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resumo 
 
 

Esta dissertação tem como objectivo analisar os principais 
problemas que os fornecedores de serviços têm que considerar ao 
implementar e ao migrar as redes de acesso  ópticas existentes e 
futuras. Iremos considerar a  migração da rede GPON, como rede 
de acesso actual, para as Redes Óticas de Acesso de Próxima 
Geração (NG-OANs), como a WDM-PON e a OFDM-PON. 
 
O trabalho foca-se nos Custos de Capital (CapEx) por utilizador, e 
em três factores que condicionam este custo: densidade 
populacional, topologia da rede e custo dos componentes. Uma 
visão geral e avaliação das redes óticas passivas existentes e 
futuras é apresentada. Um modelo tecno-económico para o 
cálculo do custo das redes de acesso é proposto, tendo em conta 
o efeito da taxa de subscrição. 
 
O custo total de cada tecnologia de rede é calculado. O CapEx por 
utilizador para esquemas divisores simples e em cascata é  
também calculado, para diferentes taxas  de subscrição. O custo 
dos componentes é considerado quando o preço é extrapolado em   
função do tempo e do volume. 
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abstract This dissertation aims to analyse the main issues to be faced by 
the service providers in implementation and migration of existing 
and future optical access networks. We are going to consider the 
migration of the networks from GPON, as the current access 
network technology, to Next Generation Optical Access Networks 
(NG-OANs), such as WDM-PON and OFDM-PON. 
 
The work focuses on the Capital Expenditures (CapEx) per user 
and three factors that drive this cost: population density, network 
topology and components cost. An overview and assessment of 
existing and future passive optical networks is provided. A techno-
economic model for calculating of deployment cost of access 
networks is presented, accounting for the effect of take rate. 
 
The total cost of each network technology is calculated. The 
CapEx per user for both single and cascaded splitter schemes for 
different take rates is also calculated. Furthermore the components 
cost is considered, when the price is extrapolated considering time 
and volume. 
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CHAPTER 1  INTRODUCTION 
 

 

 

 

 

 

 

Summary 

 

Next Generation Optical Access Networks (NG-OANs) are the fastest 

growing parts of the telecommunication area and the availability 

requirements for today’s and tomorrow’s access networks are very 

demanding. Therefore, network planning and design decisions should 

take into account cost estimations as accurately as possible. There are 

many factors that have to be taken into account when implementing 

and managing access networks. How can operators make the current 

and future FTTH economical, is one of the questions that this M.Sc. 

work tries to answer. This chapter gives details of motivation, 

objectives and original contributions. The dissertation organization is 

presented at the end of this chapter. 
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1.1 Background and Motivation  

Data rate hungry applications, whether domestic (for residential user) or professional (for 

business user, mobile backhaul and data centre), are permanently pushing operators to 

upgrade and develop their access network to Fibre-To-The-Home (FTTH) technology. A 

FTTH access network is a residential communications infrastructure where fibre cables run 

all the way to the user homes and allow service providers serve their current customer and 

adapt to future market changes. Also this network enables operators to deliver triple 

services (Voice, Video and Data) in the same infrastructure as an open access network and 

can support the increasing demands for high speed services with good quality. 

In the other side, the digital divide is a social issue that refers to the discrepancy between 

those who have access to information and communication tools, such as the Internet 

(especially broadband access) and those who do not have access. The digital divide can 

exist between people who live in rural areas and people who live in urban areas or between 

economic classes and on a global scale. As digital divide is a challenge faced by today's 

virtual world and International Telecommunication Union – Telecommunication (ITU-T), 

it can be reduced by making access network economical in everywhere for everyone [1].  

Besides, according to statistical information published by the Cisco Visual Networking 

Index (VNI) forecast [2], global IP traffic will increase threefold over the next 5 years and 

will grow at a Compound Annual Growth Rate (CAGR) of 23 percent from 2012 to 2017. 

80 to 90 percent of this traffic belongs to all forms of video such as TV, video on demand 

(VoD), Internet and P2P. Also mobile data traffic and business IP traffic will grow at a 

CAGR of 66 and 21 percent from 2012 to 2017, respectively. The network requirements 

such as availability, data security, support and bandwidth provision are outlined for 

different customer classes and not per single services. Types of services, total traffic and 

data rate scales can be the metrics for classification of system adaptability to the user 

profiles. Definition of end-user category helps us projecting traffic and aiming at predicting 

the time limit for a certain technology. As an assumption, the end-user categories can be 

divided as follow:  

- Light user - voice, VOIP, gaming, data and IPTV. 
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- Heavy user - voice, video conference, gaming, data, cloud computing, VOD 

dedicated, live VOD, pear to pear, IPTV.  

- Business: fixed IP WAN or Internet traffic generated by businesses and 

governments. 

- Mobile back hauling: includes mobile data and internet traffic generated by 

handsets, notebook cards and mobile broadband gateways. 

- Fixed backhaul and Data centres: services with  highest requirements define 

backhaul link parameter 

 

a) 

 

             
b)                                                                                      c) 

Figure  1-1. Forecast of Internet traffic consumption per service. a) Residential users b) Business users         

c) Mobile backhaul users [2] 
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Figure 1.1 shows the service bandwidth evolution forecasts of each user category by 2020 

based on the traffic model described in CiscoVNI [2]. 

Under these circumstances, service providers are trying to identify a technology choice that 

allows them to profitably serve their subscribers today and also adapt to future market 

changes. NG-OAN architectures will offer not only higher bandwidths enabling more 

products and services, but also better quality of service, that enable more efficient and 

reliable networks, thereby increasing subscriber satisfaction and  penetration rates. 

One of the cost effective FTTH concept that has appeared in recent years is Passive Optical 

Network (PON). PON enables point-to-multipoint fibre access networks based on passive 

optical nodes and provides high bit rate for number of users with sharing optical line 

terminal (OLT) port and feeder fibre. Furthermore availability of network for all users with 

using optimum amount of resources can make these access networks economical. Figure 

1.2 presents an example of PON for supporting all services and users in same feeder fibre.  

 

 

Figure  1-2. FTTH structure with supporting residential, business, mobile backhaul and data center users.  

According to bottom-up business model [3], services are key requirements for each system 

and architecture design. In Fig. 1.3 the downstream and upstream bandwidth data 

requirements for each user type are demonstrated, together with the bandwidth of some of 

today’s access solutions. For forecasting of the service bandwidth evolution and types of 

user, traffic study in [2, 3] has been used in the user profile. According to bottom part of 
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Fig. 1.3, operator can carry out what is the best technology for future application. As 

shown, WDM and P2P solutions are optimum technologies that can support all the users. 

Several network technologies can be implemented to deliver broadband services to the 

customer. 

 

Figure  1-3. Today and future bandwidth requirements and solutions [1-3]. 

Nowadays, several types of Time-Division PON (TDM-PON) architectures [4-7] such as 

Gigabit-capable Passive Optical Networks (GPON) and 10-Gigabit-capable Passive 

Optical Network (XG-PON), Ethernet PON (1G/1G-EPON, 1G/10G-EPON) , 10Gbps 

Ethernet PON (10G-EPON) are options which can sustain data rate for 32 to 128 end users. 

Wavelength-Division Multiplexing PON (WDM-PON), Ultra-Dense WDM-PON, hybrid 

WDM/TDM-PON are considered as the potential solutions for future network, that can 

combine the best of P2P and PON by creating a logical point-to-point with end all types of 

users without any limitation in bandwidth and reach and number of user [8-12]. They will 

emerge in next two years and are new solution with high bandwidth for business and heavy 

users and are growing quickly for extended data rate.  

Time and Wavelength-Division Multiplexing PON (TWDM-PON) with stacking 4 or 8 

XG-PONs and a typical split ratio of 1:64, can achieve an aggregate rate of 40Gbps in the 

downstream and 10Gbps in the upstream. All transmitters and receivers in OLT and 
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customer side are able to tune to any of the 4 or 8 upstream/ downstream wavelengths [13]. 

Using Orthogonal Frequency-Division Multiplexing-PON (OFDM-PON) [14-15], 

orthogonal subcarriers can be dedicated to different services to form a protocol transparent 

digital data pipe and is a pronounced reliance on electronic Digital Signal Processing 

(DSP) to compensate physical-layer impairments and achieve bandwidth flexibility.  

 

Figure  1-4. Technologies beyond NG-PON2 for increasing capacity [15]. 

The main goals of each of these networks is flexibility, reliability and easy to upgrade 

architectures for reducing the cost and complexity of delivering high bandwidth services. 

Operators are trying to identify a technology that can guaranty them with high benefit from 

current subscribers and adoption for future market changes. Although with this types of 

contributing issues and the rapid developing of new technology, it is very difficult to 

answer what the best economical technology is for today and tomorrow, but with 

optimization of development in current access network and  have a glance for total cost and 

type of new technologies, the operator almost can get their answer. 

Above all, the development of these networks has an important rule to characterize both 

the long-term cost implications and the long-term benefits of investing in the chosen 

technology [16]. Although, fibre as a base resource of PON is considered to be a cheap part 

in the total Capital Expenditures (CapEx), but it is not free and fibre with its installation 

take high cost per user. In the other side, OLT ports are expensive and consume most of the 

power in PON, so with sharing of OLT port for more users, costs of the OLT and its power 
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consumption are decreased. Thus, under this circumstance, it is important to optimize 

outside of the network with implementing of several kind of distribution points and 

placement of them due to their effects on efficient use of OLT ports, fibre installation and 

power saving. 

The CapEx per household greatly depends on demographics [17-21]. Therefore co-

operation in rural areas with cascades splitter configuration in conjunction with reach 

extension technologies offers an improvement in resource sharing and decrement of 

deployment costs.  

Also, flexibility is the key that prepares easy migration for FTTH network to unknown 

transmission technologies. For instant a splitter based PON using tuneable filter in 

customer side equipment can relatively easily be upgraded to any kind of new networks. 

Furthermore, since the new components in optic or electrical parts of network are so 

expensive, especially in advanced optical devices and DSP, due to integrated optics 

devices and competition in market the estimation of future cost of new technology is 

needed [22]. The price learning curve for all components and demand forecast is presented 

over the study period for the residential users.  

1.2 Objectives and Structure  

When service providers start to develop a network, several questions should be considered 

before selecting a technology and designing a topology:  

1. What are the services, networks and operation requirements for today and future 

access network for a seamless evolution toward NG-OANs? 

2. How do the take rate (subscription rate), population density and data demand 

demographics influence selected technology and architecture? 

3. How to calculate the CapEx considering realistic scenarios? 

This work is trying to answer these questions with proposing a techno-economic model 

based on combining two bottom-up and top-down models with operators and scientific 

perspectives [20-23]. 
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In order to fulfill the aforementioned objectives, this dissertation is divided in four 

chapters, in the first chapter the context of this work with summarizing the motivation, the 

objectives and the structure of the study are presented. 

The second chapter presents an overview of PON standards based on TDM and WDM 

technologies and describes the requirements and needs for future PONs. In Chapter 3 we 

focus on techno-economic models of NG-OAN and propose physical architectures for 

PON networks and then estimate the entire devices price for future technologies. Finally in 

the last chapter, the conclusions drawn from the work presented in this dissertation and 

suggestions for future work will be made. 

1.3 Main Contributions 

The main contributions of this work are as follows: 

 Overview and assessment of existing and future PONs.  

 Implementation of geometric model for calculation of CapEx [18].  

 Optimizing CapEx with splitter configurations [21].  

 Development a techno-economic model for calculating total CapEx of optical 

access networks and calculating deployment and migration cost from GPON to 

WDM-PON. 

 Applying techno-economic model for a realistic network and estimating the materi-

al cost when the price of new components is extrapolated in time and volume [14]. 

 Analysing the impact of different types of splitter structures on resource sharing 

and power consumption in long reach PON [31]. 

 Considering multi system Next-Generation PONs impact on Video Overlay [32]. 
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1.4 Concluding Remarks 

This chapter presented an overall view of the dissertation. The motivation and background 

for PONs were discussed. The services and different types of users as drivers of PON 

technologies were analysed and the required technology for each service versus time was 

presented. The main motivation of PONs was to maintain connectivity at high data rate 

with reliability and availability but cost-effective and without substantial changes in 

network infrastructures. The original contribution of the dissertation and also the 

dissertation organization were presented.  
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CHAPTER 2  DEPLOYMENT OF PASSIVE 
OPTICAL NETWORKS TECHNOLOGIES 

 

 

 

 

 

 

Summary 

 

PON technologies are becoming more and more attractive to service 

providers by offering efficient network resource sharing and high 

bandwidth demand. There is great attention given to exploiting 

different PON technologies and topologies in optical access networks. 

The purpose of this chapter is to provide an overview and assessment 

of existing passive optical access network architectures, along with a 

review of the architecture domains for NGOA networking. Also 

topological as well as numerical data in terms of the key requirements 

for bandwidth, reach and scalability are provided regarding current 

and future PON deployments in networks. 
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2.1 Introduction 

Currently with progressing in the communication systems, larger bandwidth for sending 

more data at higher speed is required. Subscribers are interested the latest high bandwidth 

demanding internet applications and services such as Internet Protocol Television (IPTV), 

Voice Over IP (VOIP) and Video-On-Demand (VOD) applications. So internet providers 

must develop their network in order to present such technologies.  

In this regard fibre based access networks can support the increasing demands for high 

speed connections. A FTTH network is a fibre-based access network that connects a large 

number of subscribers to a central office. In fact in the FTTH technology, the entire 

existing copper infrastructure such as telephone wires and coaxial cable are replaced by 

optical fibres. Each central office involves the required electronic transmission equipment 

to prepare applications and services over optical fibre to the subscriber.  

Basically, there are three kinds of architectures for delivering FTTH: point-to-point, 

switched (active Ethernet network) and Passive Optical Network (PON) [16]. PON enable 

point-to-multipoint fibre access networks based on passive optical nodes.  Nowadays, 

several types of PON architectures have been or are being developed. The main objective 

of this chapter is to present PON technologies and topologies and give an overview of 

TDM-PON, WDM-PON, hybrid PON and OFDM-PON. A short introduction on the 

existing and operating PON networks is made while also commenting on possible future 

solutions. 

2.2 Passive Optical Network Standardization and Overview 

Recently, several research groups and the telecom industry are putting a lot of effort 

towards the development of new access technologies. The main goal has been focused to 

the deployments and development of cost-effective, flexible, reliable and easy to upgrade 

architectures for access networks based on PON [4-15]. PON have been recognized for 

future access networks, because of providing high bit rate for number of users with sharing 

OLT port and feeder fibre. Furthermore availability of network for all users with using 

optimum amount of resources can make these access networks economical.  
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Figure  2-1. Basic concept of PON systems. 

Figure 2.1 presents the basic concept of PON systems. A PON consist of one OLT that 

located at the service provider’s Central Office (CO), optical fibres, Optical Network 

Terminal (ONT: user side equipment of PON for FTTH) or Optical Network Unit (ONU: 

user side equipment of PON for FTTC ) at the end subscriber sites that is located to serve 

as the interface between PON and subscriber equipment. The Optical Distribution Network 

(ODN) is used for transmission network between OLT and ONTs/ONUs that includes all 

outside parts of PON such as fibres, distribution points. With Service Node Interface 

(SNI), OLT has a connection with metro or core networks. In the customer side User 

Network Interface (UNI) enables communication between ONU and customers. As ONU 

can have different protocols and connection, UNI may be used to convert the specific 

device protocol to the common one. 

Recently, several PON technologies such as GPON and EPON have been standardized by 

the ITU-T and the Institute of Electrical and Electronics Engineers (IEEE), respectively. 

GPON delivers asymmetric 1.25 Gbps for upstream and 2.5Gbps for downstream 

directions whereas EPON provides symmetric 1Gbps for upstream and downstream [4, 5]. 

As shown in Fig. 2.2, upgraded versions of these technologies, one referred as XG-PON 

[6], has been deployed in recent years in order to extend reach and capacity. 10G-EPON 

has already been deployed since 2009 [7]. GPON is being marketed in several countries in 

the world. In some, the penetration is already quite high, e.g. In South Korea, India, 

Sweden, Japan, United Arab Emirates, etc. [16]. In Europe, several countries have been 

investing mostly on GPON deployments to enhance their broadband capabilities [16]. Also 

in Portugal, the State together with the various operators are promising to cover a very 
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significant percentage of the population by allocating a very significant amount of 

resources in pursuing this objective (Annex I).  

Beyond of GPON and XG-PON, several brilliant proposals for NG-PON2 such as TWDM-

PON, WDM-PON, hybrid WDM/TDM-PON, UDWDM-PON, OFDM-PON under the 

umbrella of the FSAN group have been considered [8-15].  

 
 

Figure  2-2. ITU-T & IEEE [15]. 

It follows that, all PONs deployed to date are all considered by three topologies: the 

majority of them is TDM based PONs (mostly GPON) then WDM-PON with hybrid of 

WDM/TDM and finally OFDM-PON. In continue an overview of these deployed optical 

access network architectures with focus on technical issues and solutions is given. 

2.3 Time Division Multiplexed Passive Optical Network (TDM-PON) 

TDM-PON applies the time division multiplexing technique that share a common 

wavelength between a set of ONUs. TDM-PONs use one wavelength for downstream 

transmission and another wavelength for upstream transmission. In this technology, the CO 

dedicates time slots to the ONUs and each ONU can see its own data through the address 

labels that was inserted in the signal. Beside downstream, TDM also used upstream 

direction in order to prevent collisions on the PON. During the assigned time slot, each 

ONU can use the full upstream bandwidth of the optical link. Main concepts of TDM-PON 

are shown in Fig. 2.3. Three versions of the TDM-PON already exist: EPON, Broadband 

PON (BPON) and GPON.  
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Figure  2-3. TDM PON basics concept. 

 

2.3.1 GPON  

GPON is a technology for passive optical access networks. It is specified by ITU-T G.984 

series. GPON has improved capabilities compared to BPON and is backwards compatible.  

Depending on the class of equipment, the physical reach of GPON, i.e., the maximum 

physical distance between the ONU and the OLT, can be 10 km or 20 km. However, the  

 

 

 

Figure  2-4. Optical passive materials [25] 

standard defines that besides the physical reach limitation, the maximum distance between 

the ONU and the OLT (the logical reach) can go up to 60 km. Regarding the splitting ratio, 
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it is obvious that for service providers, the largest split ratio and the best recommended 

splitting ratio is 64 users per PON.  

 

 
 

Figure  2-5. Active equipment Central Office and terminal equipment [25] 

Still, the TC (Transmission Convergence) layer considers splitting ratios up to 1:128, 

which is a factor favouring. The reference configuration of a GPON network is depicted in 

Fig. 2.4 and Fig. 2.5.  The network is constituted of an OLT, splitters, ONUs and optical 

fibre cables. The bidirectional transmission is accomplished by using WDM on a single 

fibre using 1490 nm (S band) in downstream and 1310 nm (O band) in upstream direction, 

the upstream access is made in TDMA (Time Division Multiple Access). It is also reserved 

the 1550 nm (C band) for the Video Overlay. 

 

Even though the standard defines different approaches in the implementation of the GPON 

technology, the market choice has fell on 2.488Gbps and 1.244Gbps on downstream and 

upstream rates, respectively, over a single fibre. The main channel characteristics are 

shown in Table 2.1. 

 

Table  2-1. Channel characteristics for GPON. 

Description Downstream Upstream Units 

Nominal transmit wavelength 1490 1310 nm 

Maximum range Up to 60 km 

Available power budget 28 dB 

Minimum channel insertion loss 13 dB 
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The maximum and minimum optical power values for the transmitters and receivers of 

OLT and ONU are shown in Table 2.2. The parameters are specified relatively to an 

optical section design objective of a BER not worse than 10
-10

 and the optical fibre utilized 

to be a single mode defined in G.652. 

Table  2-2. GPON receiver and transmitter characteristics 

Transmitter Description Downstream Upstream Units 

Wavelength range 1480 to 1500 1260 to 1360 nm 

Maximum optical launch power +5 +5 dBm 

Minimum optical launch power +1.5 +0.5 dBm 

Receiver Description Downstream Upstream Units 

Wavelength range 1260 to 1360 1480 to 1500 nm 

Maximum bit error ratio Less than 10
-10

 - 

Maximum receive power -8 -8 dBm 

Damage threshold - - dBm 

Receive sensitivity  -28 -27 dBm 

 

Moreover, basically there are two common configurations for designing outside plant of a 

GPON, single splitter and cascaded splitter approaches. Figure 2.6 presents both 

configurations. 

 
Figure  2-6. Single and Cascaded configurations 

 

Advantages of GPON: 
 

 GPON consists of a cheap solution in terms of CapEx. The TDM technology allows 

for sharing of the feeder fibre, among 16, 32, 64, 128 users according to the splitting 

ratio (1:16, 1:32, 1:64 and 1:128 respectively). The number of the ducts, sub-ducts 

and trenching, therefore the overall cost of the outside plant are diminished when 

compared to a point to point architecture. 
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 GPON consist of a low cost solution in terms of Operational Expenditures (OpEx).  

Un-powered or passive optical splitters are used, so that a single optical fibre serves 

multiple premises. 

 Lower floor space usage at CO. Save CapEx in terms of cooling, UPS. 

 It is well suited for legacy networks; it allows incumbents to reduce the number of 

main distribution frames (MDFs) in the short term, lowering considerably OpEx.  

 Providers share the cost of the feeder fibre between 32, 64 or 128 users. Cost effec-

tiveness regarding fibre optic cable installation and central office equipment.  

 Reduction of the OLTs needed.  

 No active electronics in the access network (“Green” solution).  

 The GPON standard provides native carrier class transport of both Ethernet and leg-

acy TDM.   

 Upgrades or new services with equipment changes at the network ends and on a cus-

tomer basis.  

 Analog video overlay for existing broadcast services. 

Disadvantages of GPON 

 

 More customers affected by link failure. 

 Shared bandwidth limits bandwidth to each subscriber. 

 Maximum recommended distance between OLT and ONU restricted to 20km.  

 Capacity planning difficult for business applications. 

 If less than 32, 64 or 128 subscribers in the cases of 1:32, 1:64, 1:128 splitting ratio 

respectively are located within the ONU serving radius, the OLT cost per subscriber 

served is very high. 

 Considering 1:64 splitting ratio, if more than 64 subscribers are located within an 

ONU serving radius a second OLT port must be deployed to support the 65rd sub-

scriber and results in a steep spike in the OLT cost per subscriber served.  

 If one customer requires service outside of an existing ONU serving radius, a new 

OLT port must be deployed to support the customer and results in the OLT cost per 

subscriber served being very high.  
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 If customers outside the 20km OLT serving area require service, a complete OLT 

chassis must be deployed in a new physical location that can reach the customer and 

results in the OLT cost per subscriber served being very high. 

2.3.1.1 Long Reach GPON 

In most urban settings, the GPON standard can satisfy the majority of the customers 

without big adaptations. However, to more rural and scattered scenarios (interior and 

south of the country or large countries) the standard equipment cannot operate. The 

power margins that the standard defines are not suitable for this type of scenario, where 

distances are greater than 20 km and division ratio is small. 

One way to solve this problem is by installing top class equipment. This solution entails a 

higher cost and in many cases will not be enough, as the extra margin is small, resulting 

in the lack of coverage in some areas. The other solution is to install a device to increase 

the physical reach of the signal, both in amplitude and in quality. The second option is the 

subject of this work. 

 

 

Figure  2-7. Mid-span extension. 

The need to extend the physical reach or the number of clients in a GPON led the ITU to 

outline the architecture and interface parameters to achieve that goal. The standard defines 

two general classes of extender devices. The first class is based on the use of Optical-



 

 

Deployment of Passive Optical Networks Technologies 

    

 20 
 

Electrical-Optical (OEO) regeneration, which can be 2R or 3R. The 2R receives an optical 

signal, reshapes and re-amplifies the signal. The 3R reshapes, retimes and re-amplifies the 

signal. These processes are done in the electrical domain and then the signal is again 

converted to the optical domain and is retransmitted.  

 

The second is using an optical amplifier, which provides gain in optical domain such as 

Semiconductor Optical Amplifier (SOA) and Erbium Doped Fibre Amplifier (EDFA). 

Hybrid schemes are also possible, using regeneration in upstream and optical amplification 

in downstream or vice-versa. The insertion of the extender device is recommended to be 

between the ODN and an OLT as depicted in the Fig. 2.7. 

The standard defines the essential parameters for the design of a mid-span extender for 

both optoelectronic regeneration and optical amplification. But as the choice fell on using 

optical amplification in the design the extender box in this project, the parameters that here 

presented, are focused just in the recommendations for optical amplification. 

The system with the insertion of the extender box must remain compatible with the 

existing terminal equipment and thus, new power budgets are defined. With the 

introduction of the extender box, in the OLT, the power budget is now 23 dB in 

downstream and 28 dB in upstream, and in the ODN, between 13 and 28 dB for both 

downstream and upstream.  

Table 2.3 summarizes the recommended characteristics for an extender box based on 

optical amplifiers. 

 

Table  2-3. Relevant parameters of an extender box based on optical amplifiers 

Transmitter 

Description 
Downstream Upstream Units 

Maximum power 

output 
+1.5 – minimum gain – OLT loss 

+5 – minimum ODN 

attenuation + maximum gain 
dBm 

Minimum power 

output 
+0.5 – maximum gain – OLT loss 

+0.5 – maximum ODN 

attenuation + minimum gain 
dBm 

Maximum ASE output  

@ -28 dBm input 
+5 +7 dB 

Receiver Description Downstream Upstream Units 

Maximum receive 

power 
-5 -8 dBm 

Minimum sensitivity -23 -28 dBm 
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2.3.2 XG-PON 

XG-PON is an improvement to GPON with enhancement framing and management in Mac 

layer. It can provide full-service operations via higher rate (upstream rate: 2.5Gbps and the  

 
Figure  2-8. Coexistence of GPON, XG-PON and CATV 

downstream rate: 10Gbps) and larger split to support diverse access scenarios such as 

FTTH , Fibre To The Cell (FTTCell), Fibre To The Building (FTTB) and Fibre To The 

Cabinet (FTTCabinet). 

Table  2-4. XG-PON and 10G-EPON comparison [15]. 

Item 10G-EPON(10G 

symmetric) 
XG-PON 

Services Ethernet data 
Full services (Ether, 
TDM,POST) 

Mac 

layer 

Frame 10G Ethernet frame XGTC/XGEM frame 

Max number  

of ONU 
32,768(Max of LLID) 1,024 (Max of ONU-ID) 

FEC 

Up: RS(255, 223) 

Mandatory 

Down: RS(255, 223) 

Mandatory 

Up: RS(255,239) Option 
Down: RS(255,223)  
Mandatory 

Physical 

layer 

Line rate 
Up: 10.3125Gbps 

Down: 10.3125Gbps 

Up: 2.488Gbps 
Down: 9.953Gbps 

Transmission  

bandwidth 

10Gbps for upstream and  

downstream (64B66B 

coding) 

Same as the line rate  
(Scrambled NRZ coding) 

Maximum loss 20 / 24 / 29dB 29 / 31dB 

Optical  

level 

ONU 
TX: +2～+5dBm RX(min): 

-25dBm 

TX: +2～+6dBm、RX: -

28～-8dBm 

ONT 

TX: 

+4～+9dBm、RX(min): -

27dBm 

TX: +2～+7dBm、RX: -

27.5～-7dBm 
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This technology is able to coexist with legacy GPON and CATV as shown in Fig. 2-8. 

With adding 10G interface board to the OLT, the service providers can achieve smooth 

evolution from GPON to XG-PON, which completely leverages the ODN of GPON.  

In the same way 10G-EPON is an improvement to EPON. Both XG-PON and 10G-EPON 

are based on the existing PON technologies and are upgraded for 10Gbps but they have 

some differences that are considered in Table 2.4.  

2.4 Wavelength Division Multiplexed PON (WDM-PON) 

EPON and GPON systems are based on TDM-PON architecture because they both rely on 

TDM technology. This is in contrast to WDM-PON systems, which use frequency to 

separate users’ signals. 

Clients and industries have been demanding bandwidth that only passive optical networks 

can achieve and a crucial feature for the evolution of GPONs towards higher capacity 

WDM-PONs is the reuse of existing infrastructure. The research and development of 

optoelectronic technologies enables the optical fibre capacity to be exploited and this is the 

main reason for the current data traffic growth and nowadays the dominant carrier of 

information is the optoelectronic technology, being central for the realization of future 

networks, that will have virtually unlimited capacity to carry communication services. To 

this aim, full transparency is required to allow terminal upgrades in capacity and flexible 

routing. 

 

Figure  2-9. WDM-PON basic concept 

WDM-PON applies separate wavelength channels from the OLT to the ONUs in the 

downstream direction and from the ONUs to the OLT in upstream direction. In this 
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technology the wavelength division MUX/DEMUX is employed in the ODN part. Figure 

2.9 shows Array Waveguide Gratings (AWGs) are used to MUX and DEMUX 

wavelengths to or from ONUs. 

A WDM-PON: 
 

− Consists of dedicating a λ and associated bandwidth to every user connected to a PON, 

providing dedicated bandwidth over a shared infrastructure. 

− The WDM PON standardization body is the FSAN Group but the technology has not 

been standardized yet, although some operators have already deployed proprietary so-

lutions from leading vendors.  

− The OLT puts all the λ onto the shared feeder fibre, broadcasts to all receivers and the 

splitters replicate the wavelengths. 

− To select the appropriate channel to each home static and tunable filters are used. 

ONUs operate on different λ and hence higher transmission rates can be achieved. 

− WDM-PON requires the replacement of the optical power splitter by an AWG at the 

Remote Node (RN). 

Table 2.5 shows the main differences between GPON and WDM-PON technologies and 

next an approach on the main evolution and scenarios is made. 

Table  2-5. Differences between GPON and WDM-PON technologies. 

 
GPON WDM-PON 

Standard  ITU G.984 ITU G.983 

Data Packet Cell Size  53 to 1518 bytes Independent 

Maximum Downst. Line Rate  2.5 Gbps 1-10 Gbps per channel 

Maximum Upst. Line Rate  1.25 Gbps 1-10 Gbps per channel 

Downstream Wavelength  1490 and 1550 nm Individual λ/ channel 

Upstream Wavelength  1310 nm Individual λ/ channel 

Traffic Models  ATM Ethernet or TDM Protocol Independent 

Voice  TDM Independent 

Video  1550 nm overlay/ IP 1550 nm overlay/ IP 

Max PON Splits  64 16/100’s 

Max Distance  60 km 40- 08 km 

Average Bandwidth per User  40 Mbps Up to 1-10 Gbps 
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Several WDM-PON architectures have been proposed for providing scalability that is 

lacking in traditional PONs. In this section, we review two representative WDM-PON 

architectures which have been proposed in the literature [3, 8, 15]. 

2.4.1 Broadcast-and-select WDM-PON 

Figure 2.10 shows a broadcast-and-select WDM-PON architecture based on passive 

optical power splitters in ODN field. All wavelengths are transmitted to each ONU. 

Therefore, each ONU has tunable lasers (TL) and tunable receivers (TRx) modules that 

can select the wavelength to be received as well as the wavelength for upstream signal. 

The tenability in the laser and filter at ONU side are required for effective deployment. 

Also for tunable filter maximum number of ONUs is limited by the number of available 

wavelengths in filtering. Splitter base WDM-PON coexists with GPON over the same 

ODN; thereby operators have easy migration and can protect their investments on GPON. 

This coexistence is shown in Fig. 2.10. 

 
Figure  2-10. Wavelength-selected WDM-PON [25]. 

This is a solution that provides scalability because it can support multiple wavelengths 

over the same fibre infrastructure, taking advantage of sending information packets on 

different wavelengths, determined by the destination of the information. The tunable lasers 

were used due to their simplicity, reliability, performance, and because they offer the 

possibility to control dynamically and remotely the wavelength in the network. The 

operational parameters of the tunable transmitter such as optical line width, tuning range, 

tuning speed will determine the network design. Using high split ratio with single and 

cascaded splitter is depended to power budget of systems. However, high split ratio leads 
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to limitations on reach. Also all ONUs can be tuned to all wavelengths and security issues 

should be solved in upper.  

 

2.4.2 Wavelength-filtered WDM-PON  

The wavelength filtered WDM-PON is based on multiplex/demultiplex wavelengths 

namely AWG in ODN part as shown in Fig. 2.11. The transmitted signal from OLT is 

routed by AWG (40 to 90 channels) to each ONU and so in customer side each ONU is not 

colourless. A Rx module in ONU consists of a Photo-Detector (PD), and its accompanying 

electronics for signal recovery and can be designed with Positive-Intrinsic-Negative (PIN) 

or Avalanche photodiode (APD) with 10 dB higher sensitivity. The TX in ONU could be 

designed either with tuneable lasers or Reflective-SOA (RSOA). 

 

Figure  2-11. Wavelength-routed WDM-PON [3,8] 

 

Advantages: 

− Low loss 

− Allows for spatial reuse of the wavelengths channels 

− The same AWG output port can be assigned for both up and down transmission 

Disadvantages: 

− Needs Temperature Controllers (TEC); AWG’s centre wavelength shift of 0.01nm/°C. 

− Operators have to change its fibre plant. 
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2.4.3 Ultra Dense WDM-PON (UDWDM-PON) 

Ultra Dense WDM PON (UDWDM-PON) is based on optical coherent detection in 

receiver and splitter in ODN part. Combinations of power splitters and AWGs can be used 

in the distribution network depend to the reach and number of users. Figure 2.12 presents 

the architecture of UDWDM-PON. 

 

Figure  2-12. Architecture of UDWDM-PON [3]. 

 

The high wavelength selectivity of coherent detection enables ultra-dense wavelength 

spacing as narrow as 3 GHz without the use of optical filters. The inbuilt intrinsic signal 

amplification by the local oscillator laser enables a very high sensitivity and therefore both 

high split factors and long reach. Thanks to coherent-PON in both side of transmitter and 

receiver, the capabilities can be extended to: 

 High transmission speed, FTTH residential peak data rates ≥1 Gbps and business, 

backhaul peak date rate: ≥10 Gbps. 

 Enabling the connection of up to 1000 customers per feeder fibre. 

 Support of splitter- based and totally passive ODN with desirable compatibility. 

 ONU with bandwidth efficiency and lowest electronic requirements. 

 Low power consumption in ONUs and OLT. 

 Minimum channel spacing and good spectral efficiency. 

With all these benefit this technology is so expensive and it is too soon to come in access 

networks (maybe in mobile backhaul users should be economical). 
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2.5 Hybrid PON 

Since TDM-PON limit each user to a certain time slot, the security of the transmission is 

low because each user receives all the information sent to the other users on the network. 

This issue can be solved by assigning a specified wavelength to each user. Combining 

TDM and WDM in a hybrid PON network can be the most cost effective way for 

introducing TDM/WDM PON in access network. In this work we explain two types of 

hybrid PON. 

2.5.1 Time and Wavelength Division Multiplexed PON (TWDM-PON) 

The baseline architecture of TWDM-PON is shown in Fig 2.13. Four XG-PONs are 

stacked with a typical split ratio of 1:64, achieving an aggregate rate of 40Gbps in the 

downstream and 10Gbps in the upstream. So, upstream and downstream rate can be 2.5G - 

10Gbit/s/ch.  

 

Figure  2-13. Architecture of TWDM-PON [12]. 

ONU transmitters are able to tune to any of the four upstream wavelengths. ONU receivers 

are able to tune to any of the four downstream wavelengths. Depending on the service 

demand, available spectrum and optics capability, the number of stacked XG-PONs can be 

increased as an extension of the basic architecture. The key technology of TWDM-PON 

includes the commercially viable tunable transmitter and tunable filter for ONU 

development. TWDM-PON system is primary system for NG-PON2. In order to adapt to 
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different NG-PON2 implementations, TWDM-PON’s ONUs can be simplified as ONUs 

with tunable transmitter and fixed receiver, ONUs with fixed transmitter and tunable 

receiver, as well as ONUs with fixed transmitter and receiver. 

 

 

2.5.2  Wavelength-Switched hybrid WDM/TDM-PON 

The hybrid WDM/TDM-PON concept aims to improve the fan-out of the WDM-PON 

architecture using combination of wavelength and time-division multiplexing. 

 

 
 

Figure  2-14.  Architecture of WDM/TDM-PON [3, 10]. 

The ODN can be based on only splitter or different combinations of AWGs and splitters as 

shown in Fig. 2.14. Although in the case of a purely power splitter-based ODN the 

architecture has high flexibility concerning resource allocation, but insertion loss is high 

and also filtering is needed at the ONUs to select downstream wavelengths.  The feeder 

fibre in WDM/TDN may be made as a ring (e.g. SARDAN [11]) or tree topologies. The 

comparison indicates that WDM/TDM due to its access-metro convergence provides the 

potential of serving a high number of customers with a small number of fibres especially in 

the feeder part of the network, which translates to great savings in terms of material and 

labour. 

2.6 Orthogonal Frequency Division Multiplexing PON (OFDM-PON) 

While entirely amenable to use hybrid WDM/TDM-PON, the distinguishing feature of 

OFDM-PON is a pronounced reliance on electronic DSP to compensate physical-layer 

impairments and achieve bandwidth flexibility [13-15]. OFDM-PON employs orthogonal 
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frequency division multiplexing method to increase the supplying data rate. OFDM is the 

data modulation scheme that encodes digital data on multiple carrier frequencies; it splits 

the available spectrum into many carriers, each one being modulated by a low rate data 

stream.  

OFDM-PON applies one wavelength for downstream and another one for upstream. It 

divides the total OFDM bandwidth into N sub-bands in both downstream and upstream 

traffics. Each sub-band contains a quantity of subcarriers required by each user [13-15]. 

The OFDM-PON architectures based on Intensity Modulation – Direct Detection (IM-DD) 

is expected to generate high-speed signals by low-bandwidth cost-effective transceivers, 

such as commercially matured 10GHz Directly Modulated DFB Lasers (DMLs) or Electro-

absorption Modulated Lasers (EMLs), and 10GHz photo-detectors. An example of OFDM-

WDM-PON is FIVER as shown in Fig. 2.15. The FIVER project proposes and develops a 

novel integrated access network architecture, which employs only OFDM signals for the 

provision of quintuple play services, i.e. Internet, Intranet, phone/voice, HDTV, and home 

security/control. 

 

Figure  2-15. Architecture of OFDM-PON [14]. 

The FIVER architecture is completely FTTH integrated as shown in Fig. 2.15. The FIVER 

solution is a fully OFDM based network that allows cost effective, fully centralised 

network architecture: 
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 The optical and radio transmission impairments compensation and network 

management are done only at the CO. 

 No further compensation, regeneration or format conversion is required along the 

network giving the streamlined network architecture the capability of handling 

future services of interest. 

All the transmission compensation algorithms, electro optical and network management 

subsystems are developed by the FIVER consortium [14]. The FIVER transport 

technologies are fully converged, i.e. both baseband (Gigabit-Ethernet provision) and 

standard wireless (WiMAX, UWB and LTE) signals are transmitted in radio-over-fibre 

through the FTTH. The in-building optical infrastructure and also the final user radio link. 

2.7 Concluding Remarks and Comparison 

In this chapter, PON architectures were investigated from the viewpoints of 

standardization, ODN topology, capacity and reach. PONs aim to reach bandwidth demand 

of operators at a lower cost using resources sharing. 

Table  2-6. PONs comparison [10] 

 TDM 

 

 

 

 

TWDM 

 

 

 

 

WDM 

 

 

 

 

OFDM 

 

 

 

 

Rate(Down/Up) 40/10G 4*(10/2.5G) N*(1/1)G 40/10G 

Optical budget 31 dB 37 dB 29-43 dB 30-36.5 dB 

Split ratio 32-64-128 32-64-128 40-80 32-64 

Reach <40 km <40 km <20-60 km <100 km 

Cost Medium Low High High 

 

The existing and future PONs in the access network were presented and it was discussed 

how different types of ODN can improve the performance of these systems. As an outcome 

of this chapter it was seen that the main candidates for NG-PON2 based on the posed 

requirements are different types of WDM-PON, hybrid WDM/TDM-PON and OFDM-

PON with IM-DD.  
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CHAPTER 3  TECHNO-ECONOMIC STUDY 
 

 

 

 

 

 

Summary 

 

This chapter is focused on the estimation of all costs for the 

deployment of GPON, WDM-PON and OFDM-PON comparing them 

also with other optical network topologies. A model for cost estimation 

of the multiple needed components is presented. The CapEx per user 

for both single and cascaded splitter schemes for different take rates is 

calculated. The comparison indicates that in cascaded configuration   

length of drop fibre and consequently duct and trenching are reduced 

which translates to great savings in terms of material and labour. The 

calculated cost for key individual elements of WDM-PON and FIVER 

is extrapolated in time and then incorporated in the model for 

calculation of deployment costs and migration cost from GPON to 

WDM-PON. 
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3.1 Introduction 

When looking ahead, there are a large variety of optical access network technologies and 

architectures for operator that provide wide service portfolio to the subscriber. The 

complexity, flexibility, network functionality, services, bandwidth supported and overall 

network costs for each of the potential optical access network technologies are different. It 

is crucial for operators to know a detailed assessment of the economic viability of different 

type of access network scenarios per their control areas. 

The literatures and tools [16-23] show that the carriers use two classes of approaches for 

network and cost modelling in optical access networks: top-down versus bottom-up. As 

shown in Fig. 3.1, the bottom-up needs as a starting point, the demand for the services then 

incorporates this service demand with population information on all potential users and 

requires minimizing network costs with difficult optimization problems. But the top-down 

starts from the existing network infrastructure, uses engineering experience and guiding 

principle over time in the telecom industry to dimension specific or general population.  

 

Figure  3-1. Top-down and bottom-up cost and network modelling approaches [20]. 

 

Also, bottom-up assigns costs to products and services of existing or optimized future 

networks, while top-down relies on identification cost information for a deployed network. 
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However, a model by incorporating the bottom-up approach as an optimization-focus with 

the top-down approach as an engineering-rules based would enable to remove the cost 

calculation limits and describe how population and technology choice drive network 

topology. Moreover, during the last decade many studies have focused on network CapEx, 

but the recent studies have begun to classify the important cost drivers in OpEx and few 

literatures have integrated CapEx with OpEx network or comparison of lifetime network 

costs beyond access technologies and population. A variety of research-based and 

commercial driven techno-economic studies for comparison of different optical access 

architectures can be found in [3]. However, in order to be able to estimate the CapEx, it is 

important to start from a life-cycle of the project and get firstly complete cost breakdown 

for the costs of the different phases in the FTTH deployment and define the table to 

classify all cost components based on their cause, calculation, and size.  

 
Figure  3-2. Full cost breakdown for an FTTH deployment project. 

The result for final cost breakdown is shown in Fig.3.2. With combining this cost 

breakdown and the parameter classification coming from selected access network, Total 

Cost of Ownership (TCO) tool can obtain and the outcome of TCO tool can help in 

calculation of the full cost of deployment, operation and migration. This cost modelling 

can be supported with the following assumptions: 
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 Applying bottom-up approach with focus on network, population and related cost-

drivers. 

 Utilizing top-down approach with the computational tractability where bottom-up 

is not feasible or necessary. 

3.2 GPON Cost Model 

Although, fibre as a base resource of GPON is considered to be a cheap part in the total 

CapEx, but fibre with its installation take high cost per user. In the other side, OLT ports 

are expensive and consume most of the power in GPON, so with sharing of OLT port for 

more users, costs of the OLT and its power consumption are decreased. Thus it is 

important to optimize outside plant with implementing several kind of splitters and 

placement of them due to their effects on efficient use of OLT ports, fibre installation and 

power saving. 

In general, lower CapEx per user is not obtained only with reducing the fibre installation 

and changing type of splitter, but efficient sharing of resource can also make the access 

network economical [16,18]. The authors in [17] present the cost drivers of outside plant 

with a techno-economic investigation between the standard FTTH deployments for future 

high-splitting ratio PONs. With geometric models all the important parameters for 

development of outside plant like population density, take rate, distance between splitters, 

users and central office (CO) are employed. Herein several geometric models have been 

developed to calculate the deployment cost of PON networks [19-23, 27, 28]. In [23] 

splitters are located near the centre of the serving areas. 

We introduce one strategy for designing outside plant of a GPON network then consider 

different scenarios with single and cascaded configurations and then compare the results 

obtained by them in order to find more cost effective scenario with power saving. Also we 

analyse all the related cost factors and values in inside plant of GPON. 

For designing a GPON, we put central office in the middle of the city and use a type of 

triangle model, this model is a polygon based model for the access network [26]. In this 

regard because the population density is different in various parts of the city, the coverage 

region is divided by k circles. Beside it, depend on selected angle for triangles we have p 

triangles in each region.  
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Also we can assume that the radius of each region is twice bigger than previous region, it 

means that half of each triangle was covered by previous regions. In practice, except first 

region we have p trapezoid in each region. 

3.2.1 Single splitter  

In this configuration, for first region we can divide triangles to 4 smaller triangles and for 

other regions we break up each trapezoid to 3 triangles then put splitters on central point of 

each small triangle. According to the industry several splitters can located in one site, so 

we can put specific number of splitters in each central point as a site. Subscriber in each 

small triangle can connect to related splitters. Figure 3.3 illustrates this configuration.  

The total fibre length in single configuration is given by 
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
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where Fe(i) is the total feeder fibre and Dr(i) is the total drop in each fibre in each region i. 

Also feeder fibre and drop fibre in each region is obtained by summing feeder fibres and 

drop fibres Fe(t), Dr(t) in each triangle t. 
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Figure  3-3. Single splitter for GPON architecture 
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For calculating total fibre in each triangle t, we need to know the distance between central 

points and centre point. They can obtain by following formulas [26]. 

 | | | | ( ). ( ),
3 2

RAB BC Cos    (4) 

 2| | | | ( ). 1 8. ( ),
6 2

RCD CE Sin     (5) 

 0.336| | | | | | | | .(0.123 ),DF CF EF BF R
y

      (6) 

where R is the radius of each region, ∝ is the angle of triangle and y is the number of fibre 

cables that leave from the D and E points. Beside it, for reducing the length of installation, 

we can use Y-branch for every 3 houses and put them on F point, and then we can 

calculate the average distance between F points and subscriber, with knowing the number 

of potential user per km
2
, d and the number of potential user per F points, n. 

 2 ( ),
3

nb
d

  (7) 

so feeder fibre for each triangle t in first region will be 

 

 ( ) | | | |,eF t AC CD   (8) 

if we use y-branch for every 3 houses total drop fibre is given by 
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in this case y is the number of Y-branch. The number of splitters per site NSPS, is given by 

dividing the number of households per each small triangle H by the maximum number of 

client that splitter can support in model NMax. 

 

max

,SPS
HN

N
 
  

 (10) 

for calculating total ducts in this configuration, as regards that several fibres can be put into 

the one duct, we can calculate total required duct length LD, that is much shorter than total 

fibre length. Total duct length is given by summing total duct of feeder LDF and total duct 

of drop fibre LDDr. Furthermore depending on the average distance between subscribers, 

we can define the duct factor FD. For an average distance between houses of around 20 m 

in urban area the ducts factor FD is between 7% and 10% [5], so we have 

 ,D DF DDrL L L   (11) 

 ,DF eL F  (12) 

 . ,DDr r DL D F  (13) 
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According to the number of splitters in one site, we can achieve type of feeder fibre NFeF in 

each duct (2, 8, 24, 32, 72, 96 fibres).  

 ( ) .FeF SPS ExtraN N N   (14) 

where NSPS is the number of splitters per site and NExtra is the number of additional fibres 

that can be added for future development planning. 

3.2.2 Cascaded splitter 

For developing cascaded splitter configuration, we need to characterize how the first and 

second splitters are connected together. Firstly, like single splitter approach we divide each 

triangle in first region to 4 small triangles and in other regions each trapezoidal break up to 

3 triangles. We can put first splitter sites at the central point of big triangle. For putting 

second splitter sites, as seen in Fig.3.4, we can break each small triangle to 4 smaller cells 

and then put second splitter sites in each central point of them. The total fibre length in 

cascaded strategy will be 
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where Fe is the feeder fibre, Di is the distribution fibre and Dr is the drop fibre. Also feeder 

fibre, distribution fibre and drop fibre in each region is obtained by summing length of  

 

Figure  3-4. Cascaded splitter scenario for PON architecture 



 

 

Techno-Economic Study 

    

 38 
 

feeder, distribution and drop fibres Fe(t), Di(t), Dr(t) in each triangle t. 
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Total feeder for each triangle t is given by 

 ( ) | |,eF t AC  (19) 

Distribution fibre and drop fibre for n users in each triangle t in first region is calculated by 

 ( ) | | | |,iD t CD DF   (20) 
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where H is the average number of user in each Cell. The number of second splitters in 

each site NSecondSPS is obtained by dividing total user in each cell H by maximum number 

of user that second splitters can support NMaxS. Also the number of first splitters in each 

site NFirstSPS is given by dividing all of second splitters in triangle t by maximum number 

of user that first splitters can support. 

 / ,SecondSPS MaxSN H N  (22) 
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N
N

N
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In cascaded strategy the total duct length LD is given by summing total duct of feeder LDF, 

total duct of distribution LDDi and total duct of drop fibre LDDr. 

 ,D DF DDi DDrL L L L    (24) 

 ,DF eL F  (25) 

 ,DDi iL D  (26) 

 . .DDr r DL D F  (27) 

 

The number of terminal equipment in both two strategies depends on the number of 

clients and the type of deployment. In our model, we address a PON deployment; this 

means that each client has its own ONU, so the numbers of ONUs depend only on the 

take rate. 
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3.2.3 Inside plant 

In this part we need to know the number of COs that coverage a city, the number of 

required optical distribution frames NODF, the number of line-cards NLC, the number of 

chassis NCh, and the number of ports that are needed to support all subscriber NP. 
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where NMax is the maximum number of clients supported by an OLT port. Since the OLT 

ports are bundled in cards with several ports per card, typically 2, 4 or 8, we assume that 

the manufacturer provides OLT cards with 8 ports; each port supports up to 64 clients and 

uses 11 watt power [25]. 

3.2.4 Equipment Cost 

The cost of equipment is calculated very easy and is dependent on the number of 

subscribers and the place of them. Herein the cost model that we use will reflect cost of 

the equipment and cost of fibre simultaneously, total cost Cc is given by the sum of the 

cost of the fibre CF, the cost of installation CI and cost of the equipment CE. 

 ,C F I EC C C C    (32) 

It is clear that the cost of fibre depends to the total fibre length TF and price of the fibre Cf. 

 . ,F F fC T C  (33) 

Beside it installation cost is obtained by summing the costs of CO installation CCoI, 

developing a manhole CM, total duct CD and total trenching CT. 

 . . . . . ,I CO CoI FS M SS M D D D TC N C N C N C L C L C      (34) 

where NCO is the number of CO that cover the city, NFS is total number of first splitter 

sites, NSS is total number of second splitter sites and LD is the total duct length. We can 

also split the cost of equipment to cost of CO CCO, cost of splitter CS and cost of ONU 

CONU, so we have 
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 ( ) ( ),E CO S ONUC C C C     (35) 

In the other hand, its need to know the cost of equipment in the CO, that depends on 

optical port number, so 

 .CO ODF Ch LCC C C C    (36) 

3.2.5 Case study 

We apply our model to Aveiro district as a realistic scenario. The population 

characteristics, area and distance from Aveiro with potential customers for each region 

are presented in Table 3.1. In our work, we are going to calculate cost of GPON and LR-

GPON with different take rates for rural, suburban and urban scenarios. 

Table  3-1. Population densities in Aveiro municipalities. 

Name 
Area 

(km²) 
Population Customer 

Pop/Area 

(1/km²) 

Distance to 

Aveiro (km) 
Sigma Customer 

Aveiro 200 73626 30678 368 0 
20 35678 

Ílhavo 74 12000 5000 163 6 

Vagos 170 24000 10000 141 11 16 10000 

Oliveira do 

Bairro 
64 24000 10000 375 24 9 10000 

Albergaria-

a-Velha 
155 25497 10624 164 24 16 10624 

Estarreja 108 28279 11783 261 26 9 11783 

Murtosa 73 9657 4024 132 28 9 4024 

Anadia 217 31671 13196 146 31 16 13196 

Águeda 335 49691 20705 148 34 16 20705 

Sever do 

Vouga 
130 12940 5392 100 36 9 5392 

Mealhada 111 21500 8958 194 40 9 8958 

Oliveira de 

Azeméis 
164 71243 29685 436 40 16 29685 

Ovar 147 56715 23631 385 42 16 23631 

São João da 

Madeira 
8 21538 8974 2726 47 4 8974 

Santa Maria 

da Feira 
215 142295 59290 662 48 16 59290 

Vale de 

Cambra 
147 24761 10317 169 49 16 10317 

 

 

First we apply our model to a realistic scenario and consider the single and cascade splitter 

schema for the sample city with an area of around 199.9 km
2
 and 73626 inhabitants, the 

radius about 20 km and subscribers living in 35000 houses. We assume the normal 

distribution function for its subscriber density, and divide city to 5 regions. According to 
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the number of user in the sample city, we need only one CO that is located in the centre of 

city. Also we assume that each chassis supports 16 OLT cards with 2 uplink cards. The 

cost of all used equipment for GPON in our scenario is demonstrated in Table 3.2. These 

prices have been suggested by [6, 14]. 

Table  3-2. Components costs 

Device Component Unit Price(€) 

  

In
si

d
e
 

ODF+ patch cable m 34 

Line card(8 ports) each 8000 

Uplink card each 6000 

Chassis for OLT each 3000 

O
u

ts
id

e
 

1-fibre cable m 0.2 

8-fibre cable m 0.7 

12.fibre cable m 0.8 

72.fibre cable m 1.47 

96-fibre cable m 1.96 

Y-branch each 24.7 

Splitter 1:4 each 40 

Splitter 1:8 each 50 

Splitter 1:64 each 514 

Duct Feeder m 0.9 

Duct  and Distribution) m 0.4 

Duct(Drop) m 0.2 

Manhole each 350 

Hand hole each 280 

Trenching m 18-25 

Extender Box(SOA) each 1400-2500 

Extender Box(OEO) each 500-600 

Chassis for 16 Extender Box each 2000-2500 

Customer side ONU each 120 

 

 

For sensitivity analysis of model we compare the total feeder, distribution and drop fibre of 

numeric model by Matlab and with analytic triangle model. As seen in Fig. 3.5 the length 

of fibre for feeder and distribution are the same and for drop fibre because of using average 

for TM model we have difference slightly. In simulation with Matlab the place of user are 

different and so the results present better accuracy. 
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Figure  3-5. Comparison between simulated model and triangle model 

 

In order to find optimum OLT port in these two strategies, we can consider effect of 

triangle’s size on the number of ports and total fibre that we need. Figure 3.6 compares 

these results for different angles, we consider 60
o
, 45

o
, 30

o
, 20

o
 and 10

o
. These results are 

shown for 3 different take rate 70%, 50%, 20%.   

  
a)                                                                          b) 

 

Figure  3-6. a) Comparison of Total fibre for different angles and different take rates b) Average OLT port 

loading versus each angle and for different take rates. 

In designing triangles, reducing the size of the angle in each triangle leads to increase the 

number of supplying triangle and eventually splitter sites and total length of the feeder 

fibre. Beside it increasing the size of angles aggrandizes the total drop fibre in each 
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triangle. As seen in Fig 3.6. a), with reducing the size of angle between 60
o
 to 20

o
, total 

fibre will decrease; it is because of the effect of total drop fibre on total fibre. But for angle 

of 10
o
 total fibre will increase for both strategies, because feeder fibre has increased. In this 

regard we can find angles of 45
o
 and 30

o
 have the minimum total fibre. Also Fig. 3.6 b) 

presents that large size of angles usually gives better port loading. In fact although reduce 

the size of cells help to have smaller drop fibre but it leads to increase the number of OLT 

ports. According to these two figures we can find out with choosing angle of 45
o
, we can 

obtain optimum OLT port and almost minimum total fibre. 

For better clarifying the impact of triangle’s size on OLT efficiency in both configurations, 

we can investigate average number of OLT ports of triangles in different regions. Figure 

3.7 illustrates average number of OLT ports for different take rate in 5 regions. As shown 

in this figure, for take rates 70% and 50% we almost have the same OLT port for both 

configurations. Due to share one OLT port for smaller triangle by cascaded splitter, in low 

take rates cascaded configuration needs lower OLT ports than single configurations. 

 
Figure  3-7. Average OLT port loading versus each area for different take rates 

With finding out the average number of OLT port of triangles in each region and also 

knowing required energy for each one and then dividing them to average number of user 

connected over the port in the same region, we can calculate energy consumption per user. 

Figure 3.8 presents power consumption per user in low take rates. 
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Figure  3-8. Power consumption per user for low take rates in each area 

Depend on take rate, density of population and type of splitter, power per user is different. 

In this study we are using normal distribution for subscriber density and this figure 

indicates that power consumption in regions 3, 4 for all take rates is around 0.30 W/user. 

At low take rates, cascaded splitter strategy prepares better power consumption than single 

strategy. It is more obvious in take rates 10%, while energy consumption should be divided 

between less numbers of users connected over the one port. 

The details of CapEx values for outside plant of take rate 50% are demonstrated in Fig.3.9. 

The most expensive part is civil work in both structures. The reason of civil work in 

cascaded strategy being more expensive than single strategy in proportion with another 

part is the additional cost for constructing manhole for second splitters. 

 
a)                                                                    b) 

Figure  3-9. Outside cost breakdown for a) single and b) cascaded structures 
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If we want to consider the effect of choosing single and cascaded configuration on outside 

and inside plant of the network, we find out in high take rate, total per user cost of single 

strategy is more than cascaded strategy. But with decreasing take rate the cost of cascaded 

is more. But inside plant cost and source sharing in OLT are more efficient for cascaded. 

Fig.3.10 presents this case per user in 3 different take rates. 

 
a)                                                                  b) 

Figure  3-10. Deployment cost comparison between single and cascaded strategy for different take rates 

for the case study 1) total CapEx b) Inside plant cost. 

We developed model for the same area with standard deviation of 4 but for 50000 

potential user and different take rate. As seen in Fig. 3.12. a), for high take rate because of 

putting more users near to splitter, total drop fibre and also relative costs of trenching and 

type of duct decrease. 

We assume one rural scenario with 5000 users and standard deviation of 3 km. As low 

numbers of users are located in ~100km
2
 and population density is little especially for 

10% take rate the resource sharing in outside are not suitable and for one rural area this 

cost is between 2000 to 1000 €. 

In inside plant (Fig. 3.12. b)), total cost of OLT port, shelves and ODF are decreased by 

using cascaded structure. In next sections we will develop the model for 3 stage cascaded 

structure (1:4, 1:4, 1:4) and will see that resources sharing in OLT side will be optimizes 

remarkably. 
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a)                                                          b) 

Figure  3-11. Deployment cost comparison between single and cascaded for different take rates 50000 

users with variance of 16 km 1) total CapEx b) inside plant cost. 

 
                              b) 

Figure  3-12. Deployment cost comparison between single and cascaded for different take rates 5000 users 

with variance of 9 km a) total CapEx b) inside plant cost. 

 

3.3 Long Reach GPON with using Extender Box  

As shown in Fig 3.13, several scenarios are targeted for LR-GPON, depending on the 

coverage, number of served homes, distance reach (feeder-distribution-drop), bandwidth, 

etc, among the infinite possible combinations. They stress the LR-GPON system in 

different ways and can cover different new connectivity requirements.   

We have defined one urban scenarios, three rural, collector (of different old access 

systems, like DSLAM, radio, HFC, APON, etc). Everyone uses different combination of 

elements, affecting the total cost and may also affect the unitary cost. Especially in 
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Portugal because of high number of rural and suburban areas, to put these kinds of area in 

order to calculate the cost is necessary. 

This scenario is the same for some municipals of Aveiro. All areas that are in Fig. 3.13 are 

describing in Table 3.3. 

We implemented our geometric model for these areas and the Fig. 3.14 shows the resulting 

total outside and inside plant for the different splitter structure solutions with respect to the 

different take rate and with respect to the different density. It is obvious that in most of the 

cases, for high take rate user cost for installation, fibre, civil and splitters is decreasing due 

to high resource sharing. Also we see for urban a cascaded splitter is cost efficient for high 

take rate but for low take rate is high slickly.  

 

 

 
a) 

 
             b) 

Figure  3-13. a) schematic of all scenarios b) population distribution function (PDF) all areas 
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Table  3-3. Targeted LR-GPON scenarios 

Scenario 
Area 

(km²) 
Population Customer 

Pop/Area 

(1/km²) 

Distance to 

Co(km) 

Standard 

deviation 

Urban A 200 120000 50000 600 0 4 

Rural B 74 12000 5000 163 24 3 

Suburban C 170 24000 10000 141 40 2 

Rural D 64 24000 10000 375 30 4 

 

        
a)                                                                           b) 

Figure  3-14. Average outside plant cost per users: a) single and b) cascade structures 

But for all rural and suburban scenarios because of sparseness the single splitter is 

economical in case of outside plant. Because we are putting splitter of second stage in near 

to customer place and the cost of hand hole and the duct for distribution cable are high. 

When we look for future customer and focus on Fig. 3.15 in case of OLT side, the situation 

is different.  

 
Figure  3-15. Average OLT side cost per users 
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For all scenarios resource sharing such as OLT card, chassis and uplink cards sharing are 

better. If the operators already installed the fibre for CATV and other applications and the 

prices of OLT equipment are important for them, this structure is recommended. Although 

with increasing the number of users the deficiency of installation cost is obviated. 

 
Figure  3-16. Average OLT side cost per users with 100000 € miscellaneous costs with GPON structure 

per each area. 

From this analysis we can get the price of inside plant using extender box. We didn’t 

consider the cost of the switch, router, building, air condition and power supply. But for all 

of them we assume the cost is around 100000 €. The Fig. 3.17 and Fig. 3.18 show the 

inside cost for this assumption.  

 
Figure  3-17. Average OLT side cost per users without miscellaneous costs with LR-GPON structure and 

extender box. 
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Now we can compare the result with using extender box for both assumptions. The more 

important thing that we need to focus is cascaded structure for using in deployment. For 

both assumption central office resources sharing is notable in cascaded structure. 

 
Figure  3-18. Average OLT side cost per users with 100000 € miscellaneous costs with LR-GPON 

structure and extender box. 

The calculation of CapEx for the other solutions/architecture proves that LR-GPON 

extended reach and enhanced number of end users served are translated into cost savings as 

far as the material of the infrastructure and the construction labour is concerned, when 

compared to the other using separate central office for other networks. 

 
Figure  3-19.  Schematic for urban scenario. 
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We consider a scarcely populated area, the same considered in sub pervious section and in 

here we deploy a GPON, considering at the same time the deployment of a extender box 

serving the access network’s needs. The city same Porto with 100000 potential subscribers 

and population density with variance of 25 km is taken in to account. We observe with 

selecting good splitter and the number of the fibres, the number of ducts / sub ducts and the 

overall installation cost is significantly decreased. Using cascaded splitter as well as 

placement of first and second splitter we can decrease the number of manhole and hand 

hole. The results of the calculations are shown in Fig. 3.20 

      
a)                                                                                           b) 

Figure  3-20. CapEx for all coverage area a) Average outside plant cost per user b) Average inside plant 

cost per user. 

 

3.4 Migration from GPON to WDM-PON  

After designing and deploying our access network, now GPON is becoming a reality in our 

cities, streets and homes. As we mentioned in pervious sections, GPON supports 2.5/1.25 

Gbps in down/up-stream, to 32 or 64 or 128 users; as a consequence, once the fibre is 

arriving to our home, it can be somehow disappointing, we can only enjoy about 40 MBps 

guarantied, when we know that fibre with small change can support 1 or 2 or 10Gbps or 

more. Therefore, time is now suitable for us with GPON in a Box in a hand support at least 

2 or 10Gbps per each user.  

However, future is for coming WDM-PON from backhaul, metro core and backbone 

transport, to access, with or without advanced modulation techniques. But the question is 

which type of WDM-PON is cost-efficient? Is there any solution available to have GPON 
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with WDM-PON in same fibre? How much is the cost of this technology? And so on. 

However, the requirement for colourless or wavelength-agnostic ONUs leads to the 

necessity to use tunable lasers in the ONUs. The use of tunable receivers enables phased 

rollout of multi-wavelength services, thus reducing expenses and making targeted 

bandwidth upgrades is possible. Also if the easy migration from GPON to WDM-PON is 

considered, tunable filter and receiver must be used in side of ONU. In this section, cost of 

user with GPON and WDM-PON is considered. If we assume in each city 1-2 percentage 

of customers are business customer and they need to 1-2.5Gbps sustained data rate with 

our WDM-PON solution only we need to change customer side and OLT side. As seen in 

Fig. 3.21 due to use WDM-PON based splitter with tunable filter and tunable receiver, 

migration from GPON customer to WDM-PON user is very easy. 

 

   

 
Figure  3-21.  Migration schematic from GPON to WDM-PON [25] 

Considering this schematic, we need to add one AWG and 1x2 triplexes WDM coupler. 

The prices of each component are presented in following Table 3.4. 

 

Table  3-4. Detail price of SFP base WDM-PON OLT with our electronic devices 

Type 
WDM-PON 

OLTdevices 

Current 

unitary 

cost per 

user‎(€) 

Price of 

512 

volumes 

(€) 

Price of 

1k 

volumes 

(€) 

Price of 

10k 

volumes 

(€) 

Price of 

50k 

volumes 

(€) 

Advanced 

Optical 

component 

F-ECL SFP 

(non-BM Rx 

operation) 

197.54 128.04 119.63 105.27 93.00 

λ connector 101.76 65.70 56.30 47.30 39.86 
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Electrical 

Component 

TRX board for 

8 λ 
500.00 450.00 425.53 343.82 306.58 

Uplink card 6000.00 5400.00 5106.31 4125.80 3679.01 

OLT Mac for 8 

λ 
1000.00 900.00 851.05 687.63 613.17 

Optical 

component 

AWG 800.00 624.67 584.84 490.53 354.55 

Triplexer 60.00 46.85 43.86 36.79 26.59 

Mechanic chassis 3000.00 2370.00 
   

 
Total 5659.30 9985.26 

   
 

We assume that one chassis support two shelves and each shelf support 16 WDM-PON 

cards. Duo to comparison with GPON OLT we assume each card support 8 WDM ports. 

So each chassis can support 512 business users. The OLT cost per user for 512 and 1000 

users is calculated with considering of last Table 3.5. 

Table  3-5. Detail price of SFP base WDM-PON OLT per user. 

Type 
WDM-PON OLT 

devices 

OLT cost per 

user for 

1Volume(€) 

OLT cost per 

user for 512 

Volumes(€) 

OLT cost per 

user for 1k 

Volumes(€) 

Advanced Optical 

component 

F-ECL SFP (non-BM 

Rx operation) 
197.54 128.04 119.63 

λ connector 101.76 65.70 56.30 

Electrical Component 

TRX board for 8 λ 500.00 56.25 53.19 

Uplink card 6000.00 84.38 79.79 

OLT Mac for 8 λ 1000.00 112.50 106.38 

Optical component 
AWG 800.00 15.62 14.62 

Triplexer 60.00 46.85 43.86 

Mechanic chassis for 4 shelves 6000.00 9.26 9.26 

Total 
  

518.59 483.03 

 

For CapEx cost per user we consider one city with 30000 users that business user are 10 % 

of each take rate. As we mentioned on Annex I, the total potential customer base in 

Portugal amounts to 4.9 million customers. 4.45 million are residential customers 

(households including second homes) and 0.45 million are business customers.  

GPON scenario uses the schematic in Fig. 3.21 and the operator doesn’t need to change 

outside plant. We can change the OLT side and customer side with ONU and OLT devices 

according to Tables 3.4 and 3.5. In Fig. 3.22 total CapEx per user for GPON with single 

structure and WDM-PON is presented. 
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a)                                                           b) 

Figure  3-22. a) Cost break down of WDM-PON and GPON customers in same outside plant b) inside 

plant costs for GPON and WDM-PON 

As seen in Fig. 3.22 with only 1400 € for each business user we can support 2.5Gbps 

uplink and downlink. For 70 % take rate means there are 20000 GPON users and 2000 

business users that can be supported with 4 chassis. In this scenario we assumed the price 

of each chassis for 512 users is two times more than the chassis for two shelves. However, 

if we wanted to consider for all the 30000 users, the price for customer side and OLT side 

was decreased, but this scenario is not feasible. 

 
Figure  3-23. Costs of OLT and customer sides per sustained data rate for each user 

In WDM-PON 1.25Gbps and 2.5Gbps sustained data rate for each user is guaranteed. In 

GPON sustained data rate from 20 Mbps up to 40Mbps is delivered to each user. Figure 

3.23 presents OLT and customer side of each user vs. their data rate. As the price of high 

data rate service for business user is more than common user, and operators get more 
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money from business users, with this migration scenario the benefit for operator is 

increased. 

3.5 Impact of Equipment Cost 

The GPON with or without extender box and WDM-PON network include a huge diversity 

of different elements, from optics, electronic and also mechanic. The cost of each main 

node (CO, RN, ONU and fibre infrastructure) can be analysed by dividing to different part 

of equipment and calculated for the different possible scenarios and architectures. As we 

implemented extender box and ONU for WDM-PON and they are new technologies, so the 

cost of them is decreased during the time and also vs. the volume of purchase. Thus we can 

use the model that is presented in [24] by Olsen. A learning curve is defined as the 

percentage decline in the price of a product as the (cumulative) product volume doubles 

[20, 24]. To account for this we classify the types of element according to its maturity, and 

predict the unitary cost to the future, as the production processes are improved when the 

volumes increase.  It has been validated for the cases of the introduction of different new 

products. 

The main parameter of mathematical model is the k coefficient of the learning curve. 

Specifically, it stands for the relative unitary cost reduction every time that the production 

volume doubles. For example, for electronics it is about 80%, while for labor civil works it 

is 100%, meaning that this cost does not reduces with the time since it is a very mature 

task. Table 3.6 presents different categories of elements in terms of the learning curve 

classes. 

Table  3-6. Different categories of elements 

  
TType of different component YPE OF 

COMPON 
K 

0 constant (raw mat., civil works,..) 1.00 

1 optical component 0.80 

2 advanced optical comp. 0.70 

3 optical cable 0.90 

4 electronics 0.80 

5 installations 0.85 

6 software 0.60 

7 mechanics 0.90 
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The main equation that defines the model is the following [11, 24]: 

 2log

inf inf( ) 1 ,

k

cur

ref

V
Cost C C C

V

 
     

 

 (37) 

where Ccur is the current cost, k is the learning curve coefficient, Vref is the reference 

production volume at which the cost is reduced in a factor of k, and the Cinf  that stands for 

the cost at infinite production (remaining raw material cost…). The Table 3.7 defines 

different categories of elements in terms of these parameters. 

 

Table  3-7. Learning curve parameters for different categories of elements 

TYPE OF 

COMPONENT 

current 

cost 

+1unit 

% cost at 

infinite 

volume 

productions 

delta 

K%(delta 

cost 

reduction) 

Cost at 

+Vref 
Vref  

targeted 

volume 

example 

rel. 

unitary 

cost 

Constant (raw 

mat., civil 

works,..) 

1.00 1.00 0.00 1.00 1.00 1 units 1000 1.00 

Optical 

component 
1.00 0.50 0.50 0.80 0.90 100 units 1000 0.73 

Advanced 

optical 

components 

1.00 0.30 0.70 0.70 0.79 100 units 1000 0.50 

Optical cable 1.00 0.50 0.50 0.90 0.95 100 km 1000 0.85 

Electronics 1.00 0.50 0.50 0.80 0.90 500 units 1000 0.85 

Installations 1.00 1.00 0.00 0.85 1.00 
100

0 
units 1000 1.00 

Software 1.00 0.00 1.00 0.60 0.60 
100

0 
units 1000 0.60 

Mechanics 1.00 0.10 0.90 0.90 0.91 10 units 1000 0.55 

 

Of course the number of k and Vref  must be defined carefully. With this trend of 

technology these values will change definitely. 

For developing of the model for extender box, we can use all the prices in following Table 

3.8 . 
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 Table  3-8. Total and detail cost for extender box. 

Type Component Quantity Application 
Price/unit in 

(€) 

Total 

in‎(€) 

O
p

ti
ca

l 
p

a
rt

 

Advanced 

Optical 

CIP SOA-S-OEC-

1550 
1 Downstream 595 595 

Alphion SAO29p 1 Upstream 1538 1538 

  

Total Advanced 

Optical 
2133 

Optical 

component 

1x3 Triplexer 

WDM Couplers 
2 OADM 113 226 

VOA 1 
 

141 141 

Isolator 1 Upstream 19 19 

Isolator 1 Downstream 21 21 

PIN 2 
 

15 30 

optical Connector 

for panel 
14 

 
2 34 

WDM Coupler 2 
 

20 40 

patch cord 0 
 

3 0 

Pigteail 0 
 

4 0 

  
Total optical 510 

E
le

ct
ri

ca
l 

P
a

rt
 

Electronic 

Current source 2 
 

40 80 

Temperature 

controllers 
2 

 
50 100 

Card control + 

interface 
1 

Micro 

conroller 
40 40 

LCD 1 
 

15 15 

Power supply 1 
 

80 80 

Board for SOA 2 
 

5 10 

Connector for SOA 0 
 

15 0 

Electrical connector 30 
 

1 30 

interfaces power 1 
 

1 1 

Switch 1 
 

1 1 

 

 
Total Electrical 357 

M
ec

h
a

n
ic

a
l 

 P
a

rt
 

mechanic 

BOX 1 
 

80 80 

Pannel 0 
 

50 0 

Electrical adaptor 

DB9 
1 

 
1 1 

Cover 0 
 

20 0 

Cable tie 10 
 

1 5 

wiring 10 
 

1 5 

Assembly Assembling 
    

 

 

Total 

mechanical 
81 

Total cost 3081 
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This price is for one lab buddy device and of course for RN implementation some 

mechanic and wiring part and also electronic part need to be removed. However next Fig. 

3.24 shows the different evolution of their relative cost as a function of the production 

volume.  

 
Figure  3-24. Extender box learning curves 

So we can see the cost of extender box for 100 volumes is 2378 € and for 10000 volumes 

is 1379 €. 

In case of ONU for WDM-PON, total price for one tunable TX and RX is 2541 €. We 

remind that the prices of electronic parts are for one lab buddy case. If we make this part 

by our self the total cost of electronic roughly will be decreased to 50-70% as seen in 

Tables 3.9, 3.10.  

Estimation of price for high volume of ONUs is achieved by cost learning curve of Table 

3.9. 

 

Table  3-9. Detail price of tunable WDM-PON ONU 

Type ONU devices 
Detailed 

Price‎(€) 
Price‎(€) 

Price of 

100 

Volume 

(€) 

Price of 

1000 

Volume 

(€) 

Price of 

10000 

Volume 

(€) 

Advanced 

Optical 

Tunable Filter and 

APD photodetector 
364.00 948.00 748.92 477.61 346.14 
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component Tunable laser 584.00 

Electrical 

Component 

TX electronic 800.00 

1193.00 1159.00 1015.30 820.35 RX Electronic 293.00 

Mac ONU 100.00 

Optical 

component 

Circulator 100.00 

200.00 180.00 146.21 122.63 Connector and 

splice 
100.00 

Mechanic 
Box and 

connectors 
200.00 200.00 145.02 109.25 82.98 

 
Total 2541.00 2541.00 2232.94 1748.38 1372.10 

 

 

Table  3-10. Detailed price of tunable WDM-PON ONU, with electronic devices in [25]. 

Type ONU devices 
Detailed 

Price‎(€) 
Price‎(€) 

Price of 

100 

Volume 

(€) 

Price of 

1000 

Volume 

(€) 

Price of 

10000 

Volume‎(€) 

Advanced 

Optical 

component 

Tunable Filter and 

APD photodetector 
364.00 

948.00 748.92 477.61 346.14 

Tunable laser 584.00 

Electrical 

Component 

TX electronic 150.00 

350.00 340.02 297.87 240.67 RX Electronic 100.00 

Mac ONU 100.00 

Optical 

component 

Circulator 100.00 

200.00 180.00 146.21 122.63 Connector and 

splice 
100.00 

Mechanic 
Box and 

connectors 
100.00 100.00 72.51 54.63 41.49 

 
Total 1598.00 1598.00 1341.45 976.32 750.93 

 

 

The WDM-PON FIVER network includes a huge diversity of different elements, from 

optics, electronic and also mechanic. The cost of each main node (CO, RN, ONU and fibre 

infrastructure) can be analysed by dividing to different part of equipment and calculated 

for the different possible scenarios and architectures.  As we implemented OLT and ONU 

for FIVER WDM-PON and they are new technologies, the cost of them is decreased 

during the time and also vs. the volume of purchase. Thus we can use the model that is 

presented in [11, 24] by Olsen. To account for this we classify the types of element 

according to its maturity, and predict the unitary cost to the future, as the production 

processes are improved when the volumes increase. It has been validated for the cases of 

the introduction of different new products. 
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Figure  3-25. Network architecture block diagram for Downstream and Upstream directions [14]. 

Figure. 3.25 shows the architecture block diagram for performance evaluation of FIVER in 

FTTH networks.  

In our techno-economic analysis, we are considering two main architecture variants, based 

on the location of the optical amplifiers to achieve long-reach operation: i) EDFAs located 

at the RN; ii) Raman amplifiers, with the Raman pumps located at the OLT in the central 

office. The associated architectural schematic configurations are indicated in the following 

two figures, which also show the different device requirements at the RN for two 

architectural configurations. The configuration of the ONT and FIVER adapter is 

essentially the same for the two architectural variants, so that only a single ONT techno-

economic analysis is necessary. 

 

 
Figure ‎3-26. Architecture (i) with optical amplifiers located at RN [14]. 
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Figure ‎3-27. Architecture (ii) with Raman pumps located at OLT in central office [14]. 

 

3.5.1 OLT – Amplifiers at the Remote Node 

In this part we calculate total price of OLT when amplifiers located at RN. For developing 

this model we can use all the prices in following Table 3.11. 

 

Table  3-11 baseline cost estimation for Amp@RN  

OLT [Amp@RN]    

Component Unit Cost (€) Quantity Total Cost (€) 

Optical Devices       

1550nm DFB Laser Diode 950.00 96 91200 

MZ EO Modulator 1900 96 182400 

Photodiode 124.3 96 11932.8 

1x96 AWG 2850 2 5700 

Optical Circulator 154.41 1 154.41 

RF/Electrical Devices 
   

RF 1:5 power splitter  87 96 8352 

OFDM modem 
   

FPGA board  1300 96 124800 

2DAC/2ADC board  4000 96 384000 

IQ-Mixer  800 384 307200 

LO  50 384 19200 

LPF  25 384 9600 

BPF  45 288 12960 

Tx Amp  50 96 4800 

Rx Amp  50 96 4800 

LTE 
   

BPF  25 96 2400 

Low-noise Amp 232 96 22272 
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WiMAX 
   

DX250 fr 200 96 19200 

BPF  25 96 2400 

Low-noise Amp 232 96 22272 

UWB 
   

BPF  32 96 3072 

UWB Amp 850 96 81600 

‒‎inc.‎ADC/DAC 4000 96 384000 

‒Centralised‎ Management 

Subsystem 
1300 1 1300 

‒‎inc.‎channel‎sounding 4000 96 384000 

Prototype Components Total 
  

2089615.21 

 

 

This price is for one lab buddy device and of course for implementation some mechanic 

and wiring part and also electronic part need to be removed. However next Table 3.13 

shows the different evolution of their relative cost as a function of the production volume.  

 

3.5.2 OLT- Raman amplifier at OLT 

Here we calculate total price of OLT when Raman amplifiers located at OLT. For 

developing this model we can use all prices in following Table 3.12. 
 

Table  3-12. Baseline cost estimation for Amp@OLT 

OLT [Amp@OLT] 
   

Component Unit‎Cost‎(€) Quantity Total‎Cost(€) 

Optical Devices       

1550nm DFB Laser Diode 950.00 96 91200 

MZ EO Modulator 1900 96 182400 

Photodiode 124.3 96 11932.8 

1x96 AWG 2850 2 5700 

Optical Circulator 154.41 1 154.41 

Raman Amplifier 6300 4 25200 

RF/Electrical Devices 
   

RF 1:5 power splitter  87 96 8352 

OFDM modem 
   

FPGA board  1300 96 124800 

2DAC/2ADC board  4000 96 384000 

IQ-Mixer  800 384 307200 

LO  50 384 19200 

LPF  25 384 9600 

BPF  45 288 12960 

Tx Amp  50 96 4800 

Rx Amp  50 96 4800 
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LTE 
   

BPF  25 96 2400 

Low-noise Amp 232 96 22272 

WiMAX 
   

DX250 fr 200 96 19200 

BPF  25 96 2400 

Low-noise Amp 232 96 22272 

UWB 
   

BPF  32 96 3072 

UWB Amp 850 96 81600 

‒‎inc.‎ADC/DAC 4000 96 384000 

‒‎Centralised‎Management‎

Subsystem 
1300 1 1300 

‒‎inc.‎channel‎sounding 4000 96 384000 

Prototype Components Total 
  

2114815.21 

 

 

This price is for one lab buddy device and of course for implementation some mechanic 

and wiring part and also electronic part need to be removed. However next Table 3.13 

shows the different evolution of their relative cost as a function of the production volume.  

 

Table  3-13. Unitary cost at the initial reference volume Amp@ RN. 

OLT [Amp@RN] 
      

Optical Devices 

current  

unitary 

COST  

per‎year‎(€) 

Type of  

learning  

cost (1-9) 

QUANTITY  

per ONU 

QUANTITY 

of user 

Unitary  

cost 
Cost 

1550nm DFB Laser 

Diode 
950 2 96 1000000 102 102,475,686 

MZ EO Modulator 1,900 2 96 1000000 205 204,951,373 

Photodiode 124 2 96 1000000 13 13,408,135 

1x96 AWG 2,850 2 2 20833.33333 449 9,354,185 

Raman Amplifier 2,850 2 0 0 2,850 0 

Optical Circulator 154 1 1 10416.66667 23 234,501 

RF/Electrical 

Devices 
0 

  
0 0 0 

RF 1:5 power splitter  87 4 96 1000000 17 17,169,109 

OFDM modem 0 
  

0 0 0 

FPGA board  1,300 4 96 1000000 257 256,549,908 

2DAC/2ADC board  4,000 2 96 1000000 431 431,476,574 

IQ-Mixer  800 4 384 4000000 130 519,412,890 

LO  50 4 384 4000000 8 32,463,306 

LPF  25 4 384 4000000 4 16,231,653 

BPF  45 4 288 3000000 8 22,728,830 

Tx Amp  50 4 96 1000000 10 9,867,304 

Rx Amp  50 4 96 1000000 10 9,867,304 

LTE 0 
 

0 0 0 0 
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BPF  25 4 96 1000000 5 4,933,652 

Low-noise Amp 232 4 96 1000000 46 45,784,291 

WiMAX 0 
  

0 0 0 

DX250  200 4 96 1000000 39 39,469,217 

BPF  25 4 96 1000000 5 4,933,652 

Low-noise Amp 232 4 96 1000000 46 45,784,291 

UWB 0 
  

0 0 0 

BPF  32 4 96 1000000 6 6,315,075 

UWB Amp 850 4 96 1000000 168 167,744,171 

‒‎inc.‎ADC/DAC 4,000 2 96 1000000 431 431,476,574 

‒Centralised‎

Management 

Subsystem 

1,300 4 1 10416.66667 664 6,919,139 

‒inc.‎ channel 

sounding 
4,000 4 96 1000000 789 789,384,334 

Prototype 

Components Total    
0 0 0 

 2,089,615 
    

0 

Total 1,000,000 
  

 
 

3,188,935,156 

Port cost 
   

 
 

3,189 

 

 

3.5.3 RN –Amplifier at OLT 

In this part we calculate total price of RN when amplifiers located at OLT. For developing 

of the model we can use all the prices in following Table 3.14. 

 

Table  3-14: Baseline cost estimation for RN without amplifier. 

Component Unit Cost (€) Quantity Total‎Cost‎(€) 

Band Splitter 100 1 100 

AWG 2850 2 5700 

Total   5800 

 

This price is for one lab buddy device and of course for implementation some mechanic 

and wiring part and also electronic part need to be removed. However next Table 3.15 

shows the different evolution of their relative cost as a function of the production volume.  

 

Table  3-15. Unitary cost at the initial reference volume Amp @ OLT 

OLT 

[Amp@OLT] 

       

Optical Devices 

current  

unitary 

COST  

per‎year‎(€) 

Type of  

learning  

cost (1-9) 

QUANTITY  

per ONU 

QUANTITY 

of user 

Unitary  

cost 
Cost 

1550nm DFB 

Laser Diode 
950 2 96 1000000 77 76,856,765 
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MZ EO 

Modulator 
1,900 2 96 1000000 154 153,713,530 

Photodiode 124 2 96 1000000 10 10,056,101 

1x96 AWG 2,850 2 2 20833.33333 337 7,015,639 

Raman 

Amplifier 
6,300 2 4 41666.66667 663 27,627,571 

Optical 

Circulator 
154 1 1 10416.66667 17 175,875 

RF/Electrical 

Devices    
0 0 0 

RF 1:5 power 

splitter  
87 4 96 1000000 13 12,876,832 

OFDM modem 
   

0 0 0 

FPGA board  1,300 4 96 1000000 192 192,412,431 

2DAC/2ADC 

board  
4,000 2 96 1000000 324 323,607,431 

IQ-Mixer  800 4 384 4000000 97 389,559,668 

LO  50 4 384 4000000 6 24,347,479 

LPF  25 4 384 4000000 3 12,173,740 

BPF  45 4 288 3000000 6 17,046,623 

Tx Amp  50 4 96 1000000 7 7,400,478 

Rx Amp  50 4 96 1000000 7 7,400,478 

LTE 0 
 

0 0 0 0 

BPF  25 4 96 1000000 4 3,700,239 

Low-noise 

Amp 
232 4 96 1000000 34 34,338,219 

WiMAX 
   

0 0 0 

DX250  200 4 96 1000000 30 29,601,913 

BPF  25 4 96 1000000 4 3,700,239 

Low-noise 

Amp 
232 4 96 1000000 34 34,338,219 

UWB 
   

0 0 0 

BPF  32 4 96 1000000 5 4,736,306 

UWB Amp 850 4 96 1000000 126 125,808,128 

‒inc.‎

ADC/DAC 
4,000 2 96 1000000 324 323,607,431 

‒Centralised‎

Management 

Subsystem 

1,300 4 1 10416.66667 498 5,189,354 

‒‎ inc.‎ channel‎

sounding 
4,000 4 96 1000000 592 592,038,250 

Prototype 

Components 

Total 
   

0 0 0 

 
     

0 

Total 
   

 
 

2,419,328,937 

Port cost 
   

 
 

2,419 
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3.5.4 RN –Remote node with amplifier  

Here we calculate total price of RN when amplifiers located at RN. For developing of the 

model we can use all the prices in following Table 3.16. 

Table  3-16. Baseline cost estimation for RN. 

RN [Amp@RN]   

Component Unit Cost (€) Quantity Total Cost (€) 

Optical Amplifiers 2200 4 8800 

Optical Circulator 154.41 3 463.23 

Band Splitter 100 2 200 

AWG 2850 2 5700 

Total 
  

15163.23 

 

This price is for one lab buddy device and of course for implementation some mechanic 

and wiring part and also electronic part need to be removed. 

In consequence, in the access network deployment, every element of the system is 

categorized depending on this classification (from type 0 to 7), and then, depending on the 

network scenario, topology, architecture, solution and expected deployment coverage, the 

unitary cost is calculated. We can observe that many factors can effect on this; the more 

one makes use of an element for a production, the lower is its cost.  

  

Table  3-17. Unitary cost at the initial reference volume for RN with amplifier. 

RN cost 

Amp@RN 

        

 current  

unitary COST  

per‎year‎(€) 

Type of  

learning  

cost (1-9) 

Number 

for each 

RN 

QUANTITY  

per ONU 

QUANTITY 

of user 

Unitary  

cost 
Cost 

Optical 

Amplifiers 
2,200 2 4 41666.66667 1000000 309 12,863,631 

Optical 

Circulator 
154 1 3 31250 1000000 20 637,679 

Band 

Splitter 
100 1 2 20833.33333 1000000 14 284,658 

AWG 2,850 2 2 20833.33333 1000000 449 9,354,185 

Total 
      

23,140,153 

Port cost 
      

2,221 
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3.5.5 ONT  

In this part we estimate the price of ONT when amplifiers located at RN. For developing of 

the model we can use all the prices in following Table 3.18. 

Table  3-18. Baseline cost estimation for ONT. 

ONT    

Component 
Unit Cost (€) Quantity Total Cost (€) 

Optical Devices       

Photodiode 124.3 1 124.3 

DML 
   

‒‎ Current‎ source‎ &‎ Temp‎ contr‎

(per channel) 
2525 1 2525 

‒‎Interconnection cables 150 1 150 

‒‎Laser‎mount‎(per‎channel) 1746 1 1746 

Prototype Components Total 
   

‒‎MQW-DFB laser 950 1 950 

Band Splitter 100 1 100 

RF/Electrical Devices 
   

RF 1:5 power splitter  87 1 87 

Baseband GbE OFDM modem 
   

FPGA board  1300 1 1300 

2DAC/2ADC board  4000 1 4000 

  
   

IQ-Mixer  800 4 3200 

LO  50 4 200 

LPF  25 4 100 

BPF  45 3 135 

Tx Amp  50 1 50 

Rx Amp  50 1 50 

LTE 
   

BPF  25 1 25 

Low-noise Amp 232 1 232 

WiMAX 
  

0 

DX250  200 1 200 

BPF  25 1 25 

Low-noise Amp 232 1 232 

UWB 
   

BPF  32 1 32 

UWB Amp 850 1 850 

Antenna 10 4 40 

Control (Inc, Channel Sounding) 1300 1 1300 

(ADC/DAC board) 4000 1 4000 

  
   

Prototype Components Total 
  

21653.3 
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This price is for one lab buddy device and of course for implementation some mechanic 

and wiring part and also electronic part need to be removed. However next Table 3.19 

shows the different evolution of their relative cost as a function of the production volume.  

 

Table  3-19. Unitary cost at the initial reference volume ONT. 

ELEMENT current 

unitary 

Cost per 

year (€) 

Type of 

learning 

cost (1-9) 

Quantity 

per ONU 

Quantity 

 of user 

Unitary 

cost 
Cost 

ONT 
      

 
   

1000000 0 0 

Optical Devices 
    

0 0 

Photodiode 124 1 1 1000000 14 13,739,619 

DML 0 
 

0 0 0 0 

‒Controller‎

Mainframe 

(1 channels) 

722 4 1 1000000 142 142,483,872 

‒Current 

source & Temp 

contr (per 

channel) 

2,525 4 1 1000000 498 498,298,861 

‒

Interconnectio

n cables 

150 3 1 1000000 93 93,494,487 

‒Laser‎mount  1,746 5 1 1000000 486 485,620,641 

Prototype 

Components 

Total 

0 
 

0 0 0 0 

‒MQW-DFB 

laser 
950 2 1 1000000 102 102,475,686 

Band Splitter 100 1 1 1000000 11 11,053,595 

RF/Electrical 

Devices 
0 

  
0 0 0 

RF 1:5 power 

splitter  
87 4 1 1000000 17 17,169,109 

Baseband GbE 

OFDM modem 
0 

  
0 0 0 

FPGA board  1,300 4 1 1000000 257 256,549,908 

2DAC/2ADC 

board  
4,000 2 1 1000000 431 431,476,574 

 0 
  

0 0 0 

IQ-Mixer  800 4 4 4000000 130 519,412,890 

LO  50 4 4 4000000 8 32,463,306 

LPF  25 4 4 4000000 4 16,231,653 

BPF  45 4 3 3000000 8 22,728,830 

Tx Amp  50 4 1 1000000 10 9,867,304 

Rx Amp  50 4 1 1000000 10 9,867,304 

LTE 0 
  

0 0 0 

BPF  25 4 1 1000000 5 4,933,652 

Low-noise Amp 232 4 1 1000000 46 45,784,291 

WiMAX 
   

0 0 0 

DX250  200 4 1 1000000 39 39,469,217 
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BPF  25 4 1 1000000 5 4,933,652 

Low-noise Amp 232 4 1 1000000 46 45,784,291 

UWB 
      

BPF  32 4 1 1000000 6 6,315,075 

UWB Amp 850 4 1 1000000 168 167,744,171 

Antenna 10 4 4 4000000 2 6,492,661 

Control (Inc, 

Channel 

Sounding) 

1,300 4 1 1000000 257 256,549,908 

(ADC/DAC 

board) 
4,000 2 1 1000000 431 431,476,574 

 
   

0 
  

 
   

0 
  

 22,375 0 
   

0 

Total 
   

 
 

3,672,417,134 

ONT cost 
   

 
 

3,672 

 

3.5.6 Analysis CapEx cost for FIVER Network 

As shown in the last section,  several scenarios are targeted for FIVER, depending on the 

coverage, number of served homes, distance reach (feeder-drop), bandwidth, etc. among 

the infinite possible combinations. They stress the FIVER system in different ways, reach 

and can cover different new connectivity requirements. 

We have defined two high dense urban and dense urban scenarios, shown in following 

table. Everyone uses different combination of elements, affecting the total cost, and may 

also affect the unitary cost. 

Table  3-20. Case study 

Name Area (km²) Population Pop/Area (1/km²) radius Customer 

Dense urban 4900 1000000 200 70 262000 

High dense urban 1000 1000000 1000 32 262000 

 

AS FIVER supports 100 km area we can have several urban+rural scenarios. We used 

Aveiro province as a real scenario with different take rates that presented in Table  3.1. 

It is very difficult to estimate adoption user for OFDM-PON and next generation PON. 

Within this section, we are trying to utilise commonly-used models for consumer adoption 

in order to forecast future demand for FTTH and NG-PON and specially FIVER services, 

which may therefore provide an estimate of the number of potential subscribers available 

to a service provider at any given time. Based on a calibration heuristic [20], if 

we assume adoption user for FTTH is early adopters and GPON could be early majority. 
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For FIVER as a late majority we can implement following diagram with the inflection 

point of the adoption curve of 10-15 years as shown in Fig. 3.28. 

 

Figure  3-28. Expected chances of FTTH adoption. 

 

As seen with our learning curve, the access technologies based on semiconductors will 

follow a cost reduction with increasing of volume number of components in each 

prototype. Now we have to consider that the cost reduction of optical components over the 

years as the underlying technology has advanced and manufacturing volumes have 

increased. A precise learning curve is defined as the percentage decline in the price of a 

product as the (cumulative) product volume doubles in case of time or volume of products. 

[20, 24]. 

When only a few observations are available and even if historical costs are partially or 

totally absent we can use the learning curve as follow: [24] 

 2log
1

1 1 ln(81)
( ) (0). . 1 exp( ln 1 . ,

(0) (0)

k

C t C t
n n T

            
      

 
(38) 

Where 

 n(0) is the relative accumulative volume ( equal to 0.5 according to statistical data 

for components that exist in the market and their price is expected to be further re-

duced due to aging rather than due to production volume: n(0) could be 0.1 for ma-

ture products and 0.01 for new components in the market. 

 C(0) is the component’s price in the reference year 0, ∆T is the time for the accu-

mulated production volume to grow from10 to 90 %,  

 k is the learning curve coefficient.  
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The k factor as well as the actual or fore-cast ∆T can be obtained from the production 

industry, mainly the suppliers. As this model has been used for TONIC project, the RACE-

TITAN and ADSL price estimation, similar cost evolution models have been used in all 

cases presented hereafter. The FIVER port cost for each user forecast modelling gave the 

estimates: We have C (2012) = 8800 €, ∆T = 15years, n (2012) = 0.1 % and K = 0.8. 

 

Figure  3-29. CapEx per home connected for urban and urban+rural up to 2030. 

Figure 3.29 and 3-30 show the forecasting results based on the assumptions for 

amplification in RN and OLT with Raman amplifier, respectively. 

 

 
Figure  3-30. CapEx per home connected for urban and urban+rural up to 2030. 

Figure 3.29 shows the forecasting results based on the assumptions. 

And for amplification in OLT with Raman amplifier we have: 
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As for rural case the number of user can start from low take rate, it is interesting to see the 

cost per user for each take rate in current time. As take rate is increasing, because of OLT 

efficiency and number of user for volume production is increasing and cost of PON and 

OLT part is decreased. 

 

 
Figure  3-31. Today cost per user for different scenarios and take rates. 

 

3.6 Concluding Remarks 

In this chapter, a techno-economic model by incorporating the bottom up approach as an 

optimization-focus with the top-down approach as an engineering-rules based was 

presented. The model was implanted for GPON and Long Reach GPON in inside plant and 

outside plant of network to calculate the cost for several urban and rural scenarios in 

Portugal. The CapEx per user for both single and cascaded splitter schemes for different 

take rates was calculated. The intrinsic design characteristic of two configurations to serve 

a high number of end users with OLT efficiency was translated into saving in components 

in inside plant in densely as well as scarcely populated areas. A price learning curve for 

estimate of new components and new technologies was presented and was extrapolated in 

time and then for calculation of deployment costs of WDM-PON and OFDM-PON was 

employed. 
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CHAPTER 4  CONCLUSIONS AND FUTURE WORK 
 

 

 

 

 

 

Summary 

 

This final chapter presents the most important conclusions on the 

techno-economic of PONs deployment. Some guidelines for future 

research work are also presented. 

 



 

 

Conclusions and Future Work 

  

 74 
 

4.1 Summary of the works and Contributions 

Throughout the different chapters we presented several main issues to be faced by the 

service providers in developing and migration of existing and future access networks. We 

started with FTTH concepts in optical access networks to address different types of PONs 

providing the cost-effective, flexible and reliable improvement in deployments and 

development of access architectures. It was concluded that PON will offer higher 

bandwidths, enabling more products and services with better quality of service and 

increasing subscriber satisfaction.  

 The next step was to classify the existing PON and candidate for NG-PON2 based on their 

characteristics. The services and different type of users as a driver of these technologies 

were analysed and the required technology for each service versus time was presented. 

Obviously, TDM-PONs was employing different wavelengths for upstream and 

downstream and can share it between several subscribers. The per-user cost of TDM PONs 

was low as the bandwidth is shared among all the subscribers. But the PON architecture 

could easily support more wavelengths and allowing each user has its own wavelength. 

The study and classification of existing protocols enabled us to propose WDM-PON and 

OFDM-PON technologies with excellent scalability could support multiple wavelengths 

over the same fibre infrastructure. 

Cost issues especially in development of access networks was the common metric and a 

techno-economic model was proposed based on this metric. This model drew the 

consequence of different ODN structures during each network implementation phase. This 

model also provides a guideline to compare CapEx per user for different topology and take 

rate. The comparison indicates that in cascaded configuration due to its access convergence 

and deep positioning of splitters, length of drop fibre and consequently duct and trenching 

are reduced which translates to great savings in terms of material and labour. Also 

influences of civil work and sharing outside plant have been demonstrated in high and low 

take rates. The intrinsic design characteristic of two configurations to serve a high number 

of end users with OLT efficiency was translated into saving in components in inside plant 

in densely as well as scarcely populated areas. The savings in fibre, number of splitters and 

storing areas were evident in the presented results. 
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The techno-economic model was implemented for GPON and Long Reach GPON 

considering the inside and outside plant of the networks. The CapEx for different urban 

and rural scenarios in Portugal was estimated. 

When it came to WDM-PON and FIVER project the CapEx calculation per user provides 

tangible results for the deployment of its outside plant. The calculated cost of WDM-PON 

and FIVER key individual elements was extrapolated in time and then incorporated in the 

model for calculation of deployment costs and migration cost from GPON to WDM-PON. 

These computations show that FIVER architecture can be cost effective In addition; 

FIVER architecture provides an environmental friendly solution because of the decreased 

volume of fibre and overall material needed for its deployment. Besides, its flexibility 

allows a manageable migration from an already deployed network to this WDM solution 

with minimum construction labour.  

4.2 Main Challenges and Future Work 

When looking ahead, it is a future challenge for practical NG-PON2 implementation to 

develop novel optical access structure. Therefore, it seems interesting to study the 

potentialities of the techno-economic model PON with respective to main topics such as 

the increase of bit rate, reach and splitting ratio, reduce CapEx and OpEx. However many 

other key issues have not been covered by the model. Some of these issues are listed below 

and require further investigation.   

Integrated optical components: Traditionally CMOS feature size is tied to Moore’s Law 

and in future all the electrical and optical parts of ONU and OLT beside their DSP can be 

integrated in the single chip for having single components. This could be able to estimate 

total cost of components for next 20 years and this is an area not yet properly developed. 

OpEx and power consumption: We implemented the model for CapEx, in next step we 

are going to consider OpEx and power consumption in details. In NG-PON2 technologies 

total cost should be calculated in detail, thus in the design of efficient model, potential 

OLT nodes should be selected based on incentives, energy consumption and network 

bandwidth. Once again this is an area full of open challenges. 

User adoption model for different type of users: Services and users are key requirements 

for each system and architecture design. In next 5 years, global IP traffic will reach 1.4 



 

 

Conclusions and Future Work 

  

 76 
 

zettabytes per year [2]. Therefore, it is very important to know in each country and each 

culture, how several types of user are growing. It can help to operator to have a good long 

term decision when they are selecting their technology. 
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Annex I: Portugal’s present and future on FTTH 
This annex summarizes the deployment situation of FTTH in the world and European 

countries especially in Portugal. Recently, ANACOM [29] has done a lot of researches on 

panorama of the Portugal fibre deployment and service requirements. In the near future of 

Portugal, following application and services will continue to increase dramatically over 

current values: real-time monitoring and widespread adoption of services such as video 

over Internet, online/virtual reality, IPTV, TV3D15/Home Theatre, "Super Hi- Vision", 

content sharing applications (peer-to-peer), 3G/4G mobile devices, "cloud computing", 

 

 
 

Figure  0-1. Rate of household penetration of FTTH/B+LAN in terms of homes connected [16] 

 

e-learning, inactivity sensors, online medical consultation, home security, smart homes, 

access controls, electronic commerce and social networking, traffic values [29]. In Portugal 

Asymmetric Digital Subscriber Line (ADSL/ADSL 2+) technology and Cable TV (CATV) 

are current broadband access infrastructure. Although the fixed broadband penetration is 

about 14.8% and for mobile broadband penetration is 18%, but fixed broadband customers 

are about 1.57 millions in all Portugal.  

Figure I.1 presents roll-out forecasts by technology in Western European countries. The 

total coverage will vary greatly by 2017 if operators stick to current plans.  
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Figure  0-2 Incumbents’ roll-out forecasts by technology, Western Europe, 2017 [16] 

At the end of 2012, Portugal occupied 16th position in the group of world countries and 

10th in European countries with highest FTTH penetration, with a penetration rate reported 

of around 10%, according to the FTTH Council Europe in Fig. I.2 and I.3.  

 
 

Figure  0-3. European Ranking- December 2012[16] 

 

Also Portugal is in the Top 5 European countries in terms of home passed in total 

households and this will be good news for more work, research and develop of FTTH 

network (Fig. I.4). 
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Figure  0-4. Top 5 European countries in terms of HP in total households [16]. 

 

According to forecasts from Heavy Reading, in December 2014, the penetration rate in 

terms of FTTH homes in Europe will be as shown in Fig. I.5. With regard to Portugal, 

these forecasts may be an underestimate, given the latest data on trends in the number of 

cabled and connected homes. 

 

a)                                                                  b) 

Figure  0-5. a) Connected Households b) Forecast FTTH penetration for Dec 2014 [16]. 

The total potential customer base in Portugal amounts to 4.9 million customers. 4.45 

million are residential customers (households including second homes) and 0.45 million 

are business customers. Note again that these numbers include broadband customers using 

cable modems for internet access, mobile-only households and those not using electronic 

communications services at all [30]. As seen in Table I.1 the population in Portugal is not 
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very concentrated, with 61% of it living in rural areas. The potential customer base living 

in high density areas (dense urban) is low (0.9%). But 19.3% live in the three urban 

clusters. Thus, Portugal is a country with rather strong urban and rural areas and a minor 

suburban population. So using some access technology with long reach and all passive 

equipment is felt. 

Table ‎0-1. Population density in Portugal.[29,30] 

Cluster Type  
Customer Base 

in mill. in % accumulated % 

Urban  0.1 2.8 3.7 

Less Urban  0.8 15.5 19.2 

Dense Suburban  0.2 3.6 22.8 

Suburban  0.3 6.9 29.8 

Less Suburban 0  0.5 9.2 39.0 

Dense Rural  1.2 24.4 63.4 

Rural  1.8 36.6 100.0 

 

There are parts of the national territory, mainly rural, where it is unlikely that, in the near 

future  the  market will generate the incentives  necessary for operators to invest in new 

infrastructure for the provision of broadband access services (especially  high-speed and 

long reach), e.g. due to factors critical to the investment, such as population density 

(which determines the cost of bringing the network  to  households) and socio-economic 

factors such as age, education level and per capita income (which determine the potential 

revenue generated by the network). 

In accordance with the some tender specifications, the winning entity will be bound to 

ensure minimum coverage of 50% of the population of the geographic area of each of the 

municipalities included in the tender within twenty-four months, and guarantee a 

minimum speed 40 Mbps (downstream) per end-user. 
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