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Abstract 21 
 22 
Sustainable forest management relies on good knowledge of forest structure obtained from 23 
ground surveys combined with remote sensing. Capable of detecting both the forest floor and 24 
canopy elements, airborne LiDAR can estimate forest structure parameters with accuracy and 25 
precision, but is still difficult to acquire due to the lake of service provider in remote regions of 26 
developing countries. Alternatively if ground surface elevations are known (e.g., from LiDAR), 27 
they can be tied to a canopy surface model derived from stereo photogrammetry using RGB 28 
images from inexpensive unmanned aerial vehicles (UAV), thus reducing the cost of post-harvest 29 
forest structure monitoring. Here we assessed whether such photogrammetric canopy 30 
measurements offer aboveground biomass (AGB) and disturbance impact estimates from 31 
logging that are comparable to LiDAR, and whether the use of both in sequence can provide an 32 
efficient post-harvest monitoring system. Specifically, through a combination of forest inventory 33 
ground plots, airborne LiDAR data, and a UAV-RGB camera system we (i) automatically located 34 
and measured canopy disturbance caused by logging, (ii) compared AGB models produced by 35 
LiDAR alone and the combination of LiDAR (for terrain elevation model) and RGB-36 
photogrammetry (for forest surface model), and (iii) estimated the AGB stock loss from logging. 37 
The study was carried out in the Antimary State forest located in the southwestern Brazilian 38 
Amazon. Our results demonstrate that the use of RGB-photogrammetry in regions where the 39 
terrain elevation has already been estimated can be an inexpensive and effective way to rapidly 40 
identify selective logging and to accurately monitor its impact. 41 
 42 
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1. Introduction 46 

The capacity of tropical forests to be sustainably managed for timber is an important question 47 

for the conservation of biodiversity and ecosystem services such as carbon sequestration (Asner 48 

et al., 2005). Sustainable production of tropical forests, however, is questionable due to 49 

inadequate regeneration potential of valuable timber species and slow ecological recovery times 50 

(Zimmmerman & Kormos, 2012). Recent studies also provide strong evidence that rates of tree 51 

mortality are increasing in tropical forests due to climate change (Mc Dowell, et al., 2018). In the 52 

Amazon, forest carbon sinks are declining (Brienen et al., 2015), while the time required for 53 

managed forests to recover commercial timber stocks has been longer than expected 54 

(MacPherson et al., 2010; Piponiot et al., 2019), which may be linked to broad decreases in tree 55 

demographic performance. On the other hand, forest management, when practiced according 56 

to reduced impact logging prescriptions (Sist & Ferreira, 2007; Putz et al., 2008), is considered a 57 

desirable economic land use due to low carbon emissions and the conservation of forest 58 

structure, biodiversity, and environmental services (Holmes et al., 2002; Bicknell et al., 2015; 59 

Griscom et al., 2019). To evaluate the effectiveness and sustainability of tropical forest timber 60 

management reliably, cost effective and scalable approaches for forest canopy structure 61 

monitoring are critically needed. 62 

Developing sustainable forest management depends on consistent knowledge of forest 63 

structure and species composition, traditionally obtained from ground-based surveys and forest 64 

inventories, but now increasingly relying on these surveys in combination with remote sensing 65 

tools (Prandi et al., 2016). In forest management plans this information is used to select species 66 

for logging and those for preservation, determine logging intensity, locate permanent 67 

conservation areas and, from the target tree locations and topographical information obtained 68 

from field surveys, to plan a minimal impact infrastructure layout: roads, log landings and skid 69 

trails (Figueiredo et al., 2007). Assessing the outcome of logging in terms of reduction of biomass 70 

and increase in disturbance, and monitoring forest recovery and regrowth dynamics is essential. 71 

Such assessments can ensure that forest operations were consistently executed in the field and 72 

allow monitoring of timber stocks for subsequent harvest cycles (Griscom et al., 2019). 73 

UlAccurate monitoring is essential for long-term forest production prognoses and improved 74 

understanding of tropical forest ecosystems under harvesting regimes. In addition, accurate 75 

aboveground biomass (AGB) estimates are crucial to monitoring carbon stocks to implement 76 

and verify REDD+ (Reducing Emissions from Deforestation and Forest Degradation-plus) and for 77 

broader global forest management targets and programs (Phua et al., 2016; Kronseder et al., 78 

2012). Thus, quantifying the impact of logging on canopy structure is important to understand 79 



 

 

the effects of forest management on forest fauna, micro-climates and regeneration processes 80 

(Pereira et al., 2002). Ground-based forest inventories, including permanent survey plots, are 81 

difficult to establish and maintain. These plots are expensive, labor intensive, and often suffer 82 

from seasonal and other access limitations specially in the tropics. Furthermore, due to low 83 

sample intensity, field plots may fail to accurately estimate forest structural parameters and 84 

their variation throughout the landscape, highlighting the need for remote sensing to better 85 

assess forest change, particularly after the impact of natural and anthropogenic disturbance 86 

events (Espirito Santo et al., 2014).  87 

The use of LiDAR (Light Detection and Range) is well established as a remote sensing tool for 88 

estimating forest structural parameters and monitoring forest disturbance and regeneration in 89 

boreal, temperate, and tropical forests (Wulder et al., 2008). Practical and efficient, airborne 90 

LiDAR is the preeminent tool to estimate forest structural parameters related to biomass and 91 

biomass turnover (Drake et al., 2002; Asner et al., 2011; Huang et al., 2013; Palace et al., 2015; 92 

Ferraz et al., 2018; Jarron et al., 2020) and for forest monitoring and management, including 93 

assessment of logging impact (Dandois and Ellis, 2010; Réjou-Méchain et al., 2015; Silva et al., 94 

2017; Griscom et al., 2019; Pinagé et al., 2019). However, LiDAR coverage are still difficult to hire 95 

especially in remote regions of developing countries due to the lack of established LIDAR 96 

vendors in these regions (Melendy et al., 2018, Ota et al., 2019). As an alternative, the need for 97 

LiDAR survey for forest monitoring may be reduced to a single survey, if biomass (AGB stock) 98 

resurveys can be adequately accomplished with unmanned aerial vehicles (UAV) carrying light-99 

weight and low cost camera systems for photogrammetric structure reconstruction (Zahawi et 100 

al., 2015; Jayathunga et al., 2018). 101 

The last decade, in particular, has witnessed an increase in the use of 3D remote sensing 102 

techniques (Valbuena et al., 2020): both passive (e.g. RGB and multispectral cameras) and active 103 

LiDAR (Almeida et al., 2019) sensors have been coupled to UAVs to perform forest surveys and 104 

assessments (Colomina and Molina, 2014). The rapid expansion of UAVs in forest research has 105 

been prompted by low acquisition and maintenance costs and ease of use. In addition, the rapid 106 

development of UAV platforms including long-distance radio control range, high-resolution RGB, 107 

multispectral cameras and automatic processing algorithms of stereo imagery facilitate the 108 

application of low-cost UAVs in the acquisition of stereo imagery (Ni et al., 2019). 109 

The stereo imagery acquired by optical sensors onboard UAVs, photogrammetrically processed 110 

by 3D reconstruction software to generate digital terrain (DTM) and surface models (DSM) 111 

similar to those from LiDAR (Wallace et al., 2016). Moreover, while LiDAR sensors mounted on 112 



 

 

UAVs show potential (Almeida et al., 2019; d’Oliveira et al., 2020; Prata et al., 2020), due to 113 

weight, sensor range (limiting flight height) and battery limitations only photogrammetric 114 

drones can currently survey relatively large areas (e.g. Bourgoin et al., 2020). For these reasons, 115 

3D remote sensing from photogrammetric UAVs has become a relatively cost-effective option 116 

for measuring forest spatial structures and aboveground biomass stocks.  The key limitation of 117 

this passive remote sensing approach to vegetation height estimation is the inability to identify 118 

the ground below the canopy. Active sensing in the form of LiDAR laser ranging pulses pass 119 

through the canopy to reflect off the ground surface offering statistical algorithmic approaches 120 

for terrain estimation (Axelsson, 1999). In contrast, photogrammetric surface height estimation 121 

has a very limited capacity to reach the ground for terrain estimation particularly in closed-122 

canopy forest. For this reason, in forests, passive photogrammetric canopy height estimation is 123 

most effective when paired with preexisting accurate digital terrain modeling, for instance 124 

derived from LiDAR. To produce accurate DTMs under dense forest canopy, LiDAR is currently 125 

the most reliable approach (Crespo-Peremarch et al., 2020). Particularly when topographic 126 

variation is high, DTMs are essential to produce accurate AGB models and 3D analyses (e.g. gap 127 

fraction and height profile analyses) because the true height of the trees must be known to 128 

capture these variables related to wood and leaf mass.  129 

To overcome combined limitations of LiDAR costs and terrain estimation, a few trail-blazing 130 

studies have combined optical and LiDAR sensors in forests in Sweden and Italy, with accurate 131 

results (Bohlin et al., 2012; Prandi et al., 2016). This approach appears particularly successful 132 

and cost-effective in studies that demand multi-temporal surveys for recovery / impact response 133 

assessment, (e.g. Mendes de Moura et al., 2019), reducing the need for an expensive LiDAR 134 

survey to only the first ‘baseline’ observation time point, with passive optical drone-based 135 

thereafter. 136 

There are a considerable number of studies involving the use of LiDAR data to assess logging 137 

impact (e.g. Kronseder et al., 2012; Kent et al., 2015; Rex et al., 2020; Nunes et al., 2021), but 138 

very few have assessed selectively logged tropical forests through the combination of 139 

photogrammetry and LiDAR (e.g. Ota et al., 2019). Here, we expand this new research domain, 140 

studying the impacts of selective logging in the Antimary State Forest in the southwestern 141 

Brazilian Amazon with a photogrammetry-derived DSM and a LiDAR-derived DTM. 142 

The aim of this paper was to verify the potential of combining a multitemporal sequence of 143 

ground data, airborne LiDAR, and 3D photogrammetry, to monitor  forest disturbance after 144 

reduced-impact selective logging. Our specific objectives were to (i) estimate structural changes 145 



 

 

in the forest canopy produced by logging operations (roads, log landings, felled tree gaps and 146 

skid trails), (ii) develop and verify the consistency of two AGB models, one produced by height 147 

metrics derived from LiDAR data alone, and the second by a combination of the LiDAR-derived 148 

DTM and a photogrammetry-derived DSM, and (iii) to upscale the developed AGB models from 149 

plot to local level to estimate the AGB stocks before and after logging, and infer subsequent AGB 150 

loss. 151 

2. Methodology 152 

2.1. Study Site  153 

The Antimary State Forest (ASF) is located between Rio Branco and Sena Madureira in Acre 154 

State, Western Brazilian Amazon (68° 01′ to 68°23′ W; 9° 13′ to 9° 31′ S). The ASF covers an area 155 

of 45,490 ha (Figure 1). The climate is classified as Awi (Köppen) with an annual precipitation of 156 

around 2,000 mm and an average temperature of 25 °C. There are distinct wet and dry seasons. 157 

The dry season occurs from June to September. This season is used to prepare the land for crops 158 

and for all operations related to forest management (Carvalho et al., 2017). In the ASF there are 159 

three types of forest: dense tropical forest with uniform canopy and emergent trees; open 160 

tropical forest with frequent occurrence of lianas and palm trees; and an open forest, called 161 

Tabocal, which is dominated by semi-climbing Guadua bamboo species locally known as 162 

Tabocas. The area has gentle topography with a maximum elevation range of around 300 m. The 163 

predominant soils are dystrophic yellow latosols with high clay content. The ASF is administered 164 

by the Acre State Government through a forest management plan for sustainable timber 165 

production (Funtac, 1990).  166 

The total area under forest management is 37,687 ha, divided into 14 Annual Production Units 167 

(APU) and one “absolute” forest reserve (area in the forest management plans designated for 168 

preservation only, Figure 1). In 2012, a forest concession system was adopted to regulate the 169 

execution of forest operations by logging companies, following the Modeflora methodology 170 

(Figueiredo, 2007). Our study was carried out in the APU3 (3,835 ha), which was selectively 171 

logged in 2013 and 2017. For the study, we selected an area of 42 ha logged in 2013 and another 172 

of 182 ha logged in 2017 (Figure 1C, (Figure S1 in the Supplementary Material). In both cases the 173 

logging intensity was around 10-15 m3∙ ha−1 (Carvalho et al., 2017).  174 

In 2013, before forest logging, 10 1-ha (100 x 100 m) permanent sample plots (PSP) were 175 

established, systematically distributed in the 1,000 ha portion of the APU3 covered by airborne 176 

LiDAR (Fig. 1). Immediately after PSP establishment, the area was partially logged, affecting five 177 



 

 

PSPs. After 2013, there were no additional interventions in the PSPs, which were re-measured 178 

in 2015. In this paper, we used this measurement (2015) to build LiDAR and photogrammetry-179 

LiDAR AGB models.  In these plots, all trees with DBH ≥ 10 cm were tagged, species identified 180 

and measured. For each tree, oven-dry aboveground biomass in Mg (AGB) was estimated with 181 

Eq. (1), specifically developed for the ASF (Melo, 2017). 182 

AGB = AGB = ((DBH)^2.671∙ 0.064)/1000  Eq. 1 183 

Plot locations (corners) were mapped using survey-grade, dual frequency (L1 and L2), dual-184 

constellation (GPS and GLONASS) global navigation satellite system (GNSS) receivers. One-185 

second epoch GNSS data were collected for 20-30 minutes at each plot corner (d’Oliveira et al., 186 

2012). The GNSS receiver used in this study was a TechGeo Zenite II. For the GNSS field survey 187 

campaign, rover receiver data were post-processed using the Rio Branco base station (RIOB 188 

93911, reference station of the Brazilian Network for Continuous Monitoring – RBMC), located 189 

at Acre Federal University, 90 km from the study site.  190 

  191 



 

 

 192 

Figure 1. A. Antimary State Forest (ASF) location; B. forest management annual production units 193 
(APU) and absolute forest reserve area (AFR); C. the Study area showing: (i) 1,000 ha covered by 194 
LiDAR flight in 2015 (white polygon); (ii) the 182 ha area logged in 2017 (red polygon) and the 195 
42 ha area logged in 2013 (red hatched polygon) covered by the UAV flight; and (iii) the 196 
permanent sample plots (black squares). 197 

  198 



 

 

2.2. LiDAR data acquisition and processing 199 

Discrete return airborne LiDAR data were collected in September 2015 after UPA3 was partially 200 

logged, using a Trimble Harrier 68i sensor set to 300 kHz, installed in a Cessna 206 aircraft, flying 201 

at 600 m above ground level (AGL), with an average speed of 198 km∙h-1. LiDAR sidelap was 50%, 202 

resulting in a point cloud with an average density of 14 returns∙m-2 (Table S1, Figure S2 in the 203 

Supplementary Material), covering an area of 1,000 ha.  204 

The FUSION LiDAR package (USDA Forest Service) was used for processing LiDAR data. LiDAR 205 

returns that occurred within each of the 10 PSPs were extracted from the acquisition datasets 206 

to create an all-returns point cloud file for each PSP. The ground surface elevation (interpolated 207 

from the LiDAR ground returns) was then subtracted from each return to height above ground, 208 

removing topographic variation within the plot. Descriptive statistics of the LiDAR point cloud 209 

vertical structure, using all returns above 1 m, were computed for each plot. The one-meter 210 

minimum height above ground was used to reduce noise within the near-ground point cloud 211 

caused by low vegetation and imperfections in the ground point filtering (McGaughey, 2018).  212 

The following layers were produced at a 1 × 1 m spatial resolution: DTM, DSM, and a subsequent 213 

canopy height model (CHM = DSM - DTM), which was used to locate the forest logging 214 

operations carried out in 2013 (Figure 1).  Raster layers of forest canopy metrics (Table 1) 215 

(McGaughey, 2018) were created using FUSION, following the same methodology used by 216 

d’Oliveira et al., (2012). PSP-level LiDAR metrics were merged with the summarized field plot 217 

data (collected in 2015) for regression modeling. We then created from the LiDAR point clouds, 218 

at a 100 × 100m resolution, raster layers for the forest structure metrics selected as predictor 219 

variables for the AGB models. The raster cell resolution was equal to the nominal ground plot 220 

size and the AGB model was applied over the entire 224 ha study area. 221 

  222 



 

 

Table 1. LiDAR-and RGB point clouds derived forest structure metrics used to compose the 223 

AGB models. 224 

Metric abbreviation Metric description 

HMEAN Mean height above ground 

HMEDIAN Median height above ground 

HMODE Mode height above ground 

HSD Standard deviation of height above ground 

HVAR Variance of height above ground 

HCV Coefficient of variation of height above ground 

HIQ Interquartile distance of height above ground 

HSKEW Skewness of height above ground 

HKURT Height kurtosis of height above ground 

H. % (e.g., H05TH – 
H99TH) 

Percentiles of height above the ground (AGL): 5th, 10th, 20th, 25th, 30th, 
40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th 

CCR Canopy relief ratio (CCR = ((MEAN - MIN) / (MAX – MIN))) 

2.3. UAV-RGB image acquisition and processing 225 

The photogrammetric mapping was carried out in two flight campaigns. The first in September 226 

2016, over the 10 PSP and the second in September 2017, covering the 182 ha (logged in 2017) 227 

and 42 ha (logged in 2013), shown in Figure 1. The flights were performed with a unmanned 228 

aerial vehicle (UAV), model Phantom 4 PRO. The UAV was equipped with a high-grade GNSS 229 

system, barometer, accelerometer, gyroscope, compass and 20-megapixel Sony EXMOR RGB 230 

camera, with a lens system of focal distance equivalent to 35 mm, coupled with a 3-axis 231 

electronic gimbal. Flights were performed autonomously, with a constant speed of 12 m∙sec-1, 232 

160 m above the ground and 80% frontal and lateral overlap. The ground sample distance (GSD) 233 

was 4.39 cm and the point cloud average returns density was 112.5 m-2 (Figure 2).  234 

We used the structure from motion (SfM) process to generate point clouds. The RGB images 235 

were mosaicked and orthorectified with Pix4D Mapper software through the SIFT (Scale-236 

Invariant Feature Transform) procedure (Table S2, Lowe, 2004). The products generated were 237 

an orthophoto mosaic, and a digital surface model (DSM) for both the ground plots and the areas 238 

logged in 2013 and 2017.  239 

As LiDAR and UAV systems data are similar in nature and geographically coincident, rasters 240 

produced by photogrammetry (orthomosaic and digital terrain and surface models) were 241 

automatically aligned to the LiDAR products (LiDAR – UAV products geolocation RMSE < 0,3m, 242 

ESRI, 2006; Liu, 2013; d’Oliveira et al., 2020). As previously noted, DTMs produced by passive 243 

sensors over dense forest canopy are not accurate (Ni et al., 2019). Thus, to produce the UAV 244 

system Canopy Height Model (CHM), we used the LiDAR DTM as ground reference. This 245 

approach has been regularly used in similar studies (Bohlin et al., 2012; Jayathunga et al., 2019), 246 



 

 

by simply subtracting the LiDAR-DTM elevation from the UAV-DSM. The vegetation metrics were 247 

extracted following the same methodology applied to the LiDAR data. 248 

2.5. Logging gaps and canopy cover loss 249 

The detection of areas damaged by logging was carried by three methods: (i) post-disturbance 250 

automatic gap detection, (ii) manual vectorization of visually detected disturbance and 251 

infrastructure features and (iii) automatic detection of the removed crowns taller than 30m. 252 

Automatic gap detection was by a time-static analysis of the post-disturbance CHM derived from 253 

the UAV point cloud normalized to the LiDAR DTM.  254 

 To the automatic gap detection (method i), we adapted a gap definition similar to Brokaw 255 

(1989), in which, in a classical sense, gaps are openings in the forest canopy extending down to 256 

an average height ≤ 2 m aboveground adapted from Asner et al. (2013). Thus, logging gaps were 257 

defined by a low height threshold (CHM < 3 m) and by a minimum 20 m2 area, to exclude small 258 

gaps that were more likely produced by natural causes. The 3m threshold was used to allow the 259 

inclusion of the felled trees crowns on the ground as gaps. 260 

We quantified the visual vectorization of disturbances in the entire area covered by UAV flights 261 

and compared results to method (i). The vectorization was performed using the high-resolution 262 

RGB orthophoto mosaic to identify all logging operation features (roads, landings, felled tree 263 

gaps and skid trails). The overlapping area of agreement between the two methods was found 264 

by the spatial intersection of their respective logging damage polygons. 265 

We assessed felling of tall trees, whether logged or from ancillary damage. To quantify 266 

disturbance, we subtracted pre- and post-logging CHM, but only for points above 30 m height 267 

(adapted from Andersen, et al., 2014). To avoid including small gaps produced by natural causes 268 

(e.g. broken branches, inter-crown spaces, differences in UAV and LiDAR system crown 269 

delineations), we used a minimum crown projection area patch (CPA) of 100 m2 (Figueiredo et 270 

al., 2016). The number of felled tall trees was estimated by counting the resulting “lost tree 271 

crown” polygons. All polygons were visually validated in the 2017 orthomosaic to confirm the 272 

CPA loss. 273 

2.6. LiDAR and UAV systems data regression modeling of aboveground biomass 274 

Multiple linear regression was used to develop relationships between plot-level metrics derived 275 

from LiDAR and UAV point clouds, and the field measured AGB of the same plots. This was done 276 

for the 2015 LiDAR-only point cloud and the 2016 UAV hybrid point clouds that were normalized 277 



 

 

to LiDAR DTM. Predictor variables (Table 1) from both the LiDAR and the UAV-hybrid point 278 

clouds were selected, using the best-subsets approach. Variance inflation factor (VIF) statistics 279 

were used to eliminate highly collinear predictor variables (Fox & Monette, 1992). If VIF 280 

exceeded 5.0 for a candidate predictor variable, it was dropped from the regression model.  281 

To contrast AGB estimates from LiDAR and UAV systems , we estimated AGB across the 224 ha 282 

area covered by LiDAR in 2015 before logging and by UAV in 2017 after logging, at 100 × 100 m 283 

resolution (Dandois and Ellis, 2013; Jayathunga et al., 2018; Ota et al., 2019). To avoid the 284 

differences in AGB stocks produced by selective logging in the studied area, the consistency of 285 

the produced models was tested only in the area logged before the LiDAR flight in 2015 (42 ha 286 

area, Figure 1). An estimate of the AGB loss was performed by the subtraction of the AGB stocks 287 

estimated by the models before (LiDAR-System) and after (UAV-System) logging. 288 

Results 289 

3.1. Canopy disturbed by logging areas 290 

Gaps of less than 3m height and larger than 20m2 were infrequent in the study site before 291 

logging, with most located in the southern portion, which was logged in 2013 (Figure 2). Areas 292 

disturbed by logging in 2017 (roads, landings, skid trails and felled tree gaps) were easily 293 

distinguishable in the high-resolution September 2017 UAV orthomosaic (Figure 3A and 3). The 294 

hybrid CHM height break of 3 m effectively identified the gaps produced by logging operations 295 

(Figure 4C). The total gap area detectably produced by logging operations on the ground was 296 

calculated as 15.5 ha out of the total 182 ha covered by the UAV flights performed immediately 297 

after logging in 2017 (Table 2). This area represents 8.5 % of the mapped logged area. The 298 

logging damage manual vectorization (Figure 3C) identified a total logging impact of 17.4 ha, 299 

distributed in roads (5.5 ha), log landings (1.2 ha) and felled tree gaps and skid trails (10.7 ha). 300 

Skid trails and felled tree gaps were classified together, due to the difficulty in separating them 301 

close to tree gaps and in properly identifying skid trail fragments covered by the forest 302 

understory. Differences observed in roads and felled tree gaps were mainly promoted by 303 

automatic detection underestimation of road areas due to tree crown projections over the roads 304 

and the overestimation of the felled tree gaps by visual detection. Outside the intersection area, 305 

automatic detection was able to identify logging gaps, skid trails and roads and landings that had 306 

been partially missed by manual vectorization. Some natural gaps, low vegetation areas and 307 

deciduous trees were also automatically detected as logging damage gaps (Table 2).  308 



 

 

Gap area determined by manual vectorization in general produced gaps that encompassed 309 

larger border areas, included standing trees and residual vegetation inside the gap as part of the 310 

impacted area (Figure 4); furthermore, this vectorization connected a second gap not clearly 311 

associated with the felled tree that was not found by automatic gap detection. The logging-312 

impacted area that was automatically detected produced two gaps, separated by residual 313 

vegetation: a small area located on the left branch (black triangle over the felled tree crown) 314 

extrapolated the elevation difference between DSM and DTM that had been established for 315 

logging impact classification (3 m) and was classified as non-logged area. The differences 316 

observed in this figure summarize the main differences observed between the two methods.  317 

  318 



 

 

 319 

Figure 2. Canopy height model and logging gaps (CHM < 3 m, area > 20 m2) before 2017 logging 320 

(LiDAR flight in 2015). In the south part of the study area, it is possible to observe traces (roads 321 

and tree felling gaps) from the logging carried out in 2013. 322 

 323 

Figure 3. Area covered by the UAV flight (224 ha) in 2017 immediately after logging, presenting: 324 
A. The high-resolution (4 cm) orthomosaic; B. The orthomosaic with the areas automatically 325 
identified as disturbed by logging (DSM ≈ DTM, area ≥ 20 m2) and C. The manual vectorization 326 
of roads, landings and felled tree gaps. 327 

  328 



 

 

Table 2. Areas impacted by logging (ha) automatically identified and manually vectorized in the 329 
UAV flight of area logged in 2017 (182.9 ha). The areas identified as ‘other’ are natural gaps, low 330 
vegetation and deciduous trees.  331 

Method Roads 
(ha) 

Logs landing 
(ha) 

Felled tree gaps 
and skid trails (ha) 

Other (ha) Total (ha) 

Vectorization 5.5 1.2 10.7  17.4 

Automatic 
detection 

4.4 1.1 9.6 0.5 15.5 

Intersection 3.4 1.1 6.1  10.1 

 332 

 333 

Figure 4. Felled tree gaps determination by A. visual interpretation and B. automatic detection 334 
(CHM ≤ 3 m, gap area ≥ 20 m2) in a felled tree gap. Highlighted green square represents zoomed-335 
in tree fall gap. In the orthomosaic red polygons represent the removed tree crowns and the 336 
black ones the automatically detected felled tree gaps. 337 

The canopy cover area above 30m height (minimum CPA 100 m2) was 47.7 ha before (Figure 5A) 338 

and 31.0 ha after logging (Figure 6B). The estimated tall tree crown canopy loss produced by 339 

logging was 11.3 ha (307 trees) or 23.7% of the original canopy cover (Figure 5B). A considerable 340 

number (134) of deciduous trees were misclassified as removed trees, representing a canopy 341 

cover of 2.4 ha. These trees were not computed as logging impact and were classified as part of 342 

the post-disturbance standing crown projection area (Figure 5C and D).  Small gaps, broken 343 

branches, small tree crowns (CPA < 100m2), inter-crown spaces, differences in UAV and LiDAR 344 



 

 

system crown delineations, resulted in an canopy area of 5.4 ha. The applied method to canopy 345 

cover loss automatic detection allowed the identification of individual logged trees crowns 346 

(Figure 7). The automatic detection of canopy cover loss allowed the identification of individual 347 

logged trees crowns (Figure 6).  348 

 349 

Figure 5. Canopy cover above 30 m (crown projection area patch ≥ 100 m2): A. Before logging 350 
(2015 – 47.7 ha); B. After Logging (2017 – 31.0 ha); C. Canopy cover loss (11.0 ha) and D 351 
misclassified deciduous trees (2.4 ha). Green polygons (A, B and C) represent alive tree crowns 352 
and red polygons (D) removed tree crowns. 353 

 354 

 355 

Figure 6. Zoomed tree fall gap presenting: i. the CHM LiDAR before logging (2015); ii. CHM UAV-356 
LiDAR (hybrid) after logging (2017) and iii. the automatically detected tall canopy cover loss 357 
(CHM ≥ 30 m and CPA ≥ 100 m2.In the orthomosaic red polygons represent the removed tree 358 
crowns and the black ones the automatically detected felled tree gaps. 359 

3.2. LiDAR and photogrammetry metrics-derived AGB models 360 



 

 

The mean tree density and AGB in the plots were 346 ± 16 trees∙ha-1 and 239.9 ± 25.4 Mg∙ha-1 361 

respectively (Table 4). From the point cloud metrics, two parsimonious aboveground biomass 362 

(AGB) regression models were developed. A single predictor metric was selected, 95th 363 

percentile of point heights, for both LiDAR and UAV derived point clouds. The explained 364 

variances of UAV and LiDAR models were respectively R2 = 0.74 (residual standard error RSE = 365 

42.8 Mg∙ha-1) and R2 = 0.57 (RSE = 56.0 Mg∙ha-1) (Figure 7). The mean AGB estimates by the 366 

airborne LiDAR and UAV systems were 240.0 ± 21.9 Mg∙. ha-1 and 239.8 ± 19.7 Mg∙ha-1, 367 

respectively.  368 

 369 

 370 

Figure 7. Predicted versus observed (ground plot) values for aboveground biomass (AGB - Mg. 371 
ha-1), for models produced by the (A) LiDAR system and (B) UAV system. Numbers in 372 
parentheses are the standard errors for each coefficient.  373 



 

 

3.3. Landscape analyses 374 

The mean AGB estimated for the 182 ha area logged in 2017 was 251.9 ± 55.8 Mg∙ha-1 before 375 

logging (LiDAR system AGB model) and 226.4 ± 73.7 Mg∙ha-1 after logging (UAV system AGB 376 

model). The lower mean AGB estimated by the UAV model is the expected AGB loss (25.5 Mg∙ 377 

ha-1), produced by logging (Figure 8A and B). Considering only the area logged in 2013 (south 378 

part of the studied area - 42.0 ha), the AGB estimates were 213.3 ± 63.7 Mg∙ha-1 (LiDAR) and 379 

213.4 ± 63.9 Mg∙ha-1 (UAV). The correlation between the UAV and LiDAR AGB models in this area 380 

was highly significant (R2 = 0.93, SE = 17.3, p < 0,001, N = 48, Figure S3 in the Supplementary 381 

Material), attesting to the compatibility of the models. 382 

 383 

Figure 8. Aboveground biomass (AGB; Mg∙ha-1) estimates from the (A) airborne LiDAR and (B) 384 
UAV RGB camera systems’ predictive equations, at a 100 x 100 m resolution. The area covered 385 
by the UAV is divided into two polygons: the top polygon is the area logged in 2017 (182 ha) and 386 
the bottom red polygon (42.0 ha) logged in 2013.  387 



 

 

4. Discussion 388 

Our analysis clearly demonstrated that photogrammetric UAV-based canopy structural 389 

estimation can be used to develop cost-effective time series of canopy structural impacts and 390 

recovery of logging in tropical forest. The essential requirement for this method is a high 391 

accuracy terrain model, which is not available from photogrammetry alone in closed canopy 392 

forest. In addition, the fusion of LiDAR and RGB-photogrammetry produced a reliable AGB model 393 

similar to the one produced by LiDAR alone. Specifically, our analyses found that (i) the area 394 

directly and heavily impacted by logging operations was 8.2% of the total study area, (ii) the tree 395 

cutting produced a canopy cover (above 30m) loss of 22.7% and (iii) selective logging produced 396 

a mean AGB loss of 27.8 Mg∙ha-1. 397 

4.1. Canopy disturbed by logging areas 398 

Besides estimates of forest structural parameters, LiDAR data is also recognized as a key tool in 399 

identifying past logging impacts on the forest understory (Kent et al., 2015; Ellis et al., 2016; 400 

Griscon et al., 2019). In this study, we could observe traces from the 2013 logging in the southern 401 

part of the study area in both LiDAR and UAV systems flights. The traces identified by LiDAR 402 

through gap analyses were similar to those observed in a previous study with the use of a relative 403 

vegetation density (RDM) model (Pantoja, 2017) in the same site. RDM is calculated through an 404 

algorithm used to create raster layers of a relative percentage of LiDAR returns within a user-405 

specified above ground height stratum (d’Oliveira et al., 2012). While we should expect 406 

correspondence since the studies differed in methodologies but not data sources, that these 407 

logging impacts were still possible to detect four years after logging by the UAV system reveals 408 

the great potential of this approach for forest management monitoring. We found no other 409 

study in the literature that specifically demonstrated that UAV based photogrammetry 410 

combined with pre-existing LiDAR could identify canopy loss in selectively logged tropical 411 

forests. The three-meter height break and minimum contiguous area of 20 m2 adopted in our 412 

study, allowed the detection of all landings, logs and felled tree crowns on the ground visually 413 

identified. In a similar study (Pinagé et al., 2019), the authors used a greater (10 m) height break 414 

and a smaller area (10 m2) to define gaps. In our case, as the UAV-system flight was carried out 415 

immediately after logging, vegetation higher than 3m as well as smaller than 20m2 would be 416 

more likely to belong to a natural gap than a logging gap. In addition, the use of a higher 417 

threshold in a forest with moderate to high occurrence of Guadua spp, which often does not 418 

reach 10m, all patches of dense Guadua spp would be classified as gaps. The result we obtained 419 

by using of a hybrid (LiDAR + photogrammetry) CHM to determine impact in logging areas was 420 



 

 

similar to that obtained by the LiDAR-derived relative vegetation density model (RDM) used by 421 

Carvalho et al (2017) in the Antimary State Forest, where areas impacted by logging were 422 

estimated as 7 to 8.6 % of the total managed area, but below the 15.4 % and 17.1 % estimated 423 

by d’Oliveira et. (2012) and Andersen et al. (2014), respectively. Although it was limited by the 424 

passive nature of the sensor, the method was sufficient to identify the visible disturbed areas. 425 

Similar methodology applied to photogrammetric products was used to identify the soil 426 

displacement produced by logging in a clear cutting harvesting in a temperate forest in Norway 427 

(Pierzchała et al., 2014). 428 

Disturbed areas covered by tree crowns could not be properly classified by the hybrid 429 

photogrammetric automatic detection, producing an underestimation of the overall logged area 430 

assessment. The logging impact assessed by both methods was relatively low and can be seen 431 

as a consequence of the low harvesting rate applied in APU3, which was the result of the 432 

utilization of reduced impact logging (RIL) practices. Although the automatic detection and the 433 

visual vectorization methods presented similar areas, their locations presented some 434 

differences, due to the nature of the UAV sensor and the human error associated with 435 

vectorization. Large areas disturbed by logging were easily detected by both methods, but areas 436 

covered by vegetation, such as skid trails, were difficult to detect, leading to likely inaccuracies. 437 

Skid trails are difficult to identify even through the use of LiDAR because the drivers of logging 438 

vehicles naturally avoid felling trees (Araujo et al., 2013). In the case of our study, the main 439 

source of divergence between visual and automatic identification methods was the 440 

determination of the roads under tree crowns, which could not be identified by automatic 441 

detection. On the other hand, the visual vectorization of road borders and standing trees inside 442 

the gaps would not only be tedious and labor-intensive, but would also involve interpretation 443 

errors and impose limits on its accuracy. 444 

Canopy loss above 30 m was much higher than that observed by Andersen et al (2014) in an 445 

adjacent annual production unit in the ASF, and by Pereira et al (2002) when RIL techniques 446 

were applied. In the Andersen et al (2014) work, using repeated LiDAR flights, the canopy cover 447 

loss above 30 m was only 4.1%. Although high, the estimated canopy loss in this study seems to 448 

be accurate. The two potential sources of error, deciduous trees and canopy cover fragments 449 

(CPA < 100 m2), were not computed as canopy loss. Deciduous trees produced a small effect on 450 

the impacted area classification. Although the ASF presented a considerable number of leafless 451 

trees, most of them could be properly identified as different from logging gaps because the 452 

understory vegetation below them usually exceeded the 3 m height threshold for defining a gap, 453 



 

 

but it was an issue for the extracted trees identification. Deciduous trees interfere with the 3D 454 

photogrammetric analyses (e.g. Ni et al., 2019) and, to some extent, also for LiDAR (i.e., by 455 

reducing the number of returns of big leafless crowns). However, while LiDAR can fly in both 456 

leafless and leafy seasons, allowing a possible solution in avoiding periods with the most leaf off 457 

deciduous crowns, this is not available for the UAV method. This is because the leafy season 458 

coincides with the rainy season, during which UAV flights and access to tropical forest study 459 

areas are limited, as is the case with our site. 460 

Although we recognize that the used UAV-System has flight limitations, UAV use to forest 461 

monitoring must consider that even when we use LiDAR to monitor logging we do not cover the 462 

entire area but rather cover sampling areas large enough to represent the different treatments 463 

(dates in the case of this study). Furthermore, there is greatly increasing interest in how forests 464 

impacted by disturbances like logging may be further impacted by increasing droughts, surface 465 

fires, and other disturbances on the rise due to human impacts since interactions between 466 

disturbances can promote destructive forest loss tipping points (Bourgoin, et al., 2020; Stark et 467 

al 2020).   468 

 469 

4.2. LiDAR and UAV system AGB models  470 

The AGB model developed from LiDAR data estimated the ASF UPA3 mean AGB stock before 471 

logging as 231.3 Mg∙ha-1. This value is almost the same as that obtained by d’Oliveira et al. (2012, 472 

232 Mg∙ha-1) in an adjacent APU in the ASF logged in 2010-1011. This was expected, because the 473 

areas are only 8 km apart and have a similar forest structure, but emphasizes LiDAR data 474 

consistency in relation to tropical forest AGB estimates. The R2 (0.57) and RMSE (52.05-23.2 %) 475 

were also similar to values in other tropical forests in Borneo (Phua et al., 2016; Kronseder et 476 

al., 2012), Eastern Brazilian Amazon (Mendes de Moura et al., 2019; Rex et al., 2020), and Sierra 477 

Leone (Kent et al., 2015), all of which, confirm, once more, the accuracy of LiDAR data to 478 

estimate forest structural parameters.  479 

Although the use of models produced by stereo photogrammetry are becoming common to 480 

estimate AGB in forest areas, the use of this method use in dense closed-canopy forest, is still 481 

limited by the need of ground position and elevation measurements to build an accurate high 482 

resolution DTM (Dandois and Ellis, 2010; Bohlin et al., 2012). Passive sensors only identify these 483 

ground references when gaps of sufficient size are present and afford sufficient illumination for 484 

oblique angle views needed in positional triangulation (Swinfield et al., 2019). Digital earth 485 



 

 

models derived from space-based altimetry data are globally available, but they still offer limited 486 

canopy height accuracy in forest areas (e.g. SRTM, Farr et al., 2007). Attempts to globally correct 487 

an SRTM derived DEM have been made using LiDAR data as reference, but the uneven 488 

distribution or absence of LiDAR cover (e.g. over rain forests) decreases the accuracy of the 489 

model (Zhao et al., 2018). Thus, the use of image-based point clouds to produce AGB models in 490 

dense forests demands the availability of a high spatial resolution and vertical accuracy LiDAR 491 

DTM (White et al., 2013; Ota et al., 2015; Salach et al., 2018). One exception is the work of Ota 492 

et al. (2019) in Myanmar, who also did not use a DTM. Their vegetation metrics were obtained 493 

by subtraction from the DSM elevations derived from the photogrammetric point cloud to 494 

estimate AGB changes produced by selective logging at a 0.25ha scale. The accuracy obtained 495 

by them (R2 = 0.77 and RMSE = 9.32) was close to the obtained by our UAV-LiDAR AGB model. 496 

They also used normalized green-red bands before and after logging to estimate AGB changes 497 

at a 0.25ha scale. Furthermore, we point out that the UAV-system can capture only the upper 498 

canopy surface, which may be a problem when assessing dense forest canopy.  499 

The point clouds generated by the UAV and LiDAR systems were characterized by two main 500 

differences, in return density, and in canopy penetration. The denser point cloud of the UAV 501 

system allows a better delineation of the crowns and the creation of a high-resolution 502 

orthomosaic (Dandois and Ellis, 2010). On the other hand, the higher canopy penetration 503 

provided by the LiDAR system allowed a much better vertical forest structure description (van 504 

Leewen & Nieuwenhuis, 2010). Despite these differences, both AGB models developed in this 505 

work selected the same top canopy metric as the best predictor variable (H95TH). Relevant to 506 

expanding UAV system photogrammetric research, Meyer et al. (2018), demonstrated that the 507 

relationship between a new LiDAR-derived index LCA (Large Canopy Trees) and AGB was linear 508 

and remained unique across forest types (R2 = 0.78, RMSE = 46.02 Mg∙ha-1). The LCA method is 509 

based on the most exposed tree crowns, hence UAV system AGB models may be a good 510 

complement since these trees are well represented by photogrammetry point clouds (White et 511 

al., 2015). The UAV model’s accuracy was similar to that in other studies as well as the 512 

correlation of LiDAR vs UAV models (Dandois et al., 2010; Jensen and Mathews, 2015; Ni et al., 513 

2019; González-Jaramillo et al., 2019). We believe that the statistical correspondence between 514 

models would be higher with flights carried out in a shorter interval, but the agreement between 515 

the models (R2=0.93 and RMSE=17.19) was similar to that produced by d’Oliveira et al. (2020) 516 

using two LiDAR systems, a regular airborne system (similar to the one used in this study) and 517 

an UAV-LiDAR system in similar conditions. Considering the different nature of the RGB camera 518 

and LiDAR, the results obtained when comparing the AGB models produced are a strong 519 



 

 

indicator of the photogrammetry-LiDAR hybrid model’s accuracy. Silva et al. (2017) 520 

demonstrated that acceptable AGB estimation can be achieved with low-pulse-density LiDAR 521 

surveys if a high-quality DTM is available from at least one LiDAR survey. In our study, we 522 

demonstrate that, when a high quality DTM is available, it can be achieved from a UAV-RGB 523 

system.  524 

4.3. Local analysis 525 

The upscaling of the AGB models from plot to landscape level, to produce an AGB map for the 526 

study area, is the typical way to assess AGB stocks and AGB changes. This procedure, oftening 527 

employing data sources at multiple scales including from orbital platforms, has been applied to 528 

produce high resolution AGB maps from focal areas of particular interest (e.g. Bispo et al., 2020), 529 

to regional scales (Longo et al., 2016), or even country and global scales (Asner et al., 2013b; 530 

Saatchi, 2017). Since LiDAR data were available for the area selected to this study area, it was 531 

possible to map LiDAR estimates of AGB at 100 m resolution, which, along with the CHM, 532 

provides forest planners with more spatially accurate and detailed planning information than is 533 

possible via ground data collection methods (d’Oliveira et al., 2012). We also upscaled our 534 

models to the entire study area to assess AGB loss produced by logging. AGB LiDAR models can 535 

be generalized (Asner et al., 2011) or applied in different regions (Drake et al., 2002). In our 536 

extrapolation, AGB maps produced by both LiDAR and photogrammetric-LiDAR DTM hybrid 537 

models were highly correlated. Although the models were produced by two different sensors, 538 

in the areas not disturbed by logging the mean AGB values that we estimated were very similar 539 

and the models effectively estimated the original and remaining biomass stock, as well as the 540 

AGB loss produced by logging.  541 

5. Conclusions 542 

The results of our study are of practical use to scientists, forest managers and technicians from 543 

governmental environmental control agencies; the UAV system was accurate  when compared 544 

with repeated LiDAR flights over the same area. The use of LiDAR to monitor AGB change under 545 

selective logging practices in the Brazilian Amazon is becoming frequent, especially in public 546 

forests. In our study, we track the location of forest logging operation impacts and changes in 547 

AGB stocks after logging. These parameters can be used to assess the quality of forest practices 548 

and monitor forest recovery, and are strong indicators of forest management sustainability.  549 
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