68,729 research outputs found

    Air-conditioning in residential buildings through absorption systems powered by solar collectors

    Get PDF
    Over the past years, the scientific community has been exploring alternative solutions to the fossil fuels used for indoor air-conditioning. The solution here suggested is formed by absorption machines powered by solar panels used to air-condition small residential buildings. The study examined a small residential building and evaluated energy savings, reduction of CO2 and the return on investment compared to a traditional solution. The results obtained might be considered as valid since the heat used was provided by a free energy source with a low environmental impact, devoid of CO2 emission

    Feasibility study of a heat recovery system in an office building in Malta

    Get PDF
    The new Energy Performance of Buildings Directive (EU) 2018/844 has brought about a new drive to renovate existing buildings, especially for heating and cooling systems, whereby heat recovery techniques have become the order of the day. However, the real energy and financial benefits of applying such techniques have not been studied in Malta, which has a temperate Mediterranean climate. Thus, this study has performed a technical and financial analysis of using different heat recovery options for the most common office type, that is a medium-sized flatted office, using EnergyPlus dynamic simulation tool and multiple linear regressions. Results showed that the coefficient of performance of the air-conditioners, the window to wall ratio and the cooling set-point temperatures, have the greatest impact, while heat recovery has an insignificant contribution to energy efficiency, thus making it rank low in the list of energy efficiency priority measures for medium-sized offices in Malta.peer-reviewe

    Linking objective and subjective modeling in engineering design through arc-elastic dominance

    Get PDF
    Engineering design in mechanics is a complex activity taking into account both objective modeling processes derived from physical analysis and designers’ subjective reasoning. This paper introduces arc-elastic dominance as a suitable concept for ranking design solutions according to a combination of objective and subjective models. Objective models lead to the aggregation of information derived from physics, economics or eco-environmental analysis into a performance indicator. Subjective models result in a confidence indicator for the solutions’ feasibility. Arc-elastic dominant design solutions achieve an optimal compromise between gain in performance and degradation in confidence. Due to the definition of arc-elasticity, this compromise value is expressive and easy for designers to interpret despite the difference in the nature of the objective and subjective models. From the investigation of arc-elasticity mathematical properties, a filtering algorithm of Pareto-efficient solutions is proposed and illustrated through a design knowledge modeling framework. This framework notably takes into account Harrington’s desirability functions and Derringer’s aggregation method. It is carried out through the re-design of a geothermal air conditioning system

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Application of solar energy to air conditioning systems

    Get PDF
    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature

    POSSIBLE USAGE OF VARIABLE REFRIGERANT FLOW IN ARID CLIMATE: TECHNICAL AND MANAGEMENT PERSPECTIVE

    Get PDF
    All over the world, there is a call to encourage sustainable energy thinking and implementation. In the heating, ventilation and air conditioning field, the rise of the variable refrigerant flow systems has made a big progress throughout the years. This study presents a life-cycle cost analysis to evaluate the economic feasibility of constant refrigerant flow (CRF) in particular the conventional ducted unit air conditioning system that is widely used in Qatar and the variable refrigerant flow (VRF) system. Detailed cooling load profiles will be used for the existing units and the new VRF model in addition to initial, operating, and maintenance costs. Two operating hours scenarios are utilized to consider 12 and 24 operating hours and the present-worth value technique for life-cycle cost analysis is applied to an existing office building located in Qatar which can be conditioned by CRF and VRF systems. The results indicate that although the initial cost of the VRF system is higher than that of the CRF system, the present-worth cost of the VRF system is lower than that of the CRF system at the end of the lifetime due to lower operating costs. The implementation of these results on a national scale will promote the use of sustainable energy technologies such as the variable refrigerant flow system to reduce the energy consumption in Qatar and to improve the national power grid utilization, efficiency, and expansion in the coming years

    Impact of zoning heating and air conditioning control systems in users comfort and energy efficiency in residential buildings

    Get PDF
    Nowadays, in the residential sector, a widely used heating, ventilation and air conditioning system is the ducted direct expansion inverter system based on the on/off control of a single zone, which cannot guarantee the thermal comfort in each room of the building. As a solution, the standard EN 15,232 regulates the use of control systems including thermal zoning as a fundamental condition in the energy efficiency in buildings. The zoning system can adapt the equipment working regime to meet the thermal demand in each zone monitoring the air temperature according to users’ preferences ensuring the thermal comfort in each zone. Framed in this goal, in contrast to complex and costly control systems, this paper presents a new zoned control system based on thermostats and motorized dampers in each zone, a control board and a communication gateway which allows the communication between the unit and the control board to set operational parameters as the speed of the fan or the supply air set point temperature. The practical feasibility of this new control system is presented with a thermo-economic comparison analysis with respect the conventional in the context of the Building Research Establishment Environmental Assessment Methodology certification scheme. The model of the zoning system together with implemented control algorithms is developed in TRNSYS17 and the case of study is a residential dwelling in three different Spanish cities. The results show how the thermal zoning control contributes to adapt the thermal energy to each zone in a more efficient way. Moreover, the regulation of the motorized dampers, fan speed and set point temperature of the unit ensures the thermal comfort in all the zones of the building guaranteeing a category B according to the standard regulations. Finally, from the point of view of energy consumption, energy savings from 21 to 42% are obtained, resulting in payback periods of the installation from 3.2 to 4.3 yearsFunding for open access charge: Universidad de Málaga / CBU

    Solar Air Conditioning with Metal Organic Frameworks

    Get PDF
    Air conditioning is responsible for 5% of energy consumption in the United States as is increasingly in demand across the world as the global middle class continues to grow in size. During hotter months, electricity used to power cooling systems becomes taxing on electric grids, constituting approximately 40% of peak power demand. Traditional air conditioning (AC) systems are also associated with harmful environmental impacts. Both refrigerants used for cooling and fossil fuels used in power contribute to global warming by acting as green-house gases (GHG). Due to the negative effects associated with emissions, the ultimate goal of this research is to drastically reduce non-renewable energy consumption associated with AC units. Generations of technologies have been developed to address this ongoing issue. An emerging solution involves the integration of metal-organic frameworks (MOFs) sorbents into a solar air conditioning system. Because of MOF properties, this integration allows for a thermally driven cycle without requiring a non-renewable energy input. This thesis is comprised of six chapters geared towards assisting in the determination of the most efficient and effective means of incorporation of MOFs into AC systems. Primarily by conducting an extensive literature review, the third chapter discusses Metal Organic Frameworks in depth for determining the most suitable candidates for this research project. Specific needs for the system are examined with different MOFs that meet the criteria considered. In chapter four, feasibility of integrating MOFs into a membrane through sorption measurements is tested for candidate MOF CAU-10. Chapter five is centered around modeling a MOF-assisted indirect evaporative cooler using EES: Engineering Equation Solver. Modeling outputs give a preliminary understanding of the cooling process and its effect on temperature. Together, these chapters move toward showing the feasibility of operation and its applicability to the field of renewable AC. The study of MOF attributes in Chapter 3 focused on Relative Humidity (RH) at which the MOFs demonstrated a steep water uptake, water adsorption capacity, temperatures for MOF regeneration, long term stability, and cost to synthesize and fabricate. These investigations showed Co2Cl2(BTDD), MIL-101, MIL-100(M), MOF-841, and CAU-10 to be the most promising applicants. Through sorption measurements of MOF material CAU-10 its isotherm demonstrated a capacity at the adsorption step below 0.30 gH2O/gMOF but a maximum capacity over 0.5 gH2O/gMOF. The EES model results showed 80-90% of recycled air provides a supply temperature necessary for indoor cooling below 21 oC. Chapter six summarizes all results and gives recommendations focused on thermodynamic optimization.No embargoAcademic Major: Mechanical Engineerin

    Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design

    Get PDF
    This article contains an overall analysis of the results obtained by the four highest scoring teams in the Solar Decathlon Latin America and Caribbean 2015 collegiate sustainable habitat competition. Considering that the prototypes developed were based on energy self-su ciency when operational, it was considered necessary to propose this analysis based on the degree of suitability of each of these models based on their di erent performances from the perspective of comfort conditions. It was observed that the design of the prototypes did not manage to properly adjust the relationship between passive and active conditioning elements based on the location’s conditions. Accordingly, this article concludes that a balance of the two aforementioned conditioning modes recorded better results based on the measurements taken
    corecore