145 research outputs found

    Closing the loop in exergaming - Health benefits of biocybernetic adaptation in senior adults

    Get PDF
    Exergames help senior players to get physically active by promoting fun and enjoyment while exercising. However, most exergames are not designed to produce recommended levels of exercise that elicit adequate physical responses for optimal training in the aged population. In this project, we developed physiological computing technologies to overcome this issue by making real-time adaptations in a custom exergame based on recommendations for targeted heart rate (HR) levels. This biocybernetic adaptation was evaluated against conventional cardiorespiratory training in a group of active senior adults through a floor-projected exergame and a smartwatch to record HR data. Results showed that the physiologically-augmented exergame leads players to exert around 40% more time in the recommended HR levels, compared to the conventional training, avoiding over exercising and maintaining good enjoyment levels. Finally, we made available our biocybernetic adaptation software tool to enable the creation of physiological adaptive videogames, permitting the replication of our study.info:eu-repo/semantics/publishedVersio

    Feedback control for exergames

    Get PDF
    The concept of merging exercise equipment with video games, known as exergaming, has the potential to be one of the main tools used in addressing the current rising obesity epidemic. Existing research shows that exergaming can help improve fitness and additionally motivate people to become more active. The two key elements of attractiveness - how much people want to play or use the exergaming system; and effectiveness – how effective the exergaming system is in actually increasing or maintaining physical fitness, need to be maximised to obtain the best outcomes from an exergaming system; we put this forward as the Dual Flow Model. As part of the development of our exergame system we required the use of a heart rate response simulator. We discovered that there was no existing quantitative model appropriate for the simulation of heart rate responses to exercise. In order to overcome this, we developed our own model for the simulation of heart rate response. Based on our model, we developed a simulation tool known as the Virtual Body Simulator, which we used during our exergame development. Subsequent verification of the model using the trial data indicated that the model accurately represented exergame player heart rate responses to a level that was more than sufficient for exergame research and development. In our experiment, attractiveness was controlled by manipulation of the game difficulty to match the skill of the player. The balance of challenge and skills to facilitate the attainment of the flow state, as described by Csikszentmihalyi (1975), is widely accepted as a motivator for various activities. Effectiveness, in our experiments was controlled through exercise intensity. Exercise intensity was adjusted based on the player‟s heart rate to maintain intensity within the limits of the ASCM Guidelines (ACSM, 2006) for appropriate exercise intensity levels. We tested the Dual Flow Model by developing an exergame designed to work in four different modes; created by selectively varying the control mechanisms for exercise workout intensity and game mental challenge. We then ran a trial with 21 subjects who used the exergame system in each of the different modes. The trial results in relation to the Dual Flow Model showed that we developed an excellent intensity control system based on heart rate monitoring; successfully managing workout intensity for the subjects. However, we found that the subjects generally found the intensity controlled sessions less engaging, being closer to the flow state in the sessions where the intensity was controlled based on heart rate. The dynamic difficulty adjustment system developed for our exergame also did not appear to help facilitate attainment of the flow state. Various theories are put forward as to why this may have occurred. We did find that challenge control had an impact on the actual intensity of the workout. When the intensity was not managed, the challenge control modes were generally closer to the desired heart rates. While the difference was not statistically very large, there was a strong correlation between the intensity of the different modes. This correlation was also present when looking at the players‟ perception of intensity, indicating that the difference was enough to be noticed by the subjects

    DESIGNING BETTER EXERGAMES: APPLICATION OF FLOW CONCEPTS AND THE FITT PRINCIPLE TO FULL BODY EXERTION VIDEO GAMES AND FLEXIBLE CHALLENGE SYSTEMS

    Get PDF
    Exercise video games have a recognized potential for widespread use as tools for effective exercise. Current exergames do not consistently strike a successful balance between the “fun gameplay” and “effective exercise” aspects of the ideal exergame. Our research into the design of better exergames applies existing gameflow research and established exercise guidelines, such as those published by the American College of Sports Medicine, to a collection of four custom exergames: Astrojumper, Washboard, Sweet Harvest and Legerdemain implement full-body motion mechanics that support different types of exercise, and vary in intended duration of play, game complexity, and level of physical challenge. Each game also implements a difficulty adjustment system that detects player performance from in-game data and dynamically adjusts game difficulty, in order to balance between a player’s fitness level and the physical challenge presented by the game. We have evaluated the games produced by our design approach through a series of user studies on players’ physiological and psychological responses to gameplay, finding that balance between challenge types (cognitive or physical) is an important consideration along with challenge-skill balance, and further, that game mechanics able to support creativity of movement are an effective means of bridging between gameplay and exercise in order to improve the player experience

    Towards Balancing Fun and Exertion in Exergames: Exploring the Impact of Movement-Based Controller Devices, Exercise Concepts, Game Adaptivity and Player Modes on Player Experience and Training Intensity in Different Exergame Settings

    Get PDF
    Physical inactivity remains one of the biggest societal challenges of the 21st century. The gaming industry and the fitness sector have responded to this alarming fact by introducing game-based or gamified training scenarios and thus established the promising trend of exergaming. Exergames – games controlled by active (whole) body movements – have been extolled as potential attractive and effective training tools. However, the majority of the exergames do not meet the required intensity or effectiveness, nor do they induce the intended training adherence or long-term motivation. One reason for this is that the evaluated exergames were often not co-designed with the user group to meet their specific needs and preferences, nor were they co-designed with an interdisciplinary expert team of game designers (to ensure a good gaming experience) and sports scientists (for a great training experience). Accordingly, the research results from studies with these exergames are rather limited. To fully exploit the potential of these innovative movement tools and to establish them as attractive and effective training approach, it is necessary to understand and explore both the underlying interdisciplinary theories and concepts as well as possible design approaches and their impact on the game and training experience. This dissertation aims to contribute to a better understanding of well-balanced exergame design. It explores and evaluates how different movement-based control devices, exercise concepts, game adaptations, and player modes influence the attractiveness and effectiveness of exergames. The work provides theoretical and practical contributions to the problem area of effective and attractive exergames. For this purpose, a research and development (R&D) approach with iterative phases was followed. As preliminary work for the contributions of this dissertation, exergames were approached from a theoretical perspective. Underlying multidisciplinary theories and concepts of exergames from relevant fields were analyzed and a generic framework was built, which structured the findings based on three interdependent dimensions: the player, the game controller, and the virtual game scenario. Some commercially available exergames were explored to verify the theory-based assumption that the interposition of technology brings specific transformations in the coupling of perception and action that do not occur in real sports situations. Among other things, the comparative pilot study showed that two different controllers (one gesture-based and one haptic device), which allowed for different physical input, were likely to induce diverse gameplay experiences (e.g., higher feeling of flow and self-location when playing with the haptic device) with differently skilled players. However, certain design-specific differences in the two exergame conditions meant that these results could only be interpreted as a first trend. To overcome the limitations of this preliminary study approach (e.g., unequal game design of the commercial exergames and very sports-specific movement concept), Plunder Planet, an adaptive exergame environment, was iteratively designed with and for children and allowed for a single- and cooperative multiplayer experience with two different controller devices. The user-centered design was further informed by insights from the growing body of related R&D work in the field of exergames. The first study presented in this dissertation compared the subjectively experienced attractiveness and effectiveness of Plunder Planet when played with different motion-based controllers. Besides a generally great acceptance of the exergame, it was found that the haptic full-body motion controller provided physical guidance and a more cognitively and coordinatively challenging workout, which was more highly rated by experienced gamers with fewer athletic skills. The gesture-based Kinect sensor felt more natural, allowed more freedom of movement, and provided a rather physically intense but cognitively less challenging workout, which was more highly rated by athletic players with less gameplay experience. Furthermore, experiments were made with an exploratory adaptive algorithm that enabled the cognitive and the physical challenge of the exergame to be manually adapted in real-time based on the player’s fitness and gaming skills. The first and the second study also compared an adaptive with a non-adaptive single player version of Plunder Planet. It could be shown that the (well-balanced) adaptive version of the exergame was better valued than the non-adaptive version with regard to the experienced and measured attractiveness (motivation, game flow, spatial presence experience, balance of cognitive and physical challenge) and effectiveness (heart rate, physical exertion, balance of cognitive and physical challenge) by differently skilled players. Finally, and contrary to the findings from related work, the results of the third study proved that the specifically designed controller technology could be used as an “enabler”, “supporter” and “shaper” of bodily interplay in social exergaming. Based on these promising findings, the goal became to further explore the effectiveness of exergames, refine the adaptive game difficulty algorithm, and explore further attractiveness- and motivation-boosting design approaches. Therefore, the ExerCube, a physically immersive and adaptive fitness game setting, was developed. It was iteratively designed with and for adults and allowed for cooperatively and competitive exergame experiences. With its physically immersive game setup, the ExerCube combines a mixed version of the advantages of both previously tested controllers. A coordinatively and cognitively challenging functional workout protocol with scalable intensity (moderate to high) was developed and the subjective experience of the ExerCube training was compared with a conventional functional training with a personal trainer. The fourth study showed that the game-based training gave signs of reaching a similar intensity to the personal training, but was more highly rated for flow, motivation, and enjoyment. Based on this exploratory comparison of the ExerCube with a personal trainer session, valuable avenues for further design could be identified. Among other things, it could be proved that the player’s focus during the ExerCube session was more on the game than on the own body. Players experienced stronger physical exertion and social pressure with the personal trainer and a stronger cognitive exertion and involvement with the ExerCube. Furthermore, a refined version of the previously tested adaptive game difficulty algorithm was implemented and automated for the first time for purpose of this study. Again it was shown that the adaptive version had benefits with regard to subjectively experienced attractiveness (motivation, game flow, balance of cognitive and physical challenge) and effectiveness (physical exertion, balance of cognitive and physical challenge) compared to the non-adaptive version. In order to further enhance the gaming experience, experiments were also conducted with sound designs and an adaptive audio design with adaptive background music and sound feedback was implemented. It was found to be a promising and beneficial add-on for a user-centered attractive exergame design. To inform the design of a multiplayer version of the ExerCube, different social play mechanics were explored in the fifth study. This resulted in differently balanced experiences of fun, and in physical as well as cognitive exertion. As the preliminary comparative evaluation of the subjectively experienced effectiveness and attractiveness of an ExerCube session and a personal trainer session could prove the general feasibility of the concept and revealed the first indications of the intensity of the ExerCube’s training concept, the objectively measured effectiveness of a single ExerCube session with a functional high-intensity interval training (fHIIT) with a personal trainer was compared in a final sixth study, and after another design iteration. Again, the subjectively experienced attractiveness of both conditions was assessed. It could be shown that the ExerCube is a feasible training device for training at fHIIT-level. While physical exertion was slightly lower than in the conventional fHIIT condition, the ExerCube condition’s average heart rate values reached the fHIIT threshold and also yielded significantly better results for flow, enjoyment, and motivation. The ExerCube training also resulted in a subjectively experienced higher cognitive load (dual-domain training). To sum up, it can be stated that this dissertation provides valuable and fundamental research contributions to the promising field of exergames as attractive and effective training tools. Furthermore, important contributions to design questions in this field could be developed. Since this field is still relatively unexplored, the work presented creates a sound basis for future R&D work in this area

    Pilot Study and Gamification Analysis of a Theory-based Exergame

    Get PDF
    A theory-based exergame was developed for tweens to promote their self-efficacy towards physical activity and increase their physical activity levels. We used protocols from both health science and gamification research in piloting the exergame. First, we assessed the usability and feasibility of the exergame and conducted a preliminary exploration of its effectiveness. After technical improvements were made based on our findings, we reiterated the pilot study and analysed the gamification elements of the exergame by using Octalysis analysis. The overall findings suggest that a theory-based exergame can positively influence the self-efficacy of tweens towards physical activity. The exergame showcased theoretical strength, achieved using diverse gamification elements but its overall game design and usability can be further improved. The study concludes that health-related components of the purpose of intervention must be incorporated in parallel with the engaging design of the game, taking into utmost consideration the theories, evidence as well as the needs and perceptions of its target users. This study provides valuable insights on future development and evaluation of gamified health interventions.</p

    GameUp: Exergames for mobility – a project to keep elderly active

    Get PDF
    A big challenge for Europe is the demographic shift towards an aging population. Resources in the health care sector are limited, so it is important that the seniors of tomorrow will be able to stay healthy and manage themselves as long as possible, preferably also with a good quality of life. Physical activity is very important both for mobility and for the general well-being, but it can be hard to find motivation to exercise alone at home. Also in rehabilitation there is a need for a more engaging approach than a sheet of paper describing exercises that should be performed. In the GameUp project we developed fun and motivational exergames particularly targeting elderly in a user centred approach. Physiotherapists ensured that the movements and exercises were good for flexibility, leg strength and balance. In addition to seven Kinect games, a walking app and a professional portal were developed. The Kinect games can be played in several levels, and those who are at risk of falling are able to play while seated. The professional portal ensures that the results of the project also can be used as a tool in rehabilitation. Test results from 20 elderly aged 65-95 as well as clinical trials of adherence to the exercises are encouraging, and the international and multidisciplinary team behind the project is now looking for ways to commercialize the project outcomes

    User experience of mixed reality applications for healthy ageing : A systematic review

    Get PDF
    Mixed reality (MR) technologies are being used increasingly to support healthy ageing, but past reviews have concentrated on the efficacy of the technology. This systematic review provides a synthesis of recent experimental studies on the instrumental, emotional and non-instrumental aspects of user experience of healthy older adults in relation to MR-related applications. The review was listed on PROSPERO, utilised a modified PICOS framework, and canvassed all published work between January 2010 to July 2021 that appeared in major databases (Scopus, PubMed, CINAHL, Web of Science, and the Cochrane Library). The literature search revealed 15 eligible studies. Results indicated that all included studies measured the instrumental quality of their applications, all but two studies measured the emotional reactions triggered by gameplay, and only six studies examined participants’ perception of non-instrumental quality of the applications. All included studies focused on improving a health domain such as cognitive or physical training. This suggests that the instrumental quality of the MR applications remains the focus of user experience studies, with far fewer studies examining the non-instrumental quality of the applications. Implications for game design and future research are discussed

    The Effects of Playing Exergames on Energy Expenditure

    Get PDF
    The purpose of this study was to assess the performance, ratings of perceived exertion, metabolic responses, and energy expenditure as individuals participated in interactive video game play. There were 14 participants that participated in the study, whose age was 20.1 ± 1.64 years of age. Participants completed a maximal aerobic test to exhaustion (VO2max test), and then 30 minute testing session on both the Kinect Adventures (K) and Wii Fit Plus game. Data were analyzed using a dependent t-test and one-way ANOVA. Significance was accepted at P ≤ 0.05. Energy expenditure and RPE were significant in both exergames interactive game play P=0.044 and P \u3c 0.05, respectively. In addition, heart rate (P=0.001) and performance during exergame play P=0.00015 were of significance in the Xbox Kinect and Wii Fit Plus. In conclusion, we found that individuals participating on the exergame Xbox Kinect expends more calories and work at a higher intensity than the Wii Fit Plus, thus justifying an alternative way to participate in physical activity via exergames. As an alternative way to exercise, individuals can meet the daily requirements of energy expenditure of moderate intensity, which is 150-400 kcals

    Multi-user virtual environments for physical education and sport training

    Get PDF
    For effective learning and training, virtual environments may provide lifelike opportunities, and researchers are actively investigating their potential for educational purposes. Minimal research attention has been paid to the integration of multi-user virtual environments (MUVE) technology for teaching and practicing real sports. In this chapter, the authors reviewed the justifications, possibilities, challenges, and future directions of using MUVE systems. The authors addressed issues such as informal learning, design, engagement, collaboration, learning style, learning evaluation, motivation, and gender, followed by the identification of required elements for successful implementations. In the second part, the authors talked about exergames, the necessity of evaluation, and examples on exploring the behavior of players during playing. Finally, insights on the application of sports exergames in teaching, practicing, and encouraging real sports were discussed
    • …
    corecore