
 

 

 

 

„Derivation of forest inventory parameters from high-resolution satellite 

imagery for the Thunkel area, Northern Mongolia. A comparative study 

on various satellite sensors and data analysis techniques.”   

 

 

 

Dissertation 

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades 

"Doctor rerum naturalium" 

der Georg-August-Universität Göttingen 

 

im Promotionsprogramm Geowissenschaften / Geographie 

der Georg-August University School of Science (GAUSS) 

 

 

vorgelegt von / submitted by 

Holger Vogt 

 

aus Mainz 

 

Göttingen 2021 

 

 

 

 

 



II 
 

 

Betreuungsausschuss / advisory board members:  

 

1. Prof. Dr. Martin Kappas, Abteilung Kartographie, GIS und Fernerkundung, 

Geographisches Institut, Fakultät für Geowissenschaften und Geographie, 

Universität Göttingen 

2. Dr. Dominik Seidel, Waldbau und Waldökologie der gemäßigten Zonen, Fakultät für 

Forstwissenschaften und Waldökologie, Universität Göttingen 

3. Prof. Dr. Daniela Sauer, Geographisches Institut, Abteilung Physische Geographie, 

Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

4. Dr. Daniel Wyss, Abteilung Kartographie, GIS und Fernerkundung, Geographisches 

Institut, Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

5. Prof. Dr. Heiko Faust, Geographisches Institut, Abteilung Humangeographie, 

Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

6. Prof. Dr. Christian Ammer, Waldbau und Waldökologie der gemäßigten Zonen, 

Fakultät für Forstwissenschaften und Waldökologie, Universität Göttingen   

7. Prof. Dr. Ralph Mitlöhner, Waldbau und Waldökologie der Tropen, Fakultät für 

Forstwissenschaften und Waldökologie, Universität Göttingen 

 

Mitglieder der Prüfungskommission / members of the examination commission   

 

Referent: Prof. Dr. Martin Kappas, Abteilung Kartographie, GIS und Fernerkundung, 

Geographisches Institut, Fakultät für Geowissenschaften und Geographie, Universität 

Göttingen 

Korreferent:  Dr. Dominik Seidel, Waldbau und Waldökologie der gemäßigten Zonen, 

Fakultät für Forstwissenschaften und Waldökologie, Universität Göttingen   

 

weitere Mitglieder der Prüfungskommission:  

1. Prof. Dr. Daniela Sauer, Geographisches Institut, Abteilung Physische Geographie, 

Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

2. Dr. Daniel Wyss, Abteilung Kartographie, GIS und Fernerkundung, Geographisches 

Institut, Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

3. Prof. Dr. Heiko Faust, Geographisches Institut, Abteilung Humangeographie, 

Fakultät für Geowissenschaften und Geographie, Universität Göttingen 

4. Prof. Dr. Christian Ammer, Waldbau und Waldökologie der gemäßigten Zonen, 

Fakultät für Forstwissenschaften und Waldökologie, Universität Göttingen   

5. Prof. Dr. Ralph Mitlöhner, Waldbau und Waldökologie der Tropen, Fakultät für 

Forstwissenschaften und Waldökologie, Universität Göttingen 

 

 

 

Tag der mündlichen Prüfung / date of thesis defense: 10.05.2021



 

i 
 

Table of Contents 
I. Summary .................................................................................................................. iv 

1. Introduction ...............................................................................................................1 

1.1. Digest and background ........................................................................................1 

1.2. Goals and hypotheses .........................................................................................3 

2. Mongolia and its forest resources ...........................................................................6 

2.1. A country profile ...................................................................................................6 

2.1.1. Geographic location and topography ............................................................6 

2.1.2. Climate in Mongolia ......................................................................................7 

2.1.3. Socio-economic and political factors .............................................................7 

2.1.4. Vegetation zones ..........................................................................................9 

2.1.5. Tree species of the Mongolian forests ........................................................11 

2.2. The ‘borealis’ .....................................................................................................14 

2.3. The Mongolian forest resources .........................................................................15 

2.3.1. Forest extent and structure .........................................................................15 

2.3.2. Forest policies ............................................................................................23 

2.3.3. Forest utilisation and management .............................................................24 

2.3.4. Threats and challenges...............................................................................26 

2.3.5. Remote sensing in Mongolia .......................................................................28 

3. Forest inventory ......................................................................................................30 

3.1. Introduction and concepts ..................................................................................30 

3.1.1. General concepts........................................................................................30 

3.1.2. Sampling designs .......................................................................................32 

3.1.3. Forest mensuration .....................................................................................34 

3.1.4. Relevant inventory parameters ...................................................................39 

3.1.5. Forest attributes in a modelling and simulation context - examples .............45 

3.2. Forest inventories in Mongolia ...........................................................................48 

3.2.1. A brief history ..............................................................................................48 

3.2.2. Structure and design of the current National Forest Inventory (NFI)............48 

4. Remote sensing in forestry ....................................................................................51 

4.1. Imaging platforms and sensors ..........................................................................51 

4.2. Image interpretation ...........................................................................................65 

4.3. Image classification ...........................................................................................71 

4.3.1. Pixel-based classifiers ................................................................................73 

4.3.2. Object-based image classification ...............................................................81 

4.3.3. Spectral indices for image classification ......................................................84 

4.3.4. Image pre-processing .................................................................................92 

4.3.5. Presentation and interpretation of image classification results ....................95 



 

ii 
 

4.4. Digital photogrammetry ......................................................................................97 

4.5. Structure from Motion (SfM) ............................................................................. 107 

4.6. Extraction of inventory data from imagery ........................................................ 110 

4.6.1. ‘Direct’ approaches for extracting forest structure attributes ...................... 112 

4.6.2. ‘Indirect’ methods for extracting forest structure attributes ........................ 128 

5. Wildfires ................................................................................................................ 136 

5.1. Fire and ecosystems ........................................................................................ 136 

5.2. Wildfires in Mongolia ........................................................................................ 145 

6. Unmanned Aerial Vehicles (UAVs) ...................................................................... 153 

6.1. Definitions and classifications .......................................................................... 153 

6.2. Platforms, navigation and sensors ................................................................... 154 

6.3. Applications ..................................................................................................... 160 

6.4. Regulations and organisations ......................................................................... 161 

6.5. Image acquisition and mission project workflow ............................................... 164 

6.6. UAV data processing ....................................................................................... 168 

6.7. UAV photogrammetry ...................................................................................... 171 

6.8. UAVs in forestry ............................................................................................... 174 

6.8.1. Forest structural parameters estimation .................................................... 175 

6.8.2. Tree species classification ........................................................................ 180 

6.8.3. Forest health and biomass estimation....................................................... 182 

6.8.4. Forest wildfire and pest detection ............................................................. 184 

6.8.5. Biodiversity ............................................................................................... 185 

7. Material and Methods ........................................................................................... 186 

7.1. Study area ....................................................................................................... 186 

7.1.1. General characteristics ............................................................................. 186 

7.1.2. The test site  - Forest Compartment 435 ................................................... 189 

7.2. Material, equipment and software .................................................................... 196 

7.3. Methods ........................................................................................................... 199 

7.3.1. Overall concept ......................................................................................... 199 

7.3.2. Ground truthing and mensuration ............................................................. 201 

7.3.3. Analysis of field data ................................................................................. 204 

7.3.4. Aerial (UAV) imagery ................................................................................ 208 

7.3.5. Satellite imagery ....................................................................................... 227 

8. Results and discussion ........................................................................................ 251 

8.1. Field data ......................................................................................................... 251 

8.1.1. Main findings and calculations for single trees and all test plots................ 251 

8.1.2. Relationship tree height to DBH per relevant tree species for all test plots 258 

8.1.3. Statistics for dominant tree species larch .................................................. 263 



 

iii 
 

8.1.4. Comparison of statistics for dark and light taiga ........................................ 264 

8.2. DEM analysis ................................................................................................... 272 

8.3. Extraction of tree height ................................................................................... 277 

8.4. Extraction of NDVI, MSI, NDWI, LAI ................................................................ 286 

8.5. Extraction of NBR (fire index) ........................................................................... 303 

8.6. Tree count ....................................................................................................... 312 

8.7. Extraction of crown diameter............................................................................ 318 

8.8. Tree species determination .............................................................................. 323 

8.8.1. Tree species extraction based on UAV imagery ....................................... 323 

8.8.2. Tree species extraction based on satellite imagery ................................... 325 

8.9. Extraction of timber volume.............................................................................. 349 

8.10. Extraction of balsa area (BA) ........................................................................ 353 

8.11. Shannon Index ............................................................................................. 358 

8.12. Results matrix .............................................................................................. 361 

9. Conclusions and outlook ..................................................................................... 363 

10. References ......................................................................................................... 369 

11. Glossary of technical terms and acronyms..................................................... 439 

12. Mongolian terms ............................................................................................... 446 

13. List of figures .................................................................................................... 447 

14. List of tables ...................................................................................................... 455 

15. Appendices ........................................................................................................ 457 

15.1. Tree species classification results – resumption ........................................... 457 

15.1.1. Object-based classifications of dominant tree species discrimination ........ 457 

15.1.2. Pixel-based classifications of dominant tree species discrimination .......... 461 

15.2. Photo documentation ................................................................................... 464 

16. Credits................................................................................................................ 465 

17. Curriculum Vitae ............................................................................................... 467 

18. Declaration ........................................................................................................ 468 

 

  



 

iv 
 

I. Summary 

With the demise of the Soviet Union and the transition to a market economy starting in the 

1990s, Mongolia has been experiencing dramatic changes resulting in social and economic 

disparities and an increasing strain on its natural resources. The situation is exacerbated 

by a changing climate, the erosion of forestry related administrative structures, and a lack 

of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic 

increase in degradation due to human and natural impacts such as overexploitation and 

wildfire occurrences. In addition, forest management practices are far from being 

sustainable. In order to provide useful information on how to viably and effectively utilise the 

forest resources in the future, the gathering and analysis of forest related data is pivotal. 

Although a National Forest Inventory was conducted in 2016, very little reliable and 

scientifically substantiated information exists related to a regional or even local level. This 

lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 

in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and 

composition can be identified utilising the aerial imagery, (ii) tree height can be extracted 

from the resulting canopy height model with accuracies commensurate with field survey 

measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree 

species, the number of trees, and the upscaling of timber volume and basal area based on 

the spectral properties.  

The outcomes of this study illustrate quite clearly the potential of employing UAV imagery 

for tree height extraction (R2 of 0.9) as well as for species and crown diameter 

determination. However, in a few instances, the visual interpretation of the aerial 

photographs were determined to be superior to the computer-aided automatic extraction of 

forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, 

RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas 

and the assessment of tree vigour. Furthermore, recently developed sophisticated 

classifying approaches such as Support Vector Machines and Random Forest appear to be 

tailored for tree species discrimination (Overall Accuracy of 89%). Object-based 

classification approaches convey the impression to be highly suitable for very high-

resolution imagery, however, at medium scale, pixel-based classifiers outperformed the 

former. It is also suggested that high radiometric resolution bears the potential to easily 

compensate for the lack of spatial detectability in the imagery. Quite surprising was the 

occurrence of dark taiga species in the riparian areas being beyond their natural habitat 

range. The presented results matrix and the interpretation key have been devised as a 

decision tool and/or a vademecum for practitioners. In consideration of future projects and 

to facilitate the improvement of the forest inventory database, the establishment of 

permanent sampling plots in the Mongolian taigas is strongly advised. 
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1. Introduction 

1.1. Digest and background 

Mongolia’s taiga forests are part of the northern most forest formations on our planet also 

referred to as the “borealis”. This label was coined to pay tribute to the god of the cold north 

wind “Boreas” rooted in the Greek mythology.  Being used interchangeably the “taiga” 

(originating from the Yakutian word for forest) represents globally the second largest biomes 

covering an area of between 12 and 20 Mio sqkm (depending on the definition), and as 

such embodies one third of the total forest area (Bonan and Shugart, 1989, Venzke, 2008). 

The borealis is a broad, circumpolar mix of cool coniferous and deciduous tree species with 

a north-south stretch of about 2800 km running from 73o North to about 45 o North. Despite 

the harsh conditions such as low temperatures, long winters, and nutrient-poor soils, a wide 

array of flora and fauna have adapted surprisingly well to their hostile environment. Dry 

continental climate and low sun angle determine the prevailing conditions and because of 

the high albedo in winter time only the transport of advective air masses can compensate 

for the negative net radiation balance (Ackerman and Knox, 2012, Kappas, 2009, van Cleve 

and Yarie, 1986, Venzke, 2008). Main drivers of boreal ecology are climate, solar radiation, 

soil moisture, topography, permafrost, nutrient availability and sequestration, as well as 

wildfires and insect outbreaks, with all factors resulting in a mosaic pattern of forest types 

and stand productivity (Adams et al., 2010, Adams, 2013, Bonan and Shugart, 1989, 

Ediriweera et al., 2016). Many studies have been conducted in the past, particularly by 

Russian scientists (Hilbig, 1990), however, our knowledge about the interaction of the 

ecological determinants, let alone in combination with anthropogenic factors, remains 

patchy.  

Mongolia’s taiga forest occupies the southern fringes of the boreal biome creating a green 

blanket of about 12.9 million ha (Dulamsuren et al., 2005a, Dulamsuren et al., 2016, FAO, 

2014b, Soja et al., 2007). The most prevalent tree species are Siberian larch (Larix sibirica, 

LEDEB.), Siberian pine (Pinus sibirica, DU TOUR), Scots pine (Pinus sylvestris, L.), 

Siberian spruce (Picea obovata, LEDEB.), Siberian fir (Abies sibirica, LEDEB.), 

interspersed with Siberian silver birch (Betula platyphylla, Sukaczev), poplar (Populus 

spec., L.) and willow (Salix spec., L.), whereas the Saxaul (Holoxylon ammodendron, 

BUNGE) only occupies the arid climatic zone, i.e., the southern part of the country. Taiga 

forests are specified by a so-called “dark taiga”, which comprises shade tolerant species 

such as Siberian pine and Siberian spruce, whereas the term “light taiga” includes species 

that demand for a patchy canopy structure such as  Siberian larch and Siberian birch 

(Byambasuren, 2011, Dulamsuren, 2004, Dulamsuren et al., 2016, Dulamsuren and Hauck, 
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2008, Mühlenberg et al., 2006, Mühlenberg, 2012). Microclimatic variability and edaphic 

diversity are closely intertwined with slope, aspect and altitude, thus shaping the forest 

landscape (Begum et al., 2010, Treter, 1996, Zueghart, 2017). South-facing slopes and 

valleys are represented by steppe, meadow and riverine vegetation, when in fact light and 

dark taiga are the prevailing features of the north-facing slopes (Cleve et al., 1986, 

Dulamsuren et al., 2005a, Dulamsuren and Hauck, 2008, Méndez-Toribio et al., 2016). 

Topography not only affects vegetation distribution and composition, but there are strong 

indications, that it is also a cause for repercussions on the local and regional climate. 

Although a lot of recent research activities focus on the complex nature of these interactions, 

most of the underlying mechanisms are still poorly understood. 

Forests are pivotal for the provision of ecosystem services such as pure water, timber for 

construction and fuel, purification of the air, and for supplying non-timber forest products 

such as berries, pine kernels and mushrooms. Mongolian forests are also home to many 

endangered species, and in addition, embody a distinct spiritual value. With an ecosystem 

as sensitive as the taiga forests, these biomes are extremely susceptible for disturbances 

caused by climate change and socio-economic pressure (Byambasuren, 2011, 

Byambasuren, 2018, Dulamsuren and Hauck, 2008, Miehe et al., 2007). The demands in 

Mongolia for conserving the precious nature, the human needs to sustain a living of a certain 

standard and the uplifting of a faltering economy seem irreconcilable. A sustainable, climate 

change mitigating forest management strategy appears to be mandatory to tackle these 

challenges adequately (Baasan, 2010, Erdenebat, 2014, Gustafson et al., 2010, Gustafson 

et al., 2011). These days the Mongolian forestry sector is still afflicted with improper 

silviculture practices, illegal logging activities, and a severe lack of law enforcement partly 

due to corruption. Forest cover has decreased for about 1.2 million ha over the past 20 

years due to inappropriate land use practices and overgrazing expediting to land 

degradation and desertification (Tsogtbaatar, 2004a, Tsogtbaatar, 2013, Wyss, 2007). The 

current situation is exacerbated by clear indications of climate change leading to 

longitudinal, altitudinal and compositional shift in the taiga biome, but has also triggered an 

increasing number of forest fires and other disturbances like pest outbreaks (Allen et al., 

2010, Batima et al., 2005, James, 2011, Kasischke et al., 1995, Kirilenko and Sedjo, 2007, 

Pachauri et al., 2015, Seidl et al., 2017, Soja et al., 2007, Tautenhahn et al., 2016, 

Tchebakova and Parfenova, 2012, Tsogtbaatar, 2013). A silver lining on the horizon is 

expressed by passing specific bills and regulations by the Mongolian government to meet 

the demands for mitigation and conservation strategies, in particular in the light of Mongolia 

taking part in the REDD+ (Reducing Emissions from Deforestation and Forest Degradation) 

programme of the United Nations (Byambasuren, 2018, The Secretariat of the State Great 

Hural, 2016, UN‐REDD, 2018). The implementation of these objectives not only requires 
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technical support and well trained and competent personnel, but in addition the provision of 

relevant information on the forest resources under a changing climate in the country. 

Subsequently, many research projects have been initiated to untangle the role of climate 

for forest productivity and the response among sites and species. Mitigation strategies in 

accordance with good management practice can only be devised and implemented if the 

feedback mechanisms of light and dark taiga to global changes are understood (James, 

2011, Streck and Scholz, 2006, Thurner et al., 2014). 

In the wake of those activities remote sensing technology and Geographic Information 

Systems (GIS) have proven to be invaluable tools for the compilation and analysis of 

environmentally relevant data to gain critical insight in the complexity of interacting systems 

and make predictions based on sound information (Ciesla, 2000, Hansen et al., 2013, 

Hildebrandt, 1996: 360–361, Lausch et al., 2016, Tomppo et al., 2014). Substantial 

advances in sensor and platform technology as well as cost efficiency make this a 

paramount choice in conjunction with monitoring activities, forest inventories and the 

assessment of land cover change and health status. With the advent of sub meter ground 

resolution multispectral satellite imagery, laser technologies such as LiDAR, and the 

availability of low-cost UAVs new opportunities are created to replace or complement 

expensive and laborious ground-based measurements (Bohlin et al., 2012, Franklin, 1986, 

Hyyppä et al., 2008, Järnstedt et al., 2012, Laliberte and Rango, 2011, Næsset, 2002b, 

Næsset et al., 2016, Rango et al., 2009, Steinmann et al., 2013, Tuominen et al., 2015, 

Tuominen and Pekkarinen, 2005, Wallace et al., 2016). In a great many instances, remote 

sensing technology offers the only feasible approach to gain a synoptic view on 

environmental processes and the pertaining ramifications (Cracknell and Hayes, 2007: 1, 

Jones and Vaughan, 2010, Lillesand et al., 2015: 2–3, van Laar and Akça, 2007).  In 

addition, new methodological approaches and image analysis techniques originating from 

computer vision and robotics have been introduced to extract better information from the 

sensed objects and phenomena (Canty, 2014, Dong and Chen, 2018, Kentsch et al., 2020, 

Ma et al., 2019, Nezami et al., 2020).       

1.2. Goals and hypotheses 

At present, appropriate management strategies, law enforcement, the participation of the 

relevant stakeholders and local communities in particular, along with scientific advance are 

compelling to be able to deal with a complex number of environmental and socio-economic 

challenges (Gradel, 2007, Schmidt-Corsitto, 2016, Wyss, 2007, Yamamura, 2013). In this 

respect, international development aid has gained momentum in Mongolia. One example 

for providing expertise and funds for tackling the pressing issues is the German Federal 

Enterprise for International Cooperation (GIZ). The presented study related to the forestry 
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sector was conducted in collaboration with the GIZ and as such is unique in the sense that 

development aid and applied scientific research are linked for the benefit of the Mongolian 

people and their environment. Although a great deal of forest research was carried out 

before, sound information on the state of the Mongolian forest had been lacking. For this 

reason, a national forest inventory (NFI) was conducted in 2014 for fulfilling the information 

needs on a national and regional level (Altrell and Erdenejav, 2016). Nonetheless, a more 

detailed and refined approach is required to gain more insights into forest structure and as 

such calls for scrutiny on a local or even stand level. So far, no studies have been carried 

out on a local and stand level employing remote sensing technology – the analysis of UAV 

imagery also seems to be novel in this context. As a consequence, a joint research initiative 

between the GIZ1 and the University of Göttingen was launched and a research site in 

proximity of the hamlet Thunkel in the Khentii Mountain area north of Ulaanbaatar chosen 

to investigate the feasibility of gathering relevant data on taiga forest structure. Field work 

was carried out in the 61-ha forest compartment 435, which has been serving as a GIZ 

school forest for many years and been subject to former inventory cruises. Salient features 

of this site are variations in altitude, tree species composition of the dark and light taiga, as 

well as in silvicultural treatment. Unfortunately, part of the school forest was subject to a 

devastating wildfire during field operations. 

Exploration comprised a variety of parameters taken into consideration:  

• Forest inventory parameters such as diameter breast height (dbh), tree height, tree 

species, basal area, number of trees per plot, tree quality, tree vitality, slope and 

aspect were taken during field survey. 

• Furthermore, an UAV was employed to gather high resolution aerial imagery for 

generation of a 3D canopy model and visual interpretation of tree species 

distribution and composition. 

• High resolution multispectral satellite imagery was procured to accomplish spectral 

separability of the light and dark taiga and to correlate inventory parameters with 

spectral signature. 

• Various vegetation indices and image classification methods will be tested for 

suitability of spectral discrimination of tree species and the potential transferability 

on other forest areas.  

 

 

 
1 German Federal Enterprise for International Cooperation 
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Subsequently, the following hypotheses will be investigated: 

❖ Tree species and composition (regularity and mingling) can be identified on the 

aerial imagery. 

❖ Tree height can be extracted from the resulting canopy height model as generated 

from the aerial imagery with accuracies commensurate with field survey 

measurements. 

❖ High resolution satellite imagery is suitable for the extraction of tree species, number 

of trees, and carry enough spectral information to correlate satisfactorily with 

inventory parameters such as timber volume and basal area.  

 

Finally, in accordance with the overall objective of this study, it will be reviewed to what 

extend the findings can be implemented and integrated into sustainable forest management 

practices by providing a decision supporting tool to help determine the best sensor – 

platform – classification method/algorithm combination for a specific assignment. In 

addition, it is expected that the outcomes of this project largely contribute to the assessment 

quality of forest ecosystem services, as well as forest fire risk management.    

The author is aware of the fact, that the audience of this dissertation is mainly recruited from 

various disciplines with diverse scientific credentials and skills. To cater for these readers, 

some of the chapters provide a broader background of specific topics as opposed to the 

customs related to writing a scientific paper. In addition, exhaustive chapters are endowed 

with a wrap-up section at the end for the reader’s comfort and ease.  
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2. Mongolia and its forest resources 

2.1. A country profile 

The subsequent chapters are aimed at providing information at a glance related to the 

geographic location of Mongolia, the prevailing climatic conditions, its socio-economic 

situation, and to conclude with the flora of Mongolia and the boreal tree species in particular. 

2.1.1. Geographic location and topography 

Sandwiched between the big neighbours Russia in the North and China in the South, 

Mongolia covers an area of 1.565 million km2, thus being more than four times the size of 

Germany. The latitudinal stretch is about 1200 km (41o North to 52o North), the longitudinal 

extent being around 2400 km (88o East to 120o East).  

 

Figure 2.1: Physical map of Mongolia (source: ezilon Maps, 2009). 

The physical map above reflects  quite impressively the elevated character of the country 

dominated by vastly stretching plateaus ranging from 1500 to 2000 meters (above sea level 

(a.s.l.)). The main plateaus are flanked by mountain ranges with impressive peaks of more 

than 4000 meters found in the Mongolian Altai range. The lowest point in the country is 

represented by a salt lake in the Udz basin in the East with 552 meters (a.s.l.) (Hilbig, 1995). 

About 85% of the country’s area is elevated above 1000 meters (a.s.l.). Due to its specific 

topography, Mongolia is located on a major watershed running East-West, with rivers 

running North to the Arctic or Pacific Ocean, and South to the Central Asian Depression .      
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2.1.2. Climate in Mongolia  

The high altitude and the continental position of  Mongolia determine the climate featuring 

extreme contrasts – temperatures can drop as low as -50oC in winter, while summers are 

warm with temperatures exceeding 40oC (Dagvardoj et al., 2014). The annual mean 

temperature has been calculated to be 0.6oC, with a mean of more than 9oC for Germany 

in comparison (Deutscher Wetter Dienst, 2021). The aridity increases from North to South 

with precipitation rates ranging from 600 mm per year at the Khuvsgul and Khentii 

mountains to a low of 25 mm per year or less in the Gobi desert (Gunin et al., 1999). The 

annual distribution of the precipitation shows strong peaks in summer (about 70% of total 

precipitation), and winter (about 5-10% of total), however, snow cover does not seem very 

common. Most of the precipitation falls in showers and thunderstorms, and droughts 

become an increasingly common phenomenon with a changing climate (Dulamsuren and 

Hauck, 2008, Khansaritoreh et al., 2017). Autumn tends to start with a drastic decrease in 

precipitation and dwindling temperatures, contributing to the overall harsh climatic 

conditions. A very special weather phenomenon in Mongolia deserves a special mention, 

since these extreme conditions have wiped  out great proportions of the livestock in recent 

years. The so-called white dzud refers to an extreme plunge of winter temperatures 

associated with heavy snowfall. In contrast, the black dzud lacks the high precipitation, but 

temperatures can go down to -58 degrees Celsius (Haeseler and Schmitt, 2017). Although 

being well adapted to harsh conditions, the nomads’ most valuable assets (i.e., goat, sheep, 

camels, cattle, horses) are not able to withstand these extreme plights and die of a lack of 

forage and hypothermia (in the winter of 2015/2016 and 2016/2017 more than 1.1 million  

animals perished).   

2.1.3. Socio-economic and political factors  

Mongolia features a total population of an estimated 2.8 million (figures vary with source, 

since there is no official resident registration in Mongolia), with half of the population residing 

in the Mongolian capital Ulaanbataar these days. Traditionally, being a people cherishing 

the nomadic lifestyle,  with the decline of the Soviet Union in the 1990s and the cease of 

the markets and investors, a fair amount of the Mongolians had been seeking to make a 

living in the capital, thus causing an enormous rural exodus. The picture below (Figure) 

depicts a view to the North with clear indications of an increasing urban sprawl.   



 

8 
 

            

Figure 2.2: Photograph showing urban sprawl in the North of Ulaanbataar (source: Vogt, 2017). 

In the following years, the collapse of the industry sector in particular has led on to a sharp 

increase of the unemployment rate, and as such, evoked poverty, lack of shelter, and also 

the disintegration of the public health and educational sector. This development has caused 

a reversal of the exodus trend, with people getting more and more dedicated to the 

traditional lifestyle of animal husbandry. However, in the recent years, with the transition to 

and a transformation into a democracy, and with an influx of substantial foreign aid, 

Mongolia has managed to triple the DGP per capita since 1991 (World Bank, 2021). The 

country with its vast livestock and mineral resources has also managed to get the rate of 

illiteracy down to under 2%. In summary, the development prospects look promising in the 

long term, however, with a changing climate and the ramifications of the Covid-19 

pandemic, new challenges arise. 

Mongolia is divided into 21 provinces, the so-called aimags, with subsequent subdivision 

into districts, also known as soums. This extremely sparsely populated country contains 

very little arable land, forcing it to import most of its food resources from countries such as 

China or Russia. An important backbone ensuring the Mongolian market activities is the 

train line running from North to South, connecting settlements and mining areas to the 

neighbouring nations Russia and China. In the recent years, rich mineral deposits of cooper, 

coal, tungsten and gold have caused a boom in the mining sector, however, the country still 

struggles to overcome a significant trade deficit. According to the World Bank, around 30% 

of the population are estimated to be still below the poverty line (World Bank, 2021).  
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2.1.4. Vegetation zones 

This subchapter mainly focuses on the driving factors for the extent of the boreal forests in 

Mongolia. Nevertheless, it is worth mentioning, that an impressive body of research has 

been conducted and published by Russian and other experts dealing with the high diversity 

of flora and fauna in this fascinating country (e.g. Gunin et al., 1999, Dulamsuren et al., 

2005a, Dulamsuren, 2004, Hilbig, 1995, Mühlenberg, 2012, Department of Biology, School 

of Arts and Sciences, National University of Mongolia, 2017, Mühlenberg et al., 2004, 

Endicott, 2012, Schwanghart, 2008, Yamamura, 2013). An impressive repository on the 

flora of Mongolia is maintained by the University of Greifswald featuring a plant database 

with thousands of entries (University of Greifswald, 2010).  

Being located in the Palaearctic zone, the vegetation zones in Mongolia are determined by 

(i) climate characteristics, (ii) by altitude, and (iii) by the composition of the tree species.  

(i) The zoning of the vegetation apparently corresponds quite well with the gradient of 

precipitation rates from North to South. Thus, the Northern part of the country adjoining the 

Russian territory is dominated by dense coniferous forests, also referred to as taiga. The 

Siberian Larch (Larix sibirica) is by far the most common tree species, with Siberian Pine 

(Pinus sibirica), Scots Pine (Pinus sylvestris), and Siberian Spruce (Picea obovata) ranking 

next. The more light demanding White Birch (Betula platyphylla), representing the broad-

leafed deciduous tree species with the highest proportion, often occurs either intermingled 

with Siberian Larch, or in pure stands ensuing forest disturbances like wildfires, or after 

copious felling activities. Moving further South, with precipitation rates between 300 and 

400 mm, the forest steppe zone dominates the landscapes as a mix of grassland and forest. 

To avoid the high evapotranspiration as a consequence of the intense solar radiation,  the 

forest tree species are compelled to populate the Northern slopes (Treter, 1996). In the 

zone with precipitation below 300 mm per year only grasses and other well-adapted non-

tree species are able to survive to present the well-known steppe. The vast grass plains are 

dominated by the bunch grass Stipa capillata, L., forming mottled carpets associated with 

a selection of wormwood (Artemisia). Soil types have then changed from the forest 

influenced parachernozems to castanozems being typical for the steppe zone (Hilbig, 

1995). When approaching the desert zone of the Gobi, precipitation drops to less than 100 

mm per annum. Grid and stone deserts dominate the scenery, with a few desert-adapted 
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Saxaul (Haloxylon ammodendron) trees interspersed. The following map provides a good 

overview on the overall distribution of the various vegetation zones in Mongolia.  

(ii) and (iii) The Mongolian taiga grows under extreme conditions to represent almost 2% of 

the world’s taiga forest cover. Altitude and slope exposition are other major drivers for 

zonality of the taiga forests. In recent years a number of researchers investigating the 

Mongolian landscapes and ecotones have come up with suggestions on how to zonally 

structure the occurrence of forests (Dulamsuren, 2004, Gunin et al., 1999, Hilbig, 1990, 

1995, Hilbig, 2006, Mühlenberg et al., 2004, Sabloff, 2011, Yamamura, 2013: 65–70). The 

graph (Figure 2.4) extracted from the work by Dulamsuren (2004), slightly modified by 

Wecking (2017: 30), illustrates quite simply, what ecological niches are occupied by the 

various biomes. In the altitude zones between 900 and around 1300 meters (a.s.l.) taiga 

forests dominate the northern slopes, whereas in the altitudes from 1200 to 1600 m (a.s.l.) 

the variation in exposition does not seem to be of importance. The term dark taiga refers to 

shade tolerant tree species, like Siberian Spruce and Siberian Pine. In contrast, the light 

taiga constitutes tree species being light-demanding, like White Birch, and Siberian Larch. 

Light taiga species only occur, where shade-tolerant species perish for climatic or edaphic 

reasons. With an increase in altitude climatic conditions become more and more adverse,  

putting coniferous trees in a more advantageous position because of their higher 

productivity (Grabherr, 1997: 320–323, Mühlenberg et al., 2012a).  

Figure 2.3: Vegetation zones in Mongolia (source: Klinge, et.al. 2018).  
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All driving factors mentioned above would be incomplete, if there were not additional ones 

controlling the presence or absence of specific flora species. Natural disturbances like 

wildfire or insect pest attacks – not to mention climate change -  have a great impact on the 

shape of the landscapes, but they also affect energy flows and biochemical cycles. As a 

result forest stand structure, species composition, and forest growth are influenced 

(Baldocchi et al., 2000, Byambasuren, 2011, Danilin and Tsogt, 2014, Dulamsuren et al., 

2010a, Goldammer and Furyaev, 2010, Gradel et al., 2017b, Malhi et al., 2002, Schulze et 

al., 2005, Schulze et al., 2012, Stocks et al., 2001).     

   

2.1.5. Tree species of the Mongolian forests 

In total around 140 different woody plants, shrubs, and tree species have been found and 

recorded in Mongolian forests so far (Altrell and Erdenejav, 2016: 10–11). However, the 

coniferous boreal forests and forest steppe in the North and the Saxaul forests of the 

southern desert and desert steppe comprise only a few prominent species. The main tree 

species are introduced in the following for the dark, as well as for the light taiga. The 

photographs below are all retrieved from the website of Manfred Vester and thus are 

indicated as such (Vesper, 2005).  

 

 

Figure 2.4: Classification scheme of boreal forest communities in Mongolia 
(Wecking, 2017:30). 
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As mentioned above it is distinguished between the light taiga with light-demanding tree 

species, whereas the dark taiga features more shade-tolerant species. The main light taiga 

species comprise the Siberian larch, the White birch, with Scots pine. Dark taiga species 

are Siberian pine, Siberian spruce, and Siberian fir. Other tree species like various poplar 

and willow species almost exclusively populate the riverine areas.   

The Siberian larch (Larix sibirica, L.) dominates the scenery of the light taiga. The tree height 

is up to 40 meters, and this species sheds the needles in autumn (i.e., deciduous). It can 

withstand extreme climatic conditions, but prefers well aerated soils. The timber is used for 

construction and for pulp in the paper industry (Farjon, 2017). 

The Siberian birch (Betula platyphylla, Sukaczev) grows up to 20meters heigh and is very 

conspicuous because of its white bark and the lush green foliage (Farjon, 2017). It can 

tolerate high temperatures, but is also well adapted to winter conditions. The larch can occur 

in pure stands or in mix with the Siberian larch. Interestingly, the birch is not being utilised 

in Mongolia at all, although the high content of essential oils would make it an excellent 

Figure 2.5: Common tree species in Mongolia – from left to right - top: Siberian larch; White birch; 
Siberian pine. Bottom: Siberian spruce; Scots pine; Siberian fir. Source: Vesper, 
2005.  
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firewood (Schmidt-Corsitto, 2017). In other countries birch is valued as wood for flooring, 

pulp and paper, furniture, and as firewood.  

The Scots pine (Pinus sylvestris, L.) in its Mongolian variety has its natural range in eastern 

Siberia, around the Baikal lake, and in the light taiga belt of Northern Mongolia. Tree heights 

are up to 40 meters, and habitat preferences are low profile, except for light. Scots pine is 

commonly associated with other coniferous species, but also mingles with broad-leafed 

species. Utilisation is focused on timber and paper production, as well as on  mining props 

for the mining industry (Farjon, 2017). 

The Siberian pine (Pinus sibirica, Du Tour) represents one of the most common species of 

the dark taiga. It can reach heights of up to 40 meters with diameters (DBH) of easily 50 

centimetres. It has a high demand of water, but can cope with a low nutrient content of the 

soil. Individuals grow slowly, but can attain an age of more than 850 years. The wood is 

used for construction and furniture, and trees are tapped for resin, and the kernels sold on 

markets (Farjon, 2017). 

Siberian spruce (Picea obovata, Ledeb.) can also grow quite tall (up to 40 metres), with 

diameters often exceeding 50 centimetres. The Siberian spruce has a high demand for 

water and prefers humid and shady sites. It also constitutes dark taiga riverine forests 

(Dulamsuren et al., 2005a). The needles of this species are much darker than those of the 

Siberian pine, and Scots pine. Picea obovata has shown to be sensitive to rapid 

temperature changes, as well as to late spring and summer frosts (Farjon, 2017).   

The Siberian fir (Abies sibirica, Ledeb.) is also one of the key dark taiga species. It prefers 

sites with a good availability of water and nutrients, and fancies well drained soils free of 

permafrost (Farjon, 2017). According to investigations by Dulamsuren et al. (2005a) Abies 

sibirica features a limited range with occurrences only in the Khuvsgul and Khentii region, 

as well as on mountain ridges. Due to its high market value the Siberian fir has become red-

listed as a very rare species (Dulamsuren et al., 2005b).  

The Saxaul tree (Haloxylon ammodendron) occupies 

arid habitats like sandy deserts, and grows only 1 to 4 

metres high. The leaves are reduced to scale-like organs 

and as such are almost inconspicuous. The Saxaul plant 

can tolerate high salt contents in the soils, and can even 

form dense ‘forests’. The wood is very hard and thus 

extremely difficult to work with, and is mainly used as 

firewood and for dune stabilisation (Vesper, 2005).       

 

Figure 2.6: Saxaul tree (Vesper, 2005). 
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2.2. The ‘borealis’ 

With an extent of more than 920 million hectares the boreal forest ecosystem represents 

almost 29% of the entire global forest area (Kuusela, 1992). The following graphical 

representations convey a very good impression on the vastness of this zonobiome. 

  

 

 

 

 

 

 

 

 

The borealis rings the northern hemisphere between 45o and 73o latitude to include China, 

Russia, Mongolia, Canada, parts of Japan, and Scandinavia. The vast forests are 

interspersed by myriads of lakes and wetland systems. The flora mainly consists of cold-

tolerant and fire-adapted conifer trees (spruces, larches, pines, firs), deciduous broad-

leafed trees (birches, poplars, maples), tall shrubs, and a great variety of grasses, ferns, 

mosses, and lichen (Kayes and Mallik, 2020). The boreal zone is engulfed by the treeless 

tundra in the North, and by the nemoral zone or the forest steppe in the South (Venzke, 

2008: 3–4). The natural habitat of the boreal forests is determined by temperature and 

precipitation, with an amplitude of -3 degrees Celsius for the coldest month and 10 degrees 

Celsius for the warmest month (i.e., climatic zone D). Permafrost soils are salient features 

of the boreal zone with either discontinued or permanent character. The growing period 

presents itself extremely short with three months exceeding an average temperature of 10 

degrees Celsius (Bonan and Shugart, 1989). However, in the last few years, temperature 

maxima of -32 degrees Celsius to more than 35 degrees Celsius have been observed, 

which are attributed to a changing climate (Stephanowitz, 2020). 

In addition to other numerous factors, the occurrence of boreal forests largely relates to the 

existence of permanently frozen soils (permafrost). The low decomposition processes of 

organic material are inextricably linked with the overall low temperatures, thus making 

nutrient supply for the flora fairly arduous. On the other hand, the thawing water in the soils 

Figure 2.7: Extent of the boreal forest zonobiome. Sources: www.shutterstock/Atomic.Roderick; 
Kayes and Mallik, 2020. 



 

15 
 

during the warmer periods guarantees a well-dosed constant flow of water at the disposal 

of the vegetation. Continuous and discontinuous permafrost scenarios largely regulate the 

patchy, mosaic-like appearance of the tundra and forest landscape. Wildfires, insect pests, 

and logging activities result in the removal of tree cover, thus largely affecting the thermo-

regulation of the soils. According to numerous investigations, only the occurrence of a 

dense forest vegetation causes an insulation effect on the ground below, and as such has 

the potential to provoke the formation of new permafrost areas. However, the trend for an 

increased degradation of the boreal forests has detrimental effects on the permafrost layers. 

The thawing of those sheets induces water stress in higher plants in the long run to spark 

off an expansion of the less water demanding tundra (grass, moss, lichen, shrubs) flora – 

negative feedback loops have been affirmed already (Dulamsuren et al., 2010b, Etzelmüller 

et al., 2006, Eugster et al., 2000, Juřička et al., 2020, Kopp et al., 2014, Sharkhuu et al., 

2007, Sugimoto et al., 2002, van Cleve and Yarie, 1986). With a changing climate the 

degradation of the boreal forests at a galloping speed will present further disastrous 

scenarios with increasing rates of wildfires (especially smouldering ground fires) and 

soaring levels of carbon and methane emissions due to biomass decomposition caused by 

tapering permafrost (Harden et al., 2000, IPCC, 2020, McRae et al., 2009, Mukhortova et 

al., 2015, Ōsawa, 2010: 459–463, Shvidenko and Schepaschenko, 2013, Watson, 2009). 

For further information on the impact of wildfires on the Mongolian boreal forests, please 

refer to chapter 5.2.             

2.3. The Mongolian forest resources 

The Mongolian taiga forests, as being part of the boreal zonobiome, are home to a diverse 

flora and fauna scenery. However, this wilderness is at peril and at stake for numerous 

reasons. The subsequent account will attempt to shed light on the various causes by 

presenting the most up-to-date facts for perusal.  

2.3.1. Forest extent and structure 

NB: Many of the following graphs and tables reflect the outcomes of the National Forest 

Inventory (NFI) conducted in the years 2014-2016. Although the figures currently represent  

the most reliable and profound data base, care has to be taken when interpreting the 

depicted state of the forests in Mongolia for the following reasons: according to the NFI 

report, the control measurements showed that only 80% of the measurements carried out 

by the inventory team were within the tolerated deviation, with tree species identification, 

fire damage, and slope direction showing an error rate of less than 10%, but for 

determination of DBH, and height a deviation of between 30-60% were observed (Altrell 

and Erdenejav, 2016: 116)!  Despite the presented shortcomings of the NFI, it remains the 

most up to date inventory resource for the time being – in particular considering the flaws 
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(i.e. either not retrievable, not updated, or in Mongolian)  of the official Forest-Atlas website 

entertained by the Mongolian Ministry of Nature, Environment and Tourism (Ministry of 

Environment and Tourism, Mongolia, 2020).  

Since all data of the NFI report are based on the Mongolian specific definition of forest, the 

FAO related variation is as follows:  

- Minimum tree canopy coverage of 10%. 

- Minimum height of the species of 2 metres. 

- Minimum extent of forest area of 1.35 hectares.   

The following map depicting the extent and distribution of the boreal forests (i.e., without 

the Saxaul forests in the semi-desert in the South) in Mongolia was created in the course 

of the nationwide assessment of the forests in Mongolia (NFI). The derived forest mask for 

the year 2015 is based on the classification of Landsat 8 imagery with acquisition dates 

between June and end of August (vegetation growing period). More than 50 image tiles 

were classified by applying Random Forest as a machine learning method, with Google 

Earth data and Bing maps used for reference point interpretation and validation.  

 

Figure 2.8: Geographic distribution of boreal forest in Mongolia (NFI report: Altrell, Erdenejav, 2016:40).  

The resulting country map indicates the focal coverage of boreal forests being in the north-

centre of the country (i.e., provinces (so-called Aimags) of Bulgan, Khuvsgul, Arkhangai, 

Selenge, and arts of Khentii) , with patchy stretches of forest in the western part.  The NFI 

reports about 6% of the entire state territory to be populated with boreal forest, which 
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translates into about 9.49 million hectares. Overall map accuracies were calculated to be 

almost 90% (Altrell and Erdenejav, 2016). The table below (Table 2-1) conveys a good 

impression on the coverage of boreal forests with respect to the related political provinces.  

Please note, that the subsequent graphs and tables use the forest inventory regions not 

being congruent with the specific aimags. For the five forest inventory regions (i.e. Altai, 

Khangai, Khuvsgul, Khentii, and Boreal Buffer Zone) the ranking is (proportion of forest 

area): (i) Khuvsgul 47.7%, (ii) Khentii 26.4%, (iii) Khangai 18.7%, (iv) the Boral Buffer Zone 

5.5%, and (v) Altai 1.9% (Altrell and Erdenejav, 2016: 38). 

Table 2-1: Boreal forest area (ha) by Aimag (Province) (NFI report: Altrell, Erdenejav, 2016:39). 

 

Since the satellite data were not subjected to a species classification undertaking, all 

subsequent information provided is based on the field data acquired during the NFI mission. 

 

Figure 2.9: Regional forest types distribution according to tree species composition (NFI report: Altrell, 
Erdenejav, 2016:61). 

According to above figure (Figure 2.3) the inventory area featuring the highest diversity in 

forest species is Khentii, where the test area of the presented study is located. It is also 

striking, that the Siberian Larch (Larix sibirica) dominates the entire scenery.  The following 
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table (Table 2-2) provides a more detailed account on the various tree species within the 

boreal part of the country. Interestingly, the Siberian Larch hardly dominates the forests in 

the Khentii area, but rather appears intermingled with other species such as the White Birch 

(Betula platyphylla) and other conifers like Scots Pine (Pinus sylvestris) and Siberian Pine 

(Pinus sibirica) (Altrell and Erdenejav, 2016: 59–61).  

 

Table 2-2: Forest area proportion per tree species (NFI report: Altrell, Erdenejav, 2016:61). 

 

 

Another interesting finding of the NFI was, that the bulk of the boreal forests present 

themselves as at least two-layered stand structures (see Table 2-3). Single storey 

structures are commonly a result of disturbances in the forest caused for example by 

wildfires, cutting activities, or insect pest attacks, prompting succession tree species like the 

Siberian Birch to fill the forming gaps. We already learned in a previous chapter that the 

dark taiga forests are of a far more complex nature and as such appear as at least three-

layered structures. 
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Table 2-3: Distribution of forest area by stand structure (NFI report: Altrell, Erdenejav, 2016:65).  

                             

The subsequent table (Table 2-4) provides a good insight into the age distribution of the 

boreal forest, indicating, that there is an apparent lack of young forest areas. This means 

grave implications for the conduction of a sustainable forest management in the sense, that 

there will be hardly any harvesting potential over the long term (Altrell and Erdenejav, 2016: 

69).     

Table 2-4: Proportion of forest area by age class and forest inventory region (NFI report: Altrell, Erdenejav, 
2016:69). 

 

 

Another feature to take note of is the proportion of boreal forest populating different parts of 

the forested landscape. In an earlier note, scientists like Dulamsuren and Hauck (2008), 

Hilbig (2006), and Klinge et al. (2018) already stressed that the southern slopes of the 

mountainous areas are almost void of trees, or at least of forest patches. These findings 

are strongly supported by the NFI assessments presented in the following table (Table 2-5) 

(Altrell and Erdenejav, 2016: 97).   
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Table 2-5: Proportion of forest area by slope aspect (NFI report: Altrell, Erdenejav, 2016:97). 

 

 

Another forest structural feature most foresters pay a lot of interest into, is the growing 

performance of certain tree species related to the site conditions. The NFI reports an overall 

amplitude for growing stock ranging from about 60 m3/ha to around 132 m3/ha throughout 

all species (Table 2-6) (Altrell and Erdenejav, 2016: 44–45). Once again, the overwhelming 

presence of the Siberian Larch largely contributes to the growing stock volume of the boreal 

forests with 80.7% of the total (Table 2-7).     

 

Table 2-6: Growing stock volume by tree DBH class (NFI report: Altrell, Erdenejav, 2016:44). 
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Table 2-7: Average growing stock volume by tree species (NFI report: Altrell, Erdenejav, 2016:45). 

 

The former Mongolian Botanical Institute published a handbook for forest mensuration in 

2012 (unfortunately not available), in which actual and optimal forest volume were 

compared. According to this source, the forest volume could be more than doubled, if the 

forest stands were kept healthy and well-stocked (Altrell and Erdenejav, 2016: 49). This 

goal might sound rather optimistic, given the current situation of the forest management 

structures, however, clearly indicate, that the Mongolian forests are a far cry from being in 

a perfect condition. 

It also comes to no surprise, that Larix Sibirica ranks first, when looking at the growing stock 

density per tree species (Table 2-8). Nevertheless, it has to be borne in mind, that the 

presented figures below reflect the calculated average of all age classes.     

Table 2-8: Growing stock stand density by tree species (NFI report: Altrell, Erdenejav, 2016:48). 
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As trees grow older, the fiercer the competition for light and nutrients gets. As a 

consequence, the stronger individuals survive, leading to a  lower tree number per hectare 

as compared to much younger forest stands. For the Khentii region the NFI reports stem 

numbers per hectare for DBH >30 cm 45 trees, for the DBH class 15-30 cm 144 trees, and 

for DBH 6-15 cm 255 trees, totalling 444 stems per hectare (Altrell and Erdenejav, 2016: 

47). The authors of the presented figures emphasize, that stem densities in mature forests 

are a fraction of the numbers of stands in an early stage of development.   

Another key variable of forest appraisal is represented by the basal area (BA) of a tree class 

and per specie. BA is calculated as the cross-sectional area at breast height (i.e., 1.3 m). 

The table below (Table 2-9) indicates fairly low average values between 11.8 and 18.9 m2 

per hectare. However, this finding is very much in line with assessments carried out by 

Canadian scientists, who calculated similar figures (i.e. 13.59 m2/ha) for boreal forests 

across Canada (Matasci et al., 2018).  

Table 2-9: Growing stock basal area (BA) by tree DBH class (NFI report: Altrell, Erdenejav, 2016:51). 

 

The NFI also mentions Siberian Larch as the dominating tree species for BA with an 

average of 12.5 m2/ha, with White Birch following suit with 1.4 m2/ha for the whole of 

Mongolia. Values calculated for Khentii are 6.2 m2/ha for Siberian Larch, 2.5 m2/ha for White 

Birch, 2.2 m2/ha for Siberian Pine, and 1.9 m2/ha for Scots Pine, thus reflecting a much 

more diverse forest structure (Altrell and Erdenejav, 2016: 51–52).   

Forest ground vegetation constitutes a vital part of the boreal ecosystem, however, it can 

be a crucial interference factor for the computer-based classification of multispectral aerial 

or satellite imagery. Dark shrubs not being concealed can create darker spectral signatures 

in bright forest areas (e.g., larch, birch), whereas lush bright green grass or herb layers 

have the potential to ‘fool’ the interpreter or classifier and mock a healthy forest instead of 

identifying forest patches being completely defoliated or dead. Below figure (Figure 2.4) 

illustrates these potential caveats for the inventory region of Khentii. Apparently, herbs, 

grasses, as well as mosses, and shrubs play an important role in forest floor flora 
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community. Having said this, forest floor vegetation is far from forming uniform rugs, but is 

rather controlled by even small changes in topography and micro-climate.    

 

Figure 2.10: Forest ground vegetation cover (% of area) for the Khentii region (NFI report: Altrell, 
Erdenejav, 2016:66). 

 

2.3.2. Forest policies 

For centuries, the boreal forests of Mongolia have been a refuge for a rich wildlife, but also 

for people roaming the vast taigas for hunting, gathering firewood, and collecting non-timber 

forest products such as berries, mushrooms, lichen, pine kernels, and antlers. However, it 

was only in the 1970s, Mongolia’s government realised, that forest fires, illegal cutting of 

timber for construction and firewood, and numerous devastating insect attacks were 

increasingly threatening the biodiversity and merits for the water regime. With the transition 

from a centrally-planned economy to a market-oriented system in the 1990s, the Mongolian 

government was faced with the need for forestry-related legislative acts and forest policies 

to meet the demands of a growing population, but also to govern and control the utilisation 

of the forest resources in a sustainable manner (Tsogtbaatar, 2004b). The table below 

(Table 2-10) reflects the most relevant forest laws and policy acts for responding to the 

depletion of the forests. The Forest Law of Mongolia from 1995 (revised in 2012) clearly 

states the purpose of the law as to ‘regulate the protection of forests, the proper utilization 

and regeneration of forests’. The law also constitutes: ‘…forest resources are state 

property under the sole authority of the Mongolian people’ (Mongolian Ministry of Justice, 

2012). However, tenure rights can be granted to communities and private companies by 

administrative bodies on the aimag, or soum level (Tsogtbaatar, 2004b). According to the 

Natural Environment Conservation Law the Ministry of Nature and Environment bears the 

duty to work out and implement state policy on the conservation and proper utilisation of 

the forest resources, whereas the Ministry of Trade and Industry ‘…responds in wood and 

forest policy and in the execution of this policy’ (Munkhzorig, 2009). The author also states, 

that the implementation of the various programmes is very slow due to lack of resources  

and deficits in improving the legal environment for relevant state agencies, NGOs, and 

enterprises. Apparently, progress has been made in the abolishment of illegal wood 
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supplies from the forest, and in the reduction of damages caused by fire and harmful insects. 

In addition, reforestation work has been intensified, and initiatives for the investment in 

wood processing plants initiated. Nevertheless, a few major problems still exist, namely the 

execution of forest policy and financial support of the timber industry due to economic 

predicaments (Munkhzorig, 2009, Wyss, 2007: 14–15).   

Table 2-10: Regulatory framework for forestry and forest management in Mongolia (sources: FAO, 2020, 
World Bank, 2004, Mongolian Ministry of Tourism, Nature and Environment, 2020, 
Tsogtbaatar, 2004).    

Mongolian Forestry and Forest Management Policy Framework 
 

• First forest laws (1940-1954) 

• Law on Forest (revised in 1995) 

• National Forestry Program (2001) 

• Green Belt Eco-Strip National Program (2005) 

• State Policy on Forest (2015) 

• Green Development Policy of Mongolia (2015) 

• Action Program of the Government of Mongolia 2016-2020 (2016) 

• Mongolia Sustainability Development Vision 2016-2030 (2016) 

       

An important stipulation to be found in the Law on Forest concern the protection of the 

boreal forests in Mongolia. Three categories have been defined, namely special, protection, 

and utilisation zones (more details on utilisation of forests are provided in chapter 2.3.3.). 

Protected areas comprise for example forests around villages and towns, saxaul forests, 

and forests populating slopes exceeding 30 degrees. Specific actions are to be taken or 

prohibited in those areas, including fire management, the protection from disease and 

harmful insects, and from negative impacts of human activity. Forests within special zones 

consist of sub-alpine forests, virgin zones and specific areas in Conservation Parks. All 

forests not being designated as special or protection forests are available for economic use 

(Tsogtbaatar, 2004b).   

  

2.3.3. Forest utilisation and management 

With the revision of the Forest Law in 2012, only two administrative zones for the 

management of the forest resources have remained: the protected zone and the utilisation 

forest zone. In the utilisation forest zone, the boreal forests are managed by forest user 

groups (FUGs) as community-based management groups, as well as by private enterprises. 

Activities comprise logging, reforestation, and forest cleaning. The table below indicates, 

that more than 30% of the forested land are still kept under strict protection rules, with 21% 

of the forests being designated for production. All utilisation licences are authorised and 
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issued by the Mongolian Ministry of Environment and Tourism (MET). FUGs can lease the 

forest land from the State for up to 60 years, however, they are not allowed to cut standing 

trees, and as such, the motivation to engage in forest management activities has been 

extremely low (Altrell and Erdenejav, 2016: 13–14).     

Table 2-11: Designation of boreal forest area in 2015 (NFI report: Altrell, Erdenejav, 2016:41). 

 

A number of authors have mentioned the depletion of the forest resources in the recent 

decades, associated with the decline of forest areas due to wildfire and insect attacks, as 

well with illegal logging activities and the lack of law enforcement (FAO, 2007, Munkhzorig, 

2009, Teusan, 2018, Tsogtbaatar, 2004b, World Bank, 2021). Findings of the NFI in 2016 

reveal, that the average timber volume for Siberian larch, White birch, and Scots pine is 

about 61 m3 per hectare. The average stem volume of the logged trees per hectare was 

estimated to be 14 m3 for the whole of the boreal inventory areas, thus providing a rough 

indication on the over-utilisation of the forests (Altrell and Erdenejav, 2016: 53–57). 

Unfortunately, no precise figures on the amount of cut timber per annum exist. In  order to 

get a much better idea on the real magnitude on the depletion of the forest resources, the 

annual increment of the tree volume would be very useful to learn. At least it seems common 

practice in many countries to only cut the incremental volume in order to achieve a 

sustainable system. Only a few studies by Gradel (2017) and Gradel et al. (2017a) provide 

some clues on the growth development of Siberian larch and White birch. Figures on local 

forest taxation carried out by private companies are either not available or are based on 

ocular estimation, thus making any inferences based on sound scientific methods pure 

speculation (Altrell and Erdenejav, 2016: 107–108).       

According to recent reports of the World Bank and the FAO the Mongolian forestry sector 

seemingly struggles to get back on its feet after the collapse of the Russian regime in 1990 

(Corsi et al., 2002, Crisp et al., 2004, Erdenechuluun, 2006, FAO, 2010, 2013, 2014a, 

2020b, Ykhanbai, 2010). Indications that that Mongolia is rapidly approaching a crisis are 

striking.  
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The major conclusions of the various consecutive reports are: 

• The levels of forest harvesting are not sustainable, with the period from 1970 to 1994 

coined as a period of ‘forest liquidation’. 

• Estimates range from 36 to 80% for illegal harvesting activities. 

• Fuelwood contributes between 65 and 80% of total wood harvest. 

Further quotes seem to underpin the desolate situation: ‘There is no sense in which forests 

of Mongolia can be said to have ever been subject to science-based sustainable forest 

management (SFM)…’, and ‘…, though Mongolia has a credible body of forest legislation, 

regulations, policies and programs, the planning, management and control systems to 

achieve these on the ground do not presently exist’ (Crisp et al., 2004). This is a truly a 

damning indictment for the execution of the forest policy legislation. To make things worse, 

the previously well working system of local responsibilities with communities being in charge 

and with a forest service being in place, was abolished in the 1990s. In addition, at the 

ministerial level (i.e., MNE) a lot of restructuring and reorganisation took place in 2004 

resulting in a new administerial system with no sole responsibilities for the forestry sector. 

As a consequence, the formerly strong and unified stewardship for the forests gets 

increasingly watered down. However, with the recovery of the Mongolian economy in 

association with an increase in foreign aid (e.g., FAO, IWF, World Bank, GIZ, UN-REDD), 

the prospects for creating a sustainable forest management in connection with capacity 

building efforts should be not that bleak.     

     

2.3.4. Threats and challenges 

As mentioned above, structural deficits have already afflicted the adequate management of 

the taiga forests in Mongolia. Other factors such as increasing wildfire incidents and attacks 

of harmful insects hold the potential to exacerbate the situation.  As an example, the 

following figure illustrates the magnitude of insect inflicted damage on taiga forests.   
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Figure 2.11: Proportion of damaged forest area, by insect damage severity (proportion of damaged basal 
area) – source: NFI report ( (Altrell and Erdenejav, 2016: 88) 

Above graph reflects quite strikingly, that insect pests cannot be considered a miniscule 

problem. Notably, in the light of a changing climate and the associated repercussions on 

tree health, insect populations will have to monitored closely. According to the 2016 NFI 

report  about 70% of the boreal forest were found to be in a healthy condition showing no 

or little damage caused by snow/ice, fire, insects, grazing activities, or by lightning (Altrell 

and Erdenejav, 2016: 80–84). However, the situation with respect to the rate of damage 

caused by wildfire gives cause for concern. In recent years about 35% of the entire Khentii 

area were affected by fire (for more details on wildfires in Mongolia please refer to chapter 

.2.) (Altrell and Erdenejav, 2016: 85–86). However, with reports from other scientists and 

own observations this figure seems quite optimistic, given the fact, that fire occurrences are 

increasing with intervals getting shorter (Batima et al., 2005, Byambasuren, 2011, Chu et 

al., 2016, Flannigan et al., 2009, Goldammer and Furyaev, 2010). For example, Gradel 

(2017: 155–157) reports that the forest ecosystems in the Altansumber and Bugant 

research are evidently severely disturbed by fire. Grazing of the livestock in the forest 

regions also seems to be causing tree damage (Yamamura, 2013: 65,83,145). The NFI 

report describes varying degrees of impact on the forest, with the Altai region leading the 

statistics by showing a rate of 20% with high impact (Altrell, 2017: 92).      

Reports by big international institutions indicate a severe loss of forest area in Mongolia 

during the last few decades (Crisp et al., 2004, FAO, 2014a, 2020b, World Bank, 2021). 

The causes of those losses are manifold (e.g., logging, wildfires). In his research Teusan 

(2018) calculated an overall decline of 15% for the forest cover, with a reduction of the Scots 

pine area of 30% for the Selenge province for the period from 1990 to 2015. By analysing 

big sets of satellite data, he found forest fires to represent the major cause for the immense 

reduction in forest area. The Mongolian government has conceived the situation some time 

ago and as such has undergone great efforts to counteract this trend. Fire-fighting strategies 

were developed and re-, and afforestation programmes enacted and implemented. Annually 

around 400,00 to 600,00 US$ are being invested for such programmes, the bulk of the sum 

being endorsed by foreign aid organisations (World Bank, 2021, Wyss, 2007: 27). Due to 
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the harsh climatic conditions, the increasing damage caused by livestock, and the lack of 

manpower (for watering the plants) only 5% of the afforested areas can be considered to 

be secured (Crisp et al., 2004).   

Local experts identify the main threats and challenges for the national forest resources as: 

(i) a soaring demand for fuel and industrial wood, (ii) the increasing numbers of livestock 

with forests being used as foraging areas, and (ii) the massive impacts of wildfires 

(Erdenechuluun, 2006, Gradel et al., 2019, Schmidt-Corsitto, 2016, Schmidt-Corsitto, 2017, 

Tsogtbaatar, 2013).  With a dwindling economy, a weak law enforcement, the lack of 

expertise, and the presence of corruption, illegal logging will have to be curbed and the 

transition from a need-oriented to a sustainable forestry initiated. First steps in this direction 

have already been taken (Gradel et al., 2019, Schmidt-Corsitto, 2017).       

2.3.5. Remote sensing in Mongolia 

There is a growing awareness in Mongolian institutions that remote sensing in association 

with GIS bears the potential to help facilitate the assessment and monitoring of the natural 

resources (Mongolian Ministry of Environment and Tourism, 2016, Wyss, 2007). Near real 

estimates of forest loss, the degree of forest degradation, as well as the determination of 

carbon stocks, and the occurrence of wildfires are perfect candidates for remotely sensed 

imagery. Since most of the areas in Mongolia are near to inaccessible, a view from above 

remains unmatched and can also reduce costs for acquiring field data (Ciesla, 2000: 3, Xulu 

et al., 2019). Initially, only B&W aerial imagery were utilised for delineating forest areas in 

Mongolia. In 1989 the first images acquired from spaceborne platforms were employed to 

update the forest inventory maps and process meteorological. Since then, a growing 

number of national organisations such as The Ministry for Nature and Environment, the 

National Remote Sensing Center, The Ministry of Agriculture and Enterprises, as well as 

the State Agencies for Forest and Water Management have been favouring satellite 

imagery from various sensors. Furthermore, the Academy of Sciences, and The State 

Agency of Geology operate their own remote  sensing centres (Khuldumur and Erdenetuya, 

2010). Highlights for the establishment of a remote sensing infrastructure in Mongolia 

certainly were the foundation of the Information and Computer Center (ICC) in 1987 to 

receive NOAA satellite imagery (later also MODIS , Himawari, and Suomi NPP images), 

and the  integration of the Remote Sensing Center into the National Agency for 

Meteorology, Hydrology and Environment. The retrievable product line from their website 

(www.icc.mn) comprises satellite maps generated related to fire incidents, vegetation 

(NDVI), drought, land surface temperature, snow cover, and also dust storms and aerosols. 

Currently, a great deal of remote sensing research and teaching is performed at the National 

University of Mongolia (NUM), GIS laboratory, chaired by Prof. Tsolmon Renchin. Extensive 
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use of satellite imagery is also reported for the Fire Management Resource Center - Central 

Asia Region at the NUM, with Oyunsanaa Byambasuren being head – as a trained forester, 

he also holds the office as General Director of the Department of Forest Policy and 

Coordination at the MET.  
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3. Forest inventory 

According to Scott and Gove (2002: 814) ‘Forest inventory is an accounting of trees and 

their related characteristics of interest over a well-defined land area’. The pursuant chapter 

is dedicated to the basic concepts and related disciplines with respect to the sampling 

design, as well as to the gathering and analysis of tree or forest associated traits. Current 

techniques are portrayed and future trends outlined. The distinguished reader will find 

impressively detailed work in publications such as by Kangas and Maltamo (2009), Köhl et 

al. (2010), Loetsch and Haller (1964), van Laar and Akça (2007), Vries (1986), and Zöhrer 

(1980) for extensive reading.   

 

3.1. Introduction and concepts 

3.1.1. General concepts 

‘Forest inventories usually generate a specific set of data mainly descriptive statistics 

including precision statements on qualitative (e.g. species) and quantitative (e.g. tree 

diameter) attributes’ (Kleinn, 2014). In simple terms, forest inventories provide information 

on the extent, quantity and condition of the forests (Kangas, 2010). Being truly 

interdisciplinary, forest inventory involves disciplines such as digital data processing (IT), 

biometry, remote sensing / GIS, forest growth and yield, with providing useful information 

for decision makers in the fields of silviculture, (forest) economics, (forest) politics, 

environmental protection and nature conservation, forest road construction, and timber 

harvesting (Zöhrer, 1980: 13–15). 

The increasing number of the population in concurrence with a flourishing mining and salt 

production industry caused a severe shortage of the forest resources in many parts of 

Europe in the 14th and 15th century. The construction of large fleets for military (e.g., 

Armada) and commercial purposes also largely contributed to the devastation of vast forest 

areas. These circumstances prompted the first forest inspections and taxations (e.g. 

Nürnberger Reichswald) to result in the concept of sustainable forestry coined and devised 

by Hans Carl von Carlowitz 300 years ago (Hasel, 1985: 41,104,221-230). In the early days 

the forest taxations were based on visual estimation, since it was swift and fairly cheap. The 

advancements in mathematics and statistics, however, induced a true paradigm shift in 

forest inventory and resulted for instance in the first inventories on a national scale were 

introduced and conducted in Scandinavia in the 1920s (Kangas and Maltamo, 2009: 5–6). 

In recent years new technologies based on the development of new air-, and spaceborne 

sensors (very high resolution multi-, and hyperspectral imagery, laser scanning) and the 
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mindboggling progress in data processing caused a revolution in the forest inventory sector 

(Kangas and Maltamo, 2009: 8, Kleinn, 2014).   

Inventory goals can be manifold, largely depending on the available resources for the 

conduction and the size of the forest areas to be inventoried (i.e., scale). In countries with 

intensively managed forestry activities very detailed information on the stocked area, timber 

volume, increment, biomass, nature conservation and site conditions are crucial. In 

contrast, in countries with vast forest areas (e.g., in the tropics) the required information is 

very much focused on merchantable timber volumes and species. Whereas taxations are 

usually restricted on smaller areas (compartments, stands) with a high intensity on data 

gathering, large scale inventories (regions, countries) commonly are restricted on the 

mining of data related to the extent of the forests, the available species, trends in forest 

extent and biomass, and the growing stock (e.g. FAO Forest Resources Assessment) (FAO, 

2020a, Kangas and Maltamo, 2009: 279–281, Loetsch and Haller, 1964: 4–6, Zöhrer, 1980: 

15–16). However, when high spatial variation of forests need to be considered, even 

inventories on a national scale have to be very detailed (e.g. NFIs in Germany, Finland, 

Sweden) (Kangas and Maltamo, 2009: 195, 295-300). Forest inventories not only serve as 

a basis for planning forest related specific activities, but also proved to be very powerful 

tools for controlling and monitoring to detect trends of any kind (Zöhrer, 1980: 16). 

A complete census would undoubtedly yield the best inventory results, however, proves to 

be virtually impossible to achieve due to the large extent of the forest areas. For this reason, 

the acquisition of the required information is commonly based on sampling strategies 

involving only a proportion of the population. Two main schools have evolved in recent 

years, namely the design-based and model-based sampling approaches. Forest inventories 

primarily rely on design-based concepts, but with the progress in computer science and 

mathematics model-based concepts are becoming increasingly popular (see chapter 

3.1.5.).  For the design-based inference the randomness in the sampling process is entirely 

hinged on the random selection of the sampling units. In model-based inference the 

randomness is an intrinsic part of the model to describe the population (Kangas and 

Maltamo, 2009: 3–4). For a few decades there has been very controversial debates on 

whether sampling has to be systematic or randomised. In cases of heterogenous 

populations randomised sampling strategies have outperformed systematic ones, however, 

an increased precision can be obtained from the latter (Kangas and Maltamo, 2009: 6, Scott 

and Gove, 2002: 815–816).      
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3.1.2. Sampling designs 

In the last decades sampling designs have been devised in  abundance. They comprise 

methods like cluster sampling, double sampling, simple random sampling, stratified 

sampling, systematic sampling, two-stage sampling, and angle count sampling, just to name 

a few. Sampling plots can also be of a permanent (for monitoring) or temporary nature. The 

most common designs are portrayed in the following.   

Areal-based methods 

Areal-based sample plots are commonly simply-shaped units (square, circle), which can be 

easily located on the ground. Individual trees are sampled in varying numbers to allow 

inference of estimates based on a per-unit-area basis (e.g., volume per hectare) to 

sufficiently characterise a forest area and to make work more efficient. Between-plot 

variation can be reduced by increasing the plot size (entailing greater within-plot variation). 

For further concentration of effort in the field it has become common practice to use clusters 

of plots. The so-called strip and line-plot cruising methods have been standard procedures 

in Scandinavian countries for many years. Strip sampling encompasses the sampling of all 

trees in a strip of land with the width being fixed. Line-plot approaches are based on a line 

scheme running through a forest on which fixed-area plots are visited at regular intervals, 

having the advantage of providing the same accuracy as strip-based methods, but with a 

smaller area to be surveyed (Kangas and Maltamo, 2009: 6, Scott and Gove, 2002: 817–

818). Some ground-breaking work was done by a scientist by the name of D.J. Finney, who 

found out that a stratification prior to conducting work in the field showed numerous merits 

(Finney, 1950). His observations were confirmed by other authors, who describe the method 

to work particularly well for large-scale environmental patterns, where the area is broken up 

into relatively homogenous subareas to be sampled (Green, 1979: 35–38, Kangas and 

Maltamo, 2009: 24, Prodan, 2014: 280).   

An areal-based method known as plotless timber cruising can be ranked as one of the most 

influential developments in forest sampling. It was introduced by Bitterlich in the late 1940s 

and is also known as angle count sampling describing a method, by which the sampled 

area is associated with each tree and is thus variable in size (Zöhrer, 1980: 30–35). The 

technique was devised to get a 

simple and quick estimate of the 

basal area represented by trees in 

a specific area. The person in the 

field counts those trees whose 

diameter appears bigger than a specific critical angle α. With a 360 degrees sweep of a 

sample point the estimate of the aggregate basal area per hectare is carried out (Prodan, 

Figure 3.1: Concept of the angle count sampling (Nagel, 2001). 
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2014: 94–97, Scott and Gove, 2002: 818, Zöhrer, 1980: 30–35).   The letters in the graph 

denote: A position of surveyor, B tree diameter to be counted as tree being member of 

sample, α for angle, l for distance between human eye and tally plate, b for width of tally 

plate. 

Grosenbaugh extended the method portrayed above by applying probability proportional to 

size sampling (PPS) to get an estimate of any tree attribute (e.g., biomass, volume, tree 

number). Another variation of the point-to-tree distance technique was introduced as the 

so-called 6th-tree sampling. It considers a fixed number of tress (here: six) nearest to the 

sample point to be measured. This method was developed by Prodan in 1969 to be used 

for the estimation of stand density, and basal area. Many exhaustive studies on the tree 

distance approach showed that with a sufficient amount of trees included in the sampling 

process very good estimates on tree number, basal area, and tree volume can be achieved. 

The 6th-tree method is very easy to apply in the field, with 

only the distances of the 6 nearest trees and their DBH 

to be measured.  Although the 6th-tree sampling yields 

satisfactory results in a very efficient manner, bias has 

been reported for forest stand not following a Poisson 

distribution (Pelz, 1983). In addition, the coefficient of 

variation has been fund to be substantial resulting in a 

very limited applicability in practice (Suzuki, 2012). 

Zöhrer (1980: 45–46) also reports on bias due to 

clumping effects of tree groups. 

 

Tree-based methods 

These methods are based on the traits on the individual tree instead of describing 

characteristics a sub-population. This can turn out to be very useful, when information such 

as individual tree volume is required for timber sales. Grosenbaugh for example developed 

the so-called 3P sampling (probability proportional to prediction sampling) with the sample 

size being random and the sampling concentrated on the tree of most interest (Scott and 

Gove, 2002: 818–819). Detailed measurements on the specific tree are a main 

characteristic of this method. Very good and unbiased estimates for tree volumes have been 

reported by Scott and Gove (2002) and van Deusen (1987). 

 

The selection of an appropriate sampling method seems to be far from being trivial. Optimal 

data acquisition can be approached and judged differently. Traditionally, the sampling 

Figure 3.2: Point-tree distance method 
(Pelz, 1983). 
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design yielding a minimum of variance for e.g., volume within in certain budget bracket is 

given preference. Authors like Burkhart et al. (1978) suggest that the largest variance (or 

the variance of the most relevant variable) shall be favoured to determine the sample size. 

In contrast, authors like Scott and Köhl (1993) prefer the accuracy relative to the desired 

level of accuracy (Kangas and Maltamo, 2009: 35–36). In addition to the choice of the 

sampling approach the size of the sampling plots also needs to be taken into account. The 

larger the plots, the higher the costs for data gathering are. For example, clusters of smaller 

sub-plots have proven to be expedient in large-area surveys. The optimal plot size is driven 

by the surveying costs and the variation observed. Studies have shown that apparently the 

spatial patterns of forests greatly affect the optimal plot size. For a clustered population it is 

suggested to choose a larger plot size. The following graph demonstrates the effect of 

spatial patter and plot size on the coefficient of variation. 

 

  

 

 

 

 

 

   

 

 

3.1.3. Forest mensuration 

In this subchapter the most relevant measurement devices and methods are portrayed. The 

characteristics of the pertaining inventory parameters are described in the subsequent 

chapter (3.1.4.).  

Diameter Breast Height (DBH) 

As one of the most relevant variable DBH is measured by means of a calliper or measuring 

tape in a distance of 1.30 meters above ground. DBH is used to determine basal area and 

tree volume. Since no tree follows the form of a perfect cylinder, specific measuring rules 

apply as depicted below. In addition, tree cross-sections deviate from a circle and thus a 

Figure 3.3: Coefficient of variation and the related variance for various plot sizes 
(Kangas and Maltamo, 2009:54). 
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single measurement taken with a calliper would cause huge errors. Using a measuring tape 

minimises these errors.   

The diameter distribution provides good insight into the structure of a forest stand. DBH and 

tree height are closely correlated. Tree diameters at certain tree heights can be measured 

by using special optical callipers to determine the taper of the tree. 

 

 

 

 

 

 

 

 

 

Tree height 

Another pivotal variable is tree height. Measurements are either based on the geometric or 

trigonometric principle, with the latter being the most common and precise one. The graph 

below depicts the trigonometric principle, with the height (h) calculated as: h = e * tan α. 

                           

Figure 3.5: Measurement of tree height based on the trigonometric principle (Nagel, 2001:4).  

The distance to the tree can be measured using a tape, or the height measuring device 

features a distance gauge integrated (e.g., transponder). Both heights h1 and h2 have to be 

added to account for the size of the surveyor’s body. In a sloping terrain tree height 

Figure 3.4: Measuring instructions for DBH (Nagel, 2001:3).  
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measurement will have to be corrected – some devices such as the Vertex do that 

automatically. 

 

Figure 3.6: Examples of tree height measuring devices (Nagel 2001:4). 

 

Stem volume 

Determining water displacement is the only direct method to directly measure stem volume. 

Some useful theoretical approaches are described in the next sub-chapter (3.1.4.). 

 

Tree age and increment 

The age of a tree constitutes a good indicator for the growing condition and the competition 

situation in the observed forest stand. Ocular estimations performed by an experienced 

surveyor in consideration of tree height and DBH can yield good estimates for the tree age. 

However, a tree ring analysis with the annual rings counted still represents the gold standard 

in forest inventory. In the field bore cores are taken by means of a borer (see below). By 

analysis the core sample the annual increment can also be determined.  

 

 

 

 

 

 

 

 

 

Figure 3.7: Tree increment borer and tree ring analysis (Nagel, 2001:22-24).  
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Increment is traditionally calculated by observing the tree 

diameter at the beginning and end of a given time period. 

These days, special devices are attached to trees for 

getting direct readings of the increment (see graph below). 

The ring analyses do not only provide information on the 

increment of a tree, but also help to detect stress periods 

(e.g., drought) and damage caused by lightning and fire.  

 

 

Figure 3.8: Increment tape (Nagel, 2001:22). 

 

Crown attributes 

Attributes of a tree crown can give a good representation of the growing conditions on site, 

as well as an excellent indication of a required silvicultural action (e.g., felling neighbouring 

trees for providing more space for the crown). Various crown attributes can be determined 

(e.g., crown length, height), with the crown diameter measured 

being the most common attribute. It is measured in the field with 

a so-called crown mirror, enabling the surveyor to precisely 

determine the brim of the crown. Usually, the distances between 

the brim outlines in N-S and E-W direction are measured by 

using a measuring tape to represent the horizontal extent of the 

crown.     

 

Figure 3.9: Crown mirror (Nagel, 2001:19). 

 

Area determination 

The area populated by a certain number of trees is an important indicator for the growing 

conditions and competition situation. For this purpose, the area itself needs to be properly 

delineated. Traditionally, the specific areas can be retrieved from existing inventory maps, 

be measured in the field (GPS, laser devices), or extracted from high resolution imagery 

taken from above (i.e., airborne or spacebourne platforms). However, the correct retrieval 

from imagery largely hinges on the clear definition of the boundary between forest and non-

forest. The graph below provides a good example for the surveyor and image interpreter 

are faced with.  
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Figure 3.10: Forest definition and delineation problem in high-resolution imagery (Kleinn, 2017). 

Once the delineation has been properly set, the number of trees can be counted in the field 

or on the imagery accordingly to yield an indication of the tree density per area unit. 

Basal area (BA) 

The basal area of a single tree can be determined by measuring the pertaining DBH of a 

tree and using the formula BA = π * (DBH/2)2 for calculation. This method, however, turns 

out to be very laborious for calculating the basal area of a given stand. The angle count 

approach seems to present an efficient way of going the easy, but precise route. The 

method has been described previously (chapter 3.1.2.) – some of the devices used in the 

field are presented below. 

 

Figure 3.11: Popular angle count devices (Nagel, 2001:46). 
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The most popular devices in Europe are the mirror relascope (top left on the graph) and the 

Kramer dendrometer (below the mirror relascope). Cruise angles and prisms are much 

more common in the USA and other English-speaking countries.   

 

3.1.4. Relevant inventory parameters 

In forest management inventories it is quite common to observe 20-35 variables, however, 

in ‘fine-grained’ inventories the number of variables can easily exceed 200 (Kleinn, 2014). 

The core set of forest and tree attributes comprises: 

• Forest area 

• Diameter Breast 
Height (DBH) 

• Tree height  

• Tree/stand age 

• Tree volume 

• Basal area (BA) 

• Biomass 

• Tree density 

• Crown attributes 

• Diameter 
increment 

• Stem shape 

• Tree quality 

• Diversity factors 
(e.g., Shannon 
index) 

• Tree sociological 
position 

A few of these variables are detailed in the following. For more information please refer to 

literature published for instance by Edwards (1998), Nagel (2001), Prodan (2014), van Laar 

and Akça (2007), and West (2009).    

 

Tree height 

Tree height has proven to be a relevant predictor for tree growth and as such serves as a 

reference for site productivity (site index). In this context it is noteworthy, that tree density 

affects soil nutrient dynamics, above ground biomass, and crown characteristics, and in turn 

determines height growth, wood quality, and silvicultural treatment for optimal results 

(Benomar et al., 2013). Inferences on height increment can also provide a sound base for 

growth models and volume prediction. Canopy height models (CHM) seem to be particularly 

suited for the determination of height and other valuable vegetation parameters (Dandois 

and Ellis, 2010) – for details on CHMs please refer to chapter 4.6. Tree tops and their 

associated locations can be either directly derived from 3D point clouds (LiDAR) or CHMs 

(Reitberger et al., 2009, Tompalski et al., 2014b). For the extraction of height and tree 

locations, local maxima calculations, inverse watershed algorithms, or direct measurements 

from CHMs have demonstrated to be viable options (Edson and Wing, 2011, Panagiotidis 

et al., 2017, Tiede et al.) . The measurement of tree height in the field is traditionally carried 

out using devices based on the measured distances and angles (trigonometric principle). 

The measurement itself seems very straightforward, but error sources are abundant. These 
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error sources are related to flaws in distance and angle determination, the lack of visibility 

of the tree tops, and the wrong calibration of the devices. 

 

Figure 3.12: Potential errors in tree height measurement (Kleinn, 2014). 

With respect to measurements of  tree height and DBH in the field a study conducted by 

Kitahara et al. (2010) revealed that inexperienced surveyors produce great errors in 

measurements with the choice of the measuring device being less important. They also 

strongly suggest that teams need to be trained with sufficient feedback. According to their 

investigation tree height errors were greatest with broad-leaved trees (see Figure 3.4.). 

These findings are supported by statements of other authors, who worked out that the 

standard error in stand derived data from compartment-based forest taxations (i.e. ground 

truth data) are in the range of 26 – 36% (Kangas and Maltamo, 2009: 352–353). Another 

revelation was made by authors finding that the employment of the most modern 

mensuration equipment (e.g. laser based callipers and height-measuring devices, 

electronic dendrometers) did not necessarily improve the efficiency and cost saving 

capacity as initially anticipated (Kangas and Maltamo, 2009: 353).     

Diameter Breast Height (DBH) 

This predictor is another key variable in 

forest inventory in addition to tree height. It 

can be measured fairly easily in the field 

and serves as an entry into calculation of 

basal area and thus to timber volume. The 

graph below shows the DBH (BHD) to 

height (Höhe) relationship. 

 

 

 

Figure 3.13: DBH to tree height relationship (Nagel, 2001:35). 
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Timber volume 

Three main indirect methods of calculating timber volume have been established in forest 

inventory, namely (i) volume calculation by section, (ii) calculation using taper curves (they 

model the stem shape), and (iii) modelling volume through regression allometric formulas). 

Volume calculation by section is cumbersome, but yields good estimates of the tree volume. 

In practice the DBH and lengths of the particular section need to be measured. 

 

Figure 3.14: Subdivision of a stem into possible sections (Kleinn, 2014). 

 In the most simple form, the volume of the different sections can be calculated as: 

                                                  

G denotes the cross-section area at a specific position of a section (e.g., 1.3m, which equals 

DBH), f an additional optional specific form factor that can be integrated to account for a 

tree shape. The most common approaches for tree volume determination by section 

calculation are by Huber (corresponding to a cylinder), Smalian and Newton. 

gm denotes the cross-section diameter 

taken at the middle of the section, gl 

and gu denoting measurements at the 

lower  and upper end. Newton’s 

approach gives the best results for 

trees with a conical stem shape, Huber 

and Smalian are best for shapes resembling a cylinder.  

 

As mentioned before, statistical methods can be used to retrieve useful estimates for timber 

volume. The figure below shows sampled tree measurements with a fitted curve reflecting 

a close DBH – tree volume relationship. 

Figure 3.15: Tree volume determination approaches 
(Nagel, 2001:10). 
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Tree volume tables and the underlying relationships have to be constructed for each tree 

species and site condition if possible, to account for specific growing conditions and tree 

related traits. The table below introduces a few examples for the so-called volume tariffs – 

with formulas provided and their suitability for specific scales and site conditions. 

Table 3-1: Examples of the most common volume tariffs (Kleinn, 2014). 

 

Although good progress has been made in many countries in the modelling of tree volume, 

a lot of research needs to be carried out to account for species- and site-specific conditions. 

As for  Mongolia, only a few generic allometric formulas for the main tree species exist. 

According to Tompalski et al. (2014a) generic allometric formulas bear a great risk of 

generating huge errors in volume calculation.  

 

Biomass 

The above ground biomass (AGB) is an important indicator for the growing conditions of a 

tree species on a specific site, and also allows for the calculation of the carbon content for 

Figure 3.16: Typical DBH – tree volume relationship (Nagel, 2001:11). 
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forest areas. Since biomass is closely related to stem volume the principles of volume 

functions do also hold for ABG determination. According to the Kyoto protocol forest play a 

crucial role in serving as carbon sinks. A number of carbon reduction programmes have 

been developed and implemented in the last few decades (e.g., UN-REDD+). An increasing 

number of studies is related to the estimation of carbon storage in forests (Byambasuren, 

2018, Dore et al., 2010, Gower et al., 2001, Kasischke et al., 1995, Petrokofsky et al., 2012, 

UN‐REDD, 2018, Watson, 2009). Although a great amount of the carbon found in forests 

can be attributed to the biomass below ground (i.e., roots, soil), the ABG estimation has 

attracted the most research in the last decades. The most commonly applied function is 

based on the following design: 

                

Figure 3.17: Basic equation for the calculation of carbon in biomass (Kleinn, 2014). 

In addition to the presented method the application of allometric equations has become 

quite popular. Petrokofsky et al. (2012) provide an excellent overview of the most widely 

applied methods of determining the various carbon stocks and sources in terrestrial 

ecosystems. A detailed description of those would most certainly be beyond the scope of 

this work.   

Relationship LAI – NDVI 

Another good example of close relationships between certain tree or forest attributes 

constitutes the LAI – NDVI correlation (Wulder et al., 1998). 

                         

Figure 3.18: Relationship between LAI and NDVI – the grey areas show the sensitivity to variation in 
chlorophyll per unit leaf area (Jones and Vaughan, 2010).   
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Both indices – LAI and NDVI – are good indicators for the vigour of a specific forest area. 

LAI and NDVI can be measured in the field, but also estimated from remotely sensed data. 

For more information on spectral indices please see chapter 4.3.3. 

 

Structure attributes   

The ecological structure of a plant community is largely determined by its vertical and 

horizontal distribution in space. This holds also true for forest communities. Forest structure 

is characterised by the position of the trees, the DBH distribution, the diversity of its species, 

and the vertical tree structure. The specific forest structure presents itself as being important 

for making inferences on the biodiversity of a forest ecosystem, as well as on tree growth 

(Nagel, 2001: 47). One good example for the description of a forest structure is represented 

by the so-called Shannon-Index. In essence, it reflects the degree of diversity within a forest 

by considering the tree species – thus, the higher the index value, the higher the species 

diversity. The index is calculated as follows: 

𝐻′ =  ∑ 𝑝𝑖

𝑅

𝑖=1

∗ ln 𝑝𝑖 

where pi is the proportion of individuals belonging to the ith species in the dataset.  

Other popular structural indices are the ones devised by Clark and Evans, Simpson, and 

von Gadow.       

 

Data analysis 

The analysis of the gathered inventory data per tree and per stand commonly involves 

statistical methods such as Analysis of Variance (ANOVA), regression and modelling 

approaches, testing strategies for parametric or non-parametric characteristics (e.g. 

Wilcoxon ranking test, z-test), and correlation analyses (Leonhart, 2017, Zar, 2010). The 

most commonly calculated statistical parameters comprise: mean, median, standard 

deviation, standard error, and variance. For detailed work on forest related data analysis 

and statistics the reader is kindly referred to publications by Le and Eberly (2016), Prodan 

(2014), and van Laar (1991). More details will also be provided in chapter 7.3. dealing with 

the methods applied within the scope of this thesis.    
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A brief note on inventory parameter extraction employing remote sensing technologies  

In an extensive review Surový and Kuželka (2019) looked into the acquisition of forest 

attributes using remote sensing techniques to find that: ‘The most easily accessible forest 

variable described in many works is stand or tree height, followed by other inventory 

variables like basal area, tree number, diameters, and volume, which are crucial in decision 

making process, especially for thinning and harvest planning, and timber transport 

optimization’. They continue to state, that ‘…information about zonation and species 

composition are often described as more difficult to assess…’ (Surový and Kuželka, 2019). 

The authors also found  investigations on forest health to be rising in numbers in context 

with climate change. The extraction of the most relevant forest inventory parameters will be 

dealt with in detail in chapter 4.6. of this thesis. 

 

3.1.5. Forest attributes in a modelling and simulation context - examples 

(i) The growth of plants is affected by genetic and environmental factors (temperature, 

moisture, incident light). In addition, competition (inter-, and intra-specific) pressure highly 

determines the growth rate and development of the vegetation (Bögre et al., 2008, Grassi 

and Giannini, 2005). Lintunen (2013) found out, that crown architecture of the species 

(Betula pendula and Pinus sylvestris in this case) responded to increased competition 

intensity primarily by reducing branch number and size. Further, she states: ‘Lower overall 

growth but added height growth was found in mixed stands of birch and pine, when a tree 

was surrounded by interspecific neighbours compared to trees surrounded by intraspecific 

neighbours’. Since growth processes are dependent on plant structure, functional-structural 

plant models (e.g. GroIMP) have been developed to simulate the unfolding of the structures 

with respect to plant physiology and environmental aspects (Fabrika et al., 2019, Kniemeyer 

et al., 2007). In addition, empirical models have been devised for the prediction of 

biometrical variables (e.g., increments of tree DBH and tree height), to be subsequently 

transformed to tree morphology development by applying functional-structural models.  

Growth modelling and simulation has been taken a step further by the North-West German 

Forest Research Institute (NW-FVA) in cooperation with the Institute of Ecoinformatics, 

Biometrics and Forest Growth of the University of Göttingen, to devise a tool 

(ForestSimulator) for forest practitioners, but also for researchers. ‘Forest growth simulators 

are essential tools in the implementation of the current silviculture programs in the areas of 

silvicultural scenario analysis, training and forest inventory. They can theoretically map any 

existing situation, the future development of which is forecast and analyzed in detail. The 
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core of the forest growth simulator BWINPro is a statistical growth model, which is based 

on the long-term time series of the NW-FVA experimental data’ (NW-FVA, 2020).  

ForestSimulator is based on the TreeGrOSS (Tree Growth Open Source Software) project, 

with Java (Oracle) used as the programming language. The following graph (Figure 3.19) 

shows a simulation example including the 3D visualisation of the resulting activity of 

selective logging. 

 

Figure 3.19: Example of forest growing simulation – here: ForestSimulator developed by NW-
FVA,Göttingen (NW-FVA, 2020). Various treatments of the forest stand with changing species 
can be simulated and values (e.g., basal area, timber volume) calculated. 

Yet, it needs to be stressed, that the portrayed simulator has been tuned for site conditions 

and tree species which prevail in the Northern part of Germany. To the best of the author’s 

knowledge, no such simulation interface exists for forest set-ups in Mongolia.  

 

(ii) The spatial structure of forests is strongly related to a variety of ecosystem functions and 

services (Bartsch et al., 2020: 12,34,496, Pommerening, 2002). Carbon storage, habitat 

provisioning, timber production , climate regulation, and water purification are salient 

examples for such services. The structural complexity of a tree / a forest comprises ‘all 

dimensional, architectural, and distributional patterns of a tree’s organ at a given point in 

time’ (Seidel et al., 2019). For the last few decades surrogates of the 3D structure have 

been widely applied, such as diameter distribution of trees, or specific indices based on tree 

heights and tree positions, structural complexity, or the Clark and Evans index of 

aggregation (Seidel et al., 2020). With the advent of technologies, like terrestrial or airborne 

LiDAR, or high-resolution UAV imagery, the derivation of structural parameters from 3D 

point clouds offers great potential for gaining new insights and for increasing efficiency in 



 

47 
 

data sampling. Since ground data gathering proves to be very tedious, airborne LiDAR 

applications seem to be cut out for large-scale investigations in particular. A novel approach 

was introduced by Seidel et al. (2020) by using fractal analysis (i.e. box dimension), that 

can be applied to any point cloud originating from arbitrary sources and platforms (see 

Figure 3.20 below). The box dimension can be determined for any kind of object, and it 

integrates the distribution and density of plants in space. The authors proved conclusively, 

that ALS-derived box dimension offers the capability to identify differences (0.34 < R > 0.51) 

in forest type, management scheme, development phase, and stand age.  

 

 

 

                  

 

 

 

 

 

 

 

 

 

Figure 3.20: Models of a tree crown represented by various resulting shapes (Seidel et al., 2020). 
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3.2. Forest inventories in Mongolia 

3.2.1. A brief history 

The first attempts for a nationwide forest inventory were undertaken with support from the 

Soviet experts in the 1950s. This first real assessment of the forest resources was based 

on aerial photo interpretation in combination with ocular estimations of stand parameters in 

the field. This first inventory was updated in 1974 resulting in an improved extension map 

with corresponding statistics on forest attributes. With the decline of the former Soviet Union 

and the transition to a market economy in 1990, forest appraisals were only conducted at 

provincial levels until 2014. The period from 1989-2005 showed the first utilisation of 

satellite images for mapping forest extent, with the introduction of the first Geographic 

Information System (GIS) in 2002 for the development of forest maps. However, ocular 

estimations for gathering data in the field (i.e. tree species, stand volume, tree height, etc.) 

still prevailed until the implementation of the current NFI (Altrell and Erdenejav, 2016: 14–

15).    

The current National Forest Inventory (NFI) can be considered a joint effort between several 

Mongolian institutions (e.g. Department of Forest Policy and Coordination (DFPC), Ministry 

of Environment and Tourism (MET), Forest Research and Development Centre (FRDC), 

National University of Mongolia (NUM), Mongolian University of Science and Technology 

(MUST)), experts from international organisations such as the Food and Agriculture 

Organisation of the United Nations (FAO), the United Nations Environmental Programme 

(UNEP), the United Nations Development Programme (UNDP), the United Nations 

Programme for Reducing Emissions from Deforestation and Degradation of forests in 

developing countries (UN-REDD), as well as experts from various consulting firms. 

Financial support was granted by the MET and the German Federal Ministry for Economic 

Cooperation and Development (BMZ) in association with the German Federal Enterprise 

for International Cooperation (GIZ), the latter helping to design and implement the NFI. 

Apparently the requirements of the Un-REDD+ framework, Mongolia is a beneficiary of, 

prompted the Mongolian government to embark of a nationwide forest inventory, which 

forms a critical basis for the calculation of biomass related carbon sequestration (Altrell and 

Erdenejav, 2016: 1–3).       

3.2.2. Structure and design of the current National Forest Inventory (NFI) 

The overall objective of a forest inventory at national level is the gathering and provision of 

forest related attributes for forest and climate change  related policy decisions as well as for 

reporting to national and international institutions. As such, the multipurpose NFI was 

conducted during the vegetation period in 2014 to cover all boreal forest stocked areas in 

Mongolia. Apart from the myriads of experts consulted, 22 field crews and five quality control 
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teams were involved in the implementation of the NFI. Field vehicles and modern equipment 

(e.g., Vertex for tree height measurement) had to be procured, and teams trained. Prior to 

sending the people into the field, a forest cover map was created exploiting more than 50 

Landsat 8 multispectral images. This detailed representation served as the basis for the 

field inventory, with a systematic dot grid generated for the identification of potential 

sampling points. Statistical calculation resulted in a total of 1100 sampling units for the 

national grid (9x9 km), with additional 2406 sampling units for three intensified grid regions 

(4x4 km).  To cover the variety of vegetation density changes within small distances, 

clusters of 3 sampling units were created, with the field assessments done in circles of 

different radius. Plot radius variants are 2 metres, 6 metres, 12 metres, and 20 metres, for 

different DBH brackets and forest structure variables to be gathered (Altrell and Erdenejav, 

2016). The above detailed lay-out of the sampling design is portrayed in the following graph 

(Figure 3.21).  

 

                                  

Figure 3.21:  Layout of NFI sampling units, with (a) NFI inventory regions over the Mongolian boreal forest, 
(b) spacing of sampling units in the stocked area, (c) sampling unit – cluster of sample plots, 
(d) sample plot design – nested circular plots. Source: NFI report: Altrell, Erdenejav, 
2016:24.   
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The following forest structure and ancillary data had to be compiled in the field:  

Forest type 

Tree species 

DBH 

Tree height 

Tree age 

Tree health 

Tree quality 

Dead wood 

Ground vegetation 

Slope / aspect 

Soil texture 

Litter type 

Forest fire marks 

Erosion 

Grazing marks 

 

Once all field data were collected, they were processed in MS ACCESS databases, with 

additional timber volume, biomass, and carbon stocks modelling performed.  

The presented NFI report also entails recommendations for future activities. Among many, 

the authors suggest to have a proportion of 10% of the NFI samples revisited and appraised 

each year to ensure forest monitoring on a continuous basis. Furthermore, the forest 

definition needs to be reconsidered and adopted to FAO standard to warrant comparability 

with succeeding inventories and other international inventory datasets. There also seems 

to be a compelling demand for building and maintaining national capacities related to 

sampling design, field data collection, data analysis, and remote sensing.  It is also sensed 

to be of importance, to make it clear to decision-makers and stakeholders, that common 

forest management inventories and the multipurpose NFI do not share the same objectives, 

and thus, should not be integrated (Altrell and Erdenejav, 2016: 122–123).     

 

 

Rest of page intentionally left blank   
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4. Remote sensing in forestry 

For many decades forest inventory had been concerned with the determination of timber 

volume (per tree and stand) and tree species, as well as the calculation of growth and yield, 

until, more recently, demands have extended to also look into the assessment of forest 

ecosystem services (Hyyppä et al., 2008). Wit recent technological advances in sensors, 

platforms and algorithms, a paradigm shift from employing ground mensuration, visual 

interpretation and analysis of coarse satellite data, to the analysis of three-dimensional high 

resolution (spatially and radiometrically) forest and tree related data sets has taken place 

(White et al., 2016). The subsequent chapter is designed to provide only a very concise 

account on technologies employed in forestry applications these days. Detailed information 

on the extraction of forest inventory parameters from various sources is furnished in 

chapters 4.7. and 6.8. Remote sensing principles are exhaustively presented in works such 

as by Albertz (2013), Cracknell and Hayes (2007), Jones and Vaughan (2010), Liu and 

Mason (2016), and Sabins (2020), and are not the subject of this chapter and will only be 

dealt with if this is necessary for providing a better understanding of the particular topic 

covered.   

   

4.1. Imaging platforms and sensors 

For the last two decades a clear trend towards multisensory systems, and an increased 

spatial, temporal, and radiometric resolution can be observed (Belward and Skøien, 2015). 

With the latest UAV technology for example, ground sampling distances of less than one 

decimetre have become possible. In the course of these improvements new challenges 

have arisen with respect to analysing these complex datasets. As a remedy, new algorithms 

associated with object-oriented image analysis and machine learning (e.g. Random Forest 

and Convolutional Neural Networks) have been devised and successfully applied in recent 

years (Lee et al., 2020).  

The following graph (Figure 4.1) conveys an excellent insight in the technologies and the 

advancements involved in spatial data acquisition. 
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Figure 4.1: Comparison of the most important aspects of spatial data acquisition (source: Jeziorska, 
2019). 

 

Regarding forestry applications, common tree and forest stand parameters include: 

location, DBH, basal area (BA), height, species identification, tree density, and crown size 

and closure. Other parameters such as timber volume, health status, biomass, and carbon 

sequestration rates can be derived from the former. ‘This renders the field survey 

techniques for forest inventories expensive, time consuming, and unsuited for large areas’ 

(Gomes and Maillard, 2016). More than ever forest information must be accurate, up to 

date, and detailed. With new platforms launched and sensors refined, modern technologies 

are at the user’s disposal to make forest inventories, at whatever scale, more efficient and 

less straining.   

The following list (Table 4-1) provides an overview of typical sensor platform configurations 

with the most relevant characteristics (Toth and Jóźków, 2015): 
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Table 4-1: Typical sensor and platform configurations (source: Toth and Jóźków, 2015). 

 

Although more traditional remote sensing approaches still deserve a lot of credit, recent 

developments in laser technology (airborne and terrestrial), robotics (Unmanned Aerial 

Vehicles), and spacebourne sensors (Very High spatial Resolution Satellite optical and 

hyperspectral imagery) are set about to supersede or at least complement modern forest 

inventory. Some of these fresh advances are outlined in the following.  

Spacebourne platforms 

The study of individual trees with remote sensing was limited to the interpretation of aerial 

photographs for many decades. Although orbital optical remote sensing began in the 1970s, 

it was only towards the end of the 1990s, that high resolution satellite imagery with a spatial 

resolution of less than 1 m became operational and accessible to the user community 

(Hildebrandt, 1996: 1–2). With the advent of VHR imagery, all of a sudden branches and 

irregularities within the tree crowns became visible, resulting in high intra-class variance. 

This has sparked off a lot of interest in the computer vision and forestry community to deal 

with  issues, like low spectral contrast, and tree proximity, and to devise algorithms for the 

automatic detection of trees. Local maxima filtering, template matching, and watershed 

analysis are just a few representatives of those high-level complex algorithms developed. 

Unfortunately, the increase in spatial resolution has not been automatically accompanied 

by higher spectral resolution. The following table (4-1) gives account on recent very high-

resolution (VHR) satellite platforms. 
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Table 4-2: VHR satellite platforms with their resolutions and spectral bands (Gomes and Maillard, 2016). 

 

Other important platforms than the ones mentioned above are SPOT 6,7 (1.5m pan 

resolution), RapidEye (5m pan resolution), SuperView-1 (0.5m pan resolution), and Jilin-1 

(0.7m pan resolution). The Copernicus global monitoring programme by ESA (European 

space Agency) deserves special mention, since the Sentinel satellite family features various 

sensors (optical and radar) on a twin system with a high revisit rate and 12 multispectral 

band imagers (Thales Alenia Space, 2017). The data are freely available for users and can 

be retrieved from the ESA, NASA, NOAA, and USGS websites. ESA also presents free 

software tools for the analysis of the Sentinel data (STEP/SNAP) ready for download on 

their website (ESA, 2020b). More recent developments in satellite technology comprise the 

further launch of flocks of nano satellites with a planned revisit rate of 12 per day. They are 

called SkySat with a multispectral spatial resolution of 1 m and operated by Planet Labs. 

Other advances in the spaceborne remote sensing business involve the improved sensor 

agility to allow for stereo capture of the imagery (i.e., 3D-modelling), as well as shorter revisit 

times due to tandem (e.g., TanDEM-X / TerraSAR-X) or flock constellation.  

Although multispectral sensors are more geared for the assessment of vegetation 

conditions (Xie et al., 2008) the higher spatial resolution of the panchromatic band of VHR 

sensors now allows for digital and manual interpretation of (forestry related) features 

(Falkowski et al., 2009). Since the first launch of VHR spacebourne sensors numbers of 
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related publications have been soaring. Regarding forestry application panchromatic 

imagery has been used to identify and discriminate dominant tree species (e.g. Mora et al., 

2010a, Astola et al., 2010, Kravtsova, 2012, and Carleer and Wolff, 2004) stand height (e.g. 

Piermattei et al., 2018, Beguet et al., 2014, Mora et al., 2010b, Mora et al., 2013b, 

Goldbergs et al., 2019, and Persson, 2016), and volume and biomass (e.g. Mauro, 2004, 

Hirata, 2008, Mora et al., 2013a, Fuchs et al., 2009, and Leboeuf et al., 2007). Other forest 

structural parameters such as DBH, tree spacing, and tree crown diameter were 

successfully extracted from VHR imagery by authors like Lamonaca et al. (2008), Kayitakire 

et al. (2006), Banerjee et al. (2014), Brosofske et al. (2014), Gomes and Maillard (2016), 

and Gómez et al. (2011). Abdollahnejad et al. (2018) even used the correlation between 

Pléiades and extremely high resolution UAV data to derive tree height, crown diameter, 

DBH, and stem volume. Leboeuf et al. (2012) employed an intriguing shadow fraction 

approach on QuickBird images to estimate volume, basal area, height and crown closure 

of boreal forests in Canada. Interestingly, Mora et al. (2013a) found similar stand-level 

height estimates derived from VHR images to those generated from Landsat (Chen et al., 

2012b). This implies, that a very high spatial resolution is by no means a warrant for more 

accurate forest parameter determination. WorldView-2 image texture was analysed by 

Ozdemir and Karnieli (2011) to predict forest structural parameters (e.g. basal area, number 

of trees) in dryland forests in Israel. Their results clearly indicate that forest structural 

parameters are significantly correlated with image texture features. This is very much in line 

with  a study conducted by Meng et al. (2016). According to them DBH related measures in 

particular can be reliably predicted using the spectral or textural measures extracted from 

SPOT-5 images.  Tree canopy cover was assessed by Eskandari et al. (2020) on Sentinel-

2 images. They found out, that a linear regression model appears to be a decent predictive 

model for canopy cover percentage based on NDVI (R2 = 0.86). Wittke et al. (2019) also 

used (multitemporal) Sentinel-2 data to compare the extraction of forest structure 

parameters with higher resolution WorldView-2 and three-dimensional data from TerraSAR 

and airborne laser scanning (ALS). The outcomes indicate that higher spatial resolution 

data is correlated with more accurate forest inventory parameter predictions, with ALS 

performing best. These results affirm very well the findings of other authors (e.g. Hyyppä et 

al., 2000, and Tuominen et al., 2017b), that 3D features (e.g. ALS and stereo imagery) are 

superior to 2D spectral features of traditional image capturing. Apparently, imagery taken 

from satellites fitted with directable sensor heads are afflicted with certain deficiencies. Not 

only the angular conditions between the sun-surface-sensor is changed, but the different 

viewing conditions can also result in the occlusion of trees in the imagery taken from a 

different vantage point (Belouard et al., 2015, Persson et al., 2013, Poli et al., 2010). In 



 

56 
 

addition, bidirectional reflectance properties of objects are altered atmospheric effects 

between object and sensor aggravated (Pacifici et al., 2014).     

Hyperspectral remote sensing             

This fairly recent development most certainly opens up new application fields by meeting 

demands for improved radiometric resolution of imaging systems. As opposed to acquiring 

imagery only with a limited number of spectral bands, hyperspectral sensors allow for data 

capturing with up to 300 spectral channels. The graph below (Figure 4.3) reflects some of 

the major characteristics of a hyperspectral system.  

            

            

Figure 4.2: Structure of the hyperspectral data cube: (a) push-broom sensing from air-, or spaceborne 
platform; (b) successive scan lines are stacked to obtain a three-dimensional data cube; (c) 
each of the stacked narrow-band images can be treated as an individual item; (d) alternatively, 
each individual pixel can be analysed as a separate class member – features can be more 
easily distinguished than by using only a few spectral bands (Shaw and Bourke, 2003).  

 

 

Examples for spaceborne systems are NASA’s Hyperion and HyspIRI, China’s Jilin-1 

satellite, as well as ESA’s CHRIS, and Germany’s (DLR) HIS sensor onboard the EnMap 

satellite (see also ITC’s satellite and sensor database: ITC, 2020). Due to their advantages 
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of better spatial resolution airborne platforms still play a  vital role in remote sensing. 

Imagers such as HyMap (Hyperspectral Mapper), AVIRIS (Airborne Visible/Near-Infrared 

Imaging Spectrometer), CASI (Compact Airborne Spectrographic Imager), and AHS 

(Airborne Hyperspectral Scanner) have become very popular in the remote sensing 

community (Jia et al., 2020). With the miniaturisation of sensing units even unmanned aerial 

vehicles (UAVs) can now carry hyperspectral payloads like the ones manufactured by 

Headwall and Cubert (see also chapter 6.2.). Successful applications in forestry are 

described for example by  Adão et al. (2017), and Lin et al. (2019) for UAV based 

operations. They describe the possible identification of individual trees, the discrimination 

of plant species, as well as the detection of bark beetle infestations. The stability of the 

platform, as well as issues with image registration apparently still need to be explored 

(Honkavaara et al., 2017). Airborne solutions are reported by Alonzo et al. (2014), Dalponte 

et al. (2014) and Dalponte et al. (2013) for tree species discrimination and tree detection, 

the latter describing a better detection rate for the laser scanning system that was used in 

comparison. Based on their observations spatial resolution has a strong effect on the 

classification accuracy. According to Ghosh et al. (2014) and other authors the combination 

of hyperspectral and LiDAR data seems to be very rewarding for mapping tree species.  

Airborne and terrestrial laser scanning   

Laser scanning technology has been extremely successful for the last few decades not only 

for creating digital terrain models (DTM), but also for providing information on forest 

structure (Hyyppä et al., 2008). The development of new data analysis tools and sensors 

has brought about significant insights in vertical forest structures in particular. Laser 

technology has gained laurels in many fields and as such has become indispensable in 

forest inventory, namely in the Scandinavian countries (Kangas et al., 2018, Næsset, 2014, 

Nilsson et al., 2017, Tomppo et al., 2008, Tomppo et al., 2014). By now LiDAR (Light 

Detection And Ranging) systems are widely available from space (e.g. GLAS on ICESat) to 

terrestrial systems, with aerial platforms being better suited for forestry applications 

because of the limiting character of the laser pulse in terms of range and data rate (Maltamo, 

2014: 2–3, Toth and Jóźków, 2015). Airborne Laser Scanning (ALS) is an active technology 

to fathom the three-dimensional distribution of vegetation features (Lefsky et al., 1999). 

LiDAR systems are categorised by the mode they record the energy returned to the sensor. 

Single or even multiple returns are recorded for each emitted laser pulse by discrete return 

systems. In contrast, full-waveform systems record the returned energy as a continuous 

return or waveform to allow for the derivation of much more detailed spatial patterning of 

data points, hence supporting the identification of tree positions and even species  (Jones 

and Vaughan, 2010: 144-115, Reitberger et al., 2009, Wulder et al., 2008, Yu et al., 2014). 
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A common approach for identifying tree positions is to segment the laser point cloud 

(Canopy Height Model) by applying the so-called watershed algorithm, where in analogy 

with hydrology reversed areas identified as tree tops are filled first (see also chapter 4.6.). 

Examples of software to carry out laser point cloud analysis are: GRASS GIS, ENVI LIDAR, 

ArcGIS, VR Mesh, Global Mapper, FUSION, and LASTools (QGIS). 

LiDAR systems commonly use a near-infrared light source, however, with four-band 

systems being already tested in forestry applications (Goodbody et al., 2020, Wei et al., 

2012). ALS footprints range from 0.1 m to 2 m  - depending on the flying altitude and the 

laser system used – with achievable vertical sub-decimetre accuracies (Næsset, 2015). The 

following graph (Figure 4.3.) shows the results of a flying mission employing ALS and aerial 

imagery to derive 3D models of a boreal forest area. Quite obviously, the photogrammetry 

point cloud (DAP) is denser than the ALS point cloud, however, fails on most of the vertical 

forest structures and terrain points.  

 

Figure 4.3: Comparison of ALS and digital aerial photogrammetry (DAP) point clouds in a forest in British 
Columbia (White et al., 2016). 

 

While commercial and operational ALS-based forest inventories frequently are conducted 

according to the so-called area-based approach (ABA), methods targeting single tree 

characteristics (Individual Tree Crown - ITC) have also been proposed (Næsset, 2002b, 

Persson et al., 2002, White et al., 2016). The latter method usually requires ALS data with 

a high density – small footprint scanning systems can generate point clouds with densities 

ranging from 25 to 100 points m-2 (Hyyppä et al., 2008). ABA depends largely on the 

statistical relationship between predictor variables extracted from the LiDAR returns and the 

ground-based evaluation. The predictive models are subsequently applied to the area 

covered by the ALS point cloud. ABA has become a standard procedure for large area 

assessments, such as National Forest Inventories, to predict variables comprising stem 

volume, basal area, and stand height (Holopainen et al., 2010, Næsset, 2004, 2014). There 
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exists even a best practices guide for generating forest inventory attributes from ALS using 

ABA (White et al., 2013b). In contrast, ITC based approaches exploit methods developed 

for high resolution imagery and involves individual tree detection form canopy height models 

(Gougeon, 1995). Other inquiries concern the determination of tree height, crown 

dimensions, and species. Finally, ITC information can be aggregated to estimates at plot or 

even stand level.     

For the last two decades a wealth of literature has been published on LiDAR use in forestry, 

especially in the Scandinavian countries – even an entire book has been devoted to this 

promising technology (Maltamo, 2014). Some of the more prominent studies are outlined in 

the following. 

The potential of estimating single-tree characteristics by ALS has been investigated in 

several studies, including stem volume (Maltamo et al., 2004, Persson et al., 2002, Sousa 

da Silva, 2019), stem diameter (Gobakken and Næsset, 2004, Popescu, 2007), crown base 

height (Popescu and Zhao, 2008, Vauhkonen, 2010), leaf area index (Pope and Treitz, 

2013, Roberts et al., 2005, Zheng and Moskal, 2009), and biomass (Hauglin et al., 2013, 

Kankare et al., 2013, Næsset and Gobakken, 2008, Popescu, 2007). In their investigation 

Straub and Koch (2011) found that tree height and crown diameter worked best for the 

determination of parameters for allometric models. Regarding tree species discrimination 

recent publications indicate strongly, that combining ALS and multi-, or hyperspectral data 

considerably improve classification results and also help reduce data acquisition costs 

(Dalponte et al., 2014, Ørka et al., 2012, Puttonen et al., 2010). LiDAR systems are also 

profitable for derivation of fractional forest cover, which is a very common feature in semi-

arid areas. Spectral methods (e.g., NDVI) fail in situations, when background tends to bare 

soil and understorey is highly vegetated. ALS can be an esteemed remedy by providing 

vertical profile information (Chen et al., 2006, Danson et al., 2007, Kaartinen et al., 2012, 

Leiterer et al., 2012).    

For quite a number of years, there has been a fierce debate on whether ALS data can yield 

higher accuracies than terrestrial surveys and other parameter derivation methods or not. 

Results of various studies are contradictive and most of them concern the extraction of tree 

height as one of the essential parameters.  The following graph represents the outcomes of 

an investigation conducted by (Nevalainen et al., 2017). According to them: ‘The profile 

plots revealed that the photogrammetric surfaces generally followed the structure that was 

visible in the ALS point cloud: individual trees seemed well-aligned and minor differences 

in canopy top level and ground level were observable’.  
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Figure 4.4: Comparison of photogrammetric (blue) and ALS (red) point cloud profiles for two different test 
sites (Nevalainen et al., 2017). 

Andersen et al. (2006) state, that ALS derived measurements performed poorer than field 

methods, but the loss in accuracy was offset by the large-area coverage and the reduction 

in survey costs. Bias for  plot height estimation with ALS data seems to be typically below 

0.5m (Næsset, 2002a, Næsset, 2007). The observation made by Nevalainen et al. (2017), 

that height extraction from photogrammetric point clouds (DAP) yield similar accuracies to 

ALS measurements have also been confirmed by studies conducted by Ganz et al. (2019), 

Tuominen et al. (2017b) and Moe et al. (2020). Vastaranta et al. (2013) relate, that their 

investigation reflects a better suitability of DAP for deriving height metrics, whereas ALS 

performed better in stand density tasks. Research carried out by Mielcarek et al. (2020) 

showed a distinct tendency of both, DAP and ALS, to underestimate tree height, when put 

alongside terrestrial surveys. In addition, ALS complied slightly better with accuracy 

requirements than the heights taken from the aerial imagery point cloud. An important 

aspect is mentioned in the publication by Gatziolis et al. (2010), when looking into tree 

height estimations in a temperate forest in Western Oregon, USA. Not  only the complexity 

of the terrain and its steepness, but also a high canopy cover appears to have great potential 

in diluting the accuracies (i.e., more than 10%) of tree height determination.      

In summary, as being reflected by the studies, achievable accuracies seem to hinge on the 

technology used (i.e. scanning system and pulse rate), the software / algorithms applied for 

data analysis, the forest structure itself, but also allometry (Breidenbach et al., 2008, 

Holopainen et al., 2014, Jakubowski et al., 2013, Korpela et al., 2010, Lim et al., 2003, Rahlf 

et al., 2015, Vauhkonen et al., 2012). One has also to bear in mind, that most ALS derived 

estimate accuracies are based on the comparison with terrestrial data. However, the recent 

revelations by Wang et al. (2019b) resting on length measurements of felled trees suggest 

the following: (i) field measurements tend to overestimate tree height, especially concerning 

tall trees in codominant crown class; (ii) ALS proved to be robust and accurate across all 
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stand conditions, with a few uncertainties related to trees in intermediate crown class due 

to difficult identification of tree tops; (iii) reliable tree heights for TLS measurements are only 

to be expected for trees  lower than 15-20m in height, depending on the complexity of the 

forest stand. The authors also reason: ‘The greatest challenges of the laser scanning (LS) 

techniques in measuring individual tree heights lie in the occlusion effects, which lead to 

omissions of trees in intermediate and suppressed crown classes in ALS data and 

incomplete crowns of tall trees in TLS data’.    

Terrestrial laser scanning  

The same laser ranging principles as in the ALS are also being applied in scanning from 

fixed positions on the ground, also referred to as terrestrial laser scanning (TLS). The use 

of TLS in forestry has not been as popular as of ALS, but the viewing geometry of ALS is 

not optimised for the assessment of specific forest components such as trunks, near-ground 

vegetation, and lower parts of the tree canopy (Hilker et al., 2010). The following graph 

(Figure 4.5.) by Seidel (2011) illustrates the main parameters that can be extracted from 

laser point clouds these days. 

     

Figure 4.5: Extraction of main tree parameters with TLS (source: Seidel, 2011:59). 

 

A number of successful applications of TLS comprise the estimation of tree position and 

diameter at breast height, as well as taper (Hauglin et al., 2013, Hyyppä et al., 2018, Maas 
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et al., 2008, Tansey et al., 2009, Thies et al., 2004). Reported errors for DBH estimation 

range from 1.3 to 3.3 cm. Tansey et al. (2009) mention an RMSE for DBH between 1.9 and 

3.7 cm, but report a complete failure of tree volume estimation in a dense forest.  There are 

also studies presenting procedures to determine above-ground biomass from TLS data 

(Hauglin et al., 2014, Holopainen et al., 2011, Muukkonen, 2006, Yu et al., 2013). Biomass 

estimation commonly relies on a calculated relationship between TLS variables and 

allometric functions. Hauglin et al. (2014) showed that Norway spruce crown biomass 

estimates can be derived from TLS data with a higher accuracy than by conventional field 

measurements and existing allometric models. TLS derived variables can also be used to 

fit models to ALS data (Hauglin et al., 2014). The authors constitute, that their analysis 

showed better accuracies for TLS acquired parameters than for employing allometric 

estimations. Recent investigations also concern the description of more complex forest 

structures to extract the entire morphology itself (Côté et al., 2011, Seidel, 2018, Seidel et 

al., 2019, Strahler et al., 2008). Other studies even have focused on gap fraction and LAI 

determination (Danson et al., 2007, Zhao et al., 2012). An interesting approach was taken 

by Piermattei et al. (2019): they used photographs taken on the sampling plot to derive a 

3D point cloud and to further extract tree parameters. The tree detection rate varied between 

65% and 98% (depending on the forest structure), and a mean error for DBH of -0.77cm for 

the photogrammetry point cloud and -1.13cm for the TLS point cloud in comparison.  Current 

undertakings are related to the fusion of TLS and ALS data to model the below-canopy 

structure with the goal to retrieve the complete canopy structure across an entire landscape 

(Hilker et al., 2010, Holopainen et al., 2014, Paris et al., 2017). In addition, the combination 

of 3D models created from (UAV) aerial photos with laser scanning point clouds seem to be 

gaining a lot of interest these days for improving the knowledge on forest canopy structures 

(Kato et al., 2015, Paris and Bruzzone, 2015, Tian et al., 2019). Despite TLS’s potential to 

succeed, or at least complement conventional forest inventory cruising (by providing 

improved allometric equations), some issues still remain to be solved: (i) TLS data analysis 

is far from being trivial and has not reached operational level for automatic parameter 

extraction yet; (ii) a relatively high number of scans is required (5 – 13) to capture groups 

of more than three trees, resulting in (iii) foliated trees cause many obstruction effects in the 

upper canopy (i.e. poor reconstruction); (v) the high level of detail afforded by TLS (millions 

of data points) demands for superior computational power; (vi) fusion with ALS and 

photogrammetric point clouds (co-registration) remains a challenge (Newnham et al., 2015, 

White et al., 2016). A lot of research is being conducted on these issues, with for example 

propositions being made for mobile and ‘airborne’ TLS (Innovatek, 2020, Liang et al., 2014).  
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Highlights of the laser scanning technology (ALS, TLS): 

• Provides unprecedented insights into vertical forest structures and terrain 

characteristics. 

• Has proven to achieve accuracies congruent with or even better than traditional 

terrestrial surveys. 

• Excellent bedrock for modelling tree architecture and forest structures; big potential 

to improve species specific allometric formulas. 

• As opposed to many other remote sensing applications a best practice guide for 

employing ALS for forest inventory purposes exists.   

• Fusion with multi- (hyper) spectral and /or photogrammetry data yields exemplary 

information on vertical structures, species discrimination, and ecological 

parameters. 

• Data analysis is by no means a trivial task, and computing-intensive. 

• (Co)Registration of point clouds to be merged is most challenging. 

• Expensive technology, but also renders high area coverage (ALS). 

   

 Digital aerial photogrammetry 

Traditional photogrammetry has experienced a true paradigm shift not only in terms of new 

algorithms (e.g. Structure from Motion (SfM)) for the generation of 3D models, but also in 

the devise of novel sensor platforms (Baltsavias, 1999, Baltsavias et al., 2008, Leberl et al., 

2010, Waser et al., 2007). With satellites equipped with a tiltable sensor system, stereo 

image capturing to cover huge areas has become feasible. Classic airborne missions, by 

contrast, carry a big price tag, and as such, are only embarked on to meet special demands. 

The galloping advances in unmanned aerial vehicle (UAV) technology have set out to by 

and large supersede piloted surveys and revolutionise the fashion forest inventories are 

being conducted today and in future (St‐Onge et al., 2008, Vega and St-Onge, 2008, White 

et al., 2013a). On that account, I decided to dedicate an entire chapter (i.e., chapter 6. in 

relation with chapter 4.5.) to this topic.        

   

Radar imaging systems  

Radar, as an active air-, or spaceborne sensoring technology, is a century old concept. The 

cloud penetration ability makes these systems particularly suitable for areas with high cloud 

coverage. However, most of the equipment is rather expensive, and data analysis far from 

being trivial. SAR (Synthetic Aperture Radar) sensors on satellite platforms carry big names 
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like ALOS, TerraSAR-X/TanDEM-X, KOMPSAT, and Sentinel-1. Recent publications show 

very reasonable accuracies for the estimation of structural parameters (RMSE of 15% for 

stand height and 32% for stem volume – see also: Erasmi et al., 2019) and the 

determination of forest above ground biomass / growing stock for carbon sequestration 

appraisal (Shao and Zhang, 2016, Wilhelm et al., 2014). Thiel et al. (2006) used JERS-1 

SAR data to achieve high accuracies (90%) for delineating forest cover and detecting 

deforestation activities. Forest canopy structure was assessed by Chen et al. (2017b) by 

deploying a UAV radar system. Their analysis confirmed that the profiling radar measures 

a clear signal form the canopy structure. However, image backscatter and saturation of 

radar signals over forests still require some research to get a better understanding on the 

interpretation of the signal response to forest structure (Joshi et al., 2017).    

These days, web-based analysis and data retrieval tools for remote sensing applications 

are becoming increasingly popular. Although a number of limitations are apparent (e.g., for 

regional and/or local projects), in specific cases analysis of the data can be carried out 

extremely efficiently, saving a lot of time and financial resources. A splendid example for 

such an analysis tool is Google Earth Engine (GEE), which is a powerful web-platform for 

cloud-based processing of remote sensing data on large scales (Google, 2020). Its 

repository provides the most common satellite imagery and makes it available online with 

tools for scientists, independent researchers, and other individuals and institutions to detect 

changes, map trends and quantify differences on the Earth's surface. The database holds 

imagery and derived products such as Landsat, Sentinel, MODIS, and SRTM (DEM). 

Applications include: detecting deforestation, classifying land cover, estimating forest 

biomass and carbon, and mapping the world’s inaccessible areas. In this context a very 

well-known project has been initiated by the University of Maryland, led by Matt Hansen, to 

survey the global tree cover extent indicating gains and losses (Galiatsatos et al., 2020, 

Hansen et al., 2013). The University's website and the related database are updated 

frequently and can be accessed through: http://data.globalforestwatch.org/ 

datasets/14228e6347c44f5691572169e9e107ad. Other examples of very useful sites are 

those operated by NASA (FIRMS (Fire Information for Resource Management System) – 

for fire detection and mapping), the European Open Science Cloud (EOSC), or USGS’s 

(United States Geological Survey) Earth Explorer. Another beneficial user tool is provided 

by ESA called the Sentinel Hub. This cloud-based hub not only provides a global archive of 

earth observation data, but also offers opportunities for multi-temporal and statistical data 

analysis and easy integration with desktop and webGIS software.    

  



 

65 
 

4.2. Image interpretation 

The interpretation of remotely acquired imagery seems rather outdated, considering the 

fact, that the last decade has seen substantial progress in computer aided pattern 

recognition and artificial intelligence (Beyerer et al., 2018: 2–3, Bishop, 2009: 1, Theodoridis 

and Koutroumbas, 2009: 3–5) . However, in a number of well-defined situations the faculty 

of a human being to accurately detect and interpret patterns in imagery has proven to be 

superior to modern sophisticated algorithms (Ke and Quackenbush, 2011a). One of the truly 

salient discovery is, that the human brain has been trained to recognise patterns in our 

environment as part of the survival strategy, which we also share with most of the living 

creatures on this planet. It took evolution hundreds of thousands of years to bring this skill 

to almost perfection in humans.  

With the advances in the neurosciences, we gradually begin to understand the underlying 

principles of cognition involving the ‘eye – brain’ processing scheme. Nevertheless, 

processes related to (e.g.) size, brightness and position invariance of objects, pattern 

confusion, shape segmentation, complexity reduction of scenes, and scene abstraction still 

require more in-depth consideration in research (Jiao et al., 2020: 1–3, Sutherland, 1968). 

Image interpretation encompasses all intellectual processes related to imagery acquired 

from all sorts of sensors and platforms (CCD cameras, aerial, satellite imagery, laser scans, 

etc.) provided that it renders sufficient information for the interpreter, either involving basic 

technical equipment and/or even benefitting from modern computer vision and pattern 

recognition algorithms. The more sophisticated, technical approach is illustrated in chapters 

4.3., 4.5. and 4.6., whereas this specific section focusses on the values and merits of the 

human interpreter.   

The first accounts on employing aerial imagery for forestry purposes date back to 1887  and 

as early as 1920 the first pursuits were undertaken to utilise this new technology for forest 

inventory purposes (Albertz, 2009: 165). Ever since, a whole array of imagery has been 

playing a pivotal role in a variety of forestry applications (Hildebrandt, 1996: 349-

355,565,622). In practice, advances related to forest inventories (large and small-scale), 

forest disturbance detection (pests, wildfires, etc.), forest ecology, and forest infrastructure, 

would be unthought of. Inter alia, the following features and phenomena (only forestry 

related) can be extracted or derived from airborne and most spaceborne imagery: 

• shape and size of forested land 

• health status of the trees (with multi-, or hyperspectral imagery) 

• extend and quality of forest disturbances  

• tree species, the related distribution and percentage 

• tree crown size and shape 

• tree density (number of trees) 
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• age structure of a forest stand 

• canopy closure 

• tree and stand height (Albertz, 2009: 165–167, Hildebrandt, 1996: 360–368, 
Troycke et al., 2003). 

 The identification of objects and phenomena in aerial and satellite imagery requires explicit 

familiarity with factors, which determine the quality of the interpretation process. The 

brightness of a specific area is an indication of the reflective properties of the object, but is 

also determined by illumination conditions, atmospheric effects, sensor characteristics, etc. 

Colour hue and saturation allow inferences on object differences (e.g., birch usually appears 

in bright green, spruce in a dark, saturated green). The shape of an object is easy to identify, 

if sudden changes in brightness result in edges and lines. The size of an object can also 

help to more easily get background information on its function and origin (e.g., a big tree is 

more suitable for timber, than a young, small tree). The surface texture can be an important 

indicator for the correct classification of tree species in a forest, since many species reveal 

typical structures of their crown. The emergence of shadows largely depends on the object 

characteristics and the illumination conditions (sun angle, terrain). The length and shape of 

the shadow itself allows to draw conclusions on the object properties (e.g., size, height) and 

for example the location within a specific population or environment (single tree / tree in a 

confined forest). In addition, object patterns are great to identify feature systems (Albertz, 

2009: 107–112). Drainage systems or river networks make great examples for the 

underlying terrain fabric and the pertaining geological structure. Another good example is 

the branch structure of a tree, which tells a lot of what tree species to expect.  

Having dealt with the physical attributes above, it is also important to elucidate the process 

of interpretation itself more specifically. Image interpretation in humans is based on 

perception (as an unconscious process) as well as on apperception (i.e., conscious 

process). Physiological and psychological processes embody intrinsic factors (Albertz, 

1970, Guski, 1996: 5-8,75, Schneider, 1974: 168–170). Vision and discrimination are 

determined by the physical faculties of the interpreter and the photographic qualities of the 

image to be interpreted. However, the conscious perception of what was seen in which 

context can be considered an intellectual proficiency. This process demands for 

professional knowledge, as well as for the mental ability to recognise, analyse, and to 

conclude (Hildebrandt, 1996: 287). Image content attributes such as proximity, symmetry, 

concision, similarity, depth (stereoscopic), and continuity of objects and structures are 

essential for our brain to detect and interpret patterns (Goldstein and van Hooff, 2018: 

59,368-370) . The following diagram represents the main procedures involved in image 

interpretation. 
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Figure 4.6: Image interpretation process (based on Schneider, 1974).  

Various technical and analytical tools are available to support the interpreter in the difficult 

and demanding interpretation task. In particular, when working in a GIS environment, 

utensils for image enhancement, stereo viewing, distance and area measurement, object 

segmentation, and object counting can be a real blessing. Interpretation procedures can be 

either based on the human’s visual faculty alone, but also semi-automatic, or even fully 

automatic employing machine learning and computer vision technology. Tree species 

identification remains one of the most important and challenging endeavours when being 

faced with forestry related investigations. Despite the successes in computer aided image 

classification, in some instances the achieved accuracies are extremely low. This happens 

quite often, when dealing with poor image quality and/or imagery featuring extremely high 

spatial resolution. In a study Durisova and Asche (2013) reported Kappa values (i.e. 

measure of agreement) of 0.69 (object-based classification) and 0.58 (pixel-based 

classification) when using 0.2m resolution RGB aerial photographs for a land cover 

classification comprising five basic classes. Visual interpretation value was close to 1.0, 

indicating almost full agreement with the reference data. In a Swedish study Erikson (2004b) 

achieved an overall accuracy of 77% for the identification of boreal tree species (spruce, 

pine, birch, aspen) based on 0.03m resolution colour-infrared imagery (CIR). Sophisticated 

image segmentation was applied for classification. Carleer and Wolff (2004) report an 

overall accuracy of 82% when employing IKONOS imagery (1m resolution) for identifying 

seven tree species in a forest in Brussels. Franklin (2018) details the identification of nine 

tree species in a mixed wood forest in Ontario, Canada, based on 0.12m multispectral UAV 

imagery. Pixel-based classifiers yielded an overall accuracy of 50-60%, whereas object-

based and machine learning algorithm methods achieved 80% correct classification.  In 

another forestry related study Komárek et al. (2018) notice overall accuracies of about 77%, 
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when looking at tree species identification. Geographic object-based image analysis in 

conjunction with Support Vector Machine algorithm was used to extract tree species specific 

information from RGB, multispectral and thermal imagery and their various fusion 

combinations - a method that is rated as one of the most sophisticated ones in current 

remote sensing applications.   Quite interestingly it is to notice, that most of the more recent 

studies rely on the visual interpretation of very high-resolution imagery as data reference, 

when ground data are not available.   Despite all progress in modern computer technology, 

Zhang (2008) constitutes in his review on modern classification techniques, that: ‘The 

capability of current classification techniques is still far behind the ability of the human 

interpretation…’. As such, especially in cases, when sophisticated classification algorithms 

are not in hand, visual interpretation can pose a feasible option. Moreover, when ground 

truthing data are not available, or when budget constraints defy further engagement, visual 

interpretation can serve as a valuable reference in accuracy assessments in tree detection 

and crown delineation exercises (Ke and Quackenbush, 2011a, Park et al., 2014). 

For a well-trained expert with in depth knowledge on forestry and the associated local or 

regional conditions, obtainable outcomes can be quite impressive, of course depending on 

the level of the desired detail and prerequisites, such as quality of the imagery, spatial and 

spectral resolution (Hildebrandt, 1996: 303–305). Unfortunately, there are only a few studies 

specifically dealing with the achievable accuracies on visual interpretation issues, such as 

tree species identification. Most of them date back to the 1990s. Inter alia, Münch (1993) 

and Ahrens (2001) report  identification accuracies for the most common European tree 

species of between 80 and 90%. Investigations in the USA have shown, that 14 different 

conifer and deciduous tree species could be identified on large-scale aerial photographs 

with a fidelity of about 95% (Heller et al., 1964). With respect to the enormous variety of tree 

species in rainforests, one would expect unsatisfactory results. Nevertheless, Myers and 

Benson (1981) were able to detect 55 different species, with 24 of them being classified as 

more than 75% correct, eleven out of the 55 were identified with 100% accuracy. Similar 

outcomes have been confirmed by other authors, like Valérie and Marie-Pierre (2006). Of 

the 12 major canopy species groups 87% were correctly identified. In addition to the 

identification of the species as such, the high-resolution imagery provides insight in a great 

variety of ecological parameters. This holds great potential in particular for imagery acquired 

by UAVs, which can work as a magnifying class, with image resolutions of a few 

centimetres.          

The interpretation of specific object features (e.g., trees) asks for some sort of guidelines 

and/or instruction. Many decades ago, interpretation keys based on morphological features 

and object-related reflection properties have been devised for this particular purpose 
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(Arbeitsgruppe Forstlicher Luftbildinterpreten, 2012, Bernhard, 2003, European 

Commission, 2001, Rhody, 1983, Sayn-Wittgenstein, 1978, Troycke et al., 2003). 

Interpretation standards do not just quicken the process, but also have the potential to keep 

the interpreter’s bias and subjectiveness at bay. The following table details some of the 

typology criteria that can be used for tree species identification by image interpretation – 

criteria are just exemplary. These criteria need to be adapted to the specific growing 

conditions (site) and varieties in phenotype as well as development stage. 

Table 4-3: Criteria for tree species identification (based on Valérie, 2006). 

Classes of criteria Sub-classes Definition of criteria 

Crow size Small, medium. large Diameter 5-10m, etc. 

Crown status Dominant, co-dominant, 
suppressed 

Above the mean canopy, etc. 

Crown contour Round, elliptic, irregular, 
elongated 

 

Crown architecture Flat, rounded, tufted, layered, 
segmented, multiple 

More or less horizontal surface, etc. 

Foliage cover Opaceous, light Nothing visible through foliage, etc. 

Foliage texture Smooth, grainy, dotted No textural design discernible, etc. 

Colour Green, yellow, dark, light  

Phenology Flowering, leaf shed, flushing Species specific 

Bark Grooved, smoothed, flaking, 
white, brown 

Species specific 

 

Exhaustive information on various interpretation keys can be found in: European 

Commission, 2001, Heller et al., 1964, Rhody, 1983, Sayn-Wittgenstein, 1978, and Valérie 

and Marie-Pierre, 2006. The following graphs provide a few examples of interpretation 

guidelines. 
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Figure 4.7: Interpretation key for European tree species (Fichte – spruce; Douglasie – Douglas fir; 
Weißtanne – silver fir; Kiefer – pine; Strobe – soft pine; Lärche – larch; Buche – beech; Eiche 
– oak); depicted are tree crowns in front and vertical view and the associated aerial photo 
(source: Rhody, 1983).  

 

CIR imagery can provide some substantial increase in interpretation accuracy over common 

RGB imagery, in particular when assessing health status: 

                                   

Figure 4.8: CIR aerial photography showing levels of defoliation in Scots pine (source: European 
Commission, 2001).  
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Figure 4.9: Interpretation criteria for health assessment in Scots pine (Source: European Commission, 
2001) 

Despite all the praise, visual interpretation can be quite cumbersome and time-consuming 

(expensive). This method is thus not well-suited for the interpretation of huge forest areas 

(Heller et al., 1964). With the gaining popularity of extremely high-resolution UAV imagery, 

however, visual interpretation has the potential to come into fashion again. For interpretation 

key of Mongolian taiga tree species and extraction of other forestry related parameters, 

please consult Chapter 7.3.4.1. 

  

4.3. Image classification 

The classification of imagery represents a vital part of the pattern recognition process, which 

has become a focus of research in computer vision recently (Förstner and Wrobel, 2016: 2, 

Theodoridis and Koutroumbas, 2009: 1–2). The subsequent chapter details only the 

essential methods, and skims well-known basics, and algorithms, being too complex for 

hands-on approaches suited for practitioners (e.g., deep learning). As such, the interested 

reader is referenced to excellent reading for instance from Gonzalez and Woods (2018), 

Beyerer et al. (2018) and Theodoridis and Koutroumbas (2009) for pattern recognition and 

image processing in a broad context, and from Mather (2011), Tso and Mather (2009), 
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Lillesand et al. (2015), Jones and Vaughan (2010), Liu and Mason (2009) and  Jensen 

(2016) for image classification associated with remote sensing technologies in particular. A 

detailed account on the comparison of the most popular classifiers (i.e., RF, SVM, k-NN) 

and their merits and demerits in practice is provided at the end of the pertaining 

subchapters.   

The human eye – brain linkage is considered to be the most sophisticated pattern 

recognition system in the biological world, leaving contemporary recognition machines pale 

in contrast (Gonzalez and Woods, 2018). However, recognition machines have become 

important in everyday life (e.g., barcode readers, speech recognition). The four main stages 

involved in pattern recognition are: (1) sensing, (2) pre-processing, (3) feature extraction, 

(4) classification, and (5) accuracy assessment. Image classification requires the user to 

carry out the (i) determination of the number and nature of the categories to be classified 

(e.g. land cover), and (ii) the assignment of numerical labels to the pixels based on their 

properties employing a decision rule (Mather, 2011: 167–168). Classification methods are 

commonly categorised as being unsupervised (i.e. systems learn the pattern classes 

themselves without almost no a priori conditions, and are entirely based on data distribution 

statistics), or supervised, the latter using training data representing various ground objects 

(Liu and Mason, 2009). They can be applied to segment imagery into regions with similar 

attributes such as land cover classes (e.g., water, forest, buildings). Supervised approaches 

vary from designer-fixed feature forms to systems, that utilise deep learning to learn on their 

own. The crucial steps for describing objects of the real world and their inherent patterns 

are (i) the selection of a feature set that best reflects the pattern, and (ii) the selection of a 

suitable method for the comparison of the pattern. Subsequently,  the accuracy assessment 

of the allocation process is mandatory. The goal of the classification process is to generate 

a thematic information layer with little or no user intervention (i.e., semi-, or fully automatic). 

As a standard procedure, statistical concepts are applied to exploit the spectral fingerprint 

of a specific object or object class. In addition, spatial information such as context (the 

relationship of a pixel to a neighbouring object) and texture (a measure of homogeneity of 

neighbouring pixels) can help improve the classification outcomes considerably, when 

integrated in the classification algorithm (see also object-based classification) (Khatami et 

al., 2016).    

Very high-resolution imagery with enormous amount of detail requires specific algorithms, 

which are able to make use of the full potential of the radiometric and spatial resolving 

capacity. Resolutions of only a few centimetres or decimetres now reveal individual 

component parts of plants such as branches and leaves, thus, mixed pixels with great 

variation and high contrast differences between features have evolved into a new challenge 
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for image classification. Most of the classifiers, that have been used decades ago, become 

superseded by more sophisticated algorithms, which are to a much higher degree able to 

manage big and complex data sets such as UAV and hyperspectral imagery. One of the 

consequences is, that a shift from pixel-, to object-based  classifiers becomes noticeable 

(Hajek, 2004, Laliberte et al., 2010, Nussbaum et al., 2013, Whitehead and Hugenholtz, 

2014, Whiteside et al., 2011). According to Lu and Weng (2007), not only the image 

characteristics, but also the choice of an appropriate classifier sizably determines the 

success of an image classification operation.  Classification methods range from 

unsupervised algorithms (e.g., ISODATA and K-means) to parametric supervised 

approaches (e.g., maximum likelihood, or parallelepiped). Modern non-parametric machine 

learning algorithms comprise approaches such as  decision trees (DT), Support Vector 

Machines (SVM), k-Nearest Neighbours (kNN), Neural Networks (NN), and Random Forest 

(RF). Thanh Noi and Kappas (2017) carried out some exhaustive literature search to 

conclude, that SVM and RF have by far received the most attention in the remote sensing 

community in recent years. 

4.3.1. Pixel-based classifiers 

A decision tree (Yes/No type) is a nonlinear, supervised classifier and multistage decision 

system, in which classes are sequentially reject until a finally accepted class is reached 

(Theodoridis and Koutroumbas, 2009: 215–219). The hierarchically structured tree consists 

of nodes (a value for a certain attribute is assessed here), branches (corresponding to the 

result  of a test and connecting to other nodes or leaves), and leaf nodes (as terminal nodes 

predicting the outcome like class label). Decision trees are constructed that way, that during 

an iterative process data are split into partitions with subsequent further splitting on each 

branch, also known as binary recursive partitioning. A vital part of the process is the a priori 

definition of a set of questions and the splitting criteria. The size of the decision tree is a 

crucial part of the design, and has to be chosen with care. Another factor to be considered 

is the high variance, with small changes in the training data set to cause a very different 

tree structure (Theodoridis and Koutroumbas, 2009: 220–221). Nevalainen et al. (2017) 

used decision trees among other classifiers for the detection and classification of trees from 

UAV-based photogrammetric point clouds. However, other classifiers such as RF and 

Multilayer Perceptron (MLP) outperformed DT. In contrast, Sharma et al. (2013) found out, 

that DT (90%) provided much better overall land use classification results on Landsat 

imagery than other classifiers like ISODATA (57.5%) and Maximum Likelihood (76.7%). 

Sankey et al. (2017) deployed an unmanned aerial vehicle with LiDAR and hyperspectral 

sensors onboard to look into tree density and canopy cover in a forest in Arizona. By using 

a DT approach, they managed to fuse both sensor data to achieve much better results than 

with an isolated analysis of the data layers. A comprehensive study on various classification 
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schemes was conducted by Prasad et al. (2006) for predictive tree species mapping. 

According to them, DT turned out to be too sensitive to small changes in the training dataset 

and exhibited a tendency to overfit in the model.   

A random forest (RF) classifier can be considered a variation of the decision tree approach, 

consisting of a large number of individual decision trees that operate as an assemblage. As 

such, the prediction by committee is more accurate than that of each individual tree. The 

low correlation between the models is a key component for achieving maximum output 

accuracy. Another prerequisite is that features with at least some predictive power are 

needed. How does RF work? In an image to be classified a sufficiently high number of 

datasets (object classes) need to be defined for training and testing the classifier. RF allows 

each individual tree to take random samples from the dataset to result in different trees, 

also known as ‘bagging’ or ‘bootstrap aggregation’ (Theodoridis and Koutroumbas, 2009: 

221). Instead of sub-setting the training data into smaller components, random samples of 

size N are taken with replacement to get an unbiased estimate of the classification error as 

trees are added to the forest (Cutler et al., 2012). Picking only from a random subset of 

features causes more variation amongst the tree models to result in lower correlations 

across the trees. This is in contrast to a conventional decision tree, where every possible 

feature is considered and the one selected, that produces the most separation between the 

observations in the left vs. the right node. After the construction of each tree, all data are 

trickled down the tree, and proximities computed for each pair of cases to train the tree. 

Subsequently, each tree of the forest ejects a predicted class. A final decision is taken 

through a majority rule, i.e. by measuring which prediction was made by  most of the trees 

(Breiman, 2001, Liaw and Wiener, 2002, Wang et al., 2019a). The following graph provides 

a simplified depiction of the process portrayed above. 

                 

Figure 4.10: Simplified view of the Random Forest classifier (Wang et al., 2019). 
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Numerous authors have recently looked into the application of RF, including a comparison 

with other machine learning algorithms in particular (Khatami et al., 2016). Conclusions 

have transpired quite differently. For better comparison of the RF, SVM, and k-NN 

classifiers, a comprehensive account is given at the end of this subchapter.  A specific 

section dealing with classifying UAV imagery is dedicated to chapter 6.8 with reference to 

chapter 4.7. 

Advantages of RF: 

• Maintains accuracy for missing data. 

• Does not overfit the model. 

• Can handle large datasets with higher dimensionality. 

• There is no need for cross-validation, since the test error is estimated internally. 

 

Disadvantages: 

• Very sensitive to small changes in training data. 

• User has very little control over the model (black box) (Belgiu and Drăguţ, 2016, 

Khatami et al., 2016). 

 

Support Vector Machines (SVM) is a machine learning concept based on the objective to 

find a hyperplane in an n-dimensional space to distinctly classify data points. Hyperplanes 

are decision boundaries and defined as being a subspace of dimension n-1in the n-

dimensional space (i.e., Euclidian, affine, or vector space). For the separation of two 

(training)data point classes, there is a choice of a multitude of hyperplanes. The goal is to 

find a plane with a maximum margin, i.e. the maximum distance between data points of 

both classes (Ghandi, 2018). The following graph provides an account on this undertaking: 

 

Figure 4.11: Possible hyperplanes to separate classes (both left) – support vector data points are indicated 
as bold points; both right: hyperplane in 2-dimensional (R2) and three-dimensional space (R3). 
Source: Ghandi, 2018. 

SVM supports both, the linear and non-linear separability of objects, using the kernel trick 

for the latter to transfer the separation vectors into higher dimensional spaces. The 

separation vectors, also known as support vectors, are data points being closer to the 
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hyperplane than other data points, and, as such, effect the position and orientation of the 

hyperplane. By using those support vectors, we are able to maximise the margin of the 

classifier (Theodoridis and Koutroumbas, 2009: 119–125).   

Recently, Support Vector Machines have become real superstars in the remote sensing 

community (Khatami et al., 2016). As with all classifiers, there are merits and demerits to 

disclose: 

• SVM work well in high dimensional spaces with a clear margin of separation 

between classes. 

• SVM works in a memory efficient fashion. 

• SVM have superior performance with respect to small training sample sizes.  

• The risk of overfitting is less than in other algorithms. 

• Unlike in neuronal networks, SVM is not solved for local optima. 

• SVM algorithm is not well suited for large datasets. 

• The algorithm does not perform well with overlapping classes. 

• The final model is rather veiled; thus, replication of the results is difficult. 

• Finding a good kernel function is not trivial (Mountrakis et al., 2011, Sothe et al., 

2020). 

Neural networks mimic the visual cortex of mammals by using a multitude of elemental non-

linear computing elements called artificial neurons (Lee et al., 1998). New training 

algorithms for multilayers of the perceptron-like concepts (learning machines) are based on 

methods, called backpropagation (Jiao et al., 2020: 9–11, Mather, 2011: 185–188). Most 

approaches of pattern recognition rely on human-engineered techniques to translate raw 

data into computer processing suitable formats. Divergent from these methods, neural 

networks use backpropagation to learn representations suitable for recognition. Starting 

with raw data, each layer of the network refines the representation into more abstract levels 

(Gonzalez and Woods, 2018). This kind of multi-layered learning has also become known 

as deep learning (LeCun et al., 2015). However, human intervention is still required for the 

specification of parameters, like the number of layers and the number of artificial neurons 

per layer. Despite the recent overwhelming success of the deep learning strategy, 

considerable knowledge and experimentation is required on the part of the designer, thus 

making deep learning quite challenging and as such not very suitable for everyday use. For 

analysing imagery, a specific class of deep neural networks, referred to as convolutional 

neural network (CNN), has become quite popular. Convolution is a specific kind of linear 

operation in CNN, which replaces general matrix multiplication in at least one layer.  The 

following graph demonstrates the architecture of a typical CNN for image analysis. 
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Figure 4.12: Successive steps of a convolution and pooling are shown to generate a feature vector which 
is classified in the final step (source: Heipke and Rottensteiner, 2020). 

 

In an initial step, a set of digital filters is applied to an image of fixed size (convolution). In 

the subsequent pooling from a larger group of filtered pixels only one pixel is retained (the 

one with the maximum entry). The remaining set of pixels is then subjected to a non-linear 

function. Processing is pursued through densely connected layers, resulting in a feature 

vector representing the entire input image. This feature vector is finally classified with an 

arbitrary classifier (Heipke and Rottensteiner, 2020). 

Literature on neural network applications is rapidly evolving (Ma et al., 2019). Successful 

applications in UAV remote sensing have been reported by Fromm et al. (2019) for the 

detection of conifer seedlings (precision of 81%), and by  Morales et al. (2018) for the 

identification of palm trees in the Amazon rainforest (overall accuracy of about 97%). 

Miyoshi et al. (2020) also inform about extremely high identification rates (about 96%) for 

single tree species extracted from hyperspectral UAV imagery. WorldView2 imagery was 

analysed in a study by Braga et al. (2020) for identification and delineation of tree crowns 

in a rainforest, yielding accuracies of around 92% when employing CNN algorithms. Li et 

al. (2017) also report high detection rates (96%) of oil palms extracted from Quickbird 

imagery.   

Despite all the merits, limitations of the CNN classifier need to be related: 

• A CNN needs a sufficient number of training data. 

• A CNN cannot learn the unseen. 

• Reasoning associated with human behaviour has not materialised in CNN. 

• A CNN is largely a black box, and as such, classification results are almost 

impossible to replicate (Heipke and Rottensteiner, 2020). 

 

The k-nearest neighbour algorithm (k-NN) is a non-parametric supervised machine learning 

method, not to be confused with the k-means clustering classifier (Chirici, 2012).  The k-NN 



 

78 
 

method was initially developed to carry out the national forest inventory (NFI) in Finland 

more efficiently and has also proven to be very successful in Norway and Finland (Baasan, 

2010, McRoberts and Tomppo, 2007). As a variant of the regression technique, k-NN helps 

to cut down on inventory costs and labour by “extrapolating” measurement values (e.g. 

timber volume) from sampling plots to the neighbouring areas (Tomppo et al., 2008). As 

such, this technique has proven to be very useful for wall-to-wall inventories of huge areas. 

It is based on the idea to transform and link specific forest attributes, such as timber volume, 

forest cover type, or DBH, to individual pixels. As the name suggests, the nearest neighbour 

concept is a prerequisite for this approach. It thus assumes, that similar objects exist in 

close proximity. For the calculation of the distance between data points the Euclidian 

distance is being used most commonly. With N training vectors given, k-NN identifies the k 

(i.e., amount of) nearest neighbours of the data point to be classified. The training vector 

itself defines a region in space to partition the entire feature space (e.g., Voronoi partition).  

In the following graph the most critical steps of the classification process are represented, 

which are: (i) load dataset; (ii) define k (use various ks to find best fit); (iii) calculate distance 

between any two points; (iv) find the nearest neighbour based on these pairwise distances; 

(v) get majority vote on class labels based on nearest neighbour ranking; (vi) create 

confusion matrix for classification accuracy results. 

                 

Figure 4.13: Major tasks to be accomplished for k-NN classification (Latysheva, 2016).  
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The real challenge of this classification method is in finding the most suitable k for optimal 

classification results, since k determines the accuracy of the prediction output (Naidoo et 

al., 2012). As such, it is an iterative process of applying various k values to the dataset. If k 

is too low, the prediction of the new class data point is too noisy and subject to effects of 

outliers. Choosing a k being too big will be at the expense of computing time, and causing 

an excessive leverage of dominating data classes.             

Advantages of k-NN: 

• It is simple to implement. 

• No need to build a model and tune several parameters. 

• The algorithm makes no prior assumption of the data. 

 

Disadvantages: 

• The prediction time is high for high numbers of data and/or predictors. 

• K-NN features drawback of majority voting in skewed class distribution (can be 

overcome by weighting the classification). 

• K-NN is considered a lazy learner (Latysheva, 2016, Stümer, 2004, Wilson et al., 

2012).  

 

Literature review: 

In studies by Adam et al. (2014) and Ghosh and Joshi (2014), RF and SVM performed 

almost equally well, when considering classification of RapidEye and WorldView-2 imagery. 

In a meta-analysis Khatami et al. (2016) found clear indications of SVM, kNN, and RF being 

clearly superior to other supervised classifiers and other image spectral information 

manipulation and feature extraction such as vegetation indices and Principal Component 

Analysis (PCA). They also constitute, that SVM has achieved the best overall performance 

in all studies investigated. Pouteau et al. (2011) compared the six most popular machine 

learning algorithms applied to different satellite datasets (Landsat 7, SPOT, airSAR, 

TerraSAR-X, Quickbird, and WorldView-2) for tropical ecosystem classification. They 

testify, that SVM outperformed all other tested classifiers in 75% of the situations. Heydari 

and Mountrakis (2018) examined the effects of the classifier selection, reference sample 

size, reference class, and scene heterogeneity in per-pixel classification accuracy on 26 

Landsat test sites employing five favoured classification algorithms. Obviously, SVM and 

kNN performed much better, when concentrating on edge pixels bordering adjacent object 

classes. The authors also state, that , with the exception of Naïve Bayes (NB), all classifiers 

performed similarly well for the entire image block. Thanh Noi and Kappas (2017) compared 
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SVM, k-NN and RF for classifying Sentinel-2 imagery showing the Red River Delta in 

Vietnam. An overall high accuracy was obtained for all classifiers (90 to 95%) for 

designating six various land use classes. Albeit, the SVM delivered better results for smaller 

sample sizes. However, not only the sample size seems to be crucial for the performance 

of classifiers, but also the selection of the spectral bands of the imagery. For example, 

Adelabu et al. (2014) achieved an increase of the overall accuracy of about 20% by 

integrating the red-edge band of RapidEye images. They conclude, that RapidEye has the 

potential to considerably improve insect defoliation classification. By applying CNN, SVM, 

and RF to fused hyperspectral and photogrammetric data,  Sothe et al. (2020) discovered, 

that all classifiers generated satisfactory results for tree species determination. However, 

CNN was between 22% and 26% more accurate, when only the hyperspectral bands were 

employed. Interestingly, Ghosh et al. (2014) found out, that tree species classification 

results do not necessarily improve with spatial resolution of the imagery using the same 

classifier (i.e. RF). RF performed better with 8m resolution images, than with 4m – even the 

30m resolution of the hyperspectral data produced sound results. WorldView-2  and 

Landsat 8 images were analysed with SVM and CNN to detect bark beetle outbreaks in the 

investigation conducted by Stych et al. (2019). They found SVM to be the best method used 

in their study. Immitzer et al. (2016a) employed a RF algorithm on WorldView-2 imagery for 

wall-to-wall mapping of growing stock for a national forest inventory. The satellite data was 

used as auxiliary information for the RF modelling approach, and was considered to be 

acceptable in the overall performance with an R2 of 0.44. To improve estimations of forest 

attributes like basal area, Landsat and hyperspectral imagery was employed by Stümer 

(2004). The k-NN analysis revealed overall accuracies for basal area of being between 35% 

and 67% for Landsat, and values of 65% to 67% for the HyMap data. Scheuber (2010) also 

applied the k-NN method to look into the estimation of parameters such as basal area, stem 

volume, and trees per hectare in a mixed forest in southwest Germany. For the tree species 

determination, he found an overall accuracy of 52.2%. However, accuracies deteriorated 

for timber volume, being an RMSE of 30.9% for k = 5 and 22.6% for k = 20. This behaviour 

of the algorithm clearly demonstrates the circumstance, that the value for k has to be chosen 

with extreme care. In a similar survey Abedi and Bonyad (2015) analysed IRS satellite 

imagery to achieve sufficient estimates for forest attributes. They observed accuracies 

between 80% and 94%, with k between 5 and 8 being the most suitable values. Beaudoin 

et al. (2014) mapped Canadian forest attributes through k-NN and MODIS imagery to 

conclude, that k-NN predictions at pixel level deviated from ground sampling especially in 

mountainous regions with low biomass, and that spatial aggregation of pixels can help 

improve accuracies. A relevant disclosure was made by Eskelson et al. (2009) by finding 

out, that k-NN approaches can turn out to be very useful in imputing missing data for forest 
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inventory. The authors also stress, that methods to minimise the registration error of the 

various sources (e.g., aerial photographs, LiDAR point clouds, satellite data) employed 

require further investigation.       

 

4.3.2. Object-based image classification 

 

An alternative to essentially pixel-based analysis has been devised in the early 2000s, when 

trends to higher spatial resolution of imagery had become obvious (Blaschke, 2010, Li et 

al., 2016). Object-based strategies (also known as OBIA (Object Based Image analysis)) 

amalgamate pixel groups into discrete objects based on their spectral, size, textural, and 

shape characteristics. Such methods can deliver very useful results, if the classified objects 

represent meaningful units, such as individual trees (Whitehead and Hugenholtz, 2014). 

Analogous to the supervised classification, the ancillary information makes this classifier 

particularly efficient when searching for objects occupying small areas, such as trees, thus 

avoiding a complete classification of the entire image (Jones and Vaughan, 2010: 156). 

Object-based classification is a three-step process: (i) pre-processing of the imagery (i.e., 

geometric and/or atmospheric/radiometric correction); (ii) subsequently the image is 

segmented into discrete objects or features and (iii) then each object is classified. This kind 

of classification is quite similar to the type of analysis done by humans during visual 

interpretation and as such mimics pattern recognition processes (Nussbaum et al., 2013). 

Most of the segmentation algorithms are based on the image intensity value properties 

discontinuity and similarity. In the first case, the image is portioned into regions featuring 

abrupt changes in intensity, such as edges. Whereas in the latter, the image is portioned 

into regions that are similar according to a set of predefined criteria (e.g., thresholding, 

region growing, splitting, and merging). Some approaches even combine both approaches 

for exploiting image content to a maximum (Gonzalez and Woods, 2018). The scale of the 

objects plays an important role in the segmentation process. It defines the minimum number 

of pixels to be contained in a group to become an image segment or object and thus 

determines the size of the resulting image objects. Most studies dealing with OBIA reveal, 

that finding the right scale parameter can be a very time consuming trial and error 

undertaking (Niemeyer et al., 2012, Yang et al., 2019).  Once the image objects have been 

created the classification is carried out based on rule set defined by the user. The underlying 

criteria for the rule set reach far beyond spectral characteristics (e.g., colour) and 

encompass feature factors such as shape, size, texture, as well as neighbouring 

relationships like connectivity and proximity. To ease the decision on the most appropriate 

rule set and feature selection a statistical tool (SEaTH) was devised by Nussbaum et al. 
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(2013). It calculates the separability for each class combination and determines the best 

threshold for class separation (see also eCognition software). The following graph (4.14.) 

presents an example of the outlined 

object-based classification procedure.  

 

Another method is described by Tong 

et al. (2012). They applied a supervised 

and fuzzy-based approach to 

determine optimal multi-resolution 

segmentation parameters. 

Unfortunately, as with above-

mentioned SEaTH, this tool has not 

been integrated into object-based 

image analysis software packages yet, 

although segmentation accuracies are 

reported to increase considerably, and 

operation times (processes are 

operator-independent) reduced 

drastically.  

Successful classification of satellite imagery is reported by Aguilar et al. (2013). The 

analysis of GeoEye-1 and WorldView-2 images yielded overall accuracies of 89% and 83%, 

respectively, when looking at urban environments. According to them the accuracy of the 

classification is driven by three main factors, namely (i) sensor used, (ii) sets of image 

objects employed, and (iii) the size and quality of the training samples to feed the classifier. 

Deng et al. (2014) found improvements of up to 34% compared to pixel-based classification 

of WorldView-2 imagery for the identification of tree tops in the Purple Mountain National 

Park close to Nanjing, China. Yan et al. (2006) found even a higher gain (36.77%) when 

classifying land cover from 15m ASTER datasets. In his investigation on tree species 

determination from multispectral UAV imagery Franklin (2018) reports classification 

accuracies of 50% to 60% for pixel-based classifiers, and 80% for OBIA. Hajek (2004) 

confirms excellent classification results (i.e. 95%) for tree species discrimination extracted 

from 4m Ikonos imagery. OBIA was also applied to WorldView-2 images in the study 

presented by Karlson et al. (2014). The overall detection rate for individual tree crowns in a 

managed forest in Burkina Faso was 85.4%, with lower accuracies in areas featuring high 

tree density and dense understorey vegetation. Increased classification performances 

(Kappa index of 91.6 %) have been conveyed by Ke et al. (2010), when synergistically using 

Figure 4.14: (a) aerial photograph of heterogenous 
landscape; (b) fine scale segmentation; 
(c) coarse scale segmentation; (d) OBIA 
based classification of woody cover. 
Source: Blaschke, 2010.   
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high-resolution Quickbird satellite imagery and LIDAR point clouds. However, this finding is 

in contrast to the results published by Machala and Zejdová (2014), who applied OBIA for 

forest classification of aerial imagery. According to them the overall accuracy of almost 90% 

deteriorated to a mere 70% by integrating tree height information into the classification 

process. The authors address high tree density (i.e. low object separation) and poor tree 

height class definition as major culprits for mediocre outcomes. Kavzoglu and Yildiz (2014) 

report good OBIA classification accuracies for aerial and Quickbird-2 imagery to 

discriminate several land use features. An important observation of the authors was, that 

segmentation parameters have a direct effect on the classification accuracy, with low scale-

shape combinations generating the best results. This view is supportingly extended by 

Karakis et al. (2006), who suggest to also consider sun elevation and topography, when 

selecting segmentation parameters. In an extensive survey Myburgh and van Niekerk 

(2014) investigated the performance of various classifiers in an OBIA environment in 

relation to the size of the training set. They deduce that: (i) the performance of all the 

classifiers (i.e., SVM, Nearest Neighbour, Maximum Likelihood) improved significantly as 

the size of the training set increased, and (ii) SVM was the superior classifier for all training-

set sizes. Although multi-scale segmentation seems to be working very well for very high-

resolution imagery, authors like Jing et al. (2012) do not fail in stressing, that forests consist 

of multi-scale branches, complex tree crowns, and tree clusters causing an over-

segmentation of the imagery.   

Advantages and disadvantages wrapped up: 

• The majority of the studies confirm, that OBIA clearly outperforms most pixel-based 

classifiers, except for sophisticated classification methods based on machine 

learning (e.g., SVM, RF).  

• Increasingly complex OBIA classification rule-sets and workflows become real 

challenges. 

• Not as user friendly as other classification strategies. 

• Most methods either produce over-, or under segmentation, requiring a lot of editing.  

• Automatic object extraction is still in its infancy. 

• Segmentation process is complex and no single method performs consistently well 

on different regions of the world and in varying image acquisition circumstances.  

• Future discussions on  epistemological and ontological aspects of objects as well as 

their methods of derivation are required (Blaschke, 2010, Liu and Xia, 2010, Mallinis 

et al., 2008, Niemeyer et al., 2012, Vatsavai, 2013). 
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4.3.3. Spectral indices for image classification 

Apart from the above-mentioned classifying approaches vegetation indices (VI) have 

proven to be very apt tools for analysing imagery in a remote sensing context. The 

subsequent section focuses solely on a few fundamentals, as well as a selection on specific 

indices employed in the forestry context. Exhaustive material on VIs is provided for example 

by Bannari et al. (1995), Huete (2012), Jones and Vaughan (2010: 168–176), and Xue and 

Su (2017). 

VIs are simple, dimensionless and effective algorithms  for quantitative as well as qualitative 

assessments of vegetation cover, vigour, growth dynamics, Leaf Area Index (LAI), fire 

scars, and many other applications. VIs exploit the reflectance properties of electromagnetic 

radiation in vegetation and as such allow inferences on their chemical and morphological 

traits. Vegetation indices have been designed that way, that confounding factors such as 

soil background reflectance, directional, or atmospheric effects are minimised. They have 

become very popular and widely used in the remote sensing community, with sensor 

platforms including space-, and airborne carriers, and with UAV based imagers as a fairly 

recent ‘disciple’. Owed to the complexity of variations in instrumentation, spectral and 

spatial resolution, band combinations, and environmental conditions, no unified 

mathematical expression to encase all VIs exists (Xue and Su, 2017). As such, VIs are 

commonly tailored to the specific application requirements. As a consequence, far more 

than one hundred different indices are being offered to the user these days. 

According to Broge and Leblanc (2001) vegetation indices can be categorised as follows 

(with examples provided below): 

• Ratio indices (e.g., NDVI, RVI, MSI); these VIs tend to enhance the contrast 

between soil and vegetation . 

• Orthogonal indices (e.g., PVI, TC, GVI); compared to ratio indices, the greenness 

isolines do not converge in the origin, making them perform very well at low LAI 

values. 

• Hybrid indices – i.e., the fusion of ratio and orthogonal VIs (e.g., SAVI, TSAVI, 

MSAVI); these VIs attempt to decouple vegetation reflectance from soil reflectance 

for better vegetation – soil (background) discrimination. They are particularly geared 

for arid and semi-arid environments. 

• Hyperspectral indices (focussing on the red edge reflectance pattern); these VIs are 

better suited for hyperspectral sensors to account for subtle changes in vegetation 

traits.  

A selection of the most common VIs and their formulas is given below in Table 4-4. 
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With regard to the vast number of published studies the NDVI (Normalized Difference 

Vegetation Index) has been as popular as ever to detect plant vitality, despite of a few 

shortcomings (Muhsoni et al., 2018). Apparently, NDVI shows a distinct saturation tendency 

for LAIs greater than 2 (Gitelson, 2004, Liang and Wang, 2020: 405–445). This property 

can result in a grave underestimation of biomass in lush vegetation such as tropical 

rainforests (Jiang et al., 2008, Tesfaye and Awoke, 2020). In addition, sensitive reactions 

to ground reflections have been observed. NDVI values range from -1 to +1, with negative 

values indicating shadow areas, water, snow, or bare soil. Low values reveal either low 

vegetation cover, or deteriorated vigour. In contrast, high NDVI values denote a high level 

of photosynthetic activity and as such suggest elevated quantities of biomass.  The DVI 

(Difference Vegetation Index: DVI = NIR-R) also seems well suited for low LAI, however, 

appears to be more sensitive to soil background than the NDVI (Jackson and Huete, 1991). 

The SAVI (Soil Adjusted Vegetation Index) was established to improve the sensitivity of 

NDVI to soil backgrounds. The adjustment factor L (see also formula) was introduced to 

equally deal with dark and light soils. However, the SAVI was modified (MSAVI) recently, 

since the L factor depends on the level of vegetation cover prior to classification and as 

such, is subject to speculation, when vegetation cover is not known .    

Table 4-4: Examples of common vegetation indices and possible applications (Hatfield,2010). 

     

The GNDVI (Green NDVI) performs better than NDVI at higher LAIs, and has been found 

to be more sensible than NDVI to identify differences in chlorophyll content. A variation of 

the NDVI, the so-called NDRE (exploiting the red-edge bands), also seems to be more 

geared for the observation of vegetation with low chlorophyll content (Boiarskii and 

Hasegawa, 2019). In general, modern sensors also acquiring the red-edge part of the 

electromagnetic spectrum seem to be having some edge over conventional sensors, when 

applied to vegetation indices such as the NDVI Red-edge, or the NBR (Korhonen et al., 

2017).  The EVI (Enhanced Vegetation Index) was especially designed for MODIS products 
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to account for negative atmospheric effects. EVI (Enhanced Vegetation Index) is considered 

to feature an improved sensitivity to vegetation differences from uncovered to dense 

vegetation conditions (Glenn et al., 2008). More recently developed VIs attempt to fully 

exploit the potential of hyperspectral imagery. Indices like the MSARVI (Modified Soil and 

Atmospherically Resistant Vegetation Index) or the PRI (Photochemical Reflectance Index) 

apparently show very high sensitivity for vegetation pigments, allowing improved 

assessment of photosynthesis activity and biomass (Broge and Leblanc, 2001). With the 

development of thermal remote sensing technology, canopy temperature as related to 

transpiration and stomatal conductance in plants can be measured. This notion is reflected 

in the so-called CWSI (Crop Water Stress Index) to monitor changes in water content of 

vegetation. With the advent of sophisticated multispectral sensors, indices especially 

geared for the assessment of burn severity of burnt areas have been designed and 

successfully applied. One of the salient indices is referred to as NBR (Normalised Burn 

Ratio: NBR = (NIR-SWIR)/(NIR+SWIR)). This index exploits the near-, and short-wave 

infrared reflectance of the fire affected areas and as such renders the assessment of pre-, 

and postfire incidents possible (Keeley, 2009, Lutes et al., 2006).  

Other than the well-reputed and conspicuous NDVI, the LAI also deserves special attention 

due to its relevance in determining plant vigour and biomass estimation. Leaf Area Index 

(LAI) is one of the most widely used indices for describing plant canopy structure, and for 

getting a better understanding of the biosphere-atmosphere exchange of mass and energy 

at the leaf surface. As such, the determination of LAI has become a crucial index in 

biochemical, hydrological, and ecological modelling, as well as for measuring forest growth 

and productivity. By definition, LAI is the ratio of one-sided leaf area per unit ground area 

(e.g., sqm). Since it is a ratio of areas, LAI is unitless – an LAI of 3 would thus have a ratio 

of 3:1 of leaf to ground area. Common LAI values range from 1 for desert ecosystems to 9 

for very lush tropical forests, with mid-latitude forests assigned values between 3 and 6. 

However, seasonality, phenology, 

leaf characteristics (needle vs broad 

leaf), canopy structure, and 

transpiration rate can exhibit large 

variations in LAI and thus the 

associated values need to be 

interpreted with great care (see 

graph on the left). In the light of this 

it is also important to stress that LAI 

derived from remote sensing also 

comprises all green contributors, i.e., the understory under forest canopies.  

Figure 4.15:   Seasonality effects:  Needle reflectance spectra 
of Pinus contorta exposed to winter (red line) 
and summer (black line). MODIS bands 
indicated in grey. Source: Gamon, et al., 2016.  
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The following graph presents some of the underlying principles for accurately measuring 

LAI (Campbell, 2012, Campbell and Norman, 1998: 247–248). 

 

 

Figure 4.16: The plot at the bottom left shows clearly, that reflectance is wavelength dependent – increase 
in LAI shows decrease in the visible spectrum, whereas near infrared values increase. The 
sketch on the right illustrates major effects of ambient radiation interacting with the plant 
canopy as either being transmitted (T), absorbed (A), or reflected (R). High LAI displays low 
light transmittance, high absorptance, and low visible, but high NIR reflectance (Source: 
Campbell, 2012).     

 

LAI can be measured directly by harvesting all leaves from a plot to employ flatbed scanners 

to calculate the total leaf area. Albeit being very time consuming and destructive, this 

method yields the most accurate results. Indirect measurements entail the determination of 

related variables dealing with the reflectance or transmittance of light by or through the 

canopy, or the use of hemispherical photography (i.e. fisheye lens) to differentiate between 

vegetated and non-vegetated pixels in the imagery (Chianucci, 2016).  Two different 

approaches have become very common to determine LAI from surface reflectance, namely 

(i) (semi-) empirical relationships between vegetation indices and LAI, and (ii) the inversion 

of radiative transfer models to mimic surface reflectance from canopy structural 

characteristics such as LAI (Kappas and Propastin, 2012). Commercially available 

instruments such as LICOR’s LAI 2200 estimate LAI by using the amount of light energy 
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transmitted by a plant canopy and are based on Beer’s law describing the relationship 

between LAI and light interception:  PARt = PARi exp (-kz) , where PARt denotes the 

transmitted photosynthetically active radiation (PAR) near the ground, PARi is PAR incident 

at the top of the canopy, k is the extinction coefficient, and z the path length of the photons 

through the attenuating medium (i.e. the leaves) (Rautiainen et al., 2005).  Additional 

variables include solar zenith angle, beam fraction, and leaf angle distribution. By 

calculating z, it is possible to obtain a veritable estimate of LAI (so-called PAR inversion 

technique). PAR inversion technique is non-destructive, but requires measurements of both 

transmitted (i.e., below canopy) and incident (above canopy) PAR. Above canopy 

measurements can be very cumbersome, however, large canopy gaps or clearings are 

appropriate to capture radiation of an unobstructed sky. Identical or at least similar light 

conditions are a prerequisite to obtain proper radiance readings. An alternative for 

estimating LAI is the use of reflected rather than transmitted light. It has become very 

common to exploit the spectral properties of the reflected radiation on the red (also red-

edge) and NIR bands for this purpose. Either wavelength combinations, the pertaining 

ratios, or the employment of various vegetation indices (e.g. NDVI (Normalised Difference 

Vegetation Index), the MSAVI (Modified Soil Adjusted Vegetation Index), and the EVI 

(Enhanced Vegetation Index)) are now routinely used as proxies for LAI (Coops et al., 1997)  

(see also graph below).  

 

 

 

These days handheld spectrometers offer a relatively inexpensive and practicable 

technique to measure and monitor vegetation reflectance patterns. In addition, most earth-

observing satellites (e.g., Landsat, MODIS, Sentinel-2, SPOT) are equipped with sensoring 

systems to capture spectral signatures of various land cover schemes and allow for the 

calculation of vegetation indices (VIs). The derivation of LAI from spacebourne platforms 

usually is based on the employment of neural networks with top of canopy reflectance and 

Figure 4.17: Strong relationship between LAI and NDVI (left); for each canopy a specific LAI – NDVI 
correlation can be established (right) – source: Campbell, 2012. 
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geometry of acquisition (i.e., sun zenith and azimuth angle) used as algorithm inputs. 

However, a few caveats apply, bearing the potential to gravely impinge the determination 

of the indices. A number of studies indicate that the measurement methods are prone to 

awry performances (Campbell, 2012, Goude et al., 2019, Korhonen et al., 2006). The 

following graph provides an excellent account on this issue. 

            

Figure 4.18: Disparities in measurement performances of various methods. The graph shows LAI values in 
a deciduous forest canopy in spring (DOY – Day Of Year). Source: Campbell, 2012. 

All LAI derivation algorithms are based on specific radiative transfer models associated with 

specific assumptions of the canopy architecture. Since they are developed to be applied to 

any type of vegetation, the devised algorithms are inherently generic. They are also best 

suited for landscape patches presenting enough homogeneity at pixel scale, and as such, 

have to be treated with care when applied to forest areas, which show a high degree of 

heterogeneity (Weiss and Baret, 2016).  

 

Literature review:  

Banerjee et al. (2014) investigated the combination of several vegetation indices (i.e. 

Canopy Shadow Index, Advance Vegetation Index and Bare Soil Index) for the extraction 

of forest canopy cover from Landsat images in an old growth forest in northern India. The 

overall accuracy yielded a respectable value of 80%, however, the authors did not fail to 

point out, that the integration of terrain parameters (e.g., slope, aspect) into the classification 
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process have the potential to considerably improve the overall outcomes. When considering 

the wildfire situation in Australia, Boer et al. (2008) found, that NDVI, LAI, and the NBR 

proved to be very suitable candidates for the accurate post-fire assessment of eucalyptus 

forests in south-western Australia. Carvajal-Ramírez et al. (2019) also used NBR, but in 

addition NDVI and the NDRE (Normalised Difference Red Edge) for the determination of 

burnt areas from multispectral UAV imagery. According to them the difference between pre-

, and post-fire NDVI worked best for the UAV flight conditions and sensor specifications. 

Moving away from the destructive forces of wildfires, Freitas et al. (2005) attempted to find 

potential relationships between forest structure and vegetation indices in the Atlantic 

Rainforest, Brazil. They used NDVI and moisture vegetation indices (Landsat’s band 5 

(MVI5) and 7 (MVI7)) for a linear regression analysis to learn, that MVI5 and MVI7 show the 

best performances in dense humid forests, whereas NDVI seems to be a good estimator of 

green biomass in deciduous and dry forests. Karnieli et al. (2006) carried out an interesting 

investigation on the combination of NDVI and brightness temperature, both derived from 

the NOAA AVHRR sensor. The conclude, that, opposed to common assumption, NDVI and 

land surface temperature showed a positive correlation for six different ecosystems in 

Mongolia (i.e., rising temperature positively affects vegetation activity). They further infer, 

that the Vegetation Health Index (combination of NDVI and brightness temperature) should 

be used with caution, particularly in high latitude areas. Shifting the focus to boreal forests 

in Canada, McDonald et al. (1998) scrutinised various vegetation indices (e.g. NDVI, SAVI, 

TSAVI) for their potential applicability in determining forest inventory parameters. They 

found out the following for the analysis of Landsat images: (i) all indices were not linear with 

respect to forest cover because of shadowing effects, (ii) the indices were greatly affected 

by perturbations caused by solar zenith angle, background reflectance, stand structure, and 

LAI, and (iii) at high canopy covers SAVI and TSAVI performed best, since they show large 

dynamic ranges and are less susceptible to atmospheric perturbations. When looking at 

logging activities in a Polish forest, Pałaś and Zawadzki (2020) found that the MERIS 

Terrestrial Chlorophyll Index (MTCI2) and the Brightness Index (BI3) performed best when 

employing Sentinel imagery, followed by NDVI and the Ratio Vegetation Index (RVI4). 

Another interesting discovery was made by Mayer and Scribner (2002), who found that 

NDVI preferentially detects the greenest vegetation, whereas SWIR NDVI (NBR) shows a 

tendency to highlight vegetation residing in shadowed areas. When investigating 

biophysical properties of boreal forests in Finland based on field data and Sentinel-2 

 
2 MTCI = 

(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝑅𝑒𝑑)
 

3 BI =√ 
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imagery Majasalmi and Rautiainen (2016) found that the estimation of fPAR and LAI 

performed best when using bands 7 and 9 (R2 of 0.93 for both). However, they also conclude 

that performance can decrease considerably (i.e., R2 of 0.3), when wrong vegetation indices 

are applied for approximation of the vegetation traits.    

Validation processes are crucial to all relevant remote sensing activities – the determination 

of vegetation indices and the derived correlations related to the ‘true’ phenomena are not 

exempt from such procedures. Most commonly in situ measurements (destructive and non-

destructive) are conducted to gain insight in vegetation cover, LAI, biomass, growth, and 

vigour (Xue and Su, 2017). More sophisticated, but effortful approaches assess VIs by 

monitoring sentinel plants to be compared with the VI values for calibration (allometric 

measurements). A considerable number related of studies were undertaken to gauge LAI 

in particular. For example Dufrêne and Bréda (1995) detail an  overall underestimation of 

the LAI in the range of 6 to 37% when applying indirect methods (i.e. LAI-2000 plant canopy 

analyser; needle method; Demon light sensor) in a temperate forest. They hypothesise that 

local clumping of architectural canopy components is a reasonable explanation for this 

phenomenon, thus violating the underlying principle of random distribution of the plant 

structural elements (the so-called Beer’s law) being used in most indirect appraisals. 

Clumping of foliage and the negative impact on LAI measurements have also been 

described by Chen et al. (2005), Gower and Norman (1991), Peng et al. (2018), Kappas 

and Propastin (2012),  Ryu et al. (2010), Whitehead et al. (1990), and Zhao et al. (2012). 

Moreover, Goude et al. (2019) found LAI underestimates of 30 to 73% for boreal forests in 

Sweden, finding stand-level LAI largely depending on species composition, management 

schemes and site conditions. In addition, Garrigues et al. (2008) found variation in 

illumination conditions to be one of the major drivers for LAI discrepancies when comparing 

LAI-2000 plant canopy analyser, the Decagon AccuPAR ceptometer, and digital 

hemispherical photography. A similar survey was carried out by Hyer and Goetz (2004) on 

a boreal forest site to yield commensurable results. The research team also found variability 

in LAI measurements to be attributable to spatial heterogeneity within forest stands, 

particularly in sparse canopies. Kappas and Propastin (2012) found that all algorithms for 

the derivation of LAI are empirical and tend to over-simplify the relationship between 

recorded signal and the pertaining plant parameters, thus leading to potentially low 

accuracies. They further state, that more research is required to address this issue.  

At this point, I should like to make a last note on the literature reviewed: based on the 

scientific discussion on VIs, it should be needless to say, that satellite derived indices should 

ideally be derived from corrected ‘at-surface’ reflectance values. Yet, many reported studies 

use the ‘at-sensor’ reflectance or the DNs (Digital Numbers) instead, making outcomes of 
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vegetation assessments very hard to compare. This finding is very much in line with the one 

reported by Jones and Vaughan (2010: 167) and Xue and Su (2017).   

Wrap-up of this section: 

• Vegetation indices (e.g., NDVI, NBR, LAI) have become indispensable tools in 

remote sensing for the analyses of vegetation surfaces such as canopy density , 

burnt area determination, and vigour. 

• Those indices have shown to be correlated with variables such as chlorophyll 

content, biomass, leaf nitrogen, photosynthesis, productivity, and LAI. 

• Proper image pre-processing (radiometric, atmospheric, and geometric correction) 

is crucial prior to the calculation of vegetation indices. 

• Factors such as seasonality, phenology, leaf characteristics (needle vs broad leaf), 

canopy structure, and transpiration rate can exhibit large variations in VI behaviour, 

and need to be considered as such. 

• The selection of an appropriate measurement method is also pivotal for the 

exploitation of vegetation traits. 

  

4.3.4. Image pre-processing 

It is not the author’s intention to overly expand on this subject (i.e. georectification, image 

co-registration, mosaicking, spectral and spatial enhancement, etc.) since there is a 

plethora of publications available (e.g. (Cracknell and Hayes, 2007: 162–175, Jones and 

Vaughan, 2010: 128–151, Liu and Mason, 2009: 265–271, Mather, 2011: 67–96). However, 

since sensor-specific correction algorithms can have grave impacts on the outcomes of 

classification procedures and the magnitude of various vegetation indices, they deserve 

special attention as such.  

The quantity as well as quality of a signal received by a satellite sensor largely depends on 

the following factors: 

• the reflectance properties of the target, 

• the nature of atmospheric interactions (i.e., scatter, attenuation, absorption, 

transmission, refraction, reflection), 

• the viewing angle of the sensor, 

• the solar azimuth, and 

• the aspect and slope (terrain effects) of the target relative to the solar angle 

(Mather, 2011: 90). 
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Prior to all image processing procedures, the electromagnetic radiation striking the sensor 

(Top of Atmosphere  - TOA) needs to be converted to quantities of surface radiance (Bottom 

of Atmosphere – BOA) to be able to assess the genuine characteristics of the ground target. 

Many satellite products are at the customer’s disposition on a so-called 2A level, meaning, 

that geometric, radiometric, and atmospheric correction are inherent to this imagery (BOA). 

In contrast, level-1C products (like  imagery covering Mongolia) only provide TOA 

reflectance, thus requiring further processing. For this purpose, a fair number of correction 

algorithms have been devised to account for atmospheric and even for terrain effects - e.g., 

6S, ATCOR, Sen2Cor, iCOR, COST, DOS, MODTRAN, just to mention a few. Three of 

these will be detailed in the following section as provided by most image processing 

software packages. 

The Dark Object Subtraction Model (DOS) is considered to be the most simple model to 

eliminate relatively uniform atmospheric effects such as haze. It is solely based on the digital 

image itself without requiring in-situ field measurements and additional information like solar 

elevation angle. The procedure is to look for values in areas of known zero reflectance (e.g., 

deep water, dark shadow) - assuming that any value greater than zero must result from 

atmospheric scattering - and to subtract  this value from each pixel in the specific band. 

Albeit, finding zero value pixels in the imagery is an elementary prerequisite, which is rarely 

met (Chavez, 1988, Jones and Vaughan, 2010: 139).     

To compensate for the shortfalls of the DOS Chavez (1996) developed a model exploiting 

the cosine of the solar zenith angle (COST) as an approximation of the atmospheric 

transmittance. Among other correction models (e.g. 6S) this approach seems to yield 

corrections as nearly as accurate as in-situ field measurements (Chavez, 1996, Mahiny and 

Turner, 2007). 

Sen2Cor  (Sentinel-2 Correction) is a processor tailored for the Sentinel-2 imagery to 

perform atmospheric-, terrain-, and cirrus correction of TOA level 1C input data. 

Additionally, aerosol optical thickness, water vapour, scene classification maps and quality 

indicators for snow and cloud probabilities are generated. The Sen2Cor model comprises: 

• the detection of dark pixel values of the S2 bands B2, B3, B4, B8, B11 and B12 

for cloud shadow calculation, 

• the geometric parameters such as sun position, sun elevation, and an empirical 

model for top-cloud height distribution for creating cloud masks, 

• and a DEM (e.g. SRTM) and an empirical BRDF (Bi-directional Reflectance 

Distribution Function) model to compensate for terrain effects (Main-Knorn et al., 

2017).     
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Figure 4.19: Example of a scene classification map (here: cloud mask) generated by Sen2Cor (Müller-Wilm, 
et al., 2014). 

 

A growing number of publications deal with the impact of atmospheric and topographic 

correction models on image classification outcomes and the determination of vegetation 

indices. For example, Buho et al. (2009) looked in to the NDVI values of marsh land on 

Hokkaido Island, Japan, before and after atmospheric correction. They conclude, that the 

NIR of the ASTER satellite sensor was mostly affected by scattering, and that NDVI values 

were larger after performing the correction algorithm (i.e., ATCOR). These findings are line 

with the outcomes published by Xie et al. (2010). According to them the NDVI derived from 

Landsat 7 images was more sensitive to the atmospheric correction (i.e. 6S5) in dense 

vegetation, with an overall increase of the NDVI values and its range after applying 6S. 

Keukelaere et al. (2018) assessed the performance of the iCOR atmospheric correction 

approach for coastal and inland waters to reason that the algorithm shows an overall very 

satisfactory correlation between the Landsat 8 and Sentinel-2 data and in-situ 

measurements. However, in a few instances iCOR under-corrected in the NIR wavelengths. 

Pflug et al. (2015) report satisfactory results for the classification of various land cover types, 

with NDVI performance excelling after Sen2Cor correction. In contrast, Li et al. (2018) found 

Sen2Cor surface reflectance to be overestimated when assessing 40 different test sites in 

North America, but with NDVI performing extremely well with a correlation coefficient of 

0.973 against the surface data. However, Sen2Cor has been subject to continuous 

improvement, with version 2.8. being the latest release (ESA, 2020a), and with further 

validation reports to be expected. An interesting observation was made by a team around 

Vanonckelen et al. (2015) when studying the effect of atmospheric and topographic 

correction on image composites for forest cover detection in mountainous areas. They 

ascertain, that not only the choice of an adequate classifier has a stronger impact on the 

classification accuracy than topographic correction, but in turn the topographic component 

 
5 Second Simulation of a Satellite Signal in the Solar Spectrum 
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had a higher influence on classification accuracy than the atmospheric component. The 

team also states very clearly, ‘that it is worthwhile to invest in both atmospheric and 

topographic corrections in a multi-temporal study’ (Vanonckelen et al., 2013). Studies like 

the ones by Huang et al. (2016) and Weirather et al. (2018) suggest, that atmospheric 

correction largely affects the visible wavelength bands.  For own findings regarding the 

application of SenCor to Sentinel-2 imagery, please refer to section 8.3.1. of this thesis.         

4.3.5. Presentation and interpretation of image classification results 

As indicated in the bulk of the literature, the most common way to assess the accuracy of 

any classification, we need to set the classification output against ground reference data 

(Jones and Vaughan, 2010: 266–269). The creation of an error matrix (synonyms are: 

confusion matrix, classification matrix) has become common practice these days with the 

key information detailed below. The following example shows the classification results of 

three different classes compared to the pertaining ground truth. 

                

Figure 4.20: Example of a simple error matrix (source: www.50northspatial.org). 

The most common measure of accuracy is referred to as the overall accuracy (OA), which 

is calculated as the sum of the diagonal values (in blue) divided by the total number of 

samples (OA in this case is: 0.74, or 74%). Another common indicator is the so-called 

producer’s accuracy  (PA) describing the number of correctly identified pixels divided by 

the total number of pixels in the reference image (PA is: aA / ΣA = 0.65). The error of 

commission is calculated as the complimentary of PA (i.e., 0.35), denoting the assignment 

of pixels to a certain class that don’t belong to it. User’s accuracy (UA) in contrast is the 

number of correctly identified pixels of a class, divided by the total number of the class in 

the classified image (UA is: aA / Σa = 0.79). The error of omission occurs, when pixels 

belonging to one class are included in another class (wrong assignment) – in our case 

resulting in a value of 0.21 (i.e., 1 – UA). In addition to above mentioned descriptive 

evaluations the Kappa statistic as a measurement of agreement has become very popular. 
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It characterises the degree of matching between reference data (e.g., ground truth) and the 

classification outcomes by comparing two matrices. Kappa (κ) is calculated as:  κ̂ = (po – 

pc) / (1 – pc) with po = Σ pii (i.e., sum of relative frequency in the diagonal of the error matrix 

(total accuracy)), and pc = Σ pi+ p+j (i.e., relative frequency of a random allocation of 

observations to the cells). Κ̂ = 0 indicates, that the agreement equals chance agreement, a 

value of 1 meaning a perfect agreement. 

In general, classification and their evaluation results have to be treated with caution, since 

there is plenty of room for manipulation.  For example, the less classes are defined, the less 

the confusion possibilities are. Furthermore, the number and quality of the reference data 

play an important role, and higher accuracies can be achieved by including huge areas with 

easily identifiable features (Foody, 2002, Jones and Vaughan, 2010: 268, Olofsson et al., 

2013). With reference to the difficulty in interpretating the Kappa index, some authors even 

plea for the abandonment of this index. Comparisons of the Kappa index seem to be 

particularly challenging if the classes vary in their prevalence (i.e. properties of the of the 

population) (Foody, 2020). In summary, the decision on what can be considered a good 

classification result cannot be of a generic character, since each classification has to be 

seen in the light of the classification purpose, as well as the quality of the image and the 

reference data. 

 

By wrapping up the chapter dealing with image classification and spectral indices, the main 

findings are: 

❖ The pick of the “wrong” classifier can significantly affect the classification outcomes. 

❖ Proper image pre-processing (i.e., atmospheric, radiometric and topographic 

correction; resampling; sub-setting) is crucial prior to image classification and 

derivation of vegetation indices, especially when looking at temporal analyses and 

comparing different sensors.  

❖ There seems to be no such thing as an atmospheric correction tool to serve all 

purposes.   

❖ In very high-resolution imagery (e.g., UAV imagery) object-based classifiers have 

proven to be more suitable than other approaches. 

❖ Although image resolution matters, an extremely high spatial resolution does not 

necessarily lead to superior classification results. 

❖ In most studies undertaken, SVM and RF classifiers have managed to live up to 

their expectation and reputation. 

❖ A lack of radiometric resolution and number of spectral bands cannot be 

compensated with higher spatial image resolution. 
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❖ Most machine learning classifiers present themselves as black boxes, being 

sensitive to small changes in the training datasets and thus leading to differing 

classification results. 

❖ The proper selection of the training data is pivotal for the attainable classification 

accuracies. 

❖ The evaluation of classification accuracies has to be conducted with great care. 

❖ Neural networks provide great new opportunities, but have not reached a very 

practicable level yet. 

❖ Estimation parameters such as k for the k-NN method have to be chosen 

painstakingly. 

❖ This is old news, though: classification results are difficult to upscale and even 

harder to be applied to other environmental and sensoring conditions.  

❖ Vegetation indices, in particular the NDVI and the NBR, have proven to be salient 

indicators for plant vigour, tree species discrimination, forest cover and biomass 

determination, fire scar detection, and vegetation succession. 

❖ Appraisal of many indices is subject to variations in illumination conditions, 

saturation effects, species composition, plant (tree) architecture, site quality, and the 

measurement methods applied. 

     

4.4. Digital photogrammetry 

Digital photogrammetry has come a long way from transferring the basic concepts of 3D 

extraction from imagery to embracing the realm of bits and bytes. Before the nineteen fifties 

either very basic instruments (e.g., stereoscopes) or delicate, sophisticated machinery 

(stereo plotters) were state-of-the-art in this field. The advent of computer technology then 

caused a real paradigm shift also in photogrammetry, when analytical instruments were 

hooked up to increase processing speed and quality of the yet analogue imagery (analytical 

plotters) (Hildebrandt, 1996: 182, Kraus, 2003: 207-214;338). However, it was not until the 

mid-nineteen-nineties, that fully-fledged systems (e.g. Leica Helava DPW 770) to handle 

image data in an entire digital environment were available on the market (Chapuis, 1995, 

Leberl and Thurgood, 2004, Petrie and Walker, 2007, Vogt, 2000: 1–3). This progress would 

be unthinkable without the advancements in hardware technology and the plethora of 

algorithms we have at our fingertips these days. Caveats have to be considered when 

dealing with software black boxes, since they thwart and obfuscate a deeper understanding 

of the underlying concepts and algorithms. As such, at times it is very hard to pursue critical 

analyses of photogrammetry products such as elevation models (DEMs) and canopy height 

models (CHMs).  
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In the following chapter the pillars of digital photogrammetry are presented and new 

concepts in computer vision, like Structure from Motion (SfM), elaborated. Potential pitfalls 

and shortcomings are considered. Exhaustive accounts on (digital) photogrammetry are 

provided by e.g. (Albertz, 2013, Förstner and Wrobel, 2016, Heipke, 2017, Hildebrandt, 

1996, Kasser and Egels, 2002, Kraus, 2003, Linder, 2016, Luhmann and Schumacher, 

2019, McGlone, 2004, Mikhail et al., 2001).  

Fundamentals of digital photogrammetry 

According to Förstner and Wrobel (2016: 1): ‘Photogrammetry is the science and 

technology of obtaining information about the physical environment from images, with a 

focus on applications in mapping, surveying and high-precision metrology’. In contrast, 

computer vision does not focus on specific applications, but rather aims at mimicking 

intelligent human behaviour. It is also deeply linked to cognitive science (Förstner and 

Wrobel, 2016: 1, Theodoridis and Koutroumbas, 2009: 1).  Modern digital photogrammetry 

reflects the pursuit of amalgamating various technologies for best results. As depicted in 

the following graph, internal processing of 3D reconstruction of objects straddles various 

disciplines such as remote sensing, photogrammetry and computer vision. Thus, an 

intimate understanding of all related processes is required to derive a maximum of 

information from specific scenes. 

                 

Figure 4.21: Computer internal processing of 3D descriptions of objects (source: Luhmann, et.al., 2013) 

 

The primary purpose of photogrammetry is the three-dimensional reconstruction of an 

object. For the reconstruction of an object the elements contributing to the optical process 

such as light sources, surface properties, sensor and camera technology, and image 

processing have to considered (Luhmann and Schumacher, 2019: 2). The following graph 

depicts the determining photogrammetric process from object-to-object model: 
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Figure 4.22: The photogrammetric process (source: Luhmann and Schumacher, 2019:3) 

This graph shows also very clearly, that the human being is still required for the creational 

and interventional process flow.  

In order to get an idea on the what current technologies are able to achieve in terms of 

obtainable and required accuracies the following figure is trying to furnish some particulars, 

although subject to rapid changes.  

 

Figure 4.23: Relationship between measurement methods and object size and accuracy (Source: 
Luhmann, et.al., 2013)  

This graph provides a good indication that, when it comes to object definition and 

reconstruction, attainable geometric accuracies of aerial photogrammetry are increasingly 

getting closer to (aerial) laser scanning fidelity. This holds even more true for very high -

resolution imagery acquired by UAVs flying low altitudes as compared to conventional aerial 

flying missions. This observation has also been strongly supported by various publications 

in recent years (e.g.Colomina and Molina, 2014, Edson and Wing, 2011, Gobakken et al., 

2015, Goodbody et al., 2017b, James et al., 2019, Lim et al., 2003). 
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Before we get to the nitty gritty of an object reconstruction pipeline in a photogrammetry 

suite it is indispensable to focus on a few fundamentals of the geometric characteristics of 

imagery and sensors, as well as the concepts of orientation of the imagery.     

The main image acquisition systems comprise photographic, scanner, and radar. The 

former is characterised by central projection causing radial distortion of high elevation 

objects (see also figure 4.24). Scanner systems feature  a parallel projection in the line of 

flight, however, perpendicular to the flight line central projection prevails. Radar systems 

generate parallel projected images in the line of flight, whereas the perpendicular 

component is determined by the angular distance between object and the active radar 

sensor causing a displacement of high elevation objects towards the line of flight. 

 

Figure 4.24: Projection geometry of photographic (left), scanner (middle) and radar systems (right). The 
associated object displacements are indicated below – ‘Flugweg’ meaning flight direction 
(source: Albertz, 2013:65). 

 

Since most of the imagery we deal with in digital photogrammetry originates from 

photographic systems the subsequent procedures will be centred on this acquisition 

system. As mentioned above a very common effect we observe with central projection is 

radial displacement of objects. This can have grave implications on the reconstruction of 

objects in the photogrammetric workflow, especially when dealing with wide-angle lenses 

and low flying altitude platforms (e.g., UAVs). The following graph reveals such an effect in 

the case of a forested landscape.  
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Figure 4.25: Central projection: radial displacement of trees due to object height difference. The reference 
plane(‘Bezugsebene’) features a tree with a specific height (Δh) and the associated plane 
distances (Δr;r). The projected reference plane distances on the image plane (‘Bildebene’) are 
denoted Δr’ and r’. The higher and the further away an object is from the image centre, the 
more it gets displaced in the image plane (source: Albertz, 2013:67).   

 

The effect of radial displacement can clearly be detected in a real-life image taken during 

one of the flying missions at the test area at Thunkel, Mongolia. 

 

Figure 4.26: The tree at the image centre is rendered perpendicularly, whereas trees further away feature 
an oblique view (image taken by Vogt, 2017).  

  

In order to be able to extract three-dimensional coordinates form images the so-called 

stereoscopic viewing is essential: if we have at least two photos from the same object, taken 

from different positions, the exact position of any point being shared in at least both photos 

can be determined. The following graph depicts the representative situation of aerial 

photogrammetry. 
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Figure 4.27: Geometry in an oriented stereo model (left) and focal length, projection centre and rotation 
angles (right) (source: Linder, 2016:2). 

   

As part of the reconstruction and orientation of each photo, not only the exact positions of 

all photos within the terrain coordinate system have to be known (‘exterior orientation’), but 

also the relationship between the image plane (i.e., pixel coordinate system) and the 

projection centre of the camera (i.e., camera internal coordinate system) have to be 

established (‘interior orientation’). For interior orientation the camera calibration data (e.g., 

focal length, distortion parameters) is required. If digitised aerial photos are used the 

measurement of the fiducial marks need to be carried out and translation vectors as well as 

rotation angles computed prior to transformation. However, these days direct digital image 

sources are preferred. For digital cameras, the relationship between pixel and image 

coordinate system is almost constant and determined during the calibration procedure 

(Linder, 2016: 35–37). For exterior orientation the camera position in the object coordinate 

system is determined in each photo. The camera position can be described as the location 

of its perspective centre and the camera attitude. The pertaining six orientation (i.e., X,Y,Z 

and the rotation angles ω, φ, κ) parameters are usually established by using a collinearity 

model. Exterior orientation can be resolved by either using real-world coordinates of ground 

control points, the GPS coordinates of the aerial photos (stored as metadata in the EXIF 

image file), or by tapping the inertial navigation system (INS) of the aerial platform (Cramer 

et al., 2016).   

When working with big sets of imagery collected during a flying mission, the orientation has 

to resolved for the entire image block. In order to achieve this, we need to find and measure 

object coordinates that will be used to connect all images (so-called ‘tie points’). The 

following graph demonstrates the principle of the block adjustment. 
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Figure 4.28: Scheme of a block adjustment (source: Linder, 2016:77). 

Without block triangulation (adjustment), every stereo model would require two horizontal, 

three vertical control points plus check points, that need to be measured during filed survey. 

Instead, independent model algorithms are used to simplify the computation process. 

Currently, most block adjustment is carried out using the bundle method. This allows the 

integration of additional geometric or navigational information such as Ground Control 

Points (GCPs) and attitude information of the aerial platform. Images consist of bundle of 

rays converging at the perspective centre with an unknown position and orientation. With 

block adjustment, the position and orientation of each bundle is resolved by using the rays 

in each bundle and the ground control information (Mikhail et al., 2001: 123). The entire 

adjustment process consists of a translation of the X, Y and Z coordinates and the rotation 

of ω, φ and κ, until the image rays meet accurately at the tie points and control points (Kraus, 

2003: 268–271). The pertaining algorithm is based on collinearity equations, with self-

calibration parameters and high-quality GPS data added to correct for systematic errors 

and to increase overall accuracy of the adjustment. Formerly, camera calibration was 

carried out  as a disjoint procedure. Now, principal point coordinates and focal length can 

be treated as additional unknowns in the block adjustment solution (Förstner and Wrobel, 

2016: 674-676,696). However, care has to be taken, when choosing the self-calibration 

parameters to avoid introduction of additional errors. For this purpose, sophisticated self-
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calibration models account for lens distortion, principal distance error, or principal point 

offset, as well as for other deformation effects (Mikhail et al., 2001: 124–125). Evaluation of 

the block adjustment can be performed by examining a graphical representation  of the 

adjustment’s output. The resulting image residual plot can help to diagnose and rectify 

problems such as unadjusted image parameters or systematic errors. Removal or re-

measuring inaccurate points can substantially increase the bundle adjustment solution. 

Once the outcomes reflect an acceptable error tolerance, the resulting model can be used 

for further processing, like the creation of elevation models or ortho-mosaics.  The following 

figure represents the more traditional workflow, which seems to be still in use. However, 

with the advancements in computer vision, a game changer appears on the stage 

(Goodbody et al., 2019).     

 

Figure 4.29: Workflow of traditional photogrammetry (source: Linder, 2013:17). 

Computer vision can be considered one of the first applications of artificial intelligence. 

Imagery is used to recognise objects or navigate through an entire scene (Mikhail et al., 

2001: 169–173). A great number of various algorithms have been developed in the last 

couple of years to deal with tasks such as surface representation and feature extraction, 

however, no such thing as a perfect allrounder seems to exist. A computer vision algorithm 

starts with an application goal, like to recognise an object, to attain precise measurements 
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of this specific object. The algorithm is based on the description of a model of the object 

and its context in the scene. In addition, potential object occlusions have to be considered. 

Models for a large number of objects have already been described for applications such as 

Computer Aided design (CAD). In computer vision the specific object representations are 

generated from image data and matched against a reference model. The type of imagery 

plays an important role in the subsequent processes. The resolution and the spectral 

characteristics of the imagery determine the geometry, amount of detail and type of feature 

that can be exploited for recognition. Image features such as edges, textures, colour, 

shading and stereo disparity are common basic concepts in computer vision.  

Other than object recognition and feature extraction stereo image matching  has proven to 

be crucial for certain applications, like the generation of digital elevation models. The image 

matching procedure is far from being a trivial task because of intrinsic problems such as 

occlusion and noise. A matching algorithm needs to be robust, but also flexible enough to 

deal with varying viewing angles, object scales and radiometric variance in the imagery. 

The most popular algorithms use the following approaches: in area matching, the grey 

levels within a window are matched against the corresponding grey levels in other images; 

in feature matching, extracted features such as line segments are matched between images 

(Mikhail et al., 2001: 188–189). Normalised correlation between the windows in the two 

images to be matched is a typical procedure with area matching. The differences in 

brightness and variance between the images are considered by correlating a pixel within a 

specified window in the so-called master image with a window in the slave image. A large 

window proves to be more noise resistant in the computational process, but is subject to 

glitches due to sudden changes in stereo disparity. This problem can be overcome by  

performing matching at multiple scales and resolutions (image pyramids). In general, image 

characteristics have a substantial effect on the quality of the correlation quality. Image 

noise, uncorrected lens distortion, and atmospheric refraction can potentially degrade the 

matching properties (Förstner and Wrobel, 2016: 696, Fryer and Mitchell, 1987, Mikhail et 

al., 2001: 190–191, Wackrow and Chandler, 2008). 

A fairly recent development is marked by the appearance of largely automated 

photogrammetry pipelines for the production of 3D point cloud data from large sets of 

overlapping digital photos. The entire processes as described above can now be solved 

within one software suite with hardly any user interference required. An increasingly popular 

approach, referred to as Structure from Motion (SfM) – Multi View Stereo (MVS), is rooted 

in traditional stereo-photogrammetry and is able to recover 3D structure form projected 2D 

imagery of moving objects or scene (so-called motion parallax). SfM techniques initiates by 

detecting 2D features in every input image and matching those features between pairs of 
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images, resulting in a coarse mesh as output. When many matches are found between the 

images, a 3D transformation matrix between the images can be computed.  This process 

determines the relative 3D position between the two camera poses. Subsequently, the MVS 

algorithm is used to refine the mesh retrieved by the SfM technique, generating a dense 

reconstruction point cloud. MVS requires the camera parameters of each image as input, 

which is generated by the SfM algorithm. 

In short, the 3D reconstruction process entails the following steps: 

 

Figure 4.30: SfM – MVS pipeline for 3D reconstruction from multiple images 

For a more detailed account on the SfM technique and the pertaining characteristics the 

reader is referred to chapters 4.5. and 7.3.4.2. 

Some of the major merits of the SfM – MVS approach are that the methods operate largely 

invariant with respect to scale, viewing angle and illumination of the depicted features 

(Jensen and Mathews, 2016, Westoby et al., 2012). In addition, even imagery acquired with 

uncalibrated cameras can be used, since the process of camera calibration is integrated in 

the photogrammetric solution workflow. However, in order to achieve the highest possible 

reconstruction results, the following factors have to be scrutinised: 

• image quality (i.e., high contrast, no image blur, high resolution, colour fidelity), 

• geometric characteristics of the camera (focal length, lens distortion, etc.), 

• nature of the depicted scene (image features and texture).  

Despite the ease and achievable accuracies of the SfM – MVS technique, a few major 

issues remain unresolved, particularly concerning flying missions in forested terrain. 

Automated image matching relies on the algorithms used to identify and reliably measure 

corresponding pixels in a set of images. Incorrect or inaccurate matching become very likely 

especially with a low degree of image overlap, occluded features and high variations in 

radiometric traits. The most substantial crunches, however, occur, when abrupt vertical 
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changes either in terrain geometry, or within a tree canopy surface (open stands) exist. This 

can cause the resulting 3D model to be flawed or render even unusable (Greiwe, 2018, 

Kunneke, 2019, Ludwig et al., 2020, Osborn et al., 2017, Seifert et al., 2019, Seifert, 2019, 

Semyonov, 2011, van Aardt, 2019).        

                    

4.5. Structure from Motion (SfM) 

 

This user-friendly, fairly recent photogrammetric technique is dedicated an entire sub-

chapter, since SfM represents the core of 3D feature extraction in a sophisticated 

photogrammetry  environment. An excellent detailed account on SfM can be found in 

Carrivick et al. (2016). 

SfM was developed in the 1990s by the computer vision community and has hugely gained 

from the development of automatic feature-matching algorithms (Westoby et al., 2012). This 

technique has become one of the standard schemes in the earth sciences and a potential 

alternative to other 3D rendering platforms such as laser scanning or GPS, in particular in 

remote and inaccessible areas (Iglhaut et al., 2019). SfM shares the same basic tenets with 

stereoscopic photogrammetry, however, instead of a single stereo pair, it requires multiple, 

overlapping photographs as input to feature extraction and 3D reconstruction. In contrast to 

conventional photogrammetry, the geometry of the scene, the camera positions and 

orientation is determined automatically without a priori knowledge of 3D positions of certain 

features. Rather, a redundant, iterative bundle adjustment procedure is exercised with prior 

automatic feature extraction from manifold overlapping images (Förstner and Wrobel, 2016: 

450–452).  

As follows the SfM workflow is detailed to elucidate the process from photograph to point 

cloud (see also figure 4.31): 

In a first step, multiple images, taken from different angles are employed to identify features 

(key points) in individual images to be used for image correspondence. The so-called Scale 

Invariant Feature Transform (SIFT) object recognition system is a common approach to 

identify features in each image that are not variant to scaling and rotation, as well as camera 

viewpoint and to some extent to varying illumination conditions (Lowe, 2004). It locates 

certain key points and then furnishes them with quantitative information (so-called 

descriptors). Best results are achieved by using high resolution, complex images with good 

image texture. Factors such as resolution, sharpness and richness of texture are crucial for 

the quality of the resulting point cloud data. In addition, special care should be taken to 

ensure high overlap of the imagery by adopting short camera baselines (Lowe, 2004). 
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Having identified the required key points and assigned the pertaining descriptor, a bundle 

adjustment strategy is employed to estimate camera pose and generate a sparse point 

cloud. For enhancement of this point cloud Clustering View for Multi-View Stereo (CMVS) 

and Patched-based Multi-View Stereo (PMVS2) algorithms are viable options (Furukawa 

and Ponce, 2007). Nearest neighbour and random sample consensus or Hough transform 

algorithms are subsequently applied to match key points in multiple images and to establish 

so-called tracks to link specific key points in the pertaining image stack (Lowe, 2004, 

Westoby et al., 2012). Tracks of at least two key points in three corresponding images are 

required for point-cloud reconstruction. Finally, a triangulation process is applied to estimate 

3D positions and reconstruct scene geometry. However, since a relative coordinate system 

is generated, the transformation into a ‘real-world’ coordinate system has to be 

accomplished at a later stage.   

The last step of the workflow entails the assignment of absolute coordinates to the relative 

system via transformation procedures. This transformation involves the creation of a 

transformation matrix with the relevant rotation and scale factor information and is similar 

to the absolute orientation procedures in common photogrammetry. Real-world coordinates 

can either originate from map readings, GPS readings of a ground survey (Ground Control 

Points), or by integration of the on-board GPS logfiles (i.e., EXIF files) into the point cloud. 

For best results it is crucial to carry out GPS measurements with best possible accuracy 

(e.g., DGPS, RTK), since this has grave implications on the quality of the 3D model. Ground 

Control Points (GCPs) also need to be easily identified on the imagery. These can be 

represented either by clearly defined, unambiguous objects such as buildings or road 

crossings, or by artificial targets with maximum visibility (Westoby et al., 2012). By 

completing the georeferencing step the referenced point cloud can now be further 

processed for mesh generation and  exported for advanced analysis in a GIS suite. 



 

109 
 

 

Figure 4.31: From image to 3D point cloud (with reference to: Westoby, et.al., 2012) 

 

The main advantages of SfM are as follows (see also: Carrivick et al., 2016, Goos et al., 

2000, Iglhaut et al., 2019, James et al., 2019, Piermattei et al., 2019): 

• can be used with a variety of sensor platforms  

• is able to handle big image blocks with imagery of varying scale, resolution and 

viewing angles 

• SfM enables surveys at relatively low cost 

• does not require specific technical expertise 

• allows for the successful orientation of complex and unconventional image blocks 

• provides flexible and robust workflow 

• delivers results comparable with LiDAR surveys . 

 

Despite the merits as described above, some caveats require attention. Even though some 

software packages like Agisoft Metashape allow automatic camera calibration within interior 

orientation during bundle adjustment, some open issues remain such as the effect of 

camera autofocus and the implications of inaccurate pre-calibration. In conjunction with 

other factors, like number and distribution of GCPs, the derelict handling of camera 

specifications can have grave implications on the orientation results and lead to 

deformations of the reconstructed 3D model (Dall'Asta et al., 2015, Kraus, 2003: 466, Sanz-

Ablanedo et al., 2018, Zimmerman et al., 2020).   
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4.6. Extraction of inventory data from imagery 

 

The extraction of information from remotely sensed data on forested areas has a long 

tradition starting with the most simple identification and delineation of forest areas from 

imagery taken from blimps and airplanes (Hildebrandt, 1996: 1; 286; 349). With the 

advancements in sensor and computer technology, as well as in data processing and 

modelling, environmentalists and forest managers are faced with a plethora of options of 

how to retrieve useful information from various data sources. The reader will find a detailed 

account on contemporary sensors and platforms in chapters 4.1. and 6.2. 

Forest inventory parameters can either be gathered on a stand, or individual tree level 

(Guimarães et al., 2020). Stand-level criteria such as basal area, average stand height or 

volume, are better derived using an area-based approach (ABA). Whereas for stem density, 

tree height, and crown length, the individual tree crown (ITC) approach appears to be the 

method of choice (Yu et al., 2010). The former approach derives the response variable 

results form a combined value over a sample plot, whereas the latter considers the direct 

estimation of tree the related attributes. Both approaches are given justice in the 

subsequent chapter, however, with a focus on technical aspects on image manipulation.  

Some forest structure attributes such as tree number, crown diameter, tree species, canopy 

closure, tree height, and NVDI (for tree vigour) can be derived directly from the imagery or 

point clouds, whereas parameters like DBH, age, basal area (BA), LAI (Leaf Area Index), 

and biomass require sophisticated modelling approaches as indirect methods (e.g., Artificial 

Neural Networks (ANN), linear regression, nearest neighbour imputation (k-NN), decision 

trees). In the following the most prominent structure attribute extraction techniques are 

presented and the merits and caveats outlined, with below mentioned table (Table 4-5) 

reflecting the most common forest structure attributes and their source of prediction. 

Although most of the forestry related publications have dealt with forest attribute extraction 

from 2D imagery, the manipulation of 3D point clouds (e.g., from LiDAR, UAV imagery) has 

made an enormous contribution to the knowledge base on forest structure in the last four 

decades. Thus, the subsequent chapters account for both, the 2D as well as the 3D realm.    
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Table 4-5: Common predictors of forest inventory attributes (source: Brosofske et al., 2014). Ancillary 
variables refer to variables related to climate, topography, soil, and land cover; image 
derivatives refer to e.g., band ratios (indices), or textures. 
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4.6.1. ‘Direct’ approaches for extracting forest structure attributes 

 

Tree identification / tree count 

The basic units of forest management are represented by the individual trees, and as such, 

they constitute the essential elements of forest stand knowledge (Gougeon and Leckie, 

2003, Le Wang et al., 2004). The number of trees in the field and the related identification 

of the tree species provide utile information for forest inventories, forest management, and 

the creation of growth models. The analysis of the tree density may also imply timely 

management and silvicultural  interventions such as thinning or regeneration procedures 

(Zöhrer, 1980: 144, 164). Modern high-resolution imagery now allows for cost-efficient 

acquisition of tree information. Sophisticated image analysis exploits the reflectance 

characteristics of trees, which vary pursuant to tree species, crown shape, hierarchical 

status, and vigour (Culvenor, 2002, Gougeon, 1995, Le Wang et al., 2004, Leckie et al., 

2005, Pouliot et al., 2002).  Since delineation and detection of trees based on visual 

inspection is very cumbersome, research in automation of such processes already started 

in the mid-1980s. According to Gougeon and Leckie (2003) the multiple approaches can be 

categorised as follows: (i) tree location detection (i.e. identification of the tree top); (ii) tree 

location detection and crown dimension parameterisation; and (iii) full crown delineation. All 

categories share the same necessity for accurate individual tree detection prior to crown 

delineation, since it greatly impinges the accuracy  of the delineation process. The 

application of such efforts involve imagery captured by passive and active sensors alike, 

namely LiDAR, SAR, airborne and spaceborne multi-, thermal, and hyperspectral sensors. 

However, such imagery has to meet the requirement of sufficient spatial and radiometric 

resolution for the recognition of individual trees. Recently, UAV based imagery, as well as 

LiDAR and SAR have become increasingly popular to furnish three-dimensional information 

on tree traits and forest structure (Erasmi et al., 2019, Goldbergs et al., 2018, Gougeon and 

Leckie, 2003, Karila et al., 2015, Ke and Quackenbush, 2011b, Kwak et al., 2007, 

Magnussen et al., 2013, Næsset, 1997, Nevalainen et al., 2017, Park et al., 2014, Popescu 

et al., 2002, Vauhkonen et al., 2012).  

In the most simple way, trees can be identified and their numbers counted on very high 

resolution imagery through visual interpretation (Kangas and Maltamo, 2009: 343–344)(see 

also chapter 4.2. for more details). What initially seems a straightforward and quick task in 

forest plantations with a single tree species and equal spacing, turns out to be far from being 

trivial, when it comes to interpreting complex-structured multi-species and multi-storey 

forests. Image quality needs to be near to perfect, with excellent illumination conditions 

prevailing (Sayn-Wittgenstein, 1978). In addition, the interpreter’s skills and experience, as 
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well as the quality of the provided auxiliary information (e.g., inventory maps, management 

plans) have far-reaching implications on the counting results. Ideally, the identification of 

the tree species is being conducted in the course of tallying the tree individuals. The 

following graph (Figure 4.32) represents the spatial resolution of various sensors to convey 

the snags and eases of 

interpreting aerial and satellite 

imagery. Apparently, the 

identification of individual trees 

can be carried out with ease in 

the UAV and WorldView-2 

images, whereas in the Pléiades, 

and in the Sentinel-2 images in 

particular, tree identification 

becomes sheer speculation. 

Even in the extremely highly 

resolved UAV images it remains 

a challenge to identify trees not 

being dominant or co-dominant, 

although those trees may 

contribute considerably to the 

biomass of a forest stand. As 

mentioned in chapter 4.2. tree 

identification results can range from 55% up to more than 95%, depending on the quality of 

the imagery and the training level of the interpreter (Ahrens, 2001, Carleer and Wolff, 2004, 

Heller et al., 1964, Ke and Quackenbush, 2011b, Myers and Benson, 1981). Apparently, an 

image segmentation prior to interpretation bears the potential to improve the results of 

defining ad identifying single objects (trees) (Ardila et al., 2012, Erikson, 2004b).  

In order to avoid the cumbersome process of manually identifying tree individuals, the 

automatic extraction of trees has gained momentum in the last few decades. Some of the 

approaches for individual tree isolation are portrayed in the subsequent section. Since the 

determination of tree position is closely associated with the detection and measurement of 

tree crowns, the reader will find an amalgamation of both approaches below. 

The crown diameter as the circle enclosing the projection of the tree crown represents 

another relevant stand parameter. It helps to estimate tree development, space 

requirements of the specific species, evaluate carbon sequestration and determine crown 

radius – DBH relationships (Miranda et al., 2018, Panagiotidis et al., 2017, Yilmaz et al., 

Figure 4.32:    Spatial resolution of various imaging sensors – the 
green boxes represent an area of 30x30m. Top left: 
UAV image (5cm); top right: WorldView-2 
pansharpened (46cm); lower left: Pléiades (2m); 
lower right: Sentinel-2 (10m). 
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2017). As such, crown diameter, among other structural parameters, serves as an indicator 

for silvicultural treatment and logging management. The diameter reflects the average of 

the measurement of the crown in two perpendicular directions (usually N-S; E-W). Ideally, 

the resulting value represents the longest and shortest spread of the tree. Crown diameter 

can be obtained through the manual measurement on the orthophoto in a GIS environment, 

or by extracting the corresponding figures from a 3D point cloud. These 3D models (CHM) 

can either be generated by applying LiDAR technology, or by creating dense point clouds 

form overlapping UAV or high-resolution satellite imagery (e.g., WorldView-2). 

Subsequently, segmentation techniques (e.g., region growing, or multiresolution 

segmentation) are exercised to delineate the shapes of the tree crowns and to calculate 

crown metrics automatically. It has become very common these days to perform the 

determination of the tree crown metrics in unity with the identification of the tree tops and 

the calculation of the tree heights. The following graph presents an example of a delineation 

process and potential errors, such as over-, or under-segmentation and the resulting split 

of tree crowns. 

 

Figure 4.33: Example of a split match case of a big tree (centre of images). (a) visual delineation; (b) result 
of tree top detection; (c) result of region growing process featuring a multi-segmented tree 
crown. Source: Nurhayati, 2015. 

 

The following table provides an excellent synopsis of commonly used individual tree crown 

detection (ITCD) methods. The main advantages and disadvantages are also being 

mentioned. Despite the focus being on LiDAR point cloud manipulation, the authors (Zhen 

et al., 2016) do not fall short in additionally bringing up raster-based approaches.   
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Table 4-6: Characteristics of the four methods using LiDAR data for ITCD (Zhen et al., 2016). 

 

The most common tree detection and crown delineation algorithms are described and 

delimited to: 

− Local maximum filtering. 

− Image binarization. 

− Scale analysis. 

− Template matching. 

− Valley following. 

− Region growing. 

− Watershed segmentation (Ke and Quackenbush, 2011b, Park et al., 2014, 

Theodoridis and Koutroumbas, 2009: 481–483, van Herk, 1992, Zhen et al., 2016). 

 

According to literature, the most favoured algorithm for tree detection seems the local 

maxima. Hereof, the highest pixel value in an image is identified by comparing the height 

value of any given pixel with its neighbours. This is based on the underlying assumption, 

that the tree top represents the highest digital number due to its convex shape. Thus, the 

size of the search window proves to be important for the performance of the algorithm.  

Wulder et al. (2000) introduced a novel approach by using semi-variance to determine 

optimal window size and Culvenor (2002) developed a contextual scheme without prior 

definition of window size. In some studies, a smoothing strategy is applied prior to the 
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detection process to account for spurious maxima (Wallace et al., 2014). To eliminate noise 

a threshold tolerance based on mean and standard deviation computations is also applied 

(Eick and Villaverde, 1996). In the following graph the concept of local maxima is depicted. 

                        

Figure 4.34: Tree top detection of a canopy height model with local maxima filtering (Demir, 2017). 

The image binarization algorithm uses various image transformations for the extraction of 

tree top values by enhancing pixels. Albeit, sufficient contrast between crown and non-

crown areas is mandatory. Inconspicuous boundaries between tree crowns can easily bring 

about omission errors and as such dilute the accuracy of the detection undertaking (Park et 

al., 2014). Scale analysis engages image smoothing. Usually, imagery is acquired with a 

pixel size small enough to detect the smallest required object. This approach minimises 

omission errors, but in turn leads to commission errors in large tree crowns. Pouliot and 

King (2005) managed to devise an optimum global scale approach, where the appropriate 

local scale can be defined to identify a tree as a single object. In contrast, Culvenor (2002) 

exhausted the (local) radiometric maxima and minima as the primary image features used 

for the crown delineation process, being indicative of crown centroids and boundaries. Their 

algorithm was developed for application to imagery of native Eucalypt forests in Australia, 

and uses a ‘top–down’ spatial clustering approach involving key steps designed to reduce 

the effects of crown segmentation. Template matching is a method providing  information  

about  the  likelihood  of pattern presence prior to the segmentation step. Complex patterns 

combining pixels of varying brightness and colour are a real challenge of the object-based 

approach of image analysis. As a possible remedy image texture templates are created to 

find and identify similar patterns (trees) in the entire image (Erikson, 2004a: 12–13). 

Different algorithms are in common use for this method, with the measurement of similarity 

carried out by using the squared differences between a template and an image region being 

one of the most simple approaches (Jasvilis et al., 2016). Template matching has been 

successfully applied such as for the detection of individual trees of palm plantations 

featuring accuracies of almost 90% (e.g. Li et al., 2017). 

Other algorithms for automatic tree detection comprise the valley-following, region growing, 

and watershed segmentation method (Gougeon and Leckie, 2003, Park et al., 2014). These 
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approaches are also viable options for the automatic delineation of individual tree crowns 

(Miranda et al., 2018):   

The valley following algorithm is based on work by Gougeon (1995).  This approach 

attempts to extract local minima as valleys, which are considered to be crown edges. 

Subsequently, pixels are searched for that are located between pixels of higher value. 

However, there is a risk of diluting the crown boundaries, when overlapping effects conceal 

the minima pixels (Leckie et al., 2005).  

A region-growing algorithm defines a seed pixel for growing regions based on specific 

criteria. A successful region growing process draws on the assumption, that neighbouring 

pixels belong to the same tree crown region as the seed pixel, provided, their characteristics 

(reflectance values) are sufficiently similar to those of the seed pixel (Culvenor, 2002). 

Watershed segmentation considers an image as a topographic surface, with grey levels 

representing altitude. It has become a standard procedure to apply watershed segmentation 

to an inverted image, with local maxima to be transformed to local minima. The regions 

within the crown now correspond to catchment basins, whereas the edges (shaded areas 

between the crown) depict the watershed lines. The segmentation process aims at 

generating lines that isolate each region as an inner crown. The difficulty lies in the definition 

of the segmentation threshold for each region and as such has the tendency to either over-

, or under-segment regions. Spatial variations in intensity are found to be the main culprit 

for this phenomenon (Park et al., 2014). Le Wang et al. (2004) attempted to overcome this 

deficiency by introducing a marker-controlled watershed segmentation to further 

differentiate touching and clumping trees. However, the outcomes of the study showed very 

clearly, that scale effects (i.e., tree crowns differ in size) can considerably hamper 

segmentation, and tree crown boundaries are sometimes inconsistent with grey-scale 

boundaries. They suggest to employ 3D-based methods to overcome such crunches. To 

improve the performance of the watershed segmentation method specific smoothing filters 

can be applied. In most cases the Gaussian filter have yielded better results than the 

Laplacian filter (Ke and Quackenbush, 2011b). Having said this, both filters considerably 

increase the quality of the approach by avoiding over-segmentation bias (Abdullah S et al., 

2019, Brieger et al., 2019, Goldbergs et al., 2018, Zhen et al., 2016).     

The following figure depicts typical segmentation and delineation scenarios and errors.    
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Figure 4.35: Examples of detection scenarios from (a) reference and (b) delineated crown. Reference 
crown shown as circles, delineated crowns as filled pixels. (i) omission error; (ii) commission 
error; (iii) exact match; (iv) commission error through over-segmentation; (v) omission through 
under-segmentation (Ke and Quackenbush, 2011a). 

 

All the previously portrayed algorithms reveal certain limitations. Inaccurate tree detection 

is often caused by the restricted window size of the local maxima algorithm, the dilemma in 

finding the appropriate thresholds, and when dealing with a lack of  altitude variation (flat 

tree crowns) when employing the watershed approach. 

So far, no existing study has reported detection rates of 100% (Larsen et al., 2011). The 

type of vegetation (i.e. height, shape, tree density, separation of individuals, branching 

structure, etc.), image contrast, and the accuracy of the used CHM / point cloud are 

important determinants for the performance of the algorithms applied (Park et al., 2014). 

Other sources of error are trees in the shade, tree intermingling, and smaller trees 

concealed by more dominant individuals (Gomes and Maillard, 2016). Goldbergs et al. 

(2018) report detection rates of about 70% for dominant and co-dominant trees in the 

Australian savannahs. Local maxima and watershed segmentation algorithms were 

employed. Nevalainen et al. (2017) observed an individual tree identification varying 

between 40% and 95% related to the characteristics of the flown area (e.g. tree distribution). 

In their study Mohan et al. (2017) give account of 312 trees out of 367 being detected 

correctly, with an omission error of 55 and a commission error of 46 individuals of the 

applied local maxima algorithm. Gomes and Maillard (2016) report an average performance 

rate of 82% for detecting trees in an urban environment and a rate of 90% for orchards 

using a variation of template matching algorithms. WorldView-2 imagery was the choice in 

this investigation. Gebreslasie et al. (2011) also chose very high resolution satellite imagery 

(here: Ikonos) to identify tree individuals in a Eucalyptus grandis   plantation in South Africa. 

The local maxima algorithm yielded 80% of correctly spotted trees with a fixed window size, 

whereas a variable window size increased the detection rate of 5%.  Looking at aerial 

imagery, Erikson and Olofsson (2005) report detection rates of 80% when applying region 

growing and template matching strategies. Ramalho de Oliveira et al. (2021) used UAV-

derived LiDAR and photogrammetric data to find out, that, although LiDAR technology 

performed best for tree detection and height measurement, photogrammetric point clouds 
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proved to be more than sufficient by exhibiting slight under-estimates of the inventory 

parameters. WorldView-2 images were employed for the detection of trees in a tropical 

environment in the investigation conducted by Gomes and Maillard (2013). In this very 

complex situation, watershed segmentation, region growing and template matching had to 

compete against each other, authoring region growing algorithm as the favourite with an 

accuracy of 80%. Local maxima and valley-following algorithms were administered by 

Gougeon and Leckie (2006) on Ikonos imagery to detect individual trees in a conifer 

plantation in Canada. The low detection rate of overall 67% was explained by the difficulties 

for the algorithms to identify trees with various degrees of maturity. In addition, visual 

inspection revealed that tree crown clusters are challenging to segregate. Katoh and 

Gougeon (2012) combined individual tree crown delineation with tree top detection 

technique to improve the detection rate of conifer trees in aerial imagery. Tree top detection 

rate was 67%, with an increase of 22%, when amalgamating both approaches. Larsen et 

al. (2011) compared six individual tree crown detection algorithms evaluated under varying 

forest conditions to find out, that ‘None of the algorithms alone could successfully analyse 

all different cases.’ The authors strongly advice to partition the imagery into homogenous 

forest stands prior to the tree detection analysis. In addition, they postulate, that for complex 

forest types, monoscopic imagery might not yield best results, and thus, 3D models (CHM) 

would be much better suited.  Wulder et al. (2000) looked at tree detection in 1-m resolution 

imagery to conclude, that a tree crown radius of 1.5m seems to be the minimum size for 

reliable tree identification using local maxima filtering. A more sophisticated approach was 

used by Li et al. (2017) to detect  individual oil palms in a plantation in Malaysia. They took 

a number of manually interpreted samples of Quickbird imagery to train the convolutional 

network (CNN) as a deep learning effort, to achieve a remarkable detection rate of  96%.  

In their review Zhen et al. (2016) scrutinise the trends in automatic tree detection and crown 

delineation algorithms. Their main finding is that active data ( SAR, and LiDAR in particular) 

and the fusion of active and passive sensoring technologies become more and more 

prominent in tree crown detection and delineation (ITCD) studies. Since the common 2D 

imagery reflects certain limits, the novel approaches of active sensors provide much better 

insights in the 3D structures of the forests. This of course implies, that algorithms developed 

for passive data sources have to be adapted to or even redesigned for three-dimensional 

analysis.  Another finding is, that algorithms, which might have worked well for hardwood 

or mixed forests, fail to present satisfactory results in softwoods (e.g. (Ke and 

Quackenbush, 2011a, Larsen et al., 2011).  
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Since there seems to be no standardised accuracy assessment procedure, comparison of 

the results achieved by the various techniques becomes speculative to some extent. 

However, there seems to be consensus, that the applied ITCD algorithms had greater 

success, when analysing even-spaced, even-aged, and even-sized softwood forests (Ke 

and Quackenbush, 2011b). A number of authors report, that tree crown delineation proves 

to be very difficult in mixed-species forests of complex structure because of varying 

reflectance characteristics, the multi-storey character, and shadowing effects within and 

between tree crowns (Bunting and Lucas, 2006). 

There is great potential by fully exploiting the information content of remotely sensed data, 

especially when sensors are mounted on the same air-, or spacebourne platform. In recent 

studies, multi-, or even hyperspectral imagery in unity with LiDAR seem to be holding great 

promise for great advancements in ITCD. Authors, such as Breidenbach et al. (2010), Chen 

et al. (2012a), Hyyppä et al. (2018), Katoh and Gougeon (2012), and Suárez et al. (2005) 

found, that ITCD was greatly improved by integrating tree height from ALS (LiDAR) into 

conventional imagery.              

Tree identification, with tree (canopy) density being the associated measure, can also be 

derived from medium resolution imagery (e.g., Sentinel-2, Landsat) by applying modelling 

approaches (see also section above) such as nearest neighbour imputation, regression 

trees (CARTs), Kriging, or Random Forest (RF). For instance, in their study Pierce et al. 

(2009) found prediction accuracies for the number of live trees ranging from r6 = 0.29 to r = 

0.59 for the two best models (i.e. linear models; nearest neighbour imputation). For more 

details on indirect methods please refer to chapter 4.6.2.    

 

 Identification of tree species 

The identification of the various species is imperative for generating valuable information 

on the forest ecosystems as such, the estimation of the forest’s economic value, and the 

derivation of the requirements with respect to the site conditions. In addition, growing 

characteristics are very species specific and are used as input variables for growth and yield 

models and forest management practises. The assessment of forest composition employing 

remote sensing technologies is rested on the principle that every tree species reflects, 

transmits and absorbs electromagnetic radiation in a specific manner (Jones and Vaughan, 

2010: 19–22). This species specific fingerprint is a valuable aid in species discrimination 

and quantification (Lisein et al., 2015). The consideration of seasonal effects such as 

senescence (leaf discolouration; leaf-on, leaf-off) ,flowering, and knowledge on site quality 

 
6 Pearson correlation coefficient 
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also contribute largely to the identification accuracies (Getzin et al., 2012). For tree 

identification specific software providing classification techniques is mandatory (Goodbody 

et al., 2017a, Sperlich et al., 2014). As mentioned before, (very) high resolution imagery 

requires specific classification algorithms to deal with the very detailed spatial and 

radiometric information inherent to that imagery. As such, a shift from pixel-, to object-based  

classifiers becomes noticeable. Modern classification algorithms comprise: Classification 

Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest, 

and Maximum Likelihood estimation (for details on classifiers see also chapters 4.3.1 and 

4.3.2.). Apart from determining various tree species or species groups (coniferous, broad-

leafed), all mentioned classifying techniques also serve more generic purposes in the sense 

to help work out the extent of forested areas (i.e., classes: forest, non-forest) as well as their 

general structure (e.g., clumped, dense, sparse), and the plant vigour (e.g., NDVI). In the 

last few decades, an enormous amount of studies have been conducted related to image 

classification. However, in the following, only a few relevant publications with respect to 

high-resolution imagery are presented.    

An excellent showcase for tree species discrimination is presented by Immitzer et al. 

(2016b), who attempted to identify seven different tree species in test sites located in 

Bavaria, Germany. They employed imagery from WorldView-2, Sentinel-2 and Landsat 8 to 

perform classifications based on image segmentation and Random Forest (RF). Overall 

accuracies for the various sensors are 0.74 for WV-2, 0.68 for Sentinel-2, and 0.49 for 

Landsat 8, thus proving the leverage of high spatial resolution on classification results. 

Further analysis yielded, that the spectral signature of pine and spruce appeared to be 

similar. Although the spectral band characteristics  of Sentinel-2 and Landsat 8 show very 

little difference, the coarser spatial resolution of Landsat seemed to result in the poorer 

overall discriminatory performance. Best results for species identification were achieved in 

Landsat 8 and Sentinel-2 in the RedEdge (RE) and Short Wave Infrared (SWIR) bands. 

Quite recently, some more authors explored Sentinel-2 images to find the best time period 

and optimal spectral bands and indices for gaining best results. For example, Mirończuk 

and Hościło (2017), Ma et al. (2019), Wang et al. (2018) and Wittke et al. (2019) detected 

the Sentinel-2 bands B5 (RedEdge 1), B7 (RedEdge 3), B8 (NIR), B11 (SWIR 1), as well 

as the NDVI to best suited for forest classification in late summer imagery in the temporal 

and boreal biomes by applying modern machine learning algorithms (i.e. RF and SVM). 

Immitzer et al. (2019) favour Sentinel-2 band B4 (Red) for the identification of conifers in 

Central European forests, B11 (SWIR 1) for broad-leafed forests, as well as a mix of B4, 

B5, B11, NDVI and NDWI for mixed forests. In their review of studies on tree species 

classification, Fassnacht et al. (2016) also found the green band (B3) very useful to exploit 

the traits of phenology. Since phenology usually varies with species, the specific knowledge 



 

122 
 

on phenology (e.g., leafing period, senescence) can be a sharp tool to determine species 

discrimination. The authors stress, that machine learning algorithms have significant 

advantages over more traditional classifiers, but they also observed, that most of the 

considered studies miss a clearly set target by only pursuing the optimisation of the 

classification accuracy. In their meta-study Ma et al. (2019) found indications, that a 

combination different sensors (e.g. optical and radar), as well as the exploitation of multi-

temporal imagery sems to yield best results (see also Elatawneh et al., 2013). The 

improvement in classification accuracy (here: 5-10%) by utilising Sentinel-2 images of 

various time series instead of focusing on a single image is also confirmed by authors like 

Grabska et al. (2019), Persson et al. (2018), Wessel et al. (2018) and Denisova et al. (2019). 

In contrast, Wittke et al. (2019) found only a miniscule improvement of the prediction 

accuracy, when adding multidate imagery.   

There are also recent examples concerning the fusion of 2D and 3D technology. For 

instance, reasonable results of classification procedures have been reported by Nevalainen 

et al. (2017) with an accuracy of 95% (Random forest classifier) and St-Onge et al. (2015) 

with 83% accuracy for LiDAR and 79% for the derived photogrammetric point cloud (PPC) 

for boreal forests. The outcomes not only prove, that contemporary remote sensing 

technology (e.g., LiDAR, UAV) is able to yield decent species identification, but also 

provides added value, when canopy height models and tree detection algorithms 

(segmentation techniques, local maxima filers, etc.) are part of the identification process. 

The following graph shows an example of a detection exercise by analysing hyperspectral 

imagery in unity with a CHM. 

 

Figure 4.36: Example of detected and classified trees of a boreal forest (Nevalainen et al., 2017). 
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Tree height determination 

Tree height is considered one of the main forest inventory parameters, since it reflects the 

productivity of a specific site and species, and allows for inferences on forest biomass and 

carbon stock (Gadow, 2003: 31–33, Panagiotidis et al., 2017, van Laar and Akça, 2007: 1–

3). The extraction of the heights is typically carried out by deriving the pertaining height 

values from a canopy height model (CHM = DSM – DTM) or by getting the readings from a 

LiDAR point cloud. CHM are created from passive sensor imagery in a photogrammetry 

process, whereas active sensor LiDAR data are processed in specific software 

environments to derive forest structural parameters.   

                     

Figure 4.37: Canopy Height Model (CHM) defined as DSM values subtracted from DTM values (Miranda, 
et al., 2018). 

 

As mentioned above the mostly used algorithms for the height extraction are local maxima 

and watershed segmentation algorithms.  

With respect to attainable height determination accuracies, Birdal et al. (2017) report a value 

of 90% for coniferous trees in an urban forest sensed with a UAV based RGB consumer 

grade camera. The following figures shows some of the results obtained by Birdal et al., 

2017. 
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Figure 4.38: Canopy Height Model (left) and individual trees (right) extracted as point features (red 
crosses) from CHM by applying local maxima filtering (Birdal et al., 2017). 

 

In a study conducted by Zainuddin et al. (2016), tree heights were extracted from a Cocos 

nucifera CHM with an R2 of 0.80 and an RMSE of 69.9cm, when employing UAV based 

RGB imagery. Nurminen et al. (2013) also looked into digital photogrammetry as an 

alternative to laser scanning to conclude: ‘Our results confirmed that digital aerial 

photographs were about as accurate as ALS in forest resources estimation as long as a 

terrain model was available.’ Krause et al. (2019) also generated CHMs form UAV point 

clouds for a Scots pine forest in Brandenburg, Germany. Interestingly, the team observed 

an overestimate of tree heights in the field measurements compared to the length of felled 

trees, and a slight underestimate of the CHM derived height values. In contrast, Stereńczak 

et al. (2019) found, that terrestrial tree heights showed an underestimate, when set against 

length measurements. In their investigation the authors felled 2388 sample trees from 299 

stands in Poland, representing eight tree species. They also learned, that factors such as 

tree length, species, and terrain are among the most influential factors on correct height 

estimation. A similar study was conducted by Sibona et al. (2017) by comparing field-based 

measurements, direct metering on 100 felled trees, and heights derived from an ALS point 

cloud. They postulate, that height estimates originating from ALS showed a better 

approximation to real heights, than compared to the field data. The authors also stress, that 

terrain and the crown architecture seem to be major determinants for field measurement 

errors. Their finding is underpinned by the fact, that height approximations were best for 

larch with a conical crown architecture, followed by spruce and by pine  - the latter exhibiting 

a non-monopodial, flat crown architecture at a higher age. Despite the shortfalls of in situ 

measurements they conclude, that field data will remain a standard reference for 

comparison with tree heights obtained from other sources. A meta-study conducted by 

Guimarães et al. (2020) revealed, that UAV-based data provided good estimations for tree 

height metrics set against field data. However, in most cases UAV-LiDAR sensors 
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performed better than height metrics gained from off-the-shelf RGB sensors (e.g. Cao et 

al., 2019, Wallace et al., 2016).  

The extraction of forest structure attributes like tree height and crown metrics, as well as 

the determination of tree location can even be subjected to a single workflow as proposed 

by  Guerra-Hernández et al. (2016) to streamline and optimise the process: 

 

Figure 4.39: Flow chart of the proposed process (according to Guerra-Hernández et al., 2016)  

Overlapping UAV imagery is used to generate a high-density point cloud in a 

photogrammetry suite. The resulting digital surface model (DSM) is normalised (DSM – 

DTM) to obtain a 3D model of the canopy (CHM). In the next step tree position, height, and 

crown width is retrieved form the canopy height model (CHM). Canopy delineation is carried 

out by applying CHM smoothing (with mean and median filters), segmentation, and 

classification within the object-based analysis process. Parameters have to be tuned and 

tailored in an iterative process with reference to the various crown shapes. Crown width and 

the location of the tree tops (including height attributes) are exported as shape files and 

further analysed in a GIS environment. Crown width is measured in perpendicular directions 

(N-S; E-W) employing the specific GIS tools. Subsequently, RMSE and regression fits are 

computed with imagery data set against the estimations of the field survey.    

With respect to the creation of Canopy Height Models (CHMs) achievable accuracies 

seemingly largely depend on factors such as forest structure, terrain, and algorithm 

parameter settings. In addition, the quality of a CHM can be marred by a lack of image 

texture, object discontinuities, moving objects (e.g. leaves, shadows), occlusions, and multi-

layered or transparent objects (Lisein et al., 2013).  Chapter 6.8.1. provides further details 

on the most relevant studies on UAV applications, with accuracies achieved, and error 

sources described. Relevant studies comprise works for instance by Alonzo et al. (2018), 

Cao et al. (2019), Giannetti et al. (2018), Jaakkola et al. (2017), and Puliti et al. (2015) . 

UAV 
imagery 

DSM 

CHM 

DTM 

Object- 
based 
image 

analysis 

Tree top 
detection 

Tree height 
calculation 

Tree crown 
delineation 

Validation 
against 
field data 

 
SfM 

photogrammetry 
 



 

126 
 

An interesting literature review was published by Holopainen et al. (2015) . They  condense 

the experience with 3D techniques (i.e., laser scanning, stereo imagery, radargrammetry) 

for forest attribute estimation to conclude with the findings for even-aged, single canopy 

layer stands in boreal forests: ‘… the main predicative power comes from 3D, i.e., the  

inclusion  of  the  tree  height  information,  and  it  does  not matter so much what is the 

final point density.’ The table below (table 4-8) provides an overview of the most relevant 

studies undertaken and accuracies achieved.                             

Table 4-7: Obtained accuracies in forest attribute estimation using various 3D remote sensing methods 
in study sites around Finland (Holopainen et al., 2015). 

                            

Gathering from the outcomes ALS appears to be performing best in all disciplines with aerial 

imagery ranking next (for further findings on the accuracies of laser scanning point clouds 

please refer to chapter 4.1.). However, radargrammetry also seems to be a good choice 

regarding mean height estimation. In the context of the investigation, it is also important to 

point out, that boreal forests, which were targeted in the studies mentioned above, do not 

share the lower level of complexity compared with forests of the temperate zones or even 

tropical forests. Nevertheless, even boreal forests can be a real challenge for forest attribute 

estimation in very densely populated natural forest systems such as the dark taiga. The 

presented study above in fact reflects a nice transient from directly extracted forest 

attributes to the indirect methods (see next sub-chapter) for estimating parameters such as 

timber volume or AGB.  
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A wrap-up of this chapter indicates the following: 

- Many forest structure attributes like tree species identification, tree density, canopy 

diameter, and tree height can be directly retrieved form spectral imagery or 3D point 

clouds. Other parameters (e.g., timber volume, biomass, DBH) require modelling 

approaches as indirect methods involving ancillary data (e.g., climate, topography).  

- Forest inventory parameter extraction is either focused on individual tree traits, or 

on forest stand characteristics (e.g., mean height, mean DBH). 

- Identification of tree individuals (also including tree species) in very high-resolution 

imagery (i.e., <1m) yields excellent results by visual interpretation due to superior 

pattern recognition capacity of the brain; automatic retrieval is more efficient and 

advantageous in stands with even-aged, sparsely spaced forests with conical crown 

shapes. Poor results in both approaches for very complex forests with mix of many 

species and multi-storey structure. 

- Object-based classifying approaches prior to image classification are best for very 

high-resolution images (e.g., UAV imagery, WorldView-2), however, tending to over-

, or under-segment tree individuals.  

- Modern machine learning classification methods like SVM or RF have proven to 

outperform traditional classifiers for tree species and forest (land-cover) 

identification. 

- Image quality (i.e., high contrast, no clouds) and pick of best season (phenology) is 

crucial for achieving useful image classification results. 

- Most salient and successful spectral bands of multispectral imagery for classification 

purposes are: Red, Red Edge, Near Infrared, Shortwave Infrared, as well as 

vegetation indices like NDVI (Normalised Difference Vegetation Index), and NDWI 

(Normalised Difference Water Index).  

- Field estimates of tree heights, being a standard reference, proved to create either 

under-, or over-estimates compared to length measurements of felled trees. Most 

critical factors are experience and skill of field worker, and tree crown architecture. 

- In many instances tree heights extracted form laser scan clouds tend to be more 

accurate than heights derived from 3D point clouds generated from stereo imagery 

(e.g., UAV). 

- Laser scan clouds provide an expensive, but excellent tool for deriving many forest 

structure attributes such as tree height, tree volume, DBH, and crown diameter.       
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4.6.2. ‘Indirect’ methods for extracting forest structure attributes 

In their meta-study Guimarães et al. (2020) point out, that for stand-, and tree-level studies, 

tree height metrics had a strong focus, followed by basal area (BA) and above-ground 

biomass (AGB) estimations. Since attributes such as BA, AGB, and DBH cannot be directly 

estimated from 2D imagery and 3D point clouds, they depend either on allometric equations, 

or on other indirect methods such as regression algorithms, the latter being presented 

below. 

The most sophisticated and widely used methods for mapping and predicting forest 

inventory attributes comprise regression, decision trees, nearest neighbour, and neural 

networks. Some of these techniques have become standard and fairly straightforward 

practise in image classification, but the prediction of forest inventory attributes itself requires 

much more attention to the methods, the selection of parameters, and the characteristics of 

the data. In a meta-study carried out by Brosofske et al. (2014), the authors conclude, that 

no single technique has proven to be superior for predicting forest inventory attributes, 

which comes to no surprise considering the unfathomable variety of forest types and 

structures (stretching from desert to rainforest), the possible combinations of platforms and 

sensors, as well as the myriad of options relating to data analysis techniques. Today, 

multivariate techniques predicting a suite of forest attributes simultaneously become more 

and more popular to reduce analysis time. In addition, nonparametric approaches receive 

much more attention to account for the nature of forest characteristics not meeting the 

assumptions of linearity and normal distribution. The following table below (table 4-6) 

provides an excellent account on the various methodological approaches on how to extract 

forest structure parameters (Brosofske et al., 2014). Since techniques such as Neural 

Networks (NN) and Random Forest (RF) have been dealt with in detail in chapter 4.3. 

already, the focus of this chapter will be on methods (e.g., Nearest Neighbour) employed 

for the analysis of the remote sensing data gathered within the framework of the presented 

study.                     
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Table 4-8: Advantages and disadvantages of methods for modelling and predicting forest inventory attributes 
(Brosofske et al., 2014). 

 

 

Regression, as an essentially parametric technique, has traditionally been used to predict 

forest attributes such as basal area or tree height from ancillary data and other structure 

variables, since many forest variables have shown to be highly correlated (e.g. height, DBH, 

age, volume, LAI, NDVI) (Pocewicz et al., 2004, Pretzsch, 2010: 3–10, van Laar and Akça, 

2007: 271–273, Wolter et al., 2009).  As an example, Hudak et al. (2006) used regression 

modelling to predict basal area and tree density in temperate coniferous forests from LiDAR 

and multispectral satellite imagery. LiDAR by far outperformed multispectral imagery by 

explaining more than 90% of the variance in the forest attributes analysed. Le Maire et al. 

(2011) employed multiple linear regression to predict stand dominant height and timber 

volume from age, NDVI, and bioclimatic variables. Best results were achieved for timber 

volume with R2 = 0.9, and R2 = 0.92 for dominant height in eucalyptus plantations in Brazil. 

In their study, Fuchs et al. (2009) looked into the aboveground carbon and phytomass in a 

catchment of the Siberian forest tundra. They combined ASTER, Quickbird, and field data 

to assess the spatial variability of above-mentioned parameters by applying the kNN 

distance-weighted classifier and linear regression technique to find only small differences 

in predictions. Many authors have successfully used regression techniques, especially in 

conjunction with LiDAR technology, to predict tree height, basal area, timber volume, 

biomass, and density (Bergseng et al., 2015, Næsset, 2004, 2007, Næsset et al., 2011, 
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Næsset, 2014, Noordermeer et al., 2019). The bulk of regression analyses in the literature 

is performed by applying the so-called ordinary least squares (OLS) technique to estimate 

the unknown parameters in a linear regression model (Le Maire et al., 2011, Næsset, 2007). 

OLS assumes that there are either no measurement errors in the explanatory variable , or 

the errors are independent and Gaussian. However, in many cases these assumptions are 

hardly met in reality (Berterretche et al., 2005, Sokal and Rohlf, 2012: 472–474). Despite 

some demerits of the regression technique, it is easy to implement, with predictions being 

robust, when assumptions are found to be valid. 

Classification and Regression Trees (CARTs) ‘…work by recursively subdividing training 

(i.e., reference) data into more and more homogenous subgroups’ (Brosofske et al., 2014: 

735). In a classification environment the trees predict a categorial response, whereas when 

applied to regression analysis, the trees predict a continuous response like timber volume. 

A splitting rule is determined at each level to partition the observations, leading to a 

hierarchical tree (Moisen and Frescino, 2002). Decision trees have been extensively 

employed in classification procedures for identifying and specifying forested areas, as well 

as for predicting forest structure attributes (Falkowski et al., 2005, Gómez et al., 2012, Mora 

et al., 2010a, Rogan et al., 2002). Decision trees feature some compelling advantages such 

as being non-parametric and being able to accommodate nonlinear responses. In addition, 

they are relatively unaffected by outliers and can handle both categorial, as well as 

continuous variables (Brosofske et al., 2014). Nevertheless, there are limitations to report, 

namely the potential instability of the models (different tree structures), and thus high 

sensitivity towards miniscule changes in the input data (Prasad et al., 2006).   

Artificial Neural Networks (ANNs) pursue the attempt to mimic the problem-solving 

structures of the (human) brain. The ANN  model has to be trained in that way, that it has 

to ‘learn’ the patterns based on observations, thus acquiring cognition capacities. Because 

of its black box nature, ANN applications are still fairly scant. Nevertheless, a few successful 

classification results exist. For example, Braga et al. (2020) achieved promising outcomes 

when detecting and delineating tree crowns in a rainforest in Brazil. In their survey, Chen et 

al. (2014) applied deep learning algorithms on hyperspectral data for classifying forested 

areas in the USA and Italy outperforming other approaches like SVM. This observation is 

very much in line with the findings by Lee et al. (2020), when investigating land use 

classification performed on Landsat imagery. Their Convolutional Neural Network approach 

yielded much better outcomes compared to SVM and RF, in particular, when training 

sampling sizes were small. Rogan et al. (2008) confirm similar observations, when 

assessing land-cover modifications in California. According to them, the ANN outcomes 

showed similar accuracies to human-interpreted map, however, featuring much higher 
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efficiency. In contrast, Abdi (2020) found the highest overall accuracies for Sentinel-2 

classification of a boreal landscape achieved by SVM, followed by RF, with deep learning 

ranking last. Another positive example is given by Ingram et al. (2005) - they used ANN to 

model basal areas from Landsat imagery in a tropical forest to achieve a correlation of r = 

0.79 for this relationship. However, all authors mentioned do not fall short in stressing, that 

careful variable selection is crucial when applying ANN. Apparently, variables that lack a 

relationship with the response can largely affect the predictive power of the model.  

By combining myriads of decision trees, Random Forest (RF) has become one of the most 

popular classification and prediction ensembles of forest related subjects (Belgiu and 

Drăguţ, 2016, Brosofske et al., 2014, Tso and Mather, 2009: 215). RF uses bootstrapping 

for the selection of samples, which are subsequently subjected to fitting of the model (see 

also chapter 4.3.1 for more details). Since only a random selection of predictor variables 

are used for finding the best split at the nodes, correlation between trees, and as such, bias 

is reduced (Breiman, 2001, Cutler et al., 2012, Hastie et al., 2009: 587–604). One of the big 

merits of RF is the fact, that this algorithm is not subject to overfitting (Breiman, 2001, 

Prasad et al., 2006). Applications of RF are abundant these days. For example, Grossmann 

et al. (2010) created an RF model featuring 13 explanatory variables to classify forest 

ecological systems in the West Cascades (USA) region. The dominant system (North 

Pacific dry-mesic Western Hemlock – Douglas fir forest) was classified with a User’s 

Accuracy of 97%. Tree cover and species presence was investigated by Evans and 

Cushman (2009) by looking at the distribution of conifer species in a forest area in Northern 

Idaho, USA. Their RF model involved  predictor variables such as topography, climate, solar 

insolation, NDVI, and Landsat image values. The classification resulted in an overall 

accuracy (OA) of 86%. Immitzer et al. (2016a) employed stereo WorldView-2 imagery to 

map growing stock of a forested area in Bavaria (Steigerwald). Their RF regression 

approach (combination height and spectral data) explained 56% of the variability (R2) in the 

growing stock when compared to Management Forest Inventory (MFI) field data. Falkowski 

et al. (2009) developed a framework for supporting Canada’s National forest Inventory 

based on the analysis of VHR satellite imagery (e.g. WorldView-2, Quickbird). The authors 

ascertain, that by applying image segmentation for the extraction of tree crowns and other 

forest structural parameters in combination with sophisticated regression algorithms (e.g., 

RF) National forest Inventories can be carried out with much higher efficacy and at lower 

cost. Despite all the merits of RF, caveats do apply: authors like Evans and Cushman 

(2009), Falkowski et al. (2009), and Murphy et al. (2010) conclude, that the process of 

identifying a parsimonious set of variables can significantly minimise noise and improve the 

performance of the model.   
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Another notable technique, namely the Nearest Neighbour (k-NN) approach, has gained 

substantial momentum in the last couple of years. In plain words, in k-NN the reference and 

target (i.e., dependent) samples are being linked via ancillary (i.e., independent) variables, 

usually being obtained from satellite or aerial imagery. The response variable (e.g., timber 

volume) is predicted in an unsampled pixel by computing a distance metric (e.g., Euclidian) 

between the target and neighbouring reference samples, and successively assigning the 

value of the closest neighbour to the target pixel. The distance metric is determined from 

the ancillary variables (e.g. NDVI, spectral bands) being common to reference and target 

samples (Chirici, 2012, McRoberts, 2012). K-NN can attain any number (k) of nearest 

neighbours to impute the target value. 

 

 

             

 

 

 

 

 

 

Figure 4.40: A simplified demonstration of the k-NN method with k = 2; Kangas and Maltamo, 2009:204. 

Several distance metrics (e.g. Euclidian, Mahalanobis, most similar neighbour (MSN), 

Kriging) have been tested by various authors (e.g. Hudak et al., 2008, Eskelson et al., 2009, 

Chirici, 2012, Räty and Kangas, 2012) to find out, that the simple Euclidian distance (i.e. 

shortest distance between two points) works best in many instances (McRoberts, 2012).    

K-NN boasts a lot of benefits, such as being nonparametric (i.e., disregarding the underlying 

distribution of the data), the ability to predict multiple response variables simultaneously, 

and being easy to apply. This technique has proven to be very successful especially when 

dealing with huge forested areas to be inventoried. Thus, the Nordic countries, such as 

Finland and Norway, have favoured k-NN to support their National forest Inventories (NFIs) 

for many years (Kangas et al., 2018, McRoberts et al., 2010, Tomppo, 1991, Tomppo et al., 

2009, Tomppo et al., 2010). Various applications of k-NN comprise the successful 

classification (Overall Accuracy (OA) of 91%) of boreal forests in Finland (Haapanen et al., 

2004), the determination of biomass outperforming RF and SVM (López-Serrano et al., 

2016), the imputation of tree-level stem volume and basal area resulting in small RMSE 

(Root Mean Square Error) (Falkowski et al., 2009), or the determination of forest structure 
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attributes (basal area, tree density) from LiDAR data (Hudak et al., 2008). However, there 

are examples of mediocre performance of k-NN, like the ones reported by Gjertsen (2007), 

who found an OA of only 63% for the classification of Norwegian forests from Landsat 

imagery. In his study, Baasan (2010) found accuracies for basal area for a forest area in 

the in the Khan Khentii, Mongolia, ranging from 26.94 to 76.94%, depending on the number 

of satellite spectral bands used as ancillary data. 

In a number of investigations useful suggestions are to be found on how to improve the 

quality of the k-NN outcomes and how to avoid glitches: Jung et al. (2013), and Eskelson 

et al. (2009) for instance point out very clearly, that image registration (positional) errors 

need to be shunned. Gjertsen (2007) suggests the use of image band ratios (indices) as 

additional input for ancillary data, whereas Franco-Lopez et al. (2001) ask for more research 

on multi-sensor k-NN approaches. Koukal et al. (2007) dedicated an entire study on the 

possible ramifications of radiometric calibration on the k-NN predictions of forest attributes 

to ascertain, that image calibration is vital for achieving good k-NN results. McRoberts 

(2008) found the selection of the optimal feature space crucial for his study on stand density 

and basal area derived from Landsat imagery, and suggests in another investigation to 

either use a high amount of sampling plots, or stratify the field data prior to further analysis 

(McRoberts et al., 2002).  Good results on k-NN derived basal area of a forest in the Kyiv 

region (Ukraine) were yielded in a study conducted by Myroniuk et al. (2019). The authors 

conclude, that the pixel size of the satellite imagery proved to be less important than a high 

temporal resolution to capture the variation in spectral response.  

The authors of the above mentioned meta-study legitimately complain of the difficulties in 

interpreting accuracy assessments and model outputs (Brosofske et al., 2014). This is by 

far no recent phenomenon, since errors associated with the modelling process, the 

variability in the datasets, spatial mismatches in data, and flawed reference data are 

generally arduous to deal with. As a possible remedy, Riemann et al. (2010) proposed a set 

of guidelines for the assessment of model outputs: 

- Compare the empirical cumulative distribution functions of the observed and predicted 

data set for several scales. 

- Examine the overall agreement across several scales (e.g., scatterplots). 

- Assess spatial and distributional patterns of local discrepancies. 

- Analyse local variability via chloropleth maps (standard deviations) of the modelled 

estimates. 
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Unfortunately, only few of these suggestions have materialised in studies in the subsequent 

years.   

 

In the following, some more outstanding publications dealing with the modelling techniques 

for predicting forest characteristics are outlined. Five modelling techniques were scrutinised 

by Moisen and Frescino (2002) to gain responses for biomass, average tree age, mean 

DBH, and crown cover for forest test sites in Montana and Arizona in the USA. Predictor 

variables for the models comprised spectral data from satellite imagery, vegetation cover 

type maps, topographic data, and NDVI. Of the five models, linear models performed better 

in a few instances, but in real data runs, adaptive regression splines (MARS), and 

generalised additive models (GAMs) gave the best results for predicting forest 

characteristics. Pierce et al. (2009) also investigated various methods for the imputation of 

forest structure variables for forests in Washington and Oregon, USA. They also confirm, 

that simple linear models have the potential to outperform more complex models such as 

Kriging and CART. Overall best performance, however, was attributed to nearest neighbour 

imputation for predicting forest canopy and structural variables. In general, best results were 

achieved for even-aged old forests with little variation in DBH and tree height. Landsat 

imagery with a 30m resolution, as well as ancillary data such as topography and climate 

were employed throughout as predictor variables.  Franco-Lopez et al. (2001) applied the 

k-NN method to estimate stand density, timber volume, and cover type for forest areas in 

Minnesota, USA. Landsat imagery in combination with climatic, geologic, soil, vegetation, 

and hydrologic data were used as model inputs. The overall satisfactory results for basal 

area (RMSE of 9.02 sqm/ha), and for timber volume (RMSE of 54.58 qm/ha) clearly indicate 

a recommendation for applying the kNN method on a regional scale. Powell et al. (2010) 

exercised multitemporal Landsat imagery in conjunction with spectral indices like NDVI and 

tasselled cap transformations to estimate and monitor above ground biomass for several 

forested areas in the USA. According to the authors, the Random Forest (RF) approach 

yielded the best outcomes. However, they also state, that biomass estimates with optical 

remote sensing data ‘…will never be as accurate as estimation by active remote sensing 

approaches (e.g., LiDAR and interferometric radar)’. Another team of authors also used 

Landsat imagery depicting forest areas in Alberta, Canada, to estimate canopy closure and 

biomass. Multivariate regression techniques formed the basis for the pursuant models, 

resulting in an R2 value of 0.57 for crown closure, and an RMSE of 4 qm/ha for biomass 

estimates, when set against field data. The authors mention field plot distribution, error 

propagation, and extending models over multiple images as factors asking for further 

scrutiny. Falkowski et al. (2010) applied k-NN on LiDAR point clouds to generate a forest 
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growth model. Very good results were achieved for basal area (BA) and timber volume 

estimation (RMSE of 5 sqm/ha, and 16 qm/ha respectively). 

One of the few publications on forest structure parameter estimations for Mongolian forests 

has been conducted by Klinge et al. (2020). The team employed satellite imagery (i.e., 

Landsat 5/8, Sentinel-2) and ancillary data such as NDVI, soil data, allometric formulas, 

climate and topographic data to model forest biomass and potential forest area for the 

forest-steppe ecotone of Central Mongolia. The authors found topographic and climatic 

parameters to be the driving factors of the spatial extent of the forests. Biomass was 

reduced at forest edges, and small, fragmented patches, as compared to large forest 

stands. Interestingly, no significant correlation between NDVI and tree biomass was 

detected.  

     

By wrapping up this section we conclude, that: 

- There is no analytical technique (be it regression, RF, ANN, k-NN, etc.) perceived to be 

superior for all cases. 

- Variable selection plays a pivotal role in achieving useful results and can be more 

rewarding than simply focussing on the modelling method. 

- Data characteristics such as non-Gaussian and non-linear relationships are best dealt 

with decision trees, nearest neighbours, or ANNs. 

- Decision trees and nearest neighbour approaches are better suited for the 

incorporation of a big set of ancillary variables, and for the handling of categorial and 

continuous predictors. 

- K-NN method has shown to deliver very useful results for mapping big areas on a 

regional, or even country-wide scale (wall-to-wall). 
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5. Wildfires 

Wildfires have been intrinsic to the boreal ecosystems for millennia and as such also affect 

forest structure, species composition, timber markets, and forest management (Stocks et 

al., 2001). In this chapter the main drivers of fire occurrences, the possible ramifications, 

the potential remedies, and the role of remote sensing technology are discussed in general 

as well as for the conditions in Mongolia in particular (5.2.).       

5.1. Fire and ecosystems 

The occurrence of fire usually triggers associations in humans such as destruction of assets 

and peril to human health. However, fire has always been an important ecosystem scheme 

deeply impacting terrestrial, aquatic, and atmospheric processes (Bonan and Shugart, 

1989). These days our changing climate seems to be the culprit for exacerbating or at least 

altering disturbance regimes like wildfire (Bonan, 2008). In this context General Circulation 

Models (GCMs) have been used extensively by teams around the globe to investigate fire 

season intensities, and to generate outlooks for future fire scenarios and appropriate 

management measures. According to findings reflected in the literature fire severity levels 

will rise most in the Northern hemisphere with increased frequency and length of the fire 

season, as well as a decrease of the effectivity of conventional fire management 

approaches (Coogan et al., 2019, Flannigan et al., 2009, Flannigan et al., 2013, 

Goldammer, 2013: 13–15, Kukavskaya et al., 2013, Moritz et al., 2005, Soja et al., 2007, 

Stocks et al., 2001, Stocks, 2013). Studies such as by Pechony and Shindell (2010) imply 

that global fire regimes were strongly driven by precipitation during the pre-industrial period, 

whereas in the 21st century a marked shift to temperature-driven regimes is becoming a 

reality. Their models suggest that the associated impact of a changing climate on driving 

fire trends seems to outweigh direct human influence like ignition and suppression. 

Scientific reports even allude a doubling of burned area …’along with a 50% increase in fire 

occurrence in parts of the circumboreal by the end of this century’ (Flannigan et al., 2009, 

Jolly et al., 2015). 

What are the driving processes and the associated scales behind the occurrence of 

wildfires? The following graph (Figure 5.1) provides a simplified model of the main factors 

influencing the magnitude and severity of a wildfire.   

At the smallest scale fuel particles are ignited at a critical temperature. The resulting fire 

then transfers energy to its direct environment. Depending on weather conditions and 

topography combustion events can spread within a short period of time to affect huge areas. 

At the largest scale, regional and even global climatic conditions have an impact on the fire 

situation even up to the point that wildfires create their ‘own weather’ (Soja et al., 2007).  In 
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addition, particular vegetation types support a characteristic fire in terms of recurrence, 

intensity, seasonality and biological effects, implying that  a change in vegetation (species 

composition and condition (living or dead)) type can potentially alter the fire regime (Moritz 

et al., 2005). 

                      

Figure 5.1: Dominant factors that influence fire at the scale of a flame, a wildfire, and a fire regime (based 
on concept of fire triangle). Loops indicate the feedbacks of the fire on the controls themselves; 
arrows indicate the feedbacks between processes at different scales (Moritz et al., 2005). 

 

Causes of wildfires are both, natural and human-induced (negligence, arson, etc.), with 

varying involvement. According to Tymstra et al. (2020) human-caused fires account for 

around 50% of fires occurring in Canada, with lightning being the major contributor to area 

burned in the boreal forests. Areas scorched annually are huge, with estimations of the size 

of Belgium destroyed in Siberia alone (Jones and Vaughan, 2010: 303). The massive fires 

raging in Australia from the end of 2019 until spring 2020 apparently left between 13 and 

17 million hectares of land being torched (Australian Bureau of Agricultural and Resource 

Economics and Sciences, 2019: 258–267, Granwal, 2020, National Council for Fire and 

Emergency Services, 2020). The Australian Bureau of Meteorology reported a fatal 

‘alliance’ of a breakdown of the Southern polar vortex with a positive Indian Ocean Dipole 

as a major driver of the gout of flames, reverberating in an inadvertent contribution to global 

warming due to gas and aerosol emissions (Goldammer, 2013: 251). One of the most 

destructive cases of a single event in 2016 at Fort McMurray, Canada, destroyed almost 

590,000 ha of boreal forest and more than 3,200 buildings. A natural El Niño cycle 

significantly contributed to the dry and hot conditions as a perfect precondition for an 

explosive wildfire (Kahn, 2016).     

Wildfires are categorised according to the kind and location of the fuel they affect: (i) crown 

fires combust the entire length of a tree from base to top, and are the most intense fires 

raging with extreme speed at high wind velocity; (ii) surface fires only scorch surface litter 
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and duff, causing the least damage to the forest; (iii) ground fires occur in thick layers of 

humus, peat and dead vegetation, moving very slowly with the potential to smoulder for 

months (Lutes et al., 2006). Crown fires are considered to be the most destructive and 

difficult to fight type of wildland fire. 

                 

Figure 5.2: Fire behaviour in a jack pine/black spruce forest: (A) surface fire; (B) passive crown fire; (C) 
active crown fire (Werth et al., 2011). 

   

At a local scale, fire can stimulate soil microbial processes, promote germination, seed 

production, but also combust biomass to effectively alter the structure and composition of 

vegetation and soil (Lentile et al., 2006). At larger scales, the varying fire intensity creates 

a mosaic of different habitats to be populated by a variety of species. High-severity wildfire 

often creates a complex early seral forest habitat with some of the highest levels of native 

biodiversity compared to an unburned old forest (DellaSala and Hanson, 2015).  

Since ecosystems have been exposed to wildfires for millions of years, many species have 

adopted very successfully to ramifications of thermal impacts. For example, birch developed 

the ability to survive by sprouting shortly after a fire, and pine and larch species protect 

themselves from scorching by growing a thick, robust bark. Forest fires show immediate 

effects, but also long-term trajectories on the surface energy and water budget. While 

removing the insulating organic layer during a fire, the permafrost layer near to the surface 

begins to thaw in a first stage. Subsequently, deeper removal of the permafrost takes place 

to the point that this water reservoir depletes and soils become increasingly dry, forcing the 

vegetation to adapt (Goldammer, 2013: 79–81).  

The intensity and frequency of wildfires have severe repercussions on the structure and 

spatial distribution of forests. From a fire ecology perspective, a distinction is made between 

three main forest types (Crisp 2004):  

Disturbance maintained forests are shaped by fire of high frequency and feature an open, 

parc-like structure with transitional zones towards the forest steppe. 
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Disturbance driven forests are created by high intensity mass fires resulting in even-aged, 

low structured systems.  

Gap driven forests are characterised by destructive disturbances in small areas (gaps), 

where regeneration processes are induced. Those forests are highly structured vertically 

and horizontally, and typically occupy sites with a good supply of water resources.     

Fighting wildfires has become very sophisticated and professional, and has been subject to 

many research studies over the last few decades. Activities in the field routinely comprise 

the establishment of fire breaks, prescribed burnings, creating backfires, and the application 

of silver iodide (to encourage precipitation) and fire retardants. For more details on how to 

successfully fight wildfires please refer to excellent sources for the pertaining codes of 

practice and manuals like Beebe et al. (2020), Goldammer (2013), Heikkilä et al. (2010), 

and Hirsch and Fuglem (2006).  However, fire management tools are also part of an 

effective fire strategy.  Useful ‘gadgets’ of this tool-box can be a forest fire weather index 

system (like in Canada), a fire behaviour prediction model to estimate fire spread and 

intensity, and fire effects models to analyse the physical effects of fire on stands and the 

ecosystem. These days fire databases (e.g. Canadian National Fire Database (CNFDB), 

and Canadian Wildland Fire Information System (CWIS)) have become very useful tools to 

support modern monitoring systems for getting useful and tangible information for wildfire 

risk management (Lutes et al., 2006). This is the moment, when remote sensing technology 

comes into play (see section below).  

Satellite based fire detection and monitoring 

Remote sensing can be considered an ideal tool for: 

• The identification of conditions prior to fire events (prediction). 

• The detection of live fires and the post-fire succession (monitoring) 

• The mapping of the destroyed area (Jones and Vaughan, 2010: 303). 

Pre-fire event conditions may involve land use and (tree) species classification, terrain 

analyses, the assessment of biomass, the detection of the proximity of settlements and 

industrial areas, the retrieval and integration of weather data, and information on the  

management regime of the specified  range. Most of the common earth observation satellite 

and UAV sensors have proven to be suitable for these tasks. However, the detection of 

wildfires requires specific spatial, spectral (i.e., sensors), and temporal resolution to ensure 

quick and appropriate response to imminent damage to natural resources, livelihood and 

lives. The systematic detection and monitoring have been operational since the early 1980s 

with the launch of the AVHRR (Advanced Very High Resolution Radiometer) sensor 

onboard the NOAA (National Oceanic and Atmospheric Administration) satellite. However, 
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the infrared sensors proved to hit a saturation point very quickly, thus making the NOAA 

product less suitable for the detection of active fires. With the MODIS (Moderate Resolution 

Imaging Spectroradiometer) instrument piggy backed by NASA’s TERRA and AQUA 

satellites a sensor has come into orbit in the late 1990s specifically designed for the 

detection of fires. Live fires can be accurately detected through the mid and thermal infrared 

bands (MIR, TIR) with an extent of more than 1 km2. The MODIS fire products are freely 

retrievable from NASA’s Distributed Active Archive Center (DAAC) with a spatial resolution 

of 1 km and a temporal resolution of 24 hours. NASA’s Fire Information and Resource 

Management System (FIRMS) now provides a web-based tool to visualise and download 

(as shape files) MODIS hotspots in almost real-time7 including a host of archived data. The 

user of those products, however, has to consider, that most global products are based on 

a coarse pixel size, thus affecting the potential detection area size and leading to grave 

under-estimates (Roteta et al., 2019). The provision of data acquired by the Visible Infrared 

Imaging Radiometer Suite (VIIRS) sensor (375m resolution) on the same website 

essentially complements the MODIS products. Other fire reporting initiatives comprise the 

European Forest fire Information System (EFFIS8), and the South African based Advanced 

Fire Information System (AFIS9).  Various other satellite systems also feature fire detecting 

capacities, however, with lower temporal, but higher spatial resolution. Popular, still 

operational examples comprise: Landsat 8 (bands 10 and 11 of the TIRS sensor), NOAA’s 

GOES-16 and 17, ESA’s Meteosat fleet, China’s Fengyun, and Japan’s Himawari 8. A 

different approach has been pursued by NASA by mounting their newly developed CTI 

(Compact Thermal Imager) sensor onboard the International Space Station (ISS). Crisp 

imagery with a spatial resolution of 80m has been successfully transmitted since 2019 

aimed at succeeding Landsat’s TIRS sensor10. A real paradigm shift is to be expected with 

the population of the Earth’s orbit with so-called ‘Cube Sat’ nanosatellites. Rocking the 

traditional satellite industry, cube satellites provide a low-cost solution with additional merits 

such as high temporal resolution (especially in swarm formations), high versatility, low 

weight (below 3 kg), and tailoring to specific requirements. A representative of this new 

satellite generation was launched in December 2018 by the name of LUME-1. The platform 

is part of the European Fire Remote Sensing (FireRS)11 project especially designed for the 

detection and monitoring of wildfires to provide almost real-time information, GPS 

positioning, fire perimeter, infrared images, and propagation prediction. However, at this 

stage it remains unclear when the data will be available to the public. 

 
7 URL: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms 
8 https://effis.jrc.ec.europa.eu/ 
9 https://www.afis.co.za/#home 
10 URL: https://earthobservatory.nasa.gov/images/146547/taking-temperatures-from-iss 
11 URL: https://alen.space/lume-1-launch/ 
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Forest cover change can also be an indication for a loss of forest areas caused by wildfires. 

These phenomena can be of transitory or irreversible nature. The team around Matthew 

Hansen of the University of Maryland12   in collaboration with institutions such as NASA, 

Google, and the USGS (United States Geological Survey) designed an internet platform 

(Global Forest Watch13 (GFW)), from which information on forest loss and gain are 

retrievable on a global scale. The observations are all based on Landsat 7/8 and VIIRS 

data, and stringent definitions14 are exercised to ensure consistency (i.e., tree cover > 60% 

canopy cover; vegetation taller than 5m). GFW data are used by institutions worldwide 

because of their reliability, ease of access, and high update rate (twice a day).    

Prior to engaging into monitoring and mapping of fire related phenomena it is vital to become 

aware of the definition of technical terms that are being used interchangeably in the 

literature, thus causing confusion in the user community. Fire intensity is referred to the 

amount of energy released during the incineration process, whereas fire or burn severity 

are related to the loss of organic matter also including ecosystem responses such as soil 

erosion, vegetation regeneration, and faunal recolonisation (Keeley, 2009).   

 

Figure 5.3: Illustration of fire intensity versus burn severity. Source: U.S. Forest Service (Parsons et al., 
2010). 

Hotspot or fire detection (fire intensity) is  commonly carried out by exploiting the 

measurements of thermal infrared sensors onboard air-, or space-borne platforms (e.g., 

AVHRR15, MODIS16, TIRS17). Several methods have been developed (e.g., Dozier method, 

threshold method, fuel mask method) based on radiance functions to account for specific 

fire scenarios and regional specifics (temperate, boreal, tropical forests, etc.). In order to 

avoid false results due to saturation effects, additional information from other spectral bands 

 
12 URL: https://earthenginepartners.appspot.com/science-2013-global-forest 
13 URL: https://www.globalforestwatch.org/map 
14 Tree cover loss is defined as ‘stand replacement disturbance’, or the complete removal of tree 
canopy cover at the Landsat pixel scale. Tree cover loss may indicate a number of potential activities, 
such as timber harvesting, fires or disease, the conversion of natural forest… 
(https://earthenginepartners.appspot.com) 
15 Advanced Very High Resolution Radiometer 
16 MODerate-resolution Imaging Spectroradiometer 
17 Landsat 8 Thermal InfraRed Sensor 
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(e.g. NIR, SWIR) is used to minimise false hot spots (Keeley, 2009, Lentile et al., 2006, Li 

et al., 2003). In addition to thermal bands SWIR bands are also able to penetrate smoke 

plumes and as such are most suitable for the detection of fire spots and fire-lines. During 

the combustion of wood, a drastic decrease in visible to NIR and a sharp increase in SWIR 

reflectance can be observed (see figures below). However, the deposition of a large 

quantities of white ash has the potential to increase surface reflectance (Lentile et al., 2006). 

Authors of numerous studies also report confusion between recently charred areas and 

shaded surfaces (Said et al., 2015).  

For the assessment of burned areas (burn severity), the application of a variety of vegetation 

indices has become second nature. The favourites as listed in many studies are NDVI, NBR 

(RBR), and NDWI (see figures below).    

 

Figure 5.4: Characteristics of the Normalised Burn Ratio (source: ESA, 2017). 

 

Figure 5.5: Characteristics of the Normalised Difference Water Index (source: ESA, 2017).  
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The associated formulas are as follows (band indications (e.g., B8) refer to Sentinel-2 

bands): 

𝑅𝐵𝑅 = (
𝑑𝑁𝐵𝑅

𝑁𝐵𝑅𝑝𝑟𝑒 +1.001
)   𝑁𝐷𝑊𝐼 =

𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
=

𝐵3−𝐵8

𝐵3+𝐵8
    𝑁𝐵𝑅 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
=

𝐵8−𝐵12

𝐵8+𝐵12
             

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
=

𝐵8−𝐵4

𝐵8+𝐵4
 

A standard procedure for the evaluation of areas affected by fires is to compare pre-, and 

post-fire conditions (e.g., difference of NBR (dNBR)). Based on the exhaustive assessments 

of burned areas by institutions like the United States Geological Survey (USGS), and the 

United States Department of Agriculture (USDA), reference tables have been devised to 

reflect certain degrees of severity levels. The table below shows such values, being applied 

by many forest researchers and practitioners these days.   

Table 5-1: Burn severity levels with related dNBR ranges calculated from satellite imagery (source: USDA, 
Lutes et al., 2006: 256)  

          

In numerous studies (relating to boreal forests in particular), the NBR index has 

demonstrated its ability to attain good correlation with field-based methods and its 

transferability across multiple landscapes and multitemporal  surveys (Allen and Sorbel, 

2008, Chen et al., 2011, George et al., 2006, Navarro et al., 2017, Soverel et al., 2011). 

Mallinis et al. (2018) found out, that the dNBR even outperformed NDVI, when assessing 

large fires in pine forests in Thasos, Greece. In addition, the classification accuracy  was 

slightly higher for the Sentinel-2 imagery compared to Landsat 8 OLI. This finding was 

confirmed by Fernández-Manso et al. (2016) for the Sierra Grata (Spain) wildfire in 2015.  

When assessing burned areas in coniferous forests in the Western USA, Parks et al. (2014) 

discovered, that the RBR (formula see above) corresponded better to field-based 

measurements than dNBR (R2  for RBR: 0.786 and for dNBR: 0.761). Despite the overall 

success of the NBR, this index has proven to be less effective with a considerate time lag 

between the fire event and the assessment of post-fire conditions with vegetation regrowth 

starting immediately after the fire (i.e., higher reflection in the NIR). It is also important to 

know, that this index is very sensitive to water, thus causing misclassified pixels. This 
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requires a creation of a water mask and/or consideration of a NDWI calculation prior to 

classifying the imagery (Keeley, 2009, Polychronaki and Gitas, 2010).  

Undoubtedly, the choice of the right sensor seems crucial for successful fire detection and 

monitoring missions, but also the right timing for detection and interpretation. In forests in 

particular, survivorship of trees, the delayed mortality of individuals, and the resprouting 

capacity of certain species can lead to over-, or underestimates of fire severity. In addition, 

the sampling intervals have to be chosen with care accordingly. Recovery (succession) 

intervals of the vegetation can be very long, depending on species adaptation to fire, and 

interactions with climate and soil conditions (Key, 2006).       

Not only the way how to effectively fight fires has changed in the few last decades, but also 

how forests need to be managed in the future to achieve forest ecosystems with a much 

higher degree of resilience towards fire risks and hazards. A growing number of researchers 

in the Northern hemisphere seem to support the idea that forests need active manipulation 

to achieve more fire-tolerant structures. This idea would involve thinning activities, 

prescribed burning, and removal of fuel from forest areas in a specific pattern to gain a 

broader landscape scale management perspective (Bowie et al., 2015, Pollet and Omi, 

2002, Tymstra et al., 2020). In addition, the mix of tree species, the silvicultural practices, 

and the age structure of the forests need to be reconsidered for risk distribution and the 

alleviation of fire damages (Adams, 2013, Beck et al., 2011, Bergeron et al., 2017, Reich et 

al., 2001, Terrier et al., 2013). 

Wrap-up of the section: 

• Fire has always been an important ecosystem scheme deeply impacting terrestrial, 

aquatic, and atmospheric processes, however, with climate change exacerbating 

the destructive character. 

• Remote sensing with a variety of sensors (TIR, NIR, etc.) has become crucially 

important for the detection, monitoring, and assessment of fires and their aftermath 

related to changes in the environment and ecosystems. 

• NDVI and NBR are favoured by the remote sensing community for burned area 

mapping. 

• Image pre-processing (atmospheric, geometric, radiometric correction) and creation 

of water and cloud masks is vital prior to applying the indices to avoid confusion with 

areas burned (Weirather et al., 2018). 

• The right choice of sensor, the radiometric, temporal, and spatial resolution, as well 

as the appropriate assessment scheme (timing)  are determinants for getting useful 

results for fire and forest managers. 
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• Silvicultural and fire suppression management practices need to be reconsidered 

for creating higher fire-resilient forests (e.g., thinning, tree species selection, 

prescribed burning) in the future.   

 

5.2. Wildfires in Mongolia 

Apart from timber logging, insect pests, livestock grazing, and climate change related 

phenomena, wildfires are the major influencing factors on the landscape ecosystems of the 

taiga and the forest steppe (Altrell and Erdenejav, 2016, Dulamsuren et al., 2011, 

Dulamsuren et al., 2014, Goldammer, 2013, Klinge et al., 2020). Rising levels of wildland 

fire incidents, increasing temperatures, and land use change have coincided in many 

forested regions, making it difficult to parse causes of elevated fire activity (Klinge et al., 

2014). According to a report by Byambasuren (2018) wildfires account for more almost 90% 

of forest degradation, and as such, also thwart all efforts to contribute to the global 

programme of reducing carbon emissions (see also REDD+18 programme of the United 

Nations (www.un-redd.org)). High intensity forest fires can be a major cause for the 

degradation of the taiga forests and bear the potential to irreversibly induce a shift to the 

steppe grassland ecotone (Mühlenberg et al., 2004). Between 2011 and 2013 around 1 Mio. 

ha of forested land were affected by wildfires (Ministry of Environment and Tourism, 

Mongolia, 2020). Crown fires are known to be the most destructive form, whereas fires of 

low intensity (ground fires) promote the growth of fire tolerant tree species such as larch 

(Goldammer and Furyaev, 2010). Nonetheless, not only the intensity of the fires greatly 

determine the composition of the vegetation, but also the sequence of the occurrence. 

Goldammer and Furyaev (2010: 168–185) report intervals ranging from 10 to 33 years for 

the Western part of Siberia, whereas Byambasuren (2011) found intervals of 11.6 years for 

parts of the Khentii mountains in Mongolia. Fire regimes with short intervals apparently are 

favourable for pioneering tree species, like birch and poplar (Makoto et al., 2007, Wyss, 

2007). In Mongolia, human-induced fires represent about 95% of all wildfires recorded, with 

lightning being the major natural cause (Byambasuren, 2018, Goldammer and Furyaev, 

2010: 186–190, Schmidt-Corsitto, 2016, Tsogtbaatar, 2004a). Many people in rural areas 

are accustomed to gathering non-timber products such as berries, pine kernels, firewood, 

and antlers, and as such tend to leave fireplaces either unattended or not properly put out. 

Steppe fires, which are laid to extract pasture land, also pose a risk to neighbouring forests, 

favourable weather conditions provided. 

 
18 Reducing Emissions from Deforestation and Forest Degradation 



 

146 
 

The following table retrieved from the official National Forest Inventory report (Altrell and 

Erdenejav, 2016: 85) provides an account on the fire incidents of recent decades:                           

Table 5-2: Proportion of forest area affected by wildfire, by forest Inventory Region (NFI report, 2016). 

                           

The Khentii region, where the Thunkel test area is located, shows the largest impact of 

wildfire with almost 35%. However, above mentioned observations are not based on the 

wildfire assessment of satellite imagery, but rather on the evidence of burn marks on tree 

stems found in the inventory sampling plots. Yet, these figures provide a useful clue on 

wildfire hotspots and potential fire management scenarios.    

Most of the forest stands surveyed show marks of historic or recent wildfire events and thus 

have a substantial impact on the species composition, the growth rate, and the structure of 

the forests (Goldammer and Furyaev, 2010: 186, Gradel, 2017, Gradel and Mühlenberg, 

2011).  Gunin et al. (1999) suggest regeneration periods of up to 200 years to be realistic 

because of the short vegetation period. Even-aged, huge forest stands show a typical low-

structure type induced by high intensity fires (Goldammer and Furyaev, 2010: 1–20). Tree 

species such as birch, poplar and larch are to be found in these light taiga forests. In 

contrast, gap-driven disturbance regimes are characteristic for dark taiga (Siberian pine, 

Siberian spruce) areas featuring a small-scale mosaic of varying tree age, DBH, and tree 

height (Gradel et al., 2015, Gradel, 2017, Gradel and Mühlenberg, 2011, Schulze et al., 

2012). Disturbance intensity has turned out to be an important determinant of interspecific 

species competition. Fire intensity, but also regeneration and protection potential of the 

various tree species either favour species such as aspen and birch (coppicing) after stand 

replacing fires, or are conducive to larch and Scots pine due to their ability to better cope 

with ground fires thanks to their thick bark. Short intervals of ground fires apparently put a 

lot of strain on the thin-barked birch, thus giving pine and larch a competitive edge. Yet, soil 

and crown fires burning with high intensity are also dangerous for thick-barked tree species 

(Gradel, 2017, Pausas, 2015, Pellegrini et al., 2017). Interestingly, Undraa et al. (2015) 

observed no drastic changes in species composition about 10 years after big fires in the 
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Central Khangai in 1996 and 2002. According to the authors, grazing seemed to have a 

much larger impact on larch regeneration than long-term effects of wildfires. 

Climate also plays a pivotal role in driving disturbance regimes. According to Dulamsuren 

et al. (2011) extremely low temperatures and absent precipitation during the winter season 

seems to favour larch, since these climatic conditions keep insect populations low. In 

addition, sufficient rainfall towards the end of the vegetation period of the previous year and 

in the initial phase of the growing season of the current year proved to be particularly 

important for the growth increment of the trees. Current reports of the IPPC suggest rising 

temperatures for the main part of Mongolia, with grave impacts on the productivity of the 

light taiga species, and with an increasing rate of wildfires in the future (IPCC, 2020, Jolly 

et al., 2015, Ministry of Environment and Green Development of Mongolia, 2014, Ministry 

of Environment, Japan, 2014). As water availability and soil moisture are higher in the dark 

taiga ecosystems, these higher elevations are expected to be less affected by a changing 

climate. After all, with the thaw of the permafrost as a dwindling water resource, even the 

dark taiga vegetation will have to tune in, and adaption strategies in terms of forest 

management need to be devised in general (Goldammer and Furyaev, 2010: 366–371).      

 

Fire detection, monitoring, and reporting in Mongolia 

Reliable data concerning the occurrence of wildfires have been on hand for North America, 

Canada, and Scandinavia for many years. As for Mongolia information on wildfires are  

published through governmental platforms such as the website maintained and populated 

by the Mongolian Ministry of Environment and Tourism  (see Figure 5.6 below). However, 

individual checks convey the impression, that the fire reporting and/or publishing system 

seems rather dubious. In 2017 I witnessed at least six huge fires in the Thunkel area, but 

only one incident was being indicated on the above-mentioned website for the whole of the 

Selenge province.  
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Retrieval of data from the FIRMS (MODIS satellite data) platform for the specified year 

however suggests many more fire hotspots (see also chapter 5.1 for FIRMS). 

 

Figure 5.7: Retrieval of wildfire occurrences for the Selenge Aimag for the year 2017. Source: FIRMS 
database, 2020. 

Figure 5.6: Mongolian database on forest and steppe fire – data retrieval in September 2020 (source: Ministry 
of Environment and Tourism (www.mne.mn), Ulaanbaatar, 2020). 
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Pursuant to the FIRMS database for the period from 2000 to 2019 the Selenge Aimag was 

hit by destructive wildfires almost every year, with 2009 being one of the most salient.  The 

database also indicates the season the wildfires occurred – for the Thunkel area in 2017 it 

was July and August, being in line with weather reports highlighting an extremely dry 

summer. The landscape around Thunkel (including the GIZ school forest as test area) has 

been affected very hard in the years 2002, 2008 and 2017, with a number of areas having 

been scorched twice within one decade. These extremely short fire intervals hardly leave 

any time for the vegetation to recover, thus causing irreversible damage to the forest 

resources. The Global Forest Watch (GFW) data repository (www.globalforestwatch.org 

/map) exhibits a loss of forest cover for the Selenge Aimag for the 2001-2019 period of 

nearly 140,000 ha (i.e., 12% of total tree cover). However, the indicated loss can be 

attributed to a variety of causes, such as wildfires, logging activities, and land degradation 

(for details see also GFW website). 

According to the UN-REDD report 2018 (UN‐REDD, 2018) more than 52,000 ha of forest 

land were lost in Mongolia due to wildfires and other disturbances in the period between 

2005 and 2015, leaving another 1.4 Mio ha degraded due to illegal logging and grazing 

activities (around 35% of livestock graze in or near forests). In 2017 more than 80,000 ha 

of forest are reported to have been torched. Once again, the presented figures have to be 

seen in the light of different definitions of the term forest and the data used for analysis. 

GFW indicates the tree cover being 3.55 Mio ha for the entire country of Mongolia, whereas 

the UN-REDD report claims the forest area comprising 14.2 Mio ha. The general trend to 

surrender forest land has been confirmed by a study undertaken by Teusan (2017), who 

analysed MODIS and Landsat imagery for the 2000-2015 timescale. He observed severe 

wildfires particularly in the years 2000, 2003, and 2007-2009, with a substantial decline of 

the Scots pine for the Selenge Aimag. He also found that fire incidents predominantly take 

place in April and May (when soil moisture reaches a low), with another peak in September, 

when summer rainfalls recede. This observation has been generally supported by Wyss 

(2007), who analysed MODIS and NOAA imagery for the period from 2000 to 2005. By 

visually comparing the results with Landsat ETM+ scenes he found out that fire delineation 

with MODIS matched with a 70% accuracy, and NOAA only with a mere 20% accuracy, 

strongly indicating that MODIS sensors seem to be much better geared for fire detection. 

Since forests are mainly to be found to occupy northern slopes, the fuel load is much bigger 

and as such generate a higher fire risk with higher fire intensity than the steppe ecosystems 

on southern slops. MODIS sensors are only able to detect fire hotspots beyond a certain 

temperature threshold (i.e., greater than 10 Megawatt), and thus primarily record forest fire 

activities. The assessment of the fire incidence – altitude relationship also revealed, that 

forests at lower altitudes are more prone to wildfires in spring (higher temperatures at the 
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slope foot) than the dark taiga at higher altitudes due to the extended snow melting period. 

Teusan (2017 111-115) does not fall short in mentioning, that: (i) the MODIS sensors can 

only detect hot fires with a huge extend, (ii) a low sun angle can potentially impede the 

classification of the satellite imagery (i.e., fire severity on Northern slopes gets easily 

underestimated) , and (iii) areas classified as “burnt” may as well indicate dead wood 

caused by insect attacks or drought, since the spectral signatures show many similarities.  

Time line analysis of the ICC NOAA imagery reflects a steady positive trend in fire incidents 

since the 1980s, with a sharp increase of cases in the 1990s associated with higher 

intensities and longer duration (Wyss 2007). Fire hotspots have been located at the Aimags 

Bulgan, Tov, Selenge, and Khentii, showing a clear association with socio-economic 

activities, particularly along the railway line connecting Ulaanbaatar with the Russian 

border. However, the results of the ICC have to be consulted with caution – for the year 

2000 a total of 7.9 Mio ha was indicated for the whole of Mongolia, whereas Goldammer 

(2002) calculated an effected area of 2.9 Mio ha for the same period.   In contrast to the 

general observation of rising fire incidents over the last few decades, Hessl et al., 2016 

observed no change in fire return intervals post-1900. They analysed 20 multi-century fire 

scar chronologies (464 fire scar samples) to further conclude that drought remains an 

important driver of fire, and that ‘…limited fire activity in recent decades may be due to the 

coincidence of drought and intensive grazing that have synergized to reduce fuel continuity 

and fire spread’. 

 

Fire-fighting infrastructure and activities in Mongolia 

Since the early 1950s the Mongolian government has been pursuing an aggressive policy 

of wildfire suppression. In 1969 the Mongolian Fire Protection and the Aerial Patrol Service 

were founded to work efficiently until the collapse of the socialist system in 1992. With the 

grounding of the Aerial Patrol Service in 1992 and the substantial decline of financial aid 

the Mongolian fire-fighting system came to a halt, causing wildfire damages to soar 

(Goldammer, 2013: 69–72, Wyss, 2007: 39). Even with recent incentives of the FAO or the 

GIZ (‘Integrated Fire Management Project’), there has been no presentable improvement 

of the situation (Schmidt-Corsitto, 2017, Teusan, 2018: 113–115). Even though the 

Mongolian forest act (Articles 18 and 19) demands that no fires are to be started from 20 

March until 10 June, there is a severe lack of financial and infrastructural resources to 

monitor, survey, and prosecute any misdemeanour. Early warning systems have been 

established on a local scale, yet, communication has turned out to be an incumbent 

problem. As early as the late 1980s the Mongolian government realised that remote sensing 

technology has proven to be a useful tool for detecting wildfires, especially in areas, which 
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are difficult to access. In 1987 a satellite receiving station (Information and Computer Centre 

- ICC) for NOAA/AVHRR data was established at Ulaanbaatar to provide the relevant fire-

fighting and managing institutions with timely and accurate information on fire incidents, and 

to further work out fire risk scenarios. Once again, getting the information to the people in 

the field remains an enormous challenge. An essential step towards resolving the major 

issues was undertaken by establishing the Fire Management Resource Center – Central 

Asia Region (FMRC-CAR) in 2015 based at the National University of Mongolia (NUM) at 

Ulaanbaatar. Being a subsidiary and partner of the Global Fire Monitoring Center (GFMC), 

hosted by the Fire Ecology Research Group, Max Planck Institute for Chemistry, c/o 

Freiburg University, Germany, the training of people and the knowledge transfer on fire 

ecology and fire-fighting is considered the domain of this institution. With the recent 

appointment of Dr. Oyunsanaa Byambasuren as General Director of the Department of 

Forest Policy and Coordination at the Mongolian Ministry of Environment and Tourism 

(MET), an experienced fire ecologist has been endorsed the opportunity to considerably 

improve the Mongolian wildfire management scheme.         

 

Synopsis of this section: 

− Causes of forest fires and their propagation are difficult to designate to a single 

factor, but can be seen as a coincidence of: rising temperatures, drought, changing 

precipitation patterns, thawing permafrost, human action (negligence, illegal 

logging, hunting and gathering), expanding grazing activities, lack of trained people 

and infrastructure, inadequate communication. 

− Wildfires significantly affect forest structure and tree species composition. Stand 

replacing fires occurring in short intervals seem to favour pioneering tree species 

(e.g., birch), whereas thick-barked species (e.g., larch) are more resilient to ground 

fires.    

− Fire suppression activities can induce higher fire risks in the long term (e.g., 

accumulation of fuel load). 

− The increase of severity and interval of fires during the last few decades has been 

discussed controversially in the scientific community, however, with a few 

indications of a positive trend linked to climate change. 

− Main forest fire seasons are late spring and late summer.  

− Forest fires have been part of the ecosystem for many millennia and as such been 

shaping the landscape. 

− Near-real time fire detection has become operational through the MODIS Rapid 

Response System and the associated Web Fire Mapper.  



 

152 
 

− The recently established Fire Management Resource Center – Central Asia Region 

(FMRC-CAR) at Ulaanbaatar helps to address shortcomings in training of managing 

and fire-fighting personnel. 

− Despite all efforts, the lack of infrastructure and proper equipment, the low number 

of professionally trained people in combination with deficits in communication still 

result in an impaired fire management in Mongolia. 
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6. Unmanned Aerial Vehicles (UAVs) 

For the last couple of years, the acronym ’UAV’ (Unmanned Aerial Vehicle; with the terms 

‘UAS’ and ‘drone’ being used interchangeably) has become the new buzzword in the remote 

sensing community per se. This hype is not only being reflected in the sales figures of the 

systems, but also in the various new application fields and the skyrocketing numbers of 

publications. The following sections provide some fundamental knowledge on the technical 

advances of unmanned aerial vehicles, their potential in various applications, image 

acquisition and processing workflows, as well as regulatory related issues. For the sake of 

simplicity and to remain consistent with a large proportion of the literature published, the 

term UAV is being used interchangeably with all other denominations related to unmanned 

aerial vehicles.   

6.1. Definitions and classifications 

The technical advances in robotics and computer systems have created new opportunities 

regarding remote sensing operations and also have acted as an impetus for the 

development of novel data analysis approaches. The advent of unmanned aerial vehicles 

seems to have heralded a new era of the acquisition of more timely data with unprecedented 

spatial resolution, however, without putting a pilot’s life at risk. Initially earmarked for the so-

called ‘D3 operations’ (i.e. dirty, dull and dangerous), remotely-piloted aircraft systems 

(RPAS) have shaken the traditional remote sensing markets providing an almost unlimited 

variety of applications, in the civilian environment in particular (Salamí et al., 2014).  

The term UA (Unmanned Aircraft), as well as the acronym UAV (Unmanned Aerial Vehicle) 

in a narrow sense refer to the air vehicle itself. To distinguish it from the aforementioned, 

the term UAS (Unmanned Aerial System) was coined to emphasise that an aircraft, no 

matter, if piloted remotely, or flying autonomously, requires a control station and data links 

for proper operation (Colomina and Molina, 2014, Gupta et al., 2013). UAS are also known 

under names, such as ‘aerial robot’ and ‘drone’, with the latter having been ascribed a 

rather negative connotation because of the association with military missions (e.g. the 

deployment of the ‘Predator’ during the Gulf War in 1991) (Eisenbeiss, 2009: 2, Gupta et 

al., 2013, Sabins, 2020: 225–226, Salamí et al., 2014, Toro and Tsourdos, 2018). The first 

UAV dates back to 1916 and is known as the beginning of attitude control for automatic 

steering of an aircraft. The further developments were clearly driven by a military context, 

but as early as the nineteen-seventies, the potential of UAVs were recognised by research 

groups (Colomina and Molina, 2014). In particular during the last fifteen years a large 

number of manufacturers of platforms and sensors have tried to establish their products on 

the military and civilian markets, leaving the customers with a sheerly unfathomable number 

of choices. Hence, classification systems for UAVs have been devised as rough guidelines 
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to bring order into chaos. However, there is no such thing as a unique and universal 

classification until now (Watts et al., 2012). 

These days, most of the categories are based on size, weight, operating range, endurance, 

and aerodynamics. Others also consider the nature of propulsion (powered, non-powered, 

combustion engines, electrical, fuel cells, solar power, etc.), payload and being lighter-than-

air (e.g. blimps) or heavier-than-air (Colomina and Molina, 2014, Eisenbeiss, 2009: 34–37). 

Categories range from ‘high altitude long endurance’ (HALE) platforms resembling medium-

sized commercial airplanes to ‘nano air vehicles’ (NAV) with a size of a beetle (own 

observations).      

                    

Figure 6.1: Example for a HALE UAV (General Atomics MQ-1 ‘Predator’ - left) and a NAV (AeroVironment 
‘Hummingbird’ - right). Source: manufacturer’s photos. 

 

The bulk of UAVs is represented by the categories ‘Mini UAV’ (MUAV), with payloads below 

20kg and operating ranges of about 30km, and the so-called ‘Micro UAV’ (MAV), featuring 

a weight below 2kg and operating at low altitudes and short ranges (Colomina and Molina, 

2014, Jeziorska, 2019). Another popular way of categorising UAV platforms is the distinction 

between: ‘fixed-wing’ (requiring a runway or catapult for take-off and landing), ‘rotary-wing’ 

(vertical take-off and landing), ‘blimps’ (airships and balloons), and ‘flapping-wing’ 

(morphing small wings, inspired by birds and insects) (Büchi, 2018: 2–4, Gupta et al., 2013, 

Petrie, 2013, Sabins, 2020: 227–229). More details on the various platforms and the 

sensoring systems are provided in the subsequent section (6.2.).   

6.2. Platforms, navigation and sensors 

Leaving aside powered airships, blimps, balloons, parafoils and tethered kites, the majority 

of UAVs are based on the airframes fixed-, and rotary-winged aircraft. Based on the specific 

requirements on a survey, a choice has to be made for the best platform – sensor 

compound. Rotary-based versions (single, or multiple rotors) have become the favoured 

pick, whenever hovering capabilities are required, the survey area is not bigger than a few 

hectares, and taking-off and landing sites are confined. Traditional fixed-wing platforms are 

much better suited for large-scale operations (e.g., 1 km2 ), when high endurance and 

energy efficiency are paramount. However, these platforms call for very well-trained 
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personnel and sufficient space for operation. Sometimes even specific equipment such as 

launching catapults and salvaging devices are prerequisites. A combination of fixed-, and 

rotary-winged systems (hybrid), like the Skyports, the ATMOS Marlyn, or the Hi-Tec Trinity, 

are ready for the market, however, are difficult to manoeuvre due to the tilted rotor 

constellation. The figure below depicts some of the popular fixed-winged products with a 

flying wing, or a conventional fuselage design.        

                  

Figure 6.2: Examples of a fixed-wing UAV design: (a) QuestUAV Q-Pod; (b) SenseFly eBee; (c) Trimble 
UX5; (d) MaVinci Sirius Pro; (e) PrecisionHawk Lancaster (source: Padua, 2017). 

Rotary-winged platforms can be single-rotor driven with a high payload capacity, such as 

the Mikado Logo 600, feature coaxial rotors with two contra-rotating rotors (e.g., 

DraganFlyer X6), or are fitted with multiple rotors, requiring no specific pitch control. 

Manufacturers of the latter are legion, like DJI, Yuneec, Aibotix, HiSystems, Microdrones, 

Droidworx, and Topcon, just to name some of the more popular brands. Examples are given 

below (Figure 6.3). 

               

 

 

 

 

 

                 

Figure 6.3: Rotary-winged UAVs: (a) Topcon Falcon 8 (octocopter); (b) DJI Phantom 4; (c) DJI Mavic 
(quadrocopter); (d) Yuneec H 520 (hexacopter); (e) DJI Agras MG 1S (octocopter with 
mounted spraying tank for pesticides). Source: manufacturer websites.  
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The main merits and demerits of the major platform systems are detailed in the following 

table (6-1).  

Table 6-1: (Dis)advantages of different platforms (source: Tmusic, et.al., 2020, and Jeziorska, 2019). 

Platform Advantages (+) and disadvantages (-) Flight time / coverage 

Rotary-wing 

+ flexibility and ease of use 
+ stability 
+ possibility for low flight heights and low speed 
+ possibility to hover 
+ small landing/take-off zone 
+ greater manoeuvrability 
- lower area coverage 
- wind may affect vehicle stability 

Flight time typically 20-40 
minutes 
Coverage 5-30 x 103 m2 

depending on flight altitude 

Fixed-wing 

+ capacity to cover large areas 
+ higher speed and reduced time of flight execution 
- take-off and landing require dedicated space,         
  equipment and experienced pilot 
- fast vehicle may have difficulties in mapping small  
  areas or establish sufficient image overlap 

Flight time up to hours 
Coverage >20 km2 depending 
on flight altitude 

Hybrid VTOL 
(Vertical Take Off 

and Landing) 

+ entails all advantages of rotary and fixed-winged  
   systems 
- complex mechanical system (tilting rotors); difficult  
  to operate  

Flight time up to hours, but 
less than fixed-winged 
systems 
Coverage similar to fixed-
winged system 

 

The navigation of an aerial platform consists of the calculation of its location, velocity, as 

well its orientation (attitude). This process relies on input from various sensors and 

subsystems to provide specific output for the control system, which in turn determines the 

required signals for the engines and control surfaces (pitch, roll, yaw). In addition, those 

internal sensors make certain, that semi-, or even fully automatic flying mission can be 

pursued and that the platform can react adequately in situations, when immediate 

intervention is required (e.g., wind gusts, collision with other objects). The so-called inertial 

navigation system (INS)  - often also referred to as inertial measurement unit (IMU) - uses 

motion (accelerometers) and rotation sensors (gyroscopes) to continuously calculate the 

direction and speed of movement of an aerial platform without requiring external references. 

More robust and accurate (i.e., more expensive) systems are augmented by additional 

sensors, such as barometric altimeters and magnetic sensors (compasses). Most of the 

relatively inexpensive UAVs are fitted with low sensitivity INS sensors and are notably 

subject to integration drift, resulting in progressively larger positional errors. INS 

inaccuracies can be compensated for by integrating highly accurate GPS receivers (e.g. 

RTK – Real Time Kinematic), thus allowing direct georeferencing of aerial imagery without 

the need for ground control point measurements (Büchi, 2018, Sabins, 2020: 229). The 

achievable high positional accuracies naturally come with a big price tag. Sensor fusion 

(INS) technology has become available through manufacturers of autopilot devices, like 
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Pix4, MicroPilot, Euroavionics, ArduPilot, and Pixhawk (Colomina and Molina, 2014, Galar 

and Seneviratne, 2020: 141–142).   

Ground control stations represent another crucial part of an unmanned aerial vehicle system 

and can be considered an interface with human intelligence. They are either stationary or 

mobile equipment to command and monitor the aircraft. The most predominant technology  

for the wireless communication is based on Wi-Fi electronics transmitting at 2.4 GHz. The 

two-way communication between ground control (pilot) and aerial platform ensures the 

provision of the pilot with real-time information on the UAVs performance and position (e.g., 

battery status, flying altitude, bearing) in a virtual cockpit. In addition, new mission 

parameters can be uploaded and live video streams form the onboard camera monitored 

(Colomina and Molina, 2014, Galar and Seneviratne, 2020: 141–144, Salamí et al., 2014).          

Sensing payloads have to be chosen very carefully and tailored according to the required 

goal of a flying mission (sensing bandwidth, accuracy, resolution, etc.) (Komárek et al., 

2018, Pádua et al., 2017, Petrie, 2013, Tmušić et al., 2020). Thanks to the advances in 

minimisation of the once very bulky and heavy sensors, passive as well as active sensing 

systems, ranging from visible, to Near Infrared (NIR) up to the Thermal Infrared (TIR) and 

microwave systems can be integrated into UAV platforms these days. The remote sensing 

community has benefited from mass-markets offering off-the-shelf products, as well as from 

markets especially geared for the UAV industry. The following table (6-2) lists a selection of 

some of the more popular sensing systems. However, sensing markets develop so rapidly, 

that it is almost impossible for the consumer (user) to keep up with. Although considerable 

progress has been made with many sensor types, some issues have not been resolved. 

Hyperspectral cameras and LiDAR systems still require a big lifting capacity of the aerial 

platform and costs are still enormous (up to 100,00 Euros). There are also trade-offs 

between performance and the size of the systems (e.g. low resolution of TIR cameras), and 

UAV SAR radar systems still represent a miniscule market segment struggling with 

integration hitches (Catapano et al., 2020, Colomina and Molina, 2014, Ludeno et al., 2018, 

Manfreda et al., 2018).                    

Table 6-2: Common sensing payloads for UAVs (source: manufacturer’s website).  

Sensor type Manufacturer / Model Resolution Weight Spectral 
range 

Range 

Small and medium 
format visible band 
cameras 

Sony Nex-7 
Hasselblad H4D-60 
Sony α 6600 

Lumix DC-GX9 

24.3 MPix 
60.0 MPix 
24.2 MPix 

20.0 MPix 

0.35 kg 
1.80 kg 
0.53 kg 

0.45 kg 

450-750 nm 
450-750 nm 
450-750 nm 

450-750 nm 

 

UAV mounted visual 
band cameras 

DJI Zenmuse Xz 
SenseFly S.O.D.A 
Yuneec CGO3+ 

DJI Hasselblad L1D-20 

24.0 MPix 
20.0 MPix 
12.0 MPix 

20-40 MPix 

0.45 kg 
0.11 kg 
0.25 kg 

0.07 kg 

450-750 nm 
450-750 nm 
450-750 nm 

450-750 nm 

 

UAV multispectral 
cameras 

Tetracam Mini MCA-6 
Parrot Sequoia 

MicaSense RedEdge 

1.3 MPix 
1.3 MPix 

1.3 MPix 

0.70 kg 
0.07 kg 

0.18 kg 

450-1050 nm 
550-790 nm 

475-840 nm 
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Sensor type Manufacturer / Model Resolution Weight Spectral 
range 

Range 

Hyperspectral cameras 

for UAV 

Headwall Nano-Hyperspec  

Cubert Ultris 20 
Quest Hyperea 660 C1 
Resonon Pik L 

Not available 

1600 px 
1024 px 
  900 px 

1.20 kg 

0.35 kg 
1.44 kg 
0.60 kg 

400-1000 nm 

450-850 nm 
400-1000 nm 
400-1000 nm 

 

Thermal cameras for 
UAV 

FLIR Tau 640 
Optris PI400 
Thermoteknix MIRICLE 370K 

Yuneec E10T  

640x512 px 
382x288 px 
640x480 px 

640x512 px 

0.11 kg 
0.32 kg 
0.17 kg 

0.37 kg 

7.5-13.5 μm 
7.5-13.0 μm 
8.0-12.0 μm 

8.0-14.0 μm 

 

Laser scanners for UAV 
Harris Aerial Puck 

Velodyne HDL-32 E 
RIEGL VUX 240 
YellowScan Mapper II 

 2.00 kg 

1.30 kg 
3.80 kg 
2.10 kg 

  100 m 

 100 m 
1400 m 
   75 m 

Radar sensors for UAV 
Echodyne EchoFlight 
 
 

Pulson P440 radar system 
IMSAR NanoSAR B  

 0.81 kg 
 
 

0.04 kg 
1.58 kg 

24.45-24.65 
GHz 
 

3.1-4.8 GHz 

6000 m 
>750m on 
UAV 

1000 m 

 

Off-the-shelf consumer cameras often feature low quality lenses and sensors resulting in 

effects such as barrel or pincushion distortion, image noise, vignetting and scatter 

(Carbonneau and Dietrich, 2017, James and Robson, 2014). However, with the correct 

choice of camera settings, good illumination conditions, and flying parameters (e.g., speed), 

a high number of these detriments can be remedied. In addition, sophisticated image 

analysis and photogrammetry software exploiting Structure from Motion (SfM) and Multiple 

ViewStereo (MVS) algorithms (for details also see chapter 4.6.) can handle even low quality 

imagery for mapping and monitoring purposes with acceptable yields (Jeziorska, 2019, 

Tmušić et al., 2020) . In the following figure (6.4)some examples of popular sensing systems 

are provided. 

 

Figure 6.4: Popular imaging systems: RGB: (a) GoPro Hero3; (b) Canon G9X; (c) Panasonic Lumix DMC; 
(d) Sony Alpha 7; NIR: (a) Canon S110; (b) Panasonic Lumix 7; (c) Fujifilm X-M1; 
Multispectral: (a) Parrot Sequoia; (b) multiSPEC 4C; (c) Tetracam ADC; (d) MicaSense 
RedEdge; LiDAR: (a) Routescene LiDAR Pod; (b) Yellowscan Mapper; (c)Velodyne PUCK. 
Source: manufacturer’s website and Padua, et.al., 2017.  
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The following list shows in brief some potential application areas, grouped by sensor size, 

to facilitate sensor choice (Adão et al., 2017, Barbedo, 2019, Cracknell and Hayes, 2007: 

281–285, European Space Agency, 2009: 171–175, Howard, 1991: 311–318, Jones and 

Vaughan, 2010: 297–305, Lillesand et al., 2015: 632–638, Manfreda et al., 2018, Pádua et 

al., 2017, White et al., 2016): 

• RGB: biomass monitoring, vegetation identification and segmentation, dead wood 

inspection, tree age class definition. 

• Thermal: water status assessment, fire detection, heat stress in plants. 

• Multispectral: vigour maps (vegetation indices), biomass estimation, pest detection, 

species classification, nutrient deficiency estimation. 

• Hyperspectral: biomass estimation, species discrimination, water status 

assessment, early detection of plant diseases, chlorophyll estimation. 

• LiDAR: forest canopy mapping, creation of terrain models, forest inventory and 

structural properties, tree parameter assessment (e.g., tree height, crown diameter, 

crown height). 

• Radar (can penetrate clouds, rain, vegetation, soil): soil moisture assessment, 

species discrimination, land cover (change) mapping, disaster evaluation, DEM 

generation.  

In addition to above mentioned appliances, UAVs equipped with very specific sensoring 

systems have already been tested and proved successful. Sensors such as particle 

counters, radiation gauges, gas detectors, and spectrometers are used to measure gas 

emissions from volcanoes and power plants, to assess the distribution of aerosols, and to 

gauge radionuclide contamination of nuclear power plants and detect ground-based 

radiation anomalies in naturally occurring geological features (Pajares, 2015). In GPS 

denied environments (i.e. indoors, between buildings, etc.) specific sensors employing 

optical flow19 technology have become state-of-the-art for navigation and collision 

avoidance (Chao et al., 2013, Ding et al., Raudies, 2013, Tchernykh et al., 2006). This 

concept was first introduced by an American psychologist to describe the visual stimulus 

inherent to animals to navigate through any scenery. In more simple terms this specific field 

of robotics attempts to mimic the movement of flying insects in a visual scene and as such 

contributes to safe operation of the UAV.        

A detailed account on UAV applications can be found in chapter 6.3.  

 

19 For various definitions see also Raudies, 2013  
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6.3. Applications  

The spatio-temporal richness of UAV systems make the application so transformative 

(Manfreda et al., 2018). In particular, when immediate response and live imagery or video 

footage is required in specific situations (e.g., accidents, disasters), UAVs can be deployed 

very rapidly and without putting the operator’s life at peril. In addition, UAV operations can 

be conducted in fairly adverse weather (some UAVs are weather proof) for collecting data 

in cloudy or hazy conditions. Another big advantage compared to traditional aerial or 

satellite image missions is the capability of specific timing and frequent acquisition of data 

(e.g., change detection, plant phenology), provided that flying conditions are suitable. More 

than a thousand peer reviewed studies and manifold projects make it almost impossible to 

provide a complete referencing of the subject. Thus, the following list of potential and proven 

applications is by no means meant to be exhaustive:  

− Policing duties 

− Traffic spotting 

− Fisheries protection 

− Pipeline survey 

− Wind and solar power plant 

inspection 

− Precision agriculture 

− Surveillance 

− Military operations 

− Disaster management (e.g., 

spills, avalanches) 

− Archaeology (site mapping) 

− Cadastral mapping 

− Geomorphological assessments 

− Façade inspection of buildings  

− Search and Rescue (SAR) 

− Fire fighting 

− Communications relay 

− Environmental monitoring 

− Aerial mapping 

− Meteorology 

− Wildlife management 

− Events film coverage 

− Forestry 

− Engineering 

− Soil erosion assessment 

− Land cover mapping 

− Volume determination of landfills 

− Contamination missions 

− Archaeology. 

 

In many cases the smaller, cheaper and easier-to-operate platform paradigm has gained 

an increasing appreciation in the remote sensing community (Colomina and Molina, 2014). 

An interesting twist and recent feature is the deployment of UAV swarms in the context of 

SAR operations, disaster management, communications improvement and environmental 

monitoring (Campion et al., 2018, Tahir et al., 2019). In addition, the integration of multiple 

imaging sensors onto the aerial platform also offers new application opportunities 

(Grenzdörffer and Niemeyer, 2011, Pajares, 2015, Wierzbicki, 2018). As examples of recent 

environmentally related UAV missions, work has targeted (a) land cover and rangeland 
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mapping (Akar, 2017, Laliberte et al., 2011); (b) vegetation phenology and health (Dell et 

al., 2019, Ludovisi et al., 2017, Pajares, 2015); (c) agriculture (Daponte et al., 2019, Urbahs 

and Jonaite, 2013); (d) invasive species infestation (Alvarez-Taboada et al., 2017); (e) 

disaster mapping (Stone et al., 2017); soil erosion (James R. Frankenberger et al., 2008); 

and change detection (Niethammer et al., 2012). UAV applications in the forestry sector (as 

is in part focus of this thesis) have reached such big numbers, with publications being 

abundant, that an entire chapter (6.8.) is dedicated to this subject. 

Future trends will certainly see more of the fusion of various sensors and the collaboration 

and coordination of swarms of UAV platforms. In particular with advances in battery life (i.e., 

increased flying times) and a legally sound integration of UAVs into air space, there will be 

virtually no limits for the potential application of this technology. First trials in areas such as 

crop pollination and traffic control sound quite promising (Pajares, 2015). Miniaturisation of 

UAVs (‘Micro-drones’) also hold great promise for a variety of operations. With a rising 

awareness of UAVs in the pubic, as well as in the industry, the annual growth rate in the 

UAV remote sensing market will certainly see a sharp increase. However, as has happened 

in other areas of remote sensing, the current hype is expected to also lead to some 

disillusionment, or a rather a level-headed dealing with emerging new technologies. In 

addition, especially concerning the proliferation of AI integrated algorithms in sensor and 

data analysis, more discussions and reconciliation is needed with respect to ‘big data’ 

issues and the protection of the privacy of individuals.        

6.4. Regulations and organisations 

In the last few years, the booming UAV market has increasingly induced issues concerning  

personal rights, but also air traffic safety. The ‘see – and – avoid’ and ‘see – and – be - 

seen’  routines once developed for visual flight rules are not deemed practical anymore, 

since UAVs with a size of less than one meter, flying at high speeds, cannot be detected 

early enough to avoid collisions. Thus, there’s been many initiatives to get UAVs integrated 

into air traffic under the ‘Sense and Avoid’ strategy (see also chapter 6.4. for regulatory 

requirements). Technology for operation in shared airspace asks for: detect conflicting air 

traffic, determine right of way, analyse flight path, manoeuvre, and communicate (Gupta et 

al., 2013, Yu and Zhang, 2015). As yet, only systems such as TCAS (Traffic Alert And 

Collision Avoidance System) engineered for commercial air traffic seems to be meeting the 

technical and regulatory requirements. A great variety of sensing systems based on 

microwave, radar, laser, acoustic and thermal technology bear the potential of becoming 

perfect candidates for ‘Sense and Avoid’ (Orefice et al., 2010, Skowron et al., 2019). As of 

now, UAV manufacturers such as DJI and Yuneec offer anti-collision sensors in their 
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portfolio, however, there’s still a long way to go for getting UAVs perfectly integrated into air 

traffic. 

The integration of UAV operations into existing air traffic demands for meticulous 

procedures to ensure safety and ease of use. As such, a lot of technicalities for certification 

and commercialisation of unmanned aerial vehicles need to be considered and harmonised 

by a large group of stakeholders and contributing agents (Colomina and Molina, 2014). 

Regulations are galore as are actors and initiatives to achieve acceptable standards. In the 

USA, representing one of the biggest markets and drivers for commercial UAVs,  the 

Federal Aviation Administration (FAA – www.faa.gov) issued specific rules in June 2016, 

which are updated at intervals (Federal Aviation Administration, 2016). Within the federal 

system of Germany, the detailed regulation of flights by UAVs and the related permissions 

(if required – see below) is given by the ‘Niedersächsische Landesbehörde für Straßenbau 

und Verkehr‘ as the authority in charge for Lower Saxony affairs (Niedersächsische 

Landesbehörde für Straßenbau und Verkehr, 2019). As a subordinate authority it acts on 

behalf of the Federal Ministry of Transport and Digital Infrastructure (BMVI) located in Berlin. 

It specifies the conditions under which flights can be made (see also the relevant regulations 

such as LuftVO (Luftverkehrs Verordnung – Air Traffic Regulation), LuftVG (Luftverkehrs 

Gesetz – Aviation Act) and LuftVZO (Luftverkehrs Zulassungs Ordnung – Air Traffic 

Admission Regulation)). In broad terms, flights are only allowed below 100m above ground 

under line-of-sight conditions (see also Figure 6.5 below). To enter airspace beyond this 

level, permissions need to be obtained and pilot’s qualifications to be presented. UAVs with 

a take-off weight under 0.25kg are to be labelled (pilot’s name and address). For UAVs 

exceeding 2kg of weight, pilots are required to proof that they are able to operate the 

unmanned platform safely and also show the relevant technical and juridical expertise. In 

addition, UAVs piloted beyond the 5kg bracket call for special permissions granted by the 

concerned air traffic authority. Under all circumstances, the no-fly zones (e.g., airport control 

areas, residential areas, military facilities, nature conservation areas) stipulated by the 

International Civil Aviation Organisation (ICAO) and other authorities have to be observed 

(provided in some flight planning software and apps). 
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Figure 6.5 Current general regulations concerning UAV operation in Germany (source: 
Niedersächsische Landesbehörde für Straßenbau und Verkehr).  

 

Regulations pertaining the operation of UAVs in Germany are currently subject to revision, 

since a generally valid solution for the members of the European Union is under way to 

harmonise legal provisions (European Union Aviation Safety Ageny, 2018). The new 

regulations, also permitting flights beyond visual line of sight, are expected to enter into 

force by mid of the year 2021. Airworthiness (design, functionality, construction and safety) 

for UAVs is issued by the European Unmanned Systems Centre (EuroUSC). However, new 

standards are currently being developed by the Institute of flight Guidance (DLR) as 

commissioned by the EASA.    

To the best of the author’s knowledge, no specific regulations for the operation of UAVs in 

Mongolia seem to exist.  

A considerable number of organisations have been founded in the last decade to promote 

UAV markets in terms of technical innovations, possible applications and guidance with 

respect to regulations and training. Most of the existing platforms work as an interface for 

industry, academia, and government. The world’s largest non-profit organisation, AUVSI 

(Association for Unmanned Aerial Vehicles International – www.auvsi.org), has committed 

itself to advance technology in UASs and robotics by bringing together its members from 

the civil, defence and commercial markets.  In addition, AUVSI organises conferences, 

which have gained a lot of attention in the UAV community. For Europe, the DACH 

(Association for unmanned aviation – www.uavdach.org), founded by the DLR, Diehl 

Defence, RUAG and Airbus, shares similar goals with the AUVSI. With the expertise of its 

members, it also advises regulatory bodies and its subsidiaries such as the European Union 
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Aviation Safety Agency (EASA). Smaller organisations, like the ‘Verband unbemannte 

Luftfahrt’ (www.verband-unbemannte-luftfahrt.de), or the ‚BUVUS‘ (Bundesverband für 

Unbemannte Systeme e.V. – buvus.de) cater for clients and users in Germany in particular.   

                

6.5. Image acquisition and mission project workflow 

 

Despite all spatiotemporal merits, UAVs suffer from their operational and processing 

problems. Image blur due to forward motion, varying resolution caused by variable flying 

heights, and geometric distortion attributed to camera lens quality shortcomings and 

inadequate image overlap are just some of the numerous factors, that can affect the derived 

products (Gerke and Przybilla, 2016, Manfreda et al., 2018, Whitehead and Hugenholtz, 

2014). In order to achieve the best possible results of a flying mission, the following best 

practice factors need to be accounted for: mission and flight planning; sensor configuration 

and calibration; in-flight data collection; ground control and radiometric calibration; 

geometric and atmospheric correction; orthorectification and image mosaicking; generation 

of the desired products (e.g. DSM, CHM) (Manfreda et al., 2018).  The following graph 

(Figure 6.6.) depicts all relevant aspects related to an UAV mission.    

 

Figure 6.6: Activities involved in UAV mapping and basic workflow (according to: Tmusic, et.al., 2020) 

 

As opposed to stable satellite trajectories and the use of premium sensors and components, 

off-the-shelf UAV products are geared for the consumer market with a limited lifetime and 
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relatively low quality standards. However, even with equipment under 1,000 Euros, 

presentable results can be achieved (e.g. DJI Mavic Air2 (UAV Campus Group, 2020)). 

Many aspects determine success or failure of an UAV survey and as such compel the user 

to gain background knowledge on the influencing factors (see Figure 6.7.). These can be 

simple factors such as flying height, target distribution, sensor choice, or image overlap, but 

interactions are complex. Although some of those aspects defy the user’s control, others 

require just a bit of fine-tuning and tweaking for satisfactory outcomes. In the subsequent 

sections the most relevant and feasible options and directives are detailed. Excellent 

resources to extract information from on how to perform a formidable flying mission are 

provided by Bosak (2011), Büchi (2018) and Wich and Koh (2018).        

 

 

        

Figure 6.7: The influence of various conditions on the output quality of an UAV flying mission: red – output 
product; purple – quality parameters; blue – software/hardware; orange – experiment design; 
light blue – environmental conditions; green – internal parameters. Arrow colours: grey – direct 
dependence, orange – inverse dependence (source: Tmusic, et.al., 2020).  

 

Pre-flight planning is the first essential step in a sequence of other actions for UAV data 

acquisition. This involves setting up of a study goal, the inspection of the area of interest for 

obstacles and topography, dealing with weather forecasts (including Kp index for GPS 

signal inaccuracies), complying with air traffic regulations and considering no-fly zones, 

sensor calibration (e.g., compass, accelerometer), considering number and distribution 
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pattern of the GCPs, making decisions on a suitable platform (fixed-, or rotary-winged) and 

imaging sensors ( see also chapter 6.2. for decision support), and not to forget the skill level 

of the pilot and other crew members (Manfreda et al., 2018, Tmušić et al., 2020). Field data 

(e.g., forest inventory parameters) also need to be collected, if specific data analyses are 

contemplated. Planning the mission itself has become very straightforward, since very 

sophisticated software (e.g., Pix4Dcapture, DroneDeploy, Mission Planner, UAV Toolbox) 

is at the user’s disposal these days. A background map or satellite image (e.g., Google 

maps, Bing maps) is used to define the confines of the mission area (placing of waypoints). 

In addition, parameters are set, such as camera shutter speed (should be short to avoid 

image blur), flying height, focal length, orientation of the camera, and image overlap 

(forward overlap of about 90% and side overlap of at least 60% are proven to be optimal 

(see also: (Dandois et al., 2015, Lisein et al., 2013, Mosbrucker et al., 2017, Seifert et al., 

2019, Whitehead and Hugenholtz, 2014)). 

In most instances, missions are carried out either semi-, or fully automatically. For this 

purpose, the pre-defined flying parameters are uploaded to the UAV for the onboard 

autopilot to conduct and control the survey. During the flight operation, relevant flight 

information is displayed on the ground control station for the pilot to monitor the campaign, 

upload new mission parameters, or abort the flight in justified cases. On completion of the 

flight, a log file with all relevant positional data is downloaded from the aircraft autopilot, or 

the data gets directly integrated in the image EXIF file. This information is subsequently 

used to provide initial estimates for camera orientations and image centre positions within 

the photogrammetry pipeline. 

If further processing of the resulting imagery is intended to take place within a 

photogrammetry environment, special caution has to be taken when employing consumer- 

grade cameras, since they do not meet the very strict standards of metric imagers. Poor 

camera performance potentially leads to error propagation in UAV DEMs (James and 

Robson, 2014). Manufacturers of professional cameras (frame cameras and DSLRs) 

furnish calibration protocols to be used as a reference when initialising a photogrammetry 

workflow. However, efforts would be out of proportion to carry out calibration with each 

camera in the consumer grade segment. Well-known biases are enhanced vignetting (pixels 

on the outside of the images receive less light than the centre pixels), attenuation and 

chromatic aberration (separation of colours at the edges of the image). Fast detector 

saturation and waveband overlaps also contribute to difficulties in obtaining proper spectral 

signatures of objects. Some of the most common image artefacts are depicted in Figure 

6.8. based on Whitehead and Hugenholtz (2014). Aforementioned downsides have 
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prompted authors such as Lebourgeois et al. (2008) to conclude, that consumer-grade 

cameras are to be considered unsuitable for photogrammetric operations.  

                

Figure 6.8: Common image artefacts of UAV remote sensing: (a) saturated image; (b) vignetting; (c) 
chromatic aberration; (d) mosaic blurring in image overlap; (e) incorrect colour balancing; (f) 
hotspots due to bidirectional reflectance; (g) relief displacement (tree lean); (h) image 
distortion due to DSM errors; (i) mosaic gaps caused by incorrect orthorectification ormissing 
images. Source: Whitehead and Hugenholtz, 2014. 

 

Nevertheless, some of the major issues can be resolved by: 

• using camera calibration software (freeware or proprietary) or test panels 

• mounting appropriate filters 

• avoiding extreme wide-angle lenses or fly high to avoid too much radial distortion 

• flying in favourable weather conditions (no clouds if possible; time around solar 

noon) 

• averting illumination conditions with extreme or too low contrast 

• using camera lenses with a fixed focal length (i.e., no zoom lenses) 

• keeping a constant flying altitude above ground to avoid imagery scale leaps 

• executing calibration schemes for multi-, hyperspectral and thermal sensors as 

provided by the manufacturer 

• capturing imagery from different viewing angles (multi-camera configuration, oblique 

views, varying flight line pattern, high image overlap), 

• and by employing modern photogrammetry software featuring SfM and MVS 

algorithms, which can handle non-metric imagery much better, than conventional 
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photogrammetry suites (Assmann et al., 2019, Colomina and Molina, 2014, Greiwe, 

2018, Kunneke, 2019, Manfreda et al., 2018, Næsset, 2016, Salamí et al., 2014, 

Seifert, 2019, UAV Campus Group, 2020, van Aardt, 2019, Vogt, 2020, Wich and 

Koh, 2018: 24–26).    

 

6.6. UAV data processing  

In the following a typical processing pipeline is presented irrespective of the software 

package being used. The acquired imagery can be processed in different ways, depending 

on the defined goals of the mission. Possible outcomes are terrain (DTMs) or canopy height 

models (CHMs), orthophotos, or maps featuring classified objects. The analysis of this 

imagery requires specific software and can be performed either in a remote sensing and/or 

GIS environment (e.g. ArcMap, QGIS, ENVI, TerrSet, SAGA, ECognition), or in a digital 

photogrammetry suite (e.g. Agisoft Metashape, Pix4D, DroneDeploy, Open Dronemap, 

MicMac, RealityCapture - for details also see: 3D Natives, 2019). For a more detailed and 

refined account on the project workflow employing Agisoft’s Metashape/Photoscan, which 

was used in the presented study, see also 

chapter 7.3.4.  

Upon a successful completion of a flying 

mission, the imagery gets uploaded into the 

selected software programme and visually 

inspected for blunders and redundancies for 

potential disposal. The subsequent steps of 

performing radiometric and geometric 

correction of the imagery are crucial for the 

achievable accuracies of the final  products. 

During the acquisition process the 

radiometric signal of the object to be 

captured is effected by the viewing geometry 

(sun-object-sensor), the illumination 

conditions, and atmospheric responses such 

as scattering and attenuation (Tu et al., 

2018). These effects get exacerbated by 

sensors, which do not present a 

radiometrically reliable signal. To 

compensate for such ramifications, sensor 

calibration has to be carried out either prior 
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(Image classification)

Align photos (cameras)

Build dense point cloud

Build mesh (3D 
polygonal model)

Generate texture

Build tiled model

Build DEM

Build orthomosaic

Export results

Figure 6.9: Typical UAV image processing 
workflow 
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or during image processing. For this purpose, radiometric reference targets, calibrated 

colour charts (e.g., XRite), and/or additional onboard sensors for irradiance measurements 

(e.g., Parrot Sequoia) are employed. The resulting correction function transforms the digital 

numbers (DNs) recorded by the sensor to linear radiometric coefficients (Tmušić et al., 

2020). Measurement geometry gets accounted for by assessing the object’s bidirectional 

reflectance distribution function. The pertaining information from each image is either 

averaged, or just the geometries close to nadir considered (Aasen and Bolten, 2018). A 

nifty approach was designed by Honkavaara and Khoramshahi (2018) to radiometrically 

correct geometry effects and changes in illumination conditions during bundle block 

adjustment.  

The determination of image orientation and location is pivotal for the photogrammetry 

process, as well as for the correct assignment of geometry attributes (coordinates) for 

further processing in a GIS workflow (Jurjević et al., 2020). The UAV’s onboard navigation 

system (IMU) usually provides sufficient information on the ‘position-velocity-attitude’ 

solution, but low-cost platforms are hardly accurate enough to satisfy the ambitious 

requirements of a photogrammetry system. Although direct sensor orientation with cm-level 

positioning seems possible in modern photogrammetry environments (Cramer et al., 2016, 

Rehak et al., 2013), the consideration of highly accurate Ground Control Point (GCP) 

measurements still prevails as a ‘gold standard’ (Assmann et al., 2019, Colomina and 

Molina, 2014, Tmušić et al., 2020, Zimmerman et al., 2020). Only in very specific 

constellations (e.g. fusion of imagery from different flying missions into one point cloud), the 

involvement of GCPs can be waived (Cook and Dietze, 2019). However, with the integration 

of differential GPS, real-time kinematic georeferencing (RTK-DG) or post-processed 

kinematic direct georeferencing (PPK-DG) into the UAV platform, the GCP standard will 

gradually be superseded (Gerke and Przybilla, 2016, Grayson et al., 2018, Jeziorska, 2019, 

Tmušić et al., 2020). Unfortunately, RTK and PPK services are not available around the 

globe, thus georeferencing of the products has to be carried out manually by matching map 

coordinates with image features. The evaluation of the geospatial products can 

subsequently be accomplished by using independent checkpoints, reference surfaces, or 

length measurements (James et al., 2019). 

In many ways image classification techniques have to be different from the analysis of 

satellite or other aerial imagery (see also chapter 4.3.), since, with UAV images featuring 

spatial resolutions of  a few centimetres, the amount of detail presents new challenges. 

Even high-resolution satellite images exhibit relatively homogenous clusters of pixels, 

whereas in UAV imagery, individual component parts of plants (branches, leaves) become 

apparent. This results in high contrast differences between and high variation within objects, 
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and as such, pixel-based classification algorithms seem overwhelmed in many instances. 

For a number of years, the object-based analysis strategy (OBIA) has proven to be a viable 

alternative. Pixels are amalgamated into groups to represent discrete objects, based on 

spectral, textural, shape properties and topological relationships. This process is also widely 

known as image segmentation. In many recent studies, the superiority of OBIA over pixel-

based approaches has been reported (Calderón et al., 2013, Dunford et al., 2009, Nebiker 

et al., 2008, Pádua et al., 2017, Rango et al., 2009, Salamí et al., 2014).  

A classified UAV image represents one possible option for a final product. Having said this, 

the generation of other outputs, like terrain models, orthomosaics, and surface 

representations, require further data analysis within the 3D realm.  This is accomplished by 

importing into and processing the UAV images in a digital photogrammetry suite, like 

Agisoft’s Metashape. Since the subsequent workflow is identical with the one outlined in  

chapters 4.5. and 4.6. (SfM and MVS), no further information is furnished in this section.                         

In many cases UAVs have demonstrated to be a cost-effective and promptly to deploy 

monitoring technique for survey areas smaller than about 20 ha – beyond that aerial or 

satellite platforms might be a better option. Despite all merits, some fundamental issues 

and related challenges with UAV surveys are evident: 

• Government regulations restricting flying missions become more and more strict. 

• The huge variability in methodologies, sensors, and data analysis strategies makes 

it very intricate to compare outcomes of studies and missions. 

• Technical limits (sensor size, radiometric resolution, battery life) still prevail. 

• The high spatial resolution of UAV imagery demands for high processing and 

storage capacity. 

• There are no standards for sensor calibration routines, error propagation 

assessments, and quality management. 

• It remains very hard to get hands on information regarding data processing 

algorithms, even though there is a growing number of open source software 

becoming available (Beck, 2019, Haala and Rothermel, 2012, Manfreda et al., 2018, 

Pádua et al., 2017, Poley and McDermid, 2020, Remondino et al., 2014, Salamí et 

al., 2014, Shakhatreh et al., 2019, Tang and Shao, 2015, Tmušić et al., 2020, UAV 

Campus Group, 2020, Vogt, 2020, White et al., 2016, Whitehead and Hugenholtz, 

2014).    
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6.7. UAV photogrammetry 

So, why dedicate an entire section to UAV photogrammetry, when all relevant traits have 

been dealt with in chapters 4.5. and 4.6. already? A number of studies, as well as own 

experiences suggest, that, although having performed a (near) perfect flying mission, the 

outcomes of a photogrammetry workflow can be far from being satisfactory. Apparently, the 

specific characteristics of the vegetation observed (i.e. trees) in combination with the 

photogrammetry algorithms and the associated parameters hugely effect the quality of the 

final products (e.g. CHMs, orthomosaics) (Dandois et al., 2015, Fankhauser et al., 2018, 

Hugenholtz et al., 2013, Nex and Remondino, 2014, Puliti et al., 2015, Seifert et al., 2019, 

UAV Campus Group, 2020). A flawed object reconstruction bears the potential to 

inaccurately quantify the distribution, spatial extent and volume of the trees. 

The three-dimensional reconstruction of features seems to be working best for objects, 

which are stationary, solid, well-lit and show distinctive textures and patterns (Mostegel et 

al., 2016, Nex and Remondino, 2014, Przybilla et al., 2019a, 2019b). However, most 

vegetation objects are complexly structured (branches, leaves), with low opacity (e.g., due 

to defoliation) and a rough surface. Even in calm conditions, the reflective properties and 

the varying geometric arrangement exacerbate the situation with divergent orientations and 

sizes. In addition, due to the similarity of the shape of thousands of leaves, the proper 

identification and matching of key features seems an almost vain endeavour. As a result, 

errors get disproportionately inflated during the recursive camera positioning calculations 

(bundle adjustment). With such error propagation introduced into the photogrammetric 

workflow, artificial discontinuities and artefacts become prevalent features in the point cloud 

generation process and need to be assessed painstakingly before the reconstructed object 

surface is submitted to further analysis (Alidoost and Arefi, 2017, James R. Frankenberger 

et al., 2008, Schöning and Heidemann, 2015, Seifert et al., 2019, Sona et al., 2014).  

The selection of a specific photogrammetry suite, as well as the settings of the workflow 

parameters also greatly affect the achievable accuracies of the reconstructed output. In a 

very elaborate recent study carried out by Probst et al. (2018), the most relevant findings 

were - when assessing six popular photogrammetry software packages: 

• ‘…all software trials yielded object representations clearly identifiable as trees…’.  

• All of them showed inaccuracies and artefacts manifested as errors of commission 

and omission, with incomplete representations (holes, discontinuities). 

• Floating artefacts in particular require laborious and costly manual clean-up of the 

point cloud. 

• In some cases, background features were attached to the foreground. 

• Errors within the foliage are very difficult to identify. 
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• Vertical disparities (in the tree crown) in particular contribute to the failure of 

algorithms during bundle adjustment. 

• The parametric configuration of the software tested appears to be rather static and 

thus fails to adapt to local conditions.  

 

In the following graph some of their major findings are illustrated. 

 

 

Figure 6.10: UAV scene image (a), and software generated 3D-reconstructions (b-f). Source: Probst, et.al. 
2018. 

 

The subsequent graph illustrates the discrepancies between a synthetic reference tree and 

the models derived from the imagery itself. 
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Figure 6.11: Derived point clouds aligned to reference synthetic tree in lateral and nadir views (first two 
columns); local distance discrepancies are indicated in colour (blue: zero discrepancy, purple 
and red for larger distances) – columns three and four. Source: Probst, et.al., 2018. 

 

Another interesting finding of above-mentioned authors is, that the settings in the software 

(here: Agisoft Metashape) to achieve point clouds in a much higher density (i.e., highest 

quality), can have a detrimental effect on the fidelity of the reconstructed object. They 

presume, that the highest-quality settings filter out scene components with a representation 

frequency below an internally defined image number threshold. All of the before-mentioned 

revelations are perfectly in line with my own observations during data analysis and the study 

we carried out in 2019 (Seifert et al., 2019). In addition, we also found out, that extreme 

image resolution, resulting in a very high number of detail, does not necessarily lead to 

better results. In one case, the highest resolution imagery depicting a lime tree yielded the 

worst number of tie points instead. In essence, the findings support the idea, that SfM and 

MVS algorithms are designed  for opaque objects with more or less Lambertian surface 

reflectance properties. The algorithms seem more geared for gradual changes in object 

parallax and illumination geometry. 

Before concluding this section, I should like to make a final remark – this concerns the 

conspicuous absence of technical documentation applying to most of the software 

packages. Even with the vendor’s or manufacturer’s support, the user is quite often left to 

his own devices. This issue is partly mitigated by online forums. However, some of the 

shared information can be deemed speculative, or is only suited for specific conditions.        
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6.8. UAVs in forestry 

The last decade has seen a substantial proliferation of the application of UAVs in the forestry 

sector. This is attributed to the fact, that UAV platforms have become much more affordable, 

and advances in sensor technology now allow payloads, such as LiDAR and hyperspectral 

imagers, which were limited to sizeable (manned) aerial and spacebourne platforms before. 

In this chapter the array of actual and potential applications is sketched first, with a 

subsequent, more detailed account of an arbitrary selection. 

 

In the literature researched the following applications are reflected: 

• Forest fire detection (single 

operation or swarms of UAVs)  

• Post-fire monitoring 

• Inspection of harvesting 

operations 

• Monitoring and change detection 

within natural forests 

• (Tree) species identification 

• Assessment of silvicultural 

treatment 

• Forest health 

• Biodiversity and habitat 

assessments 

• Appraisal of seasonality in 

vegetation 

• Forest pest detection and 

analysis 

• Wildlife management 

 

 

 

 

 

 

 

 

• Extraction of forest structural 

parameters 

• Examination of forest / canopy 

gaps 

• Mapping below canopy features 

• Detection of forest regeneration / 

succession 

• Soil disturbance assessment 

• Tree stump detection 

• Tree specific parameter 

extraction 

• Tree planting  

• Applying fertilisers and pesticides 

from UAVs 

• 3D mapping beneath tree canopy 

• Post-harvest waste assessment  

• Agroforestry  

• Invasive species detection. 
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In this respect, excellent examples are provided by: Banu et al. (2016), Berni et al. (2009), 

Brovkina et al. (2018), Chisholm et al. (2013), Desale et al. (2019), Getzin et al. (2012), 

Getzin et al. (2014), Grenzdörffer et al. (2008), Guimarães et al. (2020), Innovatek (2020), 

Iost Filho et al. (2020),  Nex and Remondino (2014), Niemann (2020), Pajares (2015), Puliti 

et al. (2015), Pádua et al. (2017), and Suomalainen et al. (2014).  

When considering a UAV based forest survey, specific challenges need to be taken into 

account. Firstly, sufficient and level space is required for safe take-off and landing of the 

system, which is a very demanding task in closed forests. Secondly, atmospheric conditions 

above the canopy vary greatly, resulting in turbulences and thus affecting the stability of the 

UAV platform. Thirdly, line-of-sight operation of the vehicle is only possible within a short 

range, because of the obstruction of the UAV by big trees. However, in a growing number 

of cases the situation will be alleviated with strict regulations to be eased in the future to 

allow for automatic UAV missions (see also chapter 6.4.). Last, but not least, salvaging a 

stranded aerial vehicle in a forest environment is far from being trivial and requires some 

precautionary measures and dispositions.      

6.8.1.   Forest structural parameters estimation 

Forest inventory reflects a continuous activity to appraise physical, chemical and biological 

parameters over time. UAVs now offer an economical and highly accurate alternative to 

satellite-, or aerial-based platforms, as well as to copious and labour-intensive field work. 

Forest inventory parameters can either be gathered on a stand, or individual tree level 

(Guimarães et al., 2020). Stand-level criteria such as basal area, average stand height or 

volume, are better derived using an area-baes approach (ABA). Whereas for stem density, 

tree height, and crown length, the individual tree crown (ITC) approach appears to be the 

method of choice (Yu et al., 2010). All of the studies investigated either use ALS point cloud 

data or ground-truth measurements as  a reference to compare the outcomes. Statistical 

methods are applied and the related coefficients (e.g., coefficient of determination (R2 ) and 

Pearson’s correlation (r)) indicated. A detailed account on the extraction of forest inventory 

parameters from imagery is given in chapter 4.6.   

In the following a selection of the most cited and notable peer reviewed studies is presented 

considering the extraction of inventory parameters at stand, as well as tree level. Prior to 

attending to the outcomes in detail, the distinguished reader has to be advised of specific 

aspects: 

i. The determination of tree height (aside from tree species) is legitimately one of the 

most relevant actions in the  assessment of forest characteristics. Most of the other 

determinants (e.g., DBH, volume) are derived from tree height using allometric 
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formulas or some kind of regression function. As such, great care has to be taken, 

when judging tree height outcomes.  

ii. In their recent study Stereńczak et al. (2019) found out, that field surveys in general 

underestimate tree height compared to the length measurement of felled trees. 

However, this is contrasted by Krause et al. (2019), who observed slight 

overestimates in field surveys.  

iii. In Kitahara et al. (2010) it is concluded, that inexperienced surveyors cause big 

errors in tree height estimations, in particular in broad-leaved trees. 

iv. Tompalski et al. (2014a) and other authors ascertain, that blunders in tree height 

estimation result in grave inaccuracies in tree/stand volume calculation, just as with 

generic allometric formulas (i.e. non tree species specific). 

v. Other research (e.g. Sibona et al., 2017) revealed, that LiDAR estimates of tree 

heights are closer to actual values than field survey mensuration results. This seems 

particularly true for tree crowns with a conical shape. 

 

In stand-level studies height parameters play an ever so important role when assessing 

forest structure. The results in most of the investigations were coherent, featuring strong 

correlations (see also table 6-3 below). In addition, there is broad agreement, that outcomes 

depend on the sensor payload, and the forest characteristics and species configuration 

(Cao et al., 2019, Guo et al., 2017, Ota et al., 2017, Puliti et al., 2015, Xu et al., 2020). In  

most cases UAV-LiDAR seem to obtain better results than those acquired by UAV RGB 

sensors. This sounds explicable, since RGB point clouds are limited to the upper part of the 

canopy, as opposed to LiDAR technology. Nevertheless, RGB derived CHM exhibit a higher 

point density than the laser point clouds and thus are more tuned for the extraction of higher 

detail. When considering various forest types, Puliti et al. (2015) suggest that boreal forests 

are easier to assess due to less variation in tree species and height. Broad-leafed forests, 

in comparison, typically are more complex and more dense. These findings are very much 

in line with discoveries made by Cao et al. (2019), who notice, that most coniferous trees 

have a more regularly shaped crown. Wallace et al. (2016) account  the comparison 

between LiDAR and UAV RGB height metrics in a sclerophyll eucalypt forest. Since SfM 

photogrammetric technique is not able to properly model the terrain for CHM derivation, 

LiDAR showed a much better performance (RMSE of 0.92m for LiDAR and 1.30m for SfM).  

The derivation of stem number (Sn) appears to be a real challenge, especially in dense 

forests and with species characterised by irregular height and crown (Gobakken and 

Næsset, 2004). This explains the relatively poor, but still acceptable accuracies with good 

correlations (Brieger et al., 2019, Cao et al., 2019, Puliti et al., 2015).  
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Stem volume (Sv) is also reflected in a number of studies, with strong correlation obtained, 

irrespective of the sensors being used (Chen et al., 2017a, Giannetti et al., 2018, Goodbody 

et al., 2017b, Puliti et al., 2015). Once again, the more open and less complex structure of 

boreal forests seem to contribute to the good results (Goodbody et al., 2017b). 

For the determination of basal area (BA) the investigations conducted by Alonzo et al. 

(2018) yielded a strong correlation (R2 = 0.79). This is, however, in dissent with the findings 

by Puliti et al. (2015) and Cao et al. (2019), who only achieved a good correlation (R2 = 0.60 

and 0.61). Apparently, better results can be achieved by incorporating variables 

representing crown height, colour and shape (Alonzo et al., 2018).  

Diameter at breast height (DBH) was explored by Cao et al. (2019). Good correlation was 

reported for UAV LiDAR (R2 = 0.69) and RGB (R2 = 0.50) derived point clouds. However, 

LiDAR and RGB derived estimations were almost on par when considering forest structural 

attributes.  

Results are quite promising for the estimation of stand volume (V). Cao et al. (2019), 

Jayathunga et al. (2018b) and Ota et al. (2017) inform about a strong correlation (R2 

between 0.78 and 0.84), with a slightly higher correlation for LiDAR derived metrics. Apart 

from that, respectable outcomes can also be achieved by combining LiDAR-DTM and RGB 

DSM metrics (Jayathunga et al., 2018b). 

Above ground biomass (AGB) estimations showed good correlation in the study carried out 

by Cao et al. (2019). Better results were achieved by Alonzo et al. (2018) and Guo et al. 

(2017). All studies indicate, that acceptable estimations can be obtained using LiDAR or 

RGB sensors. Apparently, all outcomes can be related to the type of forest assessed.  

Table 6-3: Sensing payloads and results from stand-level studies (based on Guimarães, 2020). 

Studies Sensor type   Results (R2)       

 RGB LiDAR CIR HL HM Hdom Sn BA Sv DBH V AGB 

Puliti et al., 2015 
  ● 0.71  0.97 0.60 0.60 0.85    

Giannetti et al., 

2018 
●  ●      

0.80-
0.83 

   

Chen et al., 2017a 
●        0.91    

Cao et al., 2019 
 ●  0.90   0.56 0.64  0.69 0.78 0.68 

Cao et al., 2019 
●   0.82   0.50 0.61  0.50 0.70 0.63 

Jayathunga et al., 
2018a 

●          0.84  

Guo et al., 2017 
 ●    0.81      0.84 

Goodbody et al., 

2017b 
●        0.93    

Ota et al., 2017 
●   0.93 0.93 0.91     0.75  

Surový et al., 2018 
●      

50%-
80% 
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Studies Sensor type   Results (R2)       

Medvedev et al., 
2020 

●     
60%-
87% 

      

Brieger et al., 2019 
●      67%      

Gülci, 2019 
●    0.78  0.87      

Xu et al., 2020 
●   

0.58-
0.95 

   
0.24-
0.52 

  
0.29-
0.71 

0.27-
0.64 

Thiel and 
Schmullius, 2017 

●      93%      

CIR: Colour Infrared; HL: Lorey’s Mean Height; HM: Maximum Height; Hdom: Dominant Height; Sn: Stem Number; BA: Basal 

Area; Sv: Stem Volume; DBH: Diameter at Breast Height; V: Volume; AGB: Above Ground Biomass. 

 

Considering tree-level studies, RGB sensor derived height metrics reveal the full potential 

of this technology. Strong correlations are reported by Ni et al. (2015), Guerra-Hernández 

et al. (2016), Guerra-Hernández et al. (2017), Hao et al. (2021) and Lin et al. (2018). R2 

values range from 0.81 to 0.95. Other authors used UAV-LiDAR to also obtain a strong 

correlation (Jaakkola et al., 2017, Yin and Le Wang, 2019).  Sankey et al. (2017) achieved 

an R2 of 0.90 when using LiDAR, multi-, and hyperspectral sensors. In their investigation, 

Wallace et al. (2016) found that LiDAR performed much better (R2 = 0.84) than SfM derived 

height information (R2 = 0.68). According to them, the poorer performance can be blamed 

on the fact, that mid- and understorey parts of the forest are not well represented. In 

contrast, when looking at Eucalyptus plantations in Portugal, Guerra-Hernández et al. 

(2018) conclude, that UAV generated point clouds are as good as ALS derived point clouds 

for estimating individual tree height. The authors achieved even good results in high-density 

eucalypt forests. However, they point out, that landscapes featuring a canopy cover 

exceeding 60% and with slopes steeper than 20% must be considered with caution. Their 

findings is very much in line with the outcomes of a study conducted by Dandois and Ellis 

(2013). The achieved performance of the UAV derived CHM was similar to the LiDAR 3D 

point cloud height estimates. When assessing UAV imagery-derived stand parameters for 

pine tree plantations in Turkey Gülci (2019) found out that tree density, crown shape, and 

branching structure considerably effected the achieved accuracies. Kameyama and 

Sugiura (2021) deployed a DJI Phantom3 UAV to assess imagery of 20 different flight 

conditions to be processed in three different digital photogrammetry software packages. 

They conclude, that a low flying altitude is conducive to an overall accurate creation of the 

3D tree models, and that image artefacts, wind speed and light conditions are to be 

meticulously considered. According to their analysis of the pertaining point clouds, the tree 

height showed an overall RMSE of 5-6m, with the Pix4D software performing best, followed 

by Agisoft’s Metashape. As such, the selection of an appropriate photogrammetry software 

seems imperative.     
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Crown diameter (CD) estimation with strong correlation (R2 from 0.72 to 0.85) with regard 

to LiDAR systems can be found in Sankey et al. (2017) and Yin and Le Wang (2019). 

Panagiotidis et al. (2017) employed an RGB sensor to obtain crown metrics from conifer 

dominated forest plots. The correlation ranged from  0.63 to 0.85 for R2. Most of the authors 

conclude, that better results can be obtained in more open forests, whereas poor 

performance is expected in denser vegetated areas (Guerra-Hernández et al., 2016, 

Panagiotidis et al., 2017, Sankey et al., 2017).  

 

Table 6-4: Sensing payloads and results from tree-level studies (based on Guimarães, 2020). 

Studies Sensor type   Results (R2; *r)     

 RGB LiDAR CIR MSP HSP H CD DBH Sv AGB 

Ni et al. ●     0.87     

Wallace et al., 2016  ●    0.84     

Wallace et al., 2016 ●     0.68     

Guerra-Hernández et al., 

2018 
●     

0.61-
0.69* 

    

Chen et al., 2017a ●     0.76*     

Carr and Slyder, 2018 ●       0.82*   

Surový et al., 2018 ●          

Dandois et al., 2015 ●     0.86     

Chisholm et al., 2013  ●      0.45   

Sankey et al., 2017  ●  ● ● 0.90 0.72    

Guerra-Hernández et al., 

2016 
●     0.81 0.95    

Lin et al., 2018 ●     0.92     

Panagiotidis et al., 2017 
●     0.75-0.72 

0.63-
0.85 

   

Yin and Le Wang, 2019 
 ●    >0.9 

0.83-
0.85 

   

Otero et al., 2018 ●     0.6     

Guerra-Hernández et al., 

2017 
●     0.96  0.79  0.86 

Zarco-Tejada et al., 2014   ●   0.83     

Peña et al., 2018 
●     0.6    

0.25-
0.54 

Krause et al., 2019 ●     0.97     

Dandois and Ellis, 2013 ● ●    0.63-0.84     

CIR: Colour Infrared; MSP: multispectral; HSP: hyperspectral; H: Tree Height; CD: Crown Diameter; DBH: Diameter at Breast 

Height; Sv: Stem Volume; AGB: Above Ground Biomass. 

 

DBH estimations showing consistently strong correlation are covered by various authors, 

such as Carr and Slyder (2018), Iizuka et al. (2018) and Guerra-Hernández et al. (2017) 

(R2 of 0.82, 0.79 and 0.79). All of them used RGB sensors as UAV payload. LiDAR 

performances were inconsistent. Jaakkola et al. (2017) obtained a strong correlation (r = 
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0.88), whereas Chisholm et al. (2013) report an R2 value of 0.45. The latter used an UAV 

mounted LiDAR system to fly below the forest canopy. The GPS denied environment shows 

several limitations, in such the point cloud cannot easily be referenced in space. 

Nonetheless, DBH estimates were positively correlated with the human-based values, and 

thus holds the potential for further advancements. Innovatek (2020) reports the first 

successful attempts of autonomous UAV flights under a forest canopy in a Pinus radiata 

forest in New Zealand. The system consists of a localisation and 3D mapping laser scanning 

system to create point clouds with no GPS signal. 

Strong correlation on stem volume (Sv ) estimation are recorded by Jaakkola et al. (2017) 

and Abdollahnejad et al. (2018) with values for r of 0.88 and R2 of 0.71, respectively. 

Jaakkola et al. used a UAV LiDAR system, while Abdollahnejad deployed an RGB based 

platform.  

Literature on AGB estimation is still scant. However, the results of the few existing studies 

are promising. RGB sensors were used in surveys conducted by Lin et al. (2018), Guerra-

Hernández et al. (2017) and Otero et al. (2018). Correlations varied from 0.75 to 0.96 for 

R2. Jaakkola et al. (2017) achieved a strong correlation of 0.89 for R2. All studies have in 

common, that flying missions were performed in forests with fairly low tree density. In 

addition, it is concluded, that good AGB estimates sorely hinge on accurate individual tree 

height extraction (Lin et al., 2018). Above findings clearly demonstrate, that the 

consideration of stand-, as well as individual tree traits play a major role in the adequate 

analysis of canopy height models.  

 

6.8.2. Tree species classification 

Besides the determination of tree height, the identification of tree species is another crucial 

factor in forest inventory. Nonetheless, this task requires a rigorous selection of the relevant 

variables and classification technique, as well as a strict error assessment (Belgiu and 

Drăguţ, 2016). Tree species can either be identified by their spectral response, or by their 

structural parameters, or by the combination of both approaches. In most of the reviewed 

studies RGB, CIR and hyperspectral sensors were employed, contrasting to the 

determination of structural parameters, where LiDAR sensors and UAV image derived 

CHMs were the preferred choice. Because of the high resolution properties of the UAV 

imagery, individual tree detection and OBIA algorithms were applied in the majority of the 

studies (Guimarães et al., 2020). Of the classification approaches RF appears to be the 

favourite candidate, since RF is able to handle high data dimensionality and has proven to 

be insensitive to overfitting (Belgiu and Drăguţ, 2016, Nevalainen et al., 2017). In addition, 
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the extra introduced randomness is reported to increase performance considerably 

(Theodoridis and Koutroumbas, 2009: 221). In contrast, when dealing with multiple features 

and limited records, SVM appears to be the better choice (Pádua et al., 2019). The following 

table provides a concise survey of the findings in the literature.   

 

Table 6-5: Sensing payloads and classifiers used for tree classification (based on Guimarães, 2020). 

Studies Sensor type   
Classification 

method 
    Accuracies 

 RGB LiDAR CIR HSP 
k-Nearest 

Neighbours 
RF SVM MaxL CNN  

Sothe et al., 2019    ●  ● ●  ● 72.4% 

Nezami et al., 

2020 
●   ●     ● 

94.8-99.6% 

Nevalainen et al., 

2017 
   ●  ●    

95% 

Miyoshi et al., 
2020 

   ●     ● 
95-97% 

Lisein et al., 2015 ●  ●   ●    64-84% 

Laliberte et al., 
2010 

●        ● 
83-88% 

Goodbody et al., 

2018a 
●     ●    

86-95% 

Brovkina et al., 

2018 
●  ●  ●     

75-78% 

Michez et al., 2016 ●  ●   ●    79.5-90.6% 

Röder et al., 2018 ●     ●    60.7% 

Cao et al., 2018    ● ●  ●   82-88% 

Sá et al., 2018 ●  ●   ●    96% 

Fromm et al., 2019 ●        ● 81% 

Gini et al., 2014 ●  ●     ●  80% 

Sankey et al., 
2017 

 ●  ●  ●    
76% 

Tuominen et al., 

2018 
   ● ● ●    

82% 

Komárek et al., 

2018 
●      ●   

77-91% 

CIR: Colour Infrared; HSP: Hyperspectral; RF: Random Forest; SVM: Support Vector Machine; MaxL: Maximum Likelihood; 

CNN: Convolutional Neural Network. 

 

Good examples of the application of RF on RGB imagery are given by Goodbody et al. 

(2018a) and Röder et al. (2018). Goodbody et al. explored the forest regeneration in clear-

cut stands by using orthophoto mosaics, dense point clouds and vegetation indices to apply 

OBIA and RF for classification. The overall accuracies ranged from 86% to 95%. Röder et 

al. looked into the disturbances caused by Ips typographus (European bark beetle). 

Random forest algorithm was exercised to correctly delineate affected trees. The overall 

poor performance (i.e. 60.7%) was explained by the complex structure of the test areas. 

Michez et al. (2016) also applied RF method, but in addition to a RGB sensor they employed 

CIR imagery to survey riparian forests. The combination of RF and OBIA yielded overall 

accuracies of 79.5 to 84.1%. Komárek et al. (2018) applied OBIA and SVM algorithms to 

RGB and multispectral imagery to find out, that multispectral imagery was substantially 

superior to RGB sensors (77-91% vs 67-80%). Other important findings were, that the 

overall classification accuracy decreased with the increasing complexity of the vegetation, 
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and that higher spatial resolution can in no way act as a surrogate for the lack of spectral 

bands. To investigate the potential of UAV RGB and NIR imagery for mapping the invasive 

Acacia longifolia Sá et al. (2018) used RF and CHM to achieve an overall accuracy Cohen’s 

Kappa value of 0.95. Nevalainen et al. (2017) deployed an UAV with hyperspectral and 

RGB sensor onboard to exploit the data fusion of both sensors. The highest accuracies 

(95.2%) were achieved by applying RF when classifying pine, spruce, larch and birch stands 

in a boreal forest. Other classifiers, such as k-NN and SVM were tested on UAV 

hyperspectral imagery to distinguish various different tree species in mangrove forests. Cao 

et al. (2018) found that SVM outperformed k-NN (82.39% vs 76.12%). However, the best 

results were achieved by combining spectral and height information (i.e., CHM) – the 

accuracies increased to 82.09% for k-NN and 82.39% for SVM.  

Other classifiers, such as CNN and the more traditional  maximum likelihood were also 

noted in investigations. Gini et al. (2014) observed overall accuracies for tree species 

discrimination in a park in Italy for ISODATA classifier a value of 50%, whereas the 

supervised classification (i.e. maximum likelihood) yielded a sheer 80%. A comprehensive 

study was carried out by Sothe et al. (2020) to contrast more sophisticated classifying 

algorithms such as SVM, CNN and RF. The data extracted from hyperspectral and 

photogrammetric technologies were subsequently subject to the classification process. The 

results showed very clearly, that the inclusion of the CHM to the hyperspectral data 

substantially improved the classification results in general. The machine learning classifier 

CNN was found to be up to 26% more accurate than the SVM and RF when only the 

hyperspectral bands were considered.  In general, all authors were able to achieve 

satisfactory results with the classifiers used. Tuominen et al. (2018) applied a RF and a k 

nearest neighbour (k-nn) classifier on hyperspectral imagery for the distinction of 26 tree 

species in an arboretum in Finland. In their investigation the k-nn classifier provided 

consistently better results than RF. However, best results were achieved by combining 

hyperspectral with 3D point cloud features and k-nn, yielding an overall accuracy of 82% 

for tree species and 87% for tree genus.    

 

6.8.3. Forest health and biomass estimation 

The control of biophysical variables, such as chlorophyll content and biomass are of 

particular interest, when assessing potential treatments of forest sites (e.g. fertilisation, 

irrigation), the calculation of fuel for forest fires, and the determination of funding within the 

scope of a REDD+ programme (Puliti et al., 2015, Salamí et al., 2014, Wallace et al., 2012). 

In a specific study, the deployment of a helicopter-based UAV proved to be very successful, 

when thermal and narrowband multispectral sensors were used to determine LAI, 
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chlorophyll content and water stress parameters. The outcomes showed on par accuracies 

with aerial based sensoring platforms, however, at lower cost and with higher flexibility 

(Berni et al., 2009). A similar study was carried out by Zarco-Tejada et al. (2012). They 

conclude: ‘The work presented in this manuscript demonstrates the feasibility of thermal, 

narrow-band indices and fluorescence retrievals obtained from a micro-hyperspectral 

imager and a light-weight thermal camera on board small UAV platforms for stress detection 

in a heterogeneous tree canopy where very high resolution is required’. Dell et al. (2019) 

proved in their study, that even plain RGB imagery has the potential to detect necrotic 

foliage. They combined a generated CHM and the so-called VARIgreen index to enhance 

the subtle discoloration effects of Eucalyptus pellita caused by a fungus infection.  

Hernández-Clemente et al. (2012) employed a multispectral camera onboard a fixed-wing 

platform to successfully obtain chlorophyll and carotenoid content of a pine forest effected 

by decline processes. Disregarding the very costly sensoring systems, CIR imagery also 

remains very qualified for the determination of forest health. However,  as is true for all 

stress detection approaches, the spectral signature, or rather the response of an afflicted 

forest or tree can be hardly linked to a specific cause such as water or nutrient deficiency, 

or a pest attack (Jones and Vaughan, 2010: 271–272).  

An example for calculating biomass in a Malawi woodland  is provided by Kachamba et al. 

(2016). Here, the authors used the  UAV imagery derived canopy height and the spectral 

variables of the RGB sensor to successfully model a biomass value of 38.99 Mg.ha -1 . 

Jayathunga et al. (2019) also derived biomass from canopy height models, in this case, 

however, considering leaf-on and leaf-off conditions in a mixed conifer-broadleaf forest in 

the University Hokkaido Forest. They found out, that image downscaling had a negative 

impact on the biomass estimation and the accuracy of the CHM. In addition, leaf-off biomass 

estimation performed poorer for broadleaf trees, with a better performance for conifer 

biomass. Interestingly, the biomass estimation apparently varied with statistical approaches 

(e.g. parametric, non-parametric) as well as data sources (i.e. different image resolutions, 

vegetation metrics). Peña et al. (2018) investigated the estimation of biomass of poplar 

plantations for lignocellulose production. Correlation between field measurements and CHM 

derived values were found to be acceptable (i.e. R2 = 0.599), with an unsatisfactory outcome 

of  R2 of 0.247 when correlating biomass with NDVI derived form a multispectral camera. 

Lin et al. (2018) had much greater success, when determining tree biomass in a sparse 

subalpine coniferous forest on the banks of the Minjiang River, China. They deployed a fix-

winged UAV with an onboard RGB camera to take oblique imagery. The resulting CHM 

yielded biomass estimates with an R2 of 0.96 and 54.9 kg for individual trees.    
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6.8.4. Forest wildfire and pest detection 

In their study Merino et al. (2012) demonstrate the successful deployment of a fleet of three 

UAVs equipped with TIR sensors to observe stages in the evolution of a fire, which is crucial 

for effective fire-fighting, without putting people’s lives at risk. This is a an excellent example, 

on how UAVs can communicate, collaborate, and cooperate, especially, when it comes to 

the assignment of a portion of a global goal to each aerial platform (Pajares, 2015). Forest 

burn severity was assessed by Shin et al. (2019) by deploying a RedEdge multispectral 

camera UAV to classify the impact of a wildfire in South Korea. Maximum Likelihood, 

spectral angle mapper, and thresholding of an NDVI were used as classifiers to determine 

the burned surface, as well as the degree of tree damage. Not only thermal infrared sensors 

are most suitable for UAV applications in wildfires, but also RGB and multispectral cameras, 

to estimate forest canopy fuels and tree densities (Guimarães et al., 2020). Although most 

of the forest fire studies focus on post-fire phenomena, UAVs are also suited for monitoring 

wildfires on a regional scale. NASA’s high payload Ikhana UAV seems to be perfectly cut 

out for this task. 

Tuominen et al. (2018) and Näsi et al. (2018) compared hyperspectral imagery taken by an 

UAV and a traditional aerial platform to detect damage in a boreal forest in Lahti, Finland, 

caused by Ips typographus, L.  The finer resolution of the UAV imagery yielded better results 

(overall accuracy of 81% vs 73%) than the aircraft imagery. Minařík and Langhammer 

(2016) declare, that dead trees were only separable in the red and red-edge portion of the 

infested trees.  In a different study, the infestation with Agrilus biguttatus (Fabricius) on oak 

was assessed by Lehmann et al. (2015). With a combination of CIR and NIR sensors the 

various infestation levels were determined with an overall Kappa Index of 0.81 and 0.77 for 

each study site, respectively. Cardil et al. (2019) and Otsu et al. (2018) employed RGB 

sensors to determine the level of defoliation in pine trees by the pine processionary moth. 

The mission yielded an overall accuracy of 79% for the three different defoliation classes. 

Lin et al. (2019) employed LiDAR and hyperspectral sensors to detect damage in pine 

forests caused by the pine shoot beetle. The LiDAR approach proved to be more rewarding, 

but the detection rate improved considerably when combining both technologies (R2 = 0.83).  

Goodbody et al. (2018b) melded structural and spectral  (NDVI) information for predicting 

cumulative defoliation caused by spruce budworm (Choristoneura fumiferana ,Clem.) to find 

out, that spectral metrics outperformed structural metrics by far (R2 0.79 vs 0.49). In case 

the spraying of the forest/crop is required as a last resort, Desale et al. (2019) and Iost Filho 

et al. (2020) recommend the deployment of UAVs for specific treatment of the vegetation. 
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6.8.5. Biodiversity 

Fallen trees were surveyed by Inoue et al. (2014) in eastern Japan as an indicator for 

biodiversity (e.g. colonisation with fungi and saproxylic insects) and biogeochemical cycling. 

DEMs were generated from imagery taken by a consumer-grade RGB camera mounted on 

an unmanned helicopter flying at low altitude. About 80-90% of the bigger fallen trees were 

identified correctly. Getzin et al. (2012) used very high resolution UAV imagery to detect 

forest gaps for the assessment of floristic biodiversity of the forest understory. They found 

a strong dependency between gap shape metrics and plant diversity with an R2 of up to 

0.74. Listopad et al. (2015) reported, that structural elements helped assess hardwood 

encroachment and determine diversity changes in vegetation due to wildfires. The study 

was carried  out by analysing UAV-borne LiDAR point clouds. Plot-level biodiversity 

indicators (e.g. amount of dead wood) and structural metrics were extracted from UAV point 

clouds and hyperspectral images by Saarinen et al. (2018) in a boreal forest. They conclude, 

that structural diversity can be reliably predicted by fusing the 3D point cloud with 

hyperspectral information for biodiversity monitoring.  

In summary, the presented studies have attested, that UAVs have the potential to 

supersede, or at least complement the more traditional remote sensing technologies (aerial 

and satellite-based sensor platforms). The extraction of the most relevant forest inventory 

parameters seems to be working with acceptable accuracies, however, with lower costs 

and higher flexibility involved in comparison with conventional forest inventory strategies. 

With the advent of light-weight LiDAR and hyperspectral systems, UAVs also become more 

and more competitive with aerial or satellite-based systems in areas such as vegetation 

vigour, species determination, and plant canopy modelling. Having perused more than 250 

publications on UAV technology and its application in practice, all resources reveal, that, 

not only the parameters of a flying mission and the resulting imagery are pivotal for the 

obtained accuracies, but also the algorithms and parameter settings of the data analysis – 

with the latter being ‘old news’ in remote sensing, though. The assessment of the outcomes 

becomes even more complex and devious, when dealing with black-box software systems.  
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7. Material and Methods 

7.1. Study area 

7.1.1. General characteristics 

It is more than a half-day’s drive (about 100 km) northbound to reach the Thunkel test area 

form the capital of Ulaanbaatar. The study area presents itself being part of the western 

Khentii mountain range reaching altitudes of up to 2000 m (a.s.l.). The Thunkel area is 

located on the border between the aimags Töv and Selenge to occupy a forested area with 

a good infrastructure (i.e., railway line) close to the Russian border. Activities in the area 

surrounding the research site reflect intensive agricultural production, animal husbandry 

(cattle, goats, horses), mining for gold (mostly illegal),and timber logging (also mostly illegal 

(see Tsogtbaatar, 2013)). Being part of the Kharaa River catchment, all water runs 

north(western)wards to feed bigger systems such as the Orkhon River. The Khentii 

mountains were formed by terrain attachment in the early mid-Palaeozoic, featuring 

Permian intrusions and Mesozoic volcanoes, with speckles of flysch sediments. The 

landscape shows marks of former glaciation such as rock streams and moraines, with 

evidence of solifluction and cryogenic processes (Dulamsuren, 2004, Lehmkuhl et al., 2011, 

Meng et al., 2020).  

 

Figure 7.1: Location of the test area featuring geology (left), vegetation zones (middle), and forest 
compartment 435 at Thunkel. Source: Wecking, 2017.   

 

The ecosystems of the Thunkel area show high variability with small-scale variations and 

are considered to constitute a transition zone between forest steppe and steppe 

(Mühlenberg, 2012). According to Dulamsuren (2004) the Khentii mountain range features 

two distinct altitudinal belts, namely the lower mountain belt (900 m to 1200 m), and the 

upper mountain belt exceeding 1200 m (see also Figure 7.2). As mentioned earlier, the 
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southern slopes are occupied by grassland in the lower belt, whereas riparian areas and 

northern slopes are populated with taiga forest of varying species.  

 

   

Figure 7.2: Altitudinal characterisation of the Khentii mountain region (Dulamsuren, et al., 2005). 

 

Climatic conditions are harsh with limited precipitation (around 300 to 400 mm/annum) and 

temperatures ranging from -45o C in the winter to up to 50o C in summer (Batima et al., 

2005, Dulamsuren et al., 2010a). The precipitation maxima have been observed in early 

and late summer, and snow cover can last up to 124 days per year (Dulamsuren, 2004, 

Dulamsuren and Hauck, 2008). As opposed to the relatively high solar input of the southern 

slopes, the northern slopes receive much less radiation resulting in a temperature being 

15% lower. In addition, a gradual decrease in temperature of about 0.6o C has been 

measured to occur per every 100 m (a.s.l.) (Dulamsuren, 2004). Rising temperatures for 

the winter and summer periods have been observed since the 1940s leading to declines in 

overall precipitation and the thawing of the permafrost (Bohannon, 2008, Dashtseren et al., 

2014, Dulamsuren et al., 2010a). Drastic implications of this development are for instance 

the large-scale diebacks of the Siberian larch in the Khentii area (Dulamsuren et al., 2009, 

Dulamsuren et al., 2010b, Dulamsuren et al., 2011, Dulamsuren et al., 2014, Juřička et al., 

2020, Khansaritoreh et al., 2017, Kharuk et al., 2019, Klinge et al., 2018). In addition, a rise 

in the rate and intensity of fire incidents and attacks by harmful insects have also been 

confirmed in recent years (Bussler and Walentowski, 2011, Byambasuren, 2018, Misheel, 

2019, Munkhzorig, 2009, Otoda et al., 2013, Schmidt-Corsitto, 2017, Teusan, 2018).  

Soils play a crucial role in forest growth as they provide nutrients and are an important 

supply of water to safeguard survival and flourishing in these prevailing harsh conditions. 

The soil temperature in Mongolia is subject to enormous seasonal variation. Dulamsuren 
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and Hauck (2008) found temperatures dropping to -52o C in winter, and summer extremes 

of a scorching 65o C. Soil moisture also varies greatly and largely depends on the 

precipitation pattern and existence of permafrost. There are distinct dry phases in spring 

(depending on the snow layer) and autumn, with recharge taking place in summer. 

However, summer recharge has been decreasing with numerous droughts occurring in the 

last few years throughout Mongolia.  As for latitudinal effects north-eastern soils show a 

higher level of moisture as compared to soils in the southwest when considering the north 

- south gradient. For successful tree growth, however, a constant supply of water would be 

optimal – especially precipitation of autumn of the previous year seems to be crucial in this 

context (Nandintsetseg and Shinoda, 2011). In the western Khentii mountain area soils can 

be classified as soils of mountains and soils of plains. In most cases Proterozoic and 

Palaeozoic rocks (granite) serve as the parent material. According to Dulamsuren et al. 

(2010b) mountain forest soils are classified as: (1) mountain taiga cryomorphic ochro soil, 

(2) mountain taiga cryomorphic peat-muck humic soil, (3) mountain taiga podzolic soils, (4) 

mountain taiga derno-taiga soil, (5) mountain forest dark coloured derno soil, and (6) forest 

soils with slightly podzolic sandy soil. The mountain steppe soil types comprise: (1) high  

mountain steppe raw humic soil, (2) mountain chernozem, and (3) mountain kastanozems. 

In an extensive study  Wecking (2017) conducted a mapping of the soils of compartment 

435, which also served as my test area – further details on the results are provided below.    

The classification of the forest areas vary amongst researchers (Dulamsuren, 2004, 

Maximovich, 2004, Mühlenberg et al., 2012b). However, in this study the more recent 

approach by Dulamsuren (2004) is favoured based on the altitudinal position, exposition, 

and the prevailing tree species (see also chapter 2.1.4 and 2.1.5 of this thesis). Consensus 

seems to exist, when describing the ‘dark taiga’ as being populated with shade-tolerant tree 

species (i.e., Siberian fir, Siberian spruce, Siberian pine, with Scots pine), whereas the ‘light 

taiga’ definition commonly comprises light-demanding species such as Siberian larch, White 

birch, as well as various poplar and willow species. After forest disturbance incidents like 

forest fire the light taiga species usually form the prime stage of succession (Bergeron et 

al., 2017, Bonan and Shugart, 1989, Byambasuren, 2011, Otoda et al., 2013, Schulze et 

al., 2005, Teusan, 2018). The co-occurrence of light and dark taiga, and forest steppe 

vegetation is a key feature of the Khentii mountain area with a high percentage of broad-

leafed tree species. In addition, the Khentii mountain region boasts on accommodating the 

largest concentration of pure Pinus sibirica and the largest proportion of dark taiga in 

Mongolia (Dulamsuren et al., 2005c). The small-scale pattern of the Khentii topography 

appears to be the main determinant for the density of taiga forests and the occurrence of a 

great floristic diversity (Mühlenberg et al., 2004). The light taiga apparently prefers the lower 

and medium elevations, whereas the dark taiga preferably occupies the upper montane belt 
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beyond the 1200 m (a.s.l.) contour lines (Dulamsuren et al., 2005a, Mühlenberg et al., 2004, 

Mühlenberg et al., 2012a). Higher elevations feature higher precipitation rates and also 

higher air humidity with decreasing temperatures, causing a species shift towards the more 

moisture demanding and cold-resistant tree species of the dark taiga (Dulamsuren, 2004, 

Dulamsuren and Hauck, 2008). Dark taiga populations also appear to be less prone to forest 

disturbances due to a higher moisture content of the soils and the retarded melting of the 

snow. Interesting observations were made by Gradel and Mühlenberg (2011) regarding the 

dark taiga forest structure. According to them the dark taiga research plots exhibited a rather 

random tree distribution resulting a better mingling with other tree species. They further 

state, that …’in the progress of undisturbed succession, taiga may start with irregular tree 

distribution, rather low basal area and low tree species number’. Although current 

disturbance regimes were observed to favour pioneer tree communities (e.g. White birch, 

Siberian larch), successional dynamics between light and dark taiga remain not to be fully 

understood (Gradel and Mühlenberg, 2011, Mühlenberg et al., 2012a).   

  

7.1.2. The test site  - Forest Compartment 435 

The test site, also known as the GIZ school forest compartment 435, is situated about nine 

kilometers east of the village of Thunkel. The surrounding area is characterised by more or 

less legal timber logging and mining for gold activities (Ministry of Agriculture, Forestry and 

Fisheries, 2009, Teusan, 2018: 50–51, Wyss, 2007: 28–29). The GIZ has leased the area 

as a research site and capacity building camp and as such has been authorised to conduct 

specific activities such as timber logging and silvicultural practices (Schmidt-Corsitto, 2017). 

The altidunal stretch of the 608 ha area ranges from about 1100 meters at the Bayanm river 

to the highest point with 1758 meters a.s.l. The light taiga dominates the lower altitudes, 

whereas a distinct transition zone with mixed-forest stands between about 1300 m and 1500 

m is conspicuous. The dark taiga area is limited to the top range of the compartment beyond 

1550 m (Wecking, 2017: 29).  
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Figure 7.3: Zones of compartment 435 (according to GIZ, 2017, and Wecking, 2017). 

 

The following graph conveys a good impression on the compartment 435, which almost 

entirley faces north – the photographs were taken after the devastating fires took place in 

the area in 2017 (Vogt, 2017).         

 

Figure 7.4: Panoramic view of school forest compartment 435 with view facing south. The compartment 
boundary is indicated in yellow, the GIZ camp marked with a red arrow; numerous burn marks 
are noticeable (Vogt, 2017).   

 

Except for the almost inaccessible dark taiga parts of compartment 435 the impact of human 

activity is visible throughout. Damages caused by animal husbandry (bark stripping and 

bite), and extensive (mostly illegal) logging have paid a high tribute. The formerly prospering 

hamlet of Thunkel has seen much better days – now, being faced with a faltering wood 



 

191 
 

industry the population is compelled to gather non-timber forest products and to sustain its 

needs for fire wood and construction timber (Schmidt-Corsitto, 2017, Wyss, 2007: 28). As 

one of the dire repercussions tall trees with a high DBH have almost disappeared in 

accessible areas. Skidding paths in the lower parts of the forests and remaining stumps are 

silent witnesses of this development. To make things worse, wildfires and insect pests have 

afflicted the forests in recent years – at least the greater part of the dark taiga has remained 

unscathed featuring an impressive diversity in species and structure (Schmidt-Corsitto, 

2017, Vogt, 2017, Wecking, 2017: 30, 31).   

Most parts of the school forest are faced north-east, north, or north-west, with slope 

gradients usually not exceeding 25 degrees. As expected, the climate is harsh, with a 

vegetation period of 108 – 145 days, and an annual mean precipitation of 240 mm (Teusan, 

2018: 50). The geological map of Mongolia indicates Lower Palaeozoic rocks for the lower 

parts of the forest compartment 435 and Upper Pre-Cambrian bedrock material for the 

higher altitudes. The current geomorphology lends its character through cryogenic 

processes, weathering and denudation (Wecking, 2017: 28). The soil distribution (see 

Figure 7.5 below) shows the following features: (i) in the lower parts colluvial soils were 

found with humus enrichment and anthropogenic impacts; (ii) further up soils of Gneissic 

parent rock with intensified weathering and soddy topsoil prevailed (eutric and leptic 

cambisols); (iii) going further uphill the soils get more shallow, showing signs of distinct 

charcoal incorporation and less chemical and physical properties (mollic umbrisols); (iv) 

with reaching the dark taiga lower limit line the organic matter accumulation on the forest 

floor becomes apparent with soil formation on consolidated rock (leptic cabisols); (v) within 

the dark taiga stands soil depth increases again (Gneiss), with thick organic layers, initial 

podzolisation and appearance of permafrost (haplic leptosols and cambisols) (Wecking, 

2017: 83). Wecking (2017) also found that: ’Soil-vegetation interactions were found to be 

tight, particularly supported by pyrogenic organic matter incorporation, mycorrhization and 

freeze-thawing dynamics’ (Wecking, 2017: 10).   

According to Gaschick (2013), White birch and Siberian larch dominate compartment 435 

with a timber volume per hectare of 47.83 m3 and 40.98 m3. The dark taiga patches on the 

hilltop present themselves as almost pristine stands, however, Siberian fir does not occur. 

As specified in the management plan, compartment 435 does not excel with an average 

growing stock of 95.70 m3 per hectare, being well below the Mongolian average of 140 m3 

per hectare. At this point it is important for me to point out, that the inventory data for 

compartment 435 are based on a 6th-tree sampling method showing a very large coefficient 

of variation (see also chapter 3.1.2). In combination with the survey not carried out by 
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professionals, this might have resulted in a few discrepancies compared to my own findings 

and calculations. 

As pointed out before signs of over-exploitation, at least in the lower parts of compartment 

435, are prominent. The forest management plan of the school forest stipulates the following 

management goals (Gaschick, 2013): 

− Increase growing stock and improve natural regeneration. 

− Improve stand stability and timber quality. 

− Collect dead wood. 

− Preserve biodiversity, protect soils, prevent clear cuts.  

In the light of talks with the GIZ experts Altrell (2017) and Schmidt-Corsitto (2017), as well 

as in conjunction with my own observations, compartment 435 reveals the following 

characteristics: 

− The lower parts of compartment 435 are over-exploited in most part. 

− Recent drought incidents (die-back) and insect attacks (Gypsy moth, Lymantria 

dispar, L.) have caused massive defoliation in birch and partly in larch in the lower 

parts of the compartment. 

− Dense forest floor consisting of mostly grass (e.g., Calamagrostis) and shrub is 

omni-present, particularly in the sparsely populated stands. 

− The White birch population shows many signs of multi-stem appearance (coppicing). 

− Tee quality in general is mediocre in the best of consideration.  

− There is a considerable amount of hanging and leaning trees indicating a lack of 

stability. 

− Stand density is not uniform with a rather clumped (mottled) or scattered 

appearance. 

− In the lower part close to the river and to the east  no clear forest boundaries can be 

determined because of the transitional character of the forest towards the steppe 

vegetation. 

− Old trees with big stem diameters are limited to inaccessible areas of the 

compartment and the dark taiga. 

− Dark taiga patches are in excellent condition, with many tree species present, rich 

forest floor flora, and excellent vertical and horizontal structure. 
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− Older larch trees exhibit broken crowns and very por timber quality. 

− Throughout the compartment there are signs of fire incidents – recent and historical.  

− In the most part forest stands are overaged with a lack of vertical structure; pure 

stands (birch) also occur quite often. 

− In the lower parts White birch is kilned for charcoal production; traditionally, birch is 

not being utilised in any way by the local population. 

In view of above-mentioned stand characteristics, the stated management goals appear to 

be reasonable. 
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Figure 7.5: GIZ forest compartment 435 main pedogenic characteristics. The coloured boxes at the top 
summarise the pedogenic characteristics of each research compartment (A to E). The arrows 
at  the  bottom  indicate  the  course  of  physical  and  chemical  soil  parameters  in  
dependence  on  elevation  rise. Soil profiles investigated are to describe as: (AI-AIV) Chernic 
Phaeozems (Colluvic), (BII) Leptic Cambisol (Ferric), (BIII)  Mollic  Umbrisol,  (BI)  Eutric  
Cambisol,  (BIV)  Mollic  Umbrisol  (Gleyic),  (CI-CII)  Leptic    Cambisol, (DI-DII) Haplic 
Cambisol and (EI) Leptic Cambisol (Gelic). Source: Wecking, 2017 p.83. 
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The following  graphs are intended to convey an impression on the scenery and stand 

structure the visitor would most likely encounter when entering compartment 435 and 

surrounds.  

                     

 

 

  

 

 

 

 

Figure 7.6: Aspect-related distribution pattern of forest (i.e. forests on northern 
slope, grassland on southern slope aspect). Terelj area. 

Figure 7.7: Typical light taiga (i.e. birch – larch mix) appearance in the lower part of compartment 435 
(left). Dense and lush forest floor vegetation (right). Both stands are partly defoliated. 

Figure 7.8:  Birch – larch mix in plot no.31 – the mean age is about 70 years (left). Pure birch stand at plot 
no.60 (right) – most of the birches show signs of defoliation caused by Lymantria dispar 
(inset – insect not true to scale). 
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In the lower part of compartment 435 defoliation of the trees is conspicuous throughout, 

whereas in the upper part populated by the dark taiga the forest seems perfectly intact, 

making every forester’s heart leap.   

 

7.2. Material, equipment and software 

 

Prior to the field trip to Mongolia our cooperation partner GIZ kindly provided data as follows: 

• DEM with resolution of 8 metres (based on Russian topographic map 1:100,000). 

• Satellite imagery (RapidEye, WorldView-2, Pléiades) – more information is provided 

in chapter 7.3.5. 

• Field data of the last survey of compartment 435 (based on 6th tree sampling). 

• GIS shapefiles with compartment and sub-compartment boundaries. 

 

 

Figure 7.9: In contrast to the light taiga, the dark taiga is dominated by coniferous tree species (left). The 
dark taiga features complex vertical and horizontal structure, as well as rich forest floor flora 
(right). The pictures were taken at plot no. 8. 
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The GIZ also saw about transport to and from the Thunkel area, on site accommodation, 

and supported the organisation of horse-riding capacities. Furthermore, a hardcopy of a 

topographic map of Russian origin was provided: TUV (TÖV) ЖАНЖИшТАЪ M-48-130; 

1:100,000, dating from 1969 – the map is also part of the digital data repository of our 

institute at the University of Göttingen. 

The following equipment for gathering data in the field was employed (application in 

parentheses):  

• Nikon Forestry Pro laser rangefinder 
(tree heights) 

• Garmin GPSmap 64s (coordinates; 
navigation) 

• Kramer dendrometer (basal area 
estimation) 

• DBH measuring tape (tree diameter) 

• Suunto inclinometer (slope and tree 
heights) 

• Li – COR LAI 2000 (LAI) 

• Crown mirror with pegs (crown 
diameter) 

• Canopy App & Habit App (canopy 
closure) 

• Chalk (for marking trees measured) 

• 2 m - pole (for marking plot centre) 

• Barrier tape (for marking plot 
boundary) 

• Measuring tape (distances) 

• Lacing cord and bubble level (for 
slope compensation) 

• Small poles (marking of corner points 
of test plot) 

• Eschenbach precision compass 
(cardinal point - aspect) 

• Sony DSC-HX50V camera - GPS 
integrated (photo documentation) 

• Lenovo Thinkpad 230i Notebook 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: Field equipment (selection). Starting from top left: Suunto inclinometer, 
Kramer dendrometer, measuring tape; bottom left: bubble level, lacing 
cord, Garmin GPSmap 64s, Nikon Forestry Pro laser rangefinder.       
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For the UAV flying mission equipment and material was as listed: 

• Yuneec Typhoon H with CGO3+ 
camera 

• Checkerboards (ground control 
points (GPS)) 

• Garmin GPSmap 64s (GCP 
measurement) 

• Printout of flight pattern 

• Landing pad 

• UAV forecast App (weather data, 
solar storms) 

 

CGO3+ camera specifications according to the 

manufacturer’s specifications sheet are:  

• Focal length 14 mm 

• Fixed aperture of F 2.8 

• Field of view 94 degrees 

• Sensor resolution 12.4 Megapixel CMOS – sensor 

size ½.3“ 

 

 

For data analysis and preparation of the field trip the listed software programmes and 

applications (Apps) were used: 

GIS / Remote Sensing: 

• Terrset 2020, Clark labs 

• QGIS 3.10 A Coruña (incl. SAGA, 

GRASS, OTB) 

• ArcGIS Pro 2.6.3 

• ArcMap 10.8.1 

• SNAP (Sentinel Application Platform) 

8.0.3 

• eCognition Essentials 1.3 

• eCognition Developer 10.0.2 

• ENVI 5.4 & IDL 8.6 

 

Digital Photogrammetry: 

• Agisoft Metashape 1.6.5 

• UAV Editor (flight planning) 

 

Statistics: 

• R Studio 4.0.3 

• Microsoft Excel 2019 

Other software: 

• MS Office 2019 

• Exif Viewer (to extract metadata from 

photos) 

• Garmin BaseCamp 4.6.2 (to load 

maps on GPS) 

• Google Earth Pro 7.1.8 (to visualise 

photo locations) 

• Hugin Panorama Stitcher (to create 

panorama photos) 

• Microsoft Movie Maker (for UAV 

video footage editing) 

• Datacolor Spyder4 Pro 4.5.9 (for 

monitor calibration) 

 

Figure 7.11: Yuneec Typhoon H 
hexacopter with remote 
control. 
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7.3. Methods 

7.3.1. Overall concept  

The overarching concepts for the extraction of forest inventory attributes from high-

resolution imagery are based on the assumptions, that: (i) there is sufficient spectral 

information immanent to the imagery to result in a satisfactory classification of tree species, 

and (ii) the spatial resolution of the images is high enough to allow for the identification of 

trees and to further extract useful height information form stereo imagery. In order to achieve 

the best possible outcomes a thorough and meticulous planning and implementation of the 

various methodologies can be assumed to be pivotal for the success of such undertaking.  

The most relevant stepping stones of the overall concept are: 

− Gather and scrutinise material and equipment that is available and still required. 

− Set up a sampling design for the field work and the flying missions prior to field trip. 

− Gather necessary data as reference (validation) for accuracy assessment of remote 

sensing data and adapt the field work strategies according to on site conditions. 

− Decide on the most appropriate data analysis technique and apply it accordingly. 

− Set the findings of remote sensing data analysis against the reference data. 

− Distill the results for future applications and variations, and make inferences and 

recommendations for further research.  

A well-designed sampling strategy (including contingency plans) for gathering the required 

reference data in the field is one of the determinants for the quality of the resulting accuracy 

assessments. As outlined in chapter 3.1.2. a sampling strategy based on a random design, 

ideally in combination with a stratification approach, appears to be very rewarding when 

considering smaller sampling areas. Stratified sampling is known to have the following 

advantages over other sampling strategies: (i) it can provide data of known precision for 

subgroups of the population, (ii) it can be more convenient to carry out and is less 

expensive, and (iii) it often gives more precise estimates for population mans and totals 

(Lohr, 2010: 73–75). Fortunately, compartment 435 was surveyed before, and as such at 

least provides a fairly good idea on the species distribution pattern and the age classes to 

be expected. Based on this information a 35m buffer layer was created in ArcGIS to account 

for possible edge effects of adjoining other sub-compartments and forest edges (see Figure 

7.12.).         
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Figure 7.12: Buffer areas (35m) around sub-compartment boundaries.  

For getting a good estimate on the required sampling size a sample size calculator was 

exhausted (https://www.calculator.net/sample-size-calculator.html). Input data: estimated 

700 trees per hectare (figure from other field surveys) x 608 hectare (size of compartment 

435) = 425,600 trees for total population. The confidence level was set to 95%, the margin 

of error to 5%. The resulting sample size as calculated was 384 (trees). With an intended 

plot size of 1000 m2  this would translate into a number of between 5 and 6 test plots. 

However, in order to take the great variety in forest structure int consideration a much higher 

plot number was decided on. Random sampling points were generated in ArcMap within 

the sub-compartments to fulfil the requirements of randomness for the sampling design. 

Unfortunately, due to the severe wildfire situation in the surrounds of the GIZ forest school, 

the initial plans on conducting surveys on more than 60 plots were foiled to  end up with 15 

plots to be explored. In addition, time had been forked out for extra measurements on single 

trees and for the UAV flying missions. The resulting number and distribution of the sampling 

plots, however, reflect a good compromise between the achievable accuracies for the 

inventory and the diverse appearance of compartment 435 (see also Figure 7.11. and 

Figure 7.12.).  

The shape and orientation of the sampling plot was chosen to be congruent with the satellite 

image structure, i.e., squared shape (pixel) and aligned to the north. As for the plot size an 

area of 1,000 m2 (i.e., a square of 31.6m x 31.6m) seemed sensible, since it covers a bit 
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more than a Landsat 8 pixel of 30m x 30m and Sentinel-2 pixels of 10m x 10m. In addition, 

the suggested plot size is big enough to gather representative data for the forest stand 

surveyed, and is small enough for a time-efficient inventory for plots in higher numbers when 

dealing with limited resources. A compensation for the slope also needed to be accounted 

for, since distances measured along the slope causes a bias due to the fact, that the plot 

being projected to the horizontal will feature an under-represented area (Kangas and 

Maltamo, 2009: 61).  

The UAV flying mission concepts were primarily driven by the curiosity on : (i) how accurate 

are tree height values with respect to single trees, and (ii) how useful are Canopy Height 

Models (CHMs) to determine stand height to replace or at least augment field survey? In 

order to shed light on these issues flying areas were identified on a GIS basemap in 

combination with the GIZ survey data to ensure that launching and landing of the UAV is 

safe (i.e., either outside the forest or in forest gaps) and the flown areas are large enough 

to extract useful height information for individual stands. A number of potential flying areas 

were pinpointed and the missions planned using the UAV Editor online tool 

(https://www.uaveditor.com/de/). The mentioned planning tool allows for automatic 

waypoint flying for attaining best results in subsequent photogrammetry processing. The 

flying parameters were set to get a forward image overlap of 95%, a side overlap of 65%, 

and a flying altitude of 70 metres above ground for catching enough tree details, but also 

ensure good area coverage (for optimal flying parameters see also Seifert et al., 2019). For 

more information on the flying missions and the extraction of the relevant forest and tree 

attributes please refer to chapter 7.3.4.    

The most relevant data gathering and analysis concepts are portrayed in the following 

chapters.  

 

7.3.2. Ground truthing and mensuration 

Fieldwork was conducted on-site in the period from mid of July to beginning of September 

2017. However, due to the wildfire situation in the test area fieldwork had to be suspended 

for more than two weeks. With reference to the process of determining the location of the 

test plots and single trees (see also Figure 7.11) the locations were identified on site using 

the coordinates stored in the GPS instrument. After having marked the plot centre with a 

pole the four corner points of the test plot were found by using compass, measuring tape, 

and lacing cord. To compensate for the slope effects on length measurements a level 

bubble was attached to the lacing cord (see also Figure 7.14.).  
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Figure 7.13: Location and distribution of the test plots in compartment 435 (yellow crosses). 

The four corner points were then marked and the barrier tape tightened between the points 

for getting an easily identifiable plot boundary. All trees within this boundary were then 

subjected to various measurements. 

 

 

 

 

 

 

Subsequently, the following tree and stand attributes were gathered: 

• Tree height 

• Diameter Breast Height (DBH) 

• Tree species 

• Crown diameter 

• Leaf Area Index (LAI) 

• Slope / aspect 

• Canopy closure 

• Number of trees 

• Timber quality 

• Remarks (e.g., forest floor flora). 

 

31.6m 

Figure 7.14: Compensation of slope 
effect. 

Location and distribution 
 of the  test plots in 

compartment 435 
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At this point I would like to footnote that the author of this thesis has worked in the forest 

inventory business for many years, thus has gathered sound experience by measuring 

thousands of trees. Having said this, it be can be assumed that measuring errors were kept 

to a minimum. The author’s assistant Enkhbat also underwent extensive training and was 

given detailed instructions on site. For extensive studies it is not unusual to have the 

surveyors work in turns to minimise systematic errors in measurements. However, my 

Mongolian assistant had only limited practical experience, and as such, it was decided to 

make him focus just on the determination of the DBH.   

Tree height, DBH, and crown diameter were measured in compliance with the methods 

portrayed in chapter 3.1.3. The surveyor employed the Nikon laser rangefinder (especially 

designed for carrying out height measurements), the DBH measuring tape, as well as the 

crown mirror for readings in S-N and E-W distances of the crown extent. Aspect was 

determined by getting the pertaining compass bearing. Slope was gauged by getting an eye 

level reading (marking tape attached to a pole at 1.70m height at a distance of 30m from 

the plot centre) in fall line using the Suunto inclinometer. Tree species identification was 

based on personal experience and descriptions found in the technical literature (see also 

chapter 7.3.4.1.). The assessment of timber quality and identification of forest flora are 

retrieved form the author’s experience and also from the information provided by experts. 

Tree number could easily be established by counting the measured and chalk-marked trees 

within the plot.  For the LAI measurements a diagonal transect was chosen within the test 

plot with readings taken every 2 meters with the LICOR LAI 2000 to achieve an average 

value for the plot. The identical pattern was used for measuring canopy closure (crown 

cover) with the Canopy App (for Android mobile phones). Basal Area was gathered by a full 

360o sweep with the Kramer dendrometer (gauge width of 1) on at least four representative 

points within the test plot.  

 

 

 

 

 

 

 

 
Figure 7.15: Kramer’s dendrometer for determination of stand basal area 

(van Laar and Akça, 2007: 39-40). 
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7.3.3. Analysis of field data 

 

Tree and stand heights were retrieved and calculated for single trees and per test plot per 

tree species. In addition, the stand heights were aggregated for light taiga and dark taiga to 

determine disparities. In the professional literature several definitions of stand height are 

used. As such, it is vital to get a decent understanding on the various rationales.  

Stand height determination variants are:  

• Arithmetic mean:  mean of the height of all trees in the stand (it represents a 

measure of stand height in more uniform, even-aged stands, but is affected by 

thinning and mortality). 

• Predominant height: mean height of the tallest trees in a stand (to account for 

thinning and tree mortality).  

• Top height: mean height of the trees with the largest DBH in a stand.  

• Dominant height: mean height of the dominant trees in a stand.  

• Lorey's mean height: weights the contribution of trees to the stand height by their 

basal area (mostly used in Europe and the USA). 

In order to be consistent, stand heights in the presented study are calculated as arithmetic 

mean, since most of the investigated forest stands are rather uniform in the selected strata, 

except for the dark taiga areas (they are not affected by thinning). In addition, values 

calculated by applying the variants as described above cannot be extracted from the 

satellite image pixels by using regional or local statistics methods.  

Diameter Breast Height (DBH) can be derived for a forest stand most commonly as (i) 

arithmetic mean of all DBHs measured, or (ii) calculated as the diameter of the tree 

representing mean basal area. The latter was computed by using the following formula: 

𝑑𝑔 = √
𝛴 𝑑𝑖2

𝑛

2

 

The calculated mean dg is less susceptible to extreme values than the arithmetic mean and 

as such is the most commonly used measure for mean DBH (Prodan, 2014: 148–149). 

Mean dg was used throughout the mean DBH calculations for this thesis. DBH distributions 

were established for drawing conclusions on the structure as well as on the treatment (e.g., 

thinning) of the forest stands.  
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Other forest stand attributes like LAI, Basal Area (stand density index), canopy closure, and 

crown diameter were calculated as arithmetic means. Timber volume (for details see section 

below) was derived for each species per plot and as plot average (mean). The Shannon 

index was worked out per plot using the index formula as follows:   

𝐻′ =  ∑ 𝑝𝑖

𝑅

𝑖=1

∗ ln 𝑝𝑖 

where pi is the proportion of individuals belonging to the ith species in the dataset.  

                 

The calculation of timber volume is a task being far from trivial. Commonly, allometric 

formulas are applied per species and site-specific conditions (i.e., soil, climate, etc.). 

However, this undertaking requires the exhaustive (destructive) measurement of thousands 

of trees to attain a sound basis for the construction of such formulas. In cases resources 

(time, money, personnel) are limited the outcomes tend to reflect a more generic character 

as is the case for Mongolia. The required allometric formulas were devised by the Mongolian 

Botanical Institute (Altrell and Erdenejav, 2016). They are referred to as the ‘Mongolian 

national volume function of a tree stem including bark’. 

The generic model is as follows: Volume = a * DBHb * Heightc   , with a being a species-

specific factor; b being a species specific DBH exponential factor; c being a species-specific 

Height exponential factor (for all factors see table below).  

Table 7-1: Species specific factors for Mongolian volume function (NFI report, 2016). 

 

All timber volumes were computed based on the factors given above. In the naming 

convention of above table, the term ‘pine’ refers to Scots pine, whereas ‘cedar’ denotes the 

species of Siberian pine.  

The scientific community in forest mensuration and growth & yield does not get wary of 

emphasising that the relationship between DBH and tree height allows for substantiated 

inferences on the structure and management of forest stands (Corona et al., 2003, Kangas 

and Maltamo, 2009, Kleinn, 2014, Pretzsch, 2010, Prodan, 2014, van Laar and Akça, 2007). 
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Once a close relationship is established the individual tree height can be deduced from the 

reading for DBH and vice versa. It is for this reason the height/DBH relationships were 

calculated for each test plot and each species employing liner regression. 

Further statistical analysis 

One of the most intriguing questions related to this work is in my opinion, whether there are 

distinct differences in the field data between the dark and the light taiga or not. Most 

obviously there is variation in the species composition, but will the specific traits also be 

reflected in the species shared by both dark and light taiga – the Siberian larch? To resolve 

this ‘plight’ a two-pronged approach was taken, namely (i) the box plot analysis, and (ii) the 

Mann-Whitney U test (also referred to as Mann-Whitney-Wilcoxon, or Wilcoxon rank sum 

test).  

Creating  a box plot in Excel is very straightforward, once the field data have been sorted 

according to each category (i.e., tree height, DBH, dark taiga, light taiga). The standard 

statics (e.g., mean, median, standard deviation, variance) for both, height and DBH, were 

also computed. Prior to taking a decision on an appropriate statistical test the nature of the 

distribution of the data needed to be looked into. The calculated skewness and kurtosis 

values already reveal a good trend, but this analysis was taken a step further by conducting 

a so-called Q-Q (quantile – quantile) plot analysis. This particular method is a graphical 

representation of the properties of distributions (location, scale, skewness) to be perfectly 

cut out for the comparison of data collections by plotting their quantiles against each other. 

As for the interpretation of the resulting Q-Q plots two distributions being compared can be 

regarded as identical, if the plot follows the 45o line. Once the plot shows an arced (‘S’) 

shaped graphical representation of the quantiles, one of the distributions is more skewed, 

thus not following a normal distribution (Lorenz, 2020, Thode, 2002: 21–22, Wilk and 

Gnanadesikan, 1968). Anticipating the outcome of the Q-Q plot analysis the graph reveals 

that DBH distributions are skewed, thus not showing the characteristics of a normal 

(Gaussian) distribution (for results see chapter 8.1.3.). This information was a prerequisite 

for further statistical testing.   

Since DBH distributions for the light taiga set against the dark taiga do not meet the 

requirements to be Gaussian, a non-parametric statistical test had to be chosen. The 

selection of a specific test was based on the decision tree designed by Groner and Wartburg 

(2020) for testing the hypothesis, whether there is a difference between the DBH 

populations for dark and light taiga. Following the decision tree 

(https://etools.fernuni.ch/entscheidungsbaum/index.html)  the Mann-Whitney  U test 

appeared as the most appropriate (see figure 7.16.).    
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Figure 7.16: Decision tree for statistical testing (Groner and Wartburg, 2020). 

The Mann-Whitney U test is a non-parametric test for independent samples to determine, if 

there are differences in medians between two groups. Instead of using the concrete values 

the dependent variable is ranked accordingly, thus exhibiting an ordinal character. Further 

assumptions are:  

− The null hypothesis H0 stipulates the distributions of both populations to be equal. 

− The alternative hypothesis H1 is that the distributions are not equal. 

Test following statistics need to be calculated to be able to draw conclusions: 

𝑈 = 𝑛1𝑛2 + 
𝑛1 (𝑛1+1)

2
− 𝑅1  

with n1 = sample size of the group with the bigger rank sum; n2 = sample size of the group 

with the smaller rank sum; R1 = the bigger of the two rank sums. For a sample size bigger 

than 30 the calculated U values need to be standardised by using: 

 

with μU = median of the U distribution; σU = standard error of the U value. The resulting z 

value is now tested against the critical value of the z distribution, which for the two-tailed 

significance level is ± 1.96 for extremely big sampling sizes. Once the calculated z value 

proofs to be greater than the critical z value the null hypothesis has to be rejected, thus the 

difference between the two groups can be considered to be significant. The results of these 

calculations can to be found in chapter 8.1.4.   
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7.3.4. Aerial (UAV) imagery 

From the UAV imagery the following main tree/forest attributes can be derived: 

− Tree species 

− Tree location 

− Tree/stand height 

− Crown delineation and crown diameter 

 

All attributes mentioned above were extracted from the UAV imagery. Further attributes can 

also be determined, such as tree vitality/health status using multispectral imagery (with NIR 

band), horizontal structure (distribution of the trees being single, clumped, scattered, etc.), 

counting of tree stumps for cutting control, or post-disaster analysis (windfall, pest attacks). 

However, such extended investigation would have been beyond the scope of this work. 

In total eight missions were planned, but due to access restrictions (wildfire) only two 

missions could be implemented for the single tree height measurements and another two 

for gaining height information of forest stands. Flying time was between 11:00 and 13:00 in 

favourable weather conditions (low wind speed, little cloud coverage) to get imagery with 

good contrast and ‘sharpness’.  The locations of the flying missions are depicted in Figure 

7.17. below.  
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Figure 7.17: Location of the single trees measured (yellow dots). The locations of the flying missions are 
indicated with boxes in green. Trees outside compartment 435 were also measured and 
captured during flying mission 14 (riparian area top left of map).  

 

 

7.3.4.1. Photointerpretation for tree species identification and tree location (number) 

In this subchapter only the visual interpretation of the UAV imagery is dealt with. However, 

some automatic tree species classification was also carried out as a trial to be found in 

chapters 7.3.4.6. and 8.8.1. 

Based on the interpretation keys by Sayn-Wittgenstein (1978) and the European 

Commission (2001), but foremost, on own observations, the following guideline was devised 

for the interpretation of the most salient tree species to be found in Mongolian taiga forests. 

To the author’s knowledge, no such an interpretation key is assumed to exist up to date. 

The descriptions are embellished with photographs (Figure 7.20) showing the 

corresponding species in the field and from above.  

 

 



 

210 
 

Table 7-2: Interpretation key for the most abundant tree species of the Mongolian taiga.  

Tree species Characteristics in aerial imagery 

Larix sibirica 
(Siberian larch) 

Narrow, open, symmetrical, conical crown, when young; broad,  irregular in old 
trees; old trees often skeletonised, crown wrecked, damaged (lightning); twigs 
slender; foliage very fine; deciduous – changing colour from green to yellow; in 
general lighter tone than spruce.  

Pinus sibirica 
(Siberian pine) 

Crown dense, narrow, symmetrical  and conical; branching symmetrical ; wavy 
outline; branches horizontal, reaching ground, when in the open; foliage denser 
and darker than Scots pine; trunk darker than Scots pine; as member of the 
dark taiga residing at higher altitudes.  

Pinus sylvestris 
(Scots pine) 

Crown irregular, in young trees more conical, flattened in old trees; crown 
furrowed, lumped; larger branches very prominent; star-shaped outline of 
crown; thinner foliage than Spruce; lighter colour than spruce; foliage more 
sparse in old trees (less opaque than spruce).  

Picea obovata 
(Siberian spruce) 

Crown conical, pointed top, symmetrical; outline corrugated or smooth; dense, 
dark foliage; branching prominent; single, straight, central, dark trunk; 
homogenous colour, intensive saturation; residing at higher altitudes (dark 
taiga), but also at riverine areas. 

Abies sibirica 
(Siberian fir) 

Crown narrowly conical (young trees), symmetrical, crown flattening, when 
ageing (stork’s nest); crown structure step-shaped, densely lobate; serrated 
outline in old trees; dark foliage; branches less prominent than those of spruce; 
to be found at higher altitudes (dark taiga). 

Betula platyphylla 
(Siberian silver 
birch) 

Pure or in mixed stands; young trees: small, conical crown; old trees: crown 
more rounded, irregular, multiple; trunk WHITE, often forked and multiple (due 
to coppicing); ascending branches; often leaning or crooked; foliage bright, light 
green in spring, darker in summer; deciduous. 

Populus laurifolia 
(laurel-leaf poplar) 

Crowns medium or large; trunk dark; crown tufted, broad; branches and twigs 
coarse; grows along rivers, associated with willow; dark, big foliage; deciduous; 
height up to 15m. 

Salix spec.(Willow) 
Often appears as blankets in imagery, along rivers; trees fairly low, fine foliage 
texture, light-toned foliage; crown mostly spherical; deciduous; height up to 8m. 

Based on afore-mentioned interpretation key, the distinction between larch and birch was 

very straightforward, since leafage appears sufficiently different (needle vs leaf). In addition, 

in many instances the white bark of the birch rendered very conspicuously and thus eased 

the identification considerably.  

     

Figure 7.18: Left: close-up of aerial photo (flying altitude 70m above ground) illustrating birch (yellow dot) 
and larch (blue dot); right: GCP chequer target for georeferencing of the imagery. 
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However,  high flying altitude of the UAV and a related incremental coarseness (graininess) 

of the imagery can hamper an accurate classification markedly. In addition, varying 

illumination conditions and so-called hot spots (i.e., very bright areas) constitute a real 

challenge to every image interpreter. The mentioned circumstances are illustrated in the 

following aerial image, which was taken at an altitude of 150m above ground with a wide-

angle lens camera (Figure 7.19). 

 

        

Figure 7.19: Left: high altitude UAV image with hot spot (yellow ellipse); right: close-up of same image. 

 

Since proper tree species discrimination appeared to be almost impossible, imagery taken 

at 150m above ground was ruled out for further visual interpretation. Focus was on imagery 

taken at 70m above ground – no further image processing was required prior to 

interpretation.    

The following tree species were considered for an interpretation assignment (see also figure 

below): Siberian birch, Siberian larch, poplar and willow. Unfortunately, no acceptable aerial 

imagery was available for Siberian pine, Siberian spruce and Siberian fir (dark taiga). For 

reference single trees were selected in the research area, with the location coordinates 

determined (GPS) and tree species and further parameters (DBH, height, crown diameter) 

specified. Although some of the GPS coordinates were found to be up to five meters off the 

true location, the visual assignment of the correct tree individual turned out to be smooth. 

The results of the comparison between visually interpreted species and ground truthing are 

detailed in chapter 8.8.1. The figure below demonstrates the appearance of the most 

relevant tree species from a vantage point above and a view from the ground. If tree species 

can be attributed to single trees it is also possible to determine the Shannon index from 

UAV or other very high-resolution imagery (see also chapters 7.3.3. and 8.11.).   

 



 

212 
 

       

  

 

        

 

 

Figure 7.20: Tree species - top left to right: larch (ground view, aerial, larch in autumn colours (source: 
Wikipedia)); below: birch (ground view, aerial (partially defoliated)); below: willow, poplar 
(ground view, aerial: willow red dot, poplar yellow dot); bottom: Siberian fir (source: 
Wikipedia), Scots pine (source: Wikipedia), Siberian spruce, Siberian pine.  
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7.3.4.2. Tree height extraction preparation - Photogrammetry workflow in AgiSoft 

Metashape 

 

As detailed  in chapter 4.6. tree height, being one of the most important forest inventory 

parameters, can be extracted indirectly (modelling, regression, etc.) or directly by analysing 

3D point clouds (laser, photogrammetry). The following section details the photogrammetry 

pipeline in Photoscan (now called ‘Metashape’). All individual settings are described 

pertaining the relevant workflow actions (see Figure 7.21) to ensure transparency and 

replicability. Parameter settings have been extracted from the AgiSoft Metashape manual 

(Agisoft, 2018), various tutorials (Agisoft, 2015, Endicott, 2018, James, 2017, level 80, 

2015, Malory, 2015) and based on recommendations (Greiwe, 2018, Kunneke, 2019, 

Seifert, 2019, UAV Campus Group, 2018, Unger, 2018, van Aardt, 2019) as well as personal 

experience and trials. In a few comparative studies the Agisoft software performed better 

than other photogrammetry packages (Jaud et al., 2016, e.g. Sona et al., 2014), but other 

studies point out, that the accuracy of the outcomes also largely depends on the 

characteristics of the objects scrutinised. As such, there is no clear winner (Alidoost and 

Arefi, 2017, Kunneke, 2019, Probst et al., 2018, UAV Campus Group, 2020).   

 According to the Agisoft support  Dmitry Semyonov (2011) in Metashape algorithms similar 

to SIFT and Bundle are executed. For dense surface reconstruction pair-wise depth map 

computation as well as multi-view approach (see also CMVS) is utilised. Regrettably, more 

current information on the algorithms used was not available.  

In the following the steps of the CHM (Canopy Height Model) and orthophoto generation 

are detailed. Various parameter settings were tested and the results optimised.  
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Figure 7.21: Project workflow in AgiSoft Metashape 

Metashape supports the following imagery (aerial, spacebourne and near ground) : 

• scanned photos 

• multispectral imagery  

• thermal imagery 

• satellite imagery 

• conventional RGB imagery 

•Load camera positions
1. Add photos (Satellite, aerial, RGB, 

MultiSpectral, TIR, Video, etc.)

2. Check camera calibration

•Delete non calibrated and non aligned 
images3. Inspect images

•Estimates camera positions

•Builds sparse point cloud
4. Align photos (find matching points in 

overlapping images)

5. Optimise camera alignment (to avoid 
bowl effect)

•Define reconstruction area6. Set bounding box

7. Build dense point cloud

•Remove outliers and artefacts8. Edit dense point cloud

9. Check dense point cloud

•Class ground points

•Class vegetation points

•Substract vegetation from ground 
points for Canopy Height Model (CHM)

10. Classify dense point cloud

11. Build mesh (optional)

•Remove unwanted faces before export12. Edit geometry

13. Build texture

14. Build DEM/DTM/CHM

15. Build orthomosaic

16. Export orthomosaic

17. Export DEM

18. Generate Survey statistics / process 
report
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Camera positions can either be loaded directly or are imported from the EXIF files of the 

UAV imagery (images linked with GPS data of the camera positions determined during 

mission). Prior to loading the UAV RGB imagery, the stack was checked for flaws and the 

EXIF files selected randomly for inspection – no major issues were detected for all Thunkel 

flying missions.  

Camera calibration is either extracted automatically from the EXIF metadata file of the 

images (as carried out here) or available in the Camera Calibration dialog for individual 

parameter settings. As a preceding step Agisoft’s Lens module can be used to determine 

camera parameters such as focal length, principal point coordinates and radial distortion 

coefficients. According to the Lens manual: ‘Agisoft Lens is an automatic calibration 

software, which uses LCD screen as a calibration target. It supports estimation of the full 

camera calibration matrix, including non-linear distortion coefficients’ (Agisoft, 2011: iv). 

Unfortunately, the Lens module failed in each trial, thus I relied on the correct estimation of 

the camera parameters within the alignment process using the EXIF information. However, 

to get an impression on the quality of the Typhoon H camera lens I took a few test photos 

using a professional test template (see also Figure 7.22) and discussed the outcomes with 

a professional photographer (Klawunn, 2018). According to him, no grave effects such as 

barrel distortion, vignetting, colour  aberration and lack of resolution were observed. 

                        

Figure 7.22: Template for testing camera parameters and image quality. 

 

In addition, a distortion plot and a residual graph was generated in Metashape and 

subsequently evaluated. The performance of the Typhoon camera was considered 

surprisingly good for a consumer grade camera.  

The assessment of the image quality is another crucial step for the subsequent creation of 

the 3D forest model. Imagery was checked visually, and blurred, non-calibrated and poorly 
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exposed photos discarded. In addition, Metashape’s image quality metric (mainly based on 

contrast estimates) was employed to expel photos with a quality score smaller than 0.5.   

For precise georeferencing of the model Ground Control Point (GCP) data are mandatory 

prior to running the alignment procedure. Since I experienced location shifts of up to five 

meters for my GPS ground survey, the idea of incorporating this inaccurate information was 

scrapped. Consideration of the GPS GCPs would have introduced major  strain and thus 

distortion of the 3D model. Instead, the georeferencing process was carried out during 

further processing in a GIS environment. Rather, a highly precise internal 3D model was 

targeted at this stage of the photogrammetry workflow.  The EXIF metadata of the UAV 

imagery determining the positions of the UAV camera now serves as a critical input to find 

matching points in multiple, overlapping images. Intrinsic and extrinsic camera parameters 

are estimated. The following settings were applied throughout the project:  

 

Table 7-3.: Parameter settings of the UAV 
project. Numeration corresponds 
with workflow details.  

Parameters Settings 

4.Align photos  
Accuracy High 

Pair preselection Reference 

Key point limit 0 (i.e., no limit) 

Tie point limit 0 (i.e. no limit) 

Adaptive camera model 
fitting 

Enabled 

Coordinate System WGS84   EPSG: 
4326 

Camera accuracy 0.5 m 

Marker accuracy 0.005 m 

Scale bar accuracy 0.001 m 

Marker accuracy 0.1 pixel 

Tie point accuracy 1.0 pixel 

7.Build dense point 
cloud 

 

Quality High 

Depth filtering Mild 

11.Build mesh  
Surface type Height field & 

Arbitrary 

Source data Dense cloud 

Face/polygon count High 

Interpolation Enabled 

13.Build texture  
Mapping mode Orthophoto 

Blending mode Mosaic 

Enable hole filling Yes 

  

 

 

Parameters Settings 

14.Build DEM/CHM  
Projection WGS 84 

Source data Dense cloud 

Interpolation Enabled 

Point class Ground,vegetation, 
canopy height 

Resolution 5 cm 

Total size 25 Mio. pixel 

15.Build 
orthomosaic 

 

Projection WGS 84 

Surface DEM 

Blending mode Mosaic 

Enable hole filling Yes 

Pixel size 3 cm 

16.Export 
orthomosaic 

 

Coordinate system WGS 84 

Pixel size 3 pixels 

Region Model area 

TIF compression LZW 

JPEG quality 90 

17.Export DEM/CHM  
Coordinate System WGS 84 

Raster pixel size 3 pixels 

No data value 0 

Region: total pixel size 25 Mio. 

Write world file Enabled 
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After completion of the alignment process a sparse cloud indicating the 3D tie points of the 

model are displayed. The next processing step entails the assessment and refinement of the 

tie point quality. For this purpose, all images were sorted by RMS tie point image residual and 

photos exceeding an RMS of 3 pixels excluded from further processing. Furthermore, all 

images taken at unusual angles (e.g., taken during banking manoeuvres) had to be removed. 

Obvious tie point outliers were also good candidates for elimination. Agisoft’s Gradual 

Selection tool provided another option to expel images, where tie points were only observed 

in three or fewer photos. Further quality metrics were applied to select flawed imagery such as 

Reprojection Error (represents image residuals based on image matching; critical value: ˃ 0.2 

pixels), Reconstruction Uncertainty (possible variation in point placement - indicating vertical 

and horizontal precision; critical value: ˃ 10 pixels) and Projection Accuracy (accuracy of point 

placement from local neighbour points; critical value: ˃ 10 pixels). Unfortunately, no information 

on the algorithms used for the determination of these quality metrics was provided by Agisoft’s 

tech support Alexey Pasumansky or Dmitry Semyonov.  

To achieve higher accuracy in calculating internal and external camera parameters the 

Optimize Camera Alignment  procedure was run and additional distortion coefficients 

calculated to be displayed in a distortion plot for quality check. Compensation of rolling shutter 

was also considered. This procedure resulted in a slight improvement of the camera model. 

In the model pane of Metashape a bounding box was determined for definition of the 

reconstruction area to avoid inclusion of unsound tie points in the model. 

Based on the estimated camera positions the program calculates depth information for each 

image to generate a dense point cloud. The reconstruction quality is specified by the individual 

choice of quality settings. Higher settings result in more detailed and accurate geometry, 

however, to the expense of computing time. Since forests represent a highly structured 

surface, the modes ‘High’ and ‘Very high’ were chosen – the mode ‘Very high’, however, did 

not yield a huge gain of 3D information over the slightly lower resolution. The depth filtering 

mode ‘Mild’ was selected to account for the complex structure of the landscape. The mode 

‘Aggressive’ is more appropriate for rather untextured surfaces, like roofs, to sort out outliers. 

Disabling filtering at all entails a lot of noise in the point cloud.  

The resulting dense point cloud of step 7 might still feature some blunders, which can be 

manually selected and deleted. After a meticulous check of the now refined point cloud the 3D 

model is posed for further processing. 

 

The entire 3D model was subsequently split up to create models representing ground as well 

as vegetation points. A set-off of 0.5m was applied to generate an elevation plane to portray 

the terrain and exclude low vegetation, like shrub, from further consideration of tree canopy 

heights. Serendipitously, there was sufficient spacing between the trees to obtain satisfactory 
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results. The interpolation option was selected to fill the holes in the train model. Unfortunately, 

no information on the interpolation algorithms was disclosed by the Agisoft support team. The 

following graphs show an example of the split of the point cloud into terrain model (DTM), 

interpolated,  and surface model (DSM). 

 

 

        

 

 

 

 

 

 

 

 

Albeit these circumstances, a visual check of the terrain model revealed suitable outcomes. 

The complement of the initial 3D model now contains all height information pertaining the 

forest. In order to ease further assessment of the canopy height model, relative heights were 

generated by subtracting DTM values from the vegetation model values. 

Mesh construction is an optional step in the Metashape workflow. Both surface type options 

were assessed for best results. ‘Height field’ option is more geared for planar surfaces, thus 

‘Arbitrary’ was chosen for mesh construction, since this algorithm does not make any 

assumptions on the type of object to be modelled.  

Before building texture and exporting the model it is sometimes required to take action 

concerning geometry. Metashape tends to generate 3D models with excessive geometry 

resolution. However, close inspection of the geometry did not expose features to be rectified. 

Building texture is imperative, if a more realistic appeal of the 3D model is favoured. In addition, 

it also helps to inspect the model and to place markers more precise for measurements. In our 

case ‘orthophoto’ mapping was selected, since the entire surface is textured in the orthographic 

projection. Alternative mapping options did not amount to acceptable results. 

Having finalised all required steps to obtain a representative, correct 3D model of the specified 

object, the dense point cloud is used as the basis for the DEM generation process. DEMs can 

be then used for further topographic analysis in a GIS suite. The coordinate system has to be 

specified in accordance with the system used for the modelling reference (in our case: 

WGS84). Metashape allows to set up the DEM boundaries and define DEM resolution. The 

creation process was undertaken for both, DTM and DEM(CHM). The results were visualised 

in Metashape for inspection. 

Figure 7.23: DTM (left) and DSM (right) of flying mission 14. 
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The construction of orthomosaics can be useful for subsequent analysis in a GIS package. 

Rectified imagery in an orthogonal projection can help identify specific objects and their related 

precise location. Projection, colour correction, hole filling and desired resolution can be 

specified in Metashape.  

Subsequently, the generated orthomosaic image was exported with high raster resolution and 

low image compression to avoid model deterioration. In a subsequent step, the same applied 

to the export process for the DTM/DEM/CHM. Because of the complex structure of forests, it 

is advisable to retain as much model information as possible at reasonable cost and processing 

time. For outcomes of the DTM/CHM creation process please refer to the ‘Results’ section 

(chapter 8.3). 

For a conclusive and thorough assessment of the quality of the 3D model the statistics of the 

survey, as well as a process report were generated (for discussion see also section 8.3.).  

In the following the resulting model parameters of the various flying missions are detailed.  

Table 7-4: Flying and model parameters of the various missions. 

 Mission 1 Mission 1 low 
profile 

Mission 2 Mission 3 Mission 14 

Number of 
photos 

74 74 427 224 147 

Total error (m) 
0.66 0.71 1.33 1.16 2.53 

Image quality 
index 

0.85 0.85 0.85 0.86 0.85 

Reprojection 
error (pixel) 

0.248 3.29 0.99 1.15 0.80 

Number of tie 
points 

139,566 13,493 852,316 691,825 468,483 

Ground 
resolution (cm) 

2.92 2.78 3.04 4.93 3.64 

Flying altitude 
above ground 
(m) 

(70) 59 (70) 56 (70) 71 (70) 114 (70) 87 

DEM resolution 
(cm/pixel) 

5.57 5.89 6.09 9.85 7.29 

 

As extracted from above table, the total error as calculated by Metashape is within a range of 

0.66 to 2.53 – however, mission 14 with the highest error value was only used for tree species 

identification and a few height measurements. All crucial canopy height model creations were 

carried out only on the missions 1,2 and 3, all featuring acceptable errors. The image quality 

index seems to be also in the acceptable range (Semyonov, 2011) – photos with higher values 

than 0.86 were eliminated prior to model construction. The reprojection error for ‘Mission 1 low 

profile’ is due to the fact, that the parameter settings were all set to the lowest possible values 
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to show the difference in outcome between various setting scenarios. This is also indicated by 

the low number of tie points, which were at least ten times for the other mission models. The 

calculated ground resolution of about 3 cm is impressive, given the fact that the flying altitude 

was moderate and the camera lens featuring an extreme wide lens characteristic. With a 

resolution of around 3 cm even small features such as bigger leaves are detectable. The 

calculated flying altitude above ground seems somewhat odd, since the flying height was set 

to 70 m above ground in the flight planning software (i.e., UAV Editor). However, the flying 

height (70 m) was carefully chosen to capture enough detail of the features (trees), while 

retaining enough area coverage.  

The figure below illustrates some resulting 3D representation of the terrain flown.   

 

Figure 7.24: Example of a resulting high-resolution 3D model of flying mission 14 (riparian area). The photo 
locations are indicated with blue squares hovering above the scenery. All features in the model 
seem precisely represented, especially non-tree objects.  
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Since the aerial images were taken in a perpendicular mode the representation of the forest 

canopy lacks detail of tree stems and lower parts of the crowns. This constellation is reflected 

in the resulting models with tree parts seemingly being detached ad hovering (see figure 

above). The results of the height extraction (elevation model) for the various missions are 

indicated in the map below.   

  

The resulting models were exported as orthophotos and elevation models for further analysis 

in a GIS environment. Individual tree heights were extracted and compared with the reference 

2 

3 

14 

1 

Figure 7.25: Resulting point high-density clouds for flying mission 1 (left) and mission 2 (right). Some parts of 
the tree crowns seem detached, whereas in the right image the matching algorithm struggles 
with low contrast imagery and low image texture due to massive tree defoliation.   

Figure 7.26: Location of the resulting Canopy Height Models (CHMs) with associated tree heights.  
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data originating from the field measurements. This procedure can turn out to be very 

cumbersome when height information for entire forest patches is called for. Automatic 

extraction options for obtaining stand height have been portrayed in chapter 4.6.1. already. 

The detailed workflow for the application of one of the various methods is given below.    

  

7.3.4.3. Tree height extraction - concrete 

The workflow below depicts a standard procedure for the extraction of aggregated tree heights 

for a forest stand.  

 

Figure 7.27: Workflow for the flying missions conducted at compartment 435, Thunkel.  

The QGIS SAGA software was used to carry out the required steps. Gaussian filtering was 

employed to account for graininess of the height 

model. An example for an inverted CHM is provided 

below.  The minimum height for the seed points was 

set to 3 metres to avoid inclusion of the shrub layer in 

the subsequent stand height calculation process. The 

outcomes of the statistical analysis are presented in 

chapter 8.3. 

 

 

7.3.4.4. Tree position determination            

After having finalised the Metashape workflow it 

is now possible to export and further manipulate 

the resulting orthophoto. Since the integration of 

the ground control points (GCPs) into the 3D 

model was discarded (i.e., GPS deviations – 

positional errors), the imported orthophoto was 

georeferenced in ArcMap using the (BING) 

Basemap and the Russian topographic map (TÖV 

M-48-130 1:100,000) as references. The 

orthophoto can now be used to relatively precisely 

Filter Canopy 
Height Model 

(CHM) -
Gaussian

Invert the CHM 
Watershed 

segmentation

Extract tree 
heights using 

point sampling 
tool (create 
seed points 
shape file)

Delete all points 
<= 3 meters 

from seed point 
shape

Calculate 
statistics (e.g. 

mean, median, 
SD)

Generate 
statistics 

histogram

Figure 7.29: Orthophoto – flying mission 1.  

Figure 7.28: Inverted Canopy Height Model 
of flying mission 1. 
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determine the position of single trees once identified. However, in many cases the bree base 

is concealed, so that only a good estimate of the tree location is possible. The picture below 

shows an example of an orthophoto – it depicts a subset of flying mission1. Conspicuous are 

blurred areas due to the orthorectification process, and data gaps indicated as white areas. 

Nevertheless, tree positions for most of the single trees can be identified with considerable 

ease.   

 

7.3.4.5. Tree crown diameter estimation 

The (semi) automatic extraction of the crown shapes and the associated diameter estimations 

is described in the workflow beneath (Figure 7.31). The CHM was resampled to 20 centimetres 

prior to further processing to increase efficiency, however, without sacrificing accuracy. In 

addition, a median filter (5x5) was applied for smoothing the CHM. The portrayed workflow 

was implemented for the extraction of tree crown diameter on the orthophoto of mission1 with 

a good mix of isolated and overlapping trees. The eCognition Essentials software package 

proved to be of great support in the extraction process.  

In order to achieve a useful delineation of the tree crowns from very high-resolution imagery 

an image segmentation is essential.    

The testing of various scale/shape combinations within the segmentation procedure resulted 

in a segmented image of a scale factor of 300. However, indications of over-, and under-

segmentation are apparent. Best results are achieved for solitary trees with small enough 

crowns, whereas big tree crowns and clustered trees are not segmented well. As a possible 

remedy to compensate for these effects the integration of height information from the CHM 

was deemed sensible.     

 

 

Figure 7.30: Image segmentation on orthophoto mission 1. Segmentation result for entire image (left) and 
a close-up (right).  
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                                           Figure 7.31: Crown diameter extraction workflow. 

 

Having played around with various CHM heights for achieving best segmentation and thus 

crown delineation results a height of 9 metres was found to be number one. However, as the 

picture below demonstrates, once again solitary tree crowns get delineated almost perfectly, 

whereas tree clusters are virtually impossible to separate in a meaningful fashion.     

Image input

• Raster imagery (satellite; UAV 
orthophoto)
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segmentation

• Input parameters: scale, shape, 
compactness

Threshold 
segmentation

• Definition of various tree height 
classes

Merge / 
smooth 
objects

• Object merge/smooth: set 
thresholds

Export objects 
to GIS

• Export most suitable object size 
(tree crown) for further analysis

Import to GIS

• Import tree crown shapefiles

Define 
bounding 

geometry of 
objects

• Use envelope to get N/S - E/W 
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results
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Having imported the delineated tree crowns derived from the segmentation process into a GIS 

the crowns were enveloped as a minimum bounding geometry (‘envelope polygon’) and the 

crown diameters calculated (rectangle by width/length). The outcomes of the comparison 

between the field data and the computer-extracted values are detailed in chapter 8.7. 

 

7.3.4.6. Tree species classification in UAV imagery 

 

The following classification trials were run just for interest’s sake, since the combination of poor 

radiometric resolution (i.e., 3 spectral bands RGB) and extremely high spatial resolution were 

not expected to yield satisfactory results in species determination. As such, the classification 

validation is only based on visual interpretation of the classification results (chapter 8.8.1.).  

Tree species classification in aerial CIR (colour infrared) imagery has a long tradition yielding 

excellent results. Thus, it was interesting to see whether a conventional RGB image would also 

create useful outcomes. For this reason, a flying mission 1 photo was chosen for subsequent 

analysis. Unfortunately, all generated orthophotos showed either blurring effects or data gaps 

due to the 3D modelling process. The 00242 image was loaded in ArcMap and training 

samples created as a prerequisite  for the classification. Scatterplots for the tree species 

classes of Siberian birch and Siberian larch revealed that the separation of those classes would 

impose an extreme challenge on the classification algorithm (see Figure 7.33). The option of 

using an image segmentation prior to classification was discarded for the reason that no 

favourable object classes could be constructed. A commonly applied Maximum Likelihood 

classifier was singled out for tree class determination.   

Figure 7.32: Tree crown segmentation and delineation in orthophoto mission 1 applying a Canopy Height 
Model (left). The resulting enveloping process for the extraction of crown diameter is 
demonstrated in the right image. Manually measured trees are indicated in yellow.   
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7.3.4.7. Automatic tree count in UAV imagery 

As outlined in chapter 4.6.1. the automatization of certain procedures helps to elude labour-

intensive manual work – in this case the so-called template matching is offering an alternative 

to visually counting tree individuals in images. The template matching option is part of the 

eCognition software package. First of all, appropriate samples need to be selected in the (UAV) 

image using the Template Editor. A group size of 30, a ground truth tolerance of 30 and a 

threshold value of 0.4 was tested as an optimal constellation. 

Figure 7.33: Scatterplot for RGB UAV image 00242. The classes for birch (yellow) and larch 
(green) appear to be inseparable. 

Figure 7.34: UAV image 00242 used for template matching. The picture demonstrates part of the template 
creation process.  
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Once an adequate number of samples is selected the template can be generated with test 

samples being subjected to the new template. Various thresholds are now applied to test for 

the best solution with the previous template being updated. This iterative process is carried out 

until the best template and its associated threshold is found (here: 0.4). The final template is 

then applied to the entire image and vector layers indicating the tree centres (tree tops) 

generated. The resulting shape file is now ready to be exported to a GIS for further inspection 

and analysis. The outcomes of this trial are presented in chapter 8.6. 

 

7.3.5. Satellite imagery 

Satellite imagery of various spectral and spatial resolution were employed to demonstrate the 

difference in performance related to specific tasks. The following table reflects the selection of 

all imagery used – Worldview 2, RapidEye and Pléiades images were provided by the GIZ. 

Although dubbed as SPOT 5 imagery by GIZ, investigation in the spectral characteristics and 

the spatial resolution resulted in Pléiades to be the accurate platform. All available imagery 

was checked for flaws (e.g., striping, pixel failures, clouds, haze, low contrast, geometric 

mismatch) and chosen according to the exclusion criteria.  Unfortunately, Landsat 8 imagery 

proved only to be eligible and suitable for a single date, since all other imagery suffered from 

substantial cloud cover and striping. In addition, images with extreme snow cover also were 

considered unsuitable for not containing sufficient spectral information on the vegetation cover.  

 

Table 7-5: Characteristics of the satellite imagery employed (own compilation).  

Platform / 
Sensor 

Number of 
spectral 
bands 

Spatial 
resolution 

Acquisition 
date 

Season 
(Mongolia) 

Revisit 
rate 

Orbit 
altitude 

WorldView-2 8 MS 
0.46 m pan20 

1.85 m MS21 
30/10/2015 Winter 

1.1 days at  

1 m GSD 
770 km 

RapidEye 5 MS 5.0 m MS 17/09/2015 Autumn 5.5 days 630 km 

Pléiades 4 MS 
0.5 m pan 

2.0 m MS 
10/05/2015 Early spring 1 day 695 km 

Sentinel-2 13 MS 10 – 20 (60 m) 14/03/2017 Winter 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 03/04/2017 Early spring 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 13/05/2017 Spring 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 09/07/2017 Summer 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 12/07/2017 Summer 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 29/07/2917 Summer 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 07/09/2017 Autumn 5 days 790 km 

 
20 pan Panchromatic  
21 MS Mutispectral 
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Platform / 
Sensor 

Number of 
spectral 
bands 

Spatial 
resolution 

Acquisition 
date 

Season 
(Mongolia) 

Revisit 
rate 

Orbit 
altitude 

Sentinel-2 13 MS 10 – 20 (60 m) 10/09/2017 Autumn 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 17/10/2017 Winter 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 25/10/2017 Winter 5 days 790 km 

Sentinel-2 13 MS 10 – 20 (60 m) 01/11/2017 Winter 5 days 790 km 

Landsat 8 OLI 11 MS 
15 m pan 

30 – 100 m MS 
09/07/2017 Summer 16 days 702km 

 

As the table above suggests Landsat 8 and Sentinel-2 (twin system) provide one the best 

spectral resolution capabilities of all commercial earth observation satellites. In particular, the 

spectral bands representing the RedEdge (RE) and Short Wave Infrared (SWIR) spectrum 

have proven to be extremely useful in vegetation classification and for detecting and 

delineating burned areas. Although other satellite platforms feature higher spatial resolution, 

they have not been made freely available to the public like before-mentioned.     

 

Figure 7.35: Comparison of spectral and radiometric resolution between Landsat 7/8 and Sentinel-2. Source: 
https://landsat.gsfc.nasa.gov/wp-content/uploads/2015/06/Landsat.v.Sentinel-2.png. 

 

Imagery from satellite platforms such as Landsat and Sentinel have been made available to 

the public free of charge. The scientific community also increasingly suffers from budget 

constraints and as such it has been looking into alternatives to commercially marketed satellite 

products. This motion has led to an increased use of  this imagery and in the wake of this to a 

respectable body of publications. 
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7.3.5.1. Spectral separability 

The extraction of precise spectral information is one of the key components for accurate 

vegetation classification. Spatial , temporal, as well as radiometric resolution determine the 

quality of the outcomes, but subsequently characteristics such as colour, shape and texture 

also reflect the traits of the various objects to be classified (Lillesand et al., 2015, Tso and 

Mather, 2009, Xie et al., 2008). In order to get a first impression on the potential separability 

of  various object classes some of the above listed imagery was scrutinised in the SNAP 

software by employing the pin management and spectrum view tools. The graph below 

provides such an example.  

 

Figure 7.36: Spectral separability of various classes in compartment 435. Sentinel-2 image 10/09/2017.  

A number of features were identified on the images either by visual inspection and/or by 

consulting the ground truth data. In the analysis above the classes are as defined: dark taiga, 

light taiga, Siberian birch, dry grass/soil, medium dry grass, lush green grass, and burned 

areas. It was expected that the classes dry grass/soil (high values in the visible and SWIR) 

and green grass (highest values in the NIR) would show typical reflectance patterns, which 

they did. Conifers and broad-leafed trees usually reflect considerably less radiation in the green 

spectrum, thus appearing darker in the wavelength around 650 nm (Ciesla, 2000). Although 
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categorised as a conifer the Siberian larch shows a lighter green colour in leaves as compared 

to spruce or pine for example. In addition, Larix is deciduous and as such sheds its needles in 

autumn, turning yellow prior to that. Thus, the temporal scale also needs to be considered 

before classification (Jensen and Mathews, 2016). The graphs below demonstrate seasonal 

effects of the major tree classes dark taiga, light taiga (i.e., mix of birch and larch) and birch.  

    

                 

                      Figure 7.37: Spectral separability of taiga classes in Sentinel-2 image 29/07/2017. 

 

The summer image of Sentinel-2 in general shows higher reflectance values compared to the 

autumn image below. Dark taiga (black line) generally reveals lower reflectance in the visible 

as well as in the NIR and SWIR set against birch (bright green line) and light taiga (green line). 

The birch class shows a distinctive dip in the NIR and particularly in the Red Edge (700 – 800 

nm) in the autumn image, with the senescence period having started in Mongolia. This finding 

is very much in line with the ones by authors like Cipar et al. (2008) , Jensen (2016: 339) and 

Jones and Vaughan (2010: 271–272).  
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Figure 7.38: Spectral separability of taiga classes in Sentinel-2 image 10/09/2017. 

 

A different way of visualisation of the separability of certain classes for the compartment 435 

was taken below. The scatter plot graph clearly shows a better distinction of the classes in the 

SWIR (right) than in the visible part (left) of the electromagnetic spectrum.   

The segregation of the various classes is even more refined when looking at the mean and the 

standard deviation of the Digital Numbers (DN) of the reflectance patterns. These values were 

calculated and are graphically represented in the figure below. This analysis was done for the 

summer Sentinel-2 image acquired on 09/07/2017. This image was chosen for further image 

classification for specific reasons outlined in chapter 7.3.5.3. The statistical analysis exposes 

distinct clumping effects in the visible part of the spectrum for all five classes defined. As such, 

class separation solely based on spectral analysis does not seem a rewarding venture. In 

contrast, the class separation in the SWIR bands (indicated as bands 12 and 13) holds much 

Figure 7.39: Scatter plot. Spectral separability in Sentinel-2 image 29/07/2017 for the classes: dark taiga (dark 
green), light taiga (bright green), birch (yellow), dry grass/soil (brown), green grass (red). Left 
image shows S-2 bands B8 vs B4; right image shows B12 vs B4. 
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better promise. The dark taiga class presents itself with very low reflectance with a decent 

spectral distance to the other forest classes light taiga and birch.      

 

Figure 7.40: Spectral signature separation for Sentinel-2 image 09/07/2017. Best separation qualities show 
bands B7 (RedEdge 3), B8 (NIR), B9 (8A) (Narrow NIR), and as best B 12 (B11) (SWIR 2). Mean 
digital numbers and standard deviations are portrayed for the five different classes.    

 

The separability of the classes in the NIR (bands 8 and 9) and part of the RE (band 7) regions 

also appear to be useful, however, is not as pronounced as in the SWIR region. The spectral 

variability for the dark taiga is very low throughout most of the spectral bands, whereas light 

taiga and birch show higher standard deviations in comparison. The class of green grass is 

characterised by the highest variability in the NIR and RE spectrum bracket in correlation with 

the highest reflectance in those ranges due to its high chlorophyll content and supreme vigour. 

Based on above findings the choice for specific spectral bands (i.e., bands 7,8,9,12) to be 

primarily utilised in subsequent image classification processes was not difficult to be made. 

Nevertheless, the graph above also brings to light that forest class separation would not be a 

smooth task.     

 

7.3.5.2. Image pre-processing 

As outlined in chapter 4.3.4. specific image management prior to further processing is a crucial 

step to be taken. All imagery to be utilised in the presented study was tested for geometric and 

geometric fidelity with no flaws being detected. However, effects of atmosphere and terrain 

have to be taken seriously, especially when dealing with multitemporal imagery, the application 
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of vegetation indices, and the consideration of sun angles at high latitudes. Regarding the 

afore-mentioned caveats, atmospheric correction of the imagery was given preference for all 

imagery used. The Sentinel-2 tailored Sen2Cor 285 (using SRTM for terrain compensation) 

was applied in SNAP to all Sentinel-2 images, whereas all remaining imagery was subjected 

to Dark Object Subtraction (DOS). The resulting spectral values now reflect the bottom of 

atmosphere characteristics (BOA).  Given below are graphical representations on the effect of 

atmospheric correction performed on Sentinel-2  imagery.   

 

Figure 7.41: Sentinel-2 image 10/09/2017 prior to atmospheric correction. The intensity values are set against 
the wavelengths of the Seintinel-2 specific spectral bands.  

 

The comparison of the two graphs (i.e. before – after correction) confirms the findings in the 

literature that atmospheric correction has the severest impact on the visible spectrum of the 

image signature (e.g. Chavez, 1996, Buho et al., 2009, Main-Knorn et al., 2017, Vanonckelen 

et al., 2015). The reflectance intensities are lower in the corrected image, but class separation 

in turn seems to have slightly increased. Total absorption (i.e., value 0) in the cirrus band at 

1400 nm was eliminated by excluding this band from further processing. The spectral curves 

in the visible part of the spectrum display a much more ‘natural’ shape for vegetation after 

application of Sen2Cor, i.e., a distinct peak at the green band. To get a much clearer picture 

on the precise effect of Sen2Cor on the imagery a specific class (forest) was used for a pixel-

to-pixel comparison for the associated reflectance values (Figure 7.43). Once again, the visible 
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part of the spectrum ( blue, green) showed the most severe discrepancy, whereas the 

wavelengths beyond the red band do not reveal any significant change.  

 

Figure 7.42: Sentinel-2 image 10/09/2017 after Sen2Cor atmospheric correction. The intensity values are set 
against the wavelengths of the Seintinel-2 specific spectral bands.  

                     

Figure 7.43: Sentinel-2 image 10/09/2017 after atmospheric correction. Comparison of before (blue line) and 
after correction (orange line) reflectance intensity values for the class forest. The blue (B2) and 
green (B3) spectral bands show the greatest effects.   
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All above findings are in conformity with the respective scientific literature, and as such, 

arguments for performing atmospheric correction on all images used were compelling. 

 

7.3.5.3. Principal Component Analysis (PCA) 

Principal component analysis (PCA) has been a standard procedure in the remote sensing 

community for many years for attaining a dimensionality reduction in the image data. The 

computed first principal component can be considered as the direction that maximises the 

variance of the projected data, and as such it is perfectly suited for a decision on what band 

combinations or which temporal aspect exhibits the most rewarding approach by retaining the 

best efficiency. More details on the characteristics and the computation of the components are 

featured in for example Jones and Vaughan (2010: 147–148) and Lillesand et al. (2015: 522–

529). The PCA in the case of this study was employed for finding the Sentinel-2 image  with 

the biggest variety (variance) in spectral appearance for subsequent image classification. The 

figure below shows the first principal component for Sentinel-2 imagery taken at various dates.     

 

The outcomes of the PCA are depicted in the figure above using a highly diagnostic colour 

scale – the more colourful the presented values, the higher the variance as computed in the 

PCA. Even though the results for the spring image (13/05/2017) looked the most promising, 

Figure 7.44: Principal Component Analysis (PCA) performed on various Sentinel-2 images. The images 
exhibiting the greatest variance are for 13/05/2017 (top left) and for 09/07/2017 (top right); 
the least variance shows the image taken on 29/07/2017 (bottom left); image acquired on 
07/09/2017shows medium variance (bottom right).      
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this image was excluded for subsequent classification, since in May 2017 broad-leafed trees 

only started leafing shortly before. This seasonal phenomenon was confirmed by local experts 

and was amplified by the findings for the NDVI seasonal timeline (see chapter 8.4.). As a 

consequence, the spectral interference with the forest floor flora (shrub, grass, etc.) was most 

likely to happen. The next best PCA result in line was for the 09/07/2017 summer image, 

making it the prime candidate for vegetation classification. Interestingly, the other summer 

image (29/07/2017) features hardly any variance.    

  

7.3.5.4. Image segmentation    

Image segmentation techniques have received a lot of attention in the remote sensing 

community with respect to analysing (very) high-resolution imagery. Not only single trees or 

other homogenous units (tree clusters, stands, tree crowns) can be extracted, but 

segmentation also provides an unvaluable tool for improving classification accuracies. 

Successful applications have been reported earlier in chapters 4.3.2. and 4.6.1. Major 

determinants in the segmentation process are scale, colour, and compactness, with scale 

being the most relevant of the three. The example below shows the World View-2 winter image 

used for tree number extraction.  

 

Apparently, the scale factor has the most significant impact on the size of the objects created. 

For the procedures of counting trees and classifying vegetation, where image segmentation 

was conducted, a diverse combination of values for the parameters scale, colour, and 

compactness were tested for the imagery used. The pertaining values are detailed in the 

corresponding chapters. 

 

Figure 7.45: Image segmentation performed in a World View-2 winter image. The scale factor for the left 
image was 10, for the right image it was chosen to be 20. The green boxes denote the 
boundaries of test plots no.5 and no.8.   
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7.3.5.5. Template matching for tree count 

The template matching process has been portrayed for the UAV imagery in chapter 7.3.4.7. 

already – it is only marginally different for the application in satellite imagery. Tree detection 

requires a certain spatial resolution in the underlying images. The satellite platforms of World 

View-2 and Pléiades were the only ones qualifying for this task by supporting a pixel size small 

enough to identify single trees. However, the creation of the pertaining templates turned out to 

extremely demanding. In both images the presence of shadows within the tree clusters 

imposed a real challenge to the interpreter for the proper identification of tree individuals. An 

excellent case of this ‘imbroglio’ is illustrated below.  The panchromatic World View-2 winter 

image shows little 

contrast particularly in 

areas with tree clumps, 

thus making it very 

arduous to select ideal 

candidates for the 

template creation 

procedure. In addition 

to the template 

matching approach an 

image segmentation 

with a scale factor of 

10 was used for the 

WV-2 image for comparison. The centre of each segment was subsequently defined as 

representing an individual tree within the regarded test plots 5 and 8. The outcomes of the 

template matching and image segmentation used for tree count are detailed in chapter 8.6.   

 

7.3.5.6. Image classifications and accuracy assessments 

Image classification was conducted on various sensors with the objective to assess their 

suitability for species discrimination and to test for correct delineation related to class definition. 

Moreover, it is attempted to answer the question, if (i) the object-based method is superior to 

the pixel-based, and (ii) which classifier performs better (i.e., Random Forest or Support Vector 

Machine). 

The table below illustrates the sensor platforms employed and the classification techniques 

exercised.  

Figure 7.46: Template matching procedure in the World View-2 winter image. The 
resulting image template is shown in the lower right as an inset. 
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Table 7-6: Sensor platform and classification technique combinations related to the study.  

Sensor platform Sentinel-2 RapidEye Pléiades WorldView-2 UAV imagery 

Classification technique      

Object-based (OBIA) x  x x  

Single tree species   X  X 

Dominant tree species X  X X  

Support Vector Machine X  X   

Random Forest X  X   

Pixel-based x x x   

Dominant tree species X X X   

Support Vector Machine X X X   

Random Forest X X X   

Maximum Likelihood     X 

 

The following graph provides an account on the steps taken for image classification: 

             

Figure 7.47: Workflow for pixel-based (left) and object-based (right) image classification. 

Most of the satellite imagery (i.e., RapidEye, Pléiades, WorldView-2) was kindly provided by 

the GIZ for further analysis. All Sentinel-2 and Landsat 8 images listed in table 7-5 in chapter 

7.3.5. were downloaded from the USGS Earth Explorer website for subsequent use 

(https://earthexplorer.usgs.gov/). Atmospheric correction was carried out on all images, except 

for the RapidEye image, which was furnished as a level 3A product (i.e., including geometric, 
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radiometric, and sensor correction). The choice for specific spectral bands and indices was 

based on the spectral separability assessment conducted before. The PCA also contributed to 

finding the appropriate Sentinel-2 image with the highest seasonal spectral variation (i.e., 

09/07/2017). The definition of the areas for training the classifiers rested on the field data 

analysis, personal experience of the surveyor on site, as well as the visual inspection of 

sources such as the BING base map. The figure below illustrates the location of  the training 

areas with five designated classes. Despite the fact it has become a standard procedure to 

create a forest mask for attaining better classification results, this option was dismissed for the 

reason, that it was decisive for me to also explore the performance of the classification 

methods beyond the forest boundaries.  

 

Figure 7.48: Location and extent of the training areas for training the various classifiers. The test plots are 
marked with squares in magenta. The training areas represent the classes birch (yellow), light 
taiga (bright green), dark taiga (dark green), dry grass/soil (brown), and green grass (red). 

 

This demand is reflected in the definition of the training classes and the accuracy assessment 

being extended to a bigger area. More than that this pathway provides an opportunity to be 

better prepared for a judgement on a potential up-scaling of the proposed methods to other 

regions in Mongolia. It has also been decided to go without a subsequent refining and merging 

process in the classification to avoid a dilution of the classification accuracies. The individual 

settings for the classification procedure are listed below. 
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Table 7-7: Settings for the object-based and pixel-based classification for the various sensor platforms. 

Sensor platform Sentinel-2 RapidEye Pléiades Pléiades –  

single trees 

WorldView-2 

OBIA settings      

Colour 0.15  0.95 0.95 1.0 

Scale 20  300 40 300 

Compactness 0.95  0.2 0.2 0.9 

Classifier settings      

Support Vector Machine 

(Kernel type linear; C = 2) 

     

Mean difference to 

neighbours 

See variants 1-4 

below 

All bands All bands, 

NDVI 

All bands, 

NDVI 

All bands, 

NDVI 

Standard deviation See variants 1-4 

below 

All bands All bands, 

NDVI 

All bands, 

NDVI 

All bands, 

NDVI 

Means  See variants 1-4 

below 

All bands All bands, 

NDVI 

All bands, 

NDVI 

All bands, 

NDVI 

Random Forest      

Tree depth 4 20 5 15 5 

Minimum samples per 

node 

20 20 1 20 1 

Maximum categories 16 16 16 16 16 

Active variables 0 0 0 0 0 

Maximum trees 50 50 50 50 50 

Forest accuracy 0.01 0.01 0.01 0.01 0.01 

 

All mentioned preferences for finding the most relevant parameter combinations are resting on 

verbose trials, on suggestions provided by colleagues in the scientific community, and on clues 

in the literature (e.g. (Aguilar et al., 2013, Dezsö et al., 2012, Hajek, 2004, Kavzoglu and Yildiz, 

2014, Mallinis et al., 2008). Several variants for the refinement of the classification process 

were devised to give credit to the enormous amount of spectral variety available these days. 

For instance, the Sentinel-2 multispectral instrument stands out for delivering imagery with 13 

different bands. The following band combination settings might seem arbitrary, but they are 

based on the spectral separability assessments and on references.    

 



 

241 
 

          Table 7-8: Band combination variants used for classification per sensor platform. 

Selection of spectral bands and indices     

Band combination variants for sensor platform:      

Sentinel-2     

Variant 1  B8, B11, NBR, NDVI   

Variant 2  B8, B11   

Variant 3  B11, NDVI, NBR   

Variant 4   B3, B8, B11, NBR   

Variant all  All bands, no indices   

RapidEye  All bands, no indices   

Pléiades  All bands, no indices   

WorldView-2  All bands, no indices   

 

With respect to the segmentation process the following examples are provided to convey a 

realistic impression on the challenges in finding the most suitable object size.  

 

Figure 7.49: Image segmentation results for Pleiades imagery (10/05/2015) with a 2 m resolution - for single tree 
identification (left) and dominating tree species classification (right). Single tree locations are 
marked with crosses in magenta. Dominant (big) trees are only just recognisable. 

Figure 7.50: Image segmentation results for World-View 2 imagery (30/10/2015) with a 1.6 m resolution - for 
single tree identification (left) and dominant tree species classification (right). The green boxes on 
the left indicate the boundary of the test plots. Dominant (big) trees are barely recognisable. 
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Figure 7.51: Image segmentation results for Sentinel-2 imagery – IR false colour - (09/07/2017) with a 10 m 
resolution (resampled) for dominant tree species classification. Test plot boundaries are marked 
with white boxes. Individual trees cannot be identified in this image. 

 

Above graphs demonstrate quite compellingly, that the segmentation strategy (scale factor) 

has to be adjusted according to the classification purpose, in this case to single tree or 

dominating tree species determination. It is furthermore demonstrated, that spatial resolution 

has its inherent limitations when it comes to identification of individuals trees or well-defined 

clusters.  

Accuracy assessment requires a lot of attention in terms of proper selection of the number and 

location of the assessment points, since this can affect the outcomes of the classification 

considerably. Subsequent to the successful classification a stratified random sampling design 

was applied in ArcGIS to generate the required accuracy assessment points – a number of 

130 points was considered to be sufficient. The accuracy assessment points perfectly reflect 

the accurate character of the associated class, since field data and on-site observations were 

used for verification. The products of the various classification processes and the related 

conclusions are detailed in chapter 8.8.2.      

 

7.3.5.7. Wildfire analysis 

The occurrence of fires has been part of the Mongolian ecosystems for thousands of years 

(see also chapter 5.2.).  During my fieldtrip I experienced massive scorching of huge parts of 

the landscape with substantial impacts on the taiga forests. The pictures below are intended 
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to provide a glimpse of the incidents. When investigating the extent and severity of such fires 

it is crucial to keep I mind that fire intensity can vary greatly within areas (from ground fires to 

crown fires) causing different levels of damage (i.e., ranging from trees being intact to total 

destruction). In addition, retarding effects of damage and also swift regeneration of the 

vegetation can be observed (see also chapters 5.1. and 5.2.).   

 

Several remote sensing approaches have been taken to assess the extent and severity levels 

of fires with the listed ones below being the most commonly applied methods: 

• Calculate pre-, and post-fire NDVI ((NIR – Red) / (NIR + RED)) for delta. 

• Calculate pre-,and post-fire NBR ((NIR – SWIR) / (NIR + SWIR)) for delta. A variation 

of the NBR is constituted by the RBR as suggested by Parks et al. (2014) (see also 

chapter 5.1.). 

• Calculate pre-, and post-fire NDWI ((GREEN - NIR) / (GREEN + NIR)) for delta. 

 

The following graph illustrates the timeline for the occurrence of the wildfires in the Thunkel 

area. A band combination of SWIR 2 (B 12) / SWIR 1 (B11) / NIR (8A) for the Sentinel-2 

imagery was chosen  - SWIR is able to penetrate haze and thin clouds in contrast to the visible 

spectral bands. 

 

 

Figure 7.52: Raging fires in the Thunkel area (left). Rapid regeneration of the forest floor flora after the fire 
(right).  
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The workflow for the extraction of the burned area is demonstrated below. As pre-fire image 

the Sentinel-2 scene 09/07/2017 was selected, with the Sentinel-2 scene 07/09/2017 for post-

fire analysis. The NDWI was calculated for the detection of water bodies, which could 

potentially impede the interpretation of the results (see also McFeeters, 1996). The same 

applies to the masking of the cloud coverage - cloud masks are automatically created in SNAP 

when applying atmospheric correction of the imagery (i.e., Sen2Cor). 

 

Figure 7.54: Workflow for the extraction of burned areas.  

 

Having calculated the difference between pre-, and post-fire values, for the interpretation of 

the results the commonly used USGS standard was favoured. As a subsequent step the extent 
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Figure 7.53: Timeline for the wildfire occurrence in the Thunkel area in 2017. The band combination of 
B12/B11/B8A was used for illustration in the Sentinel-2 images. Image from 02/06/2017 (top left) 
with no indication of fire. First fires (bright orange) appearing in image 12/07/2017 (top right). Fire 
extent for 29/07/017 in bottom left image and for 07/09/2017 in bottom right image.   
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of the burned area can be determined in a GIS environment. However, this part of the process 

was waived due to the fact that I was only interested in the inspection of the areas affected by 

the fires and the possible implications for managing compartment 435. Finally, the outcomes 

of the dNDVI, dRBR, and dNBR calculations were set against each other for visual assessment 

to attain indications on the best performance and suitability for burned area estimation. Part  

of the comparison between these indices the retrieval of burned area from some other source 

was also conducted – in this case the FIRMS database (Fire Information for Resource 

Management System) managed by NASA helped to verify the results of the Sentinel-2 image 

analysis. This database provides an excellent tool for the detection of fires incidents around 

the world (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms). The 

website not only provides the location of active fires, but also presents archived data in an 

extensive database repository. The user, however, has to be aware of the fact, that MODIS 

data represent a pixel size of 1 kilometre, whereas VIIRS data reflect an area of 375 metres 

per pixel (NASA, 2021).     
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for the year 2017 

Figure 7.55: Extraction of areas affected by fires form the FIRMS database for the year 2017. Fires detected by 
the MODIS (orange spots) and VIIRS (red spots) sensors are indicated. Source: FIRMS, 2021.  
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7.3.5.8. Derivation of NDVI and LAI 

 

NDVI and LAI are considered to be some of the most important biophysical variables for 

assessing vegetation cover, plant vigour, and vegetation density. With NDVI estimations in 

particular it is feasible to portray seasonal effects (phenology) and disturbances in the 

vegetation cover (e.g., fire, insect attacks). Various other applications have been illustrated in 

the respective chapters 3.1.4. and 4.3.3. for further reading.  

Calculating NDVI in multispectral imagery is fairly trivial in most of the remote sensing software 

packages offered on the market. This procedure is based on direct retrieval of NDVI, or by 

using raster calculator operations by applying the formula NDVI = (NIR – RED) / (NIR + RED). 

The NDVI estimations were applied to achieve the following in this investigation: 

1. Get a clear definition and delineation of the dark taiga conifer areas. 

2. Show differences in NDVI results for the various satellite platforms. 

3. Assess the relationship between NDVI and LAI. 

4. Compare outcomes for the calculations of NDVI and the variant NDRE (NDRE = (NIR 

– RE) / (NIR + RE). 

5. Illustrate seasonal effects for the year of 2017 (timeline). 

The calculation of NDVI was conducted for all satellite imagery (i.e., WV-2, Sentinel-2, 

Pléiades, Landsat 8), with atmospheric correction, resampling, and clipping (area reduction) 

carried out prior to processing. An example for such NDVI estimation is provided in the figure 

below for the Sentinel-2 09/07/2017 summer scene with the associated NDVI values provided. 

As anticipated the green grass areas in the riparian areas (in red) show the highest values, 

whereas the sun-scorched rockfaces and bare soils appear in blue due to the lack of (live) 

vegetation cover. 

Figure 7.56: NDVI calculation of the S-2 image 09/07/2017 – associated values on the right. 
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The following procedures were implemented for finding adequate responses to the questions 

raised (enumeration numbers correspond): 

1. Since the dark taiga conifer species are indeciduous a winter image (here:WV-2) with little 

snow coverage was selected for the identification of the related areas. 

2. NDVI was calculated for the platforms of Landsat 8, Sentinel-2, and Pléiades with 

corresponding dates of acquisition. For comparison randomly chosen image pixels with their 

associated NDVI values were set against each other to be illustrated. 

3. The NDVI/LAI relationship was investigated through linear regression of the same summer 

Sentinel-2 image. 

4. NVI and NDRE were calculated for the same Sentinel-2 scene and displayed for contrasting 

results. 

5. The seasonality analysis was performed in Terrset’s Earth Trend Modeler (ETM) – a detailed 

workflow is given below. With ETM, it is possible to map long term trends, trends in seasonality 

and search for patterns  in user-defined regions of interest .  

In order to gain detailed insight in the seasonal trends for the test area in 2017 the most suitable 

Sentinel-2 images (in total 11) were selected to represent a winter-to-winter timeline (i.e., 

dates: 14/03, 03/04, 13/05, 09/07, 12/07, 29/07, 07/09, 10/09, 17/10, 25/10, 01/11). Prior to 

stacking of all imagery, they had to be checked for positional errors one by one to ensure a 

perfect match. Terrset’s ETM also requires to define start and end of analysis, which was set 

to March and November, respectively. The series type was chosen to be monthly with the 

corresponding definition of the Julian day. The missing data interpolation option was enabled 

for accounting for time gaps. For inspection and examination of the image series a data cube 

is generated to explore the space/time dynamics.       
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Figure 7.57: Illustration of the NDVI seasonal trend workflow in Terrset Earth Trend Modeler. 

In a final step the temporal profiling is created by graphing the summary values of all pixels in 

a defined sample region. In this case regions of interest were specified for dark taiga, light 

taiga, burned areas, and the total area of compartment 435. Standard statistics like mean, 

median, minimum, maximum, range, sum or standard deviation summary values can now be 

graphed and trend lines added. The results of this analysis are detailed and illustrated in 

chapter 8.4. of this thesis. ETM offers much more options on trend modelling (Eastman, 2020: 

275–301), however, further investigations would be beyond the scope of this work.      

 

For the estimation of LAI, a measurement device was employed in the field, and LAI values 

derived in SNAP for the Sentinel-2 imagery. To ensure consistency in the measurements a 

diagonal transect was chosen within the test plot with readings taken every 2 meters with the 

LICOR LAI 2000 to achieve an average value for the plot. The LICOR instrument allows for 

the calculation of mean LAI values for a specific transect – the readings were taken accordingly 

for each test plot. A view cap with a 90o angle was used to block the sun and the operator from 

the sensor’s view. For further information please refer to the LICOR’s user manual (Garrigues 

et al., 2008, LI-COR, 1992). 

The SNAP environment provides specific tools for the estimation of biophysical variables such 

as LAI (leaf area index), FAPAR (fraction of absorbed photosynthetically active radiation), and 

FVC (cover fraction). As an implementation of the Sentinel 2 Toolbox the variables are derived 

from top of canopy normalised reflectance data with neural networks trained to estimate the 

canopy characteristics from TOC reflectance along with corresponding angles defining the 

observational configuration (Weiss and Baret, 2016). However, it is important to know, that (i) 

the estimations are strongly scale dependant, (ii) all green contributors are included, i.e. all 

understorey vegetation, and (ii) the LAI estimation models are based on the assumption that 

leaves are randomly distributed (i.e. ignoring the clumping phenomenon) (Chen et al., 2005, 
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Weiss and Baret, 2016, Yan et al., 2019). As such the satellite derived LAI estimations have 

to be judged accordingly and treated with caution. More details on the LAI extraction algorithms 

in the S2Toolbox can be found in Weiss and Baret (2016). The estimation process in SNAP is 

very straightforward by choosing the ‘Calculate biophysical variables (LAI, FAPAR)’ in the 

Raster context menu and execute this on a specific satellite scene, which was corrected for 

atmospheric effects beforehand – in my case the 09/07/2017 Sentinel-2 image. The resulting 

raster is subsequently imported into a GIS for retrieval of the LAI values (zonal statistics) to be 

set against the field measurements for accuracy checks. In addition to the field / satellite LAI 

comparison, the relationship between LAI and NDVI , as well as for LAI and canopy cover was 

investigated in order to confirm or disaffirm the close correlation behaviour as indicated in the 

literature.  

 

7.3.5.9. k-NN estimation for timber volume ad basal area (BA) 

In publications  KNN is often referred to as K nearest neighbour classifier when it is used for 

classifying categorical variables such as in remote sensing projects. However, KNN is named 

K nearest neighbor regression when it is applied for predicting non-categorical variables (Meng 

et al., 2007). The k-NN regression is based on the work of Chirici et al. (2008), which has been 

outlined in chapter 4.6.2. In 2012 a research group headed by  Gherardo Chirici released a 

stand-alone programme for running k-NN regression in a Windows-based environment (Chirici, 

2012). An email exchange with this group revealed, that in the meantime their development 

has been integrated as an improved version in Idrisi’s Terrset software environment. The graph 

below portrays the workflow associated with the user interface in Terrset. In the presented 

study the Sentinel-2 image 09/07/2017 was chosen. A sample raster size was created to best 

possibly reflect the location of the test plots the timber volume and BA were calculated for – 

the plot raster pixels were indicated with their associated plot number, the surrounding pixel 

values were set as 0 as not to be considered in the subsequent calculations. For the database 

file the fields were populated with the corresponding values per test plot for timber volume, and 

BA respectively. The following satellite spectral bands were selected to be appropriate inputs: 

Blue, Green, Red, NIR, SWIR, with the calculated NDVI being an auxiliary input.  According to 

the k-NN Manual ( Chirici, 2012) the ‘extraction type’ was set to ‘Minimum’, the ‘distance option’ 

‘Euclidian’ was chosen as proposed by a number of authors (see also chapter 4.6.2.). An 

example for populating the Terrset k-NN regression user interface, and the associated 

calculated K value is given in Figure 7.59.   
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Figure 7.58: K-NN regression workflow (based on Chirici, 2012). 

Since the k-NN output raster locations hardly perfectly match with the test plot boundaries used 

for the verification process, the zonal statistics tool was employed in ArcGIS to retrieve the 

related correct values for timber volume and BA. A direct comparison between volume and BA 

values as calculated during the k-NN regression analysis with the pertaining field data was 

conducted to find potential discrepancies.  

 

 

  

Import satellite imagery 
into Idrisi (.rst format) and 

resample to match with 
test plot size

Create sample size raster 
file to be used as input for  

k-NN regression

Create  database file 
(.accdb; .dbf; .csv) with 
timber volume and BA 

values as input dependent 
variable

Select satellite image 
spectral bands and 

auxiliary data as input for 
independent variable 

Set extraction type (e.g. 
Min, Max) and distance 
option (e.g. Euclidian)

Step 1: test for optimum K

Step 2: run analysis with 
specified (suggested) K and 

set K threshold

Specifiy output raster 
image

Import resulting raster into 
GIS and get value readings 

(timber volume; BA) for 
validation plots

Compare found values of 
validation plots with 
calculated field data 

Figure 7.59: KNN Regression window in TerrSet2020 - left ( Eastman, 2020  ); test for optimal K result – right. 
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8. Results and discussion 

The following chapters details all findings related to the work conducted in the field as well as 

the subsequent analyses of the imagery employed. Since the presented work comprises the 

extraction of a huge bundle of forest attributes with various methods being associated, it was 

decided to merge the result description with interpretation in due consideration of the existing 

body of literature outlined in the preceding sections. The essence of all outcomes and their 

complementary ratings has been compiled in a ‘results matrix’ to be used as a ‘vademecum’ 

or even as a decision matrix for the best sensor / extraction method response to a specific 

query.     

8.1. Field data 

The analysis of data gathered either in a laboratory or in the field represents the very essence 

of any scientific investigation. Although the initially planned number of field surveys could not 

be implemented due to force majeure, almost 850 trees at 15 test plots were measured to 

provide a sound base for further analysis. The main objectives for the scrutiny of these data 

are manifold: 

− Calculate specific values and statistics for various forest attributes for comparison with 

outcomes of other taxations carried out. 

− Retrieve suitable information to set against the data extracted from the remotely sensed 

imagery (i.e., ground truthing reference). 

− Try to find relationships between various parameters as described in the literature. 

− Illustrate, if there is any difference between light and dark taiga traits.  

The following subchapters and paragraphs are structured according to their relevance 

regarding comparison and correlation of the data, and their inherent information with respect 

to their characteristics concerning tree individuals and forest stands.   

 

8.1.1. Main findings and calculations for single trees and all test plots 

High resolution imagery qualifies for the extraction of certain parameters from individual trees 

as well as from tree communities. Based on this discovery the subsequent analyses were 

conducted regarding single trees and larger units, such as forest stands. The calculation 

procedures and underlying statistical methods for the data analysis have been previously 

detailed in chapter 7.3.3.  

Randomly selected tree individuals were subject of the investigation on specific characteristics 

such as species, tree height, and crown diameter. The individuals reflect a large variety in 
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species and dimensions, and meet the requirement to be detectable in the imagery. The table 

below reflects the results of the calculations. The highest dimensions for DBH and tree height 

were determined for trees populating the riparian area, where excellent growing conditions 

prevail. The relationship between DBH and tree height is not being illustrated due to the small 

sample size. 

Table 8-1: Measured and calculated parameters for the single trees survey. 

Tree 
No 

Species DBH 
(cm) 

Height 
(m) 

Mean Crown 
Diameter (m) 

Tree 
No 

Species DBH 
(cm) 

Height 
(m) 

Mean Crown 
Diameter (m) 

1 Larch 44 17.4 9.20 19 Birch 45 11.4 6.75 
 

2 Larch 42 19.6 7.60 20 Larch 37 17.8 7.30 
 

3 Larch 80 22.0 11.90 21 Birch 40 16.4 9.60 
 

4 Larch 57 21.8 10.10 22 Birch 25 13.0 4.90 
 

5 Larch 39 18.4 7.35 23 Birch 35 16.0 5.55 
 

6 Willow 18 7.6 5.20 24 Larch 46 15.4 9.90 
 

7 Willow 29 8.0 4.80 25 Larch 63 18.5 13.85 
 

8 Willow 22 6.6 5.85 26 Larch 34 16.4 7.10 
 

9 Poplar 96 21.2 12.50 27 Larch 61 22.2 6.80 
 

10 Birch 48 17.6 6.50 28 Larch 76 25.4 12.15 
 

11 Birch 34 14.2 6.50 29 Larch 37 17.3 6.20 
 

12 Larch 91 25.0 NA 30 Birch 27 14.0 7.05 
 

13 Willow 61 8.6 5.00 31 Larch 39 18.8 4.70 
 

14 Poplar 44 18.0 NA 32 Birch 25 14.0 4.60 
 

15 Poplar 50 16.0 8.95 33 Larch 37 18.7 6.50 
 

16 Birch 48 13.4 7.95 34 Birch 30 14.8 6.25 
 

17 Willow 55 12.0 8.10 35 Larch 24 14.5 4.55 
 

18 Poplar 87 19.9 11.50 36 Birch 26 16.0 4.35 
 

     
37 Larch 33 17.2 7.40 

 

 

All data calculated above have been used as reference for the comparison between field data 

and the information extracted from the imagery to check for disparities. 

In the following the calculations for the respective test plots are presented and set the 

calculations of the GIZ survey (i.e., Tables 8-2 and 8-3) side by side. The most relevant findings 

are elaborated, with a detailed comparison between light taiga and dark taiga features 

discussed in chapter 8.1.4. In order to gain more insights into the structure and characteristics 

of the taiga forests and for relativization purposes it would be sensible to set the outcomes of 

this study against some reference. However, only a few studies, namely by Gradel and 

Mühlenberg (2011), Gradel (2017), Gradel et al. (2017a), and Mestemacher and Doelle (2003) 

provide some clues on the growth development of the forests in the Khentii region. Some rough 

figures are also provided through the NFI report, though the forest inventory carried out on a 

national level pursues other goals. To the best of the author’s knowledge, no other reliable 

sources seem to exist. There is of course a slight chance that Russian researchers conducted 
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investigations during the Russian – Mongolian collaboration period, however, since Dr. Gradel 

is in command of the Russian language and maintains correspondence  with Russian experts, 

I imagine that he also perused the pertaining literature. In addition, reports on local forest 

taxations carried out by private companies are either not available or are based on ocular 

estimation, thus making any inferences based on sound scientific methods pure speculation 

(Altrell and Erdenejav, 2016: 107–108).       

According to my surveys the tree heights range from 11.00m to 15.98m for the mean value, 

with a maximum height for an old larch with 24.8m. These outcomes are very much in line with 

the findings by Gradel (2017: 122) and the majority of the inventory results for compartment 

435 assessed by Gaschick (2013). The number and variety of tree species found also 

correspondents with the classification definition for light and dark taiga. The number of trees 

per hectare varies greatly with figures of between 200 and 1010. Most of the more sparsely 

populated areas are to be found in the lower part of compartment 435, where marked 

indications of over-exploitation are apparent. In contrast, most of the dark taiga patches show 

high tree numbers, since no cutting activities seem to have taken place. The NFI report 

discloses an average of 444 N/ha for the Khentii inventory region, which is contrasted by 

Gradel (2017: 164), who found higher numbers for his test plots, even after thinning. In terms 

of diameter range and structure the DBH means straddle values between 15.5cm and 34.7cm. 

Once again, the dark taiga plots reflect the highest means. Unfortunately, the references 

mentioned above reveal no further information for comparison. The NFI report shows an 

average of 13.2 m2/ha for the basal area related to the Khentii region (Altrell and Erdenejav, 

2016: 51), whereas the value range associated with my survey shows a different picture, 

namely a mean from 13.25 to 29.40 m2/ha. The dark taiga plots again yielded the highest 

values. Similar results are confirmed in the GIZ management plan, and in Gradel and 

Mühlenberg (2011). Gradel (2007) reports, that the BA of disturbed sites is on average lower 

compared to the undisturbed. This phenomenon could of course explain the poorer 

performance of the light taiga forest areas, since they are affected by causes such as wildfires 

much more often than the dark taigas, which occupy cooler and moister zones. In their study,  

Mestemacher and Doelle (2003) observed that the Pinus sibirica forest featured an average 

BA of 39 – 40 m2 per hectare and the light taiga an BA average of around 19m2/ha. These 

magnitudes are backed by Gradel (2007: 49) in his investigation. Canopy closure was found 

to be ranging from 10 to 60% in the school forest. Since the LAI values are correlated with the 

crown density to some extent, the lowest values can be reported for the light taiga areas in the 

lower part of compartment 435 and the higher LAI for the dark taigas. Some of the low LAIs, 

however, need to be seen in the context of the various levels of defoliation of the birch in the 

lower part of the school forest. The stocking levels can be considered as being quite low in 

general. This phenomenon can most probably attributed to the fact, that the growth and yield 
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tables used for the appraisal tend to gravely overestimate the stocking levels (Gradel, 2017: 

164–165). The highest degree of controversy is to be reported on the determination of timber 

volume and the associated outcomes for the specific taiga types and regions. Although having 

applied the same allometric formulas, the results of my investigation are not commensurate 

with the findings in most of the other sources. The calculated values for compartment seem to 

be largely underestimated by Gaschick (2013) ranging from 20 to 48m3/ha. The average 

volumes specified in the NFI report reflect a value of 96m3/ha for the Khentii area, whereas my 

observations comprise a range from 58 to 332m3/ha. The NFI calculations of course represent 

an average for the whole of the Khentii region. Gradel (2017: 164) also reports volumes to be 

much higher than in the NFI report. Thus, I consider my findings being closer to the real values, 

than those indicated by Gaschick (2013), however without claiming, that my observations are 

subject to the highest achievable accuracies.       

As indicated above, there are a number of disparities to be reported between the GIZ 

management plan (i.e., Gaschick, 2013) and my survey data, of which some of them remain 

contentious. The table below (Table 8-3) bears testimony to the findings. The good news is 

that BA values are very similar and tree species allocations also match quite nicely. What 

stunned me most is an average tree height of 32m for the dominating tree species Siberian 

birch in stand no.5. Such tree height is already quite exceptional for a single birch to be found 

in Germany, but with respect to the growing conditions in Mongolia such an extreme value 

seems quite unrealistic. The number of trees found in the respective plots also raises a few 

concerns, since in a number of cases numbers were about 50% of the ones that were detected 

in my inventory. According to the management plan no excessive tree felling actions had been 

planned and executed prior to my field trip. The illustrated circumstances of course explain the 

variation in tree volume to a great extent. However, some of the volume discrepancies remain 

untold. In another instance the management plan reports a stocking level (BG) of (negative) – 

0.2, with a calculated number of trees per hectare of 1618 for plot no.16. Even though the 

growth and yield tables are known to overestimate stocking levels, this negative value comes 

to a great surprise. In order to obtain a stocking level value of zero in reality the corresponding 

forest area must present itself being almost void of trees.  

In the light of the discrepancies mentioned above, it has been decided to discard the GIZ data 

as a possible reference for my ground truthing activities. This was also the reason for not taking 

tree age classes into account. Nevertheless, a few potential error sources should be noted for 

further consideration. Firstly, the GIZ survey was based on the 6th-tree method, which yields 

fairly useful, but not the most accurate results. Secondly, the training level of the surveyors 

play an important role in the gathering of the data, which the author can only speculate on. 

Thirdly, some inconsistencies in other inventory datasets were detected, such as an DBH of 
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30cm coupled with a tree height of zero. This critique is of course not meant to discredit any 

work related to the GIZ inventory, but rather taken as a suggestion for improving data analysis. 

However, it is quite unfortunate not having received any feedback on the points raised.       
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Table 8-2: Calculated forest inventory attributes as surveyed by author (Vogt) in compartment 435. 

 

 

Plot ID 0 1 2 3 4 5 8 11 12 22 24 31 34 60 64 

Mean height (m) 15.81 14.52 14.58 12.06 11.00 11.52 14.89 12.45 11.47 12.50 13.40 12.85 13.96 15.47 15.98 

Mean DBH (cm) 24.9 24.0 15.4 15.5 15.5 21.2 34.7 17.2 19.1 19.0 30.1 20.6 22.3 17.5 18.4 

Trees/ha 200 340 520 530 920 860 450 1010 840 480 420 430 350 810 820 

Species (%) 
               

Siberian birch 75 59 98 91 96 1 0 18 15 69 55 72 86 98 100 

Siberian larch  25 41 2 9 4 26 31 63 54 31 45 28 14 2 0 

Siberian spruce 0 0 0 0 0 44 38 9 14 0 0 0 0 0 0 

Siberian pine 0 0 0 0 0 29 31 10 17 0 0 0 0 0 0 

LAI 0.34 0.67 0.49 0.91 1.21 0.74 0.96 1.80 0.93 1.79 0.83 1.12 NA 1.12 0.71 

Canopy closure (%) 10 15 24 41 64 46 38 60 37 27 29 37 NA 54 59 

Timber volume (qm/ha) 66.40 84.70 86.00 58.10 78.70 223.50 331.80 157.30 153.00 80.20 239.40 94.40 93.60 188.10 165.20 

Basal area (sqm/ha) 13.50 13.25 15.60 15.50 17.50 29.40 28.60 28.80 15.20 21.00 26.80 20.50 19.00 26.25 26.50 

Stand density index 13.50 13.25 15.60 15.50 17.50 29.40 28.60 28.80 15.20 21.00 26.80 20.50 19.00 26.25 26.50 

Shannon index 0.562 0.887 0.095 0.312 0.179 1.141 1.094 1.070 1.234 0.626 0.689 0.598 0.418 0.116 0.066 

Slope (%) 25 22 21 22 20 15 10 20 10 25 19 25 23 30 41 

Aspect N NNE NNE NNW NNW NW NNW NNE NNE NNW NNE NNE N NNW NNW 
                

Stand density index = BA/ha 
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Table 8-3: Comparison of field data of compartment 435 as surveyed by GIZ (in green) and Vogt (in red). Field data Vogt were aggregated to accommodate GIZ zoning.  

Stand 
no. 

Area 
(ha) 

Age 
(range) 

Stocking level 
(BG) 

Stocking level 
(BG) 

Species Tree species 
(%) 

Tree species 
(%) 

Number of trees 
(per ha) 

Number of trees 
(per ha) 

Mean tree 
height (m) 

Mean tree 
height (m) 

Volume 
(m3/ha) 

Volume 
(m3/ha) 

Basal area 
(m2/ha) 

Basal area 
(m2/ha) 

3 96.9 50-70 0.2 0.3 Birch 65 88 342 444 20.00 13.74 12.00 58.76 8.00 12.50 

     
Siberian 

larch 
35 12 185 58 15.00 13.95 8.00 16.02 4.30 2.34 

     
total 100 100 528 502 

  
20.00 74.78 12.30 14.84 

                

5 8.4 50-70 0.5 0.6 Birch 94 98 758 790 32.00 15.74 25.00 149.80 16.90 23.70 

     
Siberian 

larch 
6 2 72 15 5.00 12.55 2.00 25.10 1.00 3.75 

     
total 100 100 830 805 

  
27.00 174.90 17.90 27.45 

                

11 73.3 60-90 0.5 0.4 Birch 78 78 624 295 24.00 13.18 28.00 69.65 16.40 10.30 

     
Siberian 

larch 
22 22 178 85 13.00 13.10 11.00 24.35 4.60 3.15 

     
total 100 100 802 380 

  
39.00 94.00 21.00 13.45 

                

14 57.9 50-150 0.4 0.3 Birch 42 62 577 270 15.00 10.85 12.00 41.75 8.40 8.10 

     
Siberian 
spruce 

0 0 16 0 0.00 0.00 0.00 0.00 0.10 0.00 

     
Siberian 

larch 
58 38 323 170 15.00 15.80 26.00 118.05 11.80 14.60 

     
total 100 100 916 440 

  
38.00 159.80 20.30 22.70 

                

16 97.5 60-130 -0.2 0.5 Birch 14 18 405 170 7.00 10.17 4.00 11.55 3.70 2.65 

     
Siberian 

larch 
53 58 541 535 16.00 13.23 30.00 107.55 14.50 14.90 

     
Siberian 

pine 
25 13 338 120 8.00 11.21 11.00 24.35 6.80 3.40 

     
Siberian 
spruce 

8 11 334 105 5.00 9.99 3.00 11.30 2.30 2.10 

     
total 100 100 1618 930 

  
48.00 154.75 27.30 23.05 

                

17 14.6 40-130 0.3 0.4 Birch 2 2 67 10 1.00 9.90 0.00 1.30 0.40 0.40 

     
Siberian 

larch 
21 26 107 165 8.00 17.06 11.00 147.00 5.20 20.00 

   
GIZ: green 

 
Siberian 

pine 
65 30 746 195 17.00 13.20 25.00 95.10 16.00 10.90 

   
Vogt: red 

 
Siberian 
spruce 

12 42 430 270 8.00 10.90 3.00 34.90 2.90 4.30 

     
total 100 100 1350 640 

  
39.00 278.30 24.50 35.60 
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8.1.2. Relationship tree height to DBH per relevant tree species for all test plots 

In the following the relationship between tree height and DBH is illustrated for the various tree 

species – a comparison between dark and light taiga attributes can be found in chapter 8.1.4. 

For testing similarity, the relevant coefficients of determination (R2) were extracted from the 

National Forest Inventory Report (2016). Unfortunately, no information on the precise 

calculation process was available for the NFI values. In case of massive defects (e.g., broken 

crowns, leaning trees, etc.) a statistically sound correlation between DBH and tree height 

cannot be established. For this reason, both variants, i.e., with and without consideration of 

the defects are reported for compartment 435 for illustration. No distinction between the various 

levels of tree vitality was made. 

Table 8-4: Relationship between DBH and tree height. R2 values are extracted from the National Forest 
Inventory Report (NFI, 2016) and the field data for compartment 435. Data for the school forest 
(dubbed as ‘Vogt’) are presented including all trees measured and without trees with major 
defects (‘outliers’) to avoid potential bias.     

DBH / Height 
relationship 

R2 NFI Trees 
measured 

R2 Vogt 
incl. outliers 

R2 Vogt 
excl. outliers 

Trees 
measured 

Species      

Larix sibirica 0.676 6129 0.573 0.753 222 

Betula platyphylla 0.702 4008 0.452 0.520 535 

Pinus sibirica 0.688 2841 0.823 0.850 64 

Picea obovata 0.753 365 0.651 0.692 77 

 

The graphical representation of the DBH / tree height is provided below per species for all trees 

measured. In addition, the most relevant descriptive statistics are portrayed.  

         

Figure 8.1: Tree height – DBH relationship for Siberian larch.  

   

y = 22.902x + 9.2
R² = 0.5727

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Tr
ee

 h
ei

gh
t 

(m
)

DBH (m)

Larch Height/DBH incl. outliers



 

259 
 

         

Figure 8.2: Tree height – DBH relationship for Siberian larch. Trees with broken crowns and heavily leaning 
trees are excluded from reckoning. 

Since the larch stands feature a relatively high number of broken tree crowns it seems quite 

sensible to only consider the R2 value for the height / DBH relationship disregarding the 

outliers. With a value calculated for my investigation the R2 shows a better performance in 

comparison with the NFI findings, i.e., a higher proportion of total variation of outcomes are 

explained by the model. The main descriptive statistics are provided in the table below for 

which a detailed discussion related to the box plot interpretation for larch is provided in chapter 

8.1.3. 

Table 8-5: Main statistical parameters for Siberian larch (left) and Siberian birch (right) including outliers. 

  

 

 

         

 

The tables above demonstrate, that due to the relatively high sampling size both  - mean and 

median – are not that different for each species. As expected, the variances for DBH are low 

due to the fact, that the stands are quite uniform - a few exceptions of course exist in the dark 

taiga, where a high number of very old larches are still present. The variance for the tree 

heights is much larger in comparison, because the statistics also entail the outliers with broken 

and leaning trees considered.   

When regarding the height / DBH relationship for the Siberian birch the low R2 value in 

comparison with the NFI findings is obvious (i.e., 0.452 vs 0.702), even with outliers being 

discarded. Even though the number of tree individuals measured is high (i.e., 535), the 
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coefficient of determination shows a big discrepancy compared to the NFI figure. A possible 

interpretation is that many birch individuals exhibit a multi-stem characteristic – apparently, 

they were either felled or affected by fire with resprouting activities taking place afterwards. 

This phenomenon can lead to a skewed height / DBH relationship.     

           

Figure 8.3: Tree height – DBH relationship for Siberian birch. 

         

Figure 8.4: Tree height – DBH relationship for Siberian birch. Trees with broken crowns and heavily leaning 
trees are excluded from reckoning. 
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Figure 8.5: Tree height – DBH relationship for Siberian pine. 

          

Figure 8.6: Tree height – DBH relationship for Siberian pine. Trees with broken crowns and heavily leaning trees 
are excluded from reckoning. 
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correlation. 
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Figure 8.7: Tree height – DBH relationship for Siberian spruce. 

 

          

Figure 8.8: Tree height – DBH relationship for Siberian spruce. Trees with broken crowns and heavily leaning 
trees are excluded from reckoning. 

 

The comparison between the descriptive statistics for DBH again shows a low degree of 

variance for both species. The mean and median values for the tree height, however, display 

a smaller variation for Siberian pine as for Siberian spruce – this outcome is hard to 

comprehend and might be linked to fact, that the sampling size for both species is rather limited 

(i.e., 66 trees vs 7 trees).    
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Table 8-6: Main statistical parameters for Siberian pine (left) and Siberian spruce (right) including outliers. 

 

 

 

 

In conclusion it can be stated, that all tree species reveal a positive height / DBH relationship 

with no real anomalies compared to the NFI findings. It is, however, very unfortunate, that 

access to other data sources, such as the repository of the Mongolian Botanical Institute, was 

not possible.   

 

8.1.3. Statistics for dominant tree species larch   

These calculations and statistics are a prerequisite for the comparison between light and dark 

taiga features. Since no birch was found to be present in the surveys for the dark taiga, only 

the larch traits were subjected to further analysis. 

As outlined in chapter 7.3.3. a quantile-quantile (Q-Q) plot had to be created to test the dark 

and light taiga features for a distribution deviating from the Gaussian principle. 

                    

Figure 8.9: Q-Q-plot to examine distribution for DBH in Siberian larch (all plots). 

The figure above features a clear S-shape for the two distributions regarding DBH (i.e., 

observed vs expected values). Once the plot shows such a graphical representation of the 

quantiles, one of the distributions is more skewed, thus not following a normal distribution 
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(Lorenz, 2020, Thode, 2002: 21–22, Wilk and Gnanadesikan, 1968). This outcome has grave 

implications on the further statistical testing, suggesting, a non-parametric test has to be 

chosen. In the figure below the same process is reflected for testing the height values for 

normal distribution.  

 

                     

Figure 8.10: Q-Q-plot to examine distribution for tree height in Siberian larch (all plots). 

As for the interpretation of the resulting Q-Q plots two distributions being compared can be 

regarded as identical, if the plot follows the 45o line. This most certainly is the case for the 

height distributions – thus, a parametric statistical test would be appropriate. However, since 

the biggest differences were expected to exist between the dark and light taiga DBH, the 

subsequent analysis (i.e., U-test) was only carried out for this forest attribute. In addition, the 

consideration of DBH was considered to be less prone to bias because of the occurrence of 

broken and leaning trees affecting the tree height analysis.     

 

8.1.4. Comparison of statistics for dark and light taiga 

In this subchapter the statistics for DBH and tree height are compared between dark and light 

taiga for Siberian larch, as well as for all tree species. Although the provided tables already 

provide a good insight in the disparities, the graphical representation as boxplots (for all 

species) make the analysis of the data much more tangible. 

The first set of descriptive statistics reflects the dark taiga DBH set against the same attribute 

for the light taiga. The calculated DBH mean for the dark taiga is 2.5cm lower than for the light 

taiga, with the median being even 5cm different. The values for kurtosis and skewness are not 

very meaningful, since we already proved the DBH distribution not showing properties to be 

Gaussian. The minimum, but especially the maximum diameters – in consideration with the 
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mean diameter – already give an indication, that  diameter growth appears to be more modest 

in the dark taigas. 

 

Table 8-7: Dark taiga DBH for larch. 

Larch dark taiga - DBH (cm) 

   

Mean 21.9064748 

Standard Error 1.08524632 

Median 16 

Mode 14 

Standard Deviation 12.7948654 

Sample Variance 163.708581 

Kurtosis 0.36605176 

Skewness 0.99109195 

Range 47 

Minimum 9 

Maximum 56 

Sum 3045 

Count 139 

Confidence Level(95.0%) 2.14586139 

  

 

Table 8-8: Light taiga DBH for larch. 

Larch light taiga - DBH (cm) 

  

Mean 24.4698795 

Standard Error 1.59195905 

Median 21 

Mode 12 

Standard Deviation 14.5034372 

Sample Variance 210.349691 

Kurtosis 1.07481125 

Skewness 1.27113054 

Range 63 

Minimum 8 

Maximum 71 

Sum 2031 

Count 83 

Confidence Level(95.0%) 3.16691369 

  
When investigating the height disparities between the two populations the difference in mean 

is almost negligible. However, the difference in maximum tree height (i.e., 2m) in favour of the 

light taiga can be attributed to less favourable growing conditions in the dark taiga realm (cooler 

climate). In addition, it also needs to be taken into account, that the dark taigas are in average 

much older than the light taigas due to the lack of accessibility of the former. Unfortunately, the 

analysis of the tree rings is still in progress, with the GIZ data mostly being based on ocular 

estimations. Quite striking is the enormous height variance of the light taiga with a value of 

almost 24. This performance can be attributed to the fact, that large areas of very young taiga 

(i.e., lower part of compartment 435) are represented, as are older parts with a high number 

of so-called canopy emergent, I.e., old trees either not been cut (i.e., not accessible) and /or 

left as seed trees. Both, kurtosis and skewness values do not reflect a big discrepancy from 

the  typical character of a normal distribution, which would ideally feature a value of 0.     
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Table 8-9: Dark taiga tree height for larch. 

Larch dark taiga - Tree height (m) 

  

Mean 14.16115108 

Standard Error 0.296849461 

Median 13.8 

Mode 15.6 

Standard Deviation 3.499803531 

Sample Variance 12.24862475 

Kurtosis 0.037136771 

Skewness 0.204029982 

Range 18.8 

Minimum 3.8 

Maximum 22.6 

Sum 1968.4 

Count 139 

Confidence Level(95.0%) 0.586961491 

 

Table 8-10: Light taiga tree height for larch. 

Larch light taiga - Tree height (m) 

  

Mean 14.8975904 

Standard Error 0.53686593 

Median 15 

Mode 15 

Standard Deviation 4.89108138 

Sample Variance 23.922677 

Kurtosis 0.53619037 

Skewness 0.03360424 

Range 21 

Minimum 3.8 

Maximum 24.8 

Sum 1236.5 

Count 83 

Confidence Level(95.0%) 1.06799735 

 

The following graphs provide a representation of the height / DBH relationship for light and 

dark taiga separately. The coefficients of determination are provided for the linear relationship, 

as well as for a polynomial 2nd order.  

 

                

Figure 8.11: Relationship between tree height and DBH for Siberian larch, light taiga. 
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Figure 8.12: Relationship between tree height and DBH for Siberian larch, dark taiga. 

The figures above show, that there is definitely a positive relationship between tree height and 

DBH, but with the light taiga variant revealing a higher coefficient of determination (for both, 

linear and polynomial). It is, however, quite unfortunate, that the NFI values provided for R2 

(see above in chapter 8.1.2.) do not allow a distinction between dark and light taiga height / 

DBH correlation. As such, an interpretation of the different performances is quite arduous. 

When looking at the graphical representation for the dark taiga relationship, it is at least 

apparent, that some more outliers exist. Since those extreme values can have a big leverage 

on the coefficient of determination, such a pull towards the poorer values can be assumed. 

In the two bar graphs below a representation of the DBH class distribution is given.  

              

Figure 8.13: DBH distribution per class for the dark taiga Siberian larch. 
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Figure 8.14: DBH distribution per class for the light taiga Siberian larch. 

The figures above show for both variants a distribution with a slight skewness to the left, 

indicating  that the  lower diameters are dominating. The distribution of the DBH for the dark 

taiga, however, reveal that diameters beyond the 25cm class or more evenly spread. In turn, 

the light taiga class distribution indicates the existence of a few more trees with extremely high 

DBH. Both graphs also illustrate, that there seems to be a sufficient amount of trees of younger 

age to successively take a shift towards the higher diameters. This observation, however, is 

not quite in line with the one made by GIZ experts, who read a trend to an over-aging of the 

forest stands in the school forest (Schmidt-Corsitto, 2017).  

In the following graphs the descriptive statistics have been converted into boxplots to improve 

interpretability. The first pair of plots represent the statistics related to the DBH for light and 

dark taiga, respectively, to represent all trees (i.e., all species) measured in the pertaining taiga 

class. Although the median values are identical for both taiga classes, the size of the box 

representing the interquartile area (i.e., 50%) is more extended for the dark, than for the light 

taiga. In addition, the mean value for the dark taiga (i.e., 21.51cm) exceeds the value for the 

light taiga by almost 3.5cm. According to the field data, the high average DBH of the Siberian 

pine largely contributes to this trend. For the dark taiga the range of the whiskers (i.e., 25th and 

75th percentile, the so-called interquartile range) is more pronounced than for the light taiga 

indicating a higher variability. The maximum value for dark taiga is 52cm, whereas for the light 

taiga it is 37cm. On the other hand, outliers are much more abundant in the light taiga boxplot, 

but apparently exhibiting not much leverage.    
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Figure 8.15: Box plot for DBH for dark taiga all species. 

 

 

Figure 8.16: Box plot for DBH for light taiga all species. 

 

The box plot for the tree height analysis reveals much more similarities between the taiga 

classes. The medians and the inter-quartiles very much look alike, as do the inter-quartile 

ranges. The value for the mean height is slightly higher for the light taiga, though. Thus, in 

conclusion, there are disparities for DBH in favour of the dark taiga, but there are also striking 

similarities in tree height for both taiga classes.
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Figure 8.17: Box plot for tree height for dark taiga all species. 

 

   

 

Figure 8.18: Box plot for tree height for light taiga all species. 
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The Wilcoxon rank sum test (U-test) 

The descriptive statistics for the DBH in larch for light and dark taiga displayed some 

disparities. For instance, the calculated mean for the dark taiga DBH is 21.90cm, whereas the 

light taiga analysis yields a value of 24.47cm. Further above we also found the distribution for 

the DBH not complying with the normality standards (Q-Q plot). As a consequence, the 

Wilcoxon rank sum test had to be carried out for testing the following hypotheses: the null-

hypothesis (Ho) was defined as there is NO difference between dark taiga and light taiga DBH. 

The alternative hypothesis (Ha), in contrast, considers the opposite.  

The calculation of the U-test statistics is presented in the following table: 

Table 8-11: Calculated values for the Wilcoxon rank sum test for testing difference between dark taiga and light 
taiga DBH in larch.  

 
Wilcoxon signed-rank test 

 

R1 14417 dark taiga 

R2 10336 light taiga 

n1 136 dark taiga 

n2 86 light taiga 

U 6595 
 

Z 1.60228 
 

Critical value 1.979  

   

 

According to the literature for high sample numbers (i.e. n greater than 40) Z alpha equals t 

alpha, because with high sample numbers a normal distribution is approximated (Zar, 2010: 

150–151). Thus, the critical values of the t-distribution apply. This results in a critical value for 

alpha 0.05 (5%) two-tailed test at n = 136 of 1.979. Since the calculated Z value of 1.60228 is 

smaller than the t-table value of 1.979 the Null-hypothesis has to be accepted, i.e., there is no 

significant difference between the light taiga DBH and the dark taiga DBH in statistical terms. 

Despite the fact, that there is no significant disparity between the dark and light taiga DBH, the 

assessment of the box plots above reveal, that there most certainly is a difference in DBH 

when considering all tree species. Thanks to the contribution of the Siberian pine to the 

outcomes of the DBH calculations a significant difference between the light and dark taiga is 

demonstrated. 
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8.2. DEM analysis 

Topography and its related features (i.e., slope, aspect, elevation) is one of the prime factors 

controlling vegetation distribution patterns and species richness, but it also creates feedback 

effects on local climate. Mountain areas are expressly guilty for creating complex, very 

heterogenous relief characteristics, and as such very diverse microclimates and ecological 

niches (Begum et al., 2010, Böhner and Antonić, 2009, Bonan and Shugart, 1989, Dobrowski 

et al., 2009).  Notwithstanding the fact that DEM analysis is not quite a focal point of this thesis, 

it can’t be denied that the influence of slope, aspect, and elevation on the horizontal distribution 

of the forest areas is substantial. In addition, tree classification also entails a proper judgement 

and thus verification on the potential location of specific species. However, it is not intended to 

conduct an exhaustive investigation.    

To the author’s best of knowledge, the DEM employed is based on the extraction of elevation 

information from a Russian topographic map at a 1:100,000 scale. Quality checks revealed 

that the presented elevation model with an 8-metre resolution is almost perfectly true to the 

elevation data of the Russian map with a deviation of about 1 to 2 metres in elevation. The 

figure below illustrates the extent of the entire DEM for the Thunkel area.   

The first analysis was carried out on the 

DEM to derive the aspect situation 

reflecting specified classes associated 

with common compass readings (see 

Figure 8.20). Compartment 435 is mainly 

oriented northwards with a few rockfaces 

sloping to the south. All forested areas 

follow the northerly bearing with some 

sparsely populated areas to be found 

southbound, but being restricted to the 

upper altitudes south of the of the 

compartment. All other areas facing 

south are not suited for tree cover with 

the exception of a few micro-relief 

pockets. This finding is very much in line with literature by authors such as Dulamsuren et al. 

(2005a), Dulamsuren and Hauck (2008), Dulamsuren (2004), Klinge et al. (2014) and 

Mühlenberg et al. (2012b). Although northern slopes receive less solar radiation this deficit is 

remedied with a higher moisture content and a much higher amount of permafrost areas as a 

potential water reservoir (Bonan and Shugart, 1989, Dashtseren et al., 2014, Juřička et al., 

2020).    

Figure 8.19: DEM for the Thunkel area featuring an 8m 
resolution. The village of Thunkel is 
indicated with a red arrow (tip). Source: 
GIZ, 2017.  
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Figure 8.20: Forest distribution related to aspect. Most of the forested area is located on northern slopes; sparse 
forests are also to be found on slopes facing south (see ellipse in red), but only at higher altitudes. 

 

Not only aspect appears a major driver for vegetation cover, but also elevation can be a limiting 

factor. In the graph below the DEM is plotted with the location of the dark taiga forest 

superimposed. The dark taiga is considered to be quite a rare commodity requiring protection 

with an overall proportion of about 7.4% of all forest stands in Mongolia (Altrell and Erdenejav, 

2016). Apart from that this taiga variety is home to a great diversity of flora and fauna alike 

(Mühlenberg, 2012). The derived NDVI from the WV-2 winter image was used to identify the 

non-deciduous forested areas of the dark taiga  - luckily, the snow cover was negligible and 

the dark taiga spectral signature was quite conspicuous. According to the map in Figure 8.21 

the dark taiga seems to be primarily limited to the altitudes beyond the 1550 m contour line – 

this not only holds to be true for the compartment 435 confines, but also concerns other forest 

areas. Since the dark taiga areas do not appear as dense clusters, it can be fairly assumed 

that light taiga species (primarily larch) are intermingled with the dark taiga conifers at least to 

an elevation of up to 1700 metres. This conclusion is strongly supported by my own 

observations when conducting the fieldwork and by Wecking (2017: 53), who also assessed 

species distribution on site. However, this is in contrast to studies conducted by Dulamsuren 

et al. (2005c), who found the light taiga to be restricted to mid and low altitudes.  
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Most interestingly, the conifer forest of the dark taiga also populates certain parts of the riparian 

area. This phenomenon might be attributed to misclassifications at the first glance, but other 

authors also confirm the occurrence of dark taiga species at lower elevations (Altrell, 2017, 

Küstner, 2017, Schmidt-Corsitto, 2017, Zueghart, 2017: 71). This knowledge is mostly based 

on on-site inspections and is limited to locations stocked with Siberian spruce. Hypothetically, 

this species is able to cope with low temperature to be found in depressions of the riparian 

areas, and it can also be attributed to the high water and nutrient requirements of this dark 

taiga representative (see also Dulamsuren et al., 2005a)  - however, this assumption requires 

more in-depth research.  

In her investigation on the spatial distribution patterns of dark and light taiga Zueghart (2017: 

68–69) calculated an elevation mean value of 1605.9 metres for the dark taiga occurrence and 

1364.1 metres for the light taiga proving the restriction to the upper altitudinal belt  of the dark 

taiga. These figures, however, have to be considered in the light of the resources used – the 

Tandem-X DEM data constitute a slightly coarser resolution (i.e., 10m x 10m) in comparison 

with the DEM provided by the GIZ. Furthermore, the analysis of the RapidEye scene acquired 

in September 2015 with a radiometric resolution of five spectral bands revealed an area 

populated by the dark taiga that is different (here: smaller, with dark taiga appearance also in 

Figure 8.21: Distribution of dark taiga (point clouds in grey) in the Thunkel area. Dark taiga mainly populates 
elevations above 1550m, but is also found in riparian areas. The dark taiga delineation is based 
on the NDVI values derived from the WolrdView-2 winter image. 
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the lower altitudes) from the findings of my own research. The almost perfect WV-2 winter 

image I used for assessment has proven to be an ‘incorruptible’ candidate for the delineation 

of the dark taiga, since no other vegetation than the non-deciduous dark taiga species shows 

NDVI values in the range of 0.3 to 0.5. Since the proportion of the Scots pine trees, which also 

representative for the non-deciduous plant species, is extremely low in compartment 435, the 

area populated with dark taiga can be delineated very precisely. Having said this, I ran into 

similar challenges concerning potential misclassifications when employing imagery other than 

the ones acquired in winter.  

My terrain analysis also comprised the assessment of the dark taiga area in relation to the 

slope aspect. As outlined in previous chapters, the spatial distribution for forests in the Khentii 

mountain range is severely aspect-dependent with the dark taiga being restricted to the upper 

mountain slopes facing north (Dulamsuren, 2004, Dulamsuren et al., 2005a, Dulamsuren and 

Hauck, 2008, Mühlenberg, 2012). The map below demonstrates very clearly, that the dark 

taiga seems to be limited to the northern slopes – light taiga also populates other areas (see 

figure above).      

 

Figure 8.22: Location of dark taiga related to aspect. Dark taiga is mainly located on slopes facing north and 
northeast. Dark taiga locations are derived from NDVI values of the WV-2 winter image and 
indicated as a black point cloud.  

This conclusion is very much in line with the results obtained by the authors mentioned above. 

In addition, Zueghart (2017: 70–71) also confirms that dark taiga mainly populates the north 
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and northwest aspects, whereas the light taiga habitat range is less restricted by also showing 

occurrences in areas bearing to the northeast and west. However, sparsely vegetated, open 

forests are conspicuous also in southern slopes, but at high altitudes, where water availability 

is not as limited as in the lower mountain range.     

Slope gradient is another important determinant of the habitat range of vegetation, since it 

controls the amount of solar radiation received and the amount of water distributed. This effect 

has an increasing impact with a gain in slope gradient with the potential to amplify extremes 

when considering the various slope aspects. The situation reaches a level of much higher 

complexity when also taking the sun angle into account.  Most of the forested areas are to be 

found within a range of 10 – 20o slope gradient as being confirmed in the NFI report by Altrell 

and Erdenejav (2016: 96), and by Zueghart (2017: 76) . This is  illustrated by the graph below, 

but it also exhibits the complex structure of the terrain of compartment 435 with pockets of very 

steep slope. In the north-western part of the compartment forested areas showing light taiga 

with a gradient exceeding 40o are conspicuous.  

 

Figure 8.23: Dark taiga distribution related to slope inclination. These forests are located on slopes not 
exceeding 16o . Dark taiga locations are derived from NDVI values of the WV-2 winter image and 
indicated as a black point cloud. 
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This is in contrast with the results reported in the literature, claiming that forests only occupy 

areas with a less pronounced slope gradient (Altrell and Erdenejav, 2016, Zueghart, 2017: 75–

76). In her study Zueghart (2017: 76) observed a specific area populated by dark taiga on fairly 

steep slopes. A cross-check with my own findings, however, revealed that this phenomenon 

can be attributed to an area spuriously classified as dark taiga. This circumstance relentlessly 

discloses the predicaments, pitfalls, and the associated caveats when dealing with a limited 

data set – limited also in the sense of DEMs being too coarse not reflecting the complex nature 

of the terrain, and satellite imagery featuring limited radiometric and temporal resolution. Once 

again, it is old news that the quality of the input data determines the accuracy of the outcomes 

and not necessarily the method chosen. The results of the tree species classifications 

conducted by the author himself also unveil, that even with decent datasets utilised there is no 

warranty of achieving the best possible accuracy with reasonable effort (see also chapter 

8.8.2.).  

 

8.3. Extraction of tree height 

Justifiably, tree height is considered to be a paramount forest inventory parameter per se, since 

it reflects the productivity of a specific site and species, and allows for inferences on forest 

biomass and carbon stock (Gadow, 2003: 31–33, Panagiotidis et al., 2017, van Laar and Akça, 

2007: 1–3). In the last few decades, advanced technologies such as LIDAR and radar, as well 

as progress in photogrammetric solutions have sparked an enormous interest in the scientific 

community. In the subsequent chapter the extraction of tree height regarding single trees and 

tree communities is being presented portraying a technique, that has become increasingly 

popular these days. The extraction procedure has been detailed already to be found in 

chapters 7.3.4.2 and 7.3.4.3.  

 

Single tree heights 

The derivation of the height of individual trees provides a good indication on the performance 

of the flying and calculation strategies employed and can be used for the fine tuning in 

conjunction with the generation of canopy height models for larger forest areas.  The graph 

below demonstrates, that phenomenally good results are achievable for coniferous a well as 

for broad-leafed trees. The tree species selection comprises Siberian larch, poplar and willow, 

as well as Siberian birch.  
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Figure 8.24: Comparison between tree height field data vs tree height derived from the Canopy Height Model of 
flying missions 1 and 14. 

 

The bar chart above reveals, that the tree heights measured in the CHM are very close to the 

ones acquired in the field. The results also indicate a slight under-estimate of the CHM derived 

values. One outlier, however, needs to be noted – the grave CHM over-estimate of the height 

of tree no.12 defies any logical explanation, except for the fact, that the tree crown created in 

the 3D model shows some blurring. This indicates an inaccurate representation of the larch 

itself with an unclear source of error. When looking at the descriptive statistics the mean values 

for both strategies are almost identical. The same is true for the calculated standard error and 

the standard deviation. 

Table 8-12: Descriptive statistics for the comparison tree height field data vs UAV CHM. 

Tree height field data   Tree height UAV CHM   

RMSE 1.156   

Mean 16.42352941 Mean 16.405882 

Standard Error 0.956346041 Standard Error 0.943845 

Median 16 Median 15.7 

Mode 16 Mode 17.1 

Standard Deviation 3.943115743 Standard Deviation 3.8915727 

Sample Variance 15.54816176 Sample Variance 15.144338 

Range 16.4 Range 15.8 

Minimum 8.6 Minimum 9.4 

Maximum 25 Maximum 25.2 

  

The following graph provides an even more detailed insight in the relationship between the 

field data and the CHM tree heights.  
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Figure 8.25: Relationship between tree heights field data vs UAV CHM heights.  

With an R2 of better than 0.9 and a calculated RMSE of 1.156m the presented manual 

extraction of tree heights from single trees proves very clearly, that this approach can yield 

extremely useful results.  

Considering tree-level studies, RGB sensor derived height metrics reveal the full potential of 

this technology. Strong correlations are reported by Ni et al. (2015), Guerra-Hernández et al. 

(2016), Guerra-Hernández et al. (2017), Hao et al. (2021) and Lin et al. (2018). R2 values range 

from 0.81 to 0.95. Other authors used UAV-LiDAR to also obtain a strong correlation (Jaakkola 

et al., 2017, Yin and Le Wang, 2019).  Sankey et al. (2017) achieved an R2 of 0.90 when using 

LiDAR, multi-, and hyperspectral sensors. In their investigation, Wallace et al. (2016) found 

that LiDAR performed much better (R2 = 0.84) than SfM derived height information (R2 = 0.68). 

According to them, the poorer performance can be blamed on the fact, that mid- and 

understorey parts of the forest are not well represented. In contrast, when looking at 

Eucalyptus plantations in Portugal, Guerra-Hernández et al. (2018) conclude, that UAV 

generated point clouds are as good as ALS derived point clouds for estimating individual tree 

height. The authors achieved even good results in high-density eucalypt forests. However, 

they point out, that landscapes featuring a canopy cover exceeding 60% and with slopes 

steeper than 20% must be considered with caution. Their findings is very much in line with the 

outcomes of a study conducted by Dandois and Ellis (2013). The achieved performance of the 

UAV derived CHM was similar to the LiDAR 3D point cloud height estimates. When assessing 

UAV imagery-derived stand parameters for pine tree plantations in Turkey Gülci (2019) found 

out that tree density, crown shape, and branching structure considerably effected the achieved 

accuracies. Kameyama and Sugiura (2021) deployed a DJI Phantom3 UAV to assess imagery 

of 20 different flight conditions to be processed in three different digital photogrammetry 
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software packages. They conclude, that a low flying altitude is conducive to an overall accurate 

creation of the 3D tree models, and that image artefacts, wind speed and light conditions are 

to be meticulously considered. According to their analysis of the pertaining point clouds, the 

tree height showed an overall RMSE of 5-6m, with the Pix4D software performing best, 

followed by Agisoft’s Metashape. As such, the selection of an appropriate photogrammetry 

software seems imperative.     

Stand tree heights 

The extraction of height estimates for tree clusters or stands as by far more complex than 

getting the height readings for individual trees in a 3D model. Some more steps are required 

in the derivation procedure, such as valley-following, region growing, and watershed 

segmentation (Gougeon and Leckie, 2003, Park et al., 2014). With each additional component 

integrated in the process some further error sources ad potential biases are introduced.  

The following table encapsulates the relevant statistics for the height estimations conducted in 

the various flying missions. In total two missions were considered suitable for the comparison 

between field data and heights derived from the CHM. The results for mission 3 were attained 

with consideration of a larger area and a subset created to represent just the size of the test 

plot no.60.  

Table 8-13: Descriptive height statistics for the various flying missions and the field data. 

Parameters Mission 1 Mission 2 
Plot 1 

Mission 3  
Plot 60/64 

Mission 3 
subset plot 60 

Field data 
Plot 1 

Field data 
Plot 60 

Maximum 23.50 22.38 29.20 22.63 18.20 22.00 

Minimum 3.00 3.00 3.00 3.00 NA NA 

Mean 18.55 15.09 13.99 6.61 14.52 15.47 

Median 21.77 18.93 17.28 6.00 15.60 15.80 

Standard 
deviation 

5.84 5.72 5.22 3.03 3.10  

3rd Quartile 22.04 19.39 17.71 7.77 16.75 17.60 

 

The results of above table indicate the following: 

− The flown subset of mission 3 (equivalent to plot size no.60) shows, that the extraction 

of heights from the Canopy Height Model (CHM) of such a small area is not sufficient 

to reflect the average tree height of this specific area – i.e., the area to be flown needs 

to be much bigger than 30m x 30m. Tree density in plot no.60 is relatively high; the plot 

is stocked with birch for a 100%. Most of the birches were at least partially defoliated, 

which pose a potential problem to the 3D modelling algorithms in Agisoft Metashape. 
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− The figures for mission 3 (equivalent to plot no. 60 and 64) prove, that the flown area 

(about 150m x 150m) is big enough to get useful stand height results, especially for the 

3rd quartile height (i.e., 17.71m vs 17.60m). The maximum height for mission 3 seems 

too far off (29.20m vs 22.00m). 

− The extracted tree heights from mission 2 (representing plot no.1) also overestimate 

the maximum height (i.e., 22.38m vs 18.20m).  The derived height values for the mean 

are fairly similar (15.09m vs 14.52m).  

− With a sample size this small (i.e., 2 missions for individual tree height estimation, and 

2 missions for the extraction of stand tree heights), however, there seems to be no 

golden rule on what height parameter always is the best option (mean height vs 3rd 

quartile height).  

 

With respect to the studies on stand-level height parameters the results in most of the 

investigations were coherent by featuring strong correlations. In addition, there is broad 

agreement, that outcomes depend on the sensor payload, and the forest characteristics and 

species configuration (Cao et al., 2019, Guo et al., 2017, Ota et al., 2017, Puliti et al., 2015, 

Xu et al., 2020). However, in  most cases UAV-LiDAR seem to obtain better results than those 

acquired by UAV RGB sensors (McRoberts et al., 2010, Mielcarek et al., 2020, Noordermeer 

et al., 2019, Tomppo et al., 2008). This sounds explicable, since RGB point clouds are limited 

to the upper part of the canopy, as opposed to LiDAR technology. Nevertheless, RGB derived 

CHM exhibit a higher point density than the laser point clouds and thus are more tuned for the 

extraction of higher detail. Wallace et al. (2016) account  the comparison between LiDAR and 

UAV RGB height metrics in a sclerophyll eucalypt forest. Since SfM photogrammetric 

technique is not able to properly model the terrain for CHM derivation, LiDAR showed a much 

better performance (RMSE of 0.92m for LiDAR and 1.30m for SfM).  

These days a plethora of reviewed papers on tree height derivation form CHMs has been made 

available. There is quite a considerable number of authors having identified error sources and 

potential biases impeding the accuracy outcomes. The most common ones are listed as (non-

specific order): 

• Overlap of imagery 

• Flying altitude 

• Photo quality 

• Camera specifications and settings 

• Height extraction method 

• Software used and parameter 

settings 

• Application and accuracy of ground 

control points (GCP) 

• Accuracy of reference data 
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• Distribution of the GCPs 

• Ground Sampling distance (GSD) 

• Tree morphology 

• Forest structure 

• Canopy density 

• Seasonal effects 

• Illumination conditions 

• Tree species 

 

The sheer number of imponderables, variables, and possible pitfalls is quite impressive and 

conveys the realistic image, that the entire workflow starting with flight planning, the execution 

of the mission, and the subsequent data analysis is far from being trivial. In the following the 

most talked about effects are briefly discussed and related to the flying missions conducted in 

this study. 

The definition and setting of an appropriate image overlap prior to deploying the UAV seems 

to be a crucial factor determining the accuracy of the resulting 3D model. In most cases this 

setting is done by many pilots quite intuitively, but intimate knowledge on the correct forward 

and sideward overlap is conducive to the planning process. In an exhaustive study, I was 

involved in, it was found, that forward image overlaps >95% yield the best results (Seifert et 

al., 2019). This was also confirmed by other authors, like Torres-Sánchez et al. (2018), Frey 

et al. (2018), Bayer (2018: 96–97), Ganz et al. (2019), Tuominen et al. (2015), Tuominen et al. 

(2017a) and Dandois et al. (2015), favouring very high forward overlaps. An sideward overlap 

of 60% was considered to be sufficient for most applications (Bayer, 2018: 99, Seifert et al., 

2019). The overlap settings for my flying missions were 95% for forward and 60% (65%) for 

sideward overlap, respectively.       

For a number of years, there has been a number of controversial discussions  concerning the 

optimal flying altitude, since this determines the ground resolution (GSD) and as such the 

achievable detail in the 3D model. The GSD of course is also dependent form other factors 

such as sensor size, image resolution, and focal length of the camera. Flying altitudes reported 

in the literature varied from about 40m above ground to around 150m. It is a golden rule, that 

the lower the flying altitude, the lower the area cover, and thus, the higher the flying time. 

Seifert et al. (2019) and Chen et al. (2017a) show, that drone flights at low altitudes 

dramatically increase the number of tie points and as such yield more reconstruction detail. 

Tuominen et al. (2015), Tuominen et al. (2017a) and Ganz et al. (2019) achieved reasonable 

results with a flying altitude between 85m and 150m above ground, but the authors propose a 

higher GSD (i.e., lower altitude) for better accuracies. In line of this, St‐Onge et al. (2008) also 

talks about the lack of detail in high altitude imagery as a possible error source for the detection 

of tree apices, and Gobakken et al. (2015) support high-resolution imagery as well. In contrast, 

Pádua et al. (2019) and Pádua et al. (2018) conducted flying missions between 30m and 120m 
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above ground to find, that the best results for tree height and crown diameter extraction were 

achieved with the UAV flying maximum altitude. An off-the-shelf UAV (i.e., DJI Phantom IV) 

equipped with a 12.4 MP resolution camera was employed to mainly map chestnut trees in a 

rural area in Portugal. To be on the safe side, I chose a flying altitude of around 70 metres 

above ground for my flying missions. In my opinion this was a good compromise between area 

coverage and achievable reconstruction detail. 

The focal length of the on-board camera also raises a few concerns. Most UAVs on the market 

are fitted with wide-angle cameras with short focal lengths, since they are actually designed 

for non-professional consumers and not for scientific purposes with specific requirements for 

photogrammetric analyses. However, apparently reasonably good results can be obtained with 

those platforms in various applications. Some authors have observed longer focal lengths 

working better for their specific purposes (e.g. Ganz et al., 2019, Bayer, 2018: 106–108). In 

addition, the longer focal length also seems to contribute to better results in the image matching 

process (Bayer, 2018: 107–110). With respect to my study the accuracies of the created 3D 

models were considerably good, although having deployed a consumer UAV including a wide-

angle camera. On visual inspection of the imagery, however, the resulting radial distortion of 

the photographs can impede a proper delineation of tree crowns, if no orthophoto is available. 

Image quality also has an effect on the accuracy of the 3D point cloud. A decent sensor size 

and an image resolution of the camera of better than 12 MP have become standard these days 

for yielding acceptable model results. Most importantly, the variable settings of a camera seem 

to be of greater importance, than sensor size. Especially when conducting flying missions 

during difficult illumination conditions, the settings of a camera (i.e., aperture, white balance, 

shutter speed) need to be adjusted accordingly. Problems with image quality have been 

reported or improvements suggested for instance by Ganz et al. (2019), Jensen and Mathews 

(2016), Scher et al. (2019), and Tuominen et al. (2015). With respect to image quality the 

daytime and seasonal effects also require the pilot’s attention. In order to avoid long shadows, 

flying missions should be carried out around noon (Krause et al., 2019, Nevalainen et al., 2017, 

Tuominen et al., 2017a). In addition, a high image contrast contributes to the image matching 

process. This observation is also shared by me, with images taken during an overcast period 

around noon resulting in low contrast images and subsequently in a biased 3D model. 

Interestingly, Scher et al. (2019) report better image matching results with images acquired on 

an overcast day, as opposed to high contrast photographs taken in sunny conditions.  

The positional accuracy, the number and distribution of ground control points (GCPs) is closely 

related to the accuracy of the 3D point clouds and as such to the tree heights extracted. This 

has been reported by authors like Birdal et al. (2017), Chen et al. (2017a), Dempewolf et al. 

(2017), Harwin and Lucieer (2012) Krause et al. (2019), Panagiotidis et al. (2017), and 
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Tuominen et al. (2017a), who managed to improve the model accuracy by using high precision 

GPS (e.g. RTK). Ganz et al. (2019) made an interesting observation, when including GCPs 

into the photogrammetry workflow. According to them the resulting accuracy of the 3D model 

was only slightly better, than without considering GCPs at all. I can fully subscribe to this 

conclusion, since the incorporation of GCPs did not make any difference, and  even diluted the 

accuracy of the point cloud in a few cases – as such my models were calculated without these 

control points. However, it needs to be noted, that the positional accuracy of the GCPs was 

considerably poor in my case. In the countryside in Mongolia, it is virtually impossible to employ 

differential GPS or RTK22 GPS with the lack of the required infrastructure – even upmarket 

GPS receivers feature positional discrepancies of about 3 to 5 metres, which is detrimental to 

the photogrammetry process. 

Many researchers describe the performance of the photogrammetry software used as being 

not optimal, when imagery displaying dense forests, or big broad-leafed trees need to be 

modelled – this applies to all photogrammetry software available on the market. Apparently, 

conifer trees with a clearly detectable apice and a conical shape of the crown are much easier 

to be handled by the software algorithms (Bayer, 2018, Moe et al., 2020, Röder et al., 2018, 

St‐Onge et al., 2008, Tuominen et al., 2017a, Vastaranta et al., 2013). I can most certainly 

share this observation with confidence, since some of the tree clusters were not modelled 

properly and partly defoliated birches exhibit some artefacts. The difficulties in matching such 

imagery was even confirmed by Agisoft programmers (Semyonov, 2011). When considering 

various forest types, Puliti et al. (2015) suggest that boreal forests are easier to assess due to 

less variation in tree species and height. Broadleaved forests, in comparison, typically are more 

complex and more dense. These findings are very much in line with discoveries made by Cao 

et al. (2019), who notice, that most coniferous trees have a more regularly shaped crown. 

The majority of the investigations on tree height derivation from CHM reveal an underestimate 

of tree heights in relation to the reference data (Dempewolf et al., 2017, Ganz et al., 2019, 

Krause et al., 2019, Moe et al., 2020, Noordermeer et al., 2019). The findings in my research 

support this observation. Nonetheless, inconsistencies are also reported by Panagiotidis et al. 

(2017), who observed under-, as well as overestimates for individual tree heights for the 

various flying missions. A legitimate argument voiced by a few authors, however, needs to be 

taken into account regarding the accuracies of the reference data (Järnstedt et al., 2012). 

Stereńczak et al. (2019) found, that terrestrial tree heights showed an underestimate, when 

set against length measurements. In their investigation the authors felled 2388 sample trees 

from 299 stands in Poland, representing eight tree species. They also learned, that factors 

such as tree length, species, and terrain are among the most influential factors on correct 
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height estimation. A similar study was conducted by Sibona et al. (2017) by comparing field-

based measurements and heights derived from an ALS point cloud. They postulate, that height 

estimates originating from ALS showed a better approximation to real heights, than compared 

to the field data. Despite the shortfalls of in situ measurements they conclude, that field data 

will remain a standard reference for comparison with tree heights obtained from other sources. 

Although above statements and explanations are not exhaustive, as a general conclusion it is 

legitimate to notice, that useful tree and stand heights can be extracted from Canopy Height 

Models (CHMs), in particular when single tree heights are considered.   In order to gain more 

insight in possible shortfalls of the approach it would certainly be sensible to investigate the 

performance with higher flying altitudes (i.e., coarser ground resolution) and denser forest 

stands.  
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8.4. Extraction of NDVI, MSI, NDWI, LAI 

NDVI and LAI are considered to be some of the most important biophysical variables for 

assessing vegetation cover, plant vigour, and vegetation density. With NDVI estimations in 

particular it is feasible to portray seasonal effects (phenology) and disturbances in the 

vegetation cover (e.g., fire, insect attacks). Other indices have proven to be valuable indicators 

regarding water stress in plants such as Moisture Stress Index (MSI) and the Normalised 

Difference Water Indices NDWI (McFeeters, 1996) and NBR (Gao, 1996). Various other 

applications have been illustrated in the respective chapters 3.1.4. and 4.3.3. for further 

reading.  

The associated formulas for the most relevant indices are as follows (band indications (e.g., 

B8) refer to Sentinel-2 bands): 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅
=

𝐵3−𝐵8

𝐵3+𝐵8
        𝑁𝐵𝑅 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
=

𝐵8−𝐵12

𝐵8+𝐵12
              𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
=

𝐵8−𝐵4

𝐵8+𝐵4
 

The calculation of the vegetation indices was focused on NDVI to achieve the following in this 

investigation: 

1. Show differences in NDVI results for the various satellite platforms. 

2. Compare outcomes for the calculations of NDVI and the variant NDRE (NDRE = 

(NIR – RE) / (NIR + RE), as well as for MSI (SWIR / NIR). 

3. Get a clear definition and delineation of the dark taiga conifer areas. 

4. Illustrate seasonal effects for the year of 2017 (timeline). 

5. Assess the relationship between NDVI and LAI (see the pertaining LAI subsection). 

 

All satellite imagery was subjected to atmospheric correction, resampling, and sub-setting prior 

to the calculation procedures. The results of the estimation of the individual indices are 

presented below. 

 

NDVI portrayed for various satellite sensors 

NDVI was calculated for the platforms of Landsat 8, Sentinel-2, and Pléiades with 

corresponding dates of acquisition. For comparison randomly chosen image pixels with their 

associated NDVI values were set against each other to be illustrated. The first graph depicts 

the relationship between NDVI found in Pléiades imagery vs Senitnel-2. The coefficient of 

determination (R2) value of around 0.6 indicates that there exists a relatively high degree of 

variance unexplained by the regression model. This is most likely due to the disparities in the 



 

287 
 

definitions of the band wavelengths for the Red and Near-Infrared. The band width for Sentinel-

2 is 649 – 695 nm vs 590 – 710 nm for the Pléiades Red band. For the NIR it is 779 – 885 nm 

(Sentinel-2) vs 740 – 940 nm (Pléiades), showing, that the band width selection for the 

Sentinel-2 is much more narrow. 

             

Figure 8.26: Comparison of mean NDVI values for Sentinel-2 and Pléiades sensors. The relatively low R2 value 
indicates a relationship not being very strong.  

 

In contrast, the calculated R2 (i.e., 0.9368) for the relationship between the mean NDVI for 

Sentinel-2 and Landsat 8 demonstrates a very close affiliation. Although the spatial resolution 

is different (i.e., 10m vs 30m), the band wavelength width is fairly similar (i.e., S-2 Red 649 – 

695 nm vs L8 640 – 670 nm; S-2 NIR 779 - 885 nm vs L8 850 – 880 nm).    

             

Figure 8.27: Comparison of mean NDVI values for Sentinel-2 and Landsat 8 sensors. The high R2 value 
indicates a very strong relationship.  
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Since both sensors exhibit a very similar performance, the NDVI estimates can be performed 

on either of them interchangeably.  This is also demonstrated in the graph below, where NDVI 

values derived from both sensors are set against each other.  

The figure above, however, reveals subtle differences in that the Sentinel-2 data feature a 

higher spatial resolution, making the NDVI outcomes look more refined and detailed versus 

the Landsat 8 image.  This finding is also confirmed by  Korhonen et al. (2017), who used 

Landsat 8 and Sentinel-2 imagery for an investigation on forests in Finland. They found the 

performance of the Sentinel-2 MSI sensor superior to the Landsat 8 OLI due to its higher spatial 

resolution.  

In the following graph the change in NDVI values in Sentinel-2imagery featuring different 

seasons (i.e., spring vs summer) is illustrated. The difference in NDVI between the seasons is  

remarkably high for most of the vegetated areas, whereas the dark taiga confines exhibit very 

little variation during the specified period. This provides a first indication on the seasonal trends 

in NDVI – more detailed analyses are demonstrated further below. A possible explanation is 

contributed by some further analysis shown below. The determination of NDVI, MSI, and NDWI 

indicate that the dark taiga components display the highest water content of the vegetation. 

The dark taiga species demand a decent water supply, which is found in higher elevations with 

Figure 8.28: Comparison between NDVI derived from Landsat 8 image 09/07/2017 (above) and S-2 image 
09/07/2017 (below). The S2-image shows higher spatial detail and higher variety in NDVI values. 
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higher rates of precipitation. In addition, the evapotranspiration is lower in these areas 

compared to the lower mountain range forests.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, other vegetated areas as well reveal reasonable water content stored in their cell 

structure. This concerns the grass and shrub carpets, as well as the trees in the riparian area, 

and the light taiga zones in the northwest of compartment 435. The water supply varies with 

the water level in the riverbed, thus governing the stress level in the vegetation, whereas the 

phenomenon in the lower part of compartment 435 seems much more complicated. 

Unfortunately, there is very little information available on this specific area, other than it is 

Figure 8.29:NDVI difference between S-2 13/05/2017 and S-2 09/07/2017 image. Dark taiga (black box) 
indicates very little change between spring and summer. 

Figure 8.30.: Comparison of different vegetation indices in theS-2 09/07/2017 scene. From left: NDVI, MSI, 
NDWI. The dark taiga (bottom of image), the riparian area, and the light taiga area top left in 
compartment 435 show good water content in vegetation  in MSI  (crimson) and NDWI (red) 
image.    
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largely populated by Siberian larch (age between 60 and 149). The field data and the analysis 

of the DEM, however, provide an indication beyond speculation, that this area of compartment 

435 is particularly afflicted with topographic irregularities. The elevation model shows slope 

inclinations exceeding a rate of 30 degrees, forcing the terrain into a corrugated landscape 

surface with many small depressions. This disturbance can easily create patterns to be picked 

up in a high-resolution imagery. Those revelations concerning water content will play an 

important role in the discrimination of tree species – a matter we will discuss in chapter 8.8.2.  

A variation of the NDVI was proposed by Boiarskii and Hasegawa (2019) , who found a better 

suitability of the NDRE for their specific applications. 

           

Figure 8.31: Comparison in S-2 13/05/2017 (top: RGB) between NDVI (middle) and NDRE (bottom). The NDVI 
shows better homogeneity and better identification of dark taiga areas (dark green). 

The authors conclude, that NDRE has proven to be more sensitive for monitoring chlorophyll 

content than the common NDVI. Applied to the Thunkel test area, the NDRE calculation shows 

a speckled rendering suggesting a higher spatial differentiation. Albeit, as compared to the 

NDVI image, some of the detail seems to be lost. In addition, the dark taigas (shown in dark 
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green) represent a larger and more homogenous area than the NDRE variant. In order to 

retrieve more detail from the imagery the WV-2 scene was favoured because of its higher 

spatial resolution by comparison with the other imagery. Furthermore, the represented NDVI 

values also take advantage of the fact, that in the senescence period only non-deciduous trees 

(i.e., Siberian larch, Siberian pine, Siberian fir, and Scots pine) occupy a spectral signature to 

stand out as high NDVI values. The result of this calculation is demonstrated below.  

 

Figure 8.32: NDVI calculated for WV-2 winter image. The dark taiga areas are conspicuous with NDVI values 
ranging from 0.3 to 0.6.    

The areas populated with dark taiga species can be clearly delineated and quantified. The 

good news is, that the snow cover was relatively thin, with the features exposed being relevant 

for NDVI estimation. Dark taiga areas reflect NDVI values higher than 0.3. By visual inspection 

the values between 0.2 and 0.3 apparently represent areas cleared from snow with some grass 

being exposed. One of the big surprises was to spot dark taiga species below their common 

altitudinal range of about 1600m. Initially deemed as a calculation error, the occurrence of the 

dark taiga at odd locations proved me right affirmed by my own observations, which were 

validated by other persons with on-site experience such as Altrell (2017), Küstner (2017), and 

Schmidt-Corsitto (2017).   

One of the most interesting aspects of NDVI derivation of course is to see its change of the 

magnitude during all seasons. Seasonal effects can be reflected in the occurrence of 
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disturbances (e.g., fire, insect attacks), logging activities, post-fire succession, stress in the 

vegetation (e.g., water, nutrients), or of natural causes such as senescence. The Earth Trends 

Modeler offers a great opportunity to carry out detailed investigations on such effects. A 

number of 11 Sentinel-2 images acquired in 2017 were determined to be used as input for 

such assessment. The graphical representations below attempt to shed light on the major 

findings in the NDVI time profile. The first figure reflects an overall mean NDVI trend for the 

entire compartment 435 for the year 2017.  

 

  

Figure 8.33: Overall temporal NDVI profile with linear trendline for compartment 435 (left) and with polynomial 

trend line (right). 

The vegetation period takes a very sow start in March, with a real boost only experiencing in 

May. NDVI values then peak at the biginning in July showing the maximum in chlorophyll 

activity. Due to the lack of sufficient precipitation the NDVI curve takes a dip in July (i.e. 

drought) to rise again in September after replenishment of the water resources by rainfall. Leaf 

senescence period then starts in October with a massive plunge. In September the first 

snowfalls or showers of sleet are not uncommon. With the beginning of October the very short 

thriving period for the vegetation comes to an end with NDVIs decreasing and rising again in 

November, when vegetation gets exposed by the thawing snow. 

This overall trend of course does not reveal enough detail for the comparison between the 

different taiga scenarios and the occurrence of disturbances such as wildfires. For this reason 

the calculation of the NDVI trend was conducted for dark and light taiga discretely, with an 

indidual consideration of the areas affected by the hugh fires taking place in July andAugust 

2017.  The following figure displays the temporal profile for dark and light taiga. At a glance 

the difference in NDVI maximum values is quite obvious – for the dark taiga it is 0.78, whereas 

the light yields only around 0.70. However, the picture becomes even more dramatic when 

reagarding the minumum values – for the dark taiga it is 0.54, and it is close to 0 for the light 
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taiga. The NDVI curves appear quite similar in shape from May unitl October with the summer 

drought inflicting an NDVI loss to both taiga types.       

 

For the dark taiga there is a sharp rise in NDVI noticeable at the end of October. This 

phenomenon usually goes hand in hand with the melting of the snow on the tree crowns in the 

winter season. Since there is hardly any green vegetation left in the light taigas in winter – 

except for some forest floor flora, their NDVI goes virtually unaffected. The trendline for the 

burned areas presents itself very divergently. Important for a precise and transparent 

interpretation is the start and the cessation point in time – according to the firefighters being 

onsite the fires raged from end of July until about mid of August 2017. This trend is very 

conspicuously reflected in the curve illustrated below. The NDVI timeline decreases 

continuously from July to the beginning of 

September to recover again. When I carried out 

some ground checks in the effected zones, I was 

stunned to see part of the vegetation regain 

ground with the grass creating carpets of bright 

green and some of the larch getting back to life. 

This episode of course explains quite 

comprehensibly the curve turning upward again to 

only subside again in late autumn.  

 

Figure 8.35: NDVI trendline for burned area. 

 The trend shows a clear dip of NDVI during 

 the fire (July 2017), but a recovery in September. 

 

Figure 8.34: NDVI temporal profile for dark taiga (left) and light taiga (right).  
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By taking a closer look at the literature published, Karnieli et al. (2006) carried out an interesting 

investigation on the combination of NDVI and brightness temperature, both derived from the 

NOAA AVHRR sensor. They conclude, that, opposed to common assumption, NDVI and land 

surface temperature showed a positive correlation for six different ecosystems in Mongolia 

(i.e., rising temperature positively affects vegetation activity). They further infer, that the 

Vegetation Health Index (combination of NDVI and brightness temperature) should be used 

with caution, particularly in high latitude areas. Another investigation deals with the NDVI trend 

regarding ecosystems in Mongolia. Lamchin et al. (2015) chose an observation period in 

MODIS data from 2002 to 2010 to analyse the trends in NDVI for the whole country. They 

found an average NDVI ranging from 0.3 to 0.4 for all vegetation, with a strong negative 

correlation with temperature, but a positive correlation with precipitation. Their assessment 

also revealed that the forested northern part of the country suffered a dramatic decrease of 

NDVI during the review period. High correlation was established between anomalies in rainfall 

and vegetation development, with a changing ENSO (El Niño Southern Oscillation) and a shift 

in climate exacerbating the situation. Lower rates of precipitation were detected especially 

during summer, which makes this finding to be much in line with my own observations made 

for the summer 2017. The authors also stress, that the observed NDVI decrease can be 

attributed to a combined ‘effort’ of natural causes and the effect of human activities. A similar 

study on the changing NADVI in Mongolia was conducted by Enebish et al. (2019). The team 

exploited data from various weather stations in Mongolia to explain the behaviour of the 

vegetation index as derived from NOOAA23 satellite data. For the climate data they observed 

a rising maximum temperature for the last few decades, with NDVI showing lower values than 

the highs in the 1980s. The team also support the observation that rainfall has experienced a 

drop in its amount and now shows more irregular patterns. Their overall conclusion is, that 

despite some signs of local recovery, the biomass will suffer some further dramatic losses in 

the future. Another team of researchers assessed the change in NDVI to be used as an 

indicator of the growth status of the vegetation in Mongolia (Meng et al., 2020). They 

scrutinised NDVI datasets from 1982 to 2015 retrieved from the so-called Global Inventory 

Monitoring and modelling System (GIMMS), which also uses NOOAA satellite imagery for data 

gathering. In addition to NDVI, climatic, topographical, soil and vegetation type information 

provided the required input to model the possible gains and losses of biomass (NDVI). 

Interestingly, the eastern part of the country shows a greening trend, whereas no clear trend 

with respect to the forest area was observed, with losses and gains bringing level. 

Nevertheless, according to the resulting map the Khentii area displays a massive decrease in 

NDVI in some areas. Once again, it became apparent, that natural as well as human factors 

are the driving forces of the change in vegetation cover.  In another fairly recent study the NDVI 

 
23 NOAA = National Oceanic and Atmospheric Administration 
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derived from SPOT satellite imagery was considered by Klinge et al. (2018) to demonstrate 

the change in vegetation vitality and the shift of treelines in the boreal forests of Mongolia. 

Since the distribution of forest and steppe are highly dependent on the topographic and climatic 

parameters, this region is considered to be extremely sensitive to human impact and a 

changing climate. The reference period for the modelling process was from 1999 to 2013. 

Limiting parameters for tree growth were observed to be minimum temperature ( 6oC for the 

growing season) and the minimum of mean annual precipitation (230 – 290 mm/annum). Their 

findings also corroborate, that higher precipitation in coherence with higher temperatures lead 

to higher greenness in the vegetation as reflected in the NDVI values. The team concludes by 

stating, that with a rapid change in climate a spatial relocation of tree communities and an 

alteration in forest types associated with a shift in treelines are conceivable future scenarios. 

NDVI was used by Klinge et al. (2020) as a proxy for calculating biomass in Mongolian forest 

systems. Satellite imagery of Sentinel-2, Landsat 5 and 8, and Tandem-X (for DEM) were 

appropriated for the determination of NDVI for subsequent biomass estimation in Siberian larch 

forests. Due to a weak correlation between needle volume – as reflected in the NDVI value – 

and tree biomass the team found no significant correlation between tree biomass and NDVI. 

They also looked into a potentially useful correlation between LAI, biomass and NDVI to find, 

that relationship between NDVI and LAI was very weak (R2 of 0.0052), and correlation between 

LAI and biomass was calculated to be also quite insignificant (R2 of 0.1079). Another important 

discovery was to get some good insights to driving factors for tree vitality and growth, namely 

topography and climate. A complex constellation of drought occurrences, wildfire aftermaths, 

human impact, cold air masses accumulating in depressions, and cool conditions in higher 

elevations cause a melange almost impossible to disentangle and to resolve. In addition, low 

canopy closure (i.e., less than 53%) in association with lush understorey vegetation causes an 

amalgamation of plant vitality signals found in the NDVI, which is extremely difficult to interpret, 

let alone to quantify.           

Shifting the focus to boreal forests in Canada, McDonald et al. (1998) scrutinised various 

vegetation indices (e.g. NDVI, SAVI, TSAVI) for their potential applicability in determining 

forest inventory parameters. They found out the following for the analysis of Landsat images: 

(i) all indices were not linear with respect to forest cover because of shadowing effects, (ii) the 

indices were greatly affected by perturbations caused by solar zenith angle, background 

reflectance, stand structure and LAI, and (iii) at high canopy covers SAVI and TSAVI performed 

best, since they show large dynamic ranges and are less susceptible to atmospheric 

perturbations. When looking at logging activities in a Polish forest, Pałaś and Zawadzki (2020) 
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found that the MERIS Terrestrial Chlorophyll Index (MTCI24) and the Brightness Index (BI25) 

performed best when employing Sentinel imagery, followed by NDVI and the Ratio Vegetation 

Index (RVI26). Another interesting discovery was made by Mayer and Scribner (2002), who 

found that NDVI preferentially detects the greenest vegetation, whereas SWIR NDVI (NBR) 

shows a tendency to highlight vegetation residing in shadowed areas. Another interesting 

aspect was portrayed by Sulla-Menashe et al. (2016), who investigated the possible sources 

of bias and variability in long-term Landsat time series over Canadian boreal forests. They 

conclude, that differences in sensor view geometry and radiometric disparities bear the 

potential to affect the integrity of satellite time series. A major cause for poor correlations 

between NDVI and forest related attributes (e.g., BA, biomass, canopy cover) has been 

identified to be saturation effect of the NDVI encountered in lusciously green forests. An 

impressive amount of publications exists on this particular issue. The good news is, however, 

that NDVI remains a good indicator of green biomass in deciduous and dry forests (Bannari et 

al., 1995, Freitas et al., 2005, Gitelson, 2004, Huete, 2012, Liang and Wang, 2020: 405–445). 

In the light of above portrayed factors in the literature I can conclude, that, based on my 

findings, NDVI is very difficult to comprehend and to interpret with topography and climate 

proposing a conundrum. In parts of compartment 435 terrain is of such complexity associated 

with shadow effects and varying moisture content of the forest floor, so that there is no way in 

identifying a single factor as an underlying cause. The similarities with the study conducted by 

Klinge et al. (2020) are quite striking in the sense, that I also encountered forest stands with 

low to very low canopy closure, exposing a lot of green forest floor flora to the satellite sensor. 

As such, a high NDVI can be easily falsely attributed solely to the tree layer. Luckily, NDVI 

saturation effects cannot be reported of the test sites surveyed. To make things worse, the 

impacts of human activity (e.g., logging), and the occurrence of natural disasters (wildfire, 

insect attacks) have a huge impact on the NDVI performance – I found all mentioned factors 

to be true for compartment 435. Marks of fire impact, defoliation caused by insects (in larch 

and birch), and logging activities are apparent all over, except for some parts of the dark taiga.  

Although I have not carried out an NDVI study in extenso, the calculation of the MSI (see graph 

above) at least provided some indication on a positive relationship between plant water content 

and NDVI. I also detected hardly any change in NDVI in the dark taiga areas during the 

seasons, which is very much in line with Gamon et al. (2016). To conclude with, there seems 

to be a lot of room for further investigations on the NDVI related to the taiga forests in Mongolia.   

 
24 MTCI = 

(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑅𝑒𝑑𝐸𝑑𝑔𝑒)

(𝑅𝑒𝑑𝐸𝑑𝑔𝑒−𝑅𝑒𝑑)
 

25 BI =√ 
𝑅𝑒𝑑2+𝐺𝑟𝑒𝑒𝑛2

2
  

26 RVI = 
𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑

𝑅𝑒𝑑
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Leaf Area Index (LAI) 

Where the NDVI shows its strengths in the assessment of plant vigour, the LAI is more geared 

for a slightly different realm. The Leaf Area Index (LAI) is one of the most widely used indices 

for describing plant canopy structure and forest growth, and for getting a better understanding 

of the biosphere-atmosphere exchange of mass and energy at the leaf surface. As such, the 

determination of LAI has become a crucial index in biochemical, hydrological, and ecological 

modelling, as well as for measuring forest growth and productivity. As portrayed in chapter 

4.3.3. the LAI can be estimated in various ways. In the presented study it was measured on-

site using the LICOR LAI 2000 instrument, but it was also directly derived from the Sentinel-2 

imagery with the integrated SNAP tool for the extraction of biophysical variables (see also 

chapter 4.3.5.8.). The calculated LAI values for compartment 435 are illustrated below.   

 

Figure 8.36: LAI values as calculated from Sentinel-2 image 09/07/2017. High values are only to be found in the 
lush vegetation of the riparian areas. Very low values are reflected by bare soil, rock, and dry 
grass.  

The representation of the Seninel-2 image acquired in summer 2017 reflects the LAI values as 

being considerably low in general - only the riparian areas show values exceeding 2.5. The 

areas with dry grass and bare soil cover feature values of being close to zero, whereas the 

dark taiga areas, as well as some zones in the north-western part of compartment 435 are 

blessed with LAI values between 1.5 and 2.0; all other parts  of the light taiga show values in 

the range of 1.0 to 1.5. In comparison, LAI measurements taken in temperate forests feature 
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a value range from 2 to 6 (own measurements carried out in the surrounds of Göttingen in 

summer 2020). However, it is important to accentuate the fact, that most of the forest stands 

assessed reveal a low canopy cover of around 30%. There is another factor that deserves 

attention, namely the fact, that, as being outlined in the S2Toolbox Manual, the LAI estimation 

comprises all green contributors, i.e., even forest floor vegetation. Since a dense forest floor 

flora is a fairly common feature in the taiga forests, any of the extracted LAI values from the 

satellite imagery reflect an amalgamation of both spectral signatures – for trees and 

understorey vegetation. In several other studies the importance of considering the effect of 

understorey on the LAI estimations is described. For instance, Chen and Cihlar (1996) found 

an improvement of the relationship between NDVI and LAI from R2 0.42 to 0.52, by minimising 

the effect of the forest floor flora. The authors suggest to rather take late spring imagery (with 

little understorey vegetation) than satellite data acquired in summer with the flora being fully 

developed. They also stress, that the temporal variability of the (forest) vegetation needs to be 

taken into account. However, in the taiga forests a lush understorey is encountered almost all 

year round making it very difficult to mask out any effect on the LAI (and also NDVI) 

performance. In order to get a more detailed picture on a possible bias related to this 

phenomenon, some additional analyses were conducted. The first attempt of judging on 

potential causes was to set the LAI values gathered in the field against the related LAI 

estimates derived from the Sentinel-2 image (09/07/2017). The graph below demonstrates a 

missing linear relationship between the LAI satellite values and the field data with a calculated  

 

 

 

 

 

 

 

 

 

 

R2 of 0.009. In this case the influence of the understorey can be characterised as substantial. 

This drastic outcome corroborates the observation, that the satellite derived LAI represents all 

vegetation contributors. Another scrutiny revealed, however, that at least a fairly clear trend 
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Figure 8.37: Relationship between mean LAI derived from Sentinel-2 image (09/07/2017) and the 
field data.  
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can be observed in the relationship. The graphical representation of the individual estimates 

below proves, that, with only few exceptions, the satellite derived LAI gravely over-estimates 

the LAI compared to the reference field data. This does not come as a real surprise, since 

almost all surveyed forest areas exhibit a lush understorey flora in combination with a low 

canopy cover, with many trees having been defoliated, at least partly.   

        

                         

Figure 8.38: Relationship between Sentinel-2 (09/07/2017) LAI estimates and LAI field data. 

 

Although LAI is commonly used as a proxy for the determination of various forest attributes, 

the literature on the relationship between forest canopy closure and LAI is scarce. I 

hypothesize, that LAI and canopy closure are correlated, since both estimations exploit the 

tree area obstructing the clear sky. However, these methods are based on different principles 

(see also chapter 4.3.3.). The figure below demonstrates the findings on such relationship for 

compartment 435. According to the graph the R2 of 0.41 can be considered to be fairly 

mediocre, but this result was only achieved by some tweaking (i.e., using  n-th power instead 

of linear). Thus, no strong correlation for the LAI and canopy closure can be established for 

this specific investigation. 
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Figure 8.39: Relationship between LAI and canopy closure for compartment 435. 

Another aspect found in the literature concerns the use of  NDVI to estimate LAI and vice 

versa.  For example, Wulder et al. (1998) found relationships between 0.01 (for mixed forest) 

and 0.61 (for deciduous hardwood) for R2, with the best results achieved only by including 

image texture. The graph below illustrates the relationship between NDVI and LAI for 

compartment 435 with both variables extracted from the Sentinel-2 summer image. The 

amount of variation accounted for (R2) is very low with a value of only 0.22.  

                     

Figure 8.40: Relationship between mean NDVI and mean LAI derived from Sentinel-2 summer image 
(09/07/2017).  

In above mentioned investigation the authors conclude, that except for the inclusion of texture 

parameters, the stratification of the forest stands proved to be conducive by accounting for the 

variation in tree species, tree densities, canopy closures, and successional regimes. For their 

study they chose a test area in New Brunswick, Canada, featuring a wide variety of forest 

species, forest structures, and age classes. An excellent correlation between NDVI and LAI is 
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reported by Davi et al. (2006). They assessed mixed forests in France by using SPOT imagery 

to find coefficients of determination to be between 0.73 and 0.82. The team of Coops et al. 

(1997) derived LAI and NDVI from Landsat images displaying Eucalypt forests in Australia. 

Their assessment yielded R2 values ranging from 0.53 to 0.71. Moving north to Germany, 

Tillack et al. (2014) report about the NDVI derived from satellite imagery (RapidEye) set against 

the LAI gathered in the field (LICOR LAI2000). R2 values range from 0.861 to 0.942 for the 

alluvial forests considered. The researchers observed, that seasonal effects, species 

composition, crown closure, and the background reflectance had an enormous impact on the 

outcomes. This observation is confirmed by Chen and Cihlar (1996), Gamon et al. (2016) and 

Spanner et al. (1990), who found it very hard to quantify the combined effects of temporal 

variability, the occurrence of understorey, the varying canopy closure, as well as soil spectral 

signature. Other authors also contribute to the detailing of various factors having an impact on 

the LAI and NDVI estimations. Banerjee et al. (2014) emphasize the critical influence of terrain 

(topography), whereas Yan et al. (2019) favour the LAI and NDVI estimation on a landscape 

over a pixel scale. In addition, they point out, that the clumping effect of leaves needs to be 

corrected, and that new technologies (e.g., LIDAR) bear the potential to greatly improve LAI 

estimations, especially, when considering non-continuous forest canopies. Another new 

approach was chosen by Zhang et al. (2019) for the improvement of the LAI estimate. Instead 

of exploiting LIDAR technology for this purpose, they combined canopy cover and height 

information extracted form a photogrammetry UAV point cloud to yield an R2 of 0.833 for their 

LAI estimation.   

Effects of over-, and underestimations of LAI are related by various authors. For a boreal forest 

in Sweden Goude et al. (2019) observed an underestimate between 30 and 73% depending 

on species and measurement technique. This is in line with Campbell (2012), who assessed 

various measurement methods to find large discrepencies in the outcomes. Chason et al. 

(1991) found the clumping of leaves to be the culprit for the measured underestimates of up to 

45% compared to litter estimation. With regard to canopy closure and the related LAI estimates 

Olivas et al. (2013) and  Baret and Guyot (1991) noticed a distinct saturation effect similar to 

the NDVI related plateauing of the values. According to their observations LAI was 

underestimated in all constellations with a high canopy closure in tropical forests. However, 

with LAI measurements not exceeding values of 3 this effect is very unlikely to occur in the 

Mongolian taiga forests.  Dufrêne and Bréda (1995) detail an  overall underestimation of the 

LAI in the range of 6 to 37% when applying indirect methods (i.e. LAI-2000 plant canopy 

analyser; needle method; Demon light sensor) in a temperate forest. They hypothesise that 

local clumping of architectural canopy components is a reasonable explanation for this 

phenomenon, thus violating the underlying principle of random distribution of the plant 

structural elements (the so-called Beer’s law) being used in most indirect appraisals. Clumping 
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of foliage and the negative impact on LAI measurements have also been described by Chen 

et al. (2005), Gower and Norman (1991), Peng et al. (2018), Kappas and Propastin (2012),  

Ryu et al. (2010), Whitehead et al. (1990), and Zhao et al. (2012). In addition, Garrigues et al. 

(2008) found variation in illumination conditions to be one of the major drivers for LAI 

discrepancies when comparing LAI-2000 plant canopy analyser, the Decagon AccuPAR 

ceptometer, and digital hemispherical photography. A similar survey was carried out by Hyer 

and Goetz (2004) on a boreal forest site to yield commensurable results. The research team 

also found variability in LAI measurements to be attributable to spatial heterogeneity within 

forest stands, particularly in sparse canopies. Kappas and Propastin (2012) found that all 

algorithms for the derivation of LAI are empirical and tend to over-simplify the relationship 

between recorded signal and the pertaining plant parameters, thus leading to potentially low 

accuracies. They further state, that more research is required to address this issue. 

Despite all shortfalls and imponderables mentioned above, there is also good news to be 

reported. When investigating biophysical properties of boreal forests in Finland based on field 

data and Sentinel-2 imagery Majasalmi and Rautiainen (2016) found that the estimation of 

fPAR and LAI performed best when using bands 7 (RedEdge) and 9 (water vapour)  (R2 of 

0.93 for both) instead of exploiting vegetation indices like NDVI. However, they also conclude 

that performance can decrease considerably (i.e., R2 of 0.3), when wrong vegetation indices 

are applied for approximation of the vegetation traits. Regarding the application of methods for 

LAI estimation a coefficient of determination of a phantastic 0.94 was discovered when 

comparing LICOR LAI2000 readings with direct LAI measures in mixed forests in Wisconsin, 

USA. A most interesting observation was chronicled by Baret and Guyot (1991). When they 

looked into the correlation between various vegetation indices and the LAI their sensitivity 

analysis revealed a clear trend for the Soil Adjusted Vegetation Index (TSAVI) being the best 

associate for lower LAIs (smaller than about 3), but reaching a saturation point at a certain 

level very much like other vegetation indices. In this context it also needs to be noted, that 

‘…the noise due to soil background was amplified when combined with the noise due to leaf 

inclination’ (Baret and Guyot, 1991: 168).    

In conclusion it has to be put on record that the Sentinel-2 estimates for LAI are about 26.38% 

higher than the average of the LAI in-situ measurements. The latter is a clear indication of the 

effect of the universally occurring dense understorey vegetation diminishing the spectral 

response of the (partly) defoliated trees. In addition, the sparse population of the forested areas 

also contributes to the amplification of the understorey signal. At this stage it is extremely 

challenging to find a logical explanation for the missing correlation between the Sentinel-2 and 

the field LAI. With reference to the possible attributed factors detailed in the literature I can 

only speculate a combination of low canopy closure, topography, lush understorey, and the 
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underlying algorithm for the extraction of the LAI form the Sentinel-2 imagery. At least for the 

poor NDVI – LAI correlation it seems quite likely, that the NDVI was not the most suitable index 

for comparison, thus requiring further investigation.     

 

8.5. Extraction of NBR (fire index) 

Wildfires have been intrinsic to the boreal ecosystems for millennia and as such also affect 

forest structure, species composition, timber markets, and forest management (Stocks et al., 

2001). This is particularly true for Mongolia, where, apart from timber logging, insect pests, 

livestock grazing, and climate change related phenomena, wildfires are the major influencing 

factors on the landscape ecosystems of the taiga and the forest steppe (Altrell and Erdenejav, 

2016, Dulamsuren et al., 2011, Dulamsuren et al., 2014, Goldammer, 2013, Klinge et al., 

2020). Rising levels of wildland fire incidents, increasing temperatures, and land use change 

have coincided in many forested regions, making it difficult to parse causes of elevated fire 

activity (Klinge et al., 2014). According to a report by Byambasuren (2018) wildfires account 

for more almost 90% of forest degradation, and as such, also thwart all efforts to contribute to 

the global programme of reducing carbon emissions (see also REDD+27 programme of the 

United Nations (www.un-redd.org)). High intensity forest fires can be a major cause for the 

degradation of the taiga forests and bear the potential to irreversibly induce a shift to the steppe 

grassland ecotone (Mühlenberg et al., 2004). 

In order to quantify the impact on the Thunkel region the most commonly applied burn indices 

were calculated (i.e., dNBR, dNDVI) to create a map showing the extent and severity of the 

fires in the year 2017. For safety reasons I was not allowed to enter, let alone survey the 

charred areas. As such, no cogent reference data could be gathered. However, based on own 

observations and photos taken from a few vantage points, at least a good impression on the 

extent could be received. The photograph below, which was taken in the vicinity of a burned 

area during a UAV flying mission, depicts features, which become an important reference when 

talking about burned area mapping and the assessment of the NDVI timeline. On the left of the 

image a cluster of birches were completely charred (i.e., crown fire). The centre depicts some 

larch trees, which survived, with the neighbouring larches being at least partly defoliated due 

to the fire (i.e., crown and surface fire). The black patches in the photograph represent areas 

affected by ground fires with some smouldering activities in parts. The image was taken two 

weeks after the fire came to  an end and shows green vegetated patches, which quickly 

regained its former ground as an effect of a low-damage ground fire.    

 

 
27 Reducing Emissions from Deforestation and Forest Degradation 
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Figure 8.41: Burned area south of compartment 435 in the transition between light taiga and forest steppe. 

Before getting into detail with respect to the achieved burn severity indices, a graph (Figure 

8.42) is presented to illustrate the main differences between dNBR and dNDVI – both are used 

for the detection and delineation of burned areas. The resulting differences between the 

before-, and after-fire image reveal clearly recognisable disparities between the two indices 

applied. In this context two phenomena require some closer inspection. The NDVI has proven 

to be perfectly geared for the assessment of the health status (vigour) due to its capability in 

detecting photosynthetic activities. In contrast, the NBR with its smoke and haze penetrating 

capabilities of the SWIR, seems to be better suited for the moisture assessment of the 

vegetation. In numerous studies (relating to boreal forests in particular), the NBR index has 

demonstrated its ability to attain good correlation with field-based methods and its 

transferability across multiple landscapes and multitemporal  surveys (Allen and Sorbel, 2008, 

Chen et al., 2011, George et al., 2006, Navarro et al., 2017, Soverel et al., 2011). Mallinis et 

al. (2018) found out, that the dNBR even outperformed NDVI, when assessing large fires in 

pine forests in Thasos, Greece. In addition, the classification accuracy  was slightly higher for 

the Sentinel-2 imagery compared to Landsat 8 OLI. This finding was confirmed by Fernández-

Manso et al. (2016) for the Sierra Grata (Spain) wildfire in 2015.  When assessing burned 

areas in coniferous forests in the Western USA, Parks et al. (2014) discovered, that the RBR 

corresponded better to field-based measurements than dNBR (R2  for RBR: 0.786 and for 

dNBR: 0.761). In another study, Veraverbeke et al. (2011) calculated a coefficient of 

determination (R2) for the dNBR of 0.65 and an R2 of 0.46 for the dNDVI showing the superior 
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performance of the former in Mediterranean forests. A slight advantage of dNBR over dNDVI 

is also confirmed  by Hudak et al. (2007), when investigating more than 50 huge fires in 

Montana, Alaska, and California.  Tran et al. (2018) analysed the performance of various 

vegetation and soil indices for the evaluation of wildfires in Australia. They found the dNBR 

being a good choice for most of the forest types considered, but they also conclude, that there 

is no such thing as an overall best-performer of indices for each category. Despite the overall 

success of the NBR, this index has proven to be less effective with a considerate time lag 

between the fire event and the assessment of post-fire conditions with vegetation regrowth 

starting immediately after the fire (i.e., higher reflection in the NIR). It is also important to know, 

that this index is very sensitive to water, thus causing misclassified pixels. This requires a 

creation of a water mask and/or consideration of a NDWI calculation prior to classifying the 

imagery (Keeley, 2009, Polychronaki and Gitas, 2010). With respect to both factors mentioned, 

the time lag between the fire and my field visit was about two weeks, in which only a few 

smaller areas managed to recover with grass seed germinating. However, trees affected by 

the fire can still appear green for a few days before the leaves show the effects of tissue 

damage – as such, a time lag can also be advantageous. To account for the water sensitivity 

effect of the NBR a cloud/water mask was created. 

 

Figure 8.42: Comparison between dNBR (top right) and dNDVI (bottom right). S-2 image before (top left) and 
after the fire in 2017 (bottom left) – band combination B12 B11 B8A.  
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Getting back to the figure illustrating the difference between dNBR and dNDVI two 

observations can be made, namely (i) the calculated dNBR area is larger than for the dNDVI, 

and (ii) the dNBR shows a much more refined canvas of patches being affected by the fire. 

This impression gets even more manifested, when comparing the NDVI close-up of the 

compartment 435 with the dNBR calculations for the same area.  

 

Figure 8.43: NDVI values for the S-2 07/09/2017 image (after fire). The affected areas in compartment 435 are 
indicated with a yellow box. The dark taiga area seems unimpaired (bottom of graph). 

 

In the NDVI graph the absolute values are displayed, whereas in the dNBR graph below the 

dNBR values were transformed into the severity system used by the USGS. Although both 

scales are difficult to compare, an assignment to the affected areas is possible by visual 

interpretation. In the upper graph the area afflicted by the fire within compartment is indicated 

with a yellow box. In the NDVI image values for the index are relatively low, but the dNBR 

graph is much more precise concerning the severity of the fire – the upper part of the yellow 

box (it is white for the corresponding dNBR graph) shows a moderate to high severity of the 

fire, whereas in the NDVI graph it is very difficult to draw such conclusion. Based on my own 

observations I can confirm that the fires with a high impact occurred in this specific area. A 

similar inference can be made for the huge severely burned area south of the midsection of 

compartment 435 – the NDVI image shows a fairly low value, whereas the dNBR clearly 
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indicates a massive damage. Furthermore, the riparian areas reflect a vegetation being lush 

in the NDVI. In contrast, the dNBR reflects a low to moderate burn severity, which I can confirm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.44: Burn severity indices for the Compartment 435 area and the vicinity. Fires were close to the GIZ 
Camp (arrow). Dark taiga in the south-east appears unaffected, but fires were at close quarters. 

 

Nevertheless, both maps provide a clear indication, that the dark taiga area in the southeast 

of the school forest (compartment 435) remained completely intact. Even though the fire line 

was very close, the firefighters managed to stop, or at least retard the fire from entering the 

precious dark taiga. However, it needs to be pointed out, that due to the cooler and more moist 

condition in the dark taiga these areas seem to be less afflicted by the devastating fires. This 

conclusion can be drawn from the maps presented below and in chapter 8.4. (i.e., NDVI graph 

showing dark taiga zones), showing massive destruction in the entire Thunkel area, but sparing 

dark taiga. This phenomenon was also reported by the fire fighters and locals. It is unfortunate, 

though, that no exploitable ground truthing data is available for explicit verification. For cross-

validation of the burned area mapping, the fire hotspots of  the year 2017 were retrieved form 

the FIRMS database (see also chapter 7.3.5.7.). By comparing the affected areas in both maps 

the match is remarkable, albeit the dNBR illustration reflecting much more detail.    
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Figure 8.45: Burn severity indices for the greater Thunkel area. A huge forest area had been damaged severely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wildfire location 

and distribution 

for the Thunkel 

area for the year 

2017 

Figure 8.46: Extraction of areas affected by fires form the FIRMS database for the year 2017. Fires 
detected by the MODIS (orange spots) and VIIRS (red spots) sensors are indicated. 
Source: FIRMS, 2021.  
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Why is the analysis of the fire situation such an important issue to be considered, when talking 

about forest inventory and forest management? 

In the pertaining literature several factors have been identified to cause long-term changes in 

the forest structures of the taigas with repercussions on the ecosystem as such. The main 

findings and hypotheses are: 

• The occurrence of wildfires can potentially change the species composition and forest 

area distribution. 

• Almost all forest areas within the Selenge Aimag have been subjected to fire and most 

certainly will be in the future with a changing climate happening. As such an increasing 

rate of the forests will turn from carbon sinks to carbon sources (see also REDD+). 

• The effects of fires gravely influence the growth, yield, and timber quality. 

In conclusion the impacts of fires in the past, present and future have to be take into account, 

when conducting forest inventories with the associated inferences for forest management 

practices.    

High intensity forest fires can be a major cause for the degradation of the taiga forests and 

bear the potential to irreversibly induce a shift to the steppe grassland ecotone (Mühlenberg 

et al., 2004). Between 2011 and 2013 around 1 Mio. ha of forested land were affected by 

wildfires (Ministry of Environment and Tourism, Mongolia, 2020). However, official figures need 

to be treated with caution. This is supported by observations by Teusan (2018: 31), Wyss 

(2007: 42), and myself – according to official records only a single fire occurred for the whole 

Aimag Selenge in 2017, whereas I experienced dozens of huge fires around Thunkel during 

my fieldtrip. In an exhaustive study Teusan (2018) looked into the gains and losses of forest 

areas due to wildfires occurring in the province of Selenge, Mongolia. Based on his analyses 

of satellite imagery in concerted action with data retrieval from credible sources (e.g., FIRMS, 

Hansen) he found, that not only fires have become a common feature in the Selenge province, 

but also that certain taiga areas get repeatedly afflicted within extreme short time intervals. For 

instance, forest patches around the test area of Bugant have been hit up to five times within a 

five-year period. The graph below illustrates his findings to also support the results of other 

undertakings, that about 30 to 50% of the total Selenge area are affected by wildfires annually 

(NFI report: Altrell and Erdenejav, 2016: 85). Teusan (2018) also states, that the northern 

slopes were generally more affected than the southern aspects. A possible reason for this clear 

‘verdict’ is, that the MODIS and VIIRS satellite sensors require a certain amount of thermal 

radiation for fires to be detected. Since soil fires in grassland (mostly found on southern slopes 
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and representing little fuel load) are swift and emit relatively little thermal energy, those areas 

easily hit blind spots in the satellite thermal sensors.  

 

Figure 8.47: Fires detected by MODIS for the Selenge province with the associated affected areas calculated 
(source: Teusan, 2018:99). Designations are: Wald – forest; Waldsteppe - forest steppe; Steppe  
steppe; Fläche – area; Jahr – year. 

 

Crown fires are known to be the most destructive form, whereas fires of low intensity (ground 

fires) promote the growth of fire tolerant tree species such as larch (Goldammer and Furyaev, 

2010). Nonetheless, not only the intensity of the fires greatly determine the composition of the 

vegetation, but also the sequence of the occurrence. Goldammer and Furyaev (2010: 168–

185) report intervals ranging from 10 to 33 years for the Western part of Siberia, whereas 

Byambasuren (2011) found intervals of 11.6 years for parts of the Khentii mountains in 

Mongolia. Several studies support the fact, that human-induced fires represent about 95% of 

all wildfires recorded, with lightning being the major natural cause (Byambasuren, 2018, 

Goldammer and Furyaev, 2010: 186–190, Schmidt-Corsitto, 2016, Tsogtbaatar, 2004a).  

The marks of forest fires are not only conspicuous on the trees and on their remains, but also 

in  the  soil  profile,  where  charcoal  residues  may  remain.  Wecking (2017: 51) conducted 

a study on the soil profiles in compartment 435 to find: ‘In opposition to GIZ assumptions that 

believed impact of wildfires to solely occur at light taiga sites (Schmidt-Corsitto, 2016), charcoal 

residues were identified at all C sites, as well as in the transitional zone (D) and dark taiga (E) 

further upslope’. A research team headed by Dr. Choima Dulamsuren took wood cores from 
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trees in compartment 435 in 2017. This investigation could shed some more light on the 

specific characteristics in the school forest; however, the analyses are still in progress. 

Nonetheless, Wecking’s observations are quite in line with those made during my field survey 

in which I encountered fire marks on trees in virtually every sub-compartment (including dark 

taiga). Other authors report similar incidents. They state, that most of the forest stands 

surveyed show marks of historic or recent wildfire events and thus have a substantial impact 

on the species composition, the growth rate, and the structure of the forests (Goldammer and 

Furyaev, 2010: 186, Gradel, 2017, Gradel and Mühlenberg, 2011).  Gunin et al. (1999) suggest 

regeneration periods of up to 200 years to be realistic because of the short vegetation period. 

Even-aged, huge forest stands show a typical low-structure type induced by high intensity fires 

(Goldammer and Furyaev, 2010: 1–20). Tree species such as birch, poplar and larch are very 

common in these light taiga forests. In contrast, gap-driven disturbance regimes are 

characteristic for dark taiga (Siberian pine, Siberian spruce) areas featuring a small-scale 

mosaic of varying tree age, DBH, and tree height (Gradel et al., 2015, Gradel, 2017, Gradel 

and Mühlenberg, 2011, Schulze et al., 2012). Disturbance intensity has turned out to be an 

important determinant of interspecific species competition. Fire intensity, but also regeneration 

and protection potential of the various tree species either favour species such as aspen and 

birch (coppicing) after stand replacing fires, or are conducive to larch and Scots pine due to 

their ability to better cope with ground fires thanks to their thick bark. Short intervals of ground 

fires apparently put a lot of strain on the thin-barked birch, thus giving pine and larch a 

competitive edge (Gradel et al., 2015, Gradel and Mühlenberg, 2011). This is in contrast to the 

suggestions that regimes with short intervals apparently are favourable for pioneering tree 

species, like birch and poplar (Makoto et al., 2007, Wyss, 2007). Yet, soil and crown fires 

burning with high intensity are also dangerous for thick-barked tree species (Gradel, 2017, 

Pausas, 2015, Pellegrini et al., 2017). Interestingly, Undraa et al. (2015) observed no drastic 

changes in species composition about 10 years after big fires in the Central Khangai in 1996 

and 2002. According to the authors, grazing seemed to have a much larger impact on larch 

regeneration than long-term effects of wildfires. 

Climate also plays a pivotal role in driving disturbance regimes. According to Dulamsuren et 

al. (2011) extremely low temperatures and absent precipitation during the winter season 

seems to favour larch, since these climatic conditions keep insect populations low. In addition, 

sufficient rainfall towards the end of the vegetation period of the previous year and in the initial 

phase of the growing season of the current year proved to be particularly important for the 

growth increment of the trees. Current reports of the IPPC suggest rising temperatures for the 

main part of Mongolia, with grave impacts on the productivity of the light taiga species, and 

with an increasing rate of wildfires in the future (IPCC, 2020, Jolly et al., 2015, Ministry of 

Environment and Green Development of Mongolia, 2014, Ministry of Environment, Japan, 
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2014). As water availability and soil moisture are higher in the dark taiga ecosystems, these 

higher elevations are expected to be less affected by a changing climate. After all, with the 

thaw of the permafrost as a dwindling water resource, even the dark taiga vegetation will have 

to tune in, and adaption strategies in terms of forest management need to be devised in general 

(Goldammer and Furyaev, 2010: 366–371).   

In general, it is quite unfortunate, that only a very limited body of literature exists on the impact 

on wildfires on the taiga forests in Mongolia. Thus, many conclusions drawn on a limited 

number of samples and test plots remain somewhat speculative. The characteristics and the 

infrastructure of the GIZ school forest as being partly managed, over-exploited, or even 

untouched (dark taiga) presents this area as a perfect playground for the conduct of extended 

research, which is herewith encouraged.  

The main objective of considering the wildfire aspect in the presented thesis has clearly not 

been to quantify in detail the damage caused in compartment 435, but to rather present a 

documentation on the situation back in 2017 to be exploited for further forest structure 

investigations. An in-depth assessment of the complex interaction between climatic conditions, 

topography, fire dynamics, forest structure, and human impact is proposed for future work to 

gain more insights into the nature of disturbances in the taiga forests.  

 

 

8.6. Tree count 

The number of trees in the field and the related identification of the tree species provide utile 

information for forest inventories, forest management, and the creation of growth models. The 

analysis of the tree density may also imply timely management and silvicultural  interventions 

such as thinning or regeneration procedures. The various possible approaches of identifying 

and extracting tree numbers have been outlined in chapter 4.6.1. already. For the purpose of 

the presented study the (semi-) automatic methods of template matching and image 

segmentation were applied - for details on the methodology please see chapters 7.3.4.7. (UAV 

photos) and 7.3.5.5. (satellite imagery). The verification for the UAV photos was done on virtual 

inspection of the images (number of trees for photo 00445: 141, for photo 00088: 18). Satellite 

imagery verification was carried out on comparison with field data for the different test plots. 

The following graph represents quite impressively the ‘predicament’ of the template matching 

algorithms. With only the RGB bands available in an off-the-shelf UAV camera even the visual 

interpretation of the tree species and the segregation of the individual trees constitutes quite a 

challenge in the aerial photo of flying mission 007 – the flying altitude was 130 metres above 

ground. The photograph with the crosses superimposed shows the iteration procedure in 

finding the optimal template for the final matching. Apparently, the matching algorithm 
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struggles with the proper assignment of the crown structures to an individual tree – in most 

cases trees were identified as multiple objects.     

           

Figure 8.48: Template matching process illustrated in an UAV photo of flying mission 007 (flying altitude 130m 
above ground). Individual trees get identified as multiple objects (marked with crosses). 

 

The graph below shows the application of the ‘optimal’ template matching constellation for the 

UAV photos of mission 1 (flying altitude 70m above ground) and mission 007 with a high flying 

altitude. Both images reveal, that some trees were correctly identified, others falsely 

designated, or even completely missed. 

The results for all imagery used are portrayed in the bar chart below.  

 

Figure 8.49: Template matching procedure applied for tree count. In both images (UAV image of mission 1  
- left; image of mission 007 – right) trees are either correctly identified, falsely designated, or 
completely missed.  



 

314 
 

 

Figure 8.50: Template matching for tree count applied to UAV photographs, WorldView-2, and Pléiades satellite 
imagery.   

 

Despite the relatively high spatial resolution the outcomes for the template matching in the 

satellite imagery are quite disillusioning. The rates for the missed tree individuals range from 

75% to 94% in the WV-2 and the Pléiades images. Better detection rates can only be reported 

for the UAV photographs with an accuracy of 70% for the mission 007 image and 50% for the 

mission 1 photo. The higher identification rates for the high-altitude UAV image can be 

attributed to the fact, that (i) more trees are represented in the sample, and (ii) the mission 007 

photo presents itself in an almost perfect nadir view, whereas the mission 1 image also depicts 

segments of trees (e.g., trunks) acquired form the oblique viewing angle. The off-nadir view 

might be conducive for a better tree species identification, however, makes it for the template 

matching algorithm extremely challenging to properly delineate tree crowns based on an 

unambiguous segregation process.  The bar chart below depicts the outcomes for a different 

method applied, namely the image segmentation process. Segmentation was carried out using 

the scale factor of 10 for the WorldView-2 data. The corresponding figures for the field count 

are 86 individual trees for test plot no.5 and 45 trees for plot no.8. The difference between the 

outcomes for the template matching and the image segmentation approach is quite striking. 

For plot no.5 the performance of segmentation is 34% vs 9% for the template matching, 

whereas for plot no.8 the disparity is 91% vs 24%. The WV-2 image was acquired in winter 

featuring a low sun angle with long shadows, and trees not being represented in a nadir view. 

All in all, conditions were far from being perfect for a tree count. Nevertheless, the contrast of 

the outcomes makes the segmentation a clear winner over the template matching. The better 

performance in plot no.8 can be attributed to the fact, that the plot is more sparsely populated 

than plot no.5, thus facilitating object identification.  
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Figure 8.51: Image segmentation performed on WV-2 imagery for tree count. 

Before we have a look at the existing publications related to the tree count methods applied 

and the results achieved, let us quickly wrap up the essentials of tree detection. 

Commonly, tree detection is not being executed as a single measure, but rather in unity with 

(i) tree location detection and crown dimension parameterisation, and (ii) full crown delineation. 

All categories share the same necessity for accurate individual tree detection prior to crown 

delineation, since it greatly impinges the accuracy  of the delineation process. In addition to 

the most simple way of identifying trees, namely the visual inspection, more sophisticated 

(semi-) automatic methods exist. Among the most important ones are: 

− Local maximum filtering 

− Image binarization 

− Scale analysis 

− Template matching 

− Valley following 

− Region growing 

− Watershed segmentation. 

A detailed description of these methods is given in chapter 4.6.1. In an extensive review by 

Larsen et al. (2011) the authors conclude quite unemotional, that so far no existing study has 

reported detection rates of 100%.    
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Several authors conducted studies on the detection and counting of oil palm trees by applying 

various methods. For instance, Daliman et al. (2015) favoured the template matching 

technique for extracting trees from a WV-2 image. The team achieved accuracies between 

75.9 and 91.4% as compared to the reference data. The picture below illustrates an example 

of a tree count in oil palm plantations – the tree crowns with a distinct shape and regular 

spacing are much better suited for the 

template matching algorithms than 

irregularly shaped, overlapping tree 

canopies. Norzaki and Tahar (2019) 

looked into the performance of three 

different tree detection strategies. Oil 

palms in Malaysia were identified and 

counted with accuracies of 89% with the 

template matching process, 82% for 

using the Iso-cluster unsupervised 

classification, and with 96% for 

employing canopy tree segmentation. In 

contrast, Chemura et al. (2015) achieved only an accuracy of 69% for the correct detection of 

palm trees in WV-2 images by applying image segmentation. A slightly better result was 

obtained by Korom et al. (2014) for the WV-2 analysis – by using watershed segmentation 

procedures the accuracy was reported to be 77% as compared to the on-screen delineated 

tree crowns.   

With respect to the analysis of UAV imagery Nevalainen et al. (2017) observed an individual 

tree identification in a boreal forest varying between 40% and 95% related to the characteristics 

of the flown area (e.g. tree distribution). In another study Mohan et al. (2017) give account of 

312 trees out of 367 conifers being detected correctly, with an omission error of 55 and a 

commission error of 46 individuals of the applied local maxima algorithm.  

Moving to high-resolution satellite imagery Gomes and Maillard (2016) employed WV-2 images 

to correctly detect trees in (i) an urban environment and (ii) in orchards. Amongst other 

methods the team applied template matching for the identification process. The detection 

accuracies were 82% for (i) and 90% for (ii). They also conducted a review of other studies on 

the application of template matching to conclude, that (i) the performance of the algorithm is 

reduced in dense forests, and (ii) the recognition errors increase with the irregularity of the tree 

crowns. Local maxima and valley-following algorithms were administered by Gougeon and 

Leckie (2006) on Ikonos imagery to detect individual trees in a conifer plantation in Canada. 

The low detection rate of overall 67% was explained by the difficulties for the algorithms to 

Figure 8.52: Template matching for oil palm tree detection. 
 Example  (WV-2 image) provided by Trimble eCognition 
(TemplateMatchingDemo, 2021).  
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identify trees with various degrees of maturity. Another study was conducted by Gougeon et 

al. (2003) to favour Ikonos and Quickbird very high-resolution panchromatic imagery. It was 

subjected to valley following and local maxima filtering for tree detection in a boreal forest in 

Ontario, Canada. The detection rate was about 30% higher for the Quickbird imagery due to 

its higher spatial resolution.   

Looking at aerial imagery, Erikson and Olofsson (2005) report detection rates of 80% in a 

boreal forest, when applying region growing and template matching strategies. Erikson (2004a) 

found that his segmentation results ranging from 73% to 95% largely depended on the 

segmentation strategy used and the type of forest flown.  Katoh and Gougeon (2012) combined 

individual tree crown delineation with tree top detection technique and multispectral image 

classification to improve the detection rate of conifer trees in aerial imagery. Tree top detection 

rate was 67% for the local maxima filtering alone, with an increase of 22%, when amalgamating 

all three approaches. 

An enormous number of studies has been published recently dealing with tree detection and 

crown delineation derived from LIDAR point clouds. Two of the most relevant ones are being 

considered in this chapter – for further reading please refer to chapters 4.1., 4.6.1., and 6.8.1. 

Vauhkonen et al. (2012) carried out a comparative testing of single-tree detection algorithms 

under different types of forest employing airborne laser scanning (ALS). Considered were 

forests in the boreal zone, in the temporal zone, and the in the Brazilian tropics. For analysis 

applied were (i) k-means approach for cluster information, (ii) a voxel layer modelling algorithm, 

(iii) adaptive segmentation based on Poisson forest stand model, (iv) local maxima detection 

with residual height adjustment, (v) segmentation based on geometric tree crown models, and 

(vi) adaptive filtering based on CHM height values. The detection accuracies ranged from 

45.2% to 100% with an overall average of 65%. The detection score was best for the plantation 

in Brazil (86%), followed by 75% for the mixed forest in Germany, 75% for the plots in Sweden, 

and 54% for the Norwegian test site. The authors conclude, that the algorithms showed similar 

performance, which was more attributed by forest structure (tree density and clustering) than 

by algorithm.  A large-scale study ( Kaartinen et al., 2012) was conducted by a large team of 

researchers to assess various algorithms for the detection and extraction of trees using ALS 

(the so-called ‘tree extraction’ project organised by the EurSDR). Methods applied ranged from 

simple segmentation and manual extraction strategies to region growing and cluster analysis 

involving local maxima finding. In contrast to the study mentioned above, the authors 

ratiocinate, that the extraction method determines the accuracy, and that laser point density 

has lees impact on the detection success. In addition, they also state, that the structure of the 

forest assessed also plays an important role on the accuracies achieved.    
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There would be much more to relate and disclose in conjunction with findings on tree detection 

methods. The interested reader will find more on this subject in chapter 4.6.1. However, by 

having perused a substantial body of literature, it is with considerable ease to point out the 

most pivotal factors, when dealing with tree detection/count. Apparently, the type of vegetation 

(i.e. height, shape, tree density, separation of individuals, branching structure, etc.), image 

contrast, and the accuracy of the used CHM / point cloud are important determinants for the 

performance of the algorithms applied (Park et al., 2014). Other sources of error are trees in 

the shade, tree intermingling, and smaller trees concealed by more dominant individuals 

(Gomes and Maillard, 2016). As a potential remedy for the outlined shortfalls and for attaining 

better results Zhen et al. (2016) suggest that active data ( SAR, and LiDAR in particular) and 

the fusion of active and passive sensoring technologies become more and more prominent in 

tree crown detection and delineation (ITCD) studies. Since the common 2D imagery reflects 

certain limits, the novel approaches of active sensors provide much better insights in the 3D 

structures of the forests. 

 

8.7. Extraction of crown diameter 

 

The crown diameter as the circle enclosing the projection of the tree crown represents another 

relevant stand parameter. It helps to estimate tree development, space requirements of the 

specific species, evaluate carbon sequestration and determine crown radius – DBH 

relationships (Miranda et al., 2018, Panagiotidis et al., 2017, Yilmaz et al., 2017). The diameter 

reflects the average of the measurement of the crown in two perpendicular directions (usually 

N-S; E-W). Crown diameter can be obtained through the manual measurement on the 

orthophoto in a GIS environment, or by extracting the corresponding figures from a 3D point 

cloud. Subsequently, segmentation techniques (e.g., region growing, or multiresolution 

segmentation) are exercised to delineate the shapes of the tree crowns and to calculate crown 

metrics automatically. It has become very common these days to perform the determination of 

the tree crown metrics in unity with the identification of the tree tops and the calculation of the 

tree heights.  

Crown diameter extraction was only executed on the UAV imagery. The WV-2 winter image 

provides enough detail, however, only dark taiga areas are presented, where no crown 

diameter measurement took place. All other satellite imagery exhibits no features detailed 

enough for proper object indentification.  As outlined in chapter 7.3.4.5. a combination of image 

segmentation and height extraction from a CHM was used for this study (eCognition). A manual 

extraction of the crown diameters in a GIS was not conducted. The segmentation process itself 

did not yield any satisfactory results. Having carried out a lot of trials with various CHM heights 
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for achieving best segmentation and thus crown delineation results, a tree height of 9 metres 

was found to be the most suitable to represent the bulk of the trees on the orthophoto. The 

graph below shows the results of the combined procedure. 

 

                                                                                                                  

 

 

The left image proves without any doubt, that individual trees (e.g., tree no. 25, 26) can be 

identified and their crowns delineated very properly. A useful segregation of tree clusters, by 

contrast, is virtually impossible, especially when dealing with a wide range of tree heights and 

an intermingling forest structure. As a consequence, only the crown diameters of perfectly 

identifiable tree individuals were selected for comparison with the reference data. The tree 

crowns were then cloaked with rectangular boxes and the mean diameters calculated in 

ArcGIS. The graph below demonstrates the comparison between the automatic extracted 

crown diameter mean values from the orthophoto and the measurements carried out on site.  

 

Figure 8.53: Results of the crown delineation and boundary boxing process for flying mission 1. The 
extraction procedure combined image segmentation with tree height extraction from the 
Canopy Height Model (CHM). Individual trees are well defined, whereas tree clusters 
are segregated not well (left). Resulting crown shape envelopes for individual trees are 
depicted on the right.    
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Figure 8.54: Comparison of mean crown diameter of selected trees as derived from the orthophoto of flying 
mission 1 with the calculated field data.   

 

The outcome of above comparison shows a slight trend of underestimation of the mean crown 

diameter automatically derived from the orthophoto data. However, tree no.27 provides an 

example for a grave overestimate. This phenomenon could be partly explained on visual 

inspection by finding parts of the crown of the neighbouring tree reaching into tree no.27. The 

graphical representation below looks into the relationship between the mean diameter values 

for the field data and the derived data from the orthophoto. The calculated coefficient of 

determination (R2) shows a value of 0.3783, which reflects a rather unsatisfactory 

performance. However, when deleting the outlier featuring the diameter pair of 12.12 / 6.8m, 

the R2 value improves considerably to 0.7877. Although not being legitimate without good 

reason, the virtual deletion of an extreme outlier can result in a much-improved outcome 

demonstrating the leverage of such outliers. It must be taken into account however, that with 

the decision of considering the tree height (here: 9 metres) for the crown delineation procedure 

the true outline of the individual tree crowns gets truncated resulting in an overall smaller 

representation. Apparently, whenever automatic feature extraction is favoured, some part of 

the initial information has to be sacrificed as a compromise between efficiency and maximum 

accuracy.  

As outlined in chapter 7.3.4.5. a manual extraction of the tree crown parameters had to be part 

of the assessment. The distance measuring tool in ArcGIS was used to determine the North-

South and East-West diameters of the associated trees in the orthophotos to finally determine 

the mean diameter. The outcomes of the comparison with reference to the field data is provided 

below. The outlier in the graph can be attributed to the fact, that in the imported orthophoto the 
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tree itself appears rather blurred due to difficulties in the photogrammetric modelling process. 

As such, some guesswork was involved to precisely delineate the crown perimeter. 

                  

Figure 8.55: Tree crown diameter comparison between field data and orthophoto (automatic extraction) data.  

With an R2 value of almost 0.92 it is demonstrated, that the manual determination of the crown 

diameter is by far superior to the automatic extraction method discussed above. 

 

 

 

 

 

 

 

 

 

 

Despite the excellent results it needs to be taken into consideration, that the manual extraction 

might be more accurate, but it is most certainly more labour-intensive. 

Let us now explore, what findings other authors have made in conjunction with the extraction 

of tree crown diameter.   
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Figure 8.56: Tree crown diameter comparison between field data and manually 
extracted mean diameters from the orthophoto.  
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Crown diameter (CD) estimation with strong a correlation (R2 from 0.72 to 0.85) with regard to 

LiDAR systems can be found in Sankey et al. (2017) and Yin and Le Wang (2019). Panagiotidis 

et al. (2017) employed an RGB sensor piggy-backed on a UAV to obtain crown metrics from 

conifer dominated forest plots. Crown metrics were derived for a conifer forest in the Czech 

Republic using inverse watershed segmentation and height thresholds of 17m and 20m. The 

resulting crown boundaries were measured manually in a GIS resulting in an RMSE% between 

14.29 and 18.56. The correlation ranged from  0.63 to 0.85 for R2. The authors of this study 

reason, that their proposed method works well for homogenous (conifer) forest structures and 

larger tree crowns. However, they also realise that large tree crowns especially in deciduous 

trees feature several local height maxima resulting in a false attribution to an individual tree. 

Yilmaz et al. (2017) conducted an UAV flying mission over a small park in Turkey with trees in 

a regular array. They used multiresolution segmentation and region growing to extract crown 

diameters from the photogrammetric point cloud (CHM). This procedure resulted in RMS of 

1.59m for the multiresolution segmentation and 1.76m for the region growing method. Pádua 

et al. (2018) also deployed an UAV aircraft to fly a patch of chestnut trees in a park in Portugal. 

They manually measured the crown diameters in a GIS to yield an excellent RMSE ranging 

from 0.60m (for the low flying altitude) to 0.37m (for the high flying altitude) – the associated 

R2 values ranged from 0.91 to 0.96. High spatial resolution Quickbird imagery was employed 

by Ke and Quackenbush (2009) to calculate crown diameters. Their approach comprised an 

active contour segmentation method in combination with hill-climbing algorithms. The tree 

crown estimation errors were less than 0.5m for a Norway spruce plantation in Syracuse, New 

York. Another study on employing high resolution satellite imagery for tree crown delineation 

was conducted by Chemura (2012). His segmentation of WolrdView-2 imagery resulted in a 

delineation accuracy of 69% for an oil palm plantation located in Ghana. When examining other 

technologies, authors like Roberts et al. (2005) report on the performance of LIDAR used for 

the extraction of crown diameter in a loblolly pine plantation in the Mississippi area. They found 

an underestimate of 21% when deriving diameter from the point cloud. Popescu et al. (2003) 

also favoured LIDAR technology, when devising regression models for crown diameter 

estimation. Their calculated R2 ranged from 0.62 to 0.63 for a mixed forest in the southeast of 

the UAS. Another team of authors made an attempt related to the automatic estimation of 

crown diameter in conifer trees. Their approach exploited the two-dimensional spatial wavelet 

analysis of LIDAR data to yield a coefficient of regression ( r ) of 0.86. The team assessed 30 

individual trees within open canopy forests in the Moscow mountains, Idaho.  

In the light of the findings by the authors mentioned above the outcomes of my crown 

extractions reflect a rather disappointing performance of the method used. This of course has 

to be seen in relation to the relatively small sample size used, the mix of conifer and deciduous 

trees, and the fact, that the tree height was integrated into the extraction model leading to an 
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underestimate of the crown diameter. Broad-leafed trees in particular impose an enormous 

challenge on the segmentation process. In a high number of cases I observed birch trees with 

split crowns during my survey. In my opinion a well experienced and trained image interpreter 

should be able to perform this task of crown delineation with much better outcomes as 

compared to automatic extraction techniques.  Overall, I fully agree with most of the authors 

by concluding, that better extraction results can be obtained in more open forests, whereas 

poor performance is expected in denser vegetated areas (Guerra-Hernández et al., 2016, 

Panagiotidis et al., 2017, Sankey et al., 2017).  

  

8.8. Tree species determination 

Tree species can be either be determined by visual interpretation, or by applying computer-

aided techniques. Both approaches are outlined in the following. 

8.8.1. Tree species extraction based on UAV imagery 

First of all, the visual interpretation of the UAV imagery is dealt with. As described in chapter 

7.3.4.1. UAV imagery taken at 150m above ground was ruled out for further visual 

interpretation due to the lack of quality of the photographs and the poor discernibility of the 

species. Instead, focus was on imagery taken at 70m above ground – no further image 

processing was required prior to interpretation. The following tree species were considered for 

the interpretation assignment: Siberian birch, Siberian larch, poplar and willow. Unfortunately, 

no acceptable aerial imagery was available for Siberian pine, Siberian spruce and Siberian fir 

(dark taiga). In total 36 trees were assessed based on the interpretation key devised and 

portrayed in chapter 7.3.4.1.  

The trial yielded the following results: 

Table 8-14: Classification result for visual interpretation of UAV imagery. 

Classification result Correct Incorrect 

Tree species   

Siberian larch 16 0 

Siberian birch 11 0 

Willow spec. 5 0 

Poplar spec. 4 0 

Total in % 100 0 

 

The correct assignment of all tree species was expected with a ground resolution of a few 

centimetres and an image quality that high. However, the outcomes can be very different for 

aerial imagery taken at a high flying altitude. As mentioned in chapter 4.2. tree identification 
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results can range from 55% up to more than 95%, depending on the quality of the imagery and 

the training level of the interpreter (Ahrens, 2001, Carleer and Wolff, 2004, Heller et al., 1964, 

Ke and Quackenbush, 2011b, Myers and Benson, 1981). For a well-trained expert with in depth 

knowledge on forestry and the associated local or regional conditions, obtainable outcomes 

can be quite impressive, of course depending on the level of the desired detail and 

prerequisites, such as quality of the imagery, spatial and spectral resolution (Hildebrandt, 

1996: 303–305). Unfortunately, there are only a few studies specifically dealing with the 

achievable accuracies on visual interpretation issues, such as tree species identification. Most 

of them date back to the 1990s. Inter alia, Münch (1993) and Ahrens (2001) report  

identification accuracies for the most common European tree species of between 80 and 90%. 

Investigations in the USA have shown, that 14 different conifer and deciduous tree species 

could be identified on large-scale aerial photographs with a fidelity of about 95% (Heller et al., 

1964). Some authors also observed that the use of colour-infrared (CIR) or other multispectral 

imagery can also boost the correct identification of the tree species (European Commission, 

2001) . 

Secondly, the computer-aided classification was conducted with the outcomes presented. As 

mentioned in chapter 7.3.4.6. before this trial was based solely on personal interest, not so 

much to  provide a sound scientific basis.  The scatter plot below once again proves that a 

distinction between the classes (i.e., birch, larch, forest floor) is virtually impossible for the 

classifier to achieve.  

 

Figure 8.57: Flying mission 1 training areas. The scatterplot shows that no useful distinction between the classes 
birch (yellow), larch (green), and forest floor (brown) is possible in a standard RGB UAV image. 

The classification result (Maximum Likelihood classifier) is furnished below. 



 

325 
 

 

Figure 8.58: UAV very high-resolution image (60m altitude) of flying mission 1 classified using the Maximum 
Likelihood Classifier. The areas for training the classifier are superimposed. In most of the 
classified trees a mix of both tree species (birch – yellow; larch – green) is apparent. 

Misclassifications are apparent – birches (in yellow) are classified as larches (in green) and 

vice versa. In addition, no clear assignment to any of the three classes materialised. In many 

trees there is a mix of all three classes, with forest floor characteristics found within the tree 

crowns. Due to the disastrous outcomes the creation of a classification accuracy matrix was 

spared. 

The classification results of above UAV image demonstrate quite clearly the predicament of 

extremely high-resolution imagery, namely the failure to generate meaningful object 

discrimination, and to satisfactorily distinguish tree species based on a very limited number of 

spectral bands (i.e., RGB). The availability of at least a NIR band would most certainly yield 

much better outcomes, as demonstrated in various publications. Tree species classifications 

have been reported to be relatively successful, but those were performed on multi-, or 

hyperspectral imagery, which yielded good class separation in the spectral bands prior to 

classification.  

 

8.8.2. Tree species extraction based on satellite imagery 

As pointed out in previous chapters the correct classification of tree species is hinged on a 

variety of factors. The most relevant ones are (i) spectral separability of the defined classes, 

(ii) the quality and characteristics of the imagery with either a high spectral and/or spatial 



 

326 
 

resolution, (iii) the classification method applied, and (iv) the fidelity of the ground truthing 

reference data. In the following the outcomes are presented as tables and the explanations 

embellished with images corresponding accordingly.   

As an important reference for the identification and delineation of the dark taiga the map below 

is provided, which is based on the NDVI analysis of the Sentinel-2 winter image. However, it 

needs to be noted that the WV-2 NDVI assessment is slightly more detailed  due to the better 

spatial resolution and the less pronounced snow cover. According to the computation the dark 

taiga populates areas above  about 1600m a.s.l., but it can also be encountered in specific 

depressions in the riparian zones.   

 

Figure 8.59: Distribution of the dark taiga in the Thunkel area based on the NDVI analysis of the Sentinel-2 
winter image of 01.11.2017. The ellipse (magenta) and the inset highlight the occurrence of dark 
taiga in the riparian area.    

 

8.8.2.1. Single tree species determination  

The analysis of the very high-resolution satellite imagery was part of the initial classification 

trial. Based on the findings in the literature that image segmentation (OBIA) prior to the 

classification process largely improves the classification results, this method was applied first. 

Due to their salient spatial properties imagery of WorldView-2 and Pléiades were considered 

to qualify for the OBIA (object-based image analysis) approach.  
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The table below shows the results for WV-2 and Pléiades imagery for the less refined classes 

of light taiga (i.e., Siberian larch and Siberian birch) and dark taiga. All additional classes such 

as grassland, soil, etc. were introduced to reflect a much more realistic picture of the 

classification performance. However, as far as the calculation of the accuracy statistics is 

concerned, the accuracies are provided for the forest class solely, and the overall accuracy 

comprising all classes. In consideration of the table both classifiers (i.e., SVM and RF) perform 

equally well, showing only slight differences between WV-2 and Pléiades.  Although the WV-2 

features a better spatial resolution (1.8m vs 2.0m (resampled)), the broader bandwidth of the 

Pléiades sensor seems to have slight edge over the WV-2 in this case, with the bands Blue, 

Red, Green, and NIR used for both images. It is also quite enlightening to see, that although 

the WV-2 image was acquired in winter and the Pléiades  scene in  May, the spring image 

performs only marginally better than the WV-2 image. A much more interesting picture is 

reflected by the outcomes for the most specific assignment to the species, namely birch and 

larch. The results for both scenarios are entirely different, with the RF classifier outperforming 

the SVM by far (e.g., 64.28 % vs 35.71%). A closer look also reveals that the Siberian birch 

does not get well identified as such and is often misclassified as larch instead.      

Table 8-15: Object-based classification of WorldView-2 and Pléiades imagery. The class definitions are more 
focused on tree specific traits. 

OBJECT-BASED 
(OBIA) 

Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

WV-2 RF   97.64 98.79 

Light taiga 100.00 98.32   

Dark taiga 94.89 100.00   

Grassland-soil 97.40 99.85   
WV-2 SVM   97.64 98.79 

Light taiga 100 98.32   

Dark taiga 94.89 100   

Grassland-soil 97.4 99.85   

Pléiades RF   98.34 99.11 

Light taiga 99.98 98.73   

Dark taiga 96.62 100   
Grassland-soil 97.83 99.92   

Pléiades SVM   98.21 98.64 

Light taiga 99.79 98.25   

Dark taiga 94.42 100   

Grassland-soil 97.83 99.12   

     

Pléiades RF   64.28 64.28 
Larch 70.58 80   

Birch 54.54 100   

Pléiades SVM   35.71 35.71 

Larch 52.94 60.00   

Birch 09.09 33.33   

 

As discussed before, the spectral separability analysis already indicated a very challenging 

task for the classifiers to accurately assign the spectral signatures to specific classes. Since 
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birch and larch foliage features very similar reflectance properties the outcomes do not come 

to a surprise. The situation is even exacerbated by the fact, that due to defoliation processes 

in both tree species the spectral signatures represent a mix of tree and forest floor flora pixels. 

Moreover, only four spectral bands were available for the examination.    

8.8.2.2. Dominant tree species determination 

Since not all satellite imagery meets the requirements for single object (i.e., tree) identification, 

the tree species classes were extended to dominating classes, i.e., tree species such as larch 

and birch were merged. Apart from that, no pure larch stands or even smaller clusters could 

be distinguished during the field survey. The various results are illustrated in the table blow 

with the following denominations applied: 

RF – Random Forest classifier 
SVM – Support Vector Machine classifier 
WV-2 – World View 2 
S-2 – Sentinel-2 

Var 1 – Sentinel-2 bands NIR, SWIR1, NDVI, NBR 
Var 2 – Sentinel-2 bands NIR, SWIR1 
Var 3 – Sentinel-2 bands SWIR1, NDVI, NBR 
Var 4 – Sentinel-2 bands Green, NIR, SWIR1, NBR 

 

Table 8-16: Object-based classification of Pléiades and Sentinel-2 imagery for dominant tree species. 

OBJECT-BASED 
(OBIA) 

Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

Dominant species     
Pléiades RF     

Light taiga 76.50 27.13 66.22 66.22 

Birch 57.17 89.09   

Dark taiga 100 100   

Pléiades SVM   38.79 38.79 

Light taiga 66.11 15.24   

Birch 25.35 94.58   
Dark taiga 56.35 86.13   

Sentinel-2     

S-2 RF var 1   87.23 87.23 

Light taiga 100.00 64.28   

Dark taiga 84.61 100.00   

Birch 85.71 100.00   

S-2 SVM var 1   63.12 63.12 

Light taiga 50.00 20.93   

Dark taiga 100 100   

Birch 48.80 82.00   
S-2 RF var 2   76.59 76.59 

Light taiga 50.00 36.00   

Dark taiga 100.00 100.00   

Birch 71.42 36.00   

S-2 SVM var 2   54.60 54.60 

Light taiga 50.00 16.36   

Dark taiga 69.23 100.00   
Birch 48.80 82.00   

S-2 RF var 3   87.23 87.23 

Light taiga 100.00 64.28   

Dark taiga 84.61 100.00   

Birch 85.71 64.28   

S-2 SVM var 3   34.04 34.04 

Light taiga 00.00 00.00   
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OBJECT-BASED 
(OBIA) 

Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

Dark taiga 100.00 81.25   
Birch 10.71 50.00   

S-2 RF var 4   82.97 82.97 

Light taiga 100.00 52.94   

Dark taiga 100.00 100.00   

Birch 71.42 52.94   

S-2 SVM var 4   54.60 54.60 

Light taiga 50.00 16.36   
Dark taiga 69.23 100.00   

Birch 48.80 82.00   

 

The table above reveals the following: 

− In all presented cases the Siberian birch is by far the greatest underperformer in terms 

of correct assignment. 

− The RF classifier shines out as the best classification approach.  

− The band combination of NIR, SWIR1, NDVI, and NBR (i.e., variant 1) proves to be the 

most suitable. 

− The results for the Pléiades imagery compared to the S-2 image suggests that the 

higher radiometric resolution of the latter is superior to the better spatial performance 

of the former. 

− The application of the SVM on the S-2 imagery with variant 3 in place completely fails 

to properly identify the light taiga class.  

In the following screenshots of the achieved classification results are provided and subjected 

to further discussion. 
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Figure 8.60: Object-based classification of Pléiades image (10/05/2015). Random Forest (RF) classifier for 
dominant tree species classification was used. Classes depicted in graph: birch (yellow), light 
taiga (bright green), dark taiga (dark green), and grassland/soil (brown).   

 

Figure 8.61: : Object-based classification of Pléiades image (10/05/2015). Support Vector Machine (SVM) 
classifier for dominant tree species classification was used. Classes depicted in graph: birch 
(yellow), light taiga (bright green), dark taiga (dark green), and grassland/soil (brown).   
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Both classification results set against each other demonstrate quite impressively, what huge 

difference the choice of an appropriate classification method can make. In the S-2 image with 

the SVM applied the birch areas have almost completely disappeared. This phenomenon is 

also reflected in the data above. Quite striking is also the evidence in finding the light taiga 

intermingled with and ‘infiltrated’ by patches of dark taiga. Right from the outset it was a major 

impetus and ambition to reveal all weak spots and snares of the various classification methods 

involved. For this reason, no tweaking and fine-tuning of the classifications was performed to 

avoid potential misinterpretations. It would have been easy to just introduce an altitudinal 

bracket for the correct identification of the dark taiga areas. However, the outcomes above 

prove without any doubt, that the segregation between dark and light taiga is far from being 

trivial.  

In the images below the outcomes of the Sentinel-2 object-based classification is illustrated as 

an example. The lack of detail in comparison with the Pléiades imagery is apparent, however, 

the classes look more homogenous. At this point it is very important to advert to one of the 

pitfalls in accuracy assessment execution. Although 130 ground points were applied for 

verification, the calculated deviations from the ‘true’ value can be quite deceptive by potentially 

drawing an all-advised conclusion. For this reason, it is also crucial to cross-check with other 

sources representing the character of the object to be assessed.  

 

Figure 8.62: Object-based classification of Sentinel-2 image (09/07/2017). Random Forest (RF)  classifier for 
dominant tree species classification was used. Classes depicted in graph: birch (yellow), light 
taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band selection of variant 
4 (B12, B8, B3, NDWI) was used for image classification.   
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Figure 8.63: Object-based classification of Sentinel-2 image (09/07/2017). Support Vector Machine (SVM) 
classifier for dominant tree species classification was used. Classes depicted in graph: birch 
(yellow), light taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band 
selection of variant 4 (B12, B8, B3, NDWI) was used for image classification.   

 

In the classified Sentinel-2 images (variant 4) the distribution and location of the dark taiga 

appears to be much more realistic than in the Pléiades image. In addition, the Siberian birch 

also gets a much greater share in comparison. However, both S-2 classifications reveal a 

different dark taiga pattern, particularly in the north-east of the maps. Since no verification data 

for those areas exist, any further inferences would be pure speculation. Very small patches of 

dark taiga in the northwest of compartment 435 are rendered – areas, where most certainly no 

dark taiga exists. This judgement rests on own on-site observations. 

Regarding the analysis of the remaining variant constellations of the S-2 object-based 

classification the interested reader is referred to the brief portray below and the graphical 

representations provided in chapter 15.1.1. 

Additional findings in Sentinel-2 object-based image classification: 

− Variant 1: as for RF some trees south of compartment 435 were misclassified as grass; 

for SVM this was not the case; however, a patch within the dark taiga was misclassified 

as light taiga. 
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− Variant 2: as for RF too many areas were classified as dark taiga; for SVM once again 

some patches within the dark were misclassified as light aiga. 

− Variant 3: as for RF too much light taiga patches are found in the dark taiga; for SVM 

in general the extent of green grass is inflated. 

− Variant 4: see above.  

 

Pixel-based image classification – dominant tree species 

The pixel-based analysis comprised the classification of Pléiades and RapidEye imagery with 

all bands considered. The RapidEye imagery was incorporated in the pixel-based analysis for 

comparison with another study carried out in the Thunkel area. For the Sentinel-2 assessment 

the same setup like for the object-based method was exercised. However, a few more 

appraisals were introduced. The first one concerns the consideration of all 13 spectral bands, 

and the second one the variation in the number of verification points used (i.e., 130 and 300).    

Table 8-17: Pixel-based classification of Pléiades and RapidEye imagery for dominant tree species. 

PIXEL-BASED  Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

Kappa Value 

Pléiades RF; all bands   81.73 80.77 0.74 

Light taiga 68.75 50.00    

Dark taiga 87.18 91.89    

Birch 74.07 88.89    

Dry grass, soil 90.09 100.00    
Green grass 100.00 62.50    

Pléiades SVM; all 
bands 

  77.88 77.69 0.70 

Light taiga 68.75 36.67    

Dark taiga 94.87 90.24    

Birch 61.11 100.00    

Dry grass, soil 100.00 91.67    
Green grass 90.00 64.29    

      

RapidEye RF; all 
bands 

  61.32 63.84 0.52 

Light taiga 37.50 23.08    

Dark taiga 92.31 64.29    
Birch 42.59 88.46    

Dry grass, soil 72.72 88.89    

Green grass 100.00 76.92    

RapidEye SVM; all 
bands 

  64.42 66.15 0.54 

Light taiga 43.75 36.84    

Dark taiga 82.05 61.54    
Birch 51.85 82.36    

Dry grass, soil 81.81 90.00    

Green grass 100.00 66.67    
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The classification of the Pléiades imagery supports the trend found for the OBIA for the RF 

classifier to be superior. The direct comparison with the outcomes for the dominant species 

assignment also illustrates, that the RF applied in the pixel-based mode outperforms the OBIA 

approach by far (i.e., 81.73% vs 66.22%). This observation also holds to be true for the SVM 

classifier (77.88% vs 38.79%). Although RapidEye’s spatial resolution is inferior to the one of 

the Pléiades satellite sensor (i.e., 5m vs 2m MS (resampled)), the former features the RedEdge 

band as an additional response option. However, this does not seem to contribute to the 

improvement of the tree species assignment. In addition, the proper detection of the ‘easy’ 

classes of dry grass and soil apparently constitutes quite a challenge for some reason. In her 

investigation Zueghart (2017) employed the same RapidEye scene in order to get a distinction 

between dark and light taiga for the Thunkel surroundings. The achieved overall accuracy with 

a maximum likelihood classifier applied was 90% with a Kappa Index featuring a high value of 

0.8. However, the author found the dark taiga areas to be inadequately represented. The 

created distribution maps reveal, that not only underrepresentation of the dark taiga constitutes 

an issue, but also the occurrence of dark taiga chunks within an area dominated by light taiga 

(e.g., in the northwest of compartment 435). In the graphical representation of the classification 

analysis further below it can be seen, that the intermingling of dark and light taiga is mainly 

due to the lack of spectral separability of the two classes. According to Zueghart (2017: 66) 

the specific illumination conditions (i.e. low sun angle in May in association with the occupation 

of forests solely on northern slopes) and the selection of the training samples can be 

considered large contributors to this phenomenon.  

When looking at the results of the table below it is obvious, that not only the pick of the 

appropriate training samples  is intrinsically linked with the classification outcomes, but also 

the number, quality, and distribution of the verification areas. In the first example, where all 13 

bands were considered for the Sentinel-2 classification, the choice of employing 300 ground 

truthing points yielded better results for the overall accuracy in the forest, as well as in all 

classes appraised when compared to the 130-point variant. In addition, the selection of all 13 

spectral bands lead to an overall best performance of the classification, irrespective of the 

classifier used (e.g., RF or SVM). Nonetheless, such performance is at the expense of 

computational time. For this reason, various other scenarios were devised for the reduction of 

the input data. The different variants comprising the different constellations of single band and 

vegetation indices have been portrayed above already.   
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Table 8-18: Pixel-based classification of Sentinel-2 imagery for dominant tree species.  

PIXEL-BASED  Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

Kappa Value 

S-2 RF; 13 bands; 300 
random points 

  88.57 78.98 0.74 

Light taiga 61.53 93.33    

Dark taiga 96.29 86.67    

Birch 73.43 79.66    
Dry grass, soil 87.09 91.52    

Green grass 100.00 42.10    

S-2 RF; 13 bands; 130 
points 

  83.33 85.38 0.80 

Light taiga 76.47 48.15    

Dark taiga 100.00 97.50    
Birch 71.70 92.68    

Dry grass, soil 100.00 100.00    

Green grass 100.00 90.90    

S-2 SVM; 13 bands; 
130 points 

  88.68 88.46 0.84 

Light taiga 81.25 59.09    

Dark taiga 97.44 100.00    
Birch 79.63 93.48    

Dry grass, soil 100.00 91.67    

Green grass 100.00 83.33    

S-2 RF var 1   76.42 78.46 0.71 

Light taiga 62.50 34.48    

Dark taiga 92.31 92.31    

Birch 64.81 92.11    
Dry grass, soil 100.00 100.00    

Green grass 100.00 76.92    

S-2 SVM var 1   81.55 80.77 0.74 

Light taiga 37.50 40.00    

Dark taiga 100.00 84.78    

Birch 72.22 92.86    

Dry grass, soil 100.00 91.67    
Green grass 100.00 66.67    

S-2 RF var 2   79.25 80.76 0.74 

Light taiga 81.25 40.63    

Dark taiga 92.31 97.30    

Birch 64.81 94.59    

Dry grass, soil 100.00 100.00    

Green grass 100.00 76.92    
S-2 SVM var 2   82.86 82.31 0.76 

Light taiga 75.00 46.16    

Dark taiga 94.87 97.37    

Birch 70.37 92.68    

Dry grass, soil 90.90 100.00    

Green grass 100.00 66.67    

S-2 RF var 3   79.25 80.77 0.74 
Light taiga 81.25 40.63    

Dark taiga 92.31 97.30    

Birch 64.81 94.59    

Dry grass, soil 100.00 100.00    

Green grass 100.00 76.92    

S-2 SVM var 3   82.69 82.31 0.82 

Light taiga 62.50 43.47    

Dark taiga 94.87 92.50    
Birch 72.22 95.12    

Dry grass, soil 100.00 100.00    
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PIXEL-BASED  Producer’s 
Accuracy 

User’s 
Accuracy 

Overall Accuracy 
– Forest Classes 

Overall 
Accuracy – All 

Classes 

Kappa Value 

Green grass 100.00 66.67    
S-2 RF var 4   81.90 82.31 0.76 

Light taiga 75.00 42.85    

Dark taiga 94.87 97.37    

Birch 68.52 94.87    

Dry grass, soil 100.00 100.00    

Green grass 100.00 71.43    

S-2 SVM var 4   86.79 86.92 0.82 
Light taiga 68.75 9500    

Dark taiga 97.44 55.00    

Birch 79.63 93.48    

Dry grass, soil 100.00 91.67    

Green grass 100.00 83.33    

 

From above table various conclusions can be drawn:  

1. The consideration of all 13 bands yields the best overall results (i.e., OA of 88.68% 

for forest classes; Kappa of 0.84). 

2. In the object-based approach the RF classifier was the clear winner, whereas in the 

pixel-based method the SVM has proven to be superior. 

3. As far as input data reduction is concerned variant 4 (i.e., Green, Near-Infrared, 

shortwave-Infrared, NBR index) outperforms all other variants. For the OBIA it was 

variant 1 for the most suitable option. 

4. Variant 4 is a strong competitor for the ‘all bands’ solution (i.e., OA 86.79% vs 

88.68%; Kappa index 0.82 vs 0.84).  

5. The classes green grass and dry grass/soil have been identified perfectly.  

6. Dark taiga assignments are all superb in all scenarios according to the figures. 

7. Light taiga and birch class accuracies range from 37.50 to 81.25%, and from 64.61 

to 79.63%, reflecting the challenging spectral signature overlap.    

 

When moving away from the stern figures above, the graphics below offer the opportunity to 

gain an extended perception and comprehension of the ‘intimacies’ of a classification at a 

larger scale.   

The classification conducted on the Pléiades images in general shows an overrepresentation 

of the dark taiga (SVM performs slightly better than RF) and a very low proportion of the birch 

class. As indicated above dark taiga is also to be found in light taiga territories.   
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Figure 8.64: Pixel-based classification of Pléiades image (10/05/2015) – dominant tree species. Random Forest 
classifier was used for all bands. The classification verification points are marked with a cross. 
Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga (dark green), dry 
grass/soil (brown), green grass (red).   

 

Figure 8.65:  Pixel-based classification of Pléiades image (10/05/2015) – dominant tree species. Support Vector 
Machine classifier was used for all bands. The classification verification points are marked with a 
cross. Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga (dark green), dry 
grass/soil (brown), green grass (red).   

 

In the RapidEye classification the SVM approach seems a bit more realistic with the dark taiga 

not dominating the scenery  - the birch also has a bigger share.  
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Figure 8.66: Pixel-based classification of RapidEye image (17/09/2015) – dominant tree species. Random 
Forest classifier was used for all bands. The classification verification points are marked with a 
cross. Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga (dark green), dry 
grass/soil (brown), green grass (red).   

 

 

Figure 8.67: Pixel-based classification of RapidEye image (17/09/2015) – dominant tree species. Support Vector 
Machine classifier was used for all bands. The classification verification points are marked with a 
cross. Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga (dark green), dry 
grass/soil (brown), green grass (red).   
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However, the contribution of the dark taiga in general is out of proportion. In contrast, the 

Sentinel-2 classification reveals a much better dedication to a realistic distribution of all 

classes, although displaying a much coarser spatial resolution. When compared to the NDVI 

winter representation the dark taiga areas exhibit a fairly good match. Nevertheless, some dark 

taiga patches are found in zones, where it most certainly exceeds its natural range (e.g., 

northwest of compartment 435). The birch areas reflect a good representation of its habitat 

and the green grass and dry grass/soil delineations appear to be near to perfect. The difference 

in performance between RF and SVM evidently is marginal on visual inspection. 

   

 

Figure 8.68: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Random 
Forest classifier was used for bands variant 1 (B8, B11, NDVI, NDWI). The classification 
verification points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright 
green), dark taiga (dark green), dry grass/soil (brown), green grass (red).   
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Figure 8.69: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Support 
Vector Machine classifier was used for bands variant 1 (B8, B11, NDVI, NDWI). The classification 
verification points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright 
green), dark taiga (dark green), dry grass/soil (brown), green grass (red).   

 

To avoid overload of the thesis the interested reader is referred to the graphical representation 

in Appendix chapter 15.1.2 for the further classification results on the remaining variants. In 

denial of the confinements the most relevant observations are shared herewith:    

− Variant 1: both SVM and RF yield excellent results in general, however, dark taiga has 

been classified in areas, where this forest type simply does not occur naturally. 

− Variant 2: as for SVM too many areas were classified as territories occupied by birch – 

this is not commensurate with my personal observations.; the dark taiga areas are 

slightly better represented by the RF classifier, but the assignation of the green grass 

zones is out of proportion. 

− Variant 3: once again, the RF classifier yields marginally more realistic dark taiga areas 

compared to SVM.  

− Variant 4: this variant excels in all respects. The only difference between SVM and RF 

classification is that the former displays a bit less dark taiga, than the latter, which is 

closer to reality. 

− All 13 bands used: the outcomes looked extremely promising initially for both SVM and 

RF, as confirmed by the statistics. There seems to be no misclassification of the dark 
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taiga, as there is no proof of this forest type to exceed its natural range. However, this 

remarkable accuracy comes to the expense of the trees being undetected in the 

riparian areas (see graph below). 

 

 

Figure 8.70: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Support 
Vector Machine classifier was used for all 13 bands. The classification verification points are 
marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga 
(dark green), dry grass/soil (brown), green grass (red). The classification reflects the best 
outcomes for dark taiga detection, especially with no misclassification displayed in the northwest 
of compartment 435. However, almost all trees are missed in the riparian zone (see polygon in 
blue). 

 

The most relevant conclusions of the image classification are as follows: 

• There is no ‘one-size-fits-all’ classifier. 

• Both machine learning classifiers (i.e., RF and SVM) generate excellent results, with 

RF performing slightly better in an OBIA environment, whereas SVM works better for 

pixel-based analysis. 

• The utilisation of all spectral bands yielded the best overall classification results. 

However, the selection of the most relevant spectral bands (R, NIR, SWIR) in 

combination with vegetation indices (NDVI, NBR) resulted in similar classification 

accuracies. 
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• Image segmentation works best for high-, and medium-resolution imagery. UAV 

photographs with a resolution of 3 centimetres displayed many over-segmented areas 

(i.e. split tree crowns), which was detrimental for subsequent classification. 

• The dark taiga class is over-represented in all imagery and classification modes. 

• Illumination conditions and topography, in conjunction with shadow occurrences within 

the forest affect classification (e.g. shadow areas in forest misclassified as dark taiga). 

• Poor separation of birch and larch (light taiga) class is due to overlap of spectral 

signatures. 

• Dense undergrowth of grass and shrubs, as well as the defoliation of trees have an 

impact on the class identification and segregation. 

• Dark taiga not only occurs in elevations above around 1550m a.s.l., but also populates 

ecological niches in the riparian areas. 

In the following the findings are discussed in relation to the literature published. On closer 

inspection of the publications on tree species classification, it becomes clear that the following 

factors are amalgamated, defying any clear cause – effect assignment: 

• Image pre-processing (e.g., atmospheric 
correction) 

• Topography 

• Illumination conditions / sun angle 
(shadows) 

• Forest understorey 

• Image classifier 

• Image segmentation parameters 

• Temporal, spatial, radiometric resolution 

• Tree density and forest structure (vertical, 
horizontal) 

• Tree species 

• Selection of spectral bands and indices 

• Quality and quantity of training and 
verification areas 

• Tree defoliation / tree damages 

 

With respect to the object-based classification (OBIA) the classification results in this study 

ranged from being high for the high-resolution imagery to being very poor for the UAV images. 

Over-, and under-segmentation were the main causes for the lack of performance in some 

images. In addition, the quality of the training samples made an impact on the outcomes. These 

observations are shared by authors like Aguilar et al. (2013), who report that the analysis of 

GeoEye-1 and WorldView-2 images yielded overall accuracies of between 89% and 83%, 

when looking at urban environments. According to them the accuracy of the classification is 

driven by three main factors, namely (i) sensor used, (ii) sets of image objects employed, and 

(iii) the size and quality of the training samples to feed the classifier. Deng et al. (2014) found 

improvements of up to 34% compared to pixel-based classification of WorldView-2 imagery for 

the identification of tree tops in the Purple Mountain National Park close to Nanjing, China. 
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Yan et al. (2006) found even a higher gain (36.77%) when classifying land cover from 15m 

ASTER datasets. In his investigation on tree species determination from multispectral UAV 

imagery Franklin (2018) reports classification accuracies of 50% to 60% for pixel-based 

classifiers, and 80% for OBIA. The relatively good results were achieved by using a 

multispectral instead of a consumer-grade RGB camera. In addition, the flying altitude was 

120m above ground generating much smaller objects as compared to my flying missions. As 

such, the unsatisfactory outcomes of my trials have to be seen in the light of the use of an RGB 

camera in conjunction with a low flying altitude.  Hajek (2004) confirms excellent classification 

results (i.e. 95%) for tree species discrimination extracted from 4m Ikonos imagery. OBIA was 

also applied to WorldView-2 images in the study presented by Karlson et al. (2014). The overall 

detection rate for individual tree crowns in a managed forest in Burkina Faso was 85.4%, with 

lower accuracies in areas featuring high tree density and dense understorey vegetation. 

Machala and Zejdová (2014) applied OBIA for forest classification of aerial imagery. According 

to them the overall accuracy of almost 90% deteriorated to a mere 70% by integrating tree 

height information into the classification process. The authors address high tree density (i.e. 

low object separation) and poor tree height class definition as major culprits for mediocre 

outcomes. Kavzoglu and Yildiz (2014) report good OBIA classification accuracies for aerial 

and Quickbird-2 imagery to discriminate several land use features. An important observation 

of the authors was, that segmentation parameters have a direct effect on the classification 

accuracy, with low scale-shape combinations generating the best results. This view is 

extended by Karakis et al. (2006) and Dong et al. (2020), who suggest not to neglect sun 

elevation and topography when selecting segmentation parameters. In an extensive survey 

Myburgh and van Niekerk (2014) investigated the performance of various classifiers in an OBIA 

environment in relation to the size of the training set. They deduce that: (i) the performance of 

all the classifiers (i.e., SVM, Nearest Neighbour, Maximum Likelihood) improved significantly 

as the size of the training set increased, and (ii) SVM was the superior classifier for all training-

set sizes. Although multi-scale segmentation seems to be working very well for very high-

resolution imagery, authors like Jing et al. (2012) do not fail in stressing, that forests consist of 

multi-scale branches, complex tree crowns, and tree clusters causing an over-segmentation of 

the imagery.   

In my study both classifiers performed on a high accuracy level (80 to 89%) in the pixel-based 

analysis to yield similar results. By applying OBIA RF generated better outcomes, however. 

Since only these two classifiers were used, no conclusions can be drawn with respect to other 

classification approaches. In studies by Adam et al. (2014) and Ghosh and Joshi (2014), RF 

and SVM performed almost equally well, when considering classification of RapidEye and 

WorldView-2 imagery. In a meta-analysis Khatami et al. (2016) found clear indications of SVM, 

kNN, and RF being clearly superior to other supervised classifiers and other image spectral 
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information manipulation and feature extraction such as vegetation indices and Principal 

Component Analysis (PCA). They also constitute, that SVM has achieved the best overall 

performance in all studies investigated. Pouteau et al. (2011) compared the six most popular 

machine learning algorithms applied to different satellite datasets (Landsat 7, SPOT, airSAR, 

TerraSAR-X, Quickbird, and WorldView-2) for tropical ecosystem classification. They testify, 

that SVM outperformed all other tested classifiers in 75% of the situations. In a recently 

published meta-study Sheykhmousa et al. (2020) perused the impressive body of literature 

concerning the performance of RF and SVM in various remote sensing applications. The 

authors conclude, that in the majority of the publications the authors found the complexity  of  

the landscape  in  a  study  area,  as  well  as  limited  and usually  imbalanced  training  data 

making  the classification a challenging task. The meta-study also reveals excellent species 

classification results for both classifiers to be between 82 and 88% accurate. The survey in the 

database also revealed that medium and high-resolution images are the most used images. In 

addition, SVM seems to be better geared for smaller training sets, whereas RF performs better 

as training sets get larger. Apparently, RF is intrinsically suited for multiclass problems and are 

better interpretable than SVM.  Heydari and Mountrakis (2018) examined the effects of the 

classifier selection, reference sample size, reference class, and scene heterogeneity in per-

pixel classification accuracy on 26 Landsat test sites employing five favoured classification 

algorithms. Obviously, SVM and kNN performed much better, when concentrating on edge 

pixels bordering adjacent object classes. The authors also state, that, with the exception of 

Naïve Bayes (NB), all classifiers performed similarly well for the entire image block. Thanh Noi 

and Kappas (2017) compared SVM, k-NN and RF for classifying Sentinel-2 imagery showing 

the Red River Delta in Vietnam. An overall high accuracy was obtained for all classifiers (90 to 

95%) for designating six various land use classes. Albeit, the SVM delivered better results for 

smaller sample sizes, thus confirming the observations by other authors. By applying CNN, 

SVM, and RF to fused hyperspectral and photogrammetric data,  Sothe et al. (2020) 

discovered, that all classifiers generated satisfactory results for tree species determination. 

However, CNN was between 22% and 26% more accurate, when only the hyperspectral bands 

were employed. 

In my investigation I also observed that a higher spatial resolution does not necessarily improve 

the classification accuracy. For the identification of a single tree and the related species a 

proper delineation of an object is crucial. However, the outcomes clearly prove that for the 

correct assignment of tree clusters or dominant species the higher radiometric resolution is a 

very big bonus. This is also shared by Ghosh et al. (2014), who found out, that tree species 

classification results do not necessarily improve with spatial resolution of the imagery using 

the same classifier (i.e. RF). RF performed better with 8m resolution images, than with 4m – 

even the 30m resolution of the hyperspectral data produced sound results. A contradictory 
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example is provided by Immitzer et al. (2016b), who attempted to identify seven different tree 

species in test sites located in Bavaria, Germany. They employed imagery from WorldView-2, 

Sentinel-2 and Landsat 8 to perform classifications based on image segmentation and 

Random Forest (RF). Overall accuracies for the various sensors are 0.74 for WV-2, 0.68 for 

Sentinel-2, and 0.49 for Landsat 8, thus proving the leverage of high spatial resolution on 

classification results. However, the mentioned statement needs to be seen in relation to the 

range of image resolutions available these days. I find it very difficult to compare the 

classification outcomes of various sensors with inherently different band widths and numbers 

of spectral bands. At least the literature on hyperspectral data analysis provides a good 

indication on the superiority of utilising a high number of spectral bands for species 

discrimination (Alonzo et al., 2014, Dalponte et al., 2014, Fassnacht et al., 2014, Heinzel and 

Koch, 2012, Nezami et al., 2020, Vauhkonen et al., 2013, Zarco-Tejada et al., 2018). 

   

The outcomes of the classification looking into a specific selection of spectral bands and 

indices have proven that a careful consideration of this aspect can make a big difference in 

achievable accuracies. The focus on only two spectral bands yielded a much lower 

performance of the classification as compared to the involvement of a high number or even all 

available bands. The spectral separability analysis showed quite impressively that the spectral 

bands representing the NIR, RedEdge, and SWIR are the most suitable for tree species  

discrimination in this part of Mongolia. Unfortunately, only the Landsat 8 and the Sentinel-2 

sensors used in this study provide SWIR bands. A number of other authors also investigated 

the suitability of various spectral bands for tree species determination. For instance, Immitzer 

et al. (2019) employed Landsat 8 and Sentinel-2 imagery to find out, that, although the spectral 

band characteristics  of the two sensors show very little difference, the coarser spatial 

resolution of Landsat seemed to result in the poorer overall discriminatory performance. Best 

results for species identification were achieved in Landsat 8 and Sentinel-2 in the RedEdge 

(RE) and Short Wave Infrared (SWIR) bands. The authors also state that the spectral signature 

of pine and spruce appeared to be similar.  Although no discrimination between the dark taiga 

species was carried out in the presented study, the dark taiga showed lower reflectance values 

as compared to the light taiga in most of the spectral bands. The findings by Immitzer (2019) 

indicate that a more detailed look at the spectral separability of the dark taiga species would 

be sensible.  Quite recently, some more authors explored Sentinel-2 images to find the best 

time period and optimal spectral bands and indices for gaining best results. For example, 

Mirończuk and Hościło (2017), Ma et al. (2019), Wang et al. (2018) and Wittke et al. (2019) 

detected the Sentinel-2 bands B5 (RedEdge 1), B7 (RedEdge 3), B8 (NIR), B11 (SWIR 1), as 

well as the NDVI to best suited for forest classification in late summer imagery in the temporal 
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and boreal biomes by applying modern machine learning algorithms (i.e. RF and SVM). 

Adelabu et al. (2014) achieved an increase of the overall accuracy of about 20% by integrating 

the red-edge band of RapidEye images. Immitzer et al. (2019) favour Sentinel-2 band B4 (Red) 

for the identification of conifers in Central European forests, B11 (SWIR 1) for broad-leafed 

forests, as well as a mix of B4, B5, B11, NDVI and NBR for mixed forests. van Aardt and 

Wynne (2007) achieved the best results for spectrally separating various pine species by using 

Red, NIR, SWIR, but also the Green spectral band. To the best of the author’s knowledge, only 

one investigation looked into the detailed discrimination of taiga species in the Thunkel area. 

In her study Zueghart (2017) RapidEye imagery was the reference for distinguishing between 

dark and light taiga. The overall accuracy was 90% by exploiting all spectral bands. The author 

found the bands of Red, RE, and NIR to be the most suited for her task. Interestingly, the 

introduction of the RE band did not yield better results in any of the band combinations. Her 

separability assessment also confirms my observation, that a trend of increasing separability 

can be achieved by including of more bands. In another study on Mongolian forests Klinge et 

al. (2018) employed remote sensing technology to assess the climate effects on vegetation 

vitality in Mongolia. However, the Landsat imagery was not used for species discrimination, 

but rather for the derivation of NDVI and the delineation of forest areas.     

The consideration of phenology for species discrimination is a particularly daunting task 

considering the fact that the vegetation period in Mongolia is very short. Thus, the full 

exploitation of the phenology aspect in the classification process requires the selection of the 

appropriate imagery in a very specific and narrow time window. This observation is 

underpinned by the NDVI timeline I carried out in this study, showing that the characteristics 

of the vegetation can change in a very short period of time. Snowfall can happen very easily 

at the beginning of September during the start of the senescence period, when larch and birch 

change colours due to the decreasing chlorophyll content in the foliage. In turn, foliation can 

start very quickly after the thawing period. In general, since phenology usually varies with 

species, the specific knowledge on phenology (e.g., leafing period, senescence) can be a 

sharp tool to determine species discrimination. This species specific fingerprint is a valuable 

aid in species discrimination and quantification (Lisein et al., 2015). The consideration of 

seasonal effects such as senescence (leaf discolouration; leaf-on, leaf-off) ,flowering, and 

knowledge on site quality also contribute largely to the identification accuracies (Getzin et al., 

2012). In their meta-study Ma et al. (2019) found indications, that a combination different 

sensors (e.g. optical and radar), as well as the exploitation of multi-temporal imagery sems to 

yield best results (see also Elatawneh et al., 2013). The improvement in classification accuracy 

(here: 5-10%) by utilising Sentinel-2 images of various time series instead of focusing on a 

single image is also confirmed by authors like Grabska et al. (2019), Persson et al. (2018), 

Klosterman and Richardson (2017), Wessel et al. (2018) and Denisova et al. (2019). 
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Pasquarella et al. (2018) used imagery from the Landsat family to map forest type 

characteristics in New England. They conclude that ‘…the spectral-temporal features 

consistently and significantly (…) outperformed all features derived from individual images and 

multidate combinations’. In contrast, Wittke et al. (2019) found only a miniscule improvement 

of the prediction accuracy, when adding multidate imagery. All the findings above, however, 

do not reflect the specific conditions prevailing in Mongolia. At least some indication is found 

in Klinge et al. (2020), who constitute, that the phenology of the deciduous larch trees and the 

ground vegetation created another problem for  the  NDVI  signal.  According to them ‘Various  

topo-climatic  conditions,  e.g.,  cold  air  masses  cumulating  in  topographic  depressions 

during spring, cool conditions  at  higher elevations, droughts in late summer, produce  

temporally  and  spatially  inhomogeneous  patterns  of  tree  vitality  and  thus  NDVI’. Despite 

the fact, that phenology does not arise concurrently and uniformly, Zueghart (2017: 85) was 

able to obtain a fairly good spectral separation between dark and light taiga thanks to the 

acquisition period of the RapidEye satellite image in September. The outcomes of my study, 

however, suggest that the discrimination of dark and light can be achieved with an accuracy 

of almost 90% by considering summer imagery. Nevertheless, a more detailed analysis on the 

species distribution based on exhaustive ground truthing (especially in the dark taiga) including 

temporal effects would be very conducive to the exploration of the potentials of remote sensing 

technology related to vegetation cover analysis in Mongolia.  

 

In general, this thesis confirms the observation made by various authors, that evergreen 

coniferous tree species show different spectral properties in comparison with deciduous broad-

leafed trees. The machine learning classifiers applied (i.e., RF and SVM) performed very well. 

An overall very satisfactory discrimination of the light and dark taiga can be reported. However, 

due to the spectral overlap of specific tree classes, a sufficiently distinct separability between 

the two deciduous tree species larch and birch could not be obtained. Despite the fact that 

topographic correction was carried out on the Sentinel-2 imagery (see also Dong et al., 2020) 

an additional effect of shading was detected. In the imagery the shaded areas were often 

misclassified as dark taiga. This observation is very much in line with the findings by Zueghart 

(2017: 83–84), who surveyed the same test area. For instance, Dong et al. (2020) found an 

improvement of 13% on their Landsat tree classification, when just using shadowless training 

areas. The shadowing effect can even reach such proportions that a classification turns out 

not to be meaningful (Teusan, 2018: 41,112). In the GIZ management plan (Gaschick, 2013) 

and in the study by Wecking (2017) a distinct transition between dark and light taiga is reported 

for the zone at medium elevations. Even though the classification outcomes of my investigation 

potentially and allegedly confirm this phenomenon, neither the assessment of the NDVI, nor 
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my personal observations made on-site carry sufficient evidence to support this assertion. As 

mentioned before the outcomes of my classification trials suggest that the dark taiga area is 

over-represented. What I observed in the field, however, was the occurrence of Scots pine in 

the zone designated by the two authors previously quoted. According to the commonly agreed 

definition, however, Pinus sylvatica is not considered a member of the dark taiga realm. When 

talking about classification accuracy the structure of the forest and the forest undergrowth also 

deserve attention, since these factors can greatly have an impact on the outcomes and the 

interpretation thereof (Knipling, 1970, Ustin and Gamon, 2010). In the dark taiga areas in 

particular, very heterogenous vertical and horizontal structures were observed in the field, 

lending the representation in the imagery an impression of clustering with gaps interspersed. 

Measurements of the canopy cover, the LAI and observations by Gradel and Mühlenberg 

(2011) support this perception. The fact that many trees were encountered by me in an at least 

partially defoliated condition, in combination with the observed dense forest undergrowth, give 

rise to the suspicion, that the spectral response of the trees are subject to an interference with 

the spectral signature by other forest flora. Klinge et al. (2020) also found the forest floor 

vegetation to be confounding their investigation on the NDVI in the taigas. A proper on-site 

investigation involving spectroradiometer gauges would most certainly provide useful insights 

on this issue. There are still numerous other factors modifying the spectral response of forested 

areas such as soil, crown closure, or tree age. However, as Ustin and Gamon (2010) happened 

to be urging, that physical remote sensing needs to be combined with ecological theory and 

seen in a multidisciplinary context to achieve a truly successful classification. Although this 

may be an understandable and reasonable argument, this undertaking would most certainly 

be beyond the scope of this thesis.    
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8.9. Extraction of timber volume 

In the last few decades various new methods have been devised for mapping and prediction 

of forest inventory attributes such as new regression techniques, artificial neural networks, and 

random forest decision tree algorithm (Brosofske et al., 2014). Amongst the more recent 

developments is the so-called k-NN (nearest neighbour) approach, in which the response 

variable (e.g., timber volume, basal area) is predicted in an unsampled pixel by computing a 

distance metric (e.g., Euclidian) between the target and reference samples, and subsequently 

assigning the value of the closest neighbour to the target unit. This technique is described in 

more detail in chapter 4.6.2. and its methodological implementation in chapter 7.3.5.9. The k-

NN method was employed in this study to predict timber volume and basal area for the area 

of compartment 435, but it can of course be extended to much larger areas as described for 

national inventories in Scandinavia, and to other parameters such as mean DBH and tree 

density (see also Kangas and Maltamo, 2009: 179–224, McRoberts et al., 2010, Tomppo, 

1991, Tomppo et al., 2010). The k-NN was selected for this investigation due to its fairly simple 

applicability, the integration of satellite and other ancillary data (e.g., field data), and the 

efficacy in the prediction of inventory attributes without going through the arduous procedure 

of exhaustive ground truthing. 

The Terrset environment offers the option of carrying out the k-NN regression technique with 

considerable ease – the workflow is portrayed in chapter 7.3.5.9. The satellite data input 

comprised the bands of  Blue, Green, Red, NIR, SWIR, with the calculated NDVI for 

reproducing the most effective range of spectral signatures for vegetation discrimination. Other 

settings were ‘Euclidian distance’ for distance metrics and ‘Minimum’ for extraction type (see 

also k-NN regression manual by Chirici, 2012, for details)  Unfortunately, no suitable climate 

data was available for the Thunkel area for further potential improvement of the regression 

model. In the table below the results of the calculations are shown for an estimated optimal k 

of 5 (see also graphs below). The timber volumes were extracted from the field data 

computation for all 15 test plots. For validation purposes five plots were selected randomly to 

calculate the RMSE. 

 

Table 8-19: Comparison between actual and predicted timber volume using the k-NN regression. 

Plot ID / 
point ID  

Timber volume (m3) 
from field data 

Predicted timber 
volume (m3) from k-NN 

RMSE volume (m3) 

0 / 1 66.4 
  

1 / 2 84.7 
  

2 / 7 86.0 
  

3 / 5 58.1 83.8 
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Plot ID / 
point ID  

Timber volume (m3) 
from field data 

Predicted timber 
volume (m3) from k-NN 

RMSE volume (m3) 

4 / 6 78.7 
  

5 / 15 223.5 
  

8 / 14 331.8 200.5 
 

11 / 12 157.3 
  

12 / 13 153.0 162.3 
 

22 / 10 80.2 
  

24 / 11 239.4 151.2 
 

31 / 8 94.4 
  

34 / 9 93.6 
  

60 / 3 188.1 137.0 
 

64 / 4 165.2 
  

  
  

75.351 

 

The calculated RMSE value of 75.351 m3 per hectare reflects a considerable error for the 

predicted timber volume. The dimension of this RMSE exceeds the total timber volume 

determined for plots like no.1 and no.4. As such, the predicted volumes have to be considered 

with a critical view and cannot be applied without a detailed ex-post evaluation. In the 

presented case three out of five samples show an underestimate of the predicted volume. 

However, with only five plots as validation points it is fairly speculative trying to infer a clear 

trend regarding over-, or underestimation.   

A graphical representation  of the resulting timber volume predictions is shown in Figure 8.71. 

In this case the timber volume from all 15 test plots was used for predicting the volume for 

compartment 435. In congruence with the input data resolution the output raster features a 

resolution of 30 metres for prediction. For contrast, the resulting timber volume raster is 

portrayed in the figure beneath with only 10 plots used for prediction.   

 

Rest of page intentionally left blank 



 

351 
 

 

Figure 8.71: k-NN regression prediction for timber volume for compartment 435. The volume calculations from 
all 15 test plots were used as input.  

 

With the consideration of all test plots the predicted timber volumes seemingly represent the 

stock volume for compartment 435 quite realistically. The plots reflecting the highest volumes 

(i.e., plot no. 5, 8, 24, and 60 (in the graph superimposed by the figure 64)) are characterised 

either by high tree numbers (which translates into high BA), or by a  large mean DBH. In the 

graph there appears to be an aggregation of high volumes in the southeast corner of the 

compartment and south of plot no.3 (not measured). This observation is supported by the fact, 

that based on own inspections and surveys, the dark taiga areas are rich in tree numbers and 

old tree individuals with a high DBH. In comparison, the plots in the lower part of compartment 

435 (e.g., no. 0, 1, 2, 3, 4) represent lower volumes due to exploitation and removal of the larch 

featuring higher tree volumes than birch.  In conclusion, the predicted volumes show a 

reasonable outcome for the entire compartment. With having used only 10 test plot mean 

volumes as regression computation input, the graph below depicts a different picture.       



 

352 
 

 

Figure 8.72: k-NN regression prediction for timber volume for compartment 435. The volume calculations from 
only 10 test plots were used as input – the data of 5 plots were used for validation of the 
prediction.  

 

Although the trend of featuring higher timber volumes in the dark taiga areas still prevails, in 

general the variations within the compartment are less pronounced causing a blurring effect 

with volume hot spots becoming rather indistinct. For both graphical representations the same 

colour code was created to reflect the timber volume values for a specific class bracket. On 

closer inspection, the figure reflecting the 10-plot sample variant appears to mirror a lower 

mean timber volume for most of the areas within and even outside the confines of compartment 

435. This phenomenon suggests, that not only the quality and the number of plots used for 

volume prediction play a decisive role for the outcomes, but also their spatial distribution and 

the range of their data. Another important determinant is the definition of the correct k value 

for imputation (Chirici et al., 2008). Fortunately, the regression procedure in Terrset allows for 

a computation of the optimal k value with a graphical representation of (Pearson’s) R and 

RMSE calculated corresponding to certain k values. The graph below shows an optimal k of 5 

for both variants (i.e., 15 and 10-plot version). For the higher number of  the k-threshold (i.e., 

15) there seems to be a trade-off between the calculated R and RMSE values – apparently a 

low RMSE value is favoured by the underlying algorithm when calculating optimal k. For the 

threshold value of 10 the lowest RMSE matches very nicely with the peak of the R value. For 
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explanation, the maximum k-threshold value to be entered is identical with the maximum 

number of k neighbours to be considered. The subsequent regression analysis is carried out 

with the chosen (optimal) k value. Since the k-NN regression technique was applied for both, 

tree volume, and basal area prediction, a more exhaustive discussion is being dealt with in the 

subsequent chapter 8.10. 

 

8.10. Extraction of balsa area (BA) 

As stretched before, k-NN regression deserved another attempt by extending the prediction of 

timber volume to basal area (BA). Basal area is another important parameter for describing 

and analysing forest structure. There is no difference in the determination process from above 

method, other than that, that instead of timber volume the basal area was used as dependent 

variable – the predictors were kept identical. The optimal k-values were calculated as being 4 

for the 15-plot version and 2 for the 10-plot variant.  

In the table below the predicted basal area values are set against the field values as ‘real’ data. 

The RMSE of 6.467 m2 shows an error value, that cannot be ignored as being miniscule. 

Although there is a clear trend of an over-estimate in comparison with the results for timber 

volume prediction, the number of five plots for validating the outcomes is too small for making 

substantiated inferences. In general, the predictions for BA seem closer to the true values as 

compared to the outcomes for timber volume. Nevertheless, the variation in prediction versus 

real data for plot no.12 is striking with an over-estimate of about 100%.   

  

Figure 8.73: Calculation of optimal k value for variant 1 with all 15 test plots considered (left) and variant 2 
with only 10 test plots for timber volume prediction. The calculated R (top) and RMSE (bottom) 
for each k are presented.  
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Table 8-20: Comparison between actual and predicted basal area (BA) using the k-NN regression. 

Plot ID /  
point ID 

Basal area (m2) from 
field data 

Predicted basal area 
(m2) from k-NN 

RMSE basal area 
(BA) in m2 

0 / 1 13.5 
  

1 / 2 13.3 
  

2 / 7 15.6 
  

3 / 5 15.5 19.72 
 

4 / 6 17.5 
  

5 / 15 29.4 
  

8 / 14 28.6 29.3 
 

11 / 12 28.8 
  

12 / 13 15.2 28.9 
 

22 / 10 21.0 
  

24 / 11 26.8 27.74 
 

31 / 8 20.5 
  

34 / 9 19.0 
  

60 / 3 26.3 24.76 
 

64 / 4 26.5 
  

  
  

6.467 

 

 

Let us now see, whether the graphical representation helps us in gaining more insights. In the 

following figure (8.74) the picture is very similar to the one generated for the prediction of the 

timber volume with the dark taiga plots (no. 5, 8, 11) taking the lead. The more sparsely 

populated areas are displayed in brighter colours, indicating a relatively low basal area – the 

dark taiga areas are rendered much darker. Since basal area and timber volume are 

correlated, the similarity between the findings comes as no surprise. Another area with 

relatively high BA values stands out south of plot no.3 – unfortunately, no ground truth data 

are available for this sector. There is, however, a slight chance of getting a few useful clues 

from the tree species classification, which allows to make a few referrals. As opposed to the 

graphs related to timber volume prediction the ones for the basal area computation look quite 

congruous with only minor changes regarding an overall impression. However, the dark taiga 

areas ( see also pots no.5 and 12 (concealed, but denoted as 11 because of superimposition) 

seem somewhat over-estimated in the graph representing the 10-plot variant (Figure 8.75), 

which also shows in the figures provided in the table.       
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Figure 8.74:  k-NN regression prediction for basal area (BA) for compartment 435. The basal area  
calculations from all 15 test plots were used as input. 

 

Figure 8.75: k-NN regression prediction for basal area (BA) for compartment 435. The basal area calculations 
from only 10 test plots were used as input – the data of 5 plots were used for validation of the 
prediction.  
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The shape of the graphs for R and RMSE for finding the optimal k value appear to be more 

logical than the ones related to the prediction of timber volume. The general trend of low RMSE 

values associated with a high coefficient of correlation seems much more compelling than in 

the representation in chapter 8.9. 

 

The optimal k values were computed to be 4  and 2 respictively, but the relatively low R value 

for the 15 plot variant is quite unsatisfactory. It is quite unfortunate, though, that no information 

of assistance could be derived from the literature to explain the oddities in curve performance 

for the timber volume imputation and the low correlation coefficient concerning basal area. 

With such great number of independent variables a tracking of the relevant issues seems 

disproportionate. 

As far as the discussion on the obained results for the k-NN regression is concerned, only a 

small proportion of references can be considered conducive. To the author’s knowledge, there 

is only one publication dealing with this specific regression method linked to Mongolian taiga 

forest attributes. In his work Baasan (2010: 73–75) looked into the prediction of basal area and 

stem number distribution. He considered a much bigger area (10,375 ha in the southwest of 

the Khentii mountains) with systematic cluster sampling (in L shape) conducted for gathering 

field data. Landsat 7 imagery acquired at various dates the ground truthing data and provided 

the input for the k-NN regression. For the basal area distribution Baasan found the estimate 

distortions to be lower for single image bands. The accuracy for the various scenarios (i.e. 

band and k-value combinations) ranged between 26.94 and 76.94%. In contrast to the findings 

related to basal area the integration of all spectral bands yielded the best results related to the 

prediction ofstem number. The claculated RMSE for stem number distribution was 28.79%. 

Figure 8.76: Calculation of optimal k value for variant 1 with all 15 test plots considered (left) and variant 2 
with only 10 test plots for basal area (BA) prediction. The calculated R (top) and RMSE 
(bottom) for each k are presented.  
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The author concludes by stating, that finding the optimal k value is pivotal for gaining useful 

results. He further remarks, that the k-NN method is a useful tool for conducting forest inventory 

in easing the burden of arduous field work, but also stresses, that there is still room for 

improving the performance of the k-NN regression.  

When looking at the body of literature on k-NN regression, the technique has proven to be very 

successful especially when dealing with huge forested areas to be inventoried. Thus, the 

Nordic countries, such as Finland and Norway, have favoured k-NN to support their National 

forest Inventories (NFIs) for many years (Kangas et al., 2018, McRoberts et al., 2010, Tomppo, 

1991, Tomppo et al., 2009, Tomppo et al., 2010). Various applications of k-NN can be 

attributed to the successful classification (Overall Accuracy (OA) of 91%) of boreal forests in 

Finland (Haapanen et al., 2004), the prediction of biomass outperforming RF and SVM (López-

Serrano et al., 2016), the imputation of tree-level stem volume and basal area from LIDAR 

resulting in small RMSE of  5m2/ha and 16m3/ha (Falkowski et al., 2010), or the determination 

of forest structure attributes (basal area, tree density) from LiDAR data (Hudak et al., 2008). 

Notwithstanding, there are examples of second-rate performance of k-NN, like the ones 

reported by Gjertsen (2007), who found an Overall Accuracy of only 63% for the classification 

of Norwegian forests derived from Landsat imagery.  

In a number of investigations useful suggestions are to be found on how to improve the quality 

of the k-NN outcomes and how to avoid glitches: Jung et al. (2013), and Eskelson et al. (2009) 

for instance point out very clearly, that image registration (positional) errors need to be 

shunned. Gjertsen (2007) suggests the use of image band ratios (indices) as additional input 

for ancillary data, whereas Franco-Lopez et al. (2001) ask for more research on multi-sensor 

k-NN approaches. Koukal et al. (2007) dedicated an entire study on the possible ramifications 

of radiometric calibration on the k-NN predictions of forest attributes to ascertain, that image 

calibration is vital for achieving good k-NN results. McRoberts (2008) found the selection of 

the optimal feature space crucial for his study on stand density and basal area derived from 

Landsat imagery, and suggests in another investigation to either use a high amount of 

sampling plots, or stratify the field data prior to further analysis (McRoberts et al., 2002).  Good 

results on k-NN derived basal area of a forest in the Kyiv region (Ukraine) were yielded in a 

study conducted by Myroniuk et al. (2019). The authors conclude, that the pixel size of the 

satellite imagery proved to be less important than a high temporal resolution to capture the 

variation in spectral response. An important observation was made by Maltamo et al. (2011), 

which is rarely object of investigation in conjunction with nearest neighbour strategies. The 

critical discussion related to the quality and number of training plots is usually taken for granted, 

but a very limited body of literature has been looking in detail into the matter. The team found  



 

358 
 

a decreasing accuracy of the results at specific levels, especially when dealing with tree height 

estimations. The authors strongly advise to select at least 50 plots for inventory purposes, with 

lower numbers being a more hypothetical calculation. 

In the light of the remarks and findings by other authors the outcomes of my own study can be 

rated as being good for the basal area prediction, but unsatisfactory with regard to the timber 

volume estimation. Despite the fact, that the most relevant satellite bands were used with an 

additional NDVI as ancillary data, there seems to be room for improvement. In an extended 

subsequent study, for instance, the employment of satellite scenes with a higher temporal 

resolution and a higher variety of bands used as independent input variables would be 

sensible. In addition, an increase in number of sampling plots and a consideration of more 

ancillary data concerning climate and topography would most certainly be conducive to the 

success story of k-NN regression for forest attribute prediction.    

 

8.11. Shannon Index 

An impressive body of literature exists on the various facets reflecting the richness in species 

in Mongolia (e.g. Department of Biology, School of Arts and Sciences, National University of 

Mongolia, 2017, Gunin et al., 1999, Gradel, 2010a, Mühlenberg et al., 2004, and Dulamsuren 

et al., 2005c). Despite the relatively low number of tree species found in Mongolian forests,  

the taiga forests are home to a very diverse spectrum of flora and fauna (Dulamsuren et al., 

2005a, Mühlenberg, 2012). A great number of various indices have been devised to reflect the 

quality and quantity of such diversity. One of them is the distance-independent measure to 

characterise forest structure at stand level, the so-called Shannon Index (Gadow et al., 2012: 

55–56, Gradel, 2010b: 12–13, Magurran, 1988: 34–37). The Shannon Index is straightforward 

in the calculation process (see also chapter 3.1.4. for formula), and, despite being a secondary 

theatre of this study, it sufficiently reflects the management practices and the status of the 

ecosystem itself. Below graph demonstrates the results as calculated from the field data.  
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Figure 8.77: Calculated Shannon index for all test plots (0 to 64). The test plots of the dark taiga (5,8,11,12) 
show the highest values and thus the highest species diversity. Based on a good birch – larch 
ratio light taiga plot no.1 also ranks high.    

 

The graphical representation illustrates quite strikingly the wide range of diversity found in 

compartment 435. The dark taiga plots 5, 8, 11, and 12 stand out with an index beyond 1.0, 

which is accounted for by the fact, that at least three different tree species are present. In 

addition, the relative proportion of the specific species greatly affects the magnitude of the 

index value. An excellent example makes the structural situation and composition at plot no.1, 

which is characterised by featuring only two tree species (birch and larch), but reflecting a 

50/50 ratio of the species. A contrasting illustration is plot no. 0 with an index value of close to 

zero – the tree species ratio here is 1/99 (larch/birch). This specific plot is located in the lower 

part of compartment 435 showing indications of severe exploitation, with the larch being almost 

gone. The same is true for other plots with a low number of larch individuals. However, it also 

has to be taken into account, that the impact of fire incidents on the tree species distribution 

and composition is not negligible. According to the NFI report (Altrell and Erdenejav, 2016: 63) 

the Khentii mountain area ranks as number one in the Shannon Index list in contrast to the 

other forest inventory regions assessed. With an average index value of 1.51, however, it is 

hard to believe that the dominating feature of the light taiga presents itself in such a diverse 

manner. Unfortunately, only very limited research has been conducted in Mongolian forests 

with regard to the Shannon Index to be suited for direct comparison. Luckily, Gradel (2010b: 

22,33) presents an index value of 0.96 for a test site at Khonin Nuga in the Selenge Aimag. 

The test plot reflects a section of a dark taiga area with a ratio of 51.85% for Abies sibirica, 

1.48% for Larix sibirica, 7.41% for Picea obovata, and 39.2% for Pinus sibirica. In an 
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exhaustive study on the diversity of taiga forests in the same region Mühlenberg et al. (2012a) 

acknowledges this specific area as being particularly rich in species with a high nature 

conservation value. In his investigation Byambasuren (2011: 81–82) also supports the 

observation of dark taiga forests being characterised by species richness and higher 

complexity compared to the light taigas. Given the fact, that dark taiga forests support more 

tree species than the light taiga, the index figure values as provided in the NFI report appear 

overly optimistic.  

Tree species can be detected in virtually all very high-resolution imagery, particularly in UAV 

imagery (e.g. Getzin et al., 2012, Saarinen et al., 2018). Subsequently, the Shannon index can 

be calculated with considerable ease. The tree species were determined in the UAV images 

used in this study by visual inspection. Unfortunately, some of the generated orthophotos from 

the 3D point cloud turned out to be of minor quality, so the process of getting tree species 

related to a specific area could not be finalised. However, if tree species plus correct location 

are identified, then it is feasible to calculate various other forest structural diversity factors such 

as the one proposed by Gadow et al. (2012: 56–58), the so-called ‘tree species spatial mingling 

factor’ based on the neighbourhood relationship.     
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8.12. Results matrix 

Table 8-21: Results matrix with grading of results based on findings and statistical analysis.  

Methods Forest 
attributes 

           

 Tree height 
single 

Stand 
height 

Tree 
species 

Tree 
count 

Basal 
area 

Timber 
volume 

Crown 
diameter 

LAI NDVI dNBR Slope Aspect 

DEM GIZ NA NA NA NA NA NA NA NA NA NA ++ ++ 
UAV visual 
inspection 

NA NA ++ ++ NA NA ++ NA NA NA NA NA 

UAV 
automatic 
extraction 

++ + - o NA NA - NA NA NA NA NA 

S-2 pixel-
based 

NA NA ++ NA NA NA NA - + ++ NA NA 

k-NN S-2 NA NA NA NA + o NA NA NA NA NA NA 
S-2 pixel-

based SVM 
NA NA +++ NA NA NA NA NA NA NA NA NA 

S-2 pixel-
based RF 

NA NA ++ NA NA NA NA NA NA NA NA NA 

S-2 OBIA  NA NA - NA NA NA NA NA NA NA NA NA 
S-2 OBIA 

SVM 
NA NA - NA NA NA NA NA NA NA NA NA 

S-2 OBIA 
RF 

NA NA + NA NA NA NA NA NA NA NA NA 

Pléiades 
pixel-based 

NA NA + - - NA NA NA NA NA NA NA NA 

Pléiades 
pixel-based 

SVM 

NA NA + NA NA NA NA NA NA NA NA NA 

Pléiades 
pixel-based 

RF 

NA NA + NA NA NA NA NA NA NA NA NA 

Pléiades 
OBIA 

NA NA +/- NA NA NA NA NA NA NA NA NA 

Pléiades 
OBIA SVM 

NA NA - NA NA NA NA NA NA NA NA NA 

Pléiades 
OBIA RF 

NA NA + NA NA NA NA NA NA NA NA NA 

RapidEye 
pixel-based 

NA NA o NA NA NA NA NA NA NA NA NA 

RapidEye 
pixel-based 

SVM 

NA NA o NA NA NA NA NA NA NA NA NA 

RapidEye 
pixel-based 

RF 

NA NA o NA NA NA NA NA NA NA NA NA 

WV-2 pixel-
based 

NA NA NA - NA NA NA NA ++ NA NA NA 

WV-2 pixel-
based SVM 

NA NA NA NA NA NA NA NA NA NA NA NA 

WV-2 pixel-
based RF 

NA NA NA NA NA NA NA NA NA NA NA NA 

WV-2 OBIA NA NA ++ NA NA NA NA NA NA NA NA NA 
WV-2 OBIA 

SVM  
NA NA ++ NA NA NA NA NA NA NA NA NA 

WV-2 OBIA 
RF 

NA NA ++ NA NA NA NA NA NA NA NA NA 

 

Grading (based on findings): ++ = excellent    + = good    o = mediocre    - = poor    - - = very poor 
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DEM = Digital Elevation Model 

UAV = Unmanned Aerial Vehicle 

WV-2 = WorldView-2 (winter) image 

S-2 = Sentinel-2 image 

OBIA = Object Based Image Analysis 

SVM = Support Vector Machine 

RF = Random Forest 

dNBR = difference Normalised Burn Ratio index 

 

Above-mentioned matrix condenses all outcomes of the presented investigation. The grading 

of the results is based on the findings, however, with no calculated index involved. The matrix 

is meant to provide a decision tool for practitioners with limited resources at their disposal.   
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9.  Conclusions and outlook 

For many decades, Mongolia’s forests have been suffering from degradation due to human 

and natural causes such as overexploitation and wildfire occurrences. In addition, forest 

management practices have not proven to be sustainable. All decisions related to forest 

resources operations hinge on the quality of the information exhausted. Although a National 

Forest Inventory was conducted in 2016, hardly any reliable and scientifically substantiated 

information exists related to a regional or even local level. This lack of detailed information 

warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ  In 

this context, we hypothesised, that (i) tree species and composition can be identified based on 

the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with 

accuracies commensurate with field survey measurements, and (iii) high-resolution satellite 

imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of 

timber volume and basal area based on the spectral properties.  

 

Although exhaustive field work was planned to be carried out for gathering reference data, this 

endeavour was constrained due to wildfire events. A drone (UAV) was deployed for capturing 

aerial imagery, and an ample set of satellite imagery (i.e., Sentinel-2, WorldView-2, RapidEye, 

Pléiades, Landsat 8) was obtained. Field data were subsequently subjected to analysis to be 

compared with the findings of the extraction of forest attributes from the imagery. 

 

The analysis of the field data revealed huge discrepancies between the data gathered for this 

study and the GIZ management plan. This can in part be attributed to the fact, that only small 

plots were surveyed by the GIZ by applying the 6th-tree method. This approach has proven to 

be very useful in situations where no inventory data exist. The resulting inaccuracies are even 

amplified if the tree measurements are not carried out properly. In the literature, the training 

level of the field staff has been mentioned to make a large difference in the quality of the data 

to be processed. Insinuations found in the National Forest Inventory report suggest that there 

is still a lot of room for improvement regarding expertise and training of the surveyors. In 

addition, calculation errors bear the potential to amplify the inaccuracies. In the literature it has 

also been mentioned that the Mongolian growth and yield tables need to be reconsidered, 

implying that this circumstance also contributes to the potential error sources. Unfortunately, 

only a very limited number of accounts on field surveys in Mongolia is available. The National 

Forest Inventory report is one of the few credible sources. In addition, the investigations by 

Gradel (2017) and Mühlenberg (2012) are useful references. The lack of extensive scientific 
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research on the taigas related to forest attributes is profound and warrants further efforts in the 

future. 

 

One of the most exciting and challenging tasks was to extract tree height from the UAV canopy 

height model (CHM). The outcomes give rise to positive expectations, since at least the 

manually derived height values have proven to be very close to the reference data. However, 

the appropriate settings in the photogrammetry software and the proper planning of image 

overlap (i.e. > 90%) and flying altitude play an important role in the accurate creation of the 

height model. Image quality (contrast, sharpness) is another determinant in this respect. Even 

under optimal conditions model blunders and deficiencies can occur – authors having 

scrutinised all available photogrammetry software packages found it quite deplorable that tree 

canopies are not represented well in some cases. According to the Metashape software 

programmer Semyonov (2011), the various algorithms struggle with the complexity of tree 

surfaces. Apparently, there is still scope for further improvement. Slowly, but surely, 

manufacturers of consumer-grade UAVs are beginning to look into the furnishing of better 

camera specifications such as increased image sensor sizes and the provision of changeable 

lenses with different focal lengths. All these developments will most certainly contribute to the 

quality of photogrammetric flying missions. Multi-sensor platforms and multi-angle camera 

systems have been tested successfully and will hopefully become fully operational and 

available in the near future to help enhance the applicability of UAVs in other fields.  

  

Once the canopy height models are exported as orthophotos and/or elevation models, tree 

species, tree positions, and tree crown diameters can be determined. In general, the manual 

extraction of all three attributes works very well, provided that the quality of the models is 

satisfactory and the image interpreter has been trained well. For the automatic extraction of 

tree position, crown diameter, and species classification, image segmentation procedures 

have become kind of gold-standard. However, co-dominant trees, tree clusters, and individual 

trees featuring large crowns are either not represented well, or are over-represented as 

multiple trees. As such, the segmentation process has to be executed with great care. Proper 

tree species identification also depends on the classifier used, but primarily on the spectral 

separability of the species. Multispectral sensors provide a good remedy in this context. With 

a correct location and classification of the individual trees, the calculation of the Shannon index 

and other structural indicators is quite straightforward. As to be expected, the Shannon index 

reflected higher values for the dark, than for the light taiga, thus indicating a higher diversity.  

 

The automatic determination of tree numbers constitutes another big challenge for high-

resolution imagery. Segmentation procedures often result in over-, or under-segmentation, 
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yielding inaccurate tree numbers. In turn, the complex nature of tree crowns also causes huge 

problems during template matching activities. For instance, palm trees are easy to extract due 

to their distinct star-like shape of the crowns and their sufficient spacing within the plantations. 

With tree and forest structures as complex as the dark taiga, the outcomes of the automatic 

process were very unsatisfactory, no matter what imagery was used. In contrast, the manual 

determination of tree numbers by visual inspection worked relatively well, however, at the 

expense of interpretation time. It also needs to be noted that due to the viewing angle of the 

air-, or spacebourne platforms and the associated nadir view, usually only trees representing 

the upper canopy layer are captured.   

 

The DEM provided by the GIZ showed excellent characteristics with high accuracies in position 

and elevation (1-2m). The analysis of the model confirmed the findings by other authors like 

Dulamsuren (2005, 2008, 2019) that taiga forests primarily populate the northern slopes of the 

landscape. If combined with the high gradient of the slopes, this can result in large shadows 

within the forest, impeding the correct classification. A low sun angle can also exacerbate this 

situation (see also Teusan, 2017, and Zueghart, 2017). In addition, topography plays an 

important role in the correct representation of the spectral signature of the objects. Luckily, the 

atmospheric correction tool (which was applied in this study) designed for the Sentinel-2 

imagery accounts for this in part by integrating an SRTM elevation model into the 

compensation algorithm.  

 

The analysis of various vegetation indices provided additional insight into the characteristics 

of the taiga and the impacts of natural causes thereof. By generating a timeline of the NDVI, 

the effect of drought and the regeneration of the vegetation after a fire event could be proven. 

It was also quite interesting to see the effects of snowfall and senescence, which were reflected 

in the NDVI. In addition, the assessment of the NDVI in a WorldView-2 winter image provided 

some invaluable information on the location and extent of the dark taiga, due to the non-

deciduous character of the conifers. The calculation of the dNBR showed in detail the burn 

severity of the areas afflicted by wildfires in 2017. However, the selection of the appropriate 

dates for the before-, and after-fire satellite scenes is crucial for the correct delineation of the 

affected areas. If the time lag between the before- and after-images is too long, regrowth of 

vegetation influences the classification and determination of the burn severity. 

 

The determination of the tree species has been one of the most laborious parts of this thesis. 

By drawing on my experience as a trained forester and the utilisation of interpretation key 

portrayed in chapter 7.3.4.1., the correct identification of the tree species was carried out with 

considerable ease, given, that the UAV imagery provided enough detail and contrast. The trial 
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on the computer-aided classification was quite unsuccessful, due to the lack of spectral 

separability of the tree classes in the RGB image. This fact once again supports the idea that 

the human brain can easily outperform the computer algorithms when sophisticated pattern 

recognition abilities are required. Image segmentation was carried out on the very high-

resolution UAV and satellite imagery prior to classification. The selection of the appropriate 

parameters can largely contribute to the success of the subsequent image classification 

process, but a large amount of editing is required to eliminate the errors caused by over-, or 

under-segmentation. In conclusion, the best classification results were obtained by executing 

OBIA on the WorldView-2 image. When applied to the UAV photographs characterized by a 

resolution of 3cm and the coarsely resolved Sentinel-2 imagery OBIA either caused a complete 

failure of the method (UAV) or did not contribute to the improvement of the classification at all 

(S-2). The selection of the most suitable classifier also affects the outcomes. Interestingly, the 

Random Forest classifier worked best for the OBIA approach, whereas the Support Vector 

Machine classifier excelled in the pixel-based version. Contradicting performances of both 

classifiers are also reported in the literature – apparently, there is no overall winner in the 

classifier contest. An important observation was that the exploitation of all spectral bands used 

for the classification process resulted in the best assignment to the tree species. However, 

with a case-specific selection of spectral bands (e.g., NIR, SWIR) and vegetation indices (e.g., 

NDVI, NBR) the amount of data to be used can be reduced considerably without sacrificing 

accuracy. The so-called Principal Component Analysis (PCA) can greatly assist in finding the 

optimal combinations. Despite determination of the best possible input parameter setting, a 

few caveats apply. Firstly, one must not be fooled by the accuracies achieved in the confusion 

matrix during accuracy assessment. A comparison of the outcomes with reality can be quite 

disillusioning. Secondly, with one exception, all input variants applied to RF and SVM yielded 

results for the dark taiga delineation that seem somewhat out of proportion. This particularly 

concerns a forest patch in the northwest of compartment 435 – in almost all classifications, 

dark taiga classes were created in places where most certainly no dark taiga species occur on 

the ground. Upon closer inspection of the specific area, a few things appeared to be different 

from the other school forest zones. The analysis of the DEM revealed that the terrain is 

relatively steep and rugged, and more exposed to the east, thus inducing a more irregular hill-

shade pattern. This is also reflected in the rendering of the forest by exhibiting more shadows. 

On closer inspection, the calculated MSI showed water content values similar to the dark taiga 

vegetation, although this area is populated by light taiga species. In conclusion, the effects of 

topography and the occurrence of shadows appears to influence classification, but these 

factors are hard to definitively characterize. An investigation solely dealing with these issues 

is suggested. Another relevant indication is provided by the spectral separability analysis, 

where some overlap between dark and light taiga signatures is apparent. This characteristic is 
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even more pronounced in the birch / larch segregation by displaying very similar spectral 

footprints. As such, seasonal effects like senescence or the beginning of foliation can be 

valuable ancillary information for the classification process. This investigation also showed that 

the selection of training and verification samples in terms of quality and quantity can affect the 

classification. One particularly surprising finding is the fact that dark taiga species (here: Picea 

obovata) also populate riparian areas, even though they only occur in some particular 

ecological niches. Such instances were initially attributed to classification errors, but closer 

inspection confirmed the occurrence of dark taiga species in riparian areas, which was also 

confirmed by other experts. In my opinion, this phenomenon is not pure semantics, but needs 

to be considered in every tree species classification conducted on Mongolian taiga ecotones. 

The natural habitat of the dark taiga would appear to be more complex than suggested in the 

literature.     

 

With respect to the k-nn regression approach for the upscaling of timber volume and basal 

area, a few important observations are noteworthy. The determination of basal area was more 

successful for the test area than the estimation of timber volume. In the literature, many 

success stories are detailed. However, it is also stressed that the number and quality of the 

training and verification areas are pivotal for the applicability of the k-nn method. The outcomes 

of my investigation greatly support this observation. The selection of the raster image used for 

the regression procedure and the fidelity of the reference data also need to be taken into 

account. Since the spectral characteristics of the object represented in a satellite image change 

over time, so do the outcomes of the regression due to the intrinsic properties of the calculation 

procedure. Although the k-nn approach seems to be working well in the Scandinavian 

countries, conditions can be fundamentally different in Mongolia. In particular, with the factors 

outlined above affecting classification accuracy, more research is needed to address those 

issues related to k-nn.   

 

With regards to the hypotheses framed for this study, the outcomes illustrate quite clearly the 

potential of employing UAV imagery for tree height extraction as well as for species and crown 

diameter determination. However, in a few instances, the visual interpretation of the aerial 

photographs was superior to the computer-aided automatic extraction of forest attributes. 

Furthermore, recently developed sophisticated classifying approaches such as Support Vector 

Machines and Random Forest demonstrate excellent suitability for tree species discrimination. 

Object-based classification approaches appear to be tailored for very high-resolution imagery, 

however, at medium scale, pixel-based classifiers outperformed the former in this study. The 

presented results suggest that in almost all instances, the accuracy requirements of forest 
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inventory on a local scale can be met. However, there is no such thing as a un iversal ‘fits all’ 

application method. 

  

Since the Mongolian forests are under increasing pressure to provide the ecosystem services 

demanded for, a sustainable forest management cannot do without sound information on the 

condition of the taigas. Sophisticated remote sensing and GIS technology bear the potential to 

at least support people in the field and decision makers by providing highly accurate data on a 

local scale. As such, extended capacity building and training of the forest experts is warranted. 

The increased deployment of UAVs can also improve the knowledge on forest structure 

attributes and growth and yield matters. One of the most important prerequisites, however, is 

the establishment of permanent sampling plots to be used for monitoring and appraisal 

purposes. This could also help improve and update the existing growth and yield tables. In my 

view, another aspect deserves attention – it concerns the fundamental lack of knowledge in 

respect to the specific growing conditions of forests and the impact of a changing climate in 

Mongolia.  For this reason, it is suggested to initiate investigations in the soil – forest growth 

relationship and the potential expansion of the meteorological network. Remote sensing 

technology can also play an important role in this respect. All things considered, the increasing 

number of remote sensing experts that are being trained at certain institutions in Mongolia to 

expedite the propagation of this expertise provides reason for optimism. Nevertheless, without 

the implementation of specific aid programmes, certain goals will not be able to be achieved.  
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11. Glossary of technical terms and acronyms 

Glossary 

Above-ground 
biomass 

The entirety of living vegetation above the soil, including stems, stumps, foliage, bark and 
seeds 

Below-ground 
biomass  

Biomass contained within live roots  
 

Biomass  Biological material derived from living, or recently living organisms 

Canopy cover  
 

The percentage of the ground covered by a vertical projection of the outermost perimeter 
of the natural spread of the foliage of plants  

Carbon pool  
 

Carbon pools are major components of an ecosystem that can either accumulate or 
release carbon  

Carbon sink A carbon sink is a carbon pool from which more carbon flows in than out: forests can act 
as sink through the process of tree growth and resultant biological carbon sequestration  

Dead organic 
matter  
 

The DOM carbon pool contains all non-living woody biomass and can be divided into wood 
(fallen trees, roots and stumps with diameter over 10cm) and litter (greater than 2mm and 
less than 10cm diameter) components  

Emissions 
accounting 

Emissions accounting assesses the net greenhouse gas emissions to the atmosphere 

Forest 

 

There is no universally valid definition per se. The most popular has been coined by the 
FAO: ‘Land spanning more than 0.5 hectares with trees higher than 5 meters and a 
canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It 
does not include land that is predominantly under agricultural or urban land use.’ (FAO, 
2012) 

Forest inventory ‘Techniques of collecting reliable and satisfactory information on forests[…]’. (Tomppo et 
al., 2010:1 and Loetsch and Haller, 1964:1) 

Greenhouse 
Gases (GHG) 

There are six recognised major greenhouse gases; CO2 (carbon dioxide), CH4 (methane), 
HFCs (hydrofluorocarbons), PFCs (perfluorocarbons), N20 (nitrous oxide) and SF6 
(sulphur hexafluoride). Carbon accounting often refers to the accounting of all major GHGs 
using a carbon dioxide equivalent (CO2e) that standardises these gases based on their 
global warming potential 

Global Warming 
Potential (GWP)  
 

Used to enable the comparison of the six common GHG, it is the cumulative radiative 
forcing effects of a unit mass of gas over a specified time horizon relative to CO2. It is 
expressed in terms of carbon dioxide equivalents (CO2e). Of relevance to forest carbon 
accounting: GWPCO2 = 1, GWPCH4 = 21, GWPN2O = 310  

Inertial 
Measurement 
Unit (IMU) 

The IMU is an electronic device that measures and reports a body's specific force, angular 
rate, and sometimes the orientation of the body, using a combination of accelerometers, 

gyroscopes, and sometimes magnetometers. (Ahmad, 2013) 

Inertial 
Navigation 
System (INS) 

An INS is navigation device that uses a computer, motion sensors (accelerometers) and 
rotation sensors (gyroscopes) to continuously calculate by dead reckoning the position, the 
orientation, and the velocity (direction and speed of movement) of a moving object without 
the need for external references. (Cook, 2020: 114,255) 

Kyoto Protocol 

 

In 1992, the Convention on Climate Change was agreed at the United Nations Conference 
on Environment and Development and, in 1997, the Kyoto Protocol made this convention 
operational. Under the Convention Annex I (developed) countries committed to reduce 
GHG emissions to, on average, 5.2% of 1990 levels before 2012 

Remote sensing ‘Remote sensing is the science and art of obtaining information about an object, area, or 
phenomenon through the analysis of data acquired by a device that is not in contact with 
the object, area, or phenomenon under investigation’. (Lillesand et al., 2015:1) 

Soil organic 
matter  

The SOM carbon pool is divided into mineral and organic soil carbon and contains 
biomass less than 2mm diameter  

Unmanned Aerial 
System (UAS) 

An UAS consists of an Unmanned Aircraft (UA), a Control System (CS) -usually a Ground 
Control System (GCS) - and a communications data link between the UA and the CS. 
(Eisenbeiß, 2009) 

 

Glossary according to: IPPC and UNEP (see also: Watson, 2009) 
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Acronyms 

2D  2 Dimensional  

3D  3 Dimensional  

μ  Population mean 

ABA  Area Based Approach 

AC  Atmospheric Correction  

AGB  Above-Ground Biomass  

ACRS  Asian Conference on Remote Sensing 

ADB  Asian Development Bank 

AGL  Above Ground Level  

ALOS  Advanced Land Observing Satellite 

ALS  Airborne Laser Scanning 

ANOVA Analysis of Variance 

Art.  Article 

AR  Afforestation/Reforestation  

ASCII  American Standard Code for Information Interchange  

a.s.l.  Above sea level  

ASTER  Advanced Spaceborne Thermal Emission and Reflection Radiometer  

AT  Aerial Triangulation  

AVHRR  Advanced Very High Resolution Radiometer 

BATP  Best Available Terrain Pixel  

BGB  Below-Ground Biomass  

BIRD  Bispectral Infra-Red Detection 

BMZ  Bundesministerium für wirtschaftliche Zusammenarbeit (German Federal Ministry for Economic 
Cooperation and Development) 

BOA  Bottom of the atmosphere  

BRDF  Bidirectional Reflectance Distribution Function (MODIS)  

CAA  Civil Aviation Authority  

CART  Classification And Regression Tree 

CASA  Civil Aviation Safety Authority  

CBFM  Community Based Forest Management 

CBI  Composite Burn Index  

CC  Canopy Cover 

CCD  Charge-Coupled Device (Sensor)  

CD  Cumulative Defoliation 

CH4  Methane  

CHM  Canopy Height Model 

Cm  Centimeter 

CMOS  Complementary Metal-Oxide-Semiconductor  

CO2  carbon dioxide  

COP  Conference Of the Parties  

CP  Check Points  

DAI  Digital Aerial Imagery  
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DAP  Digital Aerial Photogrammetry 

DBH  Diameter Breast Height (1,3m above ground) 

DEM  Digital Elevation Model 

DGPF  Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation 

DHM  Digital Height Model 

DI  Disturbance Index  

DLR  Deutsches Zentrum für Luft- und Raumfahrt 

DN   Digital number  

dNBR  differenced Normalized Burn Ratio  

DOM  Dead Organic Matter  

DSLR   Digital Single-Lens Reflex  

DSM  Digital Surface Model 

DTM  Digital Terrain Model 

EOS  Earth Observation System 

EOSDIS NASA’s Earth Observing System Data and Information System  

ESA  European Space Agency 

ESRI  Environmental Systems Research Institute 

ETM  Enhanced Thematic Mapper  

ETM+  Enhanced Thematic Mapper Plus 

EU  European Union  

EVI  Enhanced Vegetation Index 

EZ  Entwicklungszusammenarbeit 

FAA   Federal Aviation Administration  

FAO  Food and Agricultural Organisation 

F(A)PAR  Fraction of Absorbed Photosynthetic Active Radiation 

FCOVER  Fraction of green vegetation cover 

FIR  Far Infra-Red  

FIRMS  Fire Information for Resource Management System  

FRA  Forest Resource Assessment 

FSC  Forest Stewardship Council®  

FWRI  Forestry and Wildlife Research Institute 

FWS  Fixed tree Window Size  

GCP  Ground Control Point 

GCS   Ground Control Station  

GDOP   Geometric Dilution of Precision  

GFMC  Global Fire Monitoring Center 

GHGs  GreenHouse Gases  

GHz   Gigahertz  

GIS  Geographic Information System 

GIZ  Gesellschaft für internationale Zusammenarbeit (German Society for International Cooperation) 

GLAS    Geoscience Laser Altimeter System 

GLCF  Global Land Cover Facility of the University of Maryland, USA 

GLCM   Gray Level Co-occurrence Matrix  
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GLIx   Green Leaf Indices 

GNSS  Global Navigation Satellite Systems  

GOM  Government of Mongolia 

GPS  Global Positioning System 

GSD   Ground Sampling Distance 

GSM   Global System for Mobile communications; originally from Groupe Spécial Mobile 

GTZ  Gesellschaft für technische Zusammenarbeit (now: GIZ) 

GUI  Graphical User Interchange 

IFMP  Integrated Fire Management 

IGBP  International Geosphere Biosphere Program 

ICC  Information and Computer Center, National Remote sensing Center of Mongolia 

IFOV Instantaneous Field of View 

ICAO  International Civil Aviation Organization  

IMU   Inertial Measurement Unit  

INS   Inertial Navigation System includes error compensation and a navigation computer  

IPCC  Intergovernmental Panel on Climate Change 

ISODATA Iterative Self-Organizing Data Analysis Techniques 

ISPRS  International Society for Photogrammetry and Remote Sensing 

ITD  Individual Tree Detection  

JICA  Japan International Cooperation Agency 

KKSPA  Khan Khentii Special Protected Area 

L8  Landsat 8 

LAI   Leaf Area Index  

Laser   Light Amplification by Stimulated Emission of Radiation  

Laser-DSM   Digital Surface Model generated out of Laser data  

LiDAR  Light Detection And Ranging 

LST  Land Surface Temperature 

LTS  Landsat Time Series  

LULC  Land Use and Land Cover 

LULCC  Land Use and Land Cover Change 

LVIS     Laser Vegetation Imaging Sensor 

m   Meter  

mm   Millimeter  

MAP21  Mongolian Action Programme for the 21st Century 

MAS Mongolian Academy of Sciences 

MAV   Micro Aerial Vehicle  

M-class   Micro & Mini UAV systems  

MDG  Millenium Development Goals 

MEMS   MicroElectroMechanical Systems 

MFR Mongolian Federal Republic 

MHz   Megahertz  

MicMac  Multi-Images Correspondances, Méthodes Automatiques de Corrélation  

MIFA  Mongolian Forest Industries Association 
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MIT  Ministry of Industry and Trade 

MLC   Maximum Likelihood Classification  

MMS   Mobile Mapping Systems  

MODIS  Moderate Resolution Imaging Spectroradiometer 

MNE  Ministry of Natural Resources and Environment, Mongolia 

MRAM  Mineral Resources Authority of Mongolia 

MSS  Multi-Spectral Scanner  

MTU  Mongolian Technical University 

NASA  National Aeronautics and Space Administration  

NAMHEM  National Hydrometeorological Service 

NDVI  Normalized Difference Vegetation Index 

NDMI  Normalized Difference Moisture Index  

NDVI  Normalized Difference Vegetation Index  

NDWI  Normalized Difference Water Index 

NFI  National Forest Inventory 

NFP  National Forest Policy 

NGRDI   Normalized Green Red Difference Index 

NGO  Non-Governmental Organisation 

NOAA  National Oceanic and Atmospheric Administration 

NIR   Near-Infrared 

NRAM  Mineral Resources Authority of Mongolia 

NRMSE  Normalized Root Mean Square Error 

NSOM  National Statistical Office of Mongolia 

NTP  Non-Timber Products 

NUM  National University of Mongolia 

NWFP  Non-Wood Forest Product 

OA  Overall Accuracy 

OBIA   Object Based Image Analysis 

OLI  Operational Land Imager  

PA  Producer Accuracy 

PCA Principal Component Analysis 

QB  QuickBird 

r  Pearson Correlation Coefficient 

REDD+  Reducing Emissions from Deforestation and Forest Degradation  

RE  Red Edge 

RE  RapidEye 

RF  Random Forest 

RGB  red, green, blue  

RMSE  Root Mean Square Error 

ROA   Remotely Operated Aircraft  

RPA   Remotely Piloted Aircraft  

RPV  Remotely Piloted Vehicle  

RTK  Real Time Kinematic  
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RTM  Radiative Transfer Model  

S2A  Sentinel-2A  

SAVI  Soil-Adjusted Vegetation Index 

SfM  Structure from Motion  

SIFT   Scale-Invariant Feature Transform  

SINDVI  Seasonally Integrated NDVI 

SMOS  Soil Moisture and Ocean Salinity (Earth observation satellite) 

SNAP   Sentinel Application Platform  

SNR  Signal To Noise Ratio 

SPA  Strictly Protected Area 

SPIE  The international society for optics and photonics 

SPOT  Satellite Pour l’Observation de la Terre  

SRTM  (Earth) Shuttle Space Radar Topography Mission 

SITE  Simulation of Terrestrial Environments 

SWIR  Shortwave Infra-Red  

SVM  Support Vector Machine 

TB  Total Biomass 

TBD   To Be Defined  

TCB  Tasseled Cap Brightness  

TCG  Tasseled Cap Greenness  

TCW  Tasseled Cap Wetness  

TIN   Triangulated Irregular Network  

TIRS  Thermal Infrared Sensor (Landsat) 

TM  Thematic Mapper  

ToA  Top of Atmosphere 

TWI  Topographic Wetness Index 

TZ  Technische Zusammenarbeit (technical cooperation) 

UA  User Accuracy 

UAV   Unmanned Aerial Vehicle  

UAV BT   Block Triangulation of image data acquired from an UAV  

UAV-DSM   Digital Surface Model which was generated out of image data taken from an UAV  

UAS   Unmanned Aircraft System consists of an Unmanned Aircraft (UA), a Control System (CS) a 
Ground Control System (GCS) and a communications data link between the UA and the CS  

UHF   Ultra High Frequency  

UNCED  United Nations Conference on Environment and Development 

UNDP  United Nations Development Programme 

UNEP  United Nations Environmental Programme 

UNFCCC  United Nations Framework Convention on Climate Change  

USDA  United States Department of Agriculture 

USFS  United States Forest Service 

USGS  United States Geological Survey 

UCT  Coordinated Universal Time  

UTM   Universal Transverse Mercator  

VCT  Vegetation Change Tracker 
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VHR Very High Resolution  

VHSR  Very High Spatial Resolution 

VIs  Vegetation Indices  

VNIR  Visible Near Infrared  

VRML   Virtual Reality Modelling Language  

VTOL   Vertical take-off and landing  

WB  World Bank 

WGS84   World Geodetic System 1984  

WMO  World Meteorological Organisation  

WRS  World-wide Reference System 

WV2  WorldView-2 satellite 

XML   Extensible Mark-up Language  
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12. Mongolian terms 

 

Aimag  Province 

Bag  Sub-district, smallest administrative unit (municipality) 

Dzud  Adverse winter conditions, that make grazing impossible for the cattle. 

 1) white dzud: grazing impossible due to snow cover 

 2) black dzud: shortage of pasture grass due to dry summer conditions 

 3) ice-dzud: grazing hampered due to frozen spring rain 

 

Ger  Traditional bell tent (yurt) of the Mongolian nomads 

Gol  River 

Khashaa  Fenced confinement of a rectangular plot in a settlement 

Nuur  Lake 

Ovoo  Traditional, shamanistic conglomeration of stones (wood, Vodka bottles, silken scarfs) in 
pyramid shape; typical feature along roads and mountain passes as offerings to the deities 

Soum  District 

Tugrik (Tg)  Mongolian official currency. 1 EUR ± 3050 Tugrik (10/04/2020) 

Uul  Mountain 
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15. Appendices 

15.1. Tree species classification results – resumption 

15.1.1. Object-based classifications of dominant tree species discrimination 

 

 

Figure 15.1: Example of misclassification on a Pléiades image (10/05/2015). The red boxes indicate the test 
plot boundaries, the labels the dominating tree species as found in the field. In some cases, the 
class birch was misclassified as light or even dark taiga (RF classifier).  

 

 

Figure 15.2:  Example of misclassification on a Pléiades image (10/05/2015). The red boxes indicate the shadow 
areas misclassified as dark taiga (RF classifier). The classification was superimposed on the 
Pléiades image.  
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Figure 15.3: Object-based classification of Sentinel-2 image (09/07/2017). Random Forest (RF)  classifier for 
dominant tree species classification was used. Classes depicted in graph: birch (yellow), light 
taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band selection of variant 
1 (B12, B8, NDVI, NDWI) was used for image classification.   

 

 

Figure 15.4: Object-based classification of Sentinel-2 image (09/07/2017). Random Forest (RF)  classifier for 
dominant tree species classification was used. Classes depicted in graph: birch (yellow), light 
taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band selection of variant 
2 (B12, B8) was used for image classification.   
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Figure 15.5: Object-based classification of Sentinel-2 image (09/07/2017). Random Forest (RF)  classifier for 
dominant tree species classification was used. Classes depicted in graph: birch (yellow), light 
taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band selection of variant 
3 (B12, NDVI, NDWI) was used for image classification.   

 

 

Figure 15.6: Object-based classification of Sentinel-2 image (09/07/2017). Support Vector Machine (SVM)  
classifier for dominant tree species classification was used. Classes depicted in graph: birch 
(yellow), light taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band 
selection of variant 1 (B12, B8, NDVI, NDWI) was used for image classification.   
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Figure 15.7: Object-based classification of Sentinel-2 image (09/07/2017). Support Vector Machine (SVM)  
classifier for dominant tree species classification was used. Classes depicted in graph: birch 
(yellow), light taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band 
selection of variant 2 (B12, B8) was used for image classification.   

 

 

Figure 15.8: Object-based classification of Sentinel-2 image (09/07/2017). Support Vector Machine (SVM)  
classifier for dominant tree species classification was used. Classes depicted in graph: birch 
(yellow), light taiga (bright green), dark taiga (dark green), and grassland/soil (brown). Band 
selection of variant 3 (B12, NDVI, NDWI) was used for image classification.   
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15.1.2. Pixel-based classifications of dominant tree species discrimination 

 

Figure 15.9: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Random 
Forest classifier was used for bands variant 4 (B3, B8, B11, NDWI). The classification verification 
points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright green), 
dark taiga (dark green), dry grass/soil (brown), green grass (red).   

 

Figure 15.10: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Random 
Forest classifier was used for bands variant 2 (B8, B11). The classification verification points are 
marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright green), dark taiga 
(dark green), dry grass/soil (brown), green grass (red).   
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Figure 15.11: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Random 
Forest classifier was used for bands variant 3 (B11, NDVI, NDWI). The classification verification 
points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright green), 
dark taiga (dark green), dry grass/soil (brown), green grass (red).   

 

Figure 15.12: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Support 
Vector Machine classifier was used for bands variant 4 (B3, B8, B11, NDWI). The classification 
verification points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright 
green), dark taiga (dark green), dry grass/soil (brown), green grass (red).   
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Figure 15.13: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Support 
Vector Machine classifier was used for bands variant 2 (B8, B11). The classification verification 
points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright green), 
dark taiga (dark green), dry grass/soil (brown), green grass (red).   

 

Figure 15.14: Pixel-based classification of Sentinel-2 image (09/07/2017) – dominant tree species. Support 
Vector Machine classifier was used for bands variant 3 (B11, NDVI, NDWI). The classification 
verification points are marked with a cross. Portrayed classes are: birch (yellow), light taiga (bright 
green), dark taiga (dark green), dry grass/soil (brown), green grass (red).   
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15.2. Photo documentation 

 

  

 

 

 

 

 

 

 

 

   

Figure 15.15: Contrasting impressions of the capital Ulaanbaatar. The modern and vibrant city centre 
(left) and the squatter camps in the north of the city centre, where more than one million 
people live (right).  

Figure 15.17: Devastating fire in compartment 435 (left). Even fire-resistant larch trees were severely affected 
and charred (right).  

Figure 15.16: Dense carpets of Calamagrostis grass in a birch stand (left). View from a dark taiga vantage 
point overlooking the rolling hills of the surroundings of the compartment 435 with my assistant 
Enkhbat on a horse’s back (right).  
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