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Abstract

This paper describes the main issues encountered when applying model pre-
dictive control to hybrid processes. Hybrid model predictive control (HMPC)
is a research field non fully developed with many open challenges. The paper
describes some of the techniques proposed by the research community to over-
come the main problems encountered. Issues related to the stability and the
solution of the optimization problem are also discussed. The paper ends by
describing the results of a benchmark exercise in which several HMPC schemes
were applied to a solar air conditioning plant.
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1. Introduction

Model predictive control (MPC) has been developed considerably in the last
decades both in industry and in academia. This success is due to the fact
that Model Predictive Control is perhaps the most general way of posing the
control problem in the time domain. Model predictive control integrates optimal
control, control of processes with constraints, with dead-time, multivariable
processes and uses future references when available. The use of a finite horizon
strategy allows the explicit handling of process and operational constraints by
MPC. Although the technology originated in industry, the academic research
community has contributed, during the last two decades, important results in
all relevant aspects of the technique. It is widely accepted that the control of
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linear processes with linear constraints (i.e. linear MPC) is a relatively mature
research field. Linear models are good approximations if the process is kept close
to an operating point and the nonlinearities are not too severe. However this
is not the case of many processes where there are not only continuous variables
but also variables that have a discrete nature.

For a long time, the control of processes with discrete variables and the con-
trol of processes with continuous variables were considered to be two completely
different things. On the one hand, the theories of finite state machines were used
to control processes with discrete variables, and on the other hand, linear and
nonlinear control theory was used for the control of continuous variables. The
techniques for modelling and analysis of these types of systems are different. In
the case of continuous systems, differential equations, transfer functions, etc.,
are used as modelling tools, while in the discrete counterpart, state transition
graphs, Petri Nets, etc., are employed. From the beginning of the 1990s there
has been great interest in processes that have both discrete and continuous parts.
Hybrid systems are dynamic systems with both continuous-state and discrete-
state and event variables. That is, the plant has time-driven and event-driven
dynamics, the controller affects both time-driven and event-driven components,
and it may deal with continuous and/or discrete signals.

The interest in hybrid systems has grown considerably during the last decade
not only because it is a field relatively open to new advances but also because of
their potential impact on the industrial applications of control. Hybrid systems
arise naturally in several key areas such as automotive systems (Borrelli et al.,
2006) or power systems (Ferrari-Trecate et al., 2004). A proof of this growing
interest in hybrid systems is the number of sessions in major conferences and
the existence of periodic conferences devoted exclusively to them.

This paper describes the main issues in analyzing and implementing MPC in
the hybrid processes context. The paper starts with a short introductory review
of the type of hybrid system models used in the MPC context. Then, the hybrid
model implementation difficulties and some of the techniques proposed by the
research community to overcome these problems are discussed. Issues related
to computational burden and stability are also discussed. The paper ends by
describing the results of a benchmark exercise in which several HMPC schemes
were applied to a solar air conditioning plant.

2. Hybrid Systems Description

Hybrid systems are dynamic systems with both continuous-states, discrete-
states and event variables. That is, the plant has time-driven and event-driven
dynamics, the controller affects both time-driven and event-driven components,
and it may deal with continuous and/or discrete signals. Hybrid systems pro-
vide a good way to deal with plant-wide representation of complex industrial
processes, which can be seen globally as hybrid systems due to the presence of
subsystems and different working modes that commute along the plant oper-
ation. Also, there are some types of models that can be also seen as hybrid
systems. For example, hierarchical systems can be modeled as hybrid systems
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in which lower level components are composed by continuous dynamical systems
and higher level blocks are logic or decision modules (Antsalakis, 2000). Com-
muted systems (Sontag, 1981; Branicky, 1998; Johannson and Rantzer, 1998)
can also be seen as hybrid models in which there exists a collection of dynam-
ical systems and a set of commutation rules that can arise either from logical
propositions or from a finite automaton such as a Petri net.

Different types of models can be used to describe hybrid systems. Hybrid
modeling techniques used for control purposes have to be descriptive enough
to capture the behavior of the various parts of the system; i.e., continuous
dynamics (physical laws) and logic components (switches, automata, software
code), and to take into account interconnections between logic and continuous
dynamics. At the same time, the model has to be simple enough to solve analysis
and synthesis problems. Although other models have been proposed (like fuzzy
logic hybrid systems (Karer et al., 2008)), the most popular types of hybrid
systems models used in MPC schemes are piecewise affine (PWA) systems and
Mixed logical and dynamical (MLD) systems. Thus, this paper will be focused
on these models.

PWA systems (Sontag, 1981) are amongst the most studied forms of hybrid
systems. A PWA system is defined as

x(t + 1) = Aix(t) + Biu(t) + f i

y(t) = Cix(t) + gi for
[

x(t)
u(t)

]
∈ Xi (1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rr denote the state, input, and output
vectors, respectively. {Xi}s

i=1 is a polyhedral partition of the states and input
space. Each Xi is given by

Xi ,
{[

x(t)
u(t)

]
| Ri

[
x(t)
u(t)

]
≤ ri

}

Each subsystem Si defined by the 7-tuple (Ai, Bi, Ci, f i, gi, Ri, ri), i ∈ {1, 2, . . . , s},
is termed as a component of the PWA system (1). Ai ∈ Rn×n, Bi ∈ Rn×m, and
(Ai, Bi) is a controllable pair. Ci ∈ Rr×n and Ri ∈ Rpi×(n+m) and f i , gi , ri are
suitable constant vectors. Note that n is the number of states, m is the number
of inputs, r is the number of outputs, and pi is the number of hyperplanes that
define Xi.

PWA systems are equivalent to sets of linear systems combined with finite
automatons as pointed in Sontag (1996). On the other hand, PWA systems
allow to model a wide class of processes such as linear systems with static
piecewise affine nonlinearities or commuted systems. Moreover, they are able
to approximate nonlinear dynamics arbitrarily well using local linearizations
around different working points, and also they can approximate the more general
type of nonlinear hybrid systems replacing the nonlinearities by piecewise affine
approximations. They are also suitable for stability analysis and reachability
analysis (Sontag, 1981).

Another interesting property of PWA systems is their equivalence to other
types of hybrid systems models such as linear complementary systems, extended
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linear complementary systems, max-min-plus-scaling systems or the more pop-
ular mixed logical dynamical (MLD) systems (Heemels et al., 2001). All these
models have their advantages, but the equivalence among all of them allow to
transfer theoretical results from one type to other. And in this regard, PWA
systems are by far the most studied of all of them.

The other type of hybrid system model that enjoys some popularity within
the MPC community is the aforementioned mixed logical dynamical systems
(MLD). They were proposed in Bemporad and Morari (1999) within the con-
text of MPC techniques. In these systems there is a continuous part described
by linear dynamics and a discrete part that it is modelled as a set of logical
propositions. The key idea is that the set of logical propositions can be re-
placed by a set of equivalent linear constraints on binary integer (boolean) and
continuous variables (Williams, 1993). The equivalence between propositions
and mixed linear integer constraints is not a one-to-one relationship. Thus a
single proposition could be replaced by a set of constraints. Although there is
no systematic methodology to perform the substitution of every possible logic
proposition, the most usual ones are tabulated (Mignone, 2001, 2002). Summing
up, MLD systems are described by

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (2)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (3)

E1x(t) + E2u(t) + E3δ(t) + E4z(t) ≤ g (4)

where x(t) = [xT
r (t) xT

b (t)] with xr(t) ∈ Rn is the continuous part of the state
vector and xb(t) ∈ {0, 1}nb is the part of the state vector corresponding to the
discrete part. Notice that if the state is discrete, not necessarily Boolean, but
finite, it can be coded into a set of Boolean variables. The output signals also
have a similar structure y(t) = [yT

r (t) yT
b (t)] with yr(t) ∈ Rmis the continuous

part of the output and yb(t) ∈ {0, 1}mb is the discrete part. The input vector
u(t) = [uT

r (t) uT
b (t)] is composed of a continuous part ur(t) ∈ Rl and a discrete

part ub(t) ∈ {0, 1}lb . Some auxiliary continuous z(t) ∈ Rr and discrete variables
δ(t) ∈ {0, 1}rb are usually needed. Obtaining the MLD description for a given
hybrid system can be tedious and tricky. This task, however, can be eased by
the use of a specialized software tool named HYSDEL (Torrisi and Bemporad,
2004).

2.1. Identification and state estimation
Since MPC techniques are based on a prediction model, it is clear that

identification and state estimation methods are very important. Unfortunately
identification and state estimation techniques for hybrid systems are less devel-
oped than their counterparts in other types of models such as linear systems.
Most of the results and techniques are for PWA systems.

The problem of state observers for hybrid systems have been considered
in the literature (Alessandri and Coletta, 2001b,a, 2003; Schinkel et al., 2003;
Bara et al., 2000). It is usually assumed that the active mode of the system is
known at every sampling time, although this is not always possible. When the
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active mode is not known, the estimation of the state becomes a harder problem
that has been tackled for instance in Balluchi et al. (2002). In that work, it is
proposed to use observers that takes as inputs not only the discrete inputs and
outputs of the system but also discrete signals obtained from the continuous
variables, that are measured to estimate the active mode. Then, the continuous
state of the system can be observed using the techniques presented in Alessandri
and Coletta (2001b,a, 2003); Bara et al. (2000). Observers designed using this
procedure identify the active mode in finite time and the observation error is
steered to a bounded set. A different approach is presented in Ferrari-Trecate
et al. (2002), based on a moving horizon estimation. This strategy can be applied
to PWA systems, but has a great computational burden that limits its real time
implementation. Another approach that do not require knowing the active
mode is that of Juloski et al. (2007). In that work, Luenberger observer design
procedures are given for a class of bimodal piecewise linear (PWL) systems in
both continuous and discrete time. On the other hand, it must be taken into
account that if the state of a system is to be observed, then the system must
be observable. For commuted and PWA systems there are precise definitions
of observability (Bemporad et al., 2000). Also, a moving horizon estimation
(MHE) technique has been presented in Pina and Botto (2006). The MHE
method simultaneously estimates the state and the mode of the system and is
based on a moving fixed-size estimation window which bounds the size of the
optimization problem. This estimation technique deals with state estimation of
MLD systems and can also estimate unknown inputs or disturbances acting on
the hybrid system.

The other problem is hybrid systems identification. Most of the works con-
sider Piecewise ARX (PWARX) models, which are a particular type of PWA
models. A PWARX model can be obtained when the regressor space is divided
into a finite set of polyhedral regions, and then obtaining an ARX system in
each of them. Thus a PWARX is defined as:

y(k) = f(x(k)) + v(k)

where v(k) is a random noise,

f(x) =





θT
1

[
x
1

]
if x ∈ X1

...
...

θT
s

[
x
1

]
if x ∈ Xs

is a PWA mapping and x(k) is the regressor formed by measured values from
the system input and outputs:

x(k) = [y(k − 1) · · · y(k − na) u(k − 1) · · · u(k − nb)]
T

The identification of PWARX models consists in finding the parameters of
the unknown PWA mapping f from experimental data obtained from the plant.
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This can be considered as a piecewise affine regression problem. PWA regression
is a problem that has been tackled in the neural network community (see Roll
et al., 2004). Most of the methods deal only with continuous maps (Roll et al.,
2004), although methods able to identify discontinuous mappings have been de-
veloped (Ferrari-Trecate et al., 2003; Bemporad et al., 2003; Vidal et al., 2003).
One of the problems that arise in PWARX system identification is that of the
sorting of the experimental data into each of the ARX subsystems that compose
the PWARX model. Another problem is the identification of the polyhedral re-
gions of the regressor space that contains the data sets that has been formed in
the previous sorting phase. That later problem has been extensively treated in
the pattern matching literature and can be solved using techniques such as sup-
porting vectorial machines (SVM) (Vapnik, 1998) or the multi-category robust
linear programming (MRLP) (Bennet and Mangasarian, 1994). The sorting
problem is more difficult to solve, although there some techniques, often subop-
timal, that have been proposed such as clustering techniques (Ferrari-Trecate
et al., 2003), greedy algorithms (Bemporad et al., 2003) or algebraic procedures
(Vidal et al., 2003). Another strategy based on a bayesian approach is presented
in Juloski et al. (2005b), where the identification problem is posed as the prob-
lem of maximizing the total probability that the observed data is generated by
the identified model. More recently, a structural approach for a class of hy-
brid systems which are linear and separable in the discrete variables has been
recently presented in Nandola and Bhartiya (2009). This method (validated
experimentally) identifies models corresponding to a certain number of modes,
far fewer than the total possible modes of the system, generating the models for
the remaining modes without any further requirement for input-output data by
exploiting the separable structure of the hybrid system.

All these techniques have their drawbacks (Juloski et al., 2005a). The alge-
braic procedures often fails when there is a significant amount of noise in the
data. The greedy algorithms involve the solution of NP-hard problems, thus
they are not very useful. Moreover, sometimes they fail to assign a group to
some regressors that have to be discarded, losing information. Also, clustering
techniques such as Ferrari-Trecate et al. (2003) are promising, although they
cannot use any a priori knowledge of the system. The bayesian approach (Ju-
loski et al., 2005b) requires an a priori knowledge of the probability density
functions of the unknown parameters of the system (although that knowledge
does not need to be very precise provided that a sequential processing is used to
improve the identification results). Finally, the approach presented in Nandola
and Bhartiya (2009) requires an a priori knowledge of the system active mode.

3. Model predictive control for hybrid systems

Model predictive control (MPC) (Camacho and Bordóns, 2004) originated
in the late seventies and has developed considerably since then. There are
many applications of predictive control successfully in use at the current time,
not only in the process industry but also applications to the control of other
processes ranging from solar technology (Camacho et al., 1994) to flight control
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(Breger and How, 2006). Model Predictive Control is considered to be a mature
technique for linear and rather slow systems like the ones usually encountered
in the process industry, even though more complex systems, such as nonlinear,
hybrid, or very fast processes, are not so amenable to the methods of MPC.

The term Model Predictive Control does not designate a specific control
strategy but rather an ample range of control methods which make explicit use
of a model of the process to obtain the control signal by minimizing an objective
function over a finite receding horizon. In MPC the process model is used to
predict the future plant outputs, based on past and current values and on the
proposed optimal future control actions. These actions are calculated by the
optimizer taking into account the cost function (where the future tracking error
is considered) as well as the constraints.

Since this paper is focused on hybrid systems described as MLD or PWA
system, in this section it is considered that the system described as the following
model, which summarize both systems:

x(k + 1) = f(x(k), u(k), v(k))
y(k) = g(x(k), u(k), v(k))

h(x(k), u(k), v(k)) ≤ 0
(5)

where x(k), u(k) and y(k) are the state vector, manipulated variables and output
vectors at instant k. v(k) is a vector of auxiliary signals necessary to define the
hybrid nature of the plant. These vectors may be split into a part which contains
continuous variables and other with discrete (possibly binary) variables. If the
model is described as a MLD system, the role of each signal can be directly
inferred from equations (2)-(4) where v = [zT , δT ]T . If the model is described
by a PWA, then the states and inputs are continuous and the auxiliary variable
v(k) is the integer index that define the partition where the state and input lie
in. That is, the function h(x, u, v) is defined as follows:

h(x, u, v) = Rv

[
x
u

]
− rv, where v :

[
x
u

]
∈ Xv

denoting the partition region as Xv = {[xT , uT ]T : Rv[xT , uT ]T ≤ rv}.
The states and inputs of the plant are constrained as follows

[x(k)T , u(k)T ]T ∈ Z

where Z ∈ Rn+m is a given closed set.
In order to use this system model to predict the future evolution of the plant

from the current state x, a sequence of N future inputs u = {u(0), u(1), · · · , u(N−
1)} and auxiliary variables v = {v(0), v(1), · · · , v(N − 1)} must be known.
The sequence of predicted states x = {x, x(1), · · · , x(N)} and outputs y =
{y(0), y(1), · · · , y(N − 1)} can be obtained using recursively the model equa-
tion (5). Notice that not every pair (u,v) is admissible since they must fulfil
h(x(i), u(i), v(i)) ≤ 0 for all i ∈ {0, 1, · · · , N − 1}.

From all the admissible pair (u,v), it is chosen the one which provides the
best predicted evolution of the plant along a finite prediction horizon N . This is
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measured by a certain performance index which depends on the considered con-
trol objective. In the usual case of regulation to a given set-point or target ys, us

and vs, the performance index to be minimized penalizes the deviation between
the predicted outputs, inputs, and auxiliary variables and their corresponding
targets ys, us and vs respectively. This is typically posed as follows

VN (x,u,v) =
N−1∑

i=0

‖y(i)−ys‖2Q + ‖u(i)−us‖2R + ‖v(i)−vs‖2T +Vf (x(N)−xs)

The function Vf (x) is the so-called terminal cost function and it is added for
stability reasons, as will be clarified in a next section.

Then, the optimal input sequence is derived from the solution of the following
optimization problem PN (x):

min
u,v

VN (x,u,v)

s.t. x(i + 1) = f(x(i), u(i), v(i))
y(i) = g(x(i), u(i), v(i))
h(x(i), u(i), v(i)) ≤ 0
[x(i)T , u(i)T ]T ∈ Z
x(N) ∈ Xf

(6)

where the region Xf is the so-called terminal region which is added, together
with the terminal cost function Vf , for stability reasons.

The control law is derived from the solution of the optimization problem by
means of the so-called receding horizon technique: At each sampling time k,
the optimization problem is solved for the current state PN (x(k)), but only the
control action corresponding to the current sampling time is applied, and hence
the optimization problem is repeatedly solved. Thus the control law is given by:

u(k) = κN (x(k)) = u∗(0; x(k))

Notice that the receding horizon control is the responsible that the optimal
solution be applied in a closed-loop manner, providing robustness to the closed-
loop system.

One of the advantages of MPC is that robust control ideas can be easily
incorporated. The key idea is to take into account disturbances and uncertain-
ties about the process in an explicit manner and to design MPC to optimize
the objective function for the worst situation of the disturbances/uncertainties
(Camacho and Bordóns, 2004).

As mentioned in section 2, PWA are equivalent to MLD systems, although
there are more theoretical results for PWA models, including attempts to build
explicit solutions, or stabilizing design. For PWA, the solution to this prob-
lem will be composed of the optimal control sequence u∗ and also a vector I∗
that represents the optimal commutation sequence. This optimal commutation
sequence tells in which of the affine subsystems is the process state at each sam-
pling time of the prediction horizon. The solution of problem PN (x) involves
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the same complexity for MLD models than for PWA models and it can be solved
using the same techniques.

Another variant of PWA MPC controllers are those that consider an infinite
horizon. The advantages of this controllers are better stability properties and
guaranteed feasibility (Mayne et al., 2000). A drawback, however, is the the
existence of an optimal solution is not guaranteed if constraints are taken into
account. PWA MPC controllers with infinite horizon have been developed for
LTI systems with quadratic cost function and also for piecewise linear cost
functions and hybrid systems (Baotić et al., 2006). However, the main interest
(from a hybrid systems point of view) is that explicit solutions can be built for
PWA MPC.

The application of MPC to hybrid systems subject to disturbances or un-
certainties gives rise to uncertain optimization problems. Many robust MPC
schemes are based on the min-max strategy originally proposed in Witsenhausen
(1968), where the performance index due to the worst possible disturbance real-
ization is minimized. In all cases, the resulting min-max optimization problems
are computationally very demanding and, in general, it is common feeling the
control laws are too conservative. There are few papers in the literature that
deal with this class of problems, most of them in a PWA (Fiacchini et al., 2008;
Zou and Li, 2007) or a switched system (Mhaskar et al., 2005) framework. In
the literature there are works on PWA MPC like Thomas et al. (2006) in which
a controller that guarantees feasibility under bounded disturbances is presented
together with a fast suboptimal algorithm.

Stochastic MPC takes a different route to solve MPC problems under uncer-
tainty. Disturbances are modeled as random variables and the expected value of
the cost function is minimized. Stochastic programming (SP) is a special class
of mathematical programming that involves optimization under uncertainty (see
Birge and Louveaux, 1997; Kall and Wallace, 1994; Ross, 1983). The original
applications were agricultural economics, aircraft route planning and produc-
tion of heating oil back in the 50’s. Nowadays SP is becoming a mature theory
that is successfully applied in several other application domains (see the survey
Sahinidis, 2004). In particular, stochastic programming with integer variables
has received a lot of attention lately (Schultz, 2003). Following this path, several
stochastic MPC formulations for uncertain hybrid systems have been presented
in van der Boom and Schutter (2001); Bemporad et al. (2006); Bemporad and
Di Cairano (2006).

4. Computational issues

The MPC based on MLD models results in an optimization problem with
a set of linear constraints and with real and integer (boolean in this case) de-
cision variables. These types of optimization problems are known, in general,
as mixed integer programming (MIP) problems. If the objective function is a
linear function these problems are known as mixed integer linear programming
(MILP) problems, or mixed integer quadratic programming (MIQP) problems
when the objective function is quadratic.
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MILP or MIQP problems are much more difficult to solve than an LP or
QP problems (see, for example, Floudas, 1995, for an excellent introduction),
and some interesting properties like convexity are lost. Also, their complexity
is of the NP-hard kind, and even to test if a feasible solution improves the best
found so far is in itself an NP problem. Another drawback is the absence of
optimality conditions, thus one can not known when a feasible solution is the
optimal one.

A brute force approach to find the optimal solution would be to solve all
of the QPs (LPs) that are associated to all the feasible combinations of the
discrete decision variables. The solution will be the minimum of the solutions
of all the QP (LP) problems. If all the discrete decision variables are Boolean,
the number of possible QP (LP) problems is 2nb . Fortunately there are more
efficient ways of solving this type of problem. They are usually based on branch
and bound methods (Fletcher and Leyffer, 1998) and solve only a portion of all
QP (LP) problems. Some examples of solvers include GLPK (Makhorin, 2004)
(public domain), Cplex (ILOG, Inc., 2004) (commercial), or Xpress-MP (Dash
Associates, 2004) (commercial), for which Matlab interfaces are available.

The structure of the MPC problem and the reachability analysis tools have
been used in Peña et al. (2003) to reduce the number of QP problems to be
solved and for determining lower bounds to be used by branch and bounds algo-
rithms in Peña et al. (2005). Besides branch and bound methods, other solution
methods have been investigated to implement MPC controllers. In Bemporad
and Giorgetti (2006) a solver that takes advantage of constraint satisfaction
problems (CSP) solvers for dealing with satisfiability of logic constraints very
efficiently was proposed. Also, heuristic approaches, although suboptimal in na-
ture, can provide feasible solutions that can be admissible from a control point
of view. Among these methods, genetic algorithms (Thomas et al., 2005; Olaru
et al., 2004; Duzinkiewicz et al., 2009; Causa et al., 2008; Cortés et al., 2009)
and ant colony algorithms (Sandou and Olaru, 2007) have been used.

On the other hand, another approach could be a modification to the MLD
paradigm such as in Thomas et al. (2004), in which it is considered a partition of
the state space in which, in turn, simpler MLD systems are defined. The results
is a multi-MLD model that results in a MIQP problem that can be solved with
lower computational burden. However, even with a reduced MIQP problem, the
computational burden is still a problem that limits MLD MPC techniques to
slow dynamics or short prediction horizons. Explicit implementations allow also
to deal with the poor performance and/or feasibility problem that may appear
when a stabilizing design is used (Morari and Baric, 2006). This technique
allows to analyze stability and feasibility of the controller and also have a much
lower computational burden. The attempts to find explicit solutions for hybrid
MPC controllers have been more successful when a PWA model is considered.

When PWA predictions models are used, it can be seen that for a fixed
commutation sequence, the resulting optimization problem PN (x) reduces to a
QP or LP problem. In this case an explicit solution can be found using any of
the methods available for linear systems (Gal and Nedoma, 1972; Acevedo and
Pistikopoulos, 1997; Dua and Pistikopoulos, 2000; Tøndel et al., 2001; Bemporad
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et al., 2002b,a). The same can be said for every possible commutation sequence,
thus to obtain the explicit solution for problem a multiparametric QP or LP
problem must be solved for each possible commutation sequence. The optimal
control sequence for a given process state x will be obtained from the explicit
solution of the multiparametric problem that gives a lower optimal cost (Borrelli,
2003). The resulting control law will be PWA, thus the closed loop system is
also PWA. If the cost function is linear the state space partition is polyhedral
but if a quadratic cost function is used the partition will not be polyhedral in a
general case.

It is obvious that the biggest drawback of the previous strategy to find the
explicit solution is the computational burden that grows exponentially with the
prediction horizon. Most of the published works exploit the problem structure
to compute the explicit solution as fast as possible. There are works in which the
explicit solution is based on the hybrid model and use the iterative solution of
multiparametric MILP and LP problems (Dua and Pistikopoulos, 2000). Other
are based in dynamic programming and decompose the original problem in a
series of multiparametric MILP or MIQP problems that are solved backwards
recursively using the optimality principle of Bellman (Bellman, 1961). Examples
of works that use this strategy include Kerrigan and Mayne (2002); Borrelli et al.
(2005); Baotić et al. (2006).

Other problem with explicit implementations is the complexity of the state
space partition, which grows exponentially with the dimension of the state and
the prediction and control horizons. This happens even with linear systems
and it is worse for hybrid systems. As the partition grows, the searching times
and storage requirements can be too high for a practical implementation. Some
works that help with this problems have been presented. Efficient techniques to
evaluate the control signal for a given state x have been presented in Johansen
and Grancharova (2003); Tøndel et al. (2003). Other approach is to consider
controllers with lower complexity, like a robust minimum time controller (Mayne
and Schroeder, 1997) (analogous to a dead-beat controller but with guaranteed
robust stability). A robust minimum time controller for hybrid systems (PWA)
with guaranteed feasibility and stability under additive disturbances was pre-
sented in Grieder et al. (2005). The algorithm is based on a stabilizing controller
together with the maximum admissible invariant set of the system, which works
as a terminal constraint. The controller is designed solving backwards recur-
sively N MPC problems with a prediction horizon equal to 1. Other algorithm
is presented in Grieder and Morari (2003) where it is proposed a PWA control
law that keeps the state contained in the maximum robust control invariant set,
so that feasibility and stability under additive disturbances are guaranteed. A
drawback, however, is that convergence to a region smaller than the maximum
robust control invariant set is not guaranteed.

5. Stabilizing model predictive control

Predictive controllers belongs to the class of optimal control techniques since
the control action to be applied minimizes a certain predicted performance cri-
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terion. The first difference with other optimal techniques is the finite prediction
horizon, which allows to pose the problem as a mathematical programming prob-
lem to be solved at each sampling time. The second difference is the receding
horizon policy used to derive the control law making the control action equals
to the optimal solution corresponding to the current time. However, in general
the optimal nature of the predictive control law does not ensure the stability
of the closed loop system. Then, additional ingredients on the controller set-up
must be considered in order to ensure closed-loop stability. These ingredients
are typically two (Mayne et al., 2000): (i) the terminal cost function: a term
penalizing the terminal state (i.e. the predicted state at the end of the predic-
tion horizon) to be added in the cost function and (ii) the terminal constraint:
an inequality constraint on the terminal state to be added to the constraints in
the optimization problem.

The stabilizing formulation of the predictive control considering (without
loss of generality) a PWA model of the hybrid, is shown in what follows. First,
the cost function is given by

VN (x,u) =
N−1∑

j=0

‖x(j)− xs‖p
Q + ‖u(j)− us‖p

R + Vf (x(N)− xs)

where (xs, us) defines the target steady state and input. The optimization prob-
lem PN (x) minimizes this cost under the constraints imposed by the dynamics
of the system and the limits on the states and inputs. Then PN (x) can be posed
as follows:

min
u

J(x,u)

s.t. i(k) ∈ {i :
[

x(k)
u(k)

]
∈ Xi}

x(k + 1) = Ai(k)x(k) + Bi(k)u(k) + f i(k),

[x(j)T , u(j)T ]T ∈ Z, j ∈ {0, · · · , N − 1}
x(N) ∈ Xf

The region of states where this optimization problem is feasible is denoted as
DN (Xf ). This region depends on the dynamics, the constraints, the length of
the prediction horizon and the terminal set, and can be read as the set of states
that can be steered to the terminal set in N steps fulfilling the constraints.

As it is demonstrated in Mayne et al. (2000); Bemporad and Morari (2000),
closed-loop stability can be ensured if: (i) the terminal region Xf satisfies that
for a given auxiliary control law u = κf (x), for all x ∈ Xf , (x, κf (x)) ∈ Z and
x+ = Aix + Biκf (x) + f i ∈ Xf , with i ∈ {i : (x, κf (x)) ∈ Xi} and (ii) Vf (x) is
a definite positive function such that

Vf (x+)− Vf (x) ≤ −‖x− xs‖p
Q − ‖u(0)− us‖p

R
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Under these conditions, the optimal cost function is a Lyapunov function for
the closed-loop system and the feasibility region DN (Xf ) is an invariant domain
of attraction. In the case that the set of constraints is a polygonal region, the
domain of attraction is a also a polygon that can be calculated by well-known
methods (Kerrigan, 2000; Christophersen et al., 2004)

A remarkable property of this result is that the asymptotic stability property
holds in the case of discontinuous model functions as those of the hybrid systems
and in the case of non-convex and/or disconnected set of constraints.

Relaxed version of these properties have been proposed: in Limon et al.
(2006) it is proved that the terminal constraint can be removed if the state is
in a neighborhood of the set-point, and penalizing the terminal cost function,
the MPC without terminal constraint is stabilizing in the interior of DN (Xf ).
Another interesting choice is the one proposed in Magni et al. (2001) where
a prediction horizon larger than the control horizon is used deriving enhanced
terminal conditions. In Limon et al. (2005) it is proved that using contractive
terminal constraints, the terminal cost function calculation can be relaxed.

5.1. Stabilizing design of MPC
The design of a stabilizing MPC requires firstly defining the stage cost func-

tion (i.e. the p norm and the weighting matrices Q and R) and choosing the
prediction horizon N and then calculating off-line suitable terminal ingredients
κf (x), Xf and Vf . The complexity of the calculation of the terminal ingredients
depends on the system to be controlled, the set of constraints and the chosen
stage cost function. State-of-the-art procedures may be computationally de-
manding but since this is done off-line, this issue is not limiting. In the sequel,
it will be assumed that the sets Xi and Z are polygons, that is, union of convex
polyhedra.

A simple method to accomplish the stabilizing design is choosing an equality
terminal constraint

x(N) = xs

Vf (x) = 0

The simplicity of this design is attractive, but the performance of the closed
loop system and the domain of attraction can be improved by means of a more
involved design.

There exists a number of techniques to calculate a suitable Lyapunov func-
tion and invariant region for hybrid systems (see for instance the survey Biswas
et al., 2005, and references there in) and these can be used to compute the sta-
bilizing terminal conditions . Among them, two main techniques are typically
used (Mignone et al., 2000; Grieder et al., 2005; Lazar et al., 2006): LMI-based
techniques and polyhedral techniques. The LMI-based method is used to calcu-
late a suitable Lyapunov function to be used as terminal cost function. Besides,
these methods can provide a suitable terminal region as a level curve of the cal-
culated Lyapunov function. On the other hand, polyhedral methods are used
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to calculate invariant sets, though it can be used to calculate induced Lyapunov
functions (Kerrigan, 2000).

The most simple approach consists in using techniques for linear systems. In
effect if the target steady state and input is in the interior of a defining region
Xi, then the system can be transformed in a linear systems by means a suitable
change of variables. Considering the defining region as a hard constraint, a
quadratic terminal cost function for the unconstrained system is calculated and
the maximal admissible positively invariant set calculated by means of standard
algorithms (Gilbert and Tan, 1991).

In case of considering larger regions, the hybrid dynamics of the system must
be considered. In this case a quadratic Lyapunov function Vf (x) = xT Px and a
piecewise linear control law u = Kix if (x,Kix) ∈ Xi can be chosen. Sufficient
conditions to calculate the Lyapunov matrix and the gains of the control law
can be posed as LMIs. This result is improved if piecewise quadratic Lyapunov
function Vf (x) = xT Pix for (x,Kix) ∈ Xi is chosen as a Lyapunov function.
A LMI-based sufficient condition has also been proposed (Grieder et al., 2005;
Lazar et al., 2006). In these contributions methods for the computation of the
terminal cost function in case of stage cost based on 1/∞ norms.

The terminal region can be computed by using polyhedral methods. Given
that the control law is piecewise linear, the closed-loop system is a piecewise
affine autonomous system subject to polygonal constraints. An iterative method
is used to calculate the maximal admissible positive invariant set. Since this
method is finitely determined thanks to the contractiveness of the Lyapunov
function, the terminal region is a polygon (Rakovic, 2005). A single polyhedral
invariant set can be calculated by means of the method proposed in Alamo et al.
(2008). This leads to a simpler region at expense of conservativeness.

6. Applications of hybrid MPC

Applications of hybrid MPC can be found in different fields. In automotive
systems, hybrid MPC has been applied to traction control systems (Borrelli
et al., 2006), and to adaptive cruise control (Corona et al., 2006b,a; Corona and
De Schutter, 2008) (the latter work compares different controllers based on pure
PWA models and PWA obtained from MLD descriptions). Also in power sys-
tems, there have been applications of hybrid predictive control to cogeneration
plants (Ferrari-Trecate et al., 2004) or current converter control (Beccuti et al.,
2007; Bâja et al., 2007; Geyer et al., 2008). More specific applications include
the hybrid control of supermarket display cases (Larsen et al., 2005; Sarabia
et al., 2009), the real-time optimization of public transport systems operations
(Cortés et al., 2009) or the temperature control of a batch reactor (Karer et al.,
2007; Causa et al., 2008). In all of these applications, there are several operation
modes in the plant that justify the implementation of a hybrid MPC controller.
In this paper we will consider in more detail a distinct application, the hybrid
MPC control of a solar air conditioning plant.
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6.1. Solar air conditioning plant
The main problem encountered when controlling a solar energy process is

that the primary source of energy cannot be manipulated and from a control
point of view, the solar radiation acts as a perturbation. The control research
community has contributed considerably in this field by designing advanced
controllers for solar processes (Camacho et al., 1997),(Camacho et al., 1997;
Garcia-Gabin et al., 2009).

The plant dealt with in here is a real solar refrigeration plant of certain com-
plexity. The solar air conditioning plant (figure 1) is used to cool the laboratories
of the Systems Engineering and Automation Department of the University of
Seville. It consists of a solar field that produces hot water which feeds an ab-
sorption machine which generates chilled water. The chilled water is injected
into the air conditioning system, achieving a cooling power of 35 kW. A descrip-
tion and modelling can be found in Zambrano et al. (2008). A general scheme of
the plant is presented in figure 2, showing its main components: the solar sub-
system, composed of a set of flat solar collectors, the accumulation subsystem,
composed of two tanks storing hot water, and the cooling subsystem. There
also exists an auxiliary energy subsystem composed of a gas-fired heater that
can supply energy in those situations where solar radiation is not enough, and
a thermal load subsystem composed of a heat pump that allows to perform
tests for different load profiles. The hybrid nature of the plant comes from the
use of two different energy sources (solar and gas), which can be combined or
used independently. Besides, thermal energy coming from a storage tank can
be added to the system. The plant can be re-configured on-line manipulating
open/close valves and ON/OFF pumps to allow selecting the components for
energy supply.

The primary source of energy is the solar radiation, which is used by the
solar collectors to increase the temperature of the circulating water. The solar
field is composed of 151 m2 of flat collectors which work in the range of 60 oC
to 100 oC and supply a nominal power of 50 kW.

The hot water can be stored in two tanks of 2500 l each and be used in
transient situations where solar radiation is not sufficient. A gas-fired heater of
68 kW can be used to supplement the solar energy when necessary. The existing
heater has a built-in ON/OFF controller, which makes its outlet temperature
rather oscillatory.

The cooling subsystem is composed of an absorption machine that works
with water as cooling fluid and a water solution of lithium bromide (H2O− Li− Br).
The machine requires that its inlet temperature is inside the range of 75-100 oC
for chilled water production. The machine has four different circuits: evapora-
tor, generator, condenser, and absorber; where the energy exchanges for chilled
water production take place. A refrigeration tower is used to evacuate the heat.

A heat exchanger and a heat pump of 54 kW is used to absorbe the pro-
duction of cold air. The subsystem has a PI controller to regulate the output
temperature of the primary circuit of the heat exchanger. This value can be
used to fix several profiles of the evaporator input temperature.
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Figure 1: The solar air conditioning plant
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The main manipulated variables are the field pump velocity and the mix
valve position and a series of open/close valves and ON/OFF pumps which
allow to change the operating modes of the plant described below.

There are temperature sensors for the solar collectors inlet and output water,
tanks inlet and output, gas heater inlet, generator inlet and output temperatures
and evaporator output temperatures. Flows can be measured at different places
such as the generator and condenser of the absorption machine, the gas heater.

The system allows to measure disturbances such as environmental tempera-
ture, flow through the evaporator of the absorption machine, evaporator input
temperature and solar radiation.

The plant evolves among several operating modes through of its reconfigu-
ration during its daily operation. There are many operating possibilities but
only 13 operating modes make sense:

1. Recirculation. All water flow through the solar collectors. In this mode,
the water temperature may be increased.

2. Loading the tanks with hot water. The water in the solar collectors flows
through the accumulators.

3. Using the solar collectors only.The water is heated in the solar collectors.
The water flows to the absorption machine.

4. Using the solar collectors and gas heater. The water is heated in the solar
collectors and the gas heater. The gas heater is used when the absorption
machine input temperature is inadequate.

5. Using the gas heater, only. The water is heated in the gas heater, and
then it flows through of the absorption machine.

6. Using the tanks and gas heater. The water of absorption machine is given
by the accumulators. The gas heater is used when the absorption machine
input temperature is not enough.

7. Using the tanks only. When the solar radiation is low, then the heat stored
in the accumulators is used to operate the absorption machine.

8. Loading the tanks and using the gas heater. The accumulators are loaded
with heated water by the solar collectors. The water of absorption machine
is given by the gas heater.

9. Recirculation and using the gas heater. The water is recirculated through
the solar collectors. The water goes to the absorption machine from the
gas heater only.

10. Using the solar collectors and loading the tanks. The water from the solar
collectors is divided into the tanks and the absorption machine.

11. Using the solar collectors and the gas heater, and loading the tanks. The
water from the solar collectors is divided into the tanks and the absorption
machine. The inlet water to the absorption machine comes from the solar
collectors and gas heater.

12. Using the tanks and the gas heater to feed the absorption machine, and
recirculation in the solar collectors. The water recirculates into the solar
collectors. The water of generator comes from the accumulators and the
gas heater.
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13. Using the tanks to feed the absorption machine, and recirculation in the
solar collectors. The water from the accumulators circulates through the
generator circuit. The water recirculates into the solar collectors.

The plant can operate under two general conditions: cooling demand exists
or not exists. In the first case, the main control objective is to supply chilled
water to the air distribution system according to the demanded temperature,
and this implies to keep the absorption machine working. The absorption ma-
chine must be fed with hot water between 75o C and 100o C. The water must be
warmed using the solar collectors, the heat stored in the tanks, the gas heater
or by an optimum combination of all these methods. The auxiliary energy (gas)
consumption must be minimized because of environmental and economical rea-
sons. Also, other control objective is to store as much energy as possible in the
accumulators at the end day, because the plant works on a daily basis. Besides,
the startup time must be minimized. In the second case, the control objec-
tive is to storage as much energy as possible in the tanks if the environmental
conditions allow it.

The plant was used as a benchmark within the network of excellence HY-
CON funded by the European Commission under FP6. The benchmark exercise
(Zambrano et al., 2006) consisted in comparing the results obtained by each con-
troller under simulation and the results of the controller working for one day
with the real plant. The simulation results had to be obtained for two days with
the given environmental conditions corresponding to a clear day followed by a
day with scattered clouds.The following quantities were to be measured: mean
square error of evaporator temperature tracking, energy consumed by the gas
heater, value of the tank temperature at the end of each day.

Different MPC approaches to the global operating control of this plant were
presented for the benchmark exercise and four were selected to be published in
an especial issue of the European Journal of control (Camacho, 2008) devoted to
the benchmark exercise. The first approach can be seen in its extended version
in Zambrano and Garcia-Gabin (2008), where a hierarchical scheme is presented.
The higher level selects the operating mode based on an integer optimization
problem with variable weights, and the lower level regulates the continuous vari-
ables using a set of MPC. The hybrid model considers the 13 operating modes
and it is based on a MLD description. The extended version of the second ap-
proach was presented in Sonntag et al. (2008). The supervisory control scheme
was designed from process insight gained from a thorough analysis of the en-
ergetic and dynamic aspects of the system. The discrete process inputs are
adjusted by switching between a set of operating modes, and in each operating
mode, the settings of the continuous inputs are chosen by a look-up table com-
puted to minimize the consumption of auxiliary energy while ensuring a robust
plant operation. The controller structure is based on a set of discrete supervi-
sors, a continuous control algorithm and a set of emergency procedures. Only
the first 8 operating modes are considered. The third approach was presented in
Rodriguez et al. (2008) and it is based on a non-linear model predictive control
strategy mixing control and economic aims that manipulates simultaneously
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the continuous and discrete elements and a set of logical rules corresponding
to the hybrid nature of the control problem. The controller incorporates an
internal model with embedded logic control and the concept of virtual control
variables. This approach allows transforming the hybrid problem in a reduced
order nonlinear model predictive control one, that can be solved with continuous
optimization methods. The fourth approach (Menchinelli and Bemporad, 2008)
proposes a multi-layer hybrid controller consisting of a high-level supervisor that
decides the optimal operating mode on-line through a hybrid model predictive
control strategy, a static lower-level controller defining proper set-points for
the chosen mode, and existing standard low-level controllers that ensure robust
tracking of such set-points. Although it provides a suboptimal solution, this
hierachical approach preserves the basic hybrid structure of the problem and
provides a satisfactory closed-loop performance. The control problem is divided
in two steps. First, the hybrid MPC supervisor provides the optimal operat-
ing mode for the next time step, based on an abstracted model described in
MLD form through the HYSDEL Programming Language. The currently most
suitable operating configuration is computed by solving a relatively small-size
MIQP problem on line. Then, the current values for the continuous variables are
computed according to the chosen operating mode by exploiting control maps
derived from experimental results, and tracked by the lower level controllers.

Some of the results obtained using the hierarchical scheme in (Zambrano
and Garcia-Gabin, 2008) can be seen in figures 3 and 4. Figure 3 shows the
operating modes along the day and the solar radiation. It can be seen that the
Hybrid MPC system decides the appropriate operating mode. Figure 4 shows
the inlet and outlet temperature at the generator. Notice that the oscillations
observed are due to the on-off gas heater, when the solar field produces enough
energy, the behavior is smooth.

7. Conclusions

The main problems encountered when applying model predictive control to
hybrid processes have been described in the paper. An application illustrating
how HMPC can be applied in real time has been described showing that it is
a technique that can be applied to real processes of moderate complexity. Hy-
brid model predictive control is a research field non fully developed with many
open challenges. New types of hybrid systems can be considered in the MPC
schemes, like the integral continuous-time hybrid automata recently presented
in Cairano et al. (2009). There are not many strategies to solve certain prob-
lems like tracking in hybrid predictive controllers (Borrelli et al., 2009) and
others are relatively open and active fields like hybrid systems identification,
implementation techniques or new applications outside the industrial commu-
nity. The authors are confident that further research in predictive control of
hybrid systems will lead to a more mature predictive control technology able
to cope with the real control problems that have to be faced in large scale or
complex systems.
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