3,040 research outputs found

    Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling

    Get PDF
    This study demonstrates the potential for applying passive microwave satellite sensor data to infer the discharge dynamics of large river systems using the main stem Amazon as a test case. The methodology combines (1) interpolated ground-based meteorological station data, (2) horizontally and vertically polarized temperature differences (HVPTD) from the 37-GHz scanning multichannel microwave radiometer (SMMR) aboard the Nimbus 7 satellite, and (3) a calibrated water balance/water transport model (WBM/WTM). Monthly HVPTD values at 0.25° (latitude by longitude) resolution were resampled spatially and temporally to produce an enhanced HVPTD time series at 0.5° resolution for the period May 1979 through February 1985. Enhanced HVPTD values were regressed against monthly discharge derived from the WBM/WTM for each of 40 grid cells along the main stem over a calibration period from May 1979 to February 1983 to provide a spatially contiguous estimate of time-varying discharge. HVPTD-estimated flows generated for a validation period from March 1983 to February 1985 were found to be in good agreement with both observed arid modeled discharges over a 1400-km section of the main stem Amazon. This span of river is bounded downstream by a region of tidal influence and upstream by low sensor response associated with dense forest canopy. Both the WBM/WTM and HVPTD-derived flow rates reflect the significant impact of the 1982–1983 El Niño-;Southern Oscillation (ENSO) event on water balances within the drainage basin

    Soil Moisture Workshop

    Get PDF
    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report

    Evaluation of a global soil moisture product from finer spatial resolution sar data and ground measurements at Irish sites

    Get PDF
    In the framework of the European Space Agency Climate Change Initiative, a global, almost daily, soil moisture (SM) product is being developed from passive and active satellite microwave sensors, at a coarse spatial resolution. This study contributes to its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison has been carried out between three sets of independent observations from different sensors at very different spatial resolutions for such a long time series. Furthermore, the SM spatial distribution has been investigated at the ASAR scale within each Essential Climate Variable (ECV) pixel, without adopting any particular model or using a densely distributed network of in situ stations. This approach facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability analysis provided high levels of correlation (p < 0.025) and low errors between the three datasets, leading to confidence in the new ECV SM global product, despite limitations in its ability to track the driest and wettest conditions

    Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation

    Get PDF
    Global navigation satellite systems-reflectometry (GNSS-R) is an emerging remote sensing technique that makes use of navigation signals as signals of opportunity in a multistatic radar configuration, with as many transmitters as navigation satellites are in view. GNSS-R sensitivity to soil moisture has already been proven from ground-based and airborne experiments, but studies using space-borne data are still preliminary due to the limited amount of data, collocation, footprint heterogeneity, etc. This study presents a sensitivity study of TechDemoSat-1 GNSS-R data to soil moisture over different types of surfaces (i.e., vegetation covers) and for a wide range of soil moisture and normalized difference vegetation index (NDVI) values. Despite the scattering in the data, which can be largely attributed to the delay-Doppler maps peak variance, the temporal and spatial (footprint size) collocation mismatch with the SMOS soil moisture, and MODIS NDVI vegetation data, and land use data, experimental results for low NDVI values show a large sensitivity to soil moisture and a relatively good Pearson correlation coefficient. As the vegetation cover increases (NDVI increases) the reflectivity, the sensitivity to soil moisture and the Pearson correlation coefficient decreases, but it is still significant.Postprint (author's final draft

    Study of multifrequency sensitivity to soil moisture variations in the lower Bermejo basin

    Get PDF
    In this paper, a sensitivity analysis to soil moisture variations as a rain effect has been performed at several microwave bands over the lower Bermejo basin, a subtropical area of Argentina mostly spread by moderately dense forests. Parameters such as emissivity and Polarization Index have been considered to carry out the study. In particular, the performance of L-band SMOS measurements has been compared with C and X band AMSR-E one, highlighting the better achievement of the lower frequencies due to the weaker interaction with the vegetation structures. This work intends to give a contribution in the subject of soil moisture sensitivity, which is a preliminary step in the development of retrieval algorithms.Fil: Vittucci, Cristina. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Guerriero, Leila. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Ferrazzoli, Paolo. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Rahmoune, Rachid. Universita Tor Vergata. Centro Interdipartimentale Vito Volterra; ItaliaFil: Barraza Bernadas, Verónica Daniela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Empirical fitting of forward backscattering models for multitemporal retrieval of soil moisture from radar data at L-band

    Get PDF
    A multitemporal algorithm, originally conceived for the C-band radar aboard the Sentinel-1 satellite, has been updated to retrieve soil moisture from L-band radar data, such as those provided by the National Aeronautics and Space Administration Soil Moisture Active/Passive (SMAP) mission. This type of algorithm may deliver more accurate soil moisture maps that mitigate the effect of roughness and vegetation changes. Within the multitemporal inversion scheme based on the Bayesian maximum a posteriori probability (MAP) criterion, a dense time series of radar measurements is integrated to invert a forward backscattering model. The model calibration and validation tasks have been accomplished using the data collected during the SMAP validation experiment 12 spanning several soil conditions (pasture, wheat, corn, and soybean). The data have been used to update the forward model for bare soil scattering at L-band and to tune a simple vegetation scattering model considering two different classes of vegetation: those producing mainly single scattering effects and those characterized by a significant multiple scattering involving terrain surface and vegetation elements interaction. The algorithm retrievals showed a root mean square difference (RMSD) around 5% over bare soil, soybean, and cornfields. As for wheat, a bias was observed; when removed, the RMSD went down from 7.7% to 5%

    Survey of methods for soil moisture determination

    Get PDF
    Existing and proposed methods for soil moisture determination are discussed. These include: (1) in situ investigations including gravimetric, nuclear, and electromagnetic techniques; (2) remote sensing approaches that use the reflected solar, thermal infrared, and microwave portions of the electromagnetic spectrum; and (3) soil physics models that track the behavior of water in the soil in response to meteorological inputs (precipitation) and demands (evapotranspiration). The capacities of these approaches to satisfy various user needs for soil moisture information vary from application to application, but a conceptual scheme for merging these approaches into integrated systems to provide soil moisture information is proposed that has the potential for meeting various application requirements

    Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

    Get PDF
    Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed
    corecore