2,682 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    5G Smart and innovative Healthcare services: opportunities, challenges and prospective solutions

    Get PDF
    Due to its abilities to boost productivity, reduce costs and enhance user experiences, smart healthcare is widely recognised as a potential solution to reduce pressures on existing health systems. Since the new era of 5G will unite enhanced connectivity, improved cloud-based storage and interconnection of an array of devices and services, a massive boost in the digital transformation of healthcare is expected. In this transformation process, healthcare services such as medical diagnosis, treatment and remote surgery will be facilitated by a range of technologies such as Internet of Things, Robotics and Artificial Intelligence, among others, that will advance further under 5G. Moreover, real-time health services will become a reality and will offer people with quality care and improved experiences. On the other hand, different challenges can hinder the proliferation of 5G smart and innovative healthcare solutions, including security and heterogeneous devices. This chapter presents how 5G will boost digital transformation of healthcare through delivery and consumption of smart and innovative healthcare services, while probing into key hurdles in the process as well as prospective solutions

    Robot–City Interaction: Mapping the Research Landscape—A Survey of the Interactions Between Robots and Modern Cities

    Get PDF
    The goal of this work is to describe how robots interact with complex city environments, and to identify the main characteristics of an emerging field that we call Robot--City Interaction (RCI). Given the central role recently gained by modern cities as use cases for the deployment of advanced technologies, and the advancements achieved in the robotics field in recent years, we assume that there is an increasing interest both in integrating robots in urban ecosystems, and in studying how they can interact and benefit from each others. Therefore, our challenge becomes to verify the emergence of such area, to assess its current state and to identify the main characteristics, core themes and research challenges associated with it. This is achieved by reviewing a preliminary body of work contributing to this area, which we classify and analyze according to an analytical framework including a set of key dimensions for the area of RCI. Such review not only serves as a preliminary state-of-the-art in the area, but also allows us to identify the main characteristics of RCI and its research landscape

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF

    5G Smart and innovative Healthcare services: opportunities, challenges and prospective solutions

    Get PDF
    Due to its abilities to boost productivity, reduce costs and enhance user experiences, smart healthcare is widely recognised as a potential solution to reduce pressures on existing health systems. Since the new era of 5G will unite enhanced connectivity, improved cloud-based storage and interconnection of an array of devices and services, a massive boost in the digital transformation of healthcare is expected. In this transformation process, healthcare services such as medical diagnosis, treatment and remote surgery will be facilitated by a range of technologies such as Internet of Things, Robotics and Artificial Intelligence, among others, that will advance further under 5G. Moreover, real-time health services will become a reality and will offer people with quality care and improved experiences. On the other hand, different challenges can hinder the proliferation of 5G smart and innovative healthcare solutions, including security and heterogeneous devices. This chapter presents how 5G will boost digital transformation of healthcare through delivery and consumption of smart and innovative healthcare services, while probing into key hurdles in the process as well as prospective solutions

    Sustainability and Trust for Artificial Intelligence Technologies

    Get PDF
    Hammer B, van der Aalst W, Bauckhage C, et al. Sustainability and Trust for Artificial Intelligence Technologies.; 2020
    • …
    corecore