634,146 research outputs found

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Statistical Emission Image Reconstruction for Randoms-Precorrected PET Scans Using Negative Sinogram Values

    Full text link
    Many conventional PET emission scans are corrected for accidental coincidence (AC) events, or randoms, by real-time subtraction of delayed-window coincidences, leaving only the randoms-precorrected data available for image reconstruction. The real-time precorrection compensates in mean for AC events but destroys Poisson statistics. Since the exact log-likelihood for randoms-precorrected data is inconvenient to maximize, practical approximations are desirable for statistical image reconstruction. Conventional approximations involve setting negative sinogram values to zero, which can induce positive systematic biases, particularly for scans with low counts per ray. We propose new likelihood approximations that allow negative sinogram values without requiring zero-thresholding. We also develop monotonic algorithms for the new models by using "optimization transfer" principles. Simulation results show that our new model, SP-, is free of systematic bias yet keeps low variance. Despite its simpler implementation, the new model performs comparably to the saddle-point (SD) model which has previously shown the best performance (as to systematic bias and variance) in randoms-precorrected PET emission reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85893/1/Fessler185.pd

    RTDS implementation of an improved sliding mode based inverter controller for PV system

    Get PDF
    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems

    Emission Image Reconstruction for Randoms-Precorrected PET Allowing Negative Sinogram Values

    Full text link
    Most positron emission tomography (PET) emission scans are corrected for accidental coincidence (AC) events by real-time subtraction of delayed-window coincidences, leaving only the randoms-precorrected data available for image reconstruction. The real-time randoms precorrection compensates in mean for AC events but destroys the Poisson statistics. The exact log-likelihood for randoms-precorrected data is inconvenient, so practical approximations are needed for maximum likelihood or penalized-likelihood image reconstruction. Conventional approximations involve setting negative sinogram values to zero, which can induce positive systematic biases, particularly for scans with low counts per ray. We propose new likelihood approximations that allow negative sinogram values without requiring zero-thresholding. With negative sinogram values, the log-likelihood functions can be nonconcave, complicating maximization; nevertheless, we develop monotonic algorithms for the new models by modifying the separable paraboloidal surrogates and the maximum-likelihood expectation-maximization (ML-EM) methods. These algorithms ascend to local maximizers of the objective function. Analysis and simulation results show that the new shifted Poisson (SP) model is nearly free of systematic bias yet keeps low variance. Despite its simpler implementation, the new SP performs comparably to the saddle-point model which has shown the best performance (as to systematic bias and variance) in randoms-precorrected PET emission reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85994/1/Fessler61.pd

    Generalized Method Of Designing Unmanned Remotely Operated Complexes Based On The System Approach

    Get PDF
    Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions.The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown.The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages

    Active Traffic Management Case Study: Phase 1

    Get PDF
    This study developed a systematic approach for using data from multiple sources to provide active traffic management solutions. The feasibility of two active traffic management solutions is analyzed in this report: ramp-metering and real-time crash risk estimation and prediction. Using a combined dataset containing traffic, weather, and crash data, this study assessed crash likelihood on urban freeways and evaluated the economic feasibility of providing a ramp metering solution. A case study of freeway segments in Omaha, Nebraska, was conducted. The impact of rain, snow, congestion, and other factors on crash risk was analyzed using a binary probit model, and one of the major findings from the sensitivity analysis was that a one-mile-per-hour increase in speed is associated with a 7.5% decrease in crash risk. FREEVAL was used to analyze the economic feasibility of the ramp metering implementation strategy. A case study of a 6.3 mile segment on I-80 near downtown Omaha showed that, after applying ramp metering, travel time decreased from 9.3 minutes to 8.1 minutes and crash risk decreased by 37.5% during the rush hours. The benefits of reducing travel time and crash cost can easily offset the cost of implementing ramp metering for this road section. The results from the real-time crash risk prediction models developed for the studied road section are promising. A sensitivity analysis was conducted on different models and different temporal and spatial windows to estimate/predict crash risk. An adaptive boosting (AdaBoost) model using a 10 minute historical window of speeds obtained from 0.25 miles downstream and 0.75 miles upstream was found to be the most accurate estimator of crash risk

    Modeling and Simulation of Offshore Wind Farms for Smart Cities

    Get PDF
    Wind turbine models and simulations are widely available, but the simulation of a wind farm is scarce. This chapter presents a systematic approach to simulate an offshore wind farm for smart cities. The subsystems of several variable-pitch wind turbines, namely, rotor blades, drivetrain, and induction generator, are modeled to form a wind farm. The total output power of the wind farm by considering multiple wind turbines with the wake losses (using the Jensen wake model) can be simulated with any input wind speed. In order to validate the accuracy of the simulation, a case study was performed on a German offshore wind farm called NordseeOst. The simulation shows promising results with an average error of approximately 5% when compared with the real-time output of the wind farm. The results showed that the simulation of a wind farm that often impeded by the lack of exact information is feasible before any site implementation for smart cities

    The effect of model structure on the noise and disturbance sensitivity of Predictive Functional Control

    Get PDF
    An Independent Model (IM) structure has become a standard form used in Predictive Functional Control (PFC) for handling uncertainty. Nevertheless, despite its popularity and efficacy, there is a lack of systematic analysis or academic rigour in the literature to justify this preference. This paper seeks to fill this gap by analysing the effectiveness of different prediction models, specifically the IM structure and T-filter, for handling noise and disturbances. The observations are validated via both closed-loop simulation and real-time implementation and show that the sensitivity relationships are system dependent, which in turn emphasises the importance of performing this analysis to ensure a robust PFC implementation

    Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature

    Get PDF
    Background: Healthcare-associated infections (HAIs) are the most frequent adverse events in healthcare and a global public health concern. Surveillance is the foundation for effective HAIs prevention and control. Manual surveillance is labor intensive, costly and lacks standardization. Artificial Intelligence (AI) and machine learning (ML) might support the development of HAI surveillance algorithms aimed at understanding HAIs risk factors, improve patient risk stratification, identification of transmission pathways, timely or real-time detection. Scant evidence is available on AI and ML implementation in the field of HAIs and no clear patterns emerges on its impact. Methods: We conducted a systematic review following the PRISMA guidelines to systematically retrieve, quantitatively pool and critically appraise the available evidence on the development, implementation, performance and impact of ML-based HAIs detection models. Results: Of 3445 identified citations, 27 studies were included in the review, the majority published in the US (n = 15, 55.6%) and on surgical site infections (SSI, n = 8, 29.6%). Only 1 randomized controlled trial was included. Within included studies, 17 (63%) ML approaches were classified as predictive and 10 (37%) as retrospective. Most of the studies compared ML algorithms' performance with non-ML logistic regression statistical algorithms, 18.5% compared different ML models' performance, 11.1% assessed ML algorithms' performance in comparison with clinical diagnosis scores, 11.1% with standard or automated surveillance models. Overall, there is moderate evidence that ML-based models perform equal or better as compared to non-ML approaches and that they reach relatively high-performance standards. However, heterogeneity amongst the studies is very high and did not dissipate significantly in subgroup analyses, by type of infection or type of outcome. Discussion: Available evidence mainly focuses on the development and testing of HAIs detection and prediction models, while their adoption and impact for research, healthcare quality improvement, or national surveillance purposes is still far from being explored
    corecore