989 research outputs found

    Techno-Economic Analysis of 5G Deployment Scenarios involving Massive MIMO HetNets over mmWave: A Case Study on the US State of Texas

    Get PDF
    The fifth generation (5G) of mobile services envisages network heterogeneity, cell densification, and high spectral efficiency using Massive MIMO, operating at millimeter-wave frequencies. Accurately assessing the potential of financial returns for such a complex network poses to operators unique challenges including techno-economic analysis leading to the identification of decision variables most sensitive to the profitability parameters. Attempting to demystify their concerns, we evaluate the profitability potential for realistic 5G deployment scenarios over 28 GHz frequency in the State of Texas. Interestingly, we discover that the total cost of ownership for 5G network is about one-third of that for 4G LTE-Advanced (LTE-A) deployment, yielding estimated returns amounting to $482.14 million for the period 2020-2030. The sensitivity analyses predict profitability in 70% of the cases of 5G, against LTE-A. For operators, the crucial levers having the maximum impact on profitability are decisions pertaining to the spectrum acquisition and the pricing of services

    Ultra Dense Small Cell Networks: Turning Density into Energy Efficiency

    Full text link
    In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit energy, in ultra dense small cell networks (UDNs). Due to severe coupling in interference, this problem is formulated as a dynamic stochastic game (DSG) between small cell base stations (SBSs). This game enables to capture the dynamics of both the queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean-field game (MFG) in which the MFG equilibrium is analyzed with the aid of low-complexity tractable partial differential equations. Exploiting the stochastic nature of the problem, user scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean-field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 70.7% gains in EE and 99.5% reductions in the network's outage probabilities compared to a baseline model which focuses on improving EE while attempting to satisfy the users' instantaneous quality-of-service requirements.Comment: 15 pages, 21 figures (sub-figures are counted separately), IEEE Journal on Selected Areas in Communications - Series on Green Communications and Networking (Issue 2

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Techno-Economic Analysis of 5G Non-Public Network Architectures

    Get PDF

    Techno-economic analysis of a 5G network in Spain

    Get PDF
    Information society and mobile society are two concepts that are both linked and undeniable. The first one refers to the necessity of high amount of information to develop most aspects of our lives, while the second one is related to the importance of mobile devices to get, analyse and use that information. In other words, every mobile device (that embraces not only mobile phones but also many other gadgets) has become a tool that shall interact with information. In order to fulfil those needs, technology has evolved, resulting into faster, more secure and more reliable networks. Needless to say, mobile networks are playing an indispensable role, as long as the society is evolving to a more and more mobile one, as above mentioned. Furthermore, new applications that had not been even imagined years ago must be fulfilled as well (i.e. smart cities). There are many industries that carry the weight of this progress. Companies of various sectors of our economy must develop each piece of the puzzle to ensure that the jigsaw is solved. Another important player should not be forgotten. The regulatory institutions and frameworks must coordinate all this investigations and progress in order to assure the universality, integrity and reachability of itself. The purpose of this document is to consider what the mobile communications needs of today’s society are, what they will be on a short, mid and long run, and how can they be solved. To face this task, the two main actors above mentioned will be taken into account. From the regulatory perspective, the proposals and law measures (i.e. IMT-2020 and new frequency allocations) must be considered, as well as the technical requirements for 5G generation, whether to be considered the subsequent evolution of LTE network or a new network, or even both. From the mobile companies’ point of view, a dense analysis on technical solutions to reach the above mentioned requirements will be followed by an economic analysis to discuss the profitability of the deployment of a 5G network. It must be understood that this study contemplates several scenarios, due to the different possibilities in terms of the spectrum policies and demand evolution in the forthcoming years. To this end, the several scenarios combined with the different cases of use must be taken into account, as well as many other KPIs. The coherent combination and analysis of all this parameters will reveal the requirements’ feasibility amongst varying scenarios.Ingeniería en Tecnologías de Telecomunicació

    Análise tecno-económica em redes de acesso óptico

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaEsta dissertação tem como objectivo analisar os principais problemas que os fornecedores de serviços têm que considerar ao implementar e ao migrar as redes de acesso ópticas existentes e futuras. Iremos considerar a migração da rede GPON, como rede de acesso actual, para as Redes Óticas de Acesso de Próxima Geração (NG-OANs), como a WDM-PON e a OFDM-PON. O trabalho foca-se nos Custos de Capital (CapEx) por utilizador, e em três factores que condicionam este custo: densidade populacional, topologia da rede e custo dos componentes. Uma visão geral e avaliação das redes óticas passivas existentes e futuras é apresentada. Um modelo tecno-económico para o cálculo do custo das redes de acesso é proposto, tendo em conta o efeito da taxa de subscrição. O custo total de cada tecnologia de rede é calculado. O CapEx por utilizador para esquemas divisores simples e em cascata é também calculado, para diferentes taxas de subscrição. O custo dos componentes é considerado quando o preço é extrapolado em função do tempo e do volume.This dissertation aims to analyse the main issues to be faced by the service providers in implementation and migration of existing and future optical access networks. We are going to consider the migration of the networks from GPON, as the current access network technology, to Next Generation Optical Access Networks (NG-OANs), such as WDM-PON and OFDM-PON. The work focuses on the Capital Expenditures (CapEx) per user and three factors that drive this cost: population density, network topology and components cost. An overview and assessment of existing and future passive optical networks is provided. A techno-economic model for calculating of deployment cost of access networks is presented, accounting for the effect of take rate. The total cost of each network technology is calculated. The CapEx per user for both single and cascaded splitter schemes for different take rates is also calculated. Furthermore the components cost is considered, when the price is extrapolated considering time and volume

    Towards 5G: scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure

    Get PDF
    Moving from 4G LTE to 5G is an archetypal example of technological change. Mobile Network Operators (MNOs) who fail to adapt will likely lose market share. Hitherto, qualitative frameworks have been put forward to aid with business model adaptation for MNOs facing on the one hand increasing traffic growth, while on the other declining revenues. In this analysis, we provide a complementary scenario-based assessment of 5G infrastructure strategies in relation to mobile traffic growth. Developing and applying an open-source modelling framework, we quantify the uncertainty associated with future demand and supply for a hypothetical MNO, using Britain as a case study example. We find that over 90% of baseline data growth between 2016 and 2030 is driven by technological change, rather than demographics. To meet this demand, spectrum strategies require the least amount of capital expenditure and can meet baseline growth until approximately 2025, after which new spectrum bands will be required. Alternatively, small cell deployments provide significant capacity but at considerable cost, and hence are likely only in the densest locations, unless MNOs can boost revenues by capturing value from the Internet of Things (IoT), Smart Cities or other technological developments dependent on digital connectivity.Edward Oughton, Zoraida Frias, Tom Russell and David Cleevely would like to express their gratitude to the UK Engineering and Physical Science Research Council for funding via grant EP/N017064/1: Multi-scale InfraSTRucture systems AnaLytics (Mistral). Zoraida Frias would like to thank the Universidad Politécnica de Madrid for their support through the mobility program scholarship

    Impact of Femtocell backhaul limitation on performance of Macro-Femto HetNet

    Get PDF
    This thesis is a techno-economical study which focuses on addressing the exponentially rising data capacity demand through network densification. The study is based on the two popular deployment strategies; Macrocellular networks and Macro-Femto heterogeneous networks, deployed in a suburban type environment with modern houses. The main aim of the dissertation is to investigate the impact of network densification on capacity, energy- and cost-efficiency of the network, while considering different femtocell backhaul connectivity limitations. The network performance is evaluated for both indoor and outdoor scenarios. A comparative analysis between the macrocellular and macro-femto network is done by increasing the density of the macrocells, femtocells and the operating frequency spectrum. The capacity is enhanced by increasing the density of the cell sites in the network but operators want to generate profit and want to adopt a cost effective solution to cater the problems. The results show that increasing the density of low-cost, low-powered femtocell access points (FAPs) in the network can solve the problem of 1000x future data capacity demand while keeping the CAPEX and OPEX of the network relatively lower than legacy pure macrocellular deployments. The deployment of the FAPs both in indoor and outdoor environments enhances the network capacity. This study helped in providing results, understanding and insight of both technical and techno-economical aspects of different mobile network deployment and densification solutions. Furthermore, the outcome of the thesis will give some guidelines for network vendors and mobile operators in evolving their network in future
    corecore