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ABSTRACT 

Advanced traffic data collection methods, including the application of aerial sensors 

(drones) as traffic data collectors, can provide real-time traffic information more efficiently, 

effectively, and safely than traditional methods. Traffic trajectory data like vehicles’ coordinates 

and point timestamps are challenging to obtain at intersections using traditional field survey 

methods. The coordinates and timestamps crucial in calculating trajectories can be obtained using 

drones and their particular integrated software. Thus, this study explores the use of unmanned 

aerial systems (UAS),  particularly tethered drones, to obtain traffic parameters for traffic mobility 

and safety studies at an unsignalized intersection in Tallahassee, Florida. Tethered drones provided 

more flexibility in heights and angles and collected data over a relatively larger space needed for 

the proposed approach.  

Turning movement counts, gap study, speed study, and Level of Service (LOS) analysis 

for the stated intersection were the traffic studies conducted in this research. The turning 

movements were counted through ArcGIS Pro. From the drone footages, the gap study followed 

by the LOS analysis was carried out. A speed algorithm was developed to calculate speed during 

a speed study. Based on the results, the intersection operates under capacity with LOS B during 

the time. Also, the results indicated that the through movement traffic tends to slow down as they 

approach the intersection while south-bound right and east-bound left-turning traffic increase their 

speeds as they make a turn. Accuracy assessment was done by comparing the drone footages with 

the results displayed in ArcGIS software. The drone’s data collection was 100% accurate in traffic 

movement counting and 96% accurate in traffic movement classification. The level of accuracy is 

sufficient compared to other advanced traffic data collection methods. 
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In this study, safety was assessed by the surrogate safety measures (SSMs). SSMs can be 

the viable alternatives for locations with insufficient historical data and indicate potential future 

conflicts between roadway users. The surrogate measures used in this study include the Time to 

Collision (TTC), Deceleration-based Surrogate Safety Measure (DSSM), and Post-encroachment 

Time (PET). TTC and DSSM were used for rear-end conflicts, while PET was used to evaluate 

cross conflicts and other conflicts such as sideswipes.  

The number of potential conflicts obtained in a one-hour study period was around 20 per 

1000 vehicles traversing the intersection. The number of potential conflicts in one non-peak hour 

may indicate a safety problem associated with the intersection. This study’s findings can help 

develop appropriate guidelines and recommendations to transportation agencies in evaluating and 

justifying the feasibility of using tethered drones as safer and cheaper data collection alternatives 

while significantly improving intersection safety and operations.  

Keywords: Tethered Drones, Traffic Studies, Surrogate Safety Measures, Traffic Safety. 
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CHAPTER 1 INTRODUCTION 

Background 

Traffic studies are usually conducted to determine the characteristics of the highway 

system users and their vehicles, identify problematic and risky areas, monitor system operation, 

and assist in developing the appropriate countermeasures when required (FDOT, n.d.). The 

principal traffic studies usually conducted are volume studies, speed studies, pedestrian studies, 

parking studies, travel time, and delay studies. All these studies are geared towards improving 

traffic safety and operations. Researchers have used various approaches based on traffic studies to 

assess the safety and mobility of road users on roadway elements, including segments and 

intersections. 

Unsignalized intersections are one of the problematic roadway elements. Annually about 

9% (3000) of fatal crashes have been known to occur at these locations in the U.S. (NCHRP, 2006). 

The extent of the safety issue on unsignalized intersections warrants significant mitigation efforts. 

Researchers have been using different types of data to assess safety within roadway segments and 

intersections. Some studies used the actual crash/accident data to measure how safe the road 

facility is. J. Gu et al. (2021) analyzed the number of crash deaths in a particular population to 

associate road traffic safety law and traffic crash mortality.  

Several studies have used the Surrogate Safety Measures (SSMs) in assessing traffic safety. 

Some researchers believe the lack of accurate and reliable crash data has impeded its functional 

analysis (Chaudhari et al., 2021). Some incidents are not well-reported and hence not put in proper 

records. This challenge related to insufficient and unreliably historical data makes the use of SSMs 

critical in evaluating roadway safety performance. For this purpose, surrogate measures can 
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provide a reliable risk assessment on road users (Lee & Yeo, 2015; Tak et al., 2020; Yang et al., 

2003). Hence, this type of traffic conflicts-based analysis using surrogate measures is advocated 

to be a viable alternative in safety evaluation studies (Autey et al., 2012; Gallelli et al., 2019; Tarko 

et al., 2009). Notably, the traffic conflict rate is an appealing safety measure since it provides a 

standardized measure of the relative safety of roadway entities (X. Gu et al., 2019; Guo et al., 

2020; Sayed & Zein, 2007).  

Although the traffic conflicts-based analysis using SSMs is suitable for detecting safety 

hazards and operational problems at suspect locations, it should only be used as a supplement to 

and not a replacement of accident/crash data (Glauz & Migletz, 1980). Due to that fact, some 

researchers sought to find a relation between the surrogates and the actual crashes. Anarkooli et 

al. (2021) established a linear, directly proportional relationship between crashes and surrogate 

safety measures. One of the essences of the developed conflict-based crash model in their study is 

to understand the crash frequency in situations where police-reported crash data may be inaccurate 

and cannot provide essential details to the researcher.  

Traffic mobility and safety studies have been usually performed using field surveys where 

human surveyors in terrain collect and record the traffic data on site. Several more technologically 

advanced systems can be used for this purpose, such as aerial sensors to obtain real-time traffic 

data. Field surveys of conflicts are costly to conduct and suffer from inter-and intra-observer 

variability for the repeatability and consistency of results (Chen et al., 2017). On the other hand, 

unmanned Aerial Systems (UAS) such as drones, which have been known for easy maneuvering, 

outstanding flexibility, and low costs, are considered novel aerial sensors (Chen et al., 2017). 

Compared to point sensors such as loop detectors and pneumatic tubes, drones can be utilized as 

space (point-to-point) sensors, and microscopic traffic data such as trajectories can be extracted 
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through drone-based data collection (Barmpounakis & Geroliminis, 2020; Khan et al., 2017). 

However, due to the issue of limited battery, today’s UAS have approximately 30 minutes of flying 

time, which is a significant shortcoming to capture the stochasticity on traffic since the congestion 

and safety problems on the traffic network generally extend in time and space. To solve this 

problem, tethered drones (TUAS) with continuous power supply through a cable connection 

between a ground unit and the aircraft can provide solutions while maintaining unlimited flight 

time where drones can be used as an eye-in-the-sky. 

 

Study Objectives 

The study’s main objective is to explore the use of tethered drones to obtain traffic 

parameters for traffic mobility and safety studies. The two specific objectives are designed in this 

study to implement the main objective. The first objective is to develop Algorithms for SSMs to 

assess the safety at unsignalized intersections. The second objective is to illustrate the use of 

ArcGIS for processing drone-collected trajectories in a traffic study. Thus, this study demonstrates 

the use of the software to extract, export, and analyze trajectory information. 

 

Potential Study Benefits  

The findings could provide one of the most efficient and fast ways of conducting traffic 

mobility and safety studies. The algorithms could compute different trajectories and SSMs in a 

click. ArcGIS could display trajectories’ attributes aesthetically and makes the turning movement 

count an effortless job. The final goal of this study is to provide feasibility of using tethered drones 

to collect traffic data and use the obtained trajectory data to perform different traffic studies and 
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analyze safety. Findings are expected to help integrate these new technologies in day-to-day data 

collection operations for research, planning, and design purposes.  

 

Thesis Formulation 

This thesis consists of six chapters. Chapter one briefly introduces the study by explaining 

its background and delineating its objectives. Chapter two consists of a synthesis of different 

literature that focused on the SSMs and the different technologies currently used in traffic mobility 

and safety studies. Chapter three presents the study location and data collection efforts. Chapter 

four explains how the research was carried out by explaining the methods used in the study. 

Chapter five shows the SSMs’ algorithms and ArcGIS results and discusses them and the 

challenges faced during the study. The last chapter, chapter six, discusses conclusions and 

conclusions and recommendations for future work. 
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CHAPTER 2 LITERATURE REVIEW 

Technologies Used in Similar Studies 

The growing pattern of traffic and the emergence of different vehicular technologies have 

prompted the need to apply more advanced ways for conducting traffic mobility and safety studies 

(Antoniou et al., 2011). Several existing and emerging technologies with different technical 

characteristics and operating principles are used for data collection. Modern traffic studies utilize 

data collected from traffic sensors in simulation models and real-time traffic studies. 

Researchers and traffic engineers currently apply different traffic simulation-based models 

describing all modes of transportation on a bigger scale ranging from individual intersections to 

extensive regional networks (Transportation Research Board, 2015). PTV Vissim, CORSIM, PTV 

Vistro, Synchro, and PTV Visum Softwares work separately or in conjunction in simulating traffic 

movements in roadway facilities and networks at large.  

Besides collecting data for simulation purposes, traffic sensor technologies obtain real-time 

traffic data and perform real-time traffic studies (Antoniou et al., 2011). Traffic sensors are 

categorized into three types: point, point-to-point, and area-wide sensors. The categorization of 

sensors is based on their functionality and how they can collect traffic data. 

Point sensors include loop detectors, radar sensors, video image detection systems, and 

weigh-in-motion systems. The sensors observe/detect the vehicles passing above or under them. 

Compared to the point-to-point sensors, the point sensors operate on a small scale. Point-to-point 

sensors detect vehicles at multiple locations as they traverse the network, which helps provide 

point-to-point travel times, paths, Origin-Destination (OD) flows, route choices fractions, and 
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paths. The technologies included in this category are Automated Vehicle Identification (AVI) 

systems and License plate recognition technology.  

The third type of sensors is area-wide sensors. Smartphones and Global Positioning System 

(GPS) are typical examples of area-wide sensors. Area-wide sensors include promising 

technologies that are currently still under research. Therefore, the type of sensors to be used in a 

particular study depends on the type, the technical, and the economic feasibility of the study.  

 

Prior Research 

Several previous traffic mobility and safety studies used drones (UAV) to collect and 

process traffic data. For the near-future smart generation cities, drones are essential to embrace 

airspace to advance the transportation system (Outay et al., 2020). On the safety part, Liu et al. 

(2017) researched on improving Unmanned Aerial Vehicle (UAV) image processing (Image 

mosaic technology) for road traffic accident scenes. Raj et al. (2017) developed a prototype system 

to identify the vehicle involved in an accident along with accident scene creation. Sharma et al. 

(2017) constructed a multi-UAV coordinated vehicular network to analyze the driving behavior 

and its effect on road safety.  

From the traffic monitoring and management perspective, Cheng et al. (2009), Heintz et 

al. (2007), and Li (2008) developed algorithms to recognize vehicles and their positions in the 

imagery. Cheng et al. (2009) developed an algorithm that used background elimination and 

registration techniques to identify vehicles. The algorithm developed by Li (2008) was a fuzzy 

segmentation algorithm that combines fuzzy c-partition and genetic algorithm in detecting 

vehicles. Heintz et al. (2007) created an algorithm based on color and thermal images, which 
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construct and maintain qualitative object structures and recognize the traffic behavior of the 

tracked vehicles in real-time. Viktor et al. (2012) designed a pilot study that estimates OD matrices 

at intersections using an airborne video. Ke et al. (2015) did a motion-vector clustering for traffic 

speed detection from UAV video. From the previous studies reviewed, different ideas that have 

already been proposed were synthesized and finally helped in modeling the best approach to focus 

on this study. 

 

Surrogate Safety Measures (SSMs) 

Before developing algorithms to calculate SSMs, it is important to understand the different 

SSMs, their applicability, strengths, and weaknesses. Surrogate safety measures (SSMs) assess 

safety by observing traffic conflicts that may not lead to crashes but pose a high risk of collision 

(Gettman & Head, 2003). SSMs are usually applied when particular crashes are less frequent or 

when the crash record in an area is not sufficient (Peng et al., 2017). Some crashes which might 

be less frequent are poor visibility kinds of crashes like fog-related crashes, smoke-related crashes, 

and heavy rain-related crashes. Therefore, in these cases, if safety is assessed based only on the 

historical number of crashes, which might be few if any, it can sound safe while it is not. The 

conflicts in fog or heavy rain can be relatively high, which makes the situation unsafe. Also, 

sometimes poor record-keeping in an area is a factor that may cause inadequate safety assessment.   

To observe the effectiveness of the SSMs, Tak et al. (2015), and Tak et al. (2020) used an 

action point model perspective described in spacing-relative speed plane representing the driving 

behavior with the psychophysical basis and showing how the driver of the subject vehicle adjusts 

the differences in locations and speeds between the leader and subject (following) vehicle. In the 
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action point model, a driver’s decision is made based on particular perception threshold values. 

When the preceding vehicle’s speed is far greater than the subject vehicle, the state of the subject 

vehicle exceeds the perception threshold of relative speed. Then, the driver of the subject vehicle 

most likely will accelerate. On the other hand, when the preceding vehicle’s speed is much less 

than the subject vehicle, the state of the subject vehicle exceeds the perception threshold of relative 

speed in a negative direction. Then, the subject vehicle’s speed will have to be decreased. The 

spacing adjustment procedure is arranged similarly in the action point model. When the spacing is 

much greater than the desired spacing, the state of the subject vehicle exceeds the perception 

threshold of spacing. Then, the subject vehicle will be tempted to increase the speed to reduce the 

spacing. 

In contrast, the state of the subject vehicle exceeds the perception threshold of spacing in 

a negative direction when the spacing is much less than the desired spacing. Then, the subject 

vehicle’s current speed will have to be reduced. Based on the two kinds of perception thresholds 

and driving behavior, the driver in the subject vehicle decides whether to accelerate or decelerate. 

Hence, in the action point car-following process, the spacing and relative speed are essential 

variables that directly affect the acceleration and deceleration action decision.  

There are several SSMs used in previous studies, including but not limited to TTC, PET, 

DR, DSSM. This study will only focus on TTC, DSSM, and PET because they are the most used 

and widely accepted SSMs. One of the major SSMs that has been proposed in the literature is the 

Time to Collision (TTC) (Abdel-Aty et al., 2011; Ali et al., 2013; Gallelli et al., 2019; Hou et al., 

2013).  

TTC estimates the collision risk between two consecutive vehicles by calculating the 

remaining time before the following vehicle crashes into a leading vehicle, assuming that the path 
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and speed of two consecutive vehicles are maintained. TTC was first introduced in 1971 and since 

then has been applied as a safety indicator in most traffic safety analyses. Minderhoud & Bovy 

(2001) and Svensson & Hydén (2006) concluded that the higher the TTC value, the safer the 

situation is, and vice versa. 

Although TTC has been widely used, it has been observed to have some weaknesses. It 

only classifies states where the subject (following) vehicle is faster than the preceding (leading) 

vehicle as dangerous situations. In terms of the action point, car-following perspective, the 

collision risk could also increase or decrease due to change in acceleration and deceleration of the 

subject vehicle regardless of which vehicle is moving faster than the other among the two 

conflicting vehicles. 

Deceleration-based Surrogate Safety Measure (DSSM) is another SSM that has also been 

used to assess traffic safety. DSSM represents the collision risk with a ratio of maximum braking 

performance of the subject vehicle to a required deceleration rate to avoid an accident when the 

leading vehicle abruptly reduces its speed with maximum braking performance. Some works of 

the literature suggest that DSSM is more efficient in determining rear-end conflicts than TTC 

because DSSM shows more well-matched results to the human driving behavior in terms of the 

action point car-following process (Tak et al., 2015, 2017, 2020). 

Both TTC and DSSM are customarily used to assess the rear-end conflicts. For other types 

of traffic conflicts like cross conflicts, Post Encroachment Time (PET) is used most of the time 

(Nasernejad et al., 2021; Paul & Ghosh, 2021). PET is another surrogate safety measure used in 

particular links or nodes in the traffic network. It represents the time difference between a vehicle 

leaving the encroachment area and a conflicting vehicle entering the same area (Peesapati et al., 

2018).   
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CHAPTER 3 STUDY SITE AND DATA COLLECTION 

Study Site 

The study was based on an unsignalized intersection between Apalachee Parkway (US 27) 

and March Road intersection in Tallahassee, Florida. The site was selected as the study site based 

on the availability of the drone videos and the primarily extracted trajectories by the vendor when 

the study was conducted. Another constraint that led to the determination of the study site was the 

air space classification since a Low Altitude Authorization and Notification Capability (LAANC) 

certification is required for UAS operations nearby airports. Since obtaining this certification is 

time-consuming, the research team avoided intersections closer to airports to conduct this exercise 

and focused on the intersection mentioned above. 

Figure 3-1 shows the study site where the major roadway (Apalachee Parkway) lies in the 

east-west direction with a 55-mph posted speed limit, including two through lanes and a left-turn 

lane in each direction. The east-bound direction also accommodates a right turn lane for the 

Tallahassee National Cemetery visitors. The U.S. Veteran Affairs administer this cemetery, and 

its visitors leave the cemetery using the northbound of the study area where left- and right-turn 

lanes are present. The minor roadway on the other side, March Road, has a 30 mph posted speed 

limit, and it carries the commuter traffic of the residents living in the area. There was also a new 

residential development in the region, which will increase the use of this intersection, and may 

lead to extra conflicts between vehicles. In addition, occasional long queues have been observed 

in the northbound, especially after significant funeral events in the cemetery facility. 
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Data Collection 

The data used in this study is a small sample dataset from a larger experiment where the 

feasibility of TUAS utilization was evaluated on five different intersections in North Florida for 

real-time microscopic traffic data collection. Drone-based data collection was performed using a 

professional UAS service provider, Sinclair Community College National UAS Training and 

Certification Center from Ohio, identified through a Florida State University procurement process. 

During this exercise, the vendor complied with all federal and state laws to operate an uncrewed 

aircraft and provided continuous video of live-stream footage of the intersection and roadway user 

trajectories to conduct further analyses. Because of the continuous video requirement, a tethered 

drone was preferred in this experiment, which has a physical cable connection to the aircraft to 

carry continuous power. The tethered drone could fly for 2 hours and 30 minutes until the batteries 

Figure 3-1: Study area and the selected ground station location to operate the tethered 
drone (TUAS) 
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from the supply were replaced before it could go up in the air for another 2.5 hours. Each road 

user’s coordinates and timestamps in 33 milliseconds intervals were obtained in CSV and tabular 

data format. 

The contractor also teamed up with Simlat Inc. to conduct the required video image 

processing tasks. Due to the legal requirements in the State of Florida, the contractor provided four 

certified drone pilots for a total of 11 workdays between Friday, March 12, 2021, and Tuesday, 

March 23, 2021. This operation team had two trucks and a trailer, including all the required 

hardware and software equipment. The equipment list used in this experiment with their brand and 

model information is presented in Table 3-1. Some items from this list and the drone exercise 

operation from the current study area are illustrated in Figure 3-2. 

Table 3-1: Main  equipment used by the contractor and their brands/models 

Equipment Brand / Model 
Drone #1 DJI M200 
Drone #2 DJI M210/RTK 
Camera #1 DJI Zenmuse Z30 
Camera #2 (backup) DJI Zenmuse X4S 
Drone Controller Screen DJI Crystal Sky 
Tether Elistair Light-T 
Drone Battery with Tether Connection  Elistair air module for DJI M200/210 
Generator for the tether BS 6500 

 

Due to the tether cable restrictions, the maximum altitude was kept between 100 ft. and 

120 ft. for all drone operations. In addition, no operation was conducted when wind speed exceeded 

20 Knots (23 mph) due to the 800 W. pull force limitation on the cable. The reason is that high 

wind swings the cable and creates extra pulling power when it is experienced.  

After completing the field experiments and the video/image processing, the vendor 

provided sample trajectory point data for a 20 minutes (around 09:50 – 10:10 AM) video recorded 
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at the study area on Tuesday, March 16, 2021. This sample dataset included trajectory 

identification numbers, user types, timestamps, and coordinates for every 33 milliseconds (30 fps) 

tabular and CSV format. After several days, the vendor provided another sample trajectory point 

data for two 28 minutes (around 10:10-10:38 AM and 10:38-11:06 AM) videos recorded on the 

same day. The current study presents a traffic study and safety analysis utilizing the three datasets. 
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Figure 3-2: Pictures from the data collection exercise a) Drone DJI M210/RTK, b) DJI 

M200 with Z30 camera attached and batteries, c) Light-T Tether and BS6500 generator, d) 

Inside the working station, e) Crystal sky screen attached to the master drone controller 

and tether pulling force observation screen, and f) labeled live feed video 

(c) 

(a) (b) 

(e) 

(d) 

(f) 
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As discussed in chapter 2, different technologies which could have more or less advantages in 

performing traffic data collection could be used. One of the traffic data collection methods that 

brings the curiosity of whether it is almost the same as the drone usage is video cameras in traffic 

data collection. Fixed video cameras could be used for traffic mobility and safety studies. Still, the 

advantages of using drones outweigh the benefits of using the cameras for the same study. Table 

3-2 summarizes the benefits and challenges of using drones in traffic mobility and safety studies 

over fixed video cameras. 

Table 3-2: A summary of pros and cons of using drones compared to fixed video cameras 

Advantages Limitations 

Fewer cameras are required. Poles on which 
cameras are installed are limited in height, and so 
to cover the same areas as drones that can fly 
higher, more fixed video cameras are needed. 

Availability and affordability problems. 
Drones are more expensive compared to 
fixed video cameras. 

Infrastructures considerations are eliminated. Most 
video cameras have to be attached to public 
infrastructures, such as light poles near the studied 
road segment. 

Some drones have short battery life. Drone 
batteries generally do not last more than 15 
to 20 minutes 

Wider coverage due to better video quality and less 
infrastructure limitations enhance observing queue 
formation,  dissipation, and other traffic metrics 
that may be observed at a distance from a studied 
intersection. 

Weather dependency. Adverse weather 
conditions such as strong wind make data 
collection using drones a challenge. 

The eliminated need for nearby poles makes the 
traffic data collection using drones to cover any 
road segment or shared space 
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CHAPTER 4 METHODOLOGY 

Trajectory Clustering  

Obtained point datasets of the sample trajectories were preprocessed in ArcGIS Pro v2.8. 

First, the points were converted into lines through the identification number of each track (vehicle) 

by the data management tool. Then, these lines were clustered based on their directions to calculate 

the approach volume. 

The stand-alone CSV format table of vehicles’ trajectories was input into ArcGIS Pro. The 

software displayed the X-Y coordinates (longitudes and latitudes/eastings and northings) recorded 

from the video. Using the imagery-based map, the location points of every vehicle in the vendor’s 

video time inside the intersection were shown. The environment in the software was put in the 

appropriate coordinate system so that the map’s coordinate system would match the points’ system 

well. 

 

 

 

 

 

 

 

 

 

Figure 4-1: X-Y coordinates displayed as points 
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The points were auto joined to form the trajectory line for each vehicle’s path to simplify 

the movement count and conflict analysis. The lines were clustered according to their approach 

by selecting them from the trajectory lines shapefile in ArcGIS pro and exporting them. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Points auto-joined to form trajectory lines 
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Figure 4-3: Trajectory lines categorized by their turning movements 
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Gap Study 

A gap study was conducted to check on the studied intersection’s Level of Service (LOS). 

From the ArcGIS pro’s processed trajectory data points, significant turning movements were 

identified from their approaches, and the gap study was conducted on those significant movements. 

In the study period of 1 hour, the significant turning movements were the left-turning movements 

from the east-bound of the Apalachee Pkwy and the right turners from the south-bound of the 

March Rd. 

From ArcGIS pro, timestamps for the beginning of the required trajectory lines were 

obtained. Using the timestamps, the time the vehicle represented by the trajectory line appeared in 

the drone footage was derived. The accepted and rejected gaps by the studied vehicle were 

observed in the footage. 

Critical gap and the follow-up headway were the important two parameters for this part of 

the study’s purpose. The critical gap is the minimum time interval in the major street traffic that 

allows intersection entry for one minor street vehicle. This study determined the critical gap 

graphically by Raff’s method (Troutbeck, 2016).  

The critical gap is when the percentage of traffic accepting the gap equals the percentage 

of the traffic rejecting the gap. The follow-up headway was determined as the time difference 

between the two turning vehicles while making a turn at the intersection during an accepted gap. 

The obtained results were integrated with the count results from clustered trajectories and input in 

HCS 7 software to calculate the LOS of the intersection.  
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Speed Study 

From the same significant turning movements in the gap study, a speed study was 

performed to observe the pattern of the turning and through speed while traversing the intersection. 

The speed algorithm was formulated to track all vehicles’ speeds in each second they are within 

the intersection. The speeds were then classified in colors in ArcGIS pro to present the speed 

pattern aesthetically. 

The initially obtained sample data had only a few helpful pieces of information that enable 

the calculation of the trajectories like speeds, accelerations, and decelerations which are the most 

useful in solving the surrogate safety measures of the traffic in the intersection. Speed and 

acceleration algorithms were developed for speed and safety study purposes. Table 4-1 uses a 

sample vehicle (vehicle ID 0) to represent the information that was initially obtained from the 

vendor. 

Table 4-1: Originally obtained data set for vehicle ID 0 

Track 
ID. 

Timestamp Class Longitude Latitude Northing Easting 

0 100 car -84.18856166 30.42752982 158280.0225 629918.6142 

0 133.3333333 car -84.18854885 30.42752722 158279.7377 629919.8454 

0 166.6666667 car -84.18853275 30.42752447 158279.437 629921.3934 

0 200 car -84.18852045 30.42752163 158279.1254 629922.5757 

0 233.3333333 car -84.18851096 30.42751943 158278.8844 629923.4885 

0 266.6666667 car -84.1885081 30.42751743 158278.6633 629923.763 

0 300 car -84.18850055 30.42751563 158278.4661 629924.4895 
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Speed Calculation 
To obtain speed, some algorithms had to be developed first to find the distance and the 

time difference between any two-vehicle data points. Vehicle Data points were extracted every 1 

second. 

Algorithm 1             

Time difference(t) Calculation(ms) 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     x1(t) and x2(t)= location of V1 and V2, respectively at time t 

    T1, T2 = Timestamps recorded for V1 and V2, respectively 

If  V1 = V2 

RETURN 

t = T2 − T1 

OTHERWISE 

RETURN  

“NULL” 
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Algorithm 2             

Distance(d) Calculation(ft) 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     x1(t) and x2(t)= location of V1 and V2, respectively at time t 

    E1(t) and E2(t) = Eastings of V1 and V2, respectively at time t 

    N1(t) and N2(t) = Northings of V1 and V2, respectively at time t 

    T1, T2 = Timestamps recorded for V1 and V2, respectively 

If  V1 = V2 

RETURN 

d = √(E2 − E1)2 + (N2 − N1)2         (Eq.1)                                                              

OTHERWISE 

RETURN  

“NULL” 

 

Algorithm 3             

Speed(v) Calculation(mph) 

From the distance and time difference calculations shown in the last two pages, the speed 

algorithm was developed and summarized in Figure 4-4. 
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Figure 4-4:Flow chart summarizing speed algorithm 
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Acceleration Calculation  
Acceleration and deceleration are usually crucial in obtaining the deceleration-based 

Surrogate Safety Measure (DSSM). Drivers usually respond by accelerating or decelerating to the 

gap and relative speed between them and the leading vehicles in front of them (Tak et al., 2015). 

The acceleration and deceleration between two conflicting vehicles might increase or decrease 

their risks of collision. 

Algorithm 4             

Acceleration(a) Calculation(mph/s) 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     x1(t) and x2(t)= location of V1 and V2, respectively at time t 

   v1 and v2 = speed of V1 and V2, respectively at time t 
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Figure 4-5: Flow chart summarizing the algorithm for acceleration calculation 

 
As seen in the above algorithm sequences, distance and speed needs at least two data points 

to be calculated while acceleration needs at least three data points to be calculated. Therefore, a 

moving vehicle's distance and speed can be calculated using the coordinates and timestamps of 
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two points in its path. Acceleration calculation requires coordinates and timestamps of 3 points in 

the path of the vehicle. 

 

Surrogate Safety Measures 

Three surrogate measures were used for the analysis: the Time to Collision (TTC), the 

Deceleration-based Surrogate Safety Measure (DSSM), and the Post-encroachment Time (PET). 

The three surrogates were chosen because of their simplicity in analysis and how they simulate the 

safety issue while providing relevant conflict information similar to and sometimes better than 

other surrogate safety measures. A level of potential risk, which could be involved between 

vehicles, was obtained by calculating the TTC, DSSM, and PET parameters using clustered 

trajectories. The purpose of the three parameters was to obtain a bigger picture of the traffic flow 

and conflicts at the intersection. TTC and DSSM were used for rear-end conflicts, while PET was 

used for cross- and side swap-type of conflicts. 

 

Time to Collision (TTC) 
As described in Chapter 2, TTC estimates the collision risk between two consecutive 

vehicles by calculating the remaining time before the following (subject) vehicle crashes into a 

front (leading) vehicle, assuming that the path and speed of two consecutive vehicles are 

maintained. Algorithm 1 is developed for this purpose. 
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Algorithm 5             

TTC Calculation 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     x1(t) and x2(t)= location of V1 and V2, respectively at time t 

    v1(t) and v2(t)= speed of V1 and V2, respectively at time t (ft/s) 

    T1, T2 = Timestamps recorded for V1 and V2, respectively (ms) 

    Li = Length of a Vehicle (20 ft. for this study) 
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Figure 4-6: Algorithm for TTC calculation 
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Post-Encroachment Time (PET) 
As described in Chapter 2, PET represents the time difference between a vehicle leaving 

the encroachment area and a conflicting vehicle entering the same area. 

 

Algorithm 6            

PET Calculation 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     p1(t) and p2(t)= Coordinates of V1 and V2, respectively at time t 

    v1(t) and v2(t)= speed of V1 and V2, respectively at time t (ft/s) 

    T1, T2 = Timestamps recorded for V1 and V2, respectively (ms) 

    P(c) = Point of conflict 

    d1 = distance from p1(t) coordinates to P(c) coordinates (ft) 

    d2 = distance from p2(t) coordinates to P(c) coordinates (ft) 
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Figure 4-7: Algorithm for PET calculation 
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Deceleration-Based Surrogate Safety Measure (DSSM) 
As described in Chapter 2, The DSSM represents the collision risk with a ratio of 

maximum braking performance of the subject vehicle to a required deceleration rate to avoid an 

accident when the leading vehicle abruptly reduces its speed with maximum braking 

performance. 

 

Algorithm 7             

DSSM Calculation 

Let V1 and V2 be two independent trajectories of the leading and the following vehicles, 

respectively 

     x1(t) and x2(t)= location of V1 and V2, respectively at time t 

    v1(t) and v2(t)= speed of V1 and V2, respectively at time t (ft/s) 

    T1, T2 = Timestamps recorded for V1 and V2, respectively (ms) 

   Prt = Perception-reaction time (2.5s) 

    Li = Length of a Vehicle (20 ft. for this study) 

    a1(t) and a2(t) = Acceleration V1 and V2 , respectively at time t (ft/s2) 

    bmax(1) and bmax(2)= Maximum braking rate for V1 and V2, respectively (ft/s2) 

    l1 and l2 = maximum variation of acceleration V1 and V2, respectively (ft/s2) 

    bn(t) = needed deceleration rate of the following vehicle to avoid an accident at time t (ft/s2) 
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Figure 4-8: Algorithm for DSSM calculation 
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Formulae 

    bn(t)= bmax(1)* (V2(t)+a2(t)∗prt)2

2K∗bmax(1)+V1(t)2
       (Eq.2) 

    K = (x1(t) − x2(t) + Li) + (2v2(t) +  a2(t) ∗ prt) ∗
prt

2
− (

v1(t)

2
+

a1(t)+ bmax(1)

4
∗

a1(t)− bmax(1)

l1
) ∗

a1(t)− bmax(1)

l1
+ (

v2(t)

2
+

a2(t)

prt
+

a2(t)+ bmax(2)

4
∗

a2(t)− bmax(2)

l2
) ∗

a2(t)− bmax(2)

l2
 

                     (Eq.3)  

The same timestamp was used in the algorithms because it had a 100% confidence interval 

(CI) that both conflicting vehicles were inside the intersection at the time. Suppose a pair of 

vehicles did not have even a single point with the same timestamp. In that case, this indicates there 

was no corresponding time during the analysis during which the whole pair was inside the 

intersection. For the 33 milliseconds interval of timestamps, this hypothesis was credible enough. 

 

Categorization of the Conflicts 
Based on an American Association of State Highway and Transportation Officials 

(AASHTO) and the Federal Highway Administration (FHWA) ( AASHTO, 2010; FHWA, n.d. ) 

mostly used thresholds, the TTC risk threshold was selected as ≤ 1.5 seconds while the PET risk 

threshold was used as ≤ 5 seconds. For DSSM (Tak et al., 2015) proposed a risk threshold of  ≥  

0.75. However, note that this does not necessarily indicate that any value apart from these 

thresholds is entirely safe, and more research is needed in this area for different situations. In this 

study, the thresholds were categorized into levels of risks. Table 4-2 shows the thresholds as the 

time intervals for the conflicts and associated levels of risks. 
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Table 4-2: TTC, DSSM, and PET thresholds 

Conflict Type Thresholds Associated Level of Risk 

TTC (0-0.5] High Risk 

(0.5-1] Medium Risk 

(1-1.5] Low Risk 

PET (0-1] 
(1-3]  
(3-5] 

High Risk 
Medium Risk 
Low Risk 

DSSM (>1.1) 
 (0.9-1.1] 
(0.75-0.9] 

High Risk 
Medium Risk 
Low Risk 
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CHAPTER 5 RESULTS AND DISCUSSION 

Trajectory Clustering 

In total, 110,418 data points were extracted from the dataset, referring to 1316  trajectories 

with 30 frames per second (fps) resolution. Figure 5-1(a) displays the trajectory data points for the 

first 20 minutes of drone footage. This original format with the trajectory points was first 

preprocessed by converting points to the trajectory lines by point to line data management tool in 

ArcGIS Pro. With this method, misidentified and discontinuous trajectories were identified and 

removed. For example, the intersection’s southwest corner points were presumably included in the 

dataset due to misidentification. Since their converted lines do not represent any possible 

movements in the intersection, they were removed. After the cleanup, a total of 1263 trajectory 

lines was clustered into each approach of the intersection. Hence, the approach volumes were 

extracted as seen in Figure 5-1(b) (sample 20 minutes trajectory data points). The results indicate 

that the major roadway carried approximately 90% of the traffic equally in each direction within 

the study period. Also, vehicles’ positions were obtained every 33 milliseconds. 
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In addition to the approach volume, the number of roadway user classes per approach is 

illustrated in Figure 5-2. The results indicate a high truck volume on the east-bound at this specific 

period, indicating that they are leaving the city (i.e., the east-bound direction is towards outside of 

the city). This pattern can be attributed to the fact that most of the cargo trucks deliver their package 

to the local career office early in the morning and then return to their central station approximately 

in the morning time when the data were collected. 

 

Figure 5-1: Sample trajectory data. a) originally obtained data points. b) preprocessed and 
clustered trajectory lines for the first 20 minutes 
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Figure 5-2: Number of classified vehicles per approach in a study period 

 

The 1-hour study period, turning movement count shows that the most significant 

proportion of the traffic is the through movements in the Apalachee Pkwy followed by the right-

turning movements in the south-bound of the March Rd and the left turners in the east-bound of 

the Apalachee Pkwy.   

Table 5-1: Turning movement count for Apalachee Pkwy, March Rd intersection. 

 
Note: Traj = Trajectory 
          mins = minutes 
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Accuracy Assessment 
A random sample of 100 trajectory lines was selected, and an accuracy analysis was 

performed by observing the counting errors and the movement classification errors in the method. 

The test data was the trajectory lines developed in ArcGIS pro, while the ground truth data to 

assess the accuracy was the video data.  

Statistically the number of sample required to simulate the population while performing 

the accuracy assessment is expected to be low, due to the level of accuracy drones are expected to 

give. It is important to find the logical sample to use in assessing accuracy of the method. The 

following explains how the logical sample size was obtained: 

Let p = Proportion of traffic movements correctly classified 

      q = Proportion of traffic movements wrongly classified 

      z = Z statistic 

      α = Significance level 

Figure 5-3: Vehicle’s trajectory lines categorized by their turning movements for 
the first and second drone footages 
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      MOE = Margin of  error 

      n = Required sample size 

Assuming that the drones used in the study could be at least 95% accurate, let p = 0.95, which 

makes q = 0.05, 

Assuming the MOE of 0.05 to be  precise, 

𝑛 =  
𝑧𝛼/2

2 ∗ 𝑝 ∗ 𝑞

𝑀𝑂𝐸2
 

At a 95% confidence interval, 𝑧𝛼/2 = 1.96, n = 73 

Therefore 73 trajectory lines could be used to check the accuracy. But since the accuracy 

of the drone is not yet known, it is more practicable to use the larger sample size for this study. 

That is why this study used 100 randomly selected trajectory lines as the study sample. 

All 100 trajectory lines represented the drone footages’ movements in the sample, making 

the counting accuracy 100%. In the sample, 96 out of 100 trajectory lines matched the movements’ 

directions observed in the drone videos. The remaining four trajectory lines made no sensible 

movement. They also did not match with what was happening in the drone footages. The four 

movements physically happened at the intersection, but the trajectory lines could not define them. 

 

 

 

                           (Eq.4) 
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Figure 5-5: Vehicle 264 being LT movement in the drone footage 

 

Counting accuracy =positively detected movements in the sample

total number of sample trajectory lines
  (Eq.4) 

Counting accuracy = 100/100 = 100% 

Classification accuracy =Correctly classified trajectory lines in the sample

total number of sample trajectory lines
  (Eq.5) 

Movement Classification Accuracy = 96/100 = 96% 
 

Figure 5-4: Vehicle 264 movement being undefined 
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Gap Study and LOS Analysis 

From the gap study, the critical gap obtained was 5.6 seconds for south-bound right-turning 

movements, 5.7 seconds for the east-bound left-turning movements. The seven vehicles in the 

south-bound left-turning movements indicated a 9 seconds critical gap. The study’s level of 

confidence for south-bound right-turning movements and east-bound left-turning movements is 

significantly higher than the south-bound left-turning movements simply because of the small 

sample used (7 vehicles in 1 hour study period). The average follow-up headway in all the left and 

right-turning movements of 4 seconds was obtained. 

 
Figure 5-6: Critical gap analysis for the south-bound right-turning movements 
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Figure 5-7: Critical gap analysis for the east-bound left-turning movements 
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Figure 5-8: Critical gap analysis for the south-bound left-turning movements 

 

To obtain a peak hour factor (PHF), the movement count was done for four 15 minutes data sets. 

Table 5-2: Four 15 minutes movement count in the 1 hour study period 
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PHF = 1-hour traffic Movement count / 4* highest 15 minutes traffic movement count (Eq.6) 

PHF = 1263

338∗4
=0.934 

HCS7 Two-Way Stop-Control Report 

General Information Site Information 

Analyst   Intersection   

Agency/Co.   Jurisdiction   

Date 
Performed 

9/29/2021 East/West Street   

Analysis Year 2021 North/South Street   

Time 
Analyzed 

  Peak Hour Factor 0.93 

Intersection 
Orientation 

East-West Analysis Time Period (hrs) 1.00 

Project 
Description 

  

Lanes 

  

Vehicle Volumes and Adjustments 

Approach Eastbound Westbound Northbound Southbound 

Movement U L T R U L T R U L T R U L T R 

Priority 1U 1 2 3 4U 4 5 6   7 8 9   10 11 12 

Number of 
Lanes 

0 1 2 1 0 1 2 0  1 0 1  0 1 0 

Configuration  L T R  L T TR  L  R   LTR  

Volume 
(veh/h) 

0 46 536 5 0 2 584 2  1  3  7 0 77 

Percent 
Heavy 
Vehicles (%) 

3 3   3 3    3  3  3 3 3 

Proportion 
Time Blocked 

                

Percent 
Grade (%) 

  0 0 

Right Turn 
Channelized 

No  No  

Median Type 
| Storage 

Left Only 3 

Critical and Follow-up Headways 

Base Critical 
Headway 
(sec) 

 5.7    5.7    7.5  5.6  7.5 6.5 5.6 

Critical 
Headway 
(sec) 

 5.70    5.70    9.00  5.66  9.00 6.56 5.66 
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Base Follow-
Up Headway 
(sec) 

 4.0    4.0    4.0  4.0  4.0 4.0 4.0 

Follow-Up 
Headway 
(sec) 

 4.00    4.00    4.03  4.03  4.00 4.03 4.03 

Delay, Queue Length, and Level of Service 

Flow Rate, v 
(veh/h) 

 49    2    1  3   90  

Capacity, c 
(veh/h) 

 461    486    201  664   567  

v/c Ratio  0.11    0.00    0.01  0.00   0.16  

95% Queue 
Length, Q₉₅ 
(veh) 

 0.4    0.0    0.0  0.0   0.6  

Control Delay 
(s/veh) 

 13.7    12.4    23.0  10.4   12.5  

Level of 
Service (LOS) 

 B    B    C  B   B  

Approach 
Delay (s/veh) 

1.1 0.0 13.6 12.5 

Approach 
LOS 

  B B 

 

 

The minor approaches operate under LOS B in each direction, meaning the intersection 

capacity is still sufficient for the incoming traffic at the time. In the table, HCS default values were 

used in some parameters due to the data limitations encountered in the study. For future studies, a 

comprehensive data collection will assist in getting all the input parameters for HCS. 

 

 
  

Table 5-3: HCS 7 LOS analysis for the 1 hour study period 
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Speed Pattern 

The speed algorithm showed that the 85th percentile of the through movements moves 

around 51 miles per hour (mph) for west-bound movements and 53 mph for east-bound. The speed 

limit in the main approach is 55 mph. The speed reduction is because drivers tend to reduce their 

speed when approaching an intersection for safety reasons. East-bound traffic reduces traffic speed 

less than the west-bound traffic because the significant left-turning movement is from east-bound 

to the March Rd, making the west-bound through traffic more careful while approaching the 

intersection. There are only a few left-turning movements from the west-bound to the cemetery or 

the U-turns. 

The 85th percentile speed for the east-bound left-turning movements (E-LT) is around 18 

mph and 13 mph for the south-bound right turners (S-RT). Vehicles increase their speed as they 

perform south-bound right-turning and east-bound left-turning turning movements. Speeds were 

obtained from 7 locations in the intersection to show the turning traffic speed pattern within the 

intersection. According to (Drivingtips.org, 2010), the ideal speed of performing a right run is 10-

15 mph, while for a left turn is usually 15-20 mph. Therefore the turning speeds obtained are within 

the ideal range. 
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Figure 5-9: Speed data points showing the speed pattern in the intersection for S-RT and 

E-LT movements 
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Figure 5-10: 85th percentile speed in location 1-4 during E-LT movements 
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Figure 5-9: 85th percentile speed in location 5-7 during S-RT movements 
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Surrogate Safety Analysis  

With the same number of PET conflicts in the 1 hour study period, the TTC gave a higher 

total rear-end conflicts than the DSSM as the surrogate safety measure. In the study period, the 

combination of TTC and PET indicated 25 potential risks per 1000 vehicles, while 19 potential 

conflicts per 1000 vehicles were identified in the combination of DSSM and PET. 

 
Figure 5-10: TTC & PET risk count during the study period 

 

4

1
2

9

H I G H  R I S K M E D I U M  R I S K L O W  R I S K

C
O

N
FL

IC
TS

 P
ER

 1
0

0
0

 V
EH

IC
LE

S

LEVEL OF RISK



 
 

50 
 

 

Figure 5-11: DSSM & PET risk count during the study period 

 

 

Figure 5-12: PET risk count during the study period 

 
Figures 5-12 and 5-13 show that the Medium risks dominate in the TTC and PET conflicts 

while Low risks dominate in DSSM&PET conflicts. The difference in number and categories of 

conflicts between DSSM and TTC is because the DSSM follows the action point model more 

thoroughly than the TTC. So there are several conflicts identified by TTC which are not seen as 
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potential conflicts or ranked in a lesser or riskier category by DSSM and vice-versa. For example, 

there are some conflicts in which the following vehicle moves faster than the leading vehicle; 

however, due to the deceleration action behavior taken by the driver, it is not identified as a risk 

by DSSM but identified as a risk TTC. Also, sometimes when a leading vehicle moves faster than 

the following vehicle and the following vehicle takes an acceleration action that can be categorized 

as a risk by DSSM but will never be seen as a Risk by TTC because the leading vehicle is moving 

faster. 

Figures 5-15, 5-16, 5-17, and 5-18 further illustrate the conflicts, their types, and locations 

at the intersection. Only 3 types of conflicts were observed during the study hour: merging, cross 

and rear-end conflicts. The results show that for LT movements, 1 cross conflict is expected per 

every 15 LT movements conflicting with 195 T movements in one hour. For RT movements, 1 

merging conflict is expected per every 38 RT movements merging in a 292 T traffic in one hour. 

For T movements, there is expected to be 1 rear-end conflict per 42 T traffic in one hour for west-

bound and 1 rear-end conflict per 49 T traffic for east-bound (TTC analysis). Using DSSM 

analysis, 1 rear-end conflict per 53 T traffic is expected for west-bound movements while 1 rear-

end conflict is expected per 76 T traffic for east-bound movements. 
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Figure 5-13: Locations and types of conflicts defined by PET 

 

 
Figure 5-14: A summary representation of conflicts determined by PET 
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Figure 5-15: Rear end conflicts defined by TTC 

 

 
Figure 5-16: Rear end conflicts defined by DSSM 

 
Figure 5-19 also demonstrates an example conflict identified using the drone footage for 

each risk group. These conflicts were also successfully identified using the proposed methodology, 

as shown by the associated PET, TTC, and DSSM values shown: high risk (0.9), moderate risk 

(0.558), and low risk (0.69), respectively.  
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Figure 5-17: Examples of conflicts identified for each category of risk 

 
Since the intersection is prone to around 20 potential conflicts per 1000 vehicles in just a 

time interval of 1 hour, which is not even in the assumed peak hours, which are usually early in 

the morning, this may indicate a safety problem associated with the intersection. Most of the 

conflicts analyzed by the surrogate measures are rear-end conflicts that are not susceptible to 

correction by signalization. Still, the PET SSM determined 5 cross conflicts per 1000 vehicles, 

which indicates the likely need for signalization or other mitigation measures such as constructing 

a roundabout at the intersection. This feasibility analysis shows the need for countermeasures. That 

is probably why FDOT asked to conduct a signal warrant study based on the safety problems 

identified at this specific location. Note that signal warrant study is the standard method to conduct 

an engineering analysis that determines whether a signal control is required on uncontrolled or 

stop-sign controlled intersections.  

This location has been selected for a possible countermeasure to avoid the associated safety 

problems, and this study proposes a feasibility study in identifying these problems based on a 

tethered drone-based data collection exercise. The research team will focus on using the proposed 
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methodology for other periods at the same intersection and other intersections in Tallahassee and 

Jacksonville, which are currently being studied. 

 

Lessons Learned  

All in all, the findings demonstrate the capabilities of drone-based microscopic traffic data 

extraction. There are some challenges present regarding the use of drones, the most significant one 

being weather dependency. For example, rain can ruin the whole data collection operation. UASs 

are weather-dependent, and Remote Pilot in Command (RPIC) should continuously check the 

weather and wind. Beyond general operation challenges, UAS based video-image processing has 

its problems. In the transportation field, vision-based traffic monitoring dates back to the 1990s. 

However, the situation gets more challenging for the aerial videos since there are six more degrees 

of freedom (3 dimensions & 3orientations between the X, Y, and Z axes) related to the camera’s 

movement. 

Although mobility is one of the most significant advances for drones, in some cases, 

stability is more beneficial than mobility to stabilize the background. Some algorithms can align 

the subsequent frames before detect-and-tract algorithms; however, they increase the 

computational cost. Another problem is the visibility disruptions due to light. As the performance 

of UAS-based traffic monitoring relies heavily on clear video footage, the study can be disrupted 

by occlusion due to clouds or foggy weather. Although drones bring some solutions for this, they 

are still sensitive to daylight conditions. Another challenge will be locating the tethered drone 

ground unit since the operation will require a clear distance, and a vertical connection should be 
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kept taut. Locating the unit is also critical since it may require additional permissions from the 

location owner if it is not part of the right-of-way. 

The performance of vision-based detection and tracking algorithms depends on the density 

of the object to be determined. Therefore, vehicle, bicycle, motorcycle, and pedestrian detection 

in congested conditions may lack accuracy. Machine learning and deep learning algorithms can 

overcome this problem as they are trained with positive and negative images of objects. Note that 

the studied location did not have high pedestrian and non-motorists traffic. 

The drone used in this study was not one of the most powerful drones like those that could 

run for 24 hours straight without the powering batteries needing to be charged (ELISTAIR Inc., 

n.d.). The batteries for the drone used in this study could operate for the maximum of 2.5 hours 

before requiring to be charged. This makes the drone applied for the study unlikely to be used in 

studies that unbiasedly need to be conducted in more than 2.5 hours without a single break. 

Although promising, a traffic conflict analysis based on surrogate measures is not enough 

by itself. Conflicts should also be compared with real-life crash data to identify how successful the 

conflict analysis simulates the actual crash conflict points. This validation will significantly be 

impacted by the assumptions and imposed limitations related to the driver compositions, geometric 

characteristics, and time periods being studied. 

Few data in some movements made the analysis less efficient. Turning speed trend and gap 

study could only be analyzed for south-bound right-turning movements and east-bound left-turning 

movements since there were a relatively significant number of movements in the one-hour study 

period than other turning movements. 
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

This study explored the uses of tethered drones in traffic data collection by performing 

traffic studies and obtaining the surrogate safety measures at an unsignalized intersection in 

Tallahassee, Florida. The proposed approach provided different vehicle trajectories that manual 

data collection could not easily capture over a relatively larger space along with the traffic 

movement counts. Some of those trajectories that could effortlessly be extracted include the 

vehicle coordinate locations at a specific time, their speeds, and accelerations. These are the crucial 

parameters in getting the traffic movement pattern and the movement count, which are the essential 

prerequisites of any traffic and safety study.  

 The algorithms developed calculated hundreds of thousands of trajectories and SSMs in a 

click. In less than a minute, a specific trajectory such as speed or one of the SSMs was calculated 

for around 30,000 data points.  The counting accuracy for this approach is 100%. The approach 

movement classification detection is 96% accurate, with 4% of processed trajectory lines 

undefined by the drone and its integrated AI (YOLO). This level of accuracy makes the method 

better than most of the advanced traffic data collection methods 

The number of potential conflicts obtained in 1 non-peak-hour may indicate a problem 

associated with the intersection. The SSMs indicate the likely need for signalization due to the 5 

cross conflicts detected by PET in 1 hour duration. Also, due to almost around 20 rear-end conflicts 

detected by TTC and DSSM in the study hour, some countermeasures could be applied before the 

intersection. These conflicts could also be minimized by converting the simple cross junction to a 

roundabout. 

In addition, for future work, the resulting conflicts of this analysis could be compared with 

the crash data for validation purposes after doing the safety studies in other intersections to get 
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more data for statistical purposes. The future work’s analysis and the results obtained from it could 

make the safety guidelines such as warrants to be introduced based on SSMs.  

A gap study comparing gaps in different lanes could be done soon to understand the gap 

acceptance and rejecting behaviors for drivers on different lanes. For multilane highways, drivers 

are expected to drive at different speeds in different lanes. In the U.S., vehicles in left lanes are 

supposed to be moving at higher speeds than vehicles in right lanes. Hence understanding the gap 

acceptance and rejectance for conflicting vehicles in different lanes could be a reasonable study. 

A sensitivity analysis focusing on different traffic conflict parameters would be beneficial 

in identifying the most appropriate parameters for a traffic conflict-based safety analysis at a 

specific intersection. Modeling factors that could affect the SSMs has the potential for improving 

the prediction of crashes. 

The findings of this study can help develop appropriate guidelines and recommendations 

to FDOT and other transportation agencies in terms of evaluating and justifying the feasibility of 

using tethered drones as one of the efficient and effective data collection alternatives while 

significantly improving intersection safety and operations. The results and recommendations of 

this research can also be used by the FDOT’s and other agencies’ consultants who already perform 

traffic data collection on Florida’s roadways. Notably, drone-based traffic data collection requires 

a full collaboration with traffic engineers, drone operators, and video-image processing 

professionals because the whole process is fully connected. 
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