68 research outputs found

    Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019

    Get PDF
    Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Forestry and Arboriculture Applications Using High-Resolution Imagery from Unmanned Aerial Vehicles (UAV)

    Get PDF
    Forests cover over one-third of the planet and provide unmeasurable benefits to the ecosystem. Forest managers have collected and processed countless amounts of data for use in studying, planning, and management of these forests. Data collection has evolved from completely manual operations to the incorporation of technology that has increased the efficiency of data collection and decreased overall costs. Many technological advances have been made that can be incorporated into natural resources disciplines. Laser measuring devices, handheld data collectors and more recently, unmanned aerial vehicles, are just a few items that are playing a major role in the way data is managed and collected. Field hardware has also been aided with new and improved mobile and computer software. Over the course of this study, field technology along with computer advancements have been utilized to aid in forestry and arboricultural applications. Three-dimensional point cloud data that represent tree shape and height were extracted and examined for accuracy. Traditional fieldwork collection (tree height, tree diameter and canopy metrics) was derived from remotely sensed data by using new modeling techniques which will result in time and cost savings. Using high resolution aerial photography, individual tree species are classified to support tree inventory development. Point clouds were used to create digital elevation models (DEM) which can further be used in hydrology analysis, slope, aspect, and hillshades. Digital terrain models (DTM) are in geographic information system (GIS), and along with DEMs, used to create canopy height models (CHM). The results of this study can enhance how the data are utilized and prompt further research and new initiatives that will improve and garner new insight for the use of remotely sensed data in forest management

    A keystone species, European aspen (Populus tremula L.), in boreal forests : Ecological role, knowledge needs and mapping using remote sensing

    Get PDF
    European aspen (Populus tremula L.) is a keystone species in boreal forests that are dominated by coniferous tree species. Both living and dead aspen trees contribute significantly to the species diversity of forest landscapes. Thus, spatial and temporal continuity of aspen is a prerequisite for the long-term persistence of viable populations of numerous aspen-associated species. In this review, we collate existing knowledge on the ecological role of European aspen, assess the knowledge needs for aspen occurrence patterns and dynamics in boreal forests and discuss the potential of different remote sensing techniques in mapping aspen at various spatiotemporal scales. The role of aspen as a key ecological feature has received significant attention, and studies have recognised the negative effects of modern forest management methods and heavy browsing on aspen occurrence and regeneration. However, the spatial knowledge of occurrence, abundance and temporal dynamics of aspen is scarce and incomprehensive. The remote sensing studies reviewed here highlight particularly the potential of three-dimensional data derived from airborne laser scanning or photogrammetric point clouds and airborne imaging spectroscopy in mapping European aspen, quaking aspen (Populus tremuloides Michx.) and other Populus species. In addition to tree species discrimination, these methods can provide information on biophysical, biochemical properties and even genetic diversity of aspen trees. Major obstacles in aspen detection using remote sensing are the low proportion and scattered occurrence of European aspen in boreal forests and the overlap of spectral and/or structural properties of European aspen and quaking aspen with some other tree species. Furthermore, the suitability of remote sensing data for aspen mapping and monitoring depends on the geographical coverage of data, the availability of multitemporal data and the costs of data acquisition. Our review highlights that integration of ecological knowledge with spatiotemporal information acquired by remote sensing is key to understanding the current and future distribution patterns of aspen-related biodiversity.peerReviewe

    Evaluation of low-cost Earth observations to scale-up national forest monitoring in Miombo Woodlands of Malawi

    Get PDF
    This study explored the extent that low-cost Earth Observations (EO) data could effectively be combined with in-situ tree-level measurements to support national estimates of Above Ground Biomass (AGB) and Carbon (C) in Malawi’s Miombo Woodlands. The specific objectives were to; (i) investigate the effectiveness of low-cost optical UAV orthomosaics in geo-locating individual trees and estimating AGB and C, (ii) scale-up the AGB estimates using the canopy height model derived from the UAV imagery, and crown diameter measurements; and (iii) compare results from (ii), ALOS-PALSAR-2, Sentinel1, ESA CCI Biomass Map datasets, and Sentinel 2 vis/NIR/SWIR band combination datasets in mapping biomass. Data were acquired in 2019 from 13 plots over Ntchisi Forest in 3-fold, vis-a-vis; (i) individual tree measurements from 0.1ha ground-based (gb) plots, (ii) 3-7cm pixel resolution optical airborne imagery from 50ha plots, and (iii) SAR backscatter and Vis/NIR/SWIR bands imagery. Results demonstrate a strong correlational relationship (R2 = 0.7, RMSE = 11tCha-1) between gb AGB and gb fractional cover percent (FC %), more importantly (R2 = 0.7) between gb AGB and UAV-based FC. Similarly, another set of high correlation (R2 = 0.9, RMSE = 7tCha-1; R2 = 0.8, RMSE = 8tCha-1; and R2 = 0.7) was observed between the gb AGB and EO-based AGB from; (i) ALOS-PALSAR-2, (ii) ESA-CCI-Biomass Map, and (iii) S1-C-band, respectively. Under the measurement conditions, these findings reveal that; (i) FC is more indicative of AGB and C pattern than CHM, (ii) the UAV can collect optical data of very high resolution (3-7cm resolution with ±13m horizontal geolocation error), and (iii) provides the cost-effective means of bridging the ground datasets to the wall-to-wall satellite EO data (£7 ha-1 compared to £30 ha-1, per person, provided by the gb system). The overall better performance of the SAR backscatter (R2 = 0.7 to 0.9) establishes the suitability of the SAR backscatter to infer the Miombo AGB and fractional cover with high accuracy. However, the following factors compromised the accuracy for both the SAR and optical measurements; leaf-off and seasonality (fire, aridness), topography (steep slopes of 18-74%), and sensing angle. Inversely, the weak to moderate correlation observed between the gb height and UAV FC % measurements (R2 = 0.4 to 0.7) are attributable to the underestimation systematic error that UAV height datasets are associated with. The visual lacunarity analysis on S2-Vis/NIR/SWIR composite band and SAR backscatter measurements demonstrated robust, consistent and homogenous spatial crown patterns exhibited particularly by the leaf-on tree canopies along riverine tree belts and cohorts. These results reveal the potential of vis/NIR/SWIR band combination in determining the effect of fire, rock outcrops and bare land/soil common in these woodlands. Coarsening the EO imagery to ≥50m pixel resolution compromised the accuracy of the estimations, hence <50m resolution is the ideal scale for these Miombo. Careful consideration of the aforementioned factors and incorporation of FC parameter in during estimation of AGB and C will go a long way in not only enhancing the accuracy of the measurements, but also in bolstering Malawi’s NFMS standards to yield carbon off-set payments under the global REDD+ mechanism

    Tree Stem Detection and Crown Delineation in a Structurally Diverse Deciduous Forest Combining Leaf-On and Leaf-Off UAV-SfM Data

    Get PDF
    Accurate detection and delineation of individual trees and their crowns in dense forest environments are essential for forest management and ecological applications. This study explores the potential of combining leaf-off and leaf-on structure from motion (SfM) data products from unoccupied aerial vehicles (UAVs) equipped with RGB cameras. The main objective was to develop a reliable method for precise tree stem detection and crown delineation in dense deciduous forests, demonstrated at a structurally diverse old-growth forest in the Hainich National Park, Germany. Stem positions were extracted from the leaf-off point cloud by a clustering algorithm. The accuracy of the derived stem co-ordinates and the overall UAV-SfM point cloud were assessed separately, considering different tree types. Extracted tree stems were used as markers for individual tree crown delineation (ITCD) through a region growing algorithm on the leaf-on data. Stem positioning showed high precision values (0.867). Including leaf-off stem positions enhanced the crown delineation, but crown delineations in dense forest canopies remain challenging. Both the number of stems and crowns were underestimated, suggesting that the number of overstory trees in dense forests tends to be higher than commonly estimated in remote sensing approaches. In general, UAV-SfM point clouds prove to be a cost-effective and accurate alternative to LiDAR data for tree stem detection. The combined datasets provide valuable insights into forest structure, enabling a more comprehensive understanding of the canopy, stems, and forest floor, thus facilitating more reliable forest parameter extraction

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Unmanned Aerial Vehicles for Vegetation Mapping: Opportunities and Challenges

    Get PDF
    Pflanzen sind eng mit einer Reihe von Ökosystemprozessen und -dienstleistungen wie die Bereitstellung von Lebensmitteln und Trinkwasser, die Klimaregulierung sowie die Bodenbildung und Kohlenstoffspeicherung verbunden. Deshalb können Vegetationseigenschaften wie Artenreichtum, Biodiversität und Pflanzenmerkmale zur Bewertung und Überwachung von Ökosystemprozessen genutzt werden. Die genaue Beobachtung von Vegetationsveränderungen ist daher entscheidend für das Verständnis der aktuellen und zukünftigen Ökosystemdynamik. Fernerkundungsdaten haben hohes Potenzial Vegetationseigenschaften und -prozesse räumlich abzubilden. Die zunehmende Verfügbarkeit von sehr hochauflösenden Fernerkundungsdaten ermöglicht auch die Untersuchung von feinskaligen Prozessen. Die für niedriger aufgelöste Fernerkundungsdaten entwickelten Auswertungsverfahren sind häufig nicht auf sehr hochaufgelöste Daten übertragbar. Daher werden neue Verfahren benötigt, um das volle Potenzial auszuschöpfen. Die Vorteile von sehr hochauflösenden Daten liegen unter anderem in der Erkennung von einzelnen Pflanzen und der besseren räumlichen Feinabstimmung mit Felddaten. Diese Vorteile ermöglichen die genaue Kartierung von Pflanzenarten auf der Ebene einzelner Individuen und Vegetationseigenschaften auf der Ebene von Pflanzengesellschaften, wie die Biodiversität, oberirdische Biomasse oder Artenzusammensetzung. Unbemannte Luftfahrzeuge (UAVs) werden als kostengünstige Plattform zur Gewinnung von Daten mit sehr hoher Auflösung, insbesondere für kleine Gebiete, verwendet. Daher ist ihr Einsatz gut zur Entwicklung neuer Methoden geeignet. Das Ziel dieser Arbeit war die Feststellung von Vorteilen und Limitierungen der Nutzung von UAVs zur Vegetationskartierung. Der Fokus der Arbeit lag auf zwei Hauptthemen, die Kartierung von Pflanzenarten und kleinräumigen Ökosystemprozessen. Eine der Fallstudien zeigte, dass die Verwendung von sehr hochauflösenden Daten zur Klassifizierung von Pflanzenarten durch die Überlappung verschiedener Arten erschwert wird. Daher ist Nutzung solcher Daten zur direkten Kartierung von Grünlandarten nur für Habitate mit geringer Vegetationsbedeckung und einfachen Strukturen, wie beispielsweise Dünenhabitate, vielversprechend. Eine zweite Fallstudie ergab, dass der Schattenwurf von Baumkronen den Erfolg von UAV-basierten Klassifikationen der invasiven Baumarten Ulex europaeus\textit{Ulex europaeus}, Acacia dealbata\textit{Acacia dealbata} und Pinus radiata\textit{Pinus radiata} erheblich beeinflusst. Dabei machte es keinen Unterschied ob optische Daten oder Informationen über die Textur oder Kronenstruktur verwendet wurden. Anhand von Simulationen wurde dargestellt, dass jede Art aufgrund ihrer spezifischen Kronenarchitektur unterschiedliche Schatten erzeugt. Die optimalen Zeitfenster zur Klassifikation im Verlaufe eines Tages unterscheiden sich daher zwischen den einzelnen Arten. In einer dritten Fallstudie wurde gezeigt, dass Merkmale der oberirdischen Vegetation als Proxy genutzt werden können um Kartierungen von unterirdischen Kohlenstoffvorräten in Mooren zu verbessern. Ein empirisches Modell wurde genutzt um unter- und oberirdische Merkmale zu verknüpfen. Dafür wurden kontinuierliche Daten mit Informationen über Höhe, Biomasse, sowie den Artenreichtum und die Artenzusammensetzung der Vegetation verwendet. UAV Daten wurden genutzt um die relevanten oberirdischen Merkmale zu kartieren. Der unterirdische Kohlenstoffvorrat wurde dann durch die Parametrisierung des plotbasierten Modells mit den UAV-Extrapolationen kartiert. Dies deutet darauf hin, dass auch Ökosystemeigenschaften mit geringem direkten Einfluss auf die Reflektanz mit Hilfe von Vegetationsmerkmalen als Proxies kartiert werden können. Da bei Kopplung empirischer Modelle in jedem Modellierungsschritt fehlerbehaftete Voraussagen entstehen können, wird ein solcher Ansatz nur empfohlen, wenn starke empirische Verbindungen zwischen den feldbasierten Variablen vorliegen. Diese Arbeit zeigt, dass mit UAVs erhobene Erdbeobachtungsdaten geeignet sind, um die technischen und umweltbedingten Voraussetungen für eine erfolgreiche Kartierung von Pflanzenarten zu erforschen, um neue Methoden zu entwickeln, welche die Genauigkeit von Klassifikationen aus sehr hochaufgelösten Daten erhöhen und um Vegetationseigenschaften mit unterirdischen Gradienten zu verknüpfen. Die Arbeit enthält außerdem Empfehlungen und Vorschläge für die zukünftige Erforschung von feinskaligen Vegetationsprozessen
    corecore