8,045 research outputs found

    Chi-square-based scoring function for categorization of MEDLINE citations

    Full text link
    Objectives: Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Methods: Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Results: Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine learning algorithms (support vector machines, decision trees, na\"ive Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine learning algorithms. Conclusions: We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.Comment: 34 pages, 2 figure

    Large-Scale Online Semantic Indexing of Biomedical Articles via an Ensemble of Multi-Label Classification Models

    Full text link
    Background: In this paper we present the approaches and methods employed in order to deal with a large scale multi-label semantic indexing task of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge of 2014. Methods: The main contribution of this work is a multi-label ensemble method that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper adaptation of the algorithms used to deal with this challenging classification task. Results: The ensemble method we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. During the BioASQ 2014 challenge we obtained the first place during the first batch and the third in the two following batches. Our success in the BioASQ challenge proved that a fully automated machine-learning approach, which does not implement any heuristics and rule-based approaches, can be highly competitive and outperform other approaches in similar challenging contexts

    Learning to predict distributions of words across domains

    Get PDF
    Although the distributional hypothesis has been applied successfully in many natural language processing tasks, systems using distributional information have been limited to a single domain because the distribution of a word can vary between domains as the word’s predominant meaning changes. However, if it were possible to predict how the distribution of a word changes from one domain to another, the predictions could be used to adapt a system trained in one domain to work in another. We propose an unsupervised method to predict the distribution of a word in one domain, given its distribution in another domain. We evaluate our method on two tasks: cross-domain part-of-speech tagging and cross-domain sentiment classification. In both tasks, our method significantly outperforms competitive baselines and returns results that are statistically comparable to current state-of-the-art methods, while requiring no task-specific customisations

    Bibliometric Perspectives on Medical Innovation using the Medical Subject Headings (MeSH) of PubMed

    Full text link
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the Medline database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the Medline database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the Medline database, on the one hand, and the Science Citation Index and Scopus (containing citation information), on the other.Comment: forthcoming in the Journal of the American Society for Information Science and Technolog

    A comparison of machine learning techniques for detection of drug target articles

    Get PDF
    Important progress in treating diseases has been possible thanks to the identification of drug targets. Drug targets are the molecular structures whose abnormal activity, associated to a disease, can be modified by drugs, improving the health of patients. Pharmaceutical industry needs to give priority to their identification and validation in order to reduce the long and costly drug development times. In the last two decades, our knowledge about drugs, their mechanisms of action and drug targets has rapidly increased. Nevertheless, most of this knowledge is hidden in millions of medical articles and textbooks. Extracting knowledge from this large amount of unstructured information is a laborious job, even for human experts. Drug target articles identification, a crucial first step toward the automatic extraction of information from texts, constitutes the aim of this paper. A comparison of several machine learning techniques has been performed in order to obtain a satisfactory classifier for detecting drug target articles using semantic information from biomedical resources such as the Unified Medical Language System. The best result has been achieved by a Fuzzy Lattice Reasoning classifier, which reaches 98% of ROC area measure.This research paper is supported by Projects TIN2007-67407- C03-01, S-0505/TIC-0267 and MICINN project TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 (Plan I + D + i), as well as for the Juan de la Cierva program of the MICINN of SpainPublicad
    • …
    corecore