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Figure 1: (a) Players exert themselves on an exercycle, (b) wearing a skin conductivity monitor and (c) an eye tracking enabled
head-mounted display, while (d) playing a high intensity racing game. (e) Affect is predicted from sensor measurements using
regression models (here: sign(Fixations)×Conductivity+Pupil) with individual regression lines to represent each participant.

ABSTRACT

User experience estimation of VR exergame players by recog-
nising their affective state could enable us to personalise and
optimise their experience. Affect recognition based on psy-
chophysiological measurements has been successful for mod-
erate intensity activities. High intensity VR exergames pose
challenges as the effects of exercise and VR headsets interfere
with those measurements. We present two experiments that
investigate the use of different sensors for affect recognition
in a VR exergame. The first experiment compares the impact
of physical exertion and gamification on psychophysiologi-
cal measurements during rest, conventional exercise, VR ex-
ergaming, and sedentary VR gaming. The second experiment
compares underwhelming, overwhelming and optimal VR ex-
ergaming scenarios. We identify gaze fixations, eye blinks,
pupil diameter and skin conductivity as psychophysiological
measures suitable for affect recognition in VR exergaming
and analyse their utility in determining affective valence and
arousal. Our findings provide guidelines for researchers of
affective VR exergames.
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CCS Concepts

•Human-centered computing → Human computer inter-
action (HCI);

INTRODUCTION

Physical inactivity is a serious health challenge resulting in
global mortality of 3.2 million deaths and 69 million disability-
adjusted life years [11]. Many adults fail to do the advised 150
minutes of moderate intensity weekly exercise [90], with the
most frequently mentioned obstacles being lack of time and
motivation [38]. Exergaming – gaming that involves physical
exercise – is a promising motivational intervention to incen-
tivise exercise, improving exercise adherence and enjoyability
over conventional exercise by diverting focus from cognitive
and physiological states while nearing or exceeding the ven-
tilatory threshold [77, 94, 111]. Furthermore, virtual reality
(VR) promotes attentional distraction from aversive bodily
sensations such as panting and muscular pain [8]. A num-
ber of studies have combined immersive VR and exergaming
to improve exercise performance, enjoyability and motiva-
tion [9, 17, 37, 60]. Some of these studies have investigated
high intensity exercise protocols, which are around twice as
time efficient as moderate intensity protocols and arguably
more beneficial [44, 70]. Thus, high intensity VR exergaming
could help tackle the main problems of exercise adherance,
motivation and lack of time.

Affective state is a highly significant predictive value of us-
ability in exergaming. Dynamic adaptation of game content
according to the player’s affective state would most likely
result in better adherence and motivation [13]. Previous stud-
ies have been successful in recognising affect in moderate
intensity non-VR exergames [78–80, 115]. However, affective
recognition in high intensity VR exergaming has not yet been



achieved. It presents unique challenges as the increased physi-
cal exertion and the VR headset interfere with common psy-
chophysiological measurements. For example, it is difficult to
recognise facial expression while wearing a VR head-mounted
display (HMD), and facial expressions are affected by exces-
sive panting and flared nostrils as a result of high intensity
exercise. Studies generally rely on tedious self-reported user
experience measures or questionnaires at the end of the exper-
iment, which are useful to get overall feedback but lack the
capacity to measure genuine and unadulterated reactions to
events and experiences in the game [51]. Furthermore, they
are redundant feedback in a sense, as they cannot be used to
dynamically adapt the VR exergame during the session. The
player experience is extremely fragile and can be disrupted
by verbal enquiries of user experience as cognitive effort is
necessary to express emotional experience in words [51].

Affectively adaptive videogames have been extensively stud-
ied; they use various neuropsychophysiological correlates
such as blood pressure, heart rate variability (HRV), electroen-
cephalography (EEG), facial electromyography (EMG), and
galvanic skin response (GSR) to recognise affect [7,83,87–89].
Applying these measures in the context of an exergame im-
poses many challenges, as variations in some psychophysio-
logical parameters may not be an autonomic response but due
to physical activity. For example, perspiration can affect skin
conductivity, and raised heart rate can affect heart rate variabil-
ity. EMG signals can be distorted from exaggerated breaths
because the oral cavity tends to become wider during exhaus-
tion to facilitate higher intake of oxygen. Another problem of
affect recognition is that common measures such as heart rate
and skin conductance primarily reflect arousal and do only
a limited job at best of indicating emotional valence, i.e. at
distinguishing whether the affect is positive or negative [51].

The aim of this project is to identify psychophysiological mark-
ers of positive and negative affect that are suitable for use in
the context of VR exergaming. We conducted two experiments
to achieve our aim. The first experiment compares the impact
of physical exertion and gamification on psychophysiological
measurements during rest, conventional exercise, VR exergam-
ing, and sedentary VR gaming. We used an eye tracker and
skin conductivity sensor to test the suitability of different psy-
chophysiological measures in determining affective responses.
We also used validated questionnaires to determine user expe-
rience at the end of each condition and correlated them with
the measures. In the second experiment, we recorded players’
affective responses during ‘underwhelming’, ‘overwhelming’
and ‘optimal’ VR exergaming scenarios. We used experience
sampling to elicit a ground truth of the affective state, and
then correlated the psychophysiological measures with the
ground truth as well as validated questionnaires of user expe-
rience. The measures that correlate significantly are thereby
identified as predictors of affective state in high intensity VR
exergaming.

In summary, we investigated the following research questions:

RQ1 How do affective responses differ between sedentary
gaming, exergaming, conventional exercise, and rest?

RQ2 Which psychophysiological sensors are most suited for
determining affect in high intensity VR exergaming?

RQ3 What are the psychophysiological correlates of positive
and negative affect in high intensity VR exergaming?

We make the following contributions:

1. A qualitative and quantitative analysis of differences be-
tween player’s affective responses to VR gaming, VR ex-
ergaming, conventional exercise, and rest.

2. A novel method to measure positive and negative affect in
VR exergaming.

3. An empirical study investigating the psychophysiological
correlates of positive and negative affect.

To the best of our knowledge, our study is the first of its kind
to investigate the use of pupillometry and skin conductivity to
recognise affective state in high intensity VR exergaming.

RELATED WORK

Exercise Adherence: Despite various awareness programs to
communicate the physiological and psychological benefits of
exercise, 40-65% of people enrolling for exercise programs
typically drop out within 3-6 months [3, 4, 34]. Lack of time
and motivation are the most commonly cited barriers [38].
Intrinsic motivation, i.e. motivation to perform an activity
because it is enjoyable by itself without the need for other
external rewards, plays a crucial role in adherence to exer-
cise [69, 99, 112]. Therefore, VR exergames that improve
intrinsic motivation could improve adherence. If they also
reduce the time requirement of exercise, they could further im-
prove exercise adherence. This can be achieved by using high
intensity exercise protocols [90], making high intensity VR
exergames a promising method to improve exercise adherence.

Optimising Player Experience: Behaviourist theories state
that re-occurrence of a behaviour is likely when it is accom-
panied by a positive consequence whereas punishing conse-
quence results in its termination [3, 104]. Therefore, maximis-
ing enjoyability of exercise and minimising unpleasant effects
such as fatigue and discomfort could promote adherence [3].
According to optimal experience theories [29, 31] flow – an
optimal and enjoyable experience – can occur when a person’s
skills match the challenge of a task. When the task is more
challenging than a person’s skills it leads to anxiety, whereas
if a person is more skilled than the challenge level of the task it
leads to boredom. Therefore, it is important to adapt the chal-
lenge level to enable optimal player experience. Exergames
that can determine player experience and dynamically adapt its
exercise and game intensities to optimise immersion [21] and
enjoyment [1, 40, 99] would also improve exercise adherence.

Relationship between Immersion and Flow Immersion is
defined as a psychological state in which one perceives being
enveloped by an environment providing a continuous stream
of stimuli and experiences [113]. Brown and Cairns iden-
tify three distinct levels of immersion which are engagement,
engrossment and total immersion [21]. Engagement is the
response of a user to an interaction that captures, preserves
and stimulates their attention, especially when they are intrin-
sically motivated [62]. This is described to be the lowest level
of involvement and to lower the barriers to enter this level, the



gamer needs to invest time, effort, and attention which increase
for more immersive experiences [21]. However, the experience
of being engaged in an activity lacks the emotional attachment
observed in the deeper levels of immersion. In the second
level of immersion, engrossment, game features combine to
the extent that emotions are directly affected by the game and
the controls become invisible [63]. Total immersion is defined
as shutting off from the real world so much so that the game is
all that matters [63]. A positive correlation was found between
immersion and appeal, implying that high immersion may lead
to high appeal, or vice versa [26]. Flow is an optimal intrinsi-
cally enjoyable, subjectively effortless psychological state and
can lead to peak performance in sports. Flow overlaps with
immersion and both experiences have many mutual properties:
concentration, distorting time perception, a balance between
the player’s skills and the game’s challenge, and loss of self-
awareness [63]. Seah et al. state that immersion is considered
to be a precursor of flow [102]; immersion is an engaging
positive user experience that could potentially distract the user
from the physical exertion caused by exercising, thus making
an exergame more enjoyable [35, 61, 85].

User Experience (UX) is defined as perceptions and re-
sponses resulting from the use of a system [33]. It is assessed
by using various measures of involvement such as engagement,
flow presence and immersion, and encapsulates the user’s af-
fect, preferences and behaviour during use [33,63]. Evaluating
a user’s affective state facilitates profiling of experiences [63].

Positive Affect, i.e. enjoyment, plays an important role in mo-
tivating people to continue playing a game [108]. Immersion
in games is pivotal to enjoyment [63] and media technology
development pursues immersion as a route to enjoyment [50].
Immersion, presence, flow, psychological absorption and dis-
sociation are a progression of ever-deeper indicators of game
involvement [20] and a strong and direct determinant of enjoy-
ment and self-reported performance in games [72]. They play
a critical role in game enjoyment, which in turn increases in-
trinsic motivation and promotes adherence. All of them could
lead to positive affect and improve player experience.

Negative Affect: According to the Experience Fluctuation
Model the state of flow is achieved when there is balance
between challenges and skills, and both challenges and skills
are greater than their weekly average [73, 74]. The model
also provides a detailed characterization of negative affective
states such as anxiety, worry, apathy and boredom, all defined
as imbalances between challenges and skills. For example,
according to the model anxiety occurs when the challenge level
is greater and skill level is lower than the weekly average.

Inducing Positive Affect: The dual flow model for enjoyment
in exergames [106] consists of two dimensions: attractiveness,
which is a psychological model balancing the player’s per-
ceived skill with perceived challenge; and effectiveness of
the exercise, the physiological counterpart of flow balancing
fitness and the intensity or challenge of the exercise [103].
Exergames must pose an adequate intensity, duration and den-
sity for optimal adaptation [49]. Furthermore, they must be
attractive and adaptive to provide a low barrier to entry for
newcomers while providing enough challenge for more experi-

enced users in order to keep them interested [49]. We designed
our exergame based on these models to induce positive affect.

Affective Gaming: The term ’affective ludology’ refers to the
scientific measurement of emotional and cognitive aspects of
player experience while interacting with games [81]. Affective
games dynamically adapt challenge and game content, and
offer assistance according to the player’s emotional state [46].
In order to do so, they need to recognise the player’s affect.
Arousal correlates with the pressure used to press buttons on
a gamepad [107]; however, this is due to stress rather than
enjoyment. Facial EMG has been used to determine emotional
valence (positive or negative) during gaming [51,82], and EEG
has also shown to provide reliable measurements of affective
player experience [7, 83]. Several studies use multimodal
approaches including HR monitors, EMG and GSR [87–89].

Affective Exergaming: Measures such as GSR, HRV, EEG
and facial EMG can be used to detect user experiences such
as flow [82], immersion [83], and arousal [87–89]. However,
many physiological measures are open to corruption [47] and
are likely to get affected by exercise perspiration, panting
and movement. Previous studies have been successful in de-
tecting affect in moderate intensity non-VR exergames using
facial expressions, GSR, temperature, respiration and move-
ment [78–80, 115]. Facial expression recognition in VR is dif-
ficult because a player’s HMD covers half her face. Moreover,
high intensity exercise protocols are also a lot more physi-
cally demanding compared to moderate intensity exercise [95],
so lead to higher perspiration, temperature, respiration and
motion changes affecting physiological measurements. In or-
der to recognise affect in VR exergames, we need to identify
psychophysiological measures that are suitably robust.

Valence and Arousal of affect both need to be measured
to conclude the emotional state. Previous studies that were
able to achieve this were using fMRI [2], facial EMG [23] ,
EEG [25] and electrocardiography (ECG) [84]. However, most
of these sensors are too sensitive to be used in an exergaming
environment due to motion artefacts, and therefore we are
not considering EMG, EEG and ECG in our studies. GSR
measures the changes in electrical conductance of the skin as
a result of increased sympathetic nervous system activity, indi-
cating affect arousal but not valence. Recent attempts to use it
also for valence through feature extraction [5] are likely to fail
for high intensity VR exergaming because of extensive move-
ment and perspiration. On the positive side, the eccrine glands
on palms and soles are more sensitive to affect than exertion-
induced perspiration [18, 30, 39] and affective responses typi-
cally precede the appearance of sweat, so GSR may be suitable
for measuring affect arousal in VR exergames. Also pupil di-
lation, blink rate, and eye movements are potential measures
of affect. Increases in pupil size reflect arousal associated
with increased sympathetic activity [19, 55] and have been
proposed for use in affective computing [92]. Blink rate is neg-
atively correlated with dopamine activity which could reveal
valence [64,67,68], with increased attention leading to a reduc-
tion in blink frequency [105]. Gaze fixations are often directed
towards the object of one’s thoughts [36, 48, 109], suggest-
ing that they could also be markers of affective experiences.



Based on these considerations, we decided to investigate the
potential of skin conductance, pupil dilation, blink rate and
gaze fixations for affect recognition in VR exergaming.

Experience Sampling is a well established method for mea-
suring experiences immediately as they are perceived in a
particular moment [52], decreasing the chance of failing to
remember and the inclination to select answers based on social
desirability [116]. Recently received information is saved in
short term memory, which is ephemeral in nature and has a
limited storage capacity [96]. It moves into long term memory
only upon rehearsal or meaningful association, with a risk of
experiences getting lost in translation [41]. As a result, experi-
ence sampling is preferrable to post-experience questionnaires
for measuring instantaneous affective response, therefore we
used it to collect ground truth data about affect. To prevent
the process of experience sampling from interrupting delicate
player experiences such as immersion and flow, we integrated
experience sampling directly into a VR exergame.

EXPERIMENT I: GAMING AND EXERCISE

In order to address RQ1 and identify suitable psychophys-
iological sensors (RQ2), we investigated the difference in
affective responses to sedentary VR gaming, high intensity
VR exergaming, and conventional high intensity exercise. The
overall experimental design is summarised in Table 1. We
used a within-participants design for the independent variables
Game with levels game (G) and no game (N), and Exercise
with levels exercise (E) and no exercise (N). Outcome vari-
ables were measured during each of five Phases P-I, P-II, P-III,
P-IV and P-V, which were defined based on a high intensity
interval training (HIIT) exercise protocol. The combination of
no-exercise and no-game forms the baseline condition (B) in
which players remain seated in all five phases. In the sedentary
gaming condition (G), players play a VR game that is an exact
replica of our VR exergame, but the forward motion in the
game is simply controlled by a hand pedal. In the conventional
exercise condition (E), players exercise without the game in
all five phases according to the HIIT protocol. And in the VR
exergaming condition (EG), players play our VR exergame,
which gamifies the HIIT protocol.

The method of acceleration (exercycle vs. hand pedal) was
a potential confounding factor in the VR game experience,
therefore we devised a model for the hand pedal that yielded
a similar experience of acceleration as the exergame. Similar
to the exergame where acceleration is becoming increasingly
difficult, the acceleration effects of the pedal were attenuated
with increasing speed. Similar to the exergaming condition,
players of the sedentary game were asked to maintain a virtual
speed of “65 to 70 RPM” during the low intensity phases and
go as fast as they can during the high intensity sprints. To
avoid further confounding factors, participants wore a HMD
in all conditions. The VR environment of conditions B and
E was bare but used the average sky colour and the average
ground colour of the G and EG conditions. Exercise prompts
and information about timing and speed were shown not only
in EG but also in E and G. We recorded the baseline B first to
get resting skin conductivity and blink rate before any other ac-
tivity. After recording the baseline B, the order of G, E and EG

was counterbalanced. During the G condition, players held the
hand pedal in their left hand and the skin conductivity sensor
was attached to their right hand to minimise movement arte-
facts. In order to differentiate sweat from affective response
from exercise sweat, we measured skin conductivity at the fin-
gers, which primarily contain eccrine glands highly responsive
to emotional stimuli. We consistently used the same exercise
protocol and ensured participants rested between conditions
to control for the effects of exercise on sweating.

High Intensity VR Exergame

The VR exergame (Fig. 1d) is played by riding a stationary
exercycle while wearing an HMD. The player cycles along
a straight path with a speed proportional to cycling revolu-
tions per minute (RPM). Players can move from side to side
by leaning slightly sideways, with a lateral movement speed
proportional to the roll angle of the HMD. The game alter-
nates between relaxing low intensity phases and high intensity
sprints. The HMD shows prompts about exercise intensity,
RPM and time remaining in the current phase. During the low
intensity phases trucks appear and the player is instructed to
avoid them with lateral movements. Players start the game
with a score of 100 points and lose 10 points for every colli-
sion. In the high intensity phases, player’s goal is to beat a
competitor represented by an automated avatar. In the first
sprint, the game lets the player be ahead of the competitor
for the first 10 seconds, and in the remaining 20 seconds the
competitor is sped up to be ahead of the player. The second
sprint reverses this, with the competitor ahead for the first 10
seconds and the player ahead for the remaining 20 seconds,
which ensures a close match and an engaging race. Points are
awarded for the distance covered during the game.

We designed the game according to the dual flow [103] and
the game flow models [106], with the aim of eliciting a pos-
itive flow experience based on the psychological challenge
of avoiding trucks and the physiological challenge of exer-
cise. We adjusted the challenges to the player’s abilities for
an optimal balance, facilitating engagement, immersion and
flow [32, 63]. We designed the game aesthetics to elicit a
positive affective response [59, 86]. During the low intensity
phases, the virtual environment is sunny and bright to invoke
calmness and relax the player, with an upbeat music playing
at 120 beats per minute (BPM). During the high intensity
sprints, the environment transitions into a dark scene with
police cars flashing emergency lights, aiming to motivate and
energise the player, with the speed of the music increasing to
140 BPM. Related work suggests that these visual stimuli can
increase the aesthetic satisfaction of the game [56, 114], and
that the high-tempo music can enhance energy levels and in-
duce bodily action [65] with ergogenic effects by drawing the
attentional focus away from negative exercise-induced bodily
sensations [12, 14, 22, 66].

Exercise Protocol and Equipment: The game implemented
a high intensity interval training (HIIT) protocol [43], which
is an effective, time-efficient alternative to conventional low
or moderate intensity exercise [42]. A 60 second warm-up
phase was followed by two 30 second sprints separated by a 90
second recovery phase, finishing with a 90 second cool-down



Table 1: Design overview for Experiment I.

Condition Exercise Game
Phase

P-I (60s) P-II (30s) P-III (90s) P-IV (30s) P-V (90s)

Baseline (B) No Exercise (N) No Game (N) Rest Rest Rest Rest Rest
Sedentary Gaming (G) No Exercise (N) Game (G) Game Game Game Game Game
Conventional Exercise (E) Exercise (E) No Game (N) Warm Up Sprint 1 Recovery Sprint 2 Cool down
Exergaming (EG) Exercise (E) Game (G) Warm Up Sprint 1 Recovery Sprint 2 Cool down

phase. During the warm-up, recovery and cool-down, players
cycled at a low intensity of 65-70 RPM with 12 Nm resistance.
During the sprints, players cycled as fast as possible with a
resistance of 0.4 Nm kg−1 initially based on body mass and
adjusted to suit the player during a familiarisation phase. We
used a Lode Excalibur Sport exercise bike and an FOVE HMD,
connected to a PC running Unity with an Intel Xeon E5 2680
processor and two NVIDIA Titan X graphics cards.

Outcome Variables

We collected psychophysiological measurements that are
known to be associated with affect, considering their aver-
ages over the five phases for each condition. We measured
blink rate in blinks per minute (Blinks) with the eye gaze
tracker built into the FOVE HMD, recording pupillometry
data with FOVE’s Unity plugin at approx. 160Hz and count-
ing blinks as periods with zero pupil diameter. We measured
the tonic skin conductance (Conductivity) in microsiemens
(µS) at 128 Hz using the Shimmer3 Consensys GSR develop-
ment kit. Furthermore, we recorded the average power output
(Power) in Watts during the sprint phases in conditions E and
EG as a measure of physical performance, using the serial port
interface provided by the Lode Excalibur Sport exercise bike.

We collected ground truth data for affect based on the Intrin-
sic Motivation Inventory (IMI) [98], which was validated in
numerous sports science studies [27, 75]. We used the main
Interest/Enjoyment subscale (IMI Enjoy) with a scoring range
from 1 to 7, with 7 being the highest intrinsic motivation score.

Procedure

We recruited 18 participants (14 male, 4 female, age 19-32,
mean 23±3), who were students and employees of the Uni-
versity of Bath. We screened them with the Physical Activity
Readiness Questionnaire (PAR-Q) [110] and excluded partici-
pants with health risks or a resting blood pressure greater than
140/90 mmHg. The remaining participants were informed
about all experimental conditions and asked to complete a de-
mographics questionnaire. After initialising sprint resistance
based on body mass, participants went through a familiarisa-
tion phase which allowed them to experience the VR exergame.
Participants then performed each of the four conditions: B, G,
E and EG. They were instructed to work “very hard” during
the sprints and to maintain 65-70 RPM during the low inten-
sity phases for both EG and E. After conditions G, E and EG,
participants completed the IMI and left qualitative feedback
about their experience. Participants had a break of approx. 10
minutes between the gameplay rounds to avoid fatigue. At the
end of the experiment participants were asked to comment on
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Figure 2: Conductivity (left) and Blinks (right) in the four
conditions of Experiment I.

their experience during the different conditions. Each session
took approx. 120 minutes.

Hypotheses

Research suggests Blinks is lower and Conductivity is higher
for higher levels of enjoyment [30, 105]; so we hypothesise:

H1 EG is more enjoyable than E and G as measured by IMI
Enjoy.

H2 Conductivity correlates positively with enjoyment as mea-
sured by IMI Enjoy in conditions E and EG.

H3 Blinks correlates negatively with enjoyment as measured
by IMI Enjoy in conditions E and EG.

Results

The results are summarised in Tables 2 and 4. The assumptions
of analysis of variance (ANOVA) were met, so we analysed
the data with repeated-measures ANOVAs using the ω

2 mea-
sure for effect sizes [91], and two-tailed t-tests with Holm
correction for pairwise comparisons. According to power anal-
yses, the ANOVAs were able to detect medium-sized effects
(Cohen’s f=0.286) and the t-tests were able to detect large
effects (Cohen’s d=0.701) at α = 0.05 with a power of 0.8.
They allow us to better understand the uncertainty in the test
results. Because of our within-participants design, we cal-
culated and tested repeated measures correlations using the
rmcorr R package [15] instead of simple Pearson correlations.
This accounts for the individual differences between partici-
pants in both psychophysiological and self reported measure-
ments, and increases the statistical power as no aggregation
of measurements is necessary when testing intra-individual
hypotheses [6]. The level of significance used for all tests was
α = .05. Plots show 95% confidence intervals of the means.

Manipulation Check: A one-way repeated-measures
ANOVA was conducted on E, G and EG for IMI Enjoy. The
main effect was significant (F(2,34) = 26.11, p < .001∗∗∗)



Table 2: Demographics and results for Experiment I (avg.±std. dev.).

Demographics Variable B G E EG

n=18 Power - - 289.52 ± 80.92 329.74 ± 61.16
m=14; f=4 IMI Enjoy - 3.60± 1.42 3.60 ± 0.99 5.67 ± 0.84
age=23 ± 3 Blinks 123.06±113.28 41.94± 58.26 110.39 ± 112.78 64.83 ± 74.55

Conductivity 1.73±0.99 3.93± 3.39 5.24 ± 3.16 5.95 ± 3.47

with a large effect size (ω2 = 0.427). The differences be-
tween E and EG (t(17) = 6.778, p < .001∗∗∗), and G and EG
(t(17) = 6.328, p < .001∗∗∗) were significant. The difference
between G and E was not significant. The results show that
participants enjoyed the exergame more than conventional
exercise and sedentary gaming, as intended, so we accept H1.

Psychophysiological Differences: A two-way repeated-
measures ANOVA was conducted on Game (N vs. G) and
Exercise (N vs. E) for Conductivity (Fig. 2 left). The effect
of Game was significant (F(1,17) = 11.994, p = .003∗∗) with

a medium effect size (ω2 = 0.065). The effect of Exercise
was also significant (F(1,17) = 33.132, p < .001∗∗∗) with a

large effect size (ω2 = 0.203). The interaction effect of exer-
cise and game was significant (F(1,17) = 4.694, p = .045∗)

with a small effect size (ω2 = 0.016). The difference in
Conductivity between E and EG was significant (t(17) =
2.370, p = .015∗). A two-way repeated-measures ANOVA
was conducted on Game (N vs. G) and Exercise (N vs. E)
for Blinks (Figure 2 right). The effect of Game was sig-
nificant (F(1,17) = 26.168, p < .001∗∗∗) with a medium ef-

fect size (ω2 = 0.108). The effect of Exercise was not sig-
nificant indicating that exercise did not affect Blinks much.
The interaction effect of exercise and game was significant
with (F(1,17) = 6.247, p = .023∗) and a small effect size

(ω2 = 0.009). The difference in Blinks between E and EG was
significant (t(17) = 3.607, p = .001∗∗).

Psychophysiological Correlates: A repeated-measures cor-
relation analysis for the conditions E and EG showed that
Conductivity was significantly positively correlated with IMI
Enjoy (r(17)= 0.418, p= .038∗), so we accept H2. Blinks was
significantly negatively correlated with IMI Enjoy (r(17) =
−0.574, p = .005∗∗), so we accept H3.

Qualitative Feedback: Comments indicate that players en-
joyed being in an aesthetically appealing VR environment
and experiencing the gamification of high intensity exercise.
Typical comments in the VR exergaming condition were “chal-
lenging, thrilling, immersive”, “combines best of both worlds,
makes exercising way more enjoyable”. Some comments such
as “could push myself harder” suggest that, in addition to be-
ing entertained by the VR exergaming experience, participants
also felt more motivated to exercise.

Discussion

The manipulation check showed that the VR exergame was
successful in eliciting positive affect (H2). The significant ef-
fects of Game and Exercise on IMI Enjoy indicate that they can
both enhance positive affect (RQ1), and this is supported by
the qualitative feedback. As a consequence, we can compare

the conditions to find psychophysiological markers of positive
affect. As we are interested to find markers specifically for VR
exergames, the measurements in E and EG are most relevant,
as participants were exercising at high intensity and using an
HMD in both of these conditions.

The significant effect of exercise on Conductivity indicates
that the sensor measurements are indeed affected by the exer-
cise, increasing skin conductivity due to sweat. However, the
effects of gamification on Conductivity while exercising were
still significant, indicating that it is still sensitive enough as
a marker of affect in a high intensity VR exergame. The cor-
relation analysis confirms, as suggested in related work, that
Conductivity is a linear predictor of positive affect, with more
positive affective states leading to a higher skin conductivity.

The effect of exercise on Blinks was not significant, indicating
that the sensor measurements are robust against the effects
of exercise. There is a significant effect of gamification on
Blinks both for sedentary activities (B vs. G) as well as while
exercising (E vs. EG), making it a promising choice for affect
recognition in general and for high intensity VR exergaming in
particular. The correlation analysis confirms, as suggested in
related work, that Blinks is a linear predictor of positive affect,
with more positive affective states leading to a lower blink
rate. Since Blinks appears to be a good choice for measuring
affect in high intensity VR exergames, we widen our range of
pupillometry measurements to also include gaze fixations and
pupil dilation in Experiment II.

EXPERIMENT II: CORRELATES OF AFFECT

In order to determine the suitability of different psychophysi-
ological sensors (RQ2) and analyse the correlates of positive
and negative affect in a high intensity VR exergame (RQ3), we
designed three VR exergame scenarios to evoke the following
three states: an optimal state (Opt) to induce positive affect, an
underwhelming state (Under) to induce neutral affect, and an
overwhelming state (Over) to induce negative affect. This is
similar to Moller et al., who elicited a state of flow in players
by tweaking the game intensity using overwhelming, under-
whelming and optimal conditions [76]. However, our focus is
not on flow as flow is often regarded as an extreme positive
experience [63]. The aim of our experiment is to find the cor-
relates of a broader spectrum of positive and negative affective
states, therefore we used intrinsic motivation (IMI Enjoy) as a
measure of affect instead of flow. The three states Opt, Under
and Over form the levels of the independent variable Game
Scenario, and we investigated the effects of Game Scenario
on psychophysiological correlates using a counterbalanced
within-participants design. We used a methodology extended



from Experiment I, with the notable addition of experience
sampling to record ground truth values of affective responses.

In addition to Conductivity, Blinks and Power, we measured
pupil dilation and gaze fixations. The relationships of Con-
ductivity, Blinks and pupil dilation with affect have been well
documented [19, 30, 55, 105]. Gaze fixation is only a par-
tial indicator of a person’s thoughts as gaze may convey the
object of a person’s thoughts, which may not necessarily in-
dicate affective state. Similarly, even though many studies
explored the relationship between task performance and en-
joyability [57, 71], better performance does not necessarily
mean higher enjoyment. In summary, Conductivity, Blinks,
and pupil dilation are more “conventional” predictors of affect,
although they have not been explored yet for high intensity
VR exergames, while gaze fixations and Power are more spec-
ulative in their relationship to affect.

High Intensity VR Exergame

We modified the VR exergame from Experiment I to create VR
exergaming environments for the optimal, underwhelming and
overwhelming scenarios. To avoid confounding factors, the
game mechanics, HIIT exercise protocol, equipment, ambient
lighting and overall game environment in all three scenarios
stayed the same. Because all conditions used the same exercise
protocol, the noise due to movement artefacts when measuring
Conductivity was similar and comparable.

The optimal scenario was designed to be engaging by present-
ing the player with the same appealing aesthetics and engaging
gameplay elements as in Experiment I. The exercise intensity
was designed to provide an optimal challenge with a positive
competitive experience: in both sprints, the competitor was
sped up to be ahead of the player for the first 10 seconds and
slowed down to allow the player to get ahead in the remaining
20 seconds. The underwhelming scenario was designed to be
devoid of stimuli and evoke boredom by using minimal aes-
thetics, without sound effects or music and no police cars with
flashing lights. There was a complete absence of gameplay
elements such as scoring points, dodging trucks and racing
a competitor. The overwhelming condition was designed to
elicit stress and frustration by using ‘annoying’, noisy sound
effects such as blaring horns during the low intensity phases
and wailing police sirens during the high intensity phases in-
stead of music. The gameplay was extremely challenging,
with the sprint competitor programmed to be always ahead of
the player and the player losing 20 points instead of 10 when
hitting a truck.

In order to make experience sampling of affect as unobtrusive
as possible, we integrated it directly into the exergame. We
used a colour coded experience sampling scale to measure
affect valence and arousal as very negative (-2), negative (-1),
neutral (0), positive (+1) and very positive (+2). The scale
appeared 30 seconds after the start of the warm up phase and
5 seconds after each of the sprints, in all the three conditions.
The scale stayed visible for 10 seconds and accepted input
from two hand pedals attached to the exercycle handlebars. If
players felt positive affect, they were instructed to click their
right hand pedal once or twice depending on their arousal.
Similarly, if they felt negative affect, they were instructed to

click their left hand pedal once or twice. If their affective state
was neutral, they were instructed to click both the pedals once.

Outcome Variables and Data Analysis Approach

In addition to recording Conductivity, Blinks and Power to
determine affective state, we recorded the total time of eye
gaze fixations (Fixations) on visual components of the game:
the competitor, the gap between the player and the competitor,
the points, prompts, the displayed RPM and the timer. We used
ray casting to detect the game components corresponding to a
point of gaze. A low Fixations value indicates that the player
was looking more at the peripheral VR environment or ‘staring
at nothing’ instead of paying attention to the game. We also
recorded a participant’s pupil dilation (Pupil) during the warm
up and in each of the two sprints, considering their average.
Similar to Experiment I, we used the IMI Interest/Enjoyment
subscale (IMI Enjoy) to measure intrinsic motivation. Lastly,
the experience sampling method integrated in the exergame
was used to collect ground truth values about the player’s
affective state; we consider the average of all values measured
in a condition (Affect). We matched the sensor data and the
ground truth by taking the average of the sensor data and of the
experience sampling measures over a whole gameplay session.

Conductivity, Fixations and Pupil values are affected by sys-
tematic individual differences in eccrine activity [100, 101],
fixation length [53, 54] and pupillary sensitivity [58], respec-
tively. This experiment allowed us to collect enough data
from each participant under VR exergaming conditions to
compensate for these individual differences by normalising
the variables using standard z-score transforms. Fixations
and Pupil values were centred at the participant mean and
scaled by dividing them by a participant’s standard deviation.
Conductivity values were not centred and only divided by the
standard deviation, as they are only used as a predictor of
affect arousal, see below.

We consider affect as a two dimensional model consisting
of valence and arousal based on Russell’s affect grid model
[97], which describes affect along the dimensions of pleasure-
displeasure (valence) and arousal-sleepiness (arousal). For
this study we analyse valence as a ternary construct with three
states: positive, negative and neutral, without a magnitude.
Our experience sampling Affect scale with range [−2,+2] ac-
commodates both these dimensions: 1) arousal is represented
by the absolute value with range [0,2], and 2) valence is repre-
sented by the sign (+, - or neutral). Although this approach has
the advantage of differentiating neutral as well as positive and
negative affect, it cannot distinguish between different affec-
tive states of the same valence, similar to other works on affect
recognition using psychophysiological correlates [24, 41].

From related work we know that some psychophysiological
variables are indicators of affect as a whole, or at least va-
lence (positive, neutral or negative), while some variables
are only indicators of arousal, with a valence in negative or
positive direction. We formalise this by defining Valence as
the sign of affect sign(Affect) with possible values -1, 0 and
+1, and Arousal as the absolute value of affect |Affect| with
non-negative values. Variables that predict the whole affective



state, i.e. both valence and arousal, correlate directly with Af-
fect. Variables that predict valence, i.e. whether the affect is
negative, neutral or positive, are correlated with sign(Affect).
Variables that predict only arousal are correlated with |Affect|.
These correlations can be tested using the repeated-measures
correlation analysis from Experiment I. Since we treat valence
as a ternary construct here, linear repeated-measures regres-
sion is more appropriate as a model than logistic regression.

Procedure

We recruited 18 participants (14 male, 4 female, age 20-44,
mean 26±5). The procedure of Experiment II was similar to
that of Experiment I. We used the same screening procedure,
exclusion criteria, questionnaires and exergame familiarisa-
tion phase. Additionally, participants practised answering the
experience sampling scale by clicking the hand pedals, to
make sure this would be easy during the experiment. Each
experiment session took approximately 120 minutes.

Hypotheses

We expect Affect to correlate with IMI Enjoy as the two con-
cepts are highly related and both capable of measuring positive
and negative affective response [33, 63]:

H4 Affect correlates positively with enjoyment as measured
by IMI Enjoy.

Related work and the results of Experiment I suggest that
Blinks, Pupil, Fixations and Power are likely to be indicative
of affect as a whole in the following manner:

H5 Blinks correlates negatively with Affect.
H6 Pupil correlates positively with Affect.
H7 Fixations correlates positively with Affect.
H8 Power correlates positively with Affect.

If Blinks, Pupil, Fixations and Power correlate with Affect,
they will by implication also correlate in the same manner
with valence to some degree; therefore we are also testing
their corresponding correlations with sign(Affect). Related
work shows that Conductivity is a more prominent indicator
of arousal rather than valence:

H9 Conductivity correlates positively with |Affect|.

Results

The results of Experiment II are shown in Tables 3 and 5. Sim-
ilar to Experiment I, the assumptions of analysis of variance
(ANOVA) were met, so we analysed the data with repeated-
measures ANOVAs and two-tailed t-tests with Holm correc-
tion for pairwise comparisons. According to power analyses,
the ANOVAs were able to detect medium-sized effects (Co-
hen’s f=0.312) and the t-tests were able to detect large effects
(Cohen’s d=0.701) at α = 0.05 with a power of 0.8. As for
Experiment I, repeated-measures correlation with rmcorr was
used to test correlations at a significant level of α = .05.

Manipulation Check: A repeated-measures ANOVA was
conducted on Game Scenario (Over, Under and Opt) for
IMI Enjoy. The effect of Game Scenario was significant
(F(2,34) = 13.873, p < .001∗∗∗) with a ‘large’ effect size

(ω2 = 0.261). IMI Enjoy in Opt was significantly higher com-
pared to Over (t(17) = 2.480, p = .012∗) with a ‘medium’
effect size (Cohen’s d=0.585) and also significantly higher
compared to Under (t(17) = 5.497, p < .001∗∗∗) with a ‘large’
effect size (Cohen’s d=1.296). A repeated-measures ANOVA
was conducted on Game Scenario (Over, Under and Opt)
for Affect. The effect of Game Scenario was significant
(F(2,34) = 15.868, p < .001∗∗∗) with a ‘large’ effect size

(ω2 = 0.284). Affect in Opt was significantly higher compared
to Over (t(17) = 6.285, p < .001∗∗∗) with a ‘large’ effect size
(Cohen’s d=1.481) and also significantly higher compared to
Under (t(17) = 4.216, p < .001∗∗∗) with a ‘large’ effect size
(Cohen’s d=0.994). All this shows that Opt, Over and Under
were successful in eliciting significantly different levels of
affect, which is necessary in order to analyse the correlations
of Affect with the psychophysiological variables.

Validity of Affect: A repeated-measures correlation was con-
ducted on Game Scenario for Affect and IMI Enjoy. Af-
fect was significantly, positively correlated with IMI Enjoy
(r(35) = 0.579, p < .001∗∗∗), so we accept H4. This indicates
that our experience sampling method (Affect) is a valid mea-
sure of affect in relation to IMI Enjoy.

Correlates of Affect, Valence and Arousal: Blinks was
significantly negatively correlated with Affect (r(35) =
−0.374, p = .011∗), so we accept H5. Pupil was significantly
positively correlated with Affect (r(35) = 0.346, p = .018∗),
so we accept H6. Fixations was significantly, positively cor-
related with Affect (r(35) = 0.409, p = .006∗∗), so we accept
H7. Power was significantly positively correlated with Af-
fect (r(35) = 0.382; p = .010∗), so we accept H8. Blinks was
significantly negatively correlated with sign(Affect) (r(35) =
−0.460; p = .002∗∗). Pupil was not significantly positively
correlated with sign(Affect) (r(35) = 0.270; p = .053). Fixa-
tions was significantly, positively correlated with sign(Affect)
(r(35) = 0.512; p < .001∗∗∗). Power was significantly posi-
tively correlated with sign(Affect) (r(35) = 0.296; p = .038∗).
Conductivity was significantly positively correlated with |Af-
fect| (r(35) = 0.335; p = .021∗), so we accept H9.

Regression Analysis: The combined linear effects of the psy-
chophysiological variables on affect were analysed using mul-
tilevel linear regression models [28, 93] in R through the nlme
package [16]. The psychophysiological variables were set up
as fixed effects and participant number was set up as group-
ing factor. We tested the regression coefficients for signifi-
cance with α = .05, based on our hypotheses, reporting their
95% confidence intervals CI. We first analysed the effects of
Fixations, Pupil, Blinks and Power on Affect: the effects of
Fixtions (B = 0.414,CI = [0.076,0.752], t(49) = 2.463, p =
.009∗∗) and Pupil (B = 0.322,CI = [−0.015,0.660], t(49) =
1.920, p = .030∗) were significant, and the effects of
Blinks (B = 0.002,CI = [−0.002,0.005], t(49) = 0.821, p =
.208) and Power (B =−0.001,CI = [−0.004,0.002], t(49) =
−0.663, p = .255) were not significant. This indicates that
Fixations and Pupil are the most important linear predic-
tors of Affect (R2 = 0.246), with Blinks and Power not im-
proving the prediction significantly. We then analysed the
effects of Fixations, Blinks and Power on Valence: the



Table 3: Demographics and results for Experiment II (avg.±std. dev.).

Demographics Variable Under Over Opt

n=18 Power 300.85 ± 116.76 309.23 ± 102.31 332.88 ± 113.95
m=14; f=4 IMI Enjoy 3.41±1.22 4.45±1.22 5.183±1.10
age=26 ± 5 Blinks 103.67 ± 91.34 96.67 ± 81.38 86.83 ± 86.136

Pupil 45.07 ± 4.57 42.33 ± 5.31 43.72 ± 4.66
Conductivity 4.29 ± 3.04 4.40 ± 2.73 4.63 ± 2.97

Fixations 3267.39 ± 1432.98 2777.44 ± 1319.14 3018.28 ± 1613.41

Table 4: Correlation coefficients of Experiment I.

Variable IMI Enjoy

Conductivity H2 ∗0.418
Blinks H3 ∗∗-0.574

Table 5: Correlation coefficients of Experiment II.

Variable Affect Valence Arousal

Conductivity -0.059 -0.092 H9 ∗0.335
Blinks H5 ∗-0.374 ∗∗-0.460 0.121
Pupil H6 ∗0.346 0.270 -0.211
Fixations H7 ∗∗0.409 ∗∗∗0.512 -0.115
Power H8 ∗0.382 ∗0.296 0.116

effect of Fixtions (B = 0.456,CI = [0.196,0.716], t(50) =
3.521, p < .001∗∗∗) was significant, and the effects of
Blinks (B < 0.001,CI = [−0.003,0.003], t(50) = 0.005, p =
.498) and Power (B =−0.001,CI = [−0.003,0.001], t(50) =
−1.013, p = .158) were not significant. This indicates that
Fixations is the most important linear predictor of Valence
(R2 = 0.262), with Blinks and Power not improving the
prediction significantly. Combining our results about all
predictors of Valence, Arousal and Affect, we then anal-
ysed the effects of sign(Fixations)×Conductivity, Pupil and
Fixations on Affect: the effects of Pupil (B = 0.330,CI =
[0.015,0.646], t(50) = 2.106, p = .020∗) were significant, and
the effects of sign(Fixations)×Conductivity (B= 0.466,CI =
[−0.266,1.199], t(50) = 1.279, p = .103) and Fixations (B =
−0.018,CI = [−0.730,0.694], t(50) = −0.050, p = .480)
were not significant. After removing Fixations from the
model, the effects of both sign(Fixations)× Conductivity
(B = 0.449,CI = [0.130,0.769], t(51) = 2.823, p = .003∗∗)
and Pupil (B = 0.329,CI = [0.021,0.637], t(51) = 2.146, p =
.018∗) were significant, indicating that this is a suitable
model (R2 = 0.322). Figure 1e shows a graph of model
predictions vs. Affect with regression lines for each partic-
ipant. The regression lines are scattered along the diag-
onal as each participant has her own baseline levels for
the psychophysiological variables and the Affect measure-
ments. The repeated-measures correlation and regression
analyses are able to take these individual variations into ac-
count. Combining our results about more conventional pre-
dictors of Valence, Arousal and Affect, we finally analysed
the effects of sign(−Blinks)×Conductivity, Pupil and Blinks

on Affect: the effects of sign(−Blinks)×Conductivity (B =
0.548,CI = [0.018,1.078], t(50) = 2.075, p = .021∗), Pupil
(B= 0.379,CI = [0.054,0.705], t(50)= 2.339, p= .011∗) and
Blinks (B = 0.005,CI = [−0.0004,0.011], t(50) = 1.863, p =
.034∗) were all significant, indicating that this is also a suitable
model (R2 = 0.247).

Qualitative Feedback: A recurring theme in Opt was posi-
tive engagement, e.g. “enticing”, “motivating” and “stimulat-
ing”. Participants also commented positively on the level of
challenge in Opt, e.g. “the competition was fair which made it
really fun”. Comments on Under such as “dull”, “super boring”
and “repetitive” resonate with its purpose to underwhelm the
player. Comments about Over, e.g. “disturbing”, “annoying”,
“irritating”, expressed that participants were clearly frustrated.
They described the level of challenge as “disheartening” and
the competitor as “too fast” and “winning by so much!”.

Discussion

The results indicate that affect in VR exergames can be mea-
sured by integrating an experience sampling scale directly into
the exergame, mitigating the need for more intrusive measure-
ments. The proposed scale correlates with the widely-used
and well-validated IMI Interst/Enjoyment scale (H4). How-
ever, unlike IMI it has a straightforward neutral point that
facilitates interpretation, and it can be quickly applied during
the experience, making it easier to collect time series data
about affect. The experiment demonstrates how affect can
be manipulated in an exergame by design, based on game
aesthetics and cognitive and physical challenge, making it
easier for other researchers to collect new data sets on affect.
This is also relevant for the calibration of affective exergames,
where different affective responses need to be collected in
order to determine personal parameters of affect recognition
models. The main aim of our second experiment was to find
the psychophysiological correlates of positive and negative
affect (RQ3), and the hypothesised correlations (H5-H9) were
all confirmed. This indicates that the identified correlates are
valid for a range of affect measurements spanning positive as
well as neutral and negative responses, and that they are robust
enough to help predict affect in high intensity VR exergames.

While other works use machine learning approaches to recog-
nise affect, these approaches often hide the underlying relation-
ships between psychophysiological variables and recognised
affect. By contrast, our analysis of linear relationships in-
creases conceptual understanding and can be used as a basis
to build more complex predictors modeling non-linear rela-
tionships. A main result is that measures related to the eye are



promising predictors of affect in high intensity VR exergam-
ing, and with the rise of eye-tracking enabled HMDs this is
becoming increasingly relevant. In particular, the use of eye
gaze fixations in this context is novel and promising, and there
is potential to refine this approach by separately considering
fixations on specific visual design elements of a game.

The correlation analysis confirms that not all psychophysiolog-
ical measures are made equal. For example, skin conductivity
is mainly a measure of arousal and blinks are more useful for
predicting valence than arousal. The results also demonstrate
that these measures can be combined to build stronger pre-
dictors, e.g. by estimating affect as a product of valence and
arousal. The correlations shed some light on good and bad
choices for sensor selection, giving system designers an idea
of what can be expected from a particular psychophysiological
measurement. For example, pupil dilation alone – although
widely used in affective experiments – works only moderately
well in a VR exergame. While predictors involving fixations
can be comparatively strong, they generally need semantic
information about the game, e.g. where important game el-
ements are currently visible on the screen, which requires
access to game internals. This would be difficult to obtain
when recognising affect in a closed-source game, and could
even be difficult if the source code is available. By comparison,
“conventional” predictors involving blink rate, pupil dilation
and skin conductivity are context agnostic, i.e. they can be
used independently of the experience that is measured.

Predicting psychological states such as affect is generally dif-
ficult. There is usually no straightforward predictor that is
highly correlated with the desired property. Reasonable pre-
dictors combine different measures to form an overall estimate,
and also reduce variance by considering individual differences
between users. For example, we used individual averages
and standard deviations in order to compensate for individ-
ual differences in response sensitivity and model linear affect
response for specific players. While these parameters can
be obtained fairly easily and mostly automatically, they do
require individual calibration; so an interesting direction of fu-
ture work would be how affect recognition could be calibrated
continuously as part of an exergaming experience.

Limitations: We took repeated measures in both experiments,
which means that our results may have been affected by famil-
iarisation and fatigue. We mitigated this with a familiarisation
phase, breaks and counterbalancing. Furthermore, our partici-
pants were mainly in their 20s and mostly male, which may
affect the generalisability of our results. Some participants
were not strangers to the research team, some of them partici-
pated in both experiments, and they had varying previous VR
experience. Our manipulation checks indicate that this did
not impact the results noticeably as all conditions were suc-
cessful in eliciting the desired affective responses that could
then be correlated with psychophysiological measurements.
All participants were naive to the goals of the experiments
and all of them went through a standardised familiarisation
phase in both experiments to mitigate the effects of training
and previous VR experience. Focusing on an activity lowers
blink rate and this is a potential limitation for Experiment 1.

However, Experiment 2, which used the same game mechan-
ics, exercise protocol, equipment, ambient lighting and overall
game environment as the EG condition of Experiment 1, shows
that blink rate was significantly correlated with Affect. Our
findings are in line with previous studies showing that blink
rate is negatively correlated with dopamine activity, which is
associated with affect [64, 67, 68].

Our tested correlations have ‘moderate’ to ‘large’ effect sizes,
so they are likely to be useful for similar populations. However,
the accuracy of the linear model could be further investigated
using longitudinal studies with bigger sample sizes, e.g. to
shed light on the stability of predictors over time. Exercise-
related personality traits such as competitiveness may have
influenced the results [45], and they could be included as
covariates in future research. To increase ecological validity,
future studies could be conducted in real word conditions such
as gyms to mitigate the influence of Hawthorne effects.

Impact: Our work paves the way for affectively adaptive high
intensity VR exergames that can improve adherence. Our
approach of determining the affective state is versatile and
can be extended to apply in other contexts, e.g. for affectively
adaptive conventional workout approaches.

CONCLUSION

We identified psychophysiological measures suitable for affect
recognition in high intensity VR exergaming and determined
their relationship with affect. Building on this, we proposed
and evaluated a novel, robust, multisensor approach for affect
recognition, which will help exergame designers to scientifi-
cally measure, personalise and optimise the player experience.
The results of our experiments can inform future VR exergam-
ing studies as they help researchers to design and test affect
predictors, and to formulate hypotheses about how sensor
measurements relate to affect. Our data sets and analyses are
available online [10].1 In summary, we come to the following
conclusions:

1. We identified gaze fixations, eye blinks, pupil diameter and
skin conductivity as psychophysiological measures suitable
for recognising affect in high intensity VR exergaming.

2. We presented an affective predictor with an optimal combi-
nation of the psychophysiological correlates of positive and
negative affect in high intensity VR exergaming.

Our approach and findings can be used as a basis to design
and build affectively adaptive high intensity VR exergames
with great potential to improve exercise adherence.
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