11,803 research outputs found

    Deep Learning Based Photometric Stereo from Many Images and Under Unknown Illumination

    Get PDF
    Shape from X is an interesting area of research in computer vision community. This topic is divided into passive and active methods. Example of passive methods is shape from texture, shape from defocus and shape from the silhouette. For active methods, the important categories are shape from shading and photometric stereo. In shape from shading, the cue for shape reconstruction is shading which is the relation between intensity and shape. In this case, only one image is considered. In photometric stereo, where multiple vantage points exist, 3D reconstruction considers multiple images (at least three). Photometric stereo on its own can be categorised depending on existing information of illumination directions, illumination intensities, Lambertian surfaces or non-Lambertian surfaces. This paper presents a method employing deep learning for photometric stereo where lighting and surface conditions are unknown. The proposed method is applied to a public dataset. Based on the experimental results, this method outperforms currently existing techniques

    Multi-view passive 3D face acquisition device

    Get PDF
    Approaches to acquisition of 3D facial data include laser scanners, structured light devices and (passive) stereo vision. The laser scanner and structured light methods allow accurate reconstruction of the 3D surface but strong light is projected on the faces of subjects. Passive stereo vision based approaches do not require strong light to be projected, however, it is hard to obtain comparable accuracy and robustness of the surface reconstruction. In this paper a passive multiple view approach using 5 cameras in a ’+’ configuration is proposed that significantly increases robustness and accuracy relative to traditional stereo vision approaches. The normalised cross correlations of all 5 views are combined using direct projection of points instead of the traditionally used rectified images. Also, errors caused by different perspective deformation of the surface in the different views are reduced by using an iterative reconstruction technique where the depth estimation of the previous iteration is used to warp the windows of the normalised cross correlation for the different views

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Capturing natural-colour 3D models of insects for species discovery

    Full text link
    Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3mm to 30mm in length. Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control.Comment: 24 pages, 17 figures, PLOS ONE journa

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne
    • …
    corecore