illustrates that models cannot neces-
sarily be seen as simply views onto the eventual implemented
system: the models may matter even beyond their influence
onwhich systems are allowed. Here, it is possible for the sys-
tem to be correct in its behaviour, yet unacceptable because
it is not adequately tested for the safety criticality level.

In the context of this example, the questions from Sect. 1
appear as:

– Is it essential to represent the ternary relationship between
Code, Tests and Safety model explicitly? Or can we
replace it, somehow, by binary relationships? (Sect. 3.)

– We have informally drawn the example as a network, but
do any surprises arise whenwe formalise this?What does
it mean to restore consistency in the whole network? Is it
reasonable to conflate restoring consistency across all of
the edges shown in our diagram, with restoring the whole
collection of models to a consistent state? (Sect. 5.)

– Will we always be able to restore consistency in this net-
work, regardless of the decisions taken by the owners of
the different models? (Clearly no!) What guarantees can
we get? (Sect. 5.)

– What flexibility do we have in varying our consistency
restoration procedure? When are we guaranteed to get
the same result, regardless of how we do it? (Sect. 9.)

– What if we cannot fully restore consistency to the col-
lection of models after one set of changes, before more
changes begin to happen? (This question is not answered
in this paper, but see Sects. 8 and 11.)

3 Expressingmultiary consistency relations

There are strong practical reasons for considering the consis-
tency of models pairwise wherever possible: cognitively, it
is hard enough to think about a binary consistency relation in
order to specify it correctly. Does this impose unacceptable
limits on expressivity? For a given, natural, multiary notion
of consistency, and the restriction of this notion to pairs of
models, it is easy to construct examples where any pair from
three models is consistent but the collection of three is not
(there is one in Appendix A of [24] for example). This might
lead us to give up and conclude that binary consistency is not

expressive enough, and that it will be essential for future bx
languages to permit the expression of multiary consistency
and its restoration. However, this may be deceptive, since in
practical use of bx the bx developers have some flexibility in
how to define the notion(s) of consistency and may also have
the option of adding additional models.

3.1 Pessimistic view

First, let us lay out the sense in which binary (consistency)
relations are not enough. Let {Mi : i ∈ I } be a (finite and
ordered, for convenience, thoughnothingwill dependon this)
collection of model sets, R a relation on all these model sets,
i.e. a subset of the cartesian product

∏
i Mi (to be thought

of as a consistency relation), and {Ri j : i < j ∈ I } a set of
binary relations on each distinct pair of model sets, Ri j ⊆
Mi × Mj .

Definition 1 R is binary-defined by {Ri j : i < j ∈ I } if for
every I -tuple m we have

(∀i, j .Ri j (mi ,m j )) ⇔ R(m).

R is binary-definable if it is binary-defined by some set of
binary relations {Ri j : i < j ∈ I }.

Not every relation is binary-definable; here is a ternary
counterexample.

Example 1 Let a, a′ be distinct elements of model set A, and
similarly for B, C . Then consider

R = {(a, b, c′), (a, b′, c), (a′, b, c)}.

R is not binary-definable. For suppose it were binary-defined
by RAB , RBC , RAC . We would have (a, b) ∈ RAB because
(a, b, c′) ∈ R, and similarly (b, c) ∈ RBC and (a, c) ∈ RAC .
But then (a, b, c) ∈ R, which is a contradiction.

A given binary-definable multiary relation can of course
be binary-defined by many different sets of binary rela-
tions: the pairs that are projections from consistent tuples
are forced to be in the binary relations, but other pairs can
be added (e.g. adding (a, b) will make no difference to
the resulting multiary relation, provided there is no c such
that (a, c) and (b, c) are both in the respective relations).
To formalise this, fix a collection {Mi : i ∈ I } of model
sets. Partially order multiary relations on the cartesian prod-
uct

∏
i Mi by subset inclusion, writing R ⊆ S. Partially

order sets of binary consistency relations pointwise, writing
{Ri j : i < j ∈ I } 	 {Si j : i < j ∈ I } iff for every
i < j ∈ I we have Ri j ⊆ Si j . It turns out that these orders
are intimately related. Recall (e.g. from [11]2) the standard
definition

2 Or fromWikipedia: https://en.wikipedia.org/wiki/Galois_connection
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Definition 2 A (monotone) Galois connection between par-
tially ordered sets (A,≤) and (B,�) is a pair of monotone
functions L : A → B and U : B → A such that for every
a ∈ A and b ∈ B we have L(a) � b iff a ≤ U (b).

L is the lower adjoint, U the upper adjoint. An order
isomorphism is a Galois connection in which L and U are
inverse bijections.

Many pleasant consequences follow from the existence of a
Galois connection; the most immediately useful to us is that
UL : A → A is a closure operator, i.e. for any a, a′ ∈ A, we
have

– a ≤ UL(a) (inflationary)
– a ≤ a′ ⇒ UL(a) ≤ UL(a′) (increasing) and
– UL(UL(a)) = UL(a) (idempotent).

Dually, LU : B → B is a kernel operator:

– b ≥ LU (b)
– b ≥ b′ ⇒ LU (b) ≥ LU (b′) and
– LU (LU (b)) = LU (b).

Further, ULU = U .
We are now ready to give a precise relationship between

the two most obvious ways of connecting multiary relations
with sets of binary relations:

Theorem 1 We have a Galois connection (but not an order
isomorphism) between multiary consistency relations and
sets of binary consistency relations, as follows:

– given R ⊆ ∏
i Mi , define a set gR of binary consistency

relations {(gR)i j : i < j} by (gR)i j (mi ,m j ) iff there
exists m extending (mi ,m j ) such that R(m);

– given a set {Ri j ⊆ Mi × Mj : i < j ∈ I }, define a
multiary consistency relation f ({Ri j }) by f ({Ri j })(m)

iff for all i < j , we have Ri j (mi ,m j ).

Here, f is the upper adjoint, g the lower. Thus, g f is a kernel
operator and f g a closure operator; the closedmultiary con-
sistency relations are exactly those that are binary-definable,
viz., those in the image of f .

Proof Monotonicity of g: if R ⊆ S and (gR)i j holds of
(mi ,m j ) then there exists m extending (mi ,m j ) such that
Rm holds; but then Sm holds so (gS)i j holds of (mi ,m j ).

Monotonicity of f : if {Ri j : i < j ∈ I } 	 {Si j : i <

j ∈ I } and f ({Ri j }) holds of m then each Ri j holds of cor-
responding (mi ,m j ), so Si j holds of (mi ,m j ), so f ({Si j })
holds of m.

We next have to show that for any multiary relation R and
set of binary relations, say {Si j : i < j ∈ I }, we have

gR 	 {Si j : i < j ∈ I } (∗)

iff

R ⊆ f ({Si j : i < j ∈ I }).

For the forward direction, assume (*) holds, take any m sat-
isfying R(m), and for any i < j consider the pair (mi ,m j )

drawn fromm. We have to show that Si j (mi ,m j ) holds. But,
since m is an example of a tuple extending (mi ,m j ) such
that R(m) holds, this follows from (*).

For the reverse direction, assume that R ⊆ f ({Si j : i <

j ∈ I }). We have to show (*), i.e. that for every i < j ∈ I
we have (gR)i j ⊆ Si j . Assume (gR)i j (mi ,m j ) holds, so
that there exists m extending (mi ,m j ) such that R(m). By
assumption, f ({Si j : i < j ∈ I })(m) holds; in particular,
Si j (mi ,m j ) as required.

The rest of the statement follows from the existence of the
Galois connection. More explicitly, now that we have shown
we have a Galois connection, we know that

f g f = f (+)

It follows that the set of closed multiary relations, i.e. f gY
(where Y is the set of all multiary relations), is identical with
the image of f , i.e. f X , where X is the set of all collections of
binary relations. For, gY ⊆ X so f gY ⊆ f X , i.e. a multiary
relation being closed implies that it lies in the image of f .
Conversely, if R is in the image of f , say R = f ({Ri j }),
then f gR = f g f ({Ri j }) = f ({Ri j }) by (+). This is R, so R
is closed as required.

To see that we do not have an order isomorphism, observe
that f is not a bijection: for example, the set of empty binary
relations maps to the empty multiary relation, but so does the
set of binary relations comprising some empty relations and
just one non-empty relation. ��

Why is it useful to show that this Galois connection exists?
One reason is that it provides reassurance thatwe are notmak-
ing a wrong choice of how to connect multiary relations and
sets of binary relations. There are two obvious ways to form
such a connection, formalised as g and f in the preceding
theorem. On the one hand, we can do what g does. That is,
given a multiary relation, we can define a family of binary
relations, by considering a pair of elements to be related if,
and only if, it can be extended to a tuple that lies in the given
multiary relation. On the other hand, we can do what f does.
That is, given a family of binary relations, we can define a
multiary relation by conjoining the given binary relations on
all pairs of elements drawn from a tuple. On the face of it,
these might be unrelated notions, and which approach we
should chose might be an empirical question. The existence
of a Galois connection between the two, which we have just
proved, demonstrates that we may, rather, think of these two
approaches as complementary expressions of one idea, so
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there is no need to make a choice between them. In particu-
lar, it shows that the binary-definable multiary relations have
a special status, as the closed elements of the set of multiary
relations, relative to this Galois connection. This brings us
to the second reason why it is useful to exhibit a Galois con-
nection: it enables us to call on standard results about Galois
connections (such as those listed just before the theorem)
when we want to show whether or not a given multiary rela-
tion is binary-definable. The following example illustrates
this.

Example 2 Returning to the example from Sect. 2, let us say
concretely that A is a set of Java systems, and B a set of JUnit
test suites. Suppose the basic idea is that implementation
a ∈ A is consistent with b ∈ B iff a passes all the tests
in b. The safety model could be as simple as C = {�,⊥}
recordingwhether or not the system is deemed safety-critical;
suppose that if it is, then the relationship between systems
and test suites needs to be more stringent: as well as all tests
that exist having to pass, it is also required that there are
enough tests to satisfy some coverage criterion.

Recording all this as a ternary consistency relation R, we
may have R(a, b,⊥) but not R(a, b,�), because tests b do
not give enough coverage of a in the safety-critical case;
while at the same time, perhaps tests b are adequate for some
other implementation even in the safety-critical case, and a
can, in the safety-critical case, be adequately tested by some
other test suite. The upshot is that (a, b), (a,�) and (b,�) all
appear in the relevant binary relations of gR, and therefore
(a, b,�) ∈ f gR. Thus, R is not closed and hence not binary-
definable.

Now, in this example, one potential solution is obvious:
development might proceed using the precautionary princi-
ple, imposing the coverage criterion in case it is required.
We may ask: is this approach always reasonable? Our next
example is borrowed from [21] (we will consider their paper
in more detail in Sect. 10).

Example 3 This example concerns a highly simplified prod-
uct line. Figure 2 shows metamodels for product line speci-
fications and product configurations, respectively: a product
line (e.g. P in Fig. 3) specifies some features, which may
be mandatory or not, while a configuration (e.g. (a), (b)
or (c) in Fig. 4) has some features. Consistency is defined
over one specification and an arbitrary number of configu-
rations; this collection of models is deemed consistent if all
and only the mandatory features appear in every one of the
configurations. Thus, the collection of models 〈P, (a), (b)〉
is consistent, since the mandatory feature engine is the
only one to occur in all (both) configurations; however, the
collection of models 〈P, (a), (c)〉 is not, because the non-
mandatory feature sunroof occurs in all configurations,
and therefore, according to our notably artificial rule, should
be mandatory in the specification.

FeatureSpec

name : String
mandatory : bool

Feature
name : String

Fig. 2 Metamodels for a product specification (left) and configuration
(right), from [21]

: FeatureSpec

name = “engine”
mandatory = true

: FeatureSpec

name = “sunroof”
mandatory = false

: FeatureSpec

name = “satnav”
mandatory = false

Fig. 3 Product line P

: Feature

name = “engine”

: Feature

name = “sunroof”

(a)

: Feature

name = “engine”

: Feature

name = “satnav”

(b)

: Feature

name = “engine”

: Feature

name = “satnav”

: Feature

name = “sunroof”

(c)

Fig. 4 Models 〈P, (a), (b)〉 consistent; 〈P, (a), (c)〉 inconsistent

Instantiating theGalois connection definitions, we see that
the closure of the given multiary consistency relation is that
in which the products in a tuple include at least the features
that are mandatory in the specification. However, unlike in
the previous example, there is no natural closed (i.e. binary-
definable) consistency relation contained in the onewe really
want, against which we could develop. For as soon as we can
express specifications with two different sets of mandatory
features, one contained in the other (A ⊂ B say), together
with all tuples of configurations that are permitted by each of
those specifications, it will follow that our closed relationwill
also permit specification A together with tuples of products
that all have the larger set B of mandatory features.

3.2 Optimistic view

3.2.1 Approach 1: add extra models

One approach we may try, as we seek to investigate whether
we can somehow express arbitrary consistency relationships
between models using only binary bx, is to add one or more
extramodels for the specific purpose of helping to express the
overall consistency. We know from the preceding subsection
that we cannot express all multiary relations between model
sets using binary relations over exactly the same model sets,
but perhaps it might be worth incurring the cost of creating
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and maintaining one or more extra models, either automati-
cally ormanually, if itwould allowus to expresswhatweneed
using formalisms that can only express binary consistency
relations? In a specific example, it is not hard to develop the
intuition that this can be done. Considering the ternary rela-
tion between Code, Tests and Safety model in the example of
Sect. 2, we could imagine building a new, single, model (call
it CodeTestsSafety) that incorporated the information from
all three models. Then, we can think about the binary con-
sistency relation between Code and CodeTestsSafety, which
specifies exactly that these two models agree on the Code
information. Similarly for the other two models. Our intu-
ition is that this should express our intentions correctly: that
is, that our original ternary relation should hold if, and only if,
all three of the new binary consistency relations hold with the
newmodel. We could generalise and formalise this construc-
tion, but fortunately, another community has already done so.

A related question has long been studied by the constraint
satisfaction problem (CSP) community, under the name of
constraint networks. Here, in place of our model sets, we
take variables (each with a domain of allowed values), and in
place of our consistency relations, we take constraints (which
may have any arity, that is, constrain any number of variables,
but two is a special case of considerable interest). The con-
straint network problem is: given a set of variables and a set
of constraints, find an assignment of values to the variables
that satisfies all the constraints. It is a classic result [28] that
any non-binary constraint network can be translated into a
binary one with additional variables.

There are two standard ways to do this, known as the
dual translation and the hidden variable translation. We refer
to [2] for a detailed description and comparison of these
approaches. In outline, the dual translation, which originates
in the database community, produces a binary constraint net-
work with one variable for each constraint in the original
network. We call these c-variables to distinguish them from
the variables of the original network. The allowed domain
for the c-variable is precisely the set of tuples of values for
the constrained variables that satisfy the constraint. Two c-
variables are connected with a binary constraint if they have
any constrained variables in common. In this case, the con-
straint says that theymust agree on their shared variables. The
hiddenvariable translationproduces a constraint network that
has more variables, but which can be more tractable because
it involves a bipartite graph. It produces a network whose
variable set is the union of the original set of variables and
the set of new c-variables, as in the dual translation. Instead of
adding constraints between c-variables, the hidden variable
translation adds constraints between a c-variable and each of
its constrained variables. These constraints say that the value
of the original variable must agree with the value in the tuple
of the c-variable.

TheCSPcommunity has done considerablework to under-
stand the relative merits of these and other translations and
algorithms on them. Thesemay repay study. However, it does
not follow that the bx problem is solved, for two reasons.
First, it will often be impractical or unhelpful to add the
extra models. In the limiting case of a single multiary con-
sistency relation, either translation involves building a model
set whose values are the correct tuples of all the originalmod-
els; it is illusory that this would help. On the other hand, it
might be a practical way to avoid working with, say, ternary
relations on closely related models. Second, the aims of the
two fields differ. In CSP, as in bx, the first task is to express a
multiary consistency relation (constraint) in terms of binary
ones. InCSP, however, the resolution task is to find a solution,
by any means. By contrast, in the MDD world, we typically
care not only that consistency is restored, but also how; for
example, we may want to ensure appropriate least-change
properties, in order to limit the surprise that a user of a model
may experience when their model is changed by a bx [7]. The
programmer of each individual bxmakes appropriate choices
of resolution behaviour as they program the bx, so it is rea-
sonable to insist that resolution in the network of models be
effected by means of the consistency restoration functions of
these binary bx. This is a constraint on the resolution pos-
sibilities. We shall return to this point after introducing bx
networks: see Example 5.

3.2.2 Approach 2: vary the consistency definition

In other contexts, we are comfortable with the idea that
early decisions made about the development process may
render some software systems—that would in fact meet their
requirements—inaccessible via the chosen development pro-
cess. For example, it might be perfectly possible to meet
the requirements using functional programming, but if we
settle instead on object-oriented design, we thereby exclude
that collection of correct solutions. Indeed, the development
process can be seen as whittling down the solution space,
repeatedly excluding some unsatisfactory solutions but per-
haps also some satisfactory ones, until we end up at one,
satisfactory, solution.

It is arguable, therefore, that the requirement to find a set
of binary consistency relations such that every correct n-tuple
arises from the conjunction of them is too stringent.Wemight
instead ask for a binary-implementable consistency relation:

Definition 3 R is binary-implemented by {Ri j : i < j ∈ I }
if for every I -tuple m we have

(∀i, j .Ri j (mi ,m j )) ⇒ R(m).

That is, we allow the binary relations to forbid pairs of
models, even though these pairs could, in fact, be completed
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to entirely correct system implementations. We do this in
order to “be on the safe side” because of not knowing what
else is going on in the system. In Example 2, for example, we
might decide to use the relation between Java systems and
JUnit test suites that insists on the coverage criterion as well
as on all tests passing, just in case it turns out that the system
is safety critical according to the third model.

Our confidence that this might be a useful weakening of
binary-definable, explaining how to represent a larger class
of multiary relations in terms of binary relations, is shaken
by the observation that every R may be binary-implemented
by some set of binary relations, and that not all sets of imple-
menting binary relations are useful for development—indeed
anymultiary relation is implemented by any unsatisfiable set
of binary relations!

This is unsatisfactory, because what we were ideally look-
ing for, when we defined “binary implementable”, was a
guarantee that, if we started with a binary implementable
multiary relation and then found a collection of binary rela-
tions that implemented it, then we could sensibly develop
against the implementing binary relations.We accept that the
process of replacing the multiary relation by a collection of
implementing binary relationsmay exclude some of the solu-
tions, just as making other architectural decisions, such as
programming language paradigm, excludes some solutions.
However, we would hope that the binary relations would
still allow enough flexibility that a wide class of solutions is
still available—that is, a large subset of the set of all tuples
satisfying the original multiary relation should also satisfy,
pairwise, the implementing binary relations. Otherwise, the
implementing binary relations will not be useful to develop
against.

That any multiary relation is implemented by any unsat-
isfiable set of binary relations contradicts that hope, but
arguably in a pathological and uninteresting way. We next
wonder whether we can make progress by tweaks to the
definition of “binary implementable”, such as excluding
unsatisfiable sets of binary relations.

The next theorem attempts to capture the intuition that
this is not practical: whatever reasonable exclusions we try to
make, we will still be vulnerable to back-forming the imple-
menting binary consistency relations from a single tuple
satisfying the multiary relation. That is, if there is any way
at all to satisfy the multiary relation, there is a collection
of implementing binary relations that permits only that one
solution. That collection is not useful to develop against: it
amounts to requiring that eachmodel owner should guess the
onemodel that is acceptable to the implementing binary rela-
tions. The existence of such a non-useful set of implementing
binary relations does not rule out that binary-implementable
is a useful notion, but it demonstrates that it is false that every
set of implementing binary relations is useful.

To make this formal, we need to make the relationship
between the models, the multiary consistency relation and
the eventually implemented system, more explicit. We need
two key properties. First, between them, the models are sup-
posed to capture all the important decisions taken during
development. That is, together, the whole collection of mod-
els should determine the eventually implemented system (up
to some equivalence relation, since we do not expect the
models to determine every last trivial detail of the system).
Second, the multiary consistency relation is supposed to cap-
ture the requirements on the eventually implemented system.
That is, once we agree that a given system is correctly mod-
elled by a given collection of models, it should be the case
that the system satisfies the requirements, if, and only if, the
collection of models satisfies the multiary consistency rela-
tion.

We formalise this in terms of:

– a set S of equivalence classes of systems (we use equiva-
lence classes simply to record that two systemsmay differ
only in details that do not need to be modelled and do not
affect whether the system satisfies the requirements)

– a collection of model sets Mi (for i in some index set I )
– a collection of satisfaction relations between (equiva-
lence classes of) systems and models, capturing when
the model models the system, i.e. the decisions recorded
in the model have been incorporated into the system, i.e.
the model is true of the system. We write S |� mi , where
S ∈ S is an equivalence class of systems and mi ∈ Mi is
a model.

In the following theorem, we impose conditions in an
attempt to exclude trivial and pathological situations. We
forbid unsatisfiable relations; we also exclude situations in
which the models fail to record enough information to know
whether the resulting system meets the requirements or not.
(Notice, though, that the function f in the theorem state-
ment that takes us from a collection of models to a class of
systems must be partial, because some collections of models
may contradict one another, i.e. not correspond to any system
at all, whether or not meeting the requirements.)

We consider the requirements on the eventually imple-
mented system as a predicate on equivalence classes of such
systems; using equivalence classes assures us that the require-
ments are insensitive to whatever notion of trivial detail is
appropriate. If we did not do this, we would still get the
same result—the equivalence plays no technical role in the
theorem—but we might wonder whether trivial details in the
system, that we should have abstracted away, accounted for
the result. Writing in terms of equivalence classes assures us
that this is not the case.
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It turns out that, despite all these precautions, our tweaked
notion of binary implementable is still essentially vacuous,
and that an implementing set of binary relations still might
not be a useful set of relations to develop against:

Theorem 2 Let S be a set of equivalence classes of systems,
Φ ⊆ S be those deemed to satisfy the requirements, and
{Mi } be a collection of model sets such that partial function
f : ∏

i Mi⇀S satisfies f (〈mk〉) = S ⇔ ∀k.S |� mk.
That is, our collection of models is sufficiently expressive to
determine the system, up to our chosen notion of equivalence.
Write R(m) for f (m) ∈ Φ: then R is our desired multiary
consistency relation.

Suppose further that the requirements are satisfiable via
the model sets, in the sense that f (

∏
i Mi ) ∩ Φ �= ∅; that is,

R is satisfiable.
Then R can be binary-implemented by a set of binary con-

sistency relations {Ri j ⊆ Mi × Mj } that are simultaneously
satisfiable.

Proof Pick any tuple of models g = 〈gk〉 ∈ R, which we
know we can do because R is satisfiable. Now, we will use
this tuple to define a family of binary consistency relations
as required. The binary relation Ri j between Mi and Mj is
defined by: for any model mi ∈ Mi and m j ∈ Mj , we define
Ri j (mi ,m j ) to be true iff mi = gi and m j = g j . That is,
the only way to satisfy this binary relation is to pick exactly
the models that were in the tuple we chose up front. The set
of binary consistency relations {Ri j ⊆ Mi × Mj } defined in
this way satisfies the condition in Definition 3, because the
antecedent is only true of the tuple g itself! Moreover, these
Ri j are simultaneously satisfiable (by g). ��

Is this really a problem, or might it be considered a fea-
ture? On the positive side, this result suggests that, given any
requirements expressible as a multiary consistency relation,
we can indeed replace the multiary relation by a set of binary
relations and develop to these, which is convenient. On the
negative side, being able to find some set of binary relations
that fit the definition is not the same as being able to find
a practically useful set to develop against, as Theorem 2’s
proof demonstrates. Now, the existence of a non-useful set
of implementing binary relations does not, of course, prove
the non-existence of a useful set, but it does mean that we
cannot have what we hoped for, namely a guarantee that we
could reasonably replace the multiary relation by any imple-
menting set of binary relations we could find.

There is another potential disadvantage of taking the view
that we should be prepared to give up some development
flexibility andworkwith a binary-implementing set of binary
consistency relations, instead of a multiary consistency rela-
tion that expresses the true requirements. As work is done,
simultaneously, on all of the models, it could happen that at a
certainmoment, the collection of all themodels is indeed cor-
rect according to the multiary relation that captures the true

requirements—but that it does not satisfy all of the imple-
menting binary relations we chose to develop against.

In bx terminology, this may show up as the analogue of a
hippocraticness failure: if the automated consistency restora-
tion is done in terms of binary bxwhose consistency relations
do not all hold, then restoring consistency will change the
models, even though no change is actually required.

However, there are also arguments that we need not worry
about this. It is a normal part of development that, sometimes,
work must be done which is necessary to adhere to the cho-
sen development process and norms, not, strictly speaking,
in order to meet the requirements. Moreover, if in practice
consistency is restored frequently, following small changes,
we may expect that the evolution of the models will follow
paths that mean irritating “hippocraticness failures” are rare.
The informal justification for this intuition is that, if the bx
are written so as to satisfy a reasonable least change prop-
erty [7], then these frequent changes effected by the bx will
themselves tend to be small, and the overall set of models
will never get far away from a set that is consistent according
to the binary bx.

3.3 Discussion

Drawing the work of this section together, it is time to ask:
should we conclude that future languages for programming
bidirectional transformations must allow the programmer to
express multi-directional transformations, or that they need
not?

As we have seen, a language that does not have multiary
syntax does not permit the expression of all possible con-
sistency relations between a given set of models. However,
we considered two ways that a bx developer faced with an
inexpressible consistency relation may get round the prob-
lem. S/he may add an extra model, related to the original
ones by binary bx; or s/he may refine the requirements, in
effect making development decisions, to give a more strin-
gent consistency relation that can be expressed. Each of these
approaches has its disadvantages, but it seems reasonable to
argue that between them they would make it practical to use
a language without multiary syntax.

Finally, it is worth considering the task that has to be
done by the person, or people, who are specifying consis-
tency. Intuitively, it seems difficult to think about multiary
relations, without resorting to considering how they restrict
to binary relations, and as we have seen, this may lead to
mistaken thinking about non-binary-definable relations. So
perhaps, a formalism involving requiring people to specify
multiary relations that may not be binary-definable might
tend to lead to errors due to cognitive difficulties. This is
only a hypothesis, which could be investigated empirically;
but it should be considered, because language features which
are error-prone are often better omitted from the language. In
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fact, in the author’s opinion, this will probably turn out to be
the strongest argument for working with binary consistency
relations.

Taken as awhole, this exploration justifies the decision not
to start with a multiary consistency relation and derive from
it a set of binary consistency relations to develop against,
but rather, to trust that we can produce a sensible collection
of binary consistency relations, which binary-define a good-
enough closed multiary consistency relation via Theorem 1.
The rest of the paper will be concerned with how the consis-
tency restoration functions of the binary bx can be used to
restore consistency in a network of models related by such
binary bx.

4 How dowe best manage and tolerate
inconsistency?

We will shortly go on to consider networks of models con-
nected by bx and how we may restore consistency in such a
network. But first, a disclaimer is in order. From a theoret-
ical point of view, it is tempting to imagine that each time
a change is made to a model, all other models are instanta-
neously brought into consistency with the changed model,
so that at any moment all models are consistent, being views
of a notional all-encompassing model, which, even if it is
not reified, notionally contains all the data from all models.
But this will not do: even in the case of just two models, it
is too disruptive to people working with a model to have it
changed under their noses. As soon as the task of consis-
tency maintenance is distributed, temporary inconsistency
is unavoidable. Moreover, inconsistency between models is
understood to be valuable in many ways; it may record as-
yet-unresolved conflicts in the real world, for example, or it
may be a consequence of not acting prematurely on changes
that are being made to a model speculatively in the process
of actually doing design. There is a literature on this topic;
in [24] for example, the authors argue persuasively, based
on case studies at NASA, that inconsistency management
should be a core activity in software development, and that
the main danger arises not from inconsistency between mod-
els but from unrecognised inconsistency.

A particularly interesting question, once we move away
from the idea of instant and complete restoration of consis-
tency, is whether a “push” or “pull” approach—or perhaps
some third way—should be used. To illustrate the difference,
consider a network of models that is currently in an incon-
sistent state, e.g. because one or more of the models has
changed since an earlier time when all the models were con-
sistent. Should our ideal tooling expect, in normal operation,
that these changes will be rippled outwards to surrounding
models, eventually restoring consistency to the whole collec-
tion as a direct result of the changes? This is what we refer to

as a “push” model. Or, should the other models be, as far as
possible, unaffected unless and until someone wants to use
one of them, at which point the changes are “pulled” through
as a result of a request for this model to be brought up to date?
The “push” model has the advantage that consistency may
be restored throughout the network, soon after the changes
that require it, which may be important if, in practice, the
restoration reveals problems with the changes, that require
human attention. It is the model that we generally assume in
this paper. The “pull” model has the (dual) advantage that
it does not do work of updating models that turns out to be
not needed. This, for example, is likely to be beneficial when
many small changes are made to the same model in quick
succession: it reduces disruption to the other models if they
are only updated when required, and can then incorporate the
effects of a whole sequence of changes. On the other hand,
potentially disruptive changes cannot be completely avoided,
either way. It is not possible to limit the changes to only the
model whose update is requested, because models that sit in
the network between the changed and the requested model
may also be affected. Albeit in a context with rather different
concerns to those of this paper, [33] begins work on consis-
tency restoration in networks with a pull model. In the end,
each choice has pros and cons; which works best is a matter
that will have to be settled empirically.

4.1 Multi-viewmodelling

The need to tolerate inconsistency is, arguably, the fun-
damental problem encountered in the various approaches
referred to as multi-view modelling. In some varieties of
multi-view modelling, the idea is that there is an explicit sin-
gle all-encompassing model that includes all the information
fromall themodels. Eachof themodels that is actually used in
development is then a viewonto thismodel. In [30], for exam-
ple, SysML profiles are used to allow SysML to be used as
the language of the all-encompassing model. Theoretically,
this is a very appealing approach. However, the authors point
out that “a general frameworkmust also take into account the
work flow process, to allow consistency to be evaluated and
reestablished periodically but not enforced all the time”, and,
though they consider that their approach is flexible enough
to permit the development of such a framework, they do
not undertake it. By contrast, work on RM-ODP, such as
[4], takes the views as the primary artefacts. They serve as
requirements on an all-encompassingmodel, whichwill only
exist if the views are all consistent.

A recent and useful survey of the field of multi-viewmod-
elling is [8]. Based on its systematic literature review, [8]
summarises by saying “there is a lack of support for seman-
tic consistency management” which needs to be remedied:
this paper is a step in that direction.
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5 Networks of bx

Imagine a (hyper)graph with model sets (thought of as types)
as nodes and consistency relations (later: bidirectional trans-
formations) as (hyper)edges.

Definition 4 A transformation context C is a (hyper)graph
whose nodes N ∈ N represent model types and whose
labelled (directed or undirected) (hyper)edges represent rela-
tions between them. Self-loops and multiple (hyper)edges
between the samenode sets, evenwith the same labels, are not
excluded (theymay be needed to talk about relations between
several models of the same type, for example). A network or
instance I in a transformation context is a (hyper)graph in
which nodes represent models, typed with model types from
N , and (hyper)edges can only exist between models whose
types have (hyper)edges between them with the same label.
(That is, there is a (hyper)graph morphism I −→ C preserv-
ing labels.) An (hyper)edge between some models labelled

with a relation (binary case: n
T←→ m) is consistent if the

models are consistent according to the relation. An instance
is consistent if all its (hyper)edges are consistent.

An authority instance provides, further, a non-empty sub-
set of the models (the authority set) which are to be deemed
authoritative, i.e. must not be changed. If I is an authority
instance then instance J is a resolution of I if every author-
itative model is the same in both, and J is consistent.

Having a set of models that must not be changed gen-
eralises the usual situation in binary bx, in which the two
consistency restoration functions each hold one model fixed
andmodify the other to restore consistency. This is, arguably,
easier tomanage than the alternative framingwhere both (all)
models may be modified simultaneously—especially when
consistency restoration is to be done automatically, without
a human to resolve conflicts. In the general setting, the same
networkmight have different authority sets at different times,
e.g. a model that has just been reviewed might be placed in
the authority set so that it is not changed, while others that
are to be reviewed in future, after consistency restoration,
are not. Or the authority set might be fixed, e.g. if there is a
fixed workflow of consistency restoration. It is possible to
centralise and record the decisions about which models are
currently authoritative, and if wewish other decisions such as
in which direction to apply a bx, by means of an orientation
model [33].

5.1 Focusing on binary networks of relational bx

Now we are in a position to think about how resolutions are
found. To make any progress on what is and is not possible,
we will need to make some assumptions about what kind of
steps can be taken towards resolving a network.

Therefore, although it is interesting to consider networks
including bx that synchronise twoormoremodels bymodify-
ing them all, for the rest of the paper we shall limit ourselves
to networks of ordinary binary state-based relational bx. That
is, each edge in a transformation context, and hence in a net-
work, will be labelled with a bx defined as usual by three
components: R : M −�−� N is defined by a consistency rela-
tion R ⊆ M × N (by the usual slight abuse of notation), and
two consistency restoration functions

−→
R : M ×N → N and←−

R : M × N → M . Except in Sect. 8, these will always be
assumed to be correct and hippocratic.

Definition 5 A bx R is correct if for all m ∈ M and n ∈ N
we have R(m,

−→
R (m, n)), and dually.

Definition 6 A bx R is hippocratic if for all m ∈ M and
n ∈ N we have R(m, n) ⇒ −→

R (m, n) = n, and dually.

If an edge is directed, M
R−→ N , this means that the

direction of consistency restoration along this edge has been
decided. Note this is not to say that R is a unidirectional
transformation—the result of applying itwill be to change the
value of the target model, but the resulting value may depend
on the previous values of the models at both ends of the
edge. However, a unidirectional transformation f : M → N
may indeed be seen as a special case of this ( f (m, n) iff
n = f (m),

−→
f (m, n) = f (m),

←−
f undefined, which is not

a problem as the notation indicates we have already decided
not to use it), and we can include these without needing to
notate them differently.

We assume that as part of the definition of the graph, each
edge has a fixed ordering of its ends corresponding to the
argument order of its bx: note this can be different from the
chosen direction of application.

Definition 7 To orient an edge is to choose a direction of
application; to orient an authority instance is to do this for
every edge.

Definition 8 Let I be an authority instance. A resolution step
is (e, d), where e is an edge in I and d ∈ {→,←} a direc-
tion, compatible with the orientation of e (if any). It modifies
one node of I by applying the bx represented by edge e in
direction d: we write (e, d) : I �→ I ′. It is required to be per-
mitted by I ’s authority set, that is, not to modify an authority
model.

A resolution path is a sequence of resolution steps I �→
. . . �→ J such that J is consistent. We may identify a reso-
lution path by giving a list 〈(ei , di )〉.
Definition 9 I is resolvable if there exists a resolution path
I �→ J .

Definition 10 I is confluent if it is resolvable and moreover
any two resolution paths I �→ J and I �→ J ′ must have
J ′ = J .
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We give confluence as a property of the instance, not just of
two paths, because the practical concern is how much man-
agement control over the exercise of consistency restoration
is required. If the instance is confluent, then individual devel-
opers can use individual bx to restore consistency “locally”
as and when they like—the order in which bx are used will
not matter to the global result.

Unfortunately, while it is easy to define these properties,
it is far from easy to cause them to hold. We will have to
impose further conditions in order to ensure any of these
(increasingly stringent) desirable properties of an authority
instance hold:

– it has a resolution (i.e. there is some collection of models
that satisfies all the relations);

– it is resolvable (i.e. starting from the given collection of
models, some resolution path, i.e. some order of applica-
tion of the bx’s consistency restoration functions, leads
to a consistent collection of models);

– it is confluent (i.e. there is a unique consistent result of
any resolution path).

Wewill use blob diagrams to illustrate authority instances;
black filled circleswill representmodels that are in an author-
ity set, i.e. may not be changed, and white circles will
represent models that may be changed. We will always lay
them out so that the first argument to the bx is above and/or to
the left of the second argument; an arrow on the edge repre-
sents that a particular consistency restorer has been chosen.
Note that edges incident on nodes in the authority set will
need to be directed out of those nodes, since by definition the
authority set nodes cannot be altered.

5.1.1 Existence of resolution

Example 4 Figure 5 will represent an authority instance with
no resolution, if {b ∈ B : R(a, b)} ∩ {b ∈ B : S(b, c)} = ∅.

Real-life analogues of this schematic formal example will
occur whenever it is possible for twomodels to embody deci-
sions that have contradictory implications for a third model.
Consider the example fromSect. 2, and suppose that theUML
model includes a class Customer, but the Tests include no
tests for such a class. If the consistency relations between
the UML model and the Code, and between the Code and
the Tests, both specify that the models must agree on what
classes there are, then there is no possible value for the Code
that will be consistent with both the UML model and the
Tests. So if they are taken to be authoritative, then an attempt
to change Code to restore consistency in the instance must
fail.

A B C
R S

Fig. 5 Not all authority instances have resolutions
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(a) Not all in-
stances that have
resolutions are
resolvable

A

B

C

R

S

(b) Some consis-
tency restorers with
common target
commute

Fig. 6 a Not all instances that have resolutions are resolvable. b Some
consistency restorers with common target commute

5.1.2 Resolvability

The next example demonstrates how it may be impossible
to resolve a bx network using the bx consistency restoration
functions, even though a consistent set ofmodels exists. Such
examples explain why the bx problem is not merely a sub-
problem of the constraint network problem.

Example 5 Consider the network shown in Fig. 6a.
Let A = {a0, a1}, B = {b1, b2}, C = {c1, c2, c3}. Sup-

pose that the current states of the models are (a1, b1, c1), and
that {a1 : A} is the authority set. Define R, S and T to be cor-
rect and hippocratic bx with restoration functions defined by
the following tables. Here, the restoration function’s name
is shown in the top left, its first argument in the leftmost
column, its second argument in the top row, and the result
of evaluating the restoration function on those arguments
in the corresponding place in the rectangle. For example,−→
R (a0, b1) = b1.

−→
R b1 b2
a0 b1 b2
a1 b1 b1
←−
R b1 b2
a0 a0 a0
a1 a1 a0
−→
S c1 c2 c3
a0 c1 c2 c3
a1 c1 c2 c1
←−
S c1 c2 c3
a0 a0 a0 a0
a1 a1 a1 a0
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A

B

C

a1

b1

b2

c1

c2

c3

Fig. 7 Illustration for Example 5

−→
T c1 c2 c3
b1 c3 c2 c3
b2 c1 c1 c1
←−
T c1 c2 c3
b1 b2 b1 b1
b2 b1 b1 b1

Note that we can read off the consistency relations from
the tables, using the fact that the bx are to be correct and
hippocratic; for example, we see that R(a1, b1) must hold,
since

−→
R (a1, b1) = b1. Figure 7 illustrates: here, solid lines

indicate consistent pairs in the current configuration, while
dashed lines indicate other consistent pairs. a0, which is
consistent with everything, is omitted for clarity (its role in
the example is simply to make it possible to define

←−
R ,

←−
S

that make the transformations correct and hippocratic; since
a1 ∈ A is authoritative, we can never move to it in any case).

Now, there is a resolution, viz. (a1, b1, c2). However, it
is easy to see that there is no resolution path that reaches
this (or any other) solution: since R(a1, b1) and S(a1, c1)
already hold, the only consistency restorers that make any
difference are

−→
T and

←−
T . Applying

−→
T will break the consis-

tency according to S, and the only way to fix this will return
us to the original state. Applying

←−
T will break the consis-

tency according to R, and similarly, the only next step is back
to where we started.

The next example is merely a more practical dressing up
of Example 5: readers who have got the point should skip it.

Example 6 Consider another variant of the example from
Sect. 2, in which we do not consider the Safety model or
Metamodel, but we do have three bx relating Model, Code
and Tests.

1. Suppose the bx CodeTests between Code and Testsmain-
tains a consistency relation that insists (among other
things that do not concern us) that there must be a test in
Tests for every class in Code. Consistency restoration in
the direction of Tests will (somehow) generate an appro-
priate set of tests.

2. Suppose the bx CodeModel between Code and Model
maintains (among other conditions that do not concern
us) that any sequence diagram in the Model that is not
placed inside a package named “TestCases” must cor-
respond to a public method in the Code. Consistency
restoration in the direction of Model will delete any
sequence diagram violating this.

3. Suppose the bx ModelTests between Model and Tests
maintains the consistency relation that there must be a
sequence diagram in the Model corresponding to every
test in Tests (but that the consistency relation says nothing
about the name of the package in which such sequence
diagrams must reside). Consistency restoration towards
Model will generate any necessary sequence diagrams,
placing them in a package named “Generated”. Consis-
tency restoration towards Tests will delete any tests that
lack sequence diagrams.

Now, suppose that Code is authoritative, and consistent
with both the Model and the Tests—in fact, let us supposed
that the tests are exactly those that CodeTests would gener-
ate from the current Code—but that there are no sequence
diagrams for the tests in the model. Only applying the bx
ModelTests will change anything. But, if we apply it towards
Tests, tests will be deleted (because they lack sequence dia-
grams) breaking the consistency between Code and Tests;
if we now apply CodeTests (towards Tests, which is the
only option because Code is authoritative), we will be back
where we started. On the other hand, if we apply Model-
Tests towards Model, sequence diagrams will be generated
and placed in a package which is not named “TestCases”
(it is instead named “Generated”), breaking the consistency
between Model and Code. If we now apply CodeModel
(towards Model, the only option as Code is authoritative),
the offending sequence diagrams will be deleted, and we
will be back where we started.

To a human, the solution is obvious: we should generate
sequence diagrams as above, but then rename their pack-
age “Generated” to “TestCases”, at which point all three
consistency relations will be satisfied. This, however, is
not behaviour which is achievable through the consistency
restoration functions of the bx as described. As in Exam-
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ple 5, there is a resolution, but there is no resolution path that
reaches it.

Confluence Supposing that a network is resolvable, it is
also clear that only in rather special circumstances will it be
confluent; generally, the presence of non-bijective transfor-
mations will preclude this. Indeed, it is easy to construct on
Fig. 6a an example where the choice between using

−→
T and←−

T prevents confluence, and on Fig. 5 an example where the
choice of which edge to use first does so.

5.1.3 Consequences

A possible reaction to all this is to give up on allowing bx
developers to specify how consistency is restored: we could
allow them only to express what consistency relation must
hold, and then adapt, from the CSP community, techniques
for restoring these constraints as necessary. Such an approach
has been explored (see for example [16,17], and from a dif-
ferent angle [20]). However, developers care not only about
consistency but also about how it is restored, andwe know [7]
that simple notions of which restoration is best are not always
correct. Perhaps interesting hybrid approaches are available,
but here we will assume that consistency must be restored
using the consistency restorers that are defined as parts of
the binary bx that specify consistency.

6 Non-interference

Intuitively, themain difficulty that arises in networks ofmod-
els connected by bidirectional transformations is that several
bidirectional transformations may affect, and hence impose
constraints on, the same model. As we have seen, sometimes
this will result in no solution being available. However, intu-
itively, we expect that in many cases, no such problem will
arise: for example, it may be that the transformations do not
care about the same aspects of their common target model,
so their applications commute. (We are being deliberately
informal here: as we shall see, it turns out that care is needed
not to confuse the aspect of the model that the bx’s behaviour
depends on, and the aspect itmodifies,whichmight not be the
same.) Let us consider this situationmore carefully. Consider
a fragment of a network as illustrated in Fig. 6b.

Definition 11 Consistency restorers
−→
R : A × C → C and−→

S : B × C → C are non-interfering if for all a ∈ A, b ∈
B, c ∈ C we have

−→
S (b,

−→
R (a, c)) = −→

R (a,
−→
S (b, c))

This is a strong condition—too strong to expect it to hold
for every pair of transformations with a common target—but
does nevertheless arise. Let us first look at some trivial cases,
and some formal consequences, before returning to consider
another class of situations where we may be able to take
advantage of this property, and then exploring exactly when
it holds more carefully.

Trivially, if C can be factored into CA ×CB such that
−→
R

only modifies CA (in a way depending only on CA) and
−→
S

only modifies CB (in a way depending only on CB), then
−→
R

and
−→
S are non-interfering.

Even more trivially, if C contains only one model, then
any

−→
R and

−→
S targetting C are non-interfering: both sides

of the equation in Definition 11 must always evaluate to this
single model, so they must be equal!

Non-interference gives by correctness and hippocratic-
ness

Lemma 1 Whenever
−→
R and

−→
S are non-interfering and

R(a, c), then for all b we have R(a,
−→
S (b, c)) (“once consis-

tent, always consistent”). It follows that for any a ∈ A and
b ∈ B there exists c ∈ C such that both R(a, c) and S(b, c)
hold. ��
It is tempting to think informally of the common target of
non-interfering consistency restorers as being able to be fac-
tored into two separate parts for the two transformations.
However, as, even if such a factoring exists (and we shall see
in the next section that it might not) this factoring may not be
reasonable to present in practice. So it may be more useful
to be able to work the other way. Non-interference allows us
to stick the two transformations together into one, thereby
reducing the number of edges in our network.

Lemma 2 Supposewe have correct and hippocratic R : A −�−�
C and S : B −�−� C with

−→
R and

−→
S non-interfering, as before.

We can define RS : A × B −�−� C by

– RS((a, b), c) iff R(a, c) ∧ S(b, c)

–
−→
RS((a, b), c) = −→

R (a,
−→
S (b, c)) = −→

S (b,
−→
R (a, c)) by

non-interference.

–
←−
RS((a, b), c) = (

←−
R (a, c),

←−
S (b, c))

Then RS is correct and hippocratic.

Proof Immediate from the definitions. ��
Moreover, we may do this in the context of a network of
bx, gluing edges that were incident on A or B to the new
A × B and adjusting their bx in the obvious way, and this
preserves other non-interference relations as we would hope:
the only point to be careful of is that if Q : D −�−� C then

−→
Q

needs to be non-interfering with both
−→
R and

−→
S , if it is to be

non-interfering with
−→
RS. Details omitted.
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The converse of Lemma 2 is false, however: given correct
and hippocratic T : A×B −�−� C wemight not be able to factor
it into correct and hippocratic R : A −�−� C and S : B −�−� C—
that is, there might not be any correct and hippocratic R and
S such that T = RS—because RS might have “twisting”
behaviour on A × B. The following example illustrates.

Example 7 Let A = {a, a′}, B = {b, b′} and C = {c, c′},
and let T be any correct and hippocratic bx T : A × B −�−� C
having the following consistency relation:

T c c′
(a, b) � ⊥
(a′, b) ⊥ �
(a, b′) ⊥ �
(a′, b′) � ⊥

(The behaviour of
−→
T is determined by the consistency

relation; there is a free choice of whether to set
←−
T ((a, b), c′)

to (a′, b) or to (a, b′), and three other similar free choices.)
Now T cannot be the bx RS produced by combining any

pair of correct and hippocratic bx R : A −�−� C and S : B −�−� C
as in Lemma 2. For the fact that T ((a, b), c) forces R(a, c)
and S(b, c), and the fact that T ((a′, b′), c) forces R(a′, c),
so in the combination T = RS we would have T ((a′, b), c),
which is false.

6.1 A pragmatic case of non-interference

Note that the definition of non-interference is (of course)
sensitive to the amount of choice there is for the instanti-
ating models—that is, to the model sets—as well as to the
actual behaviour of the consistency restorers. In some impor-
tant cases, there is some discretion over how these sets are
chosen and formalised. In the example of Sect. 2, consider
the question of whether there is interference between the
two consistency restorers which target the UML model. The
consistency relation between the UML model and the UML
metamodel is conformance; if the UMLmetamodel changes,
restoring consistency in the direction of the UML model is
updating the model for the new metamodel version (presum-
ably, making minimal semantic changes). But what is the
model set from which the UML metamodel is drawn, and
hence, the set of values of that type that must be considered
in the definition of non-interference?

If we take this to be, say, the set of all models conforming
toMOF, then these two consistency restorers will not be non-
interfering. For, however clever the UML model updater is,
there will be some ways in which the UMLmetamodel could
be replacedby adifferentMOFmetamodelwhichwill require
the meaning of the UML model to change, in the sense that
a previously consistent value of the Code will no longer be

consistent with the updated UML model. That is, these two
consistency restorers will interfere.

However, we might pragmatically take the point of view
that, even though it is desirable to have the UMLmetamodel
as part of ourmegamodel and be able tomake use of a consis-
tency restorer to update the UMLmodel if we have to accept
a newUMLmetamodel version, we can predict that all future
versions of the UML metamodel will be very similar to the
current one. That is, when we think about the domain of the
consistency restorer between the UML metamodel and the
UML model, we might be content to have in mind a very
small space of possible values for the metamodel—so small,
perhaps, that we predict any resulting updates to the UML
model will have no effect on the semantics of that model in
terms of its consistency with the code. That is precisely what
is needed to say that these consistency restorers would be
non-interfering.

On the other hand, turning to the two consistency restorers
that target the Code, one having the UML model as source
and one having the Tests as source, it does not seem to be
possible to make such an argument. Intuitively, these two
consistency restorers will interfere.

7 Sufficient conditions for non-interference

It is natural to ask whether we can formalise the intuition that
non-interfering bx care about different parts of their common
target model. It turns out, as so often in the study of bx, that
the question is more interesting than at first appears.

First, what is a “part” of a model? Sometimes there is a
natural notion of part, but often things are more blurred. The
first thing to notice is that in this context the notion of part
actually needs to be defined over a set of models, not just for
an individual model: the conceptual importance of the notion
of part is that we can talk about the “same” part of several
different models or versions of a model.

Next, we probably do not want to limit ourselves to a
notion of part that relates closely to the notion we use for
physical objects, where we might talk, ultimately, about
certain collections of adjacent molecules. Our “parts”, by
contrast, may have semantic reality, rather than geomet-
ric/spatial reality. For example, a bx that translates all the
strings in a model will normally be non-interfering with one
that restructures it without touching the strings. That is, we
might like “all the strings” to count as a part, as well as some
suitable notion of “the structure”.

A very general notion—capturing not just structural parts,
but arbitrary characteristics—is that a part of amodel is repre-
sented by an equivalence relation on the set of all possibilities
fromwhich that model is drawn. Then twomodels are equiv-
alent, if and only if they are the same in the part that the
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Vehicle
model : String

Wheel
diameter : Length

Door
label : String

1 0..*

1

0..*

Fig. 8 A metamodel for vehicles

equivalence represents. It is convenient to use the quotient
map rather than using the equivalence directly.

Definition 12 Let C be a set of models. A part relative to C
is a set P together with a surjective function p : C → P .
The value of that part in a particular model c ∈ C is p(c).

Using this formulation helps us to be precise about our
intentions – for example, when we think about the strings
within amodel as being a part, dowe or dowe not distinguish
between multiple copies of the same string, and just one?We
canmake either choice, but theywill yield different partmaps
p. Let us illustrate with a toy example.

Example 8 Let C be the set of all models that conform to
the metamodel shown in Fig. 8. Such a model contains an
arbitrary number of Vehicle elements, each of which may
have some Wheels and some Doors, without restriction as
to multiplicity. Each Vehicle, Wheel and Door carries
with it one attribute, as shown, so that the Strings in a model
are the strings which occur as values of the model attribute
of a Vehicle or as the label attribute of some Door.

There are many different ways to define parts, relative
to C—later, we shall discuss how to do this systematically
based on the set of metaclasses in the metamodel, but we
are not obliged to take that approach. Here are some simple
examples:

p1 : C → Set〈String〉

where p1 applied to a particular model c ∈ C returns the
set of strings comprising the values of all the attributes of
type String. Then to say that two models c1 and c2 are
equivalent according to part p1 is to say that they contain
the same strings. Note that, according to this particular part
definition, theymight not contain these strings as values of the
same attributes: swapping the values of attributesmodel and
label does not modify the value of the part. This might be
appropriate if, say, what we are concerned with is the cost of
translating all the String values into a different language. We
have huge flexibility to define parts that make the distinctions
we wish to make. For example, we could define

p2 : C → Bag〈String〉

if for some reason we care about the multiplicity with which
strings occur in the model, but still not about exactly where.
(Perhaps we plan to order stickers with the strings on them
and want to know how many stickers must be printed with
each string.)

Remark 3 While in a bx mindset, it is immediately tempting
to see a part as a view and to ask whether the model and
the part are related by an asymmetric lens. The answer is:
sometimes. Considering Example 8 again, we might find it
natural to define a part wheels, the value of this part, on a
particular model, being the set of all wheels of vehicles in the
model. This makes sense, whether the vehicles represented
are cars, bicycles or something else. However, it does not
seem natural to want to be able to make an arbitrary change
to the set of wheels3 and then update the full model including
its Vehicle and Door elements to match. For example, it
does not make sense to put bicycle wheels on a car! That is,
we should not expect every part to give rise to an asymmetric
lens, although some parts may do so.

Next we formalise the idea of bx R and S caring about
different parts of their common target model C .

Definition 13 Given correct and hippocratic R : A −�−� C and
S : B −�−� C , an A/B/rest decomposition of C is a triple of
parts:

– f A : C → CA

– fB : C → CB

– frest : C → Crest

such that the parts determine the whole, that is, if f A(c1) =
f A(c2) and fB(c1) = fB(c2) and frest(c1) = frest(c2), then
c1 = c2.

Definition 14 Suppose we have correct and hippocratic R :
A −�−� C and S : B −�−� C . An A/B/rest decomposition
( f A, fB , frest) of C is non-interfering if:

1.
−→
R only ever modifies the f A part: that is, for all a ∈ A
and c ∈ C we have

fB(c) = fB(
−→
R (a, c))

frest(c) = frest(
−→
R (a, c))

and dually,
−→
S only ever modifies the fB part.

2.
−→
R ’s behaviour does not depend on anything

−→
S might

modify: that is, for all a ∈ A and for all c1, c2 ∈ C , if

3 Even if we have carefully specified the codomain to include, not all
sets of wheels, but only sensible sets, e.g. ruling out sets that contain
exactly one bicycle wheel.
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both f A(c1) = f A(c2) and frest(c1) = frest(c2) then

f A(
−→
R (a, c1)) = f A(

−→
R (a, c2))

Remark 4 Condition 1 amounts to saying that, for any c ∈ C ,
the subset CR,c = {c′ ∈ C : fB(c′) = fB(c) ∧ frest(c′) =
frest(c)} is an (R-)subspace inC , in the sense ofDefinition 10
of [31]: if the users of model c ∈ C decide to stay within the
subspace, bx R will never move them outside it, regardless
of what the users of model a ∈ A decide to do.

As suggested by the choice of terminology, we get

Theorem 3 Let R : A −�−� C and S : B −�−� C be any correct
and hippocratic bx sharing a common target C, as usual. If
there is a non-interfering A/B/rest decomposition of C, then−→
R and

−→
S are non-interfering.

Proof Suppose there is a non-interfering A/B/rest decompo-
sition given by f A, fB , frest. We have to show that for any
a ∈ A, b ∈ B, c ∈ C ,

−→
R (a,

−→
S (b, c)) = −→

S (b,
−→
R (a, c))

which we will do by showing that f A, fB , frest all equate the
two sides, then using the stipulation that the parts determine
the whole. By condition 1 of Definition 14 we have

frest(
−→
R (a,

−→
S (b, c))) = frest(

−→
S (b, c))

= frest(c)

= frest(
−→
R (a, c))

= frest(
−→
S (b,

−→
R (a, c)))

Also by condition 1, we have f A(
−→
S (b, c)) = f A(c), so

we may take c1 = c and c2 = −→
S (b, c) in condition 2, giving

f A(
−→
R (a, c)) = f A(

−→
R (a,

−→
S (b, c)))

But condition1 alsogives fA(
−→
S (b,

−→
R (a, c)))= f A(

−→
R (a, c))

so we have

f A(
−→
R (a,

−→
S (b, c))) = f A(

−→
S (b,

−→
R (a, c)))

Dually,

fB(
−→
R (a,

−→
S (b, c))) = fB(

−→
S (b,

−→
R (a, c)))

Then since the parts determine the whole, we are done. ��
The A/B/rest decomposition seems to capture the essence

of our intuitive understanding that the two transformations
may be responsible for modifying different parts of their

shared model, while there may be other parts that neither
of the transformations modify. However, it is not obvious
how it could be made use of in a practical setting: how are
the parts of that decomposition to be determined?

In an MDD setting, it is natural to think about trans-
formations written in terms of metamodels, such that it is
straightforward to determine statically (at least in an over-
approximation) when a given transformation could ever
depend on, ormodify, some instance of a particularmetaclass
within amodel. Our next attempt gives a characterisation that
is better adapted to that setting: it uses a potentially larger set
of parts, which may, for example, correspond to the meta-
classes in a metamodel, as we shall shortly illustrate. To
allow us to capture the information about which parts are
modified by a bx, and which play a role in determining the
bx’s behaviour, we introduce the idea of tagging parts. It
turns out that our new characterisation is equivalent to the
existence of an A/B/rest decomposition.

Definition 15 Let R : A −�−� C be a bx and let

D = {pi : C → Pi : i ∈ I }

be a collection of parts with respect to C , for some index set
I .

An A-tagging of D is a function

tagsA : I → P({A-read, A-modify})

To interpret this tagging intuitively, one must imagine that−→
R is modifying the element of C (in-place). Then the inten-
tion is that tagging a part A-read indicates that the behaviour
of

−→
R—the modifications it makes, to any part—may vary

depending on the value of this part, while tagging it A-modify
captures that

−→
R maymodify this part. All four combinations

of the two tags are permitted; for example, a part which is
given neither tag should stay the same on application of any−→
R (a, _), andmoreover, its valuemust not influence the effect
of any application of

−→
R (a, _) on any other part. Next, we

formalise this.

Definition 16 Let R : A −�−� C be a bx, D = {pi : C → Pi :
i ∈ I } a collection of parts, and tagsA an A-tagging, as in
Definition 15. We say tagsA is a well-tagging for R if for any
a ∈ A, c, c1, c2 ∈ C and part pi ∈ D:

1. if A-modify /∈ tagsA(i) then pi (c) = pi (
−→
R (a, c));

2. if A-modify∈tagsA(i) and pi (
−→
R (a, c1)) �=pi (

−→
R (a, c2)),

then there must be some part p j ∈ D such that

(a) p j is tagged A-read, i.e. A-read ∈ tagsA( j), and
(b) p j (c1) �= p j (c2).
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Here, Condition 1 stipulates that
−→
R only ever modifies

parts that are tagged to show that it might do so. Condition 2
says, informally, that any change

−→
R makes must be justified

by something it reads. It is perhaps easier to apprehend in the
contrapositive form: if two models c1 and c2 are identical in
all the parts that

−→
R is claimed to read, then any differences

that do exist between them must be such as to be obliterated
by consistency restoration with any element of A. Strictly
speaking, since we have not yet imposed the condition that
an element be determined by its parts, we should rather say
that any differences that are visible using this collection of
parts must be such as to be obliterated.

Definition 17 Let R : A −�−� C and S : B −�−� C be bx and let

D = {pi : C → Pi : i ∈ I }

be a collection of parts with respect to C , for some index set
I as before. Let tagsA, tagsB be well-taggings of D for R,
S, respectively. We write tags for the obvious joint tagging,
given by

tags(i) = tagsA(i) ∪ tagsB(i).

Then,D is a tagged decomposition if the parts determine the
whole: that is, if, for some c1 and c2,we have pi (c1) = pi (c2)
for all i ∈ I , then c1 = c2.

A tagged decomposition is non-interfering if:

1. no part that is tagged A-modify is also tagged B-modify
or B-read;

2. dually, no part that is tagged B-modify is also tagged
A-modify or A-read.

As begun at the end of this definition, from here onwewill
usually elide the index set and talk about the parts themselves
being tagged; no confusion should arise.

It is straightforward to show:

Theorem 4 There is a non-interfering tagged decomposition
iff there is a non-interfering A/B/rest decomposition.

Proof Suppose there is a non-interfering A/B/rest decompo-
sition given by f A : C → CA, fB : C → CB , frest : C →
Crest. To get our tagged decomposition we simply take these
as the three parts and tag f A with {A-modify, A-read}, fB
with {B-modify, B-read}, and frest with {A-read, B-read}.
This is a well-tagging for R: Conditions 1 and 2 of Defini-
tion 16 follow from those of Definition 14 (making use of
the contrapositive form of Condition 2). Dually, it is a well-
tagging for S. The parts determine thewhole because they did
so in the A/B/rest decomposition. That the tagged decompo-
sition is non-interfering as required by Definition 17 is clear
from its definition.

Conversely, suppose that there is a non-interfering tagged
decomposition given by D = {pi : C → Pi }i∈I and tags.
Define

CA =
∏

i :A-modify∈tags(i)
Pi

CB =
∏

i :B-modify∈tags(i)
Pi

Crest =
∏

i :{A-modify,B-modify}∩tags(i)=∅
Pi

with the correspondingprojectionmaps. (Thenon-interference
condition in Definition 17 tells us that each Pi occurs in just
one of the three products, so we are simply taking a possi-
bly coarser abstraction.) The parts determine the whole in
the A/B/rest decomposition because they did in the tagged
decomposition.

Condition 1 of Definition 14 follows from the fact that the
non-interference condition of Definition 17 says that none of
the constituent parts of CB or Crest were tagged A-modify
(and dually).

For Condition 2 of Definition 14, take c1 and c2 satisfy-
ing f A(c1) = f A(c2) and frest(c1) = frest(c2). From the
definition above, if pi (c1) �= pi (c2), it follows that pi must
be tagged B-modify. But then by Definition 17, pi is not
tagged A-read. That is, c1 and c2 cannot differ in any part
tagged A-read. The contrapositive of Condition 2 of Defini-
tion 16 then tells us that

−→
R (a, c1) and

−→
R (a, c2) cannot differ

in any part tagged A-modify; hence by the definition above
f A(

−→
R (a, c1)) = f A(

−→
R (a, c2)) as required. ��

Corollary 1 If there is a non-interfering tagged decomposi-

tion, then
−→
R and

−→
S are non-interfering.

The trivial cases with which we began can easily be given
such decompositions. If C = CA × CB , with

−→
R concerned

only with CA and dually, then we will take projection onto
CA (rsp. CB) as pA (rsp pB); there is no remainder, so Crest

can be a singleton set. If C is a single point, then all the parts
can be maps to singletons.

7.1 Non-interference andmetamodel-based
definitions

We motivated the definition of a tagged decomposition as
being more convenient than the A/B/rest decomposition
for working with models and bidirectional transformations
defined in terms of metamodels. Here, we sketch what we
had in mind. For clarity, we will illustrate using the toy meta-
model introduced in Example 8. For the sake of concreteness,
we may take this to be an EMOF metamodel [25], though in
fact, any reasonable metamodelling formalism will do.
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Suppose the set C of models is defined to be the models
defined by some metamodel MM, with a set of metaclasses
M. In the example, M = {Vehicle,Door,Wheel}. Then,
for each metaclass M ∈ M, we could define a part pM that,
given a modelm, returns the collection of model elements in
m that are instances of metaclass M . In the example, these
parts are:

pVehicle : C → Set〈Vehicle〉
pDoor : C → Set〈Door〉
pWheel : C → Set〈Wheel〉

Thus, anymodel (conforming to themetamodel) can be given
as argument to each of these three parts. In effect, this splits
the model up into the sets of its elements of different meta-
classes. It is important to understand that an element of a
metaclass will be given with all the data it owns, accord-
ing to the metamodelling formalism, so that, despite the
splitting, no information is lost: this is what makes it pos-
sible for such a set of parts to determine the whole, as
required. For example, suppose our model c includes an
element (myBicycle say) of metaclass Vehicle. As we
see from the metamodel, metaclass Vehicle owns several
properties, including the attribute model and the association
ends that link a Vehicle to the collections of its Wheels
and Doors. The values of these properties, in the element
myBicycle, are part of the data of myBicycle consid-
ered as Vehicle. In an implementation, this means the
result of applying pVehicle to a model is a set of Vehicles
each of which is represented as a data structure including
its properties, e.g. its own xmi:id, the string value of its
model attribute (say “Cannondale XYZ”), and the sets of
xmi:ids that record the owned association end properties.
The data structure will not, however, include any data that is
not owned by this element, e.g. it will not include the value
of the diameter attribute of any Wheel object.

In equivalence relation terms, two models are the same
according to the part pM if an observerwho can only examine
model elements that are instances of M could not tell the
difference between them.

Remark 5 The attentive reader may have noticed that we
have brushed under the carpet the fact that, if we have a
fully specified metamodel, not all sets of elements of a given
metaclass may actually occur as the images of legal models;
we mentioned the problem of having a set of Wheels that
included exactly one bicycle wheel, in Remark 3. This appar-
ent problem is trivial, however; the wish to correspond to the
equivalence relation notion was the only reason for including
“surjective” in Definition 12, so the fact that we may need
to define our set of collections rather artificially in order to
ensure surjectivity should not worry us.

Aswehave seen in the example above, somecare is needed
over properties, in order that this collection of partswill deter-
mine the whole. We may suppose, as we did in the example
and as is normal in MOF-based languages, that each model
element comes togetherwith an identifier that is unique inside
the model, and with its properties, including the identifiers
of other model elements that are directly navigable from it.

That sorted, we may define, generically, a tagged decom-
position of C , provided that we can give well-taggings for
the incident bx.

This tagging should, in a reasonable bx language, be
doable by static analysis of the bx transformation along with
themetamodels on which it operates. Consider, as usual, a bx
R : A −�−� C . A metaclass—strictly, its corresponding part—
will need to be tagged A-write whenever

−→
R is capable of

modifying some instance of the metaclass (including any of
its properties: for example, deleting amodel element towhich
this element can directly navigate, and tidying up by deleting
its identifier from the properties of this element, will count as
a modification). For example, the part pVehicle would need to
be tagged A-write if

−→
R might modify the set of Vehicles

in a model, including by changing any property of any of
them, e.g. by deleting a Wheel object so that the corre-
sponding association end property of some Vehiclewould
have to change. However, it would not need to be tagged A-
write if the bxwere only capable of changing thediameter
of existing Wheel objects, because such changes would be
invisible to a viewer who can only inspect Vehicle ele-
ments; they do not alter the value of the part pVehicle applied
to any model. A metaclass will need to be tagged A-read if
some instance of it may influence the behaviour of the bx,
e.g. if it is mentioned in a pattern that must be matched.

As usual, tagging that is done as a result of static analy-
sis would probably have to over-approximate what tags are
required; depending on the expressiveness of the bx formal-
ism, it would very likely be necessary (for decidability) to
allow it to tag a metaclass A-write even if, in operation, no
instance of that metaclass would ever be modified. Further-
more, matters that would need to be considered carefully,
in a full description of this technique in a specific formal
setting, include specialisation of metaclasses (we would nor-
mally expect that every submetaclass would have to inherit
the tags of its parents) and the effects of any global constraint
checking.

Nevertheless, it seems reasonable to be optimistic that this
approach might permit the formalisation and automation of
the kind of common-sense reasoning that people who oper-
ate with several tools on the same model naturally do—“it
doesn’t matter what order I use these tools in, because they
don’t care about the same things”—permitting some cases of
non-interference to be detected automatically and easing the
task of maintaining consistency in a network of models.
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Fig. 9 Bx that are
non-interfering, but have no
non-interfering A/B/rest
decomposition

R cA c1 c2 cB
a0 cA c1 c2 cB
a1 c1 c1 c2 cB
a2 c2 c1 c2 cB
←R cA c1 c2 cB
a0 a0 a0 a0 a0
a1 a0 a1 a1 a1
a2 a0 a2 a2 a2

S cA c1 c2 cB
b0 cA c1 c2 cB
b1 cA c1 c2 c1
b2 cA c1 c2 c2
−
S cA c1 c2 cB
b0 b0 b0 b0 b0
b1 b1 b1 b1 b0
b2 b2 b2 b2 b0

7.2 Necessary conditions for non-interference?

We have now discussed two equivalent kinds of “non-
interfering decomposition” and shown that the existence of
such a decomposition is sufficient to ensure non-interference.
Note, however, that we have not shown that every pair of non-
interfering bx can be demonstrated to be so by exhibiting a
non-interfering decomposition. There is a good reason for
this: despite our initial intuition, it is not true. Here is a small
example (not quite the smallest that exists, but this one has
an easy-to-explain intuition).

Example 9 Let A = {a0, a1, a2}, B = {b0, b1, b2}, and
C = {cA, c1, c2, cB}. Let R : A −�−� C and S : B −�−� C
be defined by their forward and backward transformations
given in Fig. 9.

Here,
←−
R and

←−
S are included only to show that it is indeed

possible to complete
−→
R and

−→
S to correct and hippocratic

bidirectional transformations. (The role of a0, b0, which are
consistent with all elements of C , is just to ensure this.)

Figure 10 illustrates. Here, we elide explicit mention of
R and S in favour of showing A and B acting on C : we
show an arrow from c to c′ labelled with an a to indicate that−→
R (a, c) = c′, and similarly an arrow from c to c′ labelled
with a b indicates that

−→
S (b, c) = c′. Missing arrows indicate

that consistency already holds: for example, there is no arrow
labelled b out of cA, because, as can be seen from the tables
above,

−→
S (b, cA) = cA (that is, S(b, cA) holds).

A reasonable intuition for this example is players A and
B wish to jointly make a choice between two options repre-
sented by c1 and c2. The models in sets A, B represent the
players’ preferences, if any. a0 means that A has no prefer-
ence, and cannot choose; a1 means she prefers option 1, a2
that she prefers option 2. Similarly for B. In model C , c1 and
c2 represent the choice having been made; cA means that it
is A’s job to make the choice, while cB means that it is B’s
job. The players are very polite and protocol-respecting: they
never make a choice unless it is their job to do so, and if a
player has the job of choosing, but cannot do so, no choice

cA

c1

c2

cB

a1

a2

b1

b2

Fig. 10 Actions of A and B on C

is ever made. Thus,
−→
R and

−→
S are non-interfering: regard-

less of what the models are originally, at most one of the
transformations will change it, so there is no possibility that
two consecutive changes fail to commute; or to put it another
way, the players never compete to impose their choice!

As this intuition suggests, we cannot factor C into parts
that are the separate concerns of

−→
R and

−→
S . Their non-

interference arises, rather, from the transformations’ respect
for a protocol about the circumstances in which they will
change a part of the model, than from a separation of the
parts they will change. Summarising formally, we get

Theorem 5 The existenceof anon-interferingA/B/rest decom-
position of C (or, equivalently by Theorem 4, of a non-
interfering tagged decomposition of C) is a sufficient, but
not a necessary, condition for R : A −�−� C and S : B −�−� C to
be non-interfering.

Proof Sufficiency is Theorem 3. To show that necessity
does not hold, let A = {a0, a1, a2}, B = {b0, b1, b2}, and
C = {cA, c1, c2, cB}. Let R : A −�−� C and S : B −�−� C be
defined by their forward and backward transformations given
in Fig. 9. Then, R and S are non-interfering, yet there is no
non-interfering A/B/rest decomposition of C .

We have already observed that they are non-interfering:
formally, the range of each of

−→
R and

−→
S is the set {c1, c2},

while both c1 and c2 are fixed by every
−→
R (a, _) and

−→
S (b, _).

Therefore, none of the equations inDefinition 11 can fail; that
is,

−→
R and

−→
S are non-interfering.

To see that no non-interfering A/B/rest decomposition
exists, observe that, if ( f A, fB , frest) were such a decom-
position, then condition 1 of Definition 14 would force
{cA, c1, c2} to be mapped to the same point by f A and simi-
larly, would force {cB, c1, c2} to bemapped to the same point
by fB . Condition 1 would also force the whole of C to be
mapped to a single point by frest. But then none of f A, fB ,
frest could distinguish c1 from c2; that is, the parts could not
determine the whole. Therefore, no non-interfering A/B/rest
decomposition of C can exist. ��

Before exploring the implications of these situations in
Sect. 9, we briefly consider using a more refined notion of
consistency.
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8 More refined notions of consistency

In [31], we considered notions of consistency beyond a sim-
ple true/false distinction, and these ideas are particularly
useful in the context of networks of bx, in two main ways.
First, they contribute to modelling how consistency can be
restored in phases: for example, if one phase of a bx does
not guarantee to restore consistency perfectly, but does guar-
antee to eliminate certain kinds of inconsistency (missing
elements, say), then it may be useful to have a way to specify
precisely what it does promise. In our setting, as we shall see,
this gives us the means to talk about situations in which two
restoration functions must be applied to the same model, in
order to make it consistent with both of two related models.
Second, they provide a foundation for handling situations in
which consistency cannot be fully restored, giving guaran-
tees of some good behaviour even then and allowing helpful
feedback of what was, and was not, achieved. For example,
we might be happy to allow a bx to make some changes auto-
matically, but we might want other changes to be made only
with human oversight; in such a case, the bxmight not be able
to restore consistency fully, yet it might be helpful to have
terminology for precisely what it has done. Or, in a network
setting, we might need to talk about what has been achieved,
even when perfect consistency in the network has not been
restored.

Let (Λ,≤Λ) be a partial order, called the consistency
structure, having a top element � (“perfectly consistent”;
all λ ≤Λ �). A pair of models, rather than simply being
considered consistent or not, may be assigned a consistency
level λ ∈ Λ.

Formally, let a partial bidirectional transformation R :
M ↔ N over Λ be defined by specifying

– a consistency indicator R : M × N → Λ that says how
consistent a given pair of models is

– consistency restoration functions
−→
R : M × N → N and←−

R : M × N → M .

The usual setting is of course subsumed: it has consistency
structure containing just ⊥ < �. The consistency restora-
tion functions are still total functions, but they may not fully
restore consistency; for example,

−→
R (m, n) might return n′

such that R(m, n′) = λ < �. (Of course, the consistency
restoration function can always return its argument of the
appropriate type, so it is no restriction to require it to be a
total function.)

Definitions of properties of bx that rely solely on equations
between the results of consistency restoration functions, such
as Definition 11, apply without modification to partial bx.
Other property definitions need slight notational adjustment:

Definition 18 A partial bx R is correct if for all m ∈ M and
n ∈ N we have R(m,

−→
R (m, n)) = �, and dually.

Definition 19 A partial bx R is hippocratic if for all m ∈ M

and n ∈ N we have R(m, n) = � ⇒ −→
R (m, n) = n, and

dually.

That is, as usual, a bx is correct if it always restores perfect
consistency, and hippocratic if it never makes any change to
a perfectly consistent model.

The paper [31] considered more refined properties of bx,
useful when fully correct and hippocratic behaviour is not
achievable. It considered several reasons why this might be
so, each of which might apply in a network setting. A per-
fectly consistent model might not exist; or it might not be
possible to find one (say, within feasible computation con-
straints); or we might not want to authorise an automated bx
to make certain changes to a model that would be required
to restore perfect consistency, even though we find it use-
ful to allow it to make some (perhaps “less dangerous” or
“less controversial”) changes that improve the consistency
situation somewhat.

First, a bx is called as correct as possible (ACAP) if the
model it produces is always a candidate with respect to its
arguments. That is, while

−→
R (a, b) might give b′ such that

R(a, b′) <Λ �—it fails to restore consistency perfectly—if
R is ACAP, it guarantees that no b′′ exists with R(a, b′′) >Λ

R(a, b′), i.e. R does the best that can be done under the
circumstances. Formally:

Definition 20 Given m ∈ M , the set of
−→
R candidates with

respect to m is {n′ ∈ N : R(m, n′) is maximal}. That is, n′
is a candidate iff R(m, n′) = λ ∈ Λ such that there does not
exist any n′′ ∈ N with R(m, n′′) >Λ λ. Dually for

←−
R .

Definition 21 A bx R is as correct as possible (ACAP) if it
always returns a candidate.

Often, this property cannot be achieved. However, it is
a useful property in the case where consistency imposes a
constraint on the argument that cannot be modified (a in
this case). In some such cases, we may be able to model
the restoration of consistency between a and b that requires
modifying both a and b as a two-stage process, in which first
an ACAP

−→
R is used to update b with respect to a, giving b′,

and then an ACAP
←−
R is used to update a with respect to b′,

giving a′ satisfying R(a′, b′) = �.
Second, we call a bx as hippocratic as possible (AHAP) if

it has the property that it makes no change to a model unless
it strictly increases the consistency level:

Definition 22 A bx R is as hippocratic as possible (AHAP)
if its consistency restoration functions return exactly their
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argument of appropriate type, unless returning something
strictly more consistent. That is,

−→
R (m, n) = n ∨ R(m,

−→
R (m, n)) > R(m, n)

and dually.

By contrast with ACAP, the AHAP property can rea-
sonably be imposed. Thinking about practical applications:
provided thatwehave access to an implementation of the con-
sistency function, any bx can be modified so as to be AHAP,
by wrapping it, as follows. Given a pair (a, b) of arguments
to a consistency restoration function

−→
R , first calculate the

consistency level λ = R(a, b); then calculate b′ = −→
R (a, b)

and find λ′ = R(a, b′); finally, return b′ if λ′ > λ, otherwise,
return b.

In our network setting, this seems a reasonable response to
the problem of having multiple bx targetting a single model,
where the bx are not necessarily non-interfering. Consider
again the situation in Fig. 6b, where each of

−→
R and

−→
S is

correct and hippocratic, but this time they are not necessarily
non-interfering. We may define RS : A × B −�−� C over
Λ = {⊥, λR, λS,�} (where λR and λS are incomparable,
both greater than ⊥ and less than �) by

–

RS((a, b), c) =� iff R(a, c) ∧ S(b, c)

λR iff R(a, c) ∧ ¬S(b, c)

λS iff ¬R(a, c) ∧ S(b, c)

⊥ iff ¬R(a, c) ∧ ¬S(b, c)

–

−→
wR((a, b), c)

= −→
R (a, c) if RS((a, b),

−→
R (a, c)) > RS((a, b), c)

c otherwise.

Similarly

−→
wS((a, b), c)

= −→
S (b, c) if RS((a, b),

−→
S (b, c)) > RS((a, b), c)

c otherwise.

Then

−→
RS((a, b), c) = −→

wS((a, b),
−→
wR((a, b), c)

(note that in this definition
−→
R is applied first; there is an

obvious variant, which we might call SR, where
−→
S is

applied first).

–
←−
RS((a, b), c) = (

←−
R (a, c),

←−
S (b, c))

It is immediate that

Lemma 3
−→
RS is AHAP. If in addition

−→
R and

−→
S are non-

interfering, then this definition of RS is equivalent to the one
given in Lemma 2, and both are equivalent to SR.

Illustrating the difficulty in ensuring that a bx is ACAP,
note that

−→
RS does not necessarily have that property, if

−→
R and−→

S are not non-interfering. By correctness of R, S, it does
ensure that the final consistency level is not ⊥. However,
it is possible that a c′ exists that satisfies both R(a, c′) and
S(b, c′), and yet which is not reachable using the consistency
restoration functions provided.

Example 10 Returning once again to a variant of the example
fromSect. 2, let us take

−→
R to be the restoration of consistency

from Metamodel towards Model, and
−→
S to be the restora-

tion of consistency from Code towards Model. We earlier
pointed out that these might or might not be non-interfering,
depending on the range of possibilities forMetamodel. Then,−→
wR changes the Model to be consistent with the Metamodel,
but only if doing so does not break previously existing consis-
tency betweenModel and Code; if it does, it leaves theModel

alone. Similarly,
−→
wS changes a Model to be consistent with

the Code, unless doing so would break existing consistency
with the Metamodel, in which case it does nothing. When
these are combined into

−→
RS, we get a consistency restorer

which first tries to update the Model to conform to the Meta-
model and then tries to update it with respect to the Code;
but in neither step does it actually do anything if restora-
tion of the kind of consistency it aims at would break the
other kind of consistency. It is AHAP, in that it will make
no change unless it gives an overall improvement in the con-
sistency lattice, i.e. restores a previously lacking consistency
between Model and one of Metamodel and Code, without
breaking either previous consistency. It is not ACAP, as it
might very well be that there is a Model consistent with both
the Metamodel and the Code which is not reached by this
simple-minded procedure. Generally speaking, some “intel-
ligence” (scare quotes) is required to combine the effect of
several bx, which the composition we described does not
provide.

Ifwe are in the situationwhere the consistency restorers
−→
R

and
−→
S are non-interfering, the situation is greatly simplified:

we then know that applying one of these consistency restorers
will not break the other kind of consistency, so then we are
just saying that we first restore conformance of the Model
to the Metamodel and then restore consistency of the Model
to the Code, ending up (by Lemmas 3 and 2) with a Model
which is consistent with both Metamodel and Code.
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In the next section, we will turn to some cases where net-
works can be resolved.

9 Resolving networks

Suppose we have a network of binary bx and a (connected)
authority instancewewish to resolve.Wehave already shown
that theremight not be a solution; that, even if there is, itmight
not be reachable via the consistency restoration functions of
the bx; and that if a solution is reachable in that way, it might
not be unique. What positive results can we find?

It is natural to turn our thoughts towards trees. We will
need a root from which to start the resolution process. If
our network includes any already-oriented edges (e.g. aris-
ing from unidirectional transformations or from decisions
already made about which direction should be used), there
may be models that (though not initially designated authori-
tative) cannot be modified, and so need special treatment.
Step 0: Consider each non-authority node n. If there is no
authority node from which n can be reached via a path in the
network (respecting any oriented edges), then add n to the
authority set.

Next, we simplify the situation by creating a single root,
the supersource:
Step 1: If the authority set contains more than one node, add
a single authority node which is connected (by an edge with
a notional universal consistency relation) to each node in the
authority set.
Step 2: Check any edges between two nodes in the authority
set. If any of these are not consistent, give up. If any edge
between two nodes in the original authority set is inconsis-
tent, of course, there is no resolution.

Now, if the resulting network is a tree, the situation is
particularly pleasant. Step 3 then applies:
Step 3: If the network (after Steps 0-2) is a tree, then orient
it, always away from the root towards the leaves.

Lemma 4 If Step 3 applied, its result is resolvable.

Proof Since Step 3 applied, the network is a tree, with all
edges oriented away from the root, towards the leaves. (Note
that there cannot be any edges that were oriented in the
opposite direction, for then their sources would have been
unreachable in Step 1 and would have been added to the
authority set.) Therefore, it suffices to start at the root, and
apply the bx in turn, until all leaves are reached. Correctness
of the individual bx tells us that this resolves the network. ��
However, note that it is still not necessarily confluent. For
there are resolution paths that do not apply the bx systemati-
cally starting from the root, and thesewill not necessarily give
the same result. For example, consider the fragment of the
Sect. 2 example comprising the UML model, the Code and

the Tests, with consistency restoration functions in that direc-
tion (model to code to tests), and suppose the UML model
is in the authority set. Suppose that in the initial state, the
UML model includes, and the Tests test, a class Foo which
(perhaps because it has been deleted) does not appear in the
Code.

If we restore consistency first by updating the Code with
respect to the UML model and then by updating the Tests
with respect to the Code, the expected outcome is that class
Foo reappears in the Code and (under natural assumptions)
corresponding tests remain in the Tests.

However, if instead we first restore consistency between
Code and Tests towards Tests, presumably tests of Foo will
be deleted. If we go on to restore consistency between UML
model and Code, towards Code, then class Foo will be rein-
stated in the Code; but even when we go on to restore
consistency (again, having changed Code) towards Tests,
the original tests that mentioned class Foo cannot be fully
restored, because information about them that was only
present in the Tests has been lost.

This is a familiar problem: the consistency restoration
between Code and Tests is not history ignorant.

Definition 23
−→
R is history ignorant if for all a, a′ ∈ A, b ∈

B, we have
−→
R (a,

−→
R (a′, b)) = −→

R (a, b). Dually for
←−
R .

Finally, we get a positive result on confluence:

Lemma 5 If Step 3 applied, and all the bx in the network have
history ignorant consistency restoration functions in the rel-
evant direction of orientation, then the network is confluent.

Proof Induction on branch length, making use of correctness
and hippocraticness as well as history ignorance. ��

Note that outside this special setting, it is also not rea-
sonable to expect to find a (non-exhaustive) algorithm that
guarantees that if there is a resolution path, the algorithm
finds it. For the existence of such a path might be dependent
on a quirk of the behaviour of any one of the bx, such that
finding it required applying that particular bx at a particular
stage.

We can use non-interference, where available, to give us
positive results beyond trees. Suppose we carried out Steps
0-2 but Step 3 did not apply.
Step 3′: Identify any nodes n that are not leaves, but have the
property that all the consistency restoration functions that
the network permits to be directed at n are non-interfering.
If there is a set S of such nodes, such that deleting the nodes
in S would turn the network into a tree, then pick one and
colour the nodes in S.

Lemma 6 If Step 3′ applies, then the network is resolvable.
Moreover, if all the bx are history ignorant, then the network
is confluent.
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Fig. 11 Resolving a simple
network MMModel

Code Tests

(a) Authority instance

MMModel

Code Tests

SS

(b) Supersource added

MMModel

Code Tests

SS

(c) Oriented, resolvable

Proof Orient the network as in Step 3 and resolve the network
as in Lemma 4, treating the coloured nodes as though they
were leaves. Non-interference ensures (via Lemma 1) that
performing all consistency restorations towards the coloured
nodes does restore all the consistency relations, andmoreover
that it does not matter in which order these are carried out.��

Figure 11 informally illustrates, on the assumption that
the restoration functions into Model are non-interfering, as
discussed earlier.

There is more that could be done in this direction; in par-
ticular, if removing nodes with non-interfering edges does
not result in a tree as required by Step 3′, one could consider
unfolding the network into a tree by duplicating the ongoing
section of the graph. This is delicate and beyond the scope of
this paper, however.We suspect that in practical applications,
consistency in a network that deviatesmuch from being a tree
is better handled with a “pull” model than with the “push”
model that is implicit in seeking confluent resolution of the
whole network. This observation motivated ongoing work
whose beginning is reported in [33].

10 Related work

10.1 Megamodelling

Megamodelling is a term applied first by Bézivin et al. to
the practice of regarding models themselves, and their rela-
tionships, as objects of study. They write “A megamodel is a
model of which at least some elements represent and/or refer
to models or metamodels” [3]. Megamodelling is better seen
as a mental discipline than as a technology. Megamodels
are often, in current practice, informal: one draws a dia-
gram whose nodes are models and adds (usually binary)
relationships between the models, whose nature is explained
in natural language (often stylised, with relationships taken
from a fixed set e.g. “conforms to”, “instance of”, but usually
not given a formal definition). It is possible, without loss of
generality, to interpret these relationships as consistency rela-
tionships, as in our example: the current state of one model
is consistent with the current state of the other model, if and
only if the desired relationship does in fact hold. For exam-
ple, if a model is related to a metamodel via “conforms to”,
we may interpret this as a consistency relation between the

set of possible models and the set of possible metamodels,
where a model is consistent with a metamodel if and only if
it conforms to it.

Within this discipline, we may conceive multi-directional
transformations and especially work on the resolution of
networks of bx, as a contributing technology. For example,
the megamodelling notation used in [14] has relationships
between models that include “equals”, “contains” and, most
tellingly, “overlaps”. “Overlaps” represents what we see as a
general consistency relation; it is defined as “the content of
both artefacts is overlapping, but might be represented differ-
ently; for example, the word document overlaps in content
with the HTML table”. One small part of the megamodel
described there (Fig. A13 of [14]) includes nine models, all
related to one another by one or more binary “overlaps” rela-
tionships.

The networks of models, connected by binary bx, dis-
cussed in this paper aremegamodels, but by making explicit
the binary bx between the models, we open up the possibility
to treat the megamodel formally and uniformly. This is the
sense in which this work is a contributing technology to the
study of megamodels. For example, building explicitly on
the conference version ( [32]) of the present paper and using
a delta-based formalism, Anjorin et al. in [1] described a col-
lection of case studies fromSiemensAGwhere this approach
is useful.

One problem in megamodelling is knowing when to stop.
A transformationmay itself be regarded as amodel that forms
part of a megamodel; it may be related to the models it trans-
forms. In fact, this can be useful, as we can then consider,
explicitly, changes to the transformation itself; our binary
consistency relations may then be between the transforma-
tion and its transformedmodels, andwemayusemechanisms
such as the Quick Fixes of Cuadrado et al. [10] to restore this
consistency as necessary. The desired relationship between
the transformedmodels, that it is the job of the transformation
to maintain, needs to be implemented by our binary consis-
tency relations. Both the application of Quick Fixes to the
transformation and the application of the transformation to
themodelsmaybe seenwithin our framework.Wemaywrite:
R(m1, M1, T ,m2, M2) if and only ifm1 conforms toM1 and
is consistent, according to T which relates metamodels M1

and M2, with m2 which conforms to M2.
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The English explanation of this multiary consistency rela-
tion shows how to implement it using binary consistency
relations, but much of the practical difficulty of MDD is
embodied in the choices that have to be made about how
to restore this consistency when it is lost.

In this paper, we have demonstrated that the circumstances
in which strong conditions such as confluence hold are very
limited, so it makes sense to explore mechanisms for sup-
porting humans in managing decisions about the choice of
resolution path, and indeed of authority set. Early work in
that direction is reported in [33].

10.2 Multiary variants of triple graph grammars

In [15], Königs and Schürr introduced the notion of multi-
graph grammars (MGGs), a variant on the more familiar
triple graph grammar (TGG) idea in which two graphs are
related via a correspondence graph, and the coevolution of
all three graphs is specified by a collection of TGG rules.
The MGG is a straightforward extension of the TGG idea;
the MGG rules specify how all the graphs, including a single
correspondence graph, evolve simultaneously. The authors
point out that this is impractical and show how to derive
binary operational rules from theMGG. They do not discuss,
though, the semantic relationship between the derived rules
and the original, or the issues that may arise from applying
them over a network of models as we have considered here.

Trollmann and Albayrak build on this and other work to
propose an extension to TGGs based on graph diagrams [34,
35]. A graph diagram is in our terms essentially a consistent
network, but expressed in categorical terms which we did
not need, in order to interoperate with the TGG literature.
This interoperation is the main contribution of the work: the
authors point out that they have not yet addressed many of
the matters that concern us here.

10.3 Further related work

Ideas similar to non-interference have been studied before,
but we are not aware of any very closely related approach.
Our use of tags is, at least superficially, reminiscent of that
in [23]. The setting of that work differs so much from ours
that it is hard to make precise comparisons, but roughly, in a
functional programming context, they replace values (in their
correlate of our models) by values that are tagged either O or
U, and then use the tagging to enable certain compositions
of asymmetric lenses. Their elements that are O-tagged are
similar to our parts that are guaranteed not to be tagged Read,
while their elements that are U-tagged may or may not be
tagged Read. There does not seem to be any correlate of
our Modify tags, however, perhaps because of the functional
setting.

The concepts of sequential and parallel independence,
extensively studied in the graph grammar community (see,
for example, [5,27]) also seem to be somewhat related, at
least in the aims of enabling certain changes to be made in
either order. The technical results from that field are so deeply
embedded in the graph grammar setting that at present I do
not see how to make a fruitful connection, but perhaps there
is the potential for future work here.

Turning to the problem of restoring consistency to a col-
lection of many models, a different approach, related to the
CSP work discussed in Sect. 3.2, is to take a program repair
view. Here, constraints are expressed over all models, any of
which may be modified; see for example [36].

Garcia [13] used a bidirectionalisation approach based
on [22] to define what he called a Declarative Model-View-
Controller architecture. Macedo et al. [21] considered some
issues that arise in taking seriously QVT-R’s claim [26] to be
able tomaintainmultiary consistency relations.As remarked,
our Example 3 is borrowed from their paper. They note that
QVT-R’s insistence on a semantics in which for all valid
bindings in all but one of the models, there must exist a
valid binding in the one remaining (“target”) model leads
to expressivity restrictions, essentially because the for all
antecedent may be trivially satisfied in the case where there
is no valid binding of the other models. To remedy this, they
suggest a modification giving extra expressivity by introduc-
ing “checking dependencies”: basically a way to say that
one model depends on a subset (not all) of the other models.
That is, they widen the class of multiary consistency rela-
tions expressible to those definable by a Horn-clause-like set
of subrelations.

A pragmatic approach to pairwise model-merging is
described in [6], where a set of models is merged by repeat-
edly identifying and merging the most similar pair; might
this be useful in bxmore generally? It would be interesting to
explore resolving a network by identifying the closest to con-
sistent edges (for example, making use of a refined notion of
consistency such as we discussed in Sect. 8) and fixing these
first. Clearly, it will not always give the best result, by the
same argument that shows a naive metric-based least-change
property to be not always desirable [7]; e.g. when a single
model is out of line, it may either be in error, or be a desirable
first step towards a better consistent state. Probably, amixture
of theoretical and pragmatic approaches will be required.

There are several large areas ofmathematics and computer
science from which we might be able to learn, beyond what
we have touched on here. One is the study of flow networks
and transportation algorithms (as covered at undergraduate
level in [18] for example). From that field we picked up the
useful basic tool of adding a supersource, in Sect. 9. Perhaps
thinking of changes as flowing round a network has more to
offer. Returning to the issue of tolerating inconsistency, we
note that we have not addressed what happens if, while we
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are in the process of restoring consistency across a network,
further changes to models are taking place. Distributed algo-
rithms experts understand such situations [19]: it would be
interesting to try to adapt ideas from that field to this one.

11 Conclusion

This paper has attempted to demonstrate some of the con-
sequences of using bx in the large, to relate more than two
models; we wanted to show how, eventually, bx may be an
important tool in the automatedmanagement of development
described by megamodels. This seems essential if MDD is
to have a transformative effect on software development.

We started by considering carefully the senses in which
multi-directional transformations, are or are not, formally
required in order to be able to express consistency of sets of
more than two models; this is a topic that has caused some
confusion in the Bx community. We hope to have clarified
it by demonstrating that one obtains different answers to the
question depending onone’s assumptions about, for example,
whether it is permitted to add extramodels. In the process, we
made some connections with the mature field of constraint
solving.

We went on to consider the difficult question of how con-
sistency may be restored in a network of binary bx. Here,
our findings were mostly negative: this suggests that in prac-
tice, it will usually be necessary to manage the consistency
restoration process, e.g. specify a resolution path not just an
authority instance, rather than relying on confluence. Indeed,
this finding was the starting point for a separate ongoing
thread of work whose beginning is reported in [33]. Here,
however, we provided an algorithm and positive results for
special cases.

We also looked in detail at situations in which two bidi-
rectional transformationsmay act on the samemodel without
interfering with one another; we gave two sets of sufficient
conditions for this to be so, and in doing so, gave an ele-
mentary notion of the parts of a model that a bidirectional
transformation reads and modifies.

Finally, we related the work to megamodelling and other
parts of the literature and pointed at some further possibly
fruitful areas.

Aficionados of bx will have noticed that this paper has not
discussed trace links, deltas or related issues: we havewritten
in terms of the simplest, state-based relational, notion of bx as
consistency restorers. There are several reasons for this. First,
the simplicity of this approach enables us to get started. Sec-
ond, in a megamodelling environment, which by its nature
involves a disparate collection of tools, assumptions about
toolsmaintaining information beyond themodels themselves
may be difficult to sustain, at least in a uniform way. Most
importantly, however, once we work in a network setting, we

can reframe a more expressive relationship between models,
embodied in a witness structure such as a set of trace links, as
amultiary relationship between themodels and a tracemodel,
where these are themselves related by simple relational con-
sistency. Thus, we may argue, at bottom, everything can be
seen as state-based and relational. This does not preclude, of
course, value being obtained from working away from the
bottom in some cases.

As discussions at a recent Dagstuhl meeting [9] demon-
strated, ideas and questions formulated here in terms of
models may also have a wider applicability to other situa-
tions in which consistency has to be managed in the face of
change, and many questions remain to be investigated.
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