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Abstract: Important progress in treating diseases has been possible thanks to the identification of drug targets. Drug targets are the molecular structures 
whose abnormal activity, associated to a disease, can be mod-ified by drugs, improving the health of patients. Pharmaceutical industry needs to give 
priority to their identification and validation in order to reduce the long and costly drug development times. In the last two decades, our knowledge about 
drugs, their mechanisms of action and drug targets has rapidly increased. Nevertheless, most of this knowledge is hidden in millions of medical articles and 
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e amount of unstructured information is a laborious job, even for human experts. Drug target articles 
tomatic extraction of information from texts, constitutes the aim of this paper. A comparison of several 

ed in order to obtain a satisfactory classifier for detecting drug target articles using semantic information 
edical Language System. The best result has been achieved by a Fuzzy Lattice Reasoning classifier, which 
1. Introduction

A drug target is defined as a molecular structure within the
organism, that is linked to a disease, and whose activity is either 
stimulated or inhibited by drugs that are administered to fight or 
diagnose the said disease [1]. Several studies have tried to estimate 
the total number of drug targets [1,2], however, no consensus has 
been reached yet. While some studies [1] estimate that current tar-
get counts are of the order of 100, other suggest a higher order of 
magnitude ([3] reported 14,000 targets).

In recent years, important progress in treating diseases such as 
cancer, AIDS, or Parkinson’s disease, among many others, has been 
possible thanks to the identification of drug targets linked to these 
diseases [4–6]. The current drug discovery process is mainly fo-
cused on the search and validation of drug candidates that act on a 
particular therapeutic target [7]. Firstly, the process of a particu-lar 
disease is studied and its physiologic mechanisms are deter-mined 
to detect the drug targets related to this disease. Then, new drugs 
are designed to act on these targets. Due to the high cost and the 
long time required by the drug development process, phar-
maceutical industry needs to improve the strategies for prioritizing 
targets and drug candidates in the drug discovery process. A broad-
er knowledge of these targets can help to understand the mecha-
mar).
nisms of action of drugs at molecular level and provide insights
that guide drug design and the search for new targets.

As a consequence of the above, new research studies on drug 
targets are continually published [8–10]. In addition, during the 
last years there has been a growing interest in the development 
of useful knowledge resources about drug targets. The Therapeutic 
Target Database (TTD) [11] was developed to provide public and 
accessible information about 1535 protein and nucleic acid targets 
reported in the literature, their targeted disease conditions, and the 
drugs that act on each of these targets. Recently, the Drug Target 
Prioritization Network, established by the World Health Organiza-
tion (WHO), has developed the Drug Target Tropical Disease Re-
search (TDR1) Prioritization Database [12], a new online resource 
to integrate genomic information relevant for drug discovery on 
pathogens that cause human infectious diseases. The aforemen-
tioned resources can facilitate researchers in looking for information 
on possible targets, and consequently, they can have an important 
impact on the opening of new ways for drug discovery. However, 
the main problem of these resources is that their manual construc-
tion is a time-consuming, labor-intensive and expensive task.

Despite the availability of a growing amount of structured phar-
macological, biological, genetic and medical information, most of
this information is unstructured, hidden in millions of medical
articles and textbooks, and accessible only to human specialists.
Furthermore, knowledge on drug targets is far from being com-
1 http://TDRtargets.org.
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plete since there are efficient drugs whose molecular effects are 
still unknown on the human metabolism [1].

Manual management and analysis of the large amount of tex-
tual information in this field is an infeasible task. The overwhelm-
ing number of publications makes it impossible to keep up-to-date 
with the recent and relevant developments in the biomedical do-
mains. Extracting knowledge from this large amount of unstruc-
tured information is a laborious job, even for human experts. 
Therefore, a challenging goal for improving the efficiency of the 
drug discovery process is to develop automated systems that aid 
researchers managing this large amount of publications.

To our knowledge, only one approach has addressed the semi-
automatic data-base curation of drug–target interactions. In the 
SuperTarget2 [13] database, the efforts for drug target annotation 
were reduced by the use of the text mining tool EbiMed [14]. This 
tool retrieves abstracts by querying keywords from MedLine and fil-
ters sentences that contain at least two biomedical entities. EBIMed 
labels a protein name if it co-occurs with another protein, gene, drug 
or species name. In order to recognize these biomedical terms, Ebi-
Med uses a set of bioinformatics resources: UniProtKB/Swiss-Prot 
[15], MedLinePlus web site3, Gene Ontology [16] and the NCBI tax-
onomy4. Subsequently, the list of real relations was assembled by 
manual curation.

Machine learning techniques are currently used for classifica-
tion tasks, and in this work we apply them for detecting articles 
that contain drug–target interactions, in order to reduce the time 
and effort needed to manually curate a drug–target database. In 
this paper, a variety of machine learning techniques have been ap-
plied to the classification of drug target relevant articles in order to 
obtain a satisfactory classifier. The approach is evaluated in the 
context of a binary classification of documents. This binary classi-
fication can correspond to a stage in the information retrieval pro-
cess where the possible relevant documents are selected from the 
mass of non-relevant ones before being more thoroughly examined 
later on.

In addition, we believe that UMLS Metathesaurus [17], a com-
prehensive ontology that integrates a wealth of biomedical termi-
nological resources, may be more comprehensive and robust than 
the resources used by EbiMed. We hypothesize that the semantic 
information obtained from biomedical resources such as UMLS or 
MeSH (Medical Subject Headings) [18] index can benefit the clas-
sification of documents because of the possibility of reducing the 
sparseness of data.

The paper is organized as follows: Section 2 reviews the related 
works. Section 3 describes our proposal. Section 4 presents the 
evaluation framework of our approach and the results we have ob-
tained. Section 5 presents conclusions and future works.
2. Related work

The task we are facing requires knowledge about available bio-
medical information resources, suitable solutions for biomedical 
text mining problems, and biomedical text classification tools. 
These three themes are the subjects of the following subsections.
2.1. Biomedical information resources

Life science disciplines are prolific producers of massive 
amounts of information distributed in a huge number of biblio-
graphical and terminological knowledge resources. Although a 
comprehensive review of these resources is out of the scope of this
2 http://insilico.charite.de/supertarget/.
3 http://medlineplus.gov/.
4 http://www.ncbi.nlm.nih.gov/Taxonomy/.
paper, this section provides an outline of the main resources used 
by our proposal.

MedLine is a bibliographic database covering several biological 
and bio-medical fields with about 18 million references of journal 
articles. PubMed5 is an online service that provides public access to 
Medline. MeSH is a hierarchy of medical terms that is used to index 
articles included in MedLine. Each Medline article is manually asso-
ciated to a set of MeSH concepts which characterizes it. Thus, MeSH 
provides a consistent way to deal with the terminological variability 
problem which may adversely affect the retrieval information pro-
cess. MeSH is part of the Unified Medical Language Systems (UMLS) 
whose main objective is to assist in the developing of natural lan-
guage technology for biomedical texts. UMLS has three major knowl-
edge sources: the Metathesaurus, the Semantic Network and the 
Specialist Lexicon. The MetaMap Transfer (MMTx) program [19] ana-
lyzes the texts syntactically and selects the concepts of the UMLS 
Metathesaurus that best fit a certain phrase.

DrugBank [3,20] is an annotated database with about 4900 drug 
entries. Each entry contains more than 100 data fields that gather 
detailed chemical and pharmacological information (type, cate-
gory, brand name, chemical formula, drug interactions, etc.). 
Regarding the drug target information contained in DrugBank, each 
drug is related to one or more drug targets. DrugBank’s list of drug 
targets has been manually compiled from several drug targets 
sources such as TTD or the list provided by [1]. DrugBank also con-
tains a set of MedLine article references for each drug target.

2.2. Text mining tools for biomedical information retrieval

Recently, Bioalma, a Spanish IT company specialized in the re-
search and development of biomedical software, has launched 
NovoSeek6, a tool that may be serve as a search engine alternative 
to PubMed. NovoSeek ranks the retrieved documents according to 
biomedical concepts such as diseases, drugs, genes, among others. 
In addition, this tool helps users to improve their queries by the 
use of synonyms.

EBIMed [14] is a service developed by the European Bioinfor-
matics Institute (EBI) to retrieve information from MedLine. As it 
was mentioned in the Introduction, this tool combines document 
retrieval with co-occurrence-based analysis of MedLine abstracts. 
EBIMed has been mainly focused on improving the access to infor-
mation about protein–protein interactions and effects of drugs on 
proteins (drug targets).

iHOP (information Hyperlinked Over Proteins) [21] is a web ser-
vice that automatically extracts key sentences from MedLine doc-
uments. Genes, proteins and chemical compounds terms are 
annotated and linked to MeSH terms by machine learning 
methods.

2.3. Biomedical text classification

In recent years, several competitions such as KDD 2002 Chal-
lenge Cup [22], TREC Genomics Track or BioCreAtIvE (Critical 
Assessment for Information Extraction in Biology) Challenges have 
promoted research on text classification methods in the biomedi-
cal domain, since they provide a suitable framework and datasets 
for evaluating and comparing different approaches.

KDD 2002 Cup focused on identifying what papers contain 
experimental evidence for Drosophila gene expression. TREC 2004 
and 2005 Genomics Tracks, [24,25], pursued the classification of 
full-text documents simulating the task of curators for the Mouse 
Genome Informatics (MGI)7 database [23]. In both tracks,
5 http://www.ncbi.nlm.nih.gov/pubmed/.
6 http://www.novoseek.com/Welcome.action. 
7 http://www.informatics.jax.org/.
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different machine learning classifiers such as Support Vector Ma-
chines (SVN) or Naïve Bayes were used by a variety of teams [26–29]. 
Regarding the representation of documents, several techniques such 
as porter stemmer algorithm, selection of n-grams, and stop-words 
were used, achieving the best results in those approaches that 
involved the use of MeSH terms. However, the best results only 
achieved 0.66 of F-measure.

Closer to our goals, the extraction of protein–protein interac-
tions (PPI) from texts is one of three tracks proposed by BioCre-
AtIvE Challenges to tackle the problem of classification of articles 
from PubMed abstracts for database curation relevant to protein–
protein interactions. A detail description of the subtasks as well as a 
comprehensive review of the participating systems can be found in 
[30,31]. Most participants used machine learning tech-niques such 
as SVM, Naïve Bayes or Maximum Entropy classifiers. Regarding the 
representation of the documents, participating teams mostly used 
the traditional bag-of-words approach with small variations. 
Stemming, POS tagging, Biomedical Named Entity Recognition or 
integration of knowledge from biological resources were the most 
used strategies to build the feature vector. In the BioCreative II 
Challenge, the training corpus consisted of 3536 PPI-relevant 
(positive) abstracts and 1959 non-relevant (negative) abstracts. The 
system presented in [32] achieved the best perfor-mance with a 
precision of 0.71, and a recall of 0.87. This approach used an SVM 
classifier and applied the abovementioned prepro-cessing 
techniques for adequate document representation. In addi-tion, 
more sophisticated methods such as abbreviation resolution were 
also introduced. In the last challenge, BioCreative II.5, the cor-pora 
for the evaluation consisted of 1190 full articles from FEBS Letters.8 

The best system [33] was a Naïve Bayes classifier imple-mented 
using citation features such as cited PMIDs (unique number assigned 
to each PubMed citation) and citation authors. The classifier achieved 
an F-measure of 0.63, a precision of 0.57 and a recall of 0.70, lower 
than the best ones in the previous challenge. This decline in 
performance may be due to the classification of full articles, which 
involves greater complexity than abstracts.

In the pharmaceutical domain, Duda et al. [34] used an SVM 
classifier to identify drug–drug interactions articles. The authors 
manually built a corpus composed of 2000 MedLine abstracts (1800 
negatives and 200 positives). Two different document repre-
sentations were used: the former is based on the use of UMLS iden-
tifier concepts generated by MMTx, and the latter is based on the 
common bag-of-words model, but MeSH terms are also included. 
The results showed that the second representation achieved better 
performance (0.99 of AUC) than the approach based on CUIs (0.98 
of AUC).

In short, most approaches for biomedical text classification use 
machine learning methods such as SVM or Naïve Bayes. Regarding 
the document representation, the approaches range from the com-
mon (binary, TF or TF-IDF) bag-of-words model to the use of more 
sophisticated Natural Language Processing (NLP) techniques such 
as chunking or biomedical named entity recognition. Semantic 
information from biomedical resources has also been tentatively 
used [35]. While most approaches achieve a high recall, there is a 
need for further improvement in precision (which does not exceed 
71%). Classification tasks are mainly linked to curate biological dat-
abases, simulating the task of curators for genomic databases (like 
MGI or FlyBase [36]) or protein interaction databases (such as In-
tAct [37] or MINT [38]). However, few approaches have tackled the 
classification of documents related to the pharmaceutical re-search 
domain.

In this paper, a comprehensive study of several machine learn-
ing algorithms is addressed in order to determine which algorithm
8 http://www.febsletters.org/, split evenly into training and test set.
is the most suited for drug target article identification task. As this 
is the first work that addresses this issue, a corpus has been created 
in order to fairly evaluate and compare the algorithms.
3. Our proposal

The main goal of our proposal is to maintain a service that que-
ries PubMed in a methodical and automated manner. Each new 
article in MedLine can be classified as drug target or not, and sent to 
drug target databases, which can update their data adequately.

The development of this system needs to address two prob-
lems: the construction of a corpus for drug target article classifica-
tion, which is not yet available, and the learning of patterns from 
the corpus for classification purposes. The description of the cor-
pus, its construction and the techniques explored for classification 
are described in the following subsections.
3.1. Building the corpus

We have built a corpus of positive and negative drug target ab-
stracts from DrugBank and PubMed. The corpus was created with 
abstracts published between 1995 and 2001. About 5% of all articles 
in MedLine concern drug targets. Such distribution was measured 
querying PubMed about abstracts with the UMLS synonyms of the 
term ‘‘biological target”. In this way, an article was marked as related 
to drug target if it contained (or was annotated in MedLine with) at 
least one of these synonyms. A set of 4365 abstracts (1500 of them 
referred to drug target) was collected. Positive examples were ran-
domly selected from the references in DrugBank which were recov-
ered with the help of the RobotMaker9 tool. Negative examples were 
randomly selected among MedLine abstracts which were not marked 
as drug target articles. Both sets contain only abstracts in the time 
range 1995–2001, and the distribution amongst drug target and no 
drug target abstracts observed in MedLine for each year was 
maintained.

In order to assess the quality of the negative examples set, a 5%
(143) sample was randomly selected and manually evaluated with 
the help of a pharmacist. The evaluation showed that none of the 
abstracts were related to drug targets, supporting the quality of 
the corpus.
3.2. Preprocessing the corpus

A general schema of the corpus preprocessing appears in Fig. 1. 
The dotted squares are the final recovered data. After the set of 
randomly selected abstract examples has been recovered from 
MedLine and DrugBank (as explained in the previous section), a set 
of features are extracted in order to build a representation of each 
article. We were able to obtain, querying PubMed, title, ab-stract 
and MeSH and chemical concepts associated to each ab-stract, 
because they are fields of MedLine database.

Chemical concepts were extracted using NameOfSubstance data 
in chemical list field at MedLine database, which belong to MeSH 
vocabulary. Therefore, we define two features: chemical concepts 
with the content of chemical list field in MedLine, and MeSH feature 
with the non-chemical concepts at MeSH field. These two features 
are used in the training set to express the appearance of the related 
concept with the corresponding example.

From title and abstracts we recovered the semantic types and 
groups, as well as the stemmed words and drug families associated 
to each of these parts. Word stems have been extracted using the 
Porter stemmer algorithm.
9 http://openkapow.com/.
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Fig. 1. Corpus preprocessing.

Fig. 2. Concept ‘Aspirin’ retrieved by MMTx.

10 http://www.who.int/medicines/services/inn/en/.
3.2.1. MMTx processing
MMTx [19] analyzes the text syntactically in order to split it into 

components of different syntactic levels: sentences, phrases, lexical 
elements and tokens. Then, MMTx generates variants from each 
phrase to look up the concepts in the UMLS Metathesaurus that 
contain one or more of these variants. In this way, a set of can-
didate concepts are retrieved from the UMLS Metathesaurus and 
are evaluated against the phrases using a linguistically rigorous 
metric. Those candidates that best fit the text are selected and or-
ganized into a final mapping. Furthermore, MMTx also retrieves the 
semantic types assigned to each concept. Thus, each phrase may be 
related to one or more UMLS concepts together with their semantic 
types.

Fig. 2 shows what information is retrieved by MMTx for the 
phrase ‘‘Aspirin may decrease the effects of probenecid, sulfinpyra-
zone, and phenylbutazone”. For this phrase the final mapping of 
MMTx consists of an unique concept, Aspirin, with identifier (CUI) 
C0004057 and semantic type Pharmacological substance.

Semantic types offer very useful information. However, it would 
be helpful if the semantic annotation of titles or abstracts had less 
granularity. There are 136 semantic types, grouped in 15 semantic 
groups [39] in the UMLS Semantic Network. For example, ‘‘Anat-
omy” (ANAT) semantic group refers to concepts associated, 
amongst others, to ‘‘Anatomical Structures” and ‘‘Tissue” semantic 
types. Therefore, we used the links between semantic type and 
groups in UMLS Semantic Network to recover the semantic groups 
associated to titles and abstracts in our examples.
3.2.2. DrugNer
Each abstract is preprocessed by the DrugNer [40] system for 

drug name recognition and classification. DrugNer extends the 
information provided by MMTx, by the use of the nomenclature 
rules recommended by the WHO International Nonproprietary 
Names (INNs) Program10 to identify and classify pharmaceutical 
substances. Once abstracts have been processed by MMTx and the 
phrases occurring in the text are annotated and related to concepts of 
the UMLS Metathesaurus and to semantic types of the UMLS 
Semantic Network, a second rule-based module classifies the phar-
macological substances (that is, those phrases that have been related 
to the UMLS semantic types which represent generic drugs: ‘‘antb” or 
‘‘phsu”) occurring in texts into pharmacological families. This module 
implements the naming convention rules defined by the WHOINNs 
Program to facilitate the identification and classification of 
pharmaceutical substances or active ingredients. The rules are based 
on the common affixes selected and defined by WHOINN. These 
common affixes aid healthcare professionals to recognize that the 
substance belongs to a group of substances having similar phar-
macological activity or chemical structure.

Table 1 shows some of the affixes used in the classification of 
drug names. The full list and the affix classification can be found in 
[41].
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Table 1
Some affixes recommended by WHOINN.

Affixes Drug family

-flurane General anaesthetics, volatile
-arol, -grel-, -irudin, -pafant, -troban Anticoagulants
-oxetine Antidepressants
-afil, -dil, -entan Vasodilators

Table 2
Examples of matching phrases and affixes.

Drug Suitable affixes Most suitable affix

Azelnidipine -dipine, -pine, -ine, -ni- -dipine
Lopinavir -navir, -vir- -navir
Amiodarone -arone, -one, -io-, -arone
Minocycline -cycline, -ine -cycline
Aripiprazole -piprazole, -prazole -piprazole
DrugNer scans the list of affixes in order to build the suitable 
regular expression for each affix. For example, for the afix -adol-, 
the regular expression should be [A-Za-z0-9]*adol[A-Za-z0-9]*. 
Therefore, any alphanumeric string which contains the afix -adol-is 
recognized by this regular expression. Once the regular expres-
sions have been built, the module tries to match the text of each 
phrase with the regular expressions in order to detect the possible 
affixes, which may classify the phrase. In the case in which several 
regular expressions can be matched with the text of the phrase, the 
module selects the longest affix.

Table 2 shows some examples. When a correct affix is found, the 
pharmacological or chemical family associated with the affix is 
added to the phrase. The rules are not only applied to the phrases 
that have been classified as pharmacological substances or as anti-
biotics by the MMTx program, but also to those for which MMTx 
did not found any candidate concept in UMLS. Thus, these phrases 
are possible new candidates for drug names that are not included in 
UMLS Metathesaurus.

A more detailed description of the DrugNer system is described 
in [40]. A corpus of 875 MedLine abstracts was automatically anno-
tated by DrugNer, and subsequently manually-evaluated by a 
pharmacological expert. This corpus is available for research pur-
poses11, but unfortunately, it contains some syntactic and semantic 
errors made by the MMTx program, but we have not addressed this 
problem yet.

3.3. Document representation

All features previously described are used to construct the final 
dataset for drug target article classification. The set of collected 
features are summarized as follows:

1. Chemical terms (chem): UMLS terms about drugs and chemical 
products used by the authors to characterize their article 
(extracted from the field MESH of PubMed database),

2. MeSH terms (MeSH): other UMLS terms, different from the 
chemical terms, used by the authors to characterize their article 
(extracted from the field MESH of PubMed database),

3. The stemmed words of the title (stemTitle),
4. The stemmed words of the abstract (stemAbstract),
5. Drug affixes (drug): the drug families mentioned in the abstract 

(extracted by using DrugNer system),
6. Semantic types and groups (semTypeGroup): semantic types and 

groups of the mentioned UMLS terms (extracted by using 
MMTx and Semantic Network).
11 http://basesdatos.uc3m.es/index.php?id=359.
The first two features are represented as boolean vectors,
describing whether chemical and MeSH terms appear in the
respective PubMed data of the article. Title and abstract features
are transformed using the classical string feature representations:
term frequency (TF), term frequency-inverse document frequency
(TF-IDF) and term frequency-inverse document frequency with
normalization (TF-IDF-Norm). We analyze the effect of using each
kind of representation in the classification results. All other fea-
tures are integer data, describing the frequency with which a con-
cept appears in the respective article. The notation used in figures
and tables in the remainder of the paper is specified in the above
list in italic. Affixes TF, TF-IDF and TF-IDF-Norm are used to clarify
which kind of string representation is used; Title and Abstract af-
fixes are used to specify the context in which a determined feature
is extracted, and AllVars is the notation used when all features are
considered.

3.4. Machine learning techniques

A set of machine learning algorithms for binary drug target arti-
cle classification have been tested: C4.5 [42]; Bayesian statistics as 
Naïve Bayes [43], Complement Naïve Bayes [44] (CNB), Bayes Net-
work [45] and DMNBtext [46]; LogitBoost [47] and its combination 
with trees, the Logistic Model Trees (LMT) [48,49]; Fuzzy Lattice 
Reasoning (FLR) [50,51]; Support Vector Machine (SVM) [52], and 
HyperPipes [53] (HP).

These algorithms cover different kinds of machine learning 
techniques (decision trees, Bayesian statistics, feature space divi-
sion, etc.) and share characteristics that make them interesting to 
our analysis: (a) they all have been used in text classification tasks 
with good results; (b) they have efficient implementations; and (c) 
the resulting model allows a fast classification processing. All 
experiments have been performed according to the classical sche-
ma for selecting optimal classification parameters, i.e, first, we have 
selected attributes in order to eliminate dependent sets of features 
and then, we have optimized the parameters for each clas-sifier. 
We finally compare of the results and select the best param-eter 
configurations.
4. Experimental results

Several experiments were carried out in order to validate the 
proposed classifier for drug–target articles. Since the observed ra-
tio between the number of positive and negative examples is highly 
unbalanced, we have studied the effect of using different 
proportions in positive and negative examples in the training set. 
Therefore, we have considered 4 training datasets containing 5%
(real distribution), 10%, 20% and 50% of positive examples respec-
tively, in which the different training sets share as many examples 
as possible. This solution reduces the possibility of meaningless re-
sults due to differences in training data. In Fig. 3 the four training 
datasets are represented with different colors, to show the propor-
tion and overlap between their positive and negative subsets.

All experiments were performed using the Weka package [53], 
and a 10-fold cross-validation framework was employed for testing 
the results. A parameter selection process was performed for each 
training set. An exhaustive search was performed for those algo-
rithms with more than two parameters, a grid search for those 
algorithms with two parameters, and the optimizing tools pro-
vided for libSVM package [54] were used in the case of the SVM 
classifier.

In order to evaluate the classification results we have computed 
the ROC area measure, because in the last years many authors have 
recognized its importance in order to give a more realistic vision of 
the quality of binary classifications [56]. This measure gives an idea
5



Fig. 3. Distribution of positive and negative examples in the four analyzed training sets.
of how close the predictions of a classifier are to the ideal ratio 
(1.0) between true and false positive rates. However, ROC area 
measure offers an excessively optimistic assessment of the results 
when there is a large skew in the class distribution [57]. For this 
reason, we have also employed the classical metrics of precision 
(P), recall (R) and Fb-measure, more suitable to tasks with a large 
skew in the class distribution. Precision is associated with the 
capacity of classifying instances correctly, while recall is associated 
with the capacity of classifying as many instances as possible; the 
Fb-measure offers a global description considering both precision 
and recall. For Fb-measure we have used the parameter
b ¼ f1;2g: Fb ¼ ð1þ b2ÞP�R=ðb2�P þ RÞ. With b ¼ 1, the classical
F1-measure is obtained; when b ¼ 2, an overall performance is ob-
tained which gives more importance to recall.
Fig. 4. Minimum (left columns) and maximum (right colum
4.1. Feature selection

The feature selection phase, also known as attribute selection, 
variable selection or feature reduction is used in Machine Learning 
for selecting a subset of relevant features in order to construct 
robust models from datasets. For feature selection, Correlation Fea-
ture Subset Selection (CFS) algorithm [59], Symmetrical Uncertain 
(SymUncert) [60], Information Gain (InfoGain) [60], Gain Ratio 
(GainRatio) [60], Relief [65,66] and Chi Squared (ChiSquared) [67] 
metrics have been used in this work.

Fig. 4 represents the minimum and maximum percentages of 
dimensionality after reduction for each feature and training set 
distribution. Very similar performances are obtained for the train-
ing sets with 20% or 50% of positive examples (Figs. 5(a) and (b)).
ns) percentages of features selected per distribution.
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Fig. 5. Minimum and maximum percentage of feature selected per algorithm.

Table 3
Classification results using different string feature representation.

String repres. Feature Real (5%) 10% 20% 50%

F1

TF stemTitle 0.871 0.918 0.800 0.916
stemAbstract 0.893* 0.928 0.817 0.923
AllVars 0.641 0.736 0.832 0.917

TF-IDF stemTitle 0.875 0.918 0.779 0.920
stemAbstract 0.887 0.928 0.824 0.924
AllVars 0.866 0.938* 0.871 0.949*

TF-IDF-Norm stemTitle 0.669 0.662 0.801 0.890
stemAbstract 0.634 0.843 0.830 0.923
AllVars 0.634 0.854 0.880* 0.936

F2

TF stemTitle 0.865 0.893 0.866 0.947
stemAbstract 0.904* 0.925 0.878 0.950
AllVars 0.669 0.793 0.873 0.941

TF-IDF stemTitle 0.871 0.895 0.871 0.950
stemAbstract 0.902 0.925 0.891 0.957*
AllVars 0.897 0.953* 0.856 0.956
When the set of positive examples is 5% or 10%, semantic types and 
semantic groups cannot be reduced very much, but this does not 
affect the reduction when all features are used together (see the 
last three columns of Figs. 4(a) and (b)).

Comparing the four histograms of Fig. 4, the general behavior of 
dimensionality reduction for all features can be analyzed. Features 
stemTitle and stemAbstract features obtain drastic reductions of at 
least 82% (and up to over 99.9%). All semantics features (semantic 
types and groups, MeSH and chemical terms as well as drugs) are 
drastically reduced in the majority of the cases between 85% and 
95%. These data confirm that ontologies describing semantic types 
and groups, UMLS concepts and pharmacological families define 
orthogonical spaces of knowledge that can be useful for clustering 
and classification tasks.

However, the severe reduction of the drug family feature indi-
cates the high dependence among drug families (the reference to 
one of them implies a subsequent reference to others). This may 
explain why the use of such feature does not help in drug–target 
article classification, as we show in Section 4.3.

When all features are used together, selection reduction is be-
tween 72% and 96%, a range that can be explained considering 
the orthogonality of the majority of features previously described, 
and the reductions obtained in each case.

Fig. 5 shows the results obtained by each feature selection algo-
rithm in the process of feature dimensionality reduction. The Chi-
squared measure gets the highest reduction, but just for the corpus 
associated to the real data distribution (in the other cases the 
reduction is at most 50%). The utility of a feature selection measure 
is linked its classification accuracy. The above analysis on feature 
reduction can be especially useful when the number of features 
should be reduced for computational efficiency while running data 
mining algorithms. In such cases, we recommend to test the per-
formances with Gain Ratio, CFS selections and/or ReliefF selections, 
since the Symmetrical Uncertain and Information Gain show very 
low reductions considering different features and distributions.
TF-IDF-Norm stemTitle 0.754 0.776 0.824 0.927
stemAbstract 0.795 0.911 0.889 0.952
AllVars 0.743 0.924 0.897* 0.948

ROC
TF stemTitle 0.951 0.944 0.953 0.960

stemAbstract 0.969 0.961 0.971 0.976
AllVars 0.962 0.973 0.970 0.966

TF-IDF stemTitle 0.950 0.939 0.959 0.959
stemAbstract 0.970* 0.961 0.970 0.976
AllVars 0.955 0.977* 0.980* 0.988*

TF-IDF-Norm stemTitle 0.908 0.924 0.944 0.949
stemAbstract 0.967 0.964 0.966 0.970
AllVars 0.955 0.971 0.971 0.975
4.2. Analyzing string feature representations

We have analyzed three different representations for string fea-
tures: term frequency (TF), term frequency-inverse document fre-
quency (TF-IDF) and term frequency-inverse document frequency 
with normalization (TF-IDF-Norm). For this analysis we have cre-
ated 36 corpora from the original training data which are the com-
bination of: (a) each positive set distribution; (b) each of the three 
specific string representations; and (c) each of the following set of 
features: (c.1) all features, (c.2) just the stemTitle features or (c.3) 
just the stemAbstract features. All these corpora have been used to 
train the algorithms presented in Section 3.4.
Table 3 shows the best classification results for each combina-
tion of training data and Table 4 shows the classifiers that have 
achieved such results. Each classifier is described by its selection 
feature and classification algorithms. We verified by Mc Nemar 
hypothesis test [63] that no other classifiers constructed with the 
same positive example distribution are statistically equivalent to 
the best ones appearing in the table.

All metrics achieve the best results using the same configura-
tion (feature and string representation type) for each distribution 
(see values marked with a star in Table 3). For a 5% distribution of 
positive examples, the ideal configuration is stemAbstract with TF 
representation; for 10% and 50% distributions, the best solution is 
to use AllVars features with TF-IDF representation; for 20% distri-
bution, AllVars features with TF-IDF-Norm representation. The 
exceptions to this pattern (F2 measure for 50% distribution and ROC 
measure for 20%) improve only by a 0.01 their corresponding 
‘‘ideal” configurations.

The corpus composed of the stemAbstract features shows better 
performance than the corpus composed of the stemTitle features, 
for all metrics, especially when normalization is performed (see 
rows TF-IDF-Norm in Table 3). The reason for this difference could 
be that the normalization of TF-IDF values with respect to docu-
ment length gives more importance to words belonging to short 
abstracts (or titles). In this way, essential patterns for the classifi-
cation task in large texts may be not detected. TF and TF-IDF repre-
sentations show similar results for both stemAbstract and stemTitle 
features. For real and 10% distributions, TF representation obtains 
much better F1 and F2 scores for these features than using AllVars 
features. This result corresponds with previous works based only 
on bag of words for the classification task. For all distributions (ex-
cept 5%), all features with a TF-IDF (instead of TF) representation 
improve by at least a 3% the results achieved by the stemTitle and
7



Table 4
Classifiers associated to classification results in Table 3.

String repres. Feature Real (5%) 10% 20% 50%

F1

TF stemTitle ChiSquared;FLR* InfoGain;FLR* SymUncert;SVM SymUncert;CNB*
stemAbstract SymUncert;FLR* SymUncert;FLR* SymUncert;DMNBtext SymUncert;DMNBtext
AllVars CFS;SVM CFS;LogitBoost CFS;SVM CFS;BayesNet*

TF-IDF stemTitle InfoGain;FLR* GainRatio;FLR* GainRatio;SVM InfoGain;CNB*
stemAbstract InfoGain;FLR* GainRatio;FLR* GainRatio;DMNBtext InfoGain;CNB*
AllVars GainRatio;FLR* GainRatio;FLR* GainRatio;FLR* GainRatio;FLR*

TF-IDF-Norm stemTitle InfoGain;FLR* CFS;CNB* SymUncert;SVM InfoGain;CNB*
stemAbstract InfoGain;CNB* GainRatio;FLR* GainRatio;SVM InfoGain;DMNBtext*
AllVars GainRatio;SVM* GainRatio;FLR* GainRatio;SVM GainRatio;SVM*

F2

TF stemTitle ChiSquared;FLR InfoGain;FLR SymUncert;CNB SymUncert;CNB
stemAbstract SymUncert;FLR SymUncert;FLR SymUncert;CNB SymUncert;CNB
AllVars CFS;BayesNet CFS;BayesNet CFS;NaiveBayes CFS;BayesNet

TF-IDF stemTitle InfoGain;FLR GainRatio;FLR GainRatio;CNB InfoGain;CNB
stemAbstract InfoGain;FLR GainRatio;FLR GainRatio;CNB InfoGain;CNB
AllVars GainRatio;FLR GainRatio;FLR GainRatio;FLR GainRatio;FLR

TF-IDF-Norm stemTitle InfoGain;FLR CFS;CNB SymUncert;CNB InfoGain;CNB
stemAbstract InfoGain;CNB GainRatio;FLR GainRatio;CNB InfoGain;CNB
AllVars GainRatio;FLR GainRatio;FLR GainRatio;FLR GainRatio;SVM

ROC
TF stemTitle ChiSquared;NaiveBayes InfoGain;CNB SymUncert;DMNBtext SymUncert;DMNBtext

stemAbstract SymUncert;NaiveBayes SymUncert;BayesNet SymUncert;HP SymUncert;HP
AllVars CFS;NaiveBayes CFS;LogitBoost CFS;LogitBoost CFS;LogitBoost

TF-IDF stemTitle InfoGain;NaiveBayes GainRatio;NaiveBayes GainRatio;DMNBtext InfoGain;DMNBtext
stemAbstract InfoGain;NaiveBayes GainRatio;BayesNet GainRatio;HP InfoGain;HP
AllVars GainRatio;FLR GainRatio;FLR GainRatio;HP GainRatio;HP

TF-IDF-Norm stemTitle InfoGain;NaiveBayes ReliefF;LogitBoost SymUncert;LogitBoost InfoGain;DMNBtext
stemAbstract InfoGain;BayesNet GainRatio;FLR GainRatio;DMNBtext InfoGain;DMNBtext
AllVars GainRatio;BayesNet GainRatio;FLR GainRatio;DMNBtext GainRatio;HP
stemAbstract features. The ROC Area shows very high (optimistic)
values for all distributions and representations, obtaining the max-
imum values when TF-IDF representation is used. Taking into ac-
count these insights, we justify the preference to use the TF-IDF
representation for the string features, and the results showed in
the next sections are thus based on the use of the TF-IDF
representation.

With respect to the classifiers associated to each result (see Ta-
ble 4), the following issues can be drawn. In the majority of cases, 
the best F1 and F2 values are achieved using the same combination 
of algorithms. A prevalence of the combination InfoGain or GainRa-
tio with the FLR classifier can be observed when there are few po-
sitive examples (5% or 10%), whilst GainRation with SVM or CNB 
prevail for the other distributions. The best results in ROC area 
are obtained with probabilistic approaches, such as BayesNet and 
NaiveBayes (5% and 10% distributions), as well as with text-direc-
ted approaches such as HyperPipes and DMNBtext.

4.3. Feature analysis

We have studied the behavior of the features for the different 
positive set distributions in the classification task (see Table 5). We 
have classified the features into five groups, according to the type 
of information that they represent: (1) stemTitle and stemAb-stract 
features, (2) MeSH and chemical terms, (3) semantic types and 
groups in titles and abstracts, (4) drug affixes in title and ab-stracts 
and (5) all features.

The features of the first group show a similar behavior, and the 
use of abstracts is advantageous in most cases for all measures and 
distributions, with up to a 5% improvement. This result is easily 
justifiable by the relative increase of knowledge offered by the ab-
stract in relation to the article’s title only.
A somewhat unexpected result is obtained for the second group
of features: MeSH terms are less informative than the chemical
terms for real and 10% distributions (up to 5% of difference). A con-
trary situation is observed for 20% and 50% distributions (up to 17%
of difference). In the case of ROC area, the MeSH terms are more
discriminative than chem ones, except for the real distribution.

The three features of the family semTypeGroup show very simi-
lar results between them, with a difference of less than 2% in most
of the cases. The classification performance improves slightly when
semTypeGroup_TitleAbstract is used (except for F2 and ROC mea-
sures in the case of 20% of positive examples), but at the price of
the additional effort of analyzing and using the semantic informa-
tion contained in abstracts. In contrast to stems, semantic types
and groups of titles provide better classification results than
semantic types and groups of abstracts.

The fourth group shows an unusual behavior compared to the
rest of the features. In fact, the drug families mentioned in title
and abstract of articles are not useful in the classification process.
The only acceptable score is achieved for F2 measure when the
dataset with 50% of positive examples is used.

When all informative features are used, classification results are 
clearly better for all measures and positive class distribution equal 
or over 10% (in Table 5 the highest values per measure and distri-
bution are marked with a star). Therefore, all above features give a 
contribution to the overall results.

The algorithms associated to the above results are shown in 
Table 6, in which we have omitted the rows associated to drug 
families because these attributes are not useful for our classifica-
tion task. We verified by Mc Nemar hypothesis test that no other 
classifiers constructed with the same positive example distribution 
are statistically equivalent to the best ones appearing in the table. 
For stems (stemTitle and stemAbstract), MeSH and chem features,
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Table 5
Classification results by feature and distribution of positive examples.

Feature Real (5%) 10% 20% 50%

F1

stemTitle 0.875* 0.918 0.779 0.920
stemAbstract 0.887 0.928 0.824 0.924

MeSH 0.813 0.848 0.829 0.930
chem 0.856 0.886 0.716 0.859

semTypeGroup_Title 0.459 0.620 0.701 0.873
semTypeGroup_Abstract 0.422 0.563 0.697 0.873
semTypeGroup_TitleAbstract 0.492 0.635 0.740 0.887

drug_Title 0.000 0.013 0.201 0.673
drug_Abstract 0.105 0.081 0.207 0.664

AllVars 0.866 0.938* 0.871* 0.949*

F2

stemTitle 0.871 0.895 0.871 0.950
stemAbstract 0.902* 0.925 0.891* 0.957

MeSH 0.770 0.795 0.871 0.944
chem 0.823 0.843 0.704 0.849

semTypeGroup_Title 0.557 0.692 0.784 0.903
semTypeGroup_Abstract 0.510 0.663 0.769 0.902
semTypeGroup_TitleAbstract 0.561 0.700 0.712 0.904

drug_Title 0.000 0.008 0.200 0.836
drug_Abstract 0.071 0.053 0.208 0.827

AllVars 0.897 0.953* 0.856 0.956*

ROC
stemTitle 0.932 0.938 0.959 0.959
stemAbstract 0.953 0.958 0.970 0.976

MeSH 0.870 0.962 0.966 0.968
chem 0.900 0.907 0.817 0.867

semTypeGroup_Title 0.936 0.938 0.934 0.926
semTypeGroup_Abstract 0.936 0.923 0.926 0.918
semTypeGroup_TitleAbstract 0.943 0.942 0825 0.933

drug_Title 0.500 0.503 0.504 0.516
drug_Abstract 0.521 0.532 0.518 0.516

AllVars 0.955* 0.977* 0.980* 0.988*
the algorithm obtaining the best results is a combination of Info-
Gain or GainRatio feature selection algorithms with the FLR classi-
fication algorithm. For semantic type and groups features, it is not 
clear what configuration allows to obtain the best results. How-
ever, CFS with BayesNet as well as InfoGain with DMNBtext are the 
most frequent combinations. When all features are used, the FLR 
algorithm (or HyperPipes in the case of ROC area, for 20%and 50% of 
positive examples), preceded by a Gain Ratio feature selection, 
achieved the best results.

Comparing the results of using different distributions of posi-
tive and negative examples, we observe that a 20% of positive 
examples does not guarantee to obtain higher results than with a 
10% of positive examples. The use of all features shows increasing 
F1, F2 scores as the distribution of positive examples is increased, 
but with lower values for the 20% distribution. This observation fits 
with various unbalanced biomedical binary classification tasks, in 
which the distribution is adjusted to 10% independently from the 
real distribution of the classes, like in [34].

A detailed analysis of the above results allows us to determine 
the following orders, representing the relative importance of the 
features for classification:

� For the distributions of 5% and 10% of positive examples: (1)
stemAbstract features, (2) stemTitle features, (3) MeSH and 
chemical terms, (4) semantic type and groups features, and 
(5) drug families features.
� For the distributions of 20% and 50%: (1) MeSH terms, (2) stem-
Abstract features, (3) stemTitle features, (4) semantic types and
groups features, (5) chemical terms, and (6) drug families
features.

In addition, we have performed a detailed analysis of the results
to choose the most informative features for each of the classifiers.
Table 7 shows the most informative features of the trained classi-
fier models. The features have been selected taking into account
the ROC area as well as the F1 and F2 scores. We can observe that
most algorithms benefit from using all features to train their
models.

4.4. Best classifier configurations

All configurations providing the best result for at least one mea-
sure (precision, recall, F1, F2 or ROC area) have been included in the 
set of best classifiers, independently of the class distribution. Table 
8 shows the best configurations and their scores. Each configura-
tion is specified by an identifier (first column) described by: (a) the 
class instances distribution (real (R), 10, 20, 50); (b) the used 
feature(s); (c) the measure for feature selection; and (d) the statis-
tical machine learning algorithm employed. For example, 50;Stem-
Abstract;InfoGain;FLR means that the 50% distribution of positive 
examples was used, the set of features consists of the stemAbstract 
features which are filtered using the InfoGain measure, and the 
classification is performed using the FLR classifier. Only 10% and 
50% distributions are represented in the set of the best configura-
tions. The last two rows of Table 8 show the best scores for the real 
and 20% distributions. When the positive class represents 5% or 
20%, all measures are relatively low, except for the ROC area.

According to the F1 measure, which gives the same importance 
to precision and recall, the best classifier is 50;AllVars;GainRatio;FLR 
obtaining high quality values for all measures, with a 0.95 of F1-
measure, 0.96 of F2-measure and 0.95 of ROC Area. Classifier 10;All-
Vars;GainRatio;FLR achieves similar results, and both classifiers 
share the same configuration, except the distribution of positive 
examples. We believe that the best classifier is thus the first in Ta-
ble 8, because it obtains results similar to those obtained by other 
classifiers, but needs less positive examples to train its model. We 
used Mc Nemar’s test to examine if the 10;AllVars;GainRatio;FLR 
classifier is significantly better than the other classifiers. The null 
hypothesis H0 is no preference towards the 10;AllVars;GainRatio;FLR 
classifier. The alternative hypothesis H1 is defined as there is a pref-
erence towards the 10;AllVars;GainRatio;FLR classifier. We use a 95%
confidence level for verifying/falsifying the hypothesis. The test re-
sults (see Table 9) indicate that, (in the 95% of the cases) the 10;All-
Vars;GainRatio;FLR classifier obtains results equal to the classifier 
50;AllVars;GainRatio;FLR (which have the same configuration but a 
different class example distribution), and is significantly better 
than the other classifiers.

The FLR classifier divides the parameter space in lattices, in 
which abstracts sharing a common subset of properties and having 
some similarities are grouped. The classifier works with fuzzy 
intervals instead of fuzzy numbers. This allows to produce a re-
duced set of fuzzy rules which achieves a clear and simple knowl-
edge representation of the drug target abstracts. The FLR classifier 
has been used for addressing several classification tasks such as 
ambient air quality assessment [61] and ocean satellite image rec-
ognition [62]. Its effectiveness has been showed by the high preci-
sion and recall values obtained in comparison with other classifiers, 
such as C4.5, in which the number of rules generated is often 
excessive.

The HyperPipes classifier considers the ranges observed in the 
training data for each feature and class. Then, the classifier uses this 
information to select the class that contains the largest
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Table 6
Algorithms associated to classification results in Table 5.

Feature real (5%) 10% 20% 50%

F1

stemTitle InfoGain;FLR GainRatio;FLR GainRatio;SVM InfoGain;CNB
stemAbstract InfoGain;FLR GainRatio;FLR GainRatio;DMNBtext InfoGain;CNB

MeSH InfoGain;FLR SymUncert;FLR SymUncert;SVM SymUncert;SVM
chem InfoGain;FLR SymUncert;FLR SymUncert;CNB SymUncert;CNB

semTypeGroup_Title InfoGain;DMNBtext SymUncert;SVM CFS;BayesNet CFS;BayesNet
semTypeGroup_Abstract InfoGain;DMNBtext CFS;BayesNet CFS;SVM CFS;SVM
semTypeGroup_TitleAbstract InfoGain;DMNBtext SymUncert;DMNBtext FilteredSubsetEval;SVM CFS;SVM

AllVars GainRatio;FLR GainRatio;FLR GainRatio;FLR GainRatio;FLR

F2

stemTitle InfoGain;FLR GainRatio;FLR GainRatio;CNB InfoGain;CNB
stemAbstract InfoGain;FLR GainRatio;FLR GainRatio;CNB InfoGain;CNB

MeSH InfoGain;FLR SymUncert;FLR SymUncert;NaiveBayes SymUncert;FLR
chem InfoGain;FLR SymUncert;FLR SymUncert;CNB SymUncert;CNB

semTypeGroup_Title InfoGain;BayesNet SymUncert;BayesNet CFS;BayesNet CFS;BayesNet
semTypeGroup_Abstract CFS;NaiveBayes CFS;CNB CFS;CNB CFS;SVM
semTypeGroup_TitleAbstract CFS;BayesNet CFS;BayesNet FilteredSubsetEval;SVM CFS;SVM

AllVars GainRatio;FLR GainRatio;FLR GainRatio;FLR GainRatio;FLR

ROC
stemTitle InfoGain;FLR GainRatio;FLR GainRatio;DMNBtext InfoGain;DMNBtext
stemAbstract InfoGain;FLR GainRatio;FLR GainRatio;HP InfoGain;HP

MeSH InfoGain;FLR CFS;NaiveBayes SymUncert;LogitBoost SymUncert;DMNBtext
chem InfoGain;FLR SymUncert;FLR SymUncert;CNB SymUncert;DMNBtext

semTypeGroup_Title InfoGain;DMNBtext CFS;BayesNet CFS;BayesNet CFS;BayesNet
semTypeGroup_Abstract InfoGain;DMNBtext CFS;BayesNet CFS;BayesNet CFS;DMNBtext
semTypeGroup_TitleAbstract InfoGain;DMNBtext SymUncert;DMNBtext FilteredSubsetEval;SVM CFS;DMNBtext

AllVars GainRatio;FLR GainRatio;FLR GainRatio;HP GainRatio;HP

Table 7
Most informative features for each classifier.

Classifier Metrics

F1 F2 ROC

BayesNet AllVars

CNB stemTitle (5%) stemTitle (5%);
stemAbstract (10,
50%);

stemAbstract

MeSH (20%) (10, 20, 50%)

DMNBtext AllVars (5, 20, 50%); AllVars (5, 50%); AllVars (5,
50%);

semTypeGroup (10%); stemAbstract
(10, 20%);

stemAbstract
(10, 20%);

stemAbstract (20%) MeSH (50%)
AllVars (5, 50%);

FLR stemAbstract (5%);
semTypeGroup (10%);
AllVars (20, 50%)

HP AllVars (5, 20%); AllVars (5, 20, 50%);
semTypeGroup (10%) semTypeGroup

(10%);
stemAbstract (50%)

C4.5 AllVars (5%); AllVars (5%);
semTypeGroup (10%); semTypeGroup

(10%);
MeSH (20%); MeSH (20, 50%)
stemAbstract (50%)

LMT MeSH (5, 20, 50%);
semTypeGroup (10%)

NaïveBayes MeSH (5, 20%);
semTypeGroup (10%);
stemAbstract (50%)

LogitBoost stemAbstract (5, 50%); stemAbstract (5%);
AllVars (10, 20%) AllVars (10, 20, 50%)

SVM AllVars
number of correct ranges for each test instance. This classifier has 
reported good results especially when a large number of features is 
considered, as in our case. Finally, the CNB classifier shows the 
lower scores amongst the best classifiers in Table 8, which may be 
due the assumption that features are independent, unrealistic in 
this domain.

It is difficult to compare our work to other approaches, because 
we are the first to address the problem of classification of drug tar-
get articles, and our experiments have been performed on a spe-
cific corpus for our task. Thus, our results are only partially 
comparable to other works. As mentioned in section 2.3, the corpus 
used in the BioCreative II Challenge has a higher proportion of po-
sitive abstracts (64.3%) than our corpus. However, the best perfor-
mance in the challenge was only 0.78 for F-measure. Our results 
also improve those reported in the BioCreative II.5 Challenge 
(where the best F-measure was 0.63 [33]), although the classifica-
tion task there was substantially more difficult, being applied to full 
articles. Many works on classification of protein interaction ab-
stracts have used the SVM classifier, although they have not per-
formed a comparative analysis among different classifiers to the 
depth and extent reported here. As reference, Table 10 shows the 
best results for the different positive example distributions when 
SVM is used. Increasing the number of positive examples allows to 
improve all measures.
5. Conclusions and future work

To the best of our knowledge, this is the first work considering
the classification task for drug–target articles to aid drug–target
database curation. In addition, our study provides a dataset which
can serve as a benchmark for encouraging the development of new
approaches.
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Table 8
Best configurations for all distributions.

Id P R F1 F2 ROC

10;AllVars;GainRatio;FLR 0.915 0.963 0.938 0.953 0.977
50;AllVars;GainRatio;HP 0.966 0.917 0.941 0.926 0.988
50;AllVars;GainRatio;FLR 0.936 0.961 0.949 0.956 0.948
50;stemAbstract;InfoGain;CNB 0.875 0.980 0.924 0.957 0.920

R;stemAbstract;InfoGain;FLR 0.862 0.912 0.887 0.902 0.953
20;AllVars;GainRatio;HP 0.934 0.802 0.863 0.825 0.980

Table 9
Mc Nemar’test results for the better configurations, comparing with
10;AllVars;
GainRatio;FLR.

Id v Mc Nemar statistic p-value

50;AllVars;GainRatio;HP 47.457 0.00
50;AllVars;GainRatio;FLR 0.533 0.47
50;stemAbstract;InfoGain;CNB 99.849 0.00

R;stemAbstract;InfoGain;FLR 18.317 0.00
20;AllVars;GainRatio;HP 30.533 0.00

Table 10
Best results for SVM configurations.

Id P R F1 F2 ROC

R;stemTitle;InfoGain;SVM 0.867 0.526 0.655 0.570 0.761
10;AllVars;GainRatio;SVM 0.861 0.600 0.707 0.639 0.795
20;AllVars;GainRatio;SVM 0.866 0.850 0.858 0.853 0.909
50;AllVars;GainRatio;SVM 0.922 0.952 0.937 0.946 0.936
Instead of the common bag-of-words approach, a novel repre-
sentation is proposed based on the use of semantic information
from biomedical resources such as UMLS, nomenclature rules for
naming drugs or MeSH vocabulary. Our main hypothesis is that
semantic information is useful to deal with the problem of data
sparseness.

We have performed an extensive experimental analysis using a
combination of techniques for feature selection and the most
important machine learning algorithms for text classification
[64]. We have studied the behavior of features in relation with
attribute dimensionality reduction when feature selection algo-
rithms are applied, and with their contribution to the final classifi-
cation results. The best result has been achieved by a Fuzzy Lattice
Reasoning classifier, reaching 0.94, 0.95 and 0.98 of F1, F2 and ROC
area, respectively. We plan to further improve the accuracy of our
classification system taking into account the findings of the present
work. Furthermore, since many of the articles are also available in
full-text, we will include full article analysis in our future research.
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