2,173 research outputs found

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Exploring the Use of Drones for Conducting Traffic Mobility and Safety Studies

    Get PDF
    ABSTRACT Advanced traffic data collection methods, including the application of aerial sensors (drones) as traffic data collectors, can provide real-time traffic information more efficiently, effectively, and safely than traditional methods. Traffic trajectory data like vehicles’ coordinates and point timestamps are challenging to obtain at intersections using traditional field survey methods. The coordinates and timestamps crucial in calculating trajectories can be obtained using drones and their particular integrated software. Thus, this study explores the use of unmanned aerial systems (UAS), particularly tethered drones, to obtain traffic parameters for traffic mobility and safety studies at an unsignalized intersection in Tallahassee, Florida. Tethered drones provided more flexibility in heights and angles and collected data over a relatively larger space needed for the proposed approach. Turning movement counts, gap study, speed study, and Level of Service (LOS) analysis for the stated intersection were the traffic studies conducted in this research. The turning movements were counted through ArcGIS Pro. From the drone footages, the gap study followed by the LOS analysis was carried out. A speed algorithm was developed to calculate speed during a speed study. Based on the results, the intersection operates under capacity with LOS B during the time. Also, the results indicated that the through movement traffic tends to slow down as they approach the intersection while south-bound right and east-bound left-turning traffic increase their speeds as they make a turn. Accuracy assessment was done by comparing the drone footages with the results displayed in ArcGIS software. The drone’s data collection was 100% accurate in traffic movement counting and 96% accurate in traffic movement classification. The level of accuracy is sufficient compared to other advanced traffic data collection methods. In this study, safety was assessed by the surrogate safety measures (SSMs). SSMs can be the viable alternatives for locations with insufficient historical data and indicate potential future conflicts between roadway users. The surrogate measures used in this study include the Time to Collision (TTC), Deceleration-based Surrogate Safety Measure (DSSM), and Post-encroachment Time (PET). TTC and DSSM were used for rear-end conflicts, while PET was used to evaluate cross conflicts and other conflicts such as sideswipes. The number of potential conflicts obtained in a one-hour study period was around 20 per 1000 vehicles traversing the intersection. The number of potential conflicts in one non-peak hour may indicate a safety problem associated with the intersection. This study’s findings can help develop appropriate guidelines and recommendations to transportation agencies in evaluating and justifying the feasibility of using tethered drones as safer and cheaper data collection alternatives while significantly improving intersection safety and operations

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Data-driven maintenance of military systems:Potential and challenges

    Get PDF
    The success of military missions is largely dependent on the reliability and availability of the systems that are used. In modern warfare, data is considered as an important weapon, both in offence and defence. However, collection and analysis of the proper data can also play a crucial role in reducing the number of system failures, and thus increase the system availability and military performance considerably. In this chapter, the concept of data-driven maintenance will be introduced. First, the various maturity levels, ranging from detection of failures and automated diagnostics to advanced condition monitoring and predictive maintenance are introduced. Then, the different types of data and associated decisions are discussed. And finally, six practical cases from the Dutch MoD will be used to demonstrate the benefits of this concept and discuss the challenges that are encountered in applying this in military practice
    • …
    corecore