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Abstract 26 

European aspen (Populus tremula L.) is a keystone species in boreal forests that are dominated by 27 

coniferous tree species. Both living and dead aspen trees contribute significantly to the species 28 

diversity of forest landscapes. Thus, spatial and temporal continuity of aspen is a prerequisite for the 29 

long-term persistence of viable populations of numerous aspen-associated species. In this review, we 30 

collate existing knowledge on the ecological role of European aspen, assess the knowledge needs for 31 

aspen occurrence patterns and dynamics in boreal forests and discuss the potential of different remote 32 

sensing techniques in mapping aspen at various spatiotemporal scales. The role of aspen as a key 33 

ecological feature has received significant attention, and studies have recognised the negative effects 34 

of modern forest management methods and heavy browsing on aspen occurrence and regeneration. 35 

However, the spatial knowledge of occurrence, abundance and temporal dynamics of aspen is scarce 36 

and incomprehensive. The remote sensing studies reviewed here highlight particularly the potential 37 

of three-dimensional data derived from airborne laser scanning or photogrammetric point clouds and 38 

airborne imaging spectroscopy in mapping European aspen, quaking aspen (Populus tremuloides 39 

Michx.) and other Populus species. In addition to tree species discrimination, these methods can 40 

provide information on biophysical, biochemical properties and even genetic diversity of aspen trees. 41 

Major obstacles in aspen detection using remote sensing are the low proportion and scattered 42 

occurrence of European aspen in boreal forests and the overlap of spectral and/or structural properties 43 

of European aspen and quaking aspen with some other tree species. Furthermore, the suitability of 44 

remote sensing data for aspen mapping and monitoring depends on the geographical coverage of data, 45 

the availability of multitemporal data and the costs of data acquisition. Our review highlights that 46 

integration of ecological knowledge with spatiotemporal information acquired by remote sensing is 47 

key to understanding the current and future distribution patterns of aspen-related biodiversity. 48 

 49 

Key words: biodiversity, boreal forests, European aspen, Populus tremula L., remote sensing 50 
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1. Introduction 52 

Biodiversity loss is a global threat that deteriorates ecosystem function and thereby impacts the 53 

well-being of humans (Hooper et al., 2012; IPBES, 2019). Forest biodiversity has been negatively 54 

affected by modern large-scale forestry that has caused loss and fragmentation of pristine habitats 55 

and reduced structural heterogeneity in managed forest stands. Boreal forests cover large areas in 56 

northern Europe, but they are mostly intensively managed throughout their range. Moreover, 57 

managed boreal forests tend to be monocultures of conifers (Esseen et al., 1997; Mönkkönen et al., 58 

2018; Seedre et al., 2018; Rodríquez et al., 2019). For biodiversity conservation and ecosystem 59 

services, this phenomenon is a drawback because mixed-species forests can provide important 60 

benefits. For example, they host greater species richness, are more resistant to pests and pathogens 61 

and have a higher capacity for carbon sequestration (Gamfeldt et al., 2013; Brockerhoff et al., 2017; 62 

Ampoorter et al. 2019; Rodríguez et al. 2019). Both living and dead deciduous trees play an important 63 

role in diversifying the structure and species composition of boreal forests (Kouki et al. 2004). 64 

European aspen (Populus tremula L., hereafter ‘aspen’ or ‘European aspen’) is a keystone species 65 

and an early-succession species in boreal forests. Although it has a sparse and scattered occurrence 66 

in northern Europe, it contributes significantly to the biological diversity of boreal forest landscapes 67 

(Hynynen and Viherä-Aarnio, 1999; Kouki et al., 2004; Tikkanen et al., 2006; Whitham et al., 2006; 68 

MacKenzie, 2010; Caudullo and de Rigo, 2016). Aspen is an important host for many species. Aspen 69 

trees are inhabited by epiphytic bryophytes and lichens (Kuusinen, 1994; Gustafsson and Eriksson, 70 

1995; Hazell, 1998; Pykälä et al., 2006), pathogens (Callan, 1998), herbivorous invertebrates 71 

(Robinson et al., 2012), mammals such as the flying squirrel (Pteromys volans; Hanski, 1998; Remm 72 

et al. 2017) and birds such as woodpeckers and owls (Hågvar et al., 1990; Angelstam and Mikusinski, 73 

1994; Tikkanen et al., 2006; Hardenbol et al. 2019). Secondary hole-nesters, including many tits, 74 

flycatchers, owls, ducks and flying squirrels, are dependent on cavities excavated by woodpeckers 75 

(Martin and Eadie, 1999; Baroni et al. 2020). Aspen leaf litter is utilised by, for example, gastropods 76 

(Suominen et al., 2003), and dead and decaying aspen trunks provide a suitable habitat for myriad 77 
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polypore fungi (Kotiranta and Niemelä, 1981; Hynynen and Viherä-Aarnio, 1999; Junninen et al., 78 

2007) and saproxylic invertebrate species (Siitonen and Martikainen, 1994; Martikainen, 2001; 79 

Dahlberg and Stokland, 2004; Halme et al., 2012). The conservation biological importance of aspen 80 

is illustrated by the fact that many of the aspen-associated species—dependent either on living of 81 

dead aspen trees—are red-listed (Jonsell et al., 1998; Hynynen and Viherä-Aarnio, 1999; Dahlberg 82 

and Stokland, 2004; Tikkanen et al., 2006). 83 

Given this keystone role, a continuous spatial and temporal supply of aspen trees is a prerequisite 84 

for maintaining viable populations of associated species in boreal forests (Kouki et al., 2004; Vehmas 85 

et al., 2009). Thus, information on the occurrence, abundance and regeneration of aspen is crucial for 86 

efficient planning and implementation of sustainable forest management measures and conservation 87 

efforts. Knowledge on changes in aspen occurrence and distribution is also important, because aspens 88 

can serve as an indicator of ecological integrity and landscape health (Kay, 1997). The widespread 89 

but patchy and clustered occurrence of aspen in boreal forests poses challenges for ordinary inventory 90 

and mapping methods (Maltamo et al., 2015). For example, the number of sample plots in traditional 91 

forest inventories is often too low to capture patchily occurring phenomena and their variation 92 

(Kangas, 2006). Recent advances in remote sensing technology hold much promise for obtaining 93 

systematic and rapidly updated information on the spatiotemporal distribution and characteristics of 94 

tree species over wide areas (Fassnacht et al., 2016). Thus, they can provide new opportunities to map 95 

key ecological features, such as aspen, in order to create spatiotemporally comprehensive biodiversity 96 

assessments (Pettorelli et al., 2014; Wang & Gamon 2019). 97 

A few earlier reviews examined European aspen or Populus tremuloides Michx. (quaking aspen, 98 

trembling aspen or American aspen) that occur in North America. A review by Landhäusser et al. 99 

(2019) focused on ecology, management and restoration of quaking aspen, and the review by 100 

MacKenzie (2010) examined ecology, conservation and management of both European aspen and 101 

quaking aspen in the northern hemisphere. Worrell (1995a, 1995b) reviewed the distribution, ecology 102 

and genetic variation—as well as values, silviculture and utilisation—of European aspen, with 103 
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particular reference to Scotland. Myking et al. (2011) reviewed life history strategies of European 104 

aspen and the browsing effects on it. Furthermore, Rogers et al. (2020) reviewed conservation of 105 

aspen in a global context. The key aims of this review are to (1) collate existing knowledge on the 106 

ecological role of European aspen in boreal forests, (2) examine knowledge needs for aspen 107 

occurrence and dynamics and (3) study the potential of different remote sensing techniques in 108 

mapping aspen trees and stands at various spatiotemporal scales. We will identify current research 109 

gaps and new methodological opportunities that can increase our understanding of aspen-related 110 

biodiversity in rapidly changing forest landscapes (Hyvärinen et al., 2019). In the remote sensing 111 

section (section 4), we examine the mapping of European aspen, quaking aspen and a few other 112 

Populus species to cover the current knowledge on the topic as widely as possible. 113 

 114 

2. Aspen as a keystone species in boreal forests  115 

Aspen is a pioneer species in boreal forests and thus needs open areas or spots to regenerate and 116 

establish. It typically grows either in sites where there are no shading trees or as hold-overs in more 117 

closed forests, and it readily colonises new open areas. Aspen has a wide ecological amplitude, and 118 

it occurs in many forest types, from dry rocky areas to water-logged sites. Aspen reproduces both by 119 

seeds and root sprouts, with the latter being the most common and most successful form of 120 

reproduction.  121 

Long-term aspen persistence in primeval old-growth forests has only recently received attention 122 

(Fig. 1a). Studies suggest that that aspens can live up to 100-200 years (Lilja et al., 2006; Latva-123 

Karjanmaa et al., 2007; Vehmas et al., 2009), and aspen presence even in old-growth forests reaching 124 

the age of 450 years has been reported (Tarasova et al. 2017). According to Bergeron et al. (2014), 125 

gap dynamics play an important role in long-term persistence of aspen (P. tremuloides) in low 126 

intensity disturbance regimes (i.e., areas where stand replacing disturbances are scarce) in North 127 

America. Single blowdowns of large dominant trees or small-scale windthrow areas allow self-128 

replacement of aspen through suckering (Groot et al. 2009, Reinikainen et al. 2012). However, in 129 
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European Russia, birch and rowan appeared to be more common in gaps than European aspen 130 

(Gromtsev et al. 2002). 131 

Aspen leaf litter has a high calcium content, which can increase the pH of the typically acidic 132 

boreal forest soils. This fact has important consequences on the soil chemistry, ecosystem functioning 133 

and habitat availability for accompanying species (Koivula et al., 1999; Suominen et al., 2003; Nikula 134 

et al., 2010). Buck and St. Clair (2012) showed that the surface soil horizons of quaking aspen stands 135 

have higher mineral nutrient availability compared to other soil types. They proposed that aspen soils 136 

are biologically more active compared to other soil types. The pH of aspen bark varies widely among 137 

stands as well as within stands; measured stand averages range from 4.7 to 6.3 (Kuusinen, 1994). The 138 

relatively high bark pH can affect the abundance of epiphytic bryophyte and lichens that grow on 139 

aspens (Kuusinen, 1994; Gustafsson and Eriksson, 1995). In addition to chemical properties, aspen 140 

trees can provide unique physiological environments for associated species. For example, tree-141 

dwelling bats favour aspen as their maternity roosts because they are both warmer and safer than 142 

other tree species (Michaelsen, 2016). 143 

The occurrence, abundance and diversity of the aspen-associated species are markedly affected by 144 

the characteristics of individual aspen trees, including size and age. Many species prefer or are 145 

confined to old aspens, and large-diameter host trees are favoured, for example, by epiphytic 146 

bryophytes (Hazell et al., 1998; Gu et al., 2001). Due to this factor, large aspens with a diameter at 147 

breast height that exceeds 20 cm (Latva-Karjanmaa et al., 2007) or 25 cm (Maltamo et al., 2015) have 148 

been included as ecologically relevant individuals in studies that aimed to map the spatiotemporal 149 

variation in aspen abundance. Black-coloured and speckled bark, slow tree growth (as defined by 150 

visual inspection, e.g., the relationship between the diameter and bark texture) and tree inclination 151 

angle are also important determinants of epiphytic lichen species on aspen trees (Perhans et al., 2014). 152 

Further, the number of epiphytic bryophyte species increases with aspen bark thickness (Gustafsson 153 

and Eriksson, 1995). Tarasova et al. (2017) also found distinct epiphyte species composition at 154 
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different heights of aspen trunks and branches. These data show that disparate lichen and moss species 155 

often occupy different ecological niches (Fig. 1b). 156 

In addition to the characteristics of individual aspens, local- and landscape-level factors can impact 157 

species assemblages associated with aspen trees. For example, field-layer vegetation of the forest 158 

(Gustafsson and Eriksson, 1995; Hazell et al., 1998) and forest stand structure, i.e., accompanying 159 

tree species (Hazell et al., 1998), affect the abundance of bryophytes on aspens. Furthermore, the 160 

amount of light in a forest stand affects the number and community composition of epiphyte species 161 

(Gustafsson and Eriksson, 1995). An increased density of spruce causes more shading that, in turn, 162 

increases the abundance of certain bryophyte species (Hazell et al., 1998). Long-term persistence of 163 

aspen in the landscape is critical for the continuance of aspen-related species. Aspen-associated 164 

species, such as epiphytic lichens, may persist in the remaining small patches of host trees for some 165 

time (Gu et al., 2001), but ultimately their populations become increasingly threatened as the 166 

resources they need decrease in the landscape. Suominen et al. (2003) showed that the connectivity 167 

of habitats and large aspen stand sizes, at least 500 m2, are important determinants for abundance and 168 

diversity of gastropods that live on aspen leaf litter. In general, information on aspen occurrence and 169 

dynamics at the landscape level in the boreal zone is scarce. Latva-Karjanmaa et al. (2007) estimated 170 

that 50% of the mature aspens of an old-growth forest in the studied nature protection area in eastern 171 

Finland will die within the next 30 years, and only 10% of existing trees will survive over 90 years. 172 

The number of species that live on dead aspen wood material is high. Thus, the occurrence of this 173 

material is of critical importance for species richness and biodiversity conservation (Martikainen et 174 

al., 2000; Kouki et al., 2004). Aspen decay is a rather fast process; most of the current dead wood 175 

will become disintegrated within about 90 years, depending on the current decay stage (Latva-176 

Karjanmaa et al., 2007). The continued supply of dead wood depends on the regional abundance of 177 

aspen trees and the disturbances that generate fallen and dead trunks. For example, several threatened 178 

aspen-specialist polypore species require frequent emergence of new suitable host trees as old ones 179 

become unsuitable for them in approximately 10 years after colonisation (Martikainen et al., 2000). 180 
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Similarly, saproxylic insect species that utilise recently dead aspen wood are dependent on 181 

sufficiently rapid formation of new habitats (Ranius et al., 2011). Saproxylic invertebrates that live 182 

on decaying wood can often colonise several tree species and therefore are not always dependent on 183 

the occurrence of one species. However, species composition of the saprophytic fungi community 184 

may crucially impact the habitat quality for many saproxylic insects (Jonsell et al., 1998). Likewise, 185 

nematorecan (Diptera) communities of a single aspen log may markedly differ between the base and 186 

top part of the same tree, but the factors that determine this variation and the preferred microhabitat 187 

for each insect species are poorly understood (Halme et al., 2013). Økland et al. (1996), Ranius et al. 188 

(2011) and Jacobsen et al. (2015) demonstrated that species richness of aspen-associated saproxylic 189 

beetles can be related to dead wood volume within a radius of 0.1–3 km. These findings highlight the 190 

importance of habitat availability at larger scales. 191 

Aspen has a clonal growth habit, in which several ramets can emerge from one clone as root 192 

sprouts. However, clones of European aspen often consist of a single ramet. For example, in a Finnish 193 

study, 70% of the clones comprised only one ramet (Suvanto and Latva-Karjanmaa, 2005). Genetic 194 

studies revealed that intrapopulation genetic variation of European aspen is relatively high. These 195 

data imply that the proportion of individuals that arise from seeds is higher than previously assumed 196 

(Suvanto and Latva-Karjanmaa, 2005). On the contrary, quaking aspen can form giant growth, with 197 

the largest known genet covering about 43.6 ha (DeWoody et al., 2008). Nevertheless, quaking aspen 198 

also exhibits much more genetic variation than previously presumed, with many clones encountered 199 

only once in a 50 m grid (Mock et al., 2008). In European aspen, the maximum distance between 200 

ramets in a clone can be at least 46 m (Suvanto and Latva-Karjanmaa, 2005). In Scotland, 21 clones 201 

were detected in a 4.6 ha area, when 186 aspens were sampled (Easton, 1997). 202 

 203 

 204 

 205 

 206 
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a) 207 

 208 

 209 

b) 210 

 211 
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Fig. 1.a) Crowns of aspen hold-overs in a natural old-growth forest that reach above below-growing 212 

spruce trees. b) Aspen trunk with epiphytic lichens, mosses and Orthilia secunda. (Photo credits: 213 

Sarita Keski-Saari.) 214 

 215 

3. Major drivers of aspen occurrence and dynamics in boreal forests 216 

 217 

3.1 Forest management methods 218 

Forest industry and management in Fennoscandia has traditionally favoured conifers (Picea abies, 219 

Pinus sylvestris) over aspen. Thus, over the years aspen trees have been eradicated both mechanically 220 

and via herbicides, particularly during 1950–1980 (Östlund et al., 1997; Rouvinen et al., 2005; Latva-221 

Karjanmaa et al., 2007). Such forestry actions were justified by the presumed harmful effects of 222 

aspens to the more valued conifers. Aspen acts as a host for decaying fungi and rust diseases, such as 223 

Melampsora pinitorqua, that occur in young pine stands (Östlund et al., 1997), and competition with 224 

fast-growing aspen can obstruct the growth of conifers (Yang, 1991; Filipescu and Comeau, 2007). 225 

Aspen regeneration and establishment are dependent on disturbances, including storms and fires. In 226 

contrast, lack of natural disturbances favours coniferous species over deciduous ones. The prevailing 227 

forest management practices during the last two centuries have clearly favoured conifers over 228 

deciduous species; indeed, efficient fire suppression has almost eliminated fires as a rejuvenating 229 

factor from the boreal forests of Sweden and Finland (Zackrisson, 1977; Kouki et al., 2004; de 230 

Chantal et al., 2005; Lankia et al., 2012). Edenius et al. (2011) reported that aspen regeneration has 231 

declined since the 1970s in Sweden due to the large-scale transformation of land use together with 232 

mechanical clearing of deciduous trees and the use of herbicides (Fig. 2a). 233 

Recently, aspen has received more supportive consideration—based on the realisation of its 234 

keystone species role in forest biodiversity—in the management planning of commercial forests. The 235 

most important recommendations to secure aspen regeneration include restoring regeneration niches 236 

by mimicking natural disturbance processes, such as fire at various spatial scales, and retaining aspen 237 



11 
 

in clearings and pre-commercial thinnings (Kouki et al., 2004; Vanha-Majamaa et al. 2007; Edenius 238 

et al., 2011). Clear-cutting acts as a source of disturbance and promotes the regeneration of aspen. 239 

How this is realized in the number of mature aspens depends on forestry actions following the 240 

regeneration, such as thinning of seedling stands (Fraser et al. 2003). Similarly, the extent of tree 241 

retention is dependent on the forestry actions (Latva-Karjanmaa et al., 2007; Myking et al., 2011; 242 

Kuuluvainen et al. 2019). Creating dead wood by girdling aspens or leaving dead wood on clear-cuts 243 

may represent beneficial measures to preserve species that are dependent on dead aspens (Jonsell et 244 

al., 1998; Martikainen et al., 2000; Runnell et al. 2012), but could be harmful for species dependent 245 

on old living aspens.  246 

The use of retention trees has been considered an important measure to halt forestry-related loss 247 

of aspen-associated species (Martikainen, 2001; Hedenås and Hedström, 2007; Junninen et al., 2007; 248 

Sahlin and Ranius, 2009; Lundström et al., 2013). In northern Europe, aspen has been widely 249 

favoured as a retention tree; there are many studies that show the efficacy of retained aspens on 250 

biodiversity (Rosenvald and Löhmus, 2008; Gustafsson et al., 2010; Lundström et al., 2013; 251 

Fedrowitz et al., 2014; Perhans et al., 2014) (Fig. 2b). However, it is important to acknowledge that 252 

there are also species that perform poorly on retention aspens (Hedenås and Hedström, 2007). 253 

Furthermore, there is a need to improve the efficiency of retained aspens for biodiversity by adding 254 

their numbers and using ecologically meaningful tree characteristics (e.g., black-coloured bark, slow 255 

tree growth, inclined stems and speckled bark) for their selection as retention trees (Perhans et al., 256 

2014).  257 

The retention trees are prone to wind disturbance (Jönsson et al., 2007). The post-harvest mortality 258 

rate is high with retained aspens as well, 46 % of them reported fallen after six years of monitoring 259 

(Rosenvald et al. 2008) and 52 % after 16 years of monitoring (Rosenvald et al. 2019). Hence, not 260 

only it is essential to select high ecological value aspens, but they should also have qualities of high 261 

survival (e.g. large tree diameter, position near forest edges, high retention density) (Rosenvald et al., 262 
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2008; Hämäläinen et al., 2016). Nevertheless, the fallen retained aspens may also be valuable habitats 263 

(Junninen et al., 2007; Rosenvald et al. 2019). 264 

In Finland, leaving aspens standing as retention trees has had positive effect on some species 265 

previously categorised as Near Threatened and even on certain species previously classified as 266 

Threatened. This improvement has aided their red-listing status to be re-classified as Least Concerned 267 

species (Rassi et al., 2010). Large aspens are generally the most important for biodiversity, and hence 268 

they are generally favoured as retention trees (e.g., Kolström and Lumatjärvi, 2000). However, Schei 269 

et al. (2013) found that, at least for lichen species, retention of young aspens may also be a beneficial 270 

practice as they have a longer expected persistence compared to old aspens. Lundström et al. (2013) 271 

showed that the number of aspen-dependent lichen species on retention aspens can be lower in 272 

recently harvested stands compared to stands harvested 10–16 years ago. This finding may imply that 273 

species that favour more interior forest conditions persisted, and in addition, new species that are 274 

adapted to open environments colonised the retention trees.  275 

The response of different species to retention trees appears to be species-dependent. For example, 276 

cyanolichens often inhabit retention trees, whereas green algal lichens show contrasting habitat 277 

preferences: they are more abundant in closed forests compared to retention trees (Hedenås and 278 

Hedström, 2007). Approximately 80% of the threatened saproxylic invertebrates in Sweden occur in 279 

open environments. Thus, they are likely to benefit from retention trees, while the species that require 280 

shadow or semishade will not (Jonsell et al., 1998). Oldén et al. (2014) concluded that in order to be 281 

as effective as possible, retention trees should be left adjacent to conservation sites, which can 282 

function as sources of re-colonisation and support the populations of species that require old-growth 283 

forests. Similarly, Hedenås and Ericsson (2000) and Hedenås et al. (2007) highlighted that a 284 

prerequisite for new-establishment in spore dispersed lichen species is that there are old aspen stands 285 

that act as source populations in the surrounding landscape. Moreover, the quantity of retention trees 286 

should be substantial to prominently support, for example, the survival of accompanying forest 287 

vegetation (Johnson et al., 2014). Sverdrup-Thygeson et al. (2014) highlighted that retention patches, 288 
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woodland key habitats and nature reserves all have important and complementary functions for wood-289 

living species in boreal forests.  290 

 291 

a) 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 
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b) 305 

 306 

Fig. 2.a) A young aspen in a clear-cut (Photo credit: Sonja Kivinen). b) A group of retention trees 307 

including aspen. (Photo credit: Sarita Keski-Saari) 308 

 309 

3.2 Herbivores and pathogens 310 

European aspen shoots and leaves provide valuable nutrition to several herbivore species, as 311 

reviewed by Myking et al. (2011). Browsers can suppress the regeneration of aspen and, in the long-312 

term, reduce recruitment, delay maturation, increase mortality and ultimately cause a decline in local 313 

aspen populations. High browsing pressure is thus a major threat to species that are dependent on old 314 

aspens (Kouki et al., 2004; Komonen et al. 2020). Moose (Alces alces) is the primary herbivore that 315 

affects aspen recruitment (Edenius and Ericsson, 2007; Edenius et al., 2011). Fennoscandian moose 316 

populations started to grow rapidly in the 1960s, due to suitable habitats produced by clear-cutting, 317 

the low numbers of large carnivores and the use of supplementary forages, and are currently among 318 

the most productive and heavily harvested moose populations in the world (Lavsund et al., 2001). A 319 
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recent increase in the number of roe deer (Capreolus capreolus) and red deer (Cervus elaphus) also 320 

causes high browsing pressure on aspens (Myking et al., 2011). Similarly, intense browsing by 321 

ungulates is harmful to the establishment and recruitment of quaking aspen in North America (Seager 322 

et al., 2013; Rhodes et al. 2017). 323 

Edenius et al. (2007) found that heavy browsing in the absence of either human‐caused or natural 324 

disturbances accelerates succession towards conifer dominance. However, Myking et al. (2011) 325 

emphasised that more research is needed on how browsing interacts with other factors and affects the 326 

spatiotemporal variation in recruitment rates and population dynamics of aspen. Additional data are 327 

also needed on ungulate densities that allow the maintenance of viable aspen populations in different 328 

habitats (Edenius and Ericsson, 2015). An important management tool could be protecting established 329 

aspen ramets at designated sites from browsing either by fencing or reducing ungulate numbers 330 

(Kouki et al., 2004; Edenius et al., 2011). After forest fire, aggregations of dead wood can act as 331 

browsing refugia for aspen seedlings (de Chantal and Granström 2007), and one option would be to 332 

leave logs in a crisscross arrangement to provide dead wood and a barrier against herbivores (Latva-333 

Karjanmaa et al., 2007). 334 

In addition to moose, hares (Lepus sp.) and voles (Microtus and Myodes sp.) have a high preference 335 

for aspen (Hjältén et al., 2004). For example, in an old-growth forest in northern Finland, hare 336 

browsing was as frequent for saplings as moose browsing (Latva-Karjanmaa et al., 2007). Insect 337 

herbivory apparently has a limited impact on both aspen survival and growth. For example, arthropod 338 

herbivore abundance and species richness co-occurred with the highest tree growth in a common 339 

garden experiment in Sweden. This finding indicates that the trees preferred by insects maintained 340 

the highest growth in the subsequent year (Robinson et al., 2012). On the other hand, pathogens may 341 

seriously hamper aspen regeneration. The number of pathogen species that occur on aspens is notably 342 

high (Callan 1998). For example, Venturia tremulae fungus has a high capacity to cause epidemics; 343 

by attacking aspen seedlings, it can decrease growth and even cause aspen tree death (Kasanen et al., 344 

2004).  345 
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 346 

3.3 Climate warming 347 

Climate warming results in elevated mean temperatures and changes in precipitation in northern 348 

areas (IPCC, 2018). Aspen is a thermophilic species that is expected to benefit from rising 349 

temperatures in boreal forests. Accordingly, elevated temperature facilitates aspen growth (Sivadasan 350 

et al., 2018). On the other hand, drought can seriously hamper the growth of aspen trees, and sexual 351 

reproduction and seedling establishment of aspen are strongly dependent on adequate moisture 352 

(Latva-Karjanmaa et al., 2003; Singer et al., 2019). Moisture stress also negatively impacts the growth 353 

of aspen seedlings (Nikula et al., 2011; Possen et al., 2011). As a general rule, increased occurrence 354 

of disturbances, including storms and forest fires (IPCC 2018), may benefit aspen regeneration. 355 

However, severe fires can actually be harmful because they may hamper the formation of root suckers 356 

if roots are damaged by the fire. Different IPCC climate scenarios are likely to promote distinct 357 

species combinations, depending on the projected outcome of the host tree species. For example, 358 

saproxylic species associated with aspen may benefit from future climate characterised by an 359 

intermediate rise in temperatures, whereas an extreme rise would negatively affect them (Mazziotta 360 

et al., 2012). 361 

Van Bogaert et al. (2010) estimated that aspen has become approximately 16 times more abundant 362 

in subarctic Sweden over the past 100 years, mainly due to increased sexual regeneration. According 363 

to their study, aspen colonisation at the tree line is mainly restricted by summer temperature, whereas 364 

disturbances caused by moth population outbreaks in birch forests are critical for aspen establishment 365 

at lower elevations. Future aspen occurrence and abundance in these areas will thus be driven by 366 

complex relationships among changing disturbance regimes, future herbivore population dynamics 367 

and responses of birch and pine to changing climate. Van Bogaert et al. (2009) found that moth 368 

outbreaks on birch stimulate the recruitment of aspen, but aspen stand expansion can be strongly 369 

restricted by moose browsing. The dynamics between aspen and birch in subarctic forest ecosystems 370 
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is thus likely to be dependent on the number of vertebrate browsers relative to the number of aspen 371 

recruits. 372 

 373 

3.4 Spatial and temporal knowledge needs 374 

Many of the ecological studies that we reviewed highlight the significant ecological role of aspen 375 

in boreal forest ecosystems in northern Europe. These studies also call for acquisition of accurate 376 

spatiotemporal information on aspen occurrence and abundance, which is currently scarce and 377 

incomprehensive (Fig. 3). Spatial distribution, size and age of aspen trees are highly relevant 378 

information. These data will enable assessing the landscape’s ability to support viable populations of 379 

aspen-associated species. This information will also be of significant importance in understanding 380 

the contributions of retention trees on aspen-related biodiversity. 381 

A crucial ecological question is the long-term persistence of aspen in boreal forest landscapes. 382 

Aspen dynamics and regeneration are driven by various anthropogenic, biotic and abiotic factors, as 383 

well as the relationships among these elements. Time series analysis of aspen dynamics will increase 384 

the understanding of the role of different factors on aspen persistence and enable estimates of current 385 

and future status of aspen-related species. Information on the abundance of aspen trees in a landscape 386 

will also provide estimates for the continuum of dead aspen wood, which is of critical importance for 387 

many species. Furthermore, the ability to produce spatial and temporal information on aspen at 388 

different spatial scales would facilitate more efficient planning and implementation of forest 389 

management measures and conservation efforts. 390 

 391 
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 392 

Fig. 3. Current knowledge needs and concerns related to European aspen in boreal forest 393 

landscapes. 394 

 395 

4. Mapping aspen occurrence and dynamics using remote sensing 396 

4.1. Remote sensing techniques in vegetation mapping 397 

Various remote sensing techniques enable timely and spatially explicit mapping of land cover. 398 

They can provide significant opportunities in acquiring information on the occurrence and dynamics 399 

of keystone species, such as aspen, in changing forest environments at various spatial and temporal 400 

scales (Ghosh et al., 2014). Remote sensing data can be acquired with unmanned aerial systems (UAS, 401 

also referred as drones), planes and satellite platforms. Depending on the platform and sensor, the 402 

spatial resolution (pixel size) of the imagery can range from some centimetres to hundreds of metres. 403 

Similarly, the geographical extent of the data can vary from local to global coverage.  404 

Spectral remote sensing data consists of spatial images where every pixel contains the intensity of 405 

electromagnetic radiation reflected or emitted from the target and recorded by a sensor. Optical 406 

remote sensing is based on detecting objects at different wavelengths from visible and near-infrared 407 

range (VNIR; 400–1000 nm) and shortwave infrared range (SWIR; 1000–2500 nm) up to long-wave 408 
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infrared range (LWIR; 8000–14000 nm). Spectral resolution, i.e., the number and width of spectral 409 

bands in which information is recorded, varies between the sensors. Multispectral imagery consists 410 

of several generally non-contiguous spectral bands of varying bandwidths, whereas hyperspectral 411 

images (imaging spectroscopy) include a contiguous spectral range with hundreds of narrow bands. 412 

Temporal resolution refers to how often the remote sensing system records imagery of a particular 413 

area (revisit time; see Xie et al., 2008).  414 

Aerial photography (panchromatic [black and white], colour [red, green, blue or RGB], or colour-415 

infrared [CIR, also referred as false-colour]) is a traditional remote sensing technique to acquire 416 

information on vegetation cover. Today, digital aerial imagery acquired from aircraft provides 417 

detailed information on tree species, and these data have been widely utilised in national forest 418 

inventories both for direct measurements and as auxiliary information (Haara and Haarala, 2002; 419 

Persson et al., 2004; McRoberts and Tomppo, 2007). Time series of aerial imagery enable tree-level 420 

and stand-level detection of vegetation changes.  421 

Rapid UAS development has mediated the development of new forestry-oriented applications 422 

(Colomina and Molina et al., 2014; Torresan et al., 2016; Franklin, 2018). The possibility of acquiring 423 

very high spatial resolution multispectral or hyperspectral UAS imagery on-demand allows 424 

estimating the structural parameters of forests at individual tree and stand level with high accuracy 425 

(Zarco-Tejada et al., 2014; Puliti et al., 2015). Recent developments in image processing software 426 

have also enabled wide-scale production of photogrammetric point clouds (PPC). PPCs have an RGB 427 

or near-infrared (NIR) value for each point, a feature that provides both colour information and the 428 

three-dimensional structure of the canopy (Hirschmuller, 2008; St-Onge et al., 2008). Airborne 429 

hyperspectral imagery (aircraft or UAS) provides new possibilities for increased accuracy of tree 430 

species mapping (Naidoo et al., 2012; Dalponte et al., 2013; Feret and Asner, 2013; Trier et al., 2018). 431 

High spatial and spectral resolution enables mapping biochemical and biophysical properties of 432 

vegetation (Alchanatis and Cohen, 2012; Roberts et al., 2012) that can be further used in species 433 

classification (Ghosh et al., 2014; Piiroinen et al., 2017).  434 



20 
 

Multispectral satellite imagery allows vegetation mapping from local to global scales. Satellite 435 

images generally have coarser spatial resolution compared to airborne data, and thus these data can 436 

be utilised in mapping tree groups or stands rather than individual trees. Multispectral data can be 437 

utilised to calculate spectral indices, such as normalised difference vegetation index (NDVI), to study 438 

the vegetation cover (Tucker et al., 1979). Temporal resolution of satellite imagery is typically 4-16 439 

days, and the availability of long-time series (e.g. Landsat program) enables decadal change detection 440 

(Wulder et al., 2008, 2019; Xie et al., 2008).  441 

Airborne laser scanning (ALS), also commonly known by Light Detection And Ranging (LiDAR), 442 

is a remote sensing method that provides three-dimensional information on vegetation structure 443 

(Beland et al., 2019). Unlike the above mentioned (passive) remote sensing techniques, ALS is an 444 

active method that is not dependent on prevailing lighting conditions. The ALS system is based on 445 

measuring the time between emitting a laser pulse and receiving its backscattered echo. Once the 446 

exact position and angle of the scanner are known, the time measurements can be transformed into 447 

three-dimensional point clouds that depict the shape and structure of the scanned objects. The 448 

accuracy of ALS metrics depends upon pulse density, i.e., the number of laser pulses that intercept 449 

the surface per unit (spatial resolution). Currently, the pulse density of ALS data can be tens of 450 

measurements per square metre, whereas the spectral resolution is typically restricted to a single 451 

wavelength. Multispectral ALS data are available but they are rare compared to single-wavelength 452 

data. Species classification using single-wavelength ALS data is based on differences in crown shape, 453 

density and reflectivity (Naesset, 2007, 2009; Maltamo and Packalen, 2014; Maltamo et al., 2018), 454 

whereas multispectral data enables using both spectral and structural characteristics (Budei et al., 455 

2018).  456 

Fig. 4 summarises the general advantages and drawbacks of different airborne and spaceborne 457 

remote sensing techniques in tree-species mapping. In the following case studies, we examine aspen 458 

detection at the tree-level and stand-level. The remote sensing studies reviewed here include mapping 459 

of European aspen, quaking aspen and a few other Populus species in Europe and North America. 460 
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 461 

Fig. 4. Advances and drawbacks of different remote sensing techniques in tree-species mapping. 462 

 463 

4.2. Tree-level studies 464 

Aspen has been mapped at the tree-level using ALS, airborne photogrammetry and multispectral 465 

and hyperspectral imaging or the combination of different datasets. Table 1 provides detailed 466 

information on the case studies examined here. In many of these studies, the accuracy of tree species 467 

classifications is often evaluated based on the user’s and producer’s accuracy. User’s accuracy (UA) 468 

reflects the reliability of classification for the class under consideration. It is calculated by dividing 469 

the number of correctly classified objects (e.g., segments or pixels) in a class by the total number of 470 

objects assigned to that class. The producer's accuracy (PA) relates to the probability that a ground 471 

reference object is correctly classified (i.e., it measures how well the class has been identified). It is 472 

obtained by dividing the number of objects correctly classified in a given class by the number of 473 

reference objects in that class (Prisley and Smith, 1987). 474 
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In Fennoscandia, European aspen has often been pooled with other deciduous tree species in ALS-475 

based tree-level and stand-level studies due to the low number of aspen trees in the datasets (Packalen 476 

and Maltamo, 2007; Holmgren et al., 2008; Korpela et al., 2010; Ørka et al., 2010). However, there 477 

are some studies where aspen was classified separately from other tree species. Ørka et al. (2007) 478 

studied tree species classification by utilising ALS intensity metrics in the Østmarka natural reserve, 479 

Norway, where generally large and old aspens have a scattered occurrence in the forest landscape. 480 

Classification accuracies for aspen were relatively low (PA = 24%, UA = 56%) compared to other 481 

species (64-87% for P. abies L. and Betula ssp.). Laser metrics of aspen overlapped with those of 482 

spruce. Similar results were also reported by Korpela et al. (2010). In Canada, Li et al. (2013) 483 

classified tree species based on structure and architecture of individual tree crowns derived from high-484 

density ALS data. Unlike in Fennoscandia, quaking aspen (P. tremuloides Michx.) was the dominant 485 

tree species together with sugar maple (Acer saccharum Marsh.), jack pine (Pinus banksiana Lamb.) 486 

and eastern white pine (Pinus strobus L.). UA and PA for quaking aspen were 74% and 76%, 487 

respectively, the highest classification error being between aspen and jack pine. The results of Li et 488 

al. (2013) highlight a positive, strong relationship between ALS point density and species 489 

classification accuracy. 490 

Combining ALS data with aerial images can improve discrimination of tree species. Säynäjoki et 491 

al. (2008) used ALS data and aerial images to discriminate aspen from other deciduous trees in the 492 

Koli National Park in Eastern Finland, where abundance of European aspen is generally higher 493 

compared to typical managed boreal forests. Deciduous trees were first separated from coniferous 494 

trees using aerial images. Segments that belonged to aspen and those that belonged to other deciduous 495 

trees were then classified using ALS data with 79% accuracy. Large aspen trees with diameter at 496 

breast height of > 25 cm were detected with greater success compared to smaller trees. Breidenbach 497 

et al. (2010) utilised the semi-individual tree crown approach based on ALS and multispectral aerial 498 

images to predict species-specific forest inventory attributes for different tree species. The study was 499 

conducted in a forest area in southern Norway, where the European aspen proportion was 500 
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approximately 2%. Relative root mean square error (RMSE) for aspen volume was significantly 501 

higher (222%) compared to the relative RMSE for volume of pine, spruce and birch (38, 40 and 502 

101%, respectively). These data indicated that the predictions calculated for aspen were considerably 503 

less accurate compared to other tree species.  504 

Aspen has also been classified using only aerial imagery or UAS imagery. Erikson (2004) utilised 505 

high-spatial resolution colour infrared aerial images to automatically classify segmented tree crowns 506 

of the four most common tree species (Picea abies Karst., Pinus sylvestris L., Betula pubescens Ehrh. 507 

or Populus tremula L.) in boreal forest landscape in Sweden. In that study, the proportion of aspen of 508 

all trees was approximately 3%, and the UA and PA were 63% and 71% respectively. Franklin and 509 

Ahmed (2017) studied deciduous forest species classification in a Canadian hardwood forest using 510 

multispectral UAS imagery. Crowns of quaking aspen were represented by bright and distinctive 511 

tones on colour and near-infrared images, and no classification errors were reported. However, it 512 

should be noted that validation of classification was based on relatively small sample of trees. Alonzo 513 

et al. (2018) utilised UAS-based RGB point cloud to classify trees species in interior Alaska. The 514 

dominant species in the studied boreal forest area were black spruce (Picea mariana Mill.), white 515 

spruce (Picea glauca (Moench) Voss), birch (Betula papyrifera Marshall) and quaking aspen. The 516 

UA and PA for quaking aspen were 83% and 74%, respectively. The results showed that the inclusion 517 

of spectral information is critical to supplement structural information in tree species classification. 518 

Imaging spectroscopy (hyperspectral data) can improve tree species classifications by providing 519 

adequate information to discriminate among spectrally similar targets. Jones et al. (2010) used a 520 

combination of ALS and imaging spectroscopy for tree species classification in Canada. Several 521 

broad-leaved tree species, including quaking aspen and black cottonwood (Populus trichocarpa), 522 

occurred commonly in the studied forest area dominated by Douglas fir (Pseudotsuga menziesii). 523 

Although the methodology enabled species mapping with more detail and accuracy than is possible 524 

using conventional approaches (i.e., interpretation of aerial images), or either technology on its own, 525 

classification accuracies were markedly lower for quaking aspen (UA and PA < 34%) due to 526 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/karst
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similarity with red alder (Alnus rubra). However, another Populus species, black cottonwood, was 527 

accurately classified (UA of 82% and PA of 98%, respectively). Dalponte et al. (2009) used airborne 528 

imaging spectroscopy to image two Italian forest areas; one of them had a dense forest with 19 529 

different tree species. Two Populus species, Populus canescens and Populus hybrida, were identified 530 

with UAs of approximately 80-90%, depending on the applied differentiation classifier. Similarly, 531 

Roth et al. (2015b) utilised airborne imaging spectroscopy to differentiate a large number of tree 532 

species in different regions in the USA and studied the impact of spatial resolution of data on 533 

classification accuracy. For black cottonwood, UAs and PAs were 82–100% for up to 40 m resolution 534 

and 71–83% at 60 m resolution. These data highlight the fact that future spaceborne imaging 535 

spectroscopy has high potential in tree species mapping. In another study, Roth et al. (2015a) 536 

compared the accuracy of imaging spectroscopy in species detection across different ecosystems and 537 

classified P. trichocarpa with a UA of 87% and PA of 84%. Tuominen et al. (2018) examined tree 538 

species recognition for 26 species and 14 genera in a Finnish arboretum using UAS-based 539 

hyperspectral imagery in combination with a three-dimensional photogrammetric canopy surface 540 

model. The UA and PA for aspen were 86% and 63%, respectively. Saarinen et al. (2018) assessed 541 

plot-level biodiversity indicators using imaging spectroscopy and photogrammetric point clouds 542 

acquired from a UAS in Finland. The number of aspens was low in the study region that contained 543 

both managed and natural boreal forests. The largest errors occurred in predictions of the amount as 544 

well as the volume of deciduous trees, such as aspen.  545 

 546 

4.3. Stand-level studies 547 

The majority of scientific studies on aspen mapping at the stand level were performed in North 548 

America, where quaking aspen forms extensive pure stands. In particular, a recent phenomenon, 549 

referred to as sudden aspen decline, characterised by rapid overstory mortality with little to no 550 

understory regeneration (e.g., Singer et al., 2019), has resulted in numerous efforts to map aspen 551 

ecosystems in western parts of North America. Despite few studies related to European aspen, the 552 
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examples presented here can provide a general view on the possibilities and constraints of different 553 

remote sensing methods in mapping aspen occurrence and dynamics at spatial scales coarser than 554 

individual tree-level (Table 1). 555 

ALS- and UAS-based methods can provide estimates of tree density, basal area and aboveground 556 

biomass. In addition to individual tree detection, Alonzo et al. (2018) collected forest inventory 557 

variables at the plot-level using a UAS-based approach (see section 4.2). The accuracy of tree density, 558 

basal area and above-ground biomass estimates was somewhat variable. For example, quaking aspen 559 

basal area was accurately estimated, whereas the aboveground biomass of quaking aspen and other 560 

broadleaf species was frequently overestimated at the expense of white spruce (P. glauca (Moench) 561 

Voss). In Finland, Pippuri et al. (2013) predicted species-specific basal areas in urban forest for seven 562 

dominant species, including European aspen, using ALS data and aerial images. Their results showed 563 

that separation of different deciduous tree species based on aerial images and ALS metrics is difficult. 564 

The accuracy of basal area estimates for European aspen was considerably lower compared to those 565 

for dominant coniferous species. 566 

Aerial images can provide detailed information on forest stands at local and landscape scales. For 567 

example, Strand et al. (2012) mapped local dynamics of quaking aspen in Idaho over nearly four 568 

decades using aerial images. Stand structure was visible in the colour and infrared aerial images, but 569 

stands were difficult to delineate in older black and white images, a factor that complicated 570 

comparisons from one time period to another. They could also detect quaking aspen regeneration on 571 

the edges of stands, whereas regeneration in the understory was more difficult to assess. Di Orio et 572 

al. (2004) used historic and recent aerial images to study the density and fragmentation of quaking 573 

aspen in California over the past 50 years. The accuracy of aerial image interpretation was 85%, 574 

which is partly related to the fact that quaking aspen was the only commonly found deciduous tree in 575 

the study area. Heyman et al. (2003) mapped quaking aspen in central Oregon from colour-infrared 576 

aerial images using a segmentation approach into three general classes (no aspen, minor, 577 

predominant) with 88% overall accuracy. Due to the possibility to fly low-cost and on-demand, UAS 578 
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systems are particularly useful in acquiring data from areas affected by natural or anthropogenic 579 

disturbances. Aicardi et al. (2016) performed UAS-based change detection of vegetation after a stand-580 

replacing forest fire in northern Italy. Multitemporal high-resolution digital surface models derived 581 

from ALS data and RGB imagery provided efficient detection of agamic regeneration of European 582 

aspen in the disturbed areas with no aboveground canopy layer.  583 

Advances in imaging spectroscopy have allowed even examination of species genetic variation. 584 

Madritch et al. (2014) combined airborne AVIRIS imaging spectroscopy data with genetic, 585 

phytochemical, microbial and biogeochemical data to study how genetic variation of quaking aspen 586 

influences below-ground processes at landscape-level. Aspen genotypes were discriminated with 587 

nearly 80% accuracy, and the authors suggested that imaging spectroscopy provides a useful tool for 588 

mapping aspen genotypes and identifying areas of high or low genetic and chemical diversity in 589 

natural forests.  590 

Satellite images enable mapping vegetation dynamics over wide geographical extents. Sankey 591 

(2009) detected changes in regional cover of quaking aspen using multispectral Landsat TM5 imagery 592 

in a coniferous forest area interspersed with aspen patches in Idaho. The classification was based on 593 

summer and fall images and took advantage of aspen phenology compared to the coniferous trees. 594 

The overall accuracy of aspen presence/absence classifications was 92-93%. Using similar satellite 595 

data, Sankey (2012) reported that fusing ALS data with the NDVI-based classification improved the 596 

overall classification accuracies from 92% to 96%. Similarly, Bergen and Dronova (2007) identified 597 

the extent of aspen-dominated cover type including quaking aspen and bigtooth aspen (Populus 598 

grandidentata Michx.) in upper Great Lakes region using Landsat ETM+ leaf-on and leaf-off data 599 

with UA and PA of 86-93%. Chubey et al. (2006) utilised high-resolution panchromatic and 600 

multispectral IKONOS imagery in mapping forest stands in Alberta, Canada. Quaking aspen occurred 601 

in the region in pure stands and mixed with conifers, and UA and PA for aspen class were 89-100%.  602 

Satellite images were also utilised for mapping vegetation health. Oukrop et al. (2011) studied 603 

healthy, damaged and seral stand types of quaking aspen to determine the extent of aspen decline in 604 
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Utah. The areas with aspen cover were defined from aerial images, and Landsat 5 TM images were 605 

utilised to map different aspen classes with an overall accuracy of 81%. Hall et al. (2014) studied 606 

changes in leaf area index (LAI) that resulted from insect defoliation in boreal aspen stands in 607 

northern Alberta using Landsat ETM+ images and field data. There was a strong relationship between 608 

LAI and the satellite image, and they observed defoliation for the study sites that included relatively 609 

pure stands of quaking aspen and balsam poplar (Populus balsamifera L.). Further, Boyd et al. (2019) 610 

examined the impact of climate and damage by the aspen epidermal leaf miner (Phyllocnistis 611 

populiella) on aspen productivity and physiology in Alaska using remote sensing indices of 612 

vegetation productivity (NDVI) acquired from GIMMS3g, MODIS Aqua, MODIS Terra and Landsat 613 

5, 7 and 8. 614 

 615 
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Table 1. Tree-level and stand-level studies on mapping aspen (P. tremula, P. tremuloides, Populus spp.) using different remote sensing techniques. 616 

 617 

  Species  Platform Data type  Spectral range    Pixel size    Pulse density Accuracy estimate 

    µm (nr of bands)   m    pts/m2  

Tree-level             

Alonzo et al. (2018) QA  UAS PPC, RGB B, G, R (3) 0.019–0.027    UA = 83%, PA = 74% 
Breidenbach et al. (2010) EA  AIR ALS, MI G, R, NIR, PAN (4) 0.275 -0.86  7.4 High RMSE 
Dalponte et al. 2009 PO  AIR HI  0.40–0.99 (126) 1   UA = 80–90% 
Erikson (2004) EA  AIR CIR  0.60–0.90 (3) 0.03-0.1  UA = 63%, PA = 71% 
Franklin and Ahmed (2017) QA  UAS MI  0.49–0.90 (6) 0.11   UA & PA = 100% 

Jones et al. (2010) QA, PO  AIR ALS, HI  0.40–2.50 (492) 2  0.4 UA & PA < 34%; UA = 82%, PA = 98% 

Li et al. (2013) QA  AIR ALS      90 UA = 74%, PA = 76% 

Ørka et al. (2007) EA  AIR ALS      5.09 UA = 56%, PA = 24% 

Roth et al. (2015a) PO  AIR HI 0.35–2.50 (224) 4    UA = 84%, PA = 87% 

Roth et al. (2015b) PO  AIR HI  0.35–2.50 (224) 4; 20; 40; 60   UA = 83–100%, PA = 71–96% 

Saarinen et al. (2018) EA  UAS HI, PPC, RGB  0.50–0.90 (22) 0.10; 0.25   High RMSE 

Säynäjoki et al. (2008) EA  AIR ALS, MI G, R, NIR, PAN (4) 0.25  3.86 OA = 79% 

Tuominen et al. (2018) EA  UAS HI, PPC, RGB 0.4–1.60 (60) 0.015–0.20  UA = 86%, PA = 63% 
Stand-level           
Aicardi et al. (2016) EA  UAS, AIR ALS, RGB  R, G, B (3) 0.30  0.5-10 Efficient detection of vegetation dynamics  
Bergen and Dronova (2007) QA, PO  SAT MI  0.63–0.90; 1.55–1.75 (3) 30   UA = 87-93%, PA= 86-91% 
Boyd et al. 2019 QA SAT MI 0.63-0.90 (2) 30; 250; 0.07°   Detection of productivity/physiology changes 

Chubey et al. 2006 QA SAT MI  0.45 -0.85 / PAN 1; 4   UA = 100%, PA = 89% 

Di Orio et al. (2004) QA AIR AI (n.d.)  n.d. ≤3   OA = 85% 

Hall et al. 2014 QA, PO SAT MI  0.77–0.90; 1.55–1.75 (2) 30   n.d. 

Heyman et al. (2003) QA AIR CIR  G, R, NIR (3) 1–2   OA = 88% 

Madritch et al. (2014) QA AIR HI  0.41–2.45 (224) 15–18   OA = 80% 

Oukrop et al. (2011) QA AIR, SAT CIR, MI  G, R, NIR (3); 0.45–0.90;  1   OA = 81% 

      1.55–1.75; 2.08–2.35 (6) 30    

Pippuri et al. (2014) EA AIR ALS, MI  B, G, NIR, PAN (4) 0.15  1.56 Low compared to dominant species 
Sankey (2009) QA SAT MI  0.52–0.90; 1.55–1.75 (4) 30   OA = 92-93% 
Sankey (2012) QA AIR; SAT ALS, MI  0.52–0.90; 1.55–1.75 (4) 30  5.6 OA = 92-96% 
Strand et al. (2012) QA AIR CIR, PAN, RGB  B, G, R, NIR, PAN 1–2   Visual interpretation  

  Species: EA = European aspen, PO = other Populus species, QA = quaking aspen; Platform: AIR = aircraft, SAT = satellite, UAS = unmanned aerial system; Data type: AI = aerial  
imagery, ALS = airborne laser scanning, CIR = color-infrared (false-color) imagery, HI = hyperspectral imagery, MI = multispectral imagery, n.d. = no data, PAN = panchromatic  
imagery, PPC = photogrammetric point cloud, RGB = red-green-blue (natural color) imagery; Spectral range: B = blue, G = green, R = red, NIR = near-infrared; Accuracy estimate:  
OA = overall accuracy, PA = producer’s accuracy, RMSE = root mean square error, UA = user’s accuracy 

618 
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5. Discussion and conclusions 619 

The European aspen has a high conservation value in boreal forests. This feature is due to the large 620 

number of species they host compared to the predominant coniferous trees. Our review highlights 621 

that the role of aspen as a keystone species in boreal ecosystems has received increasing attention. 622 

Negative effects of modern forest management methods and heavy browsing on occurrence, 623 

regeneration and long-term persistence of aspen in forest landscapes have been recognised (e.g., 624 

Kouki et al., 2004; Edenius et al., 2011). However, there is relatively little spatiotemporal information 625 

on the occurrence and distribution of European aspen at local, landscape or regional scales. This 626 

deficit can seriously hinder biodiversity assessments and planning, implementation and monitoring 627 

of alternative forest management measures, and conservation efforts. 628 

As highlighted by ecological studies, spatially explicit data are needed in order to study aspen 629 

abundance, spatial distribution and arrangement, occurrence of large/old trees, long-term occurrence 630 

dynamics and aspen regeneration. Forthcoming aspen studies that utilise these data will help us to 631 

better understand the current status of different aspen-associated species and their populations and 632 

predict their future state. Such information should cover both protected areas—where a great 633 

proportion of aspen-related research has already been conducted—as well as managed forests, which 634 

characterise the majority of boreal landscape in Europe. In the field of remote sensing, recent 635 

developments have provided new opportunities for acquiring more detailed information on the 636 

occurrence and distribution of tree species, and characteristics of individual trees and stands 637 

(Dalponte et al., 2013; Fassnacht et al., 2018; Beland et al., 2019). This information, alone or in 638 

combination with other ecological data, can provide spatially explicit indicators for biodiversity and 639 

ecosystem assessments, among other information (Vihervaara et al., 2015; Mononen et al., 2018; 640 

Pettorelli et al., 2018). 641 

Aspen was mapped with various success by different remote sensing studies reviewed here. In the 642 

case of individual tree detection, the major challenges were the low proportion of European aspen in 643 

Fennoscandian forest landscapes and the overlap of spectral and/or structural properties of European 644 
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aspen and quaking aspen with other tree species. Due to different research methods and various tree 645 

species composition, comparison of different studies is not straightforward. However, the results 646 

suggest that especially three-dimensional structural information derived from high-density ALS data 647 

or photogrammetric point clouds, and airborne imaging spectroscopy, hold significant potential for 648 

tree species mapping (Dalponte et al., 2009; Jones et al., 2010; Li et al., 2013; Roth et al., 2015b; 649 

Alonzo et al., 2018). The studies also indicate that combining spectral data with three-dimensional 650 

data can noticeably improve species detection at the individual tree level and stand level. Thus, remote 651 

sensing with repeated monitoring should be utilized to fulfill the current need of studies on landscape 652 

dynamics considering rotation lengths, succession and persistence of key species. 653 

In addition to species discrimination, remote sensing can provide information on biophysical and 654 

biochemical properties of vegetation (Roberts et al., 2004). For example, knowledge about individual 655 

tree properties, including tree height, crown dimensions and biomass, can help predict the potential 656 

occurrence and distribution of species often associated with large/old aspen trees. Mapping aspen 657 

regeneration is difficult except in post-disturbance areas without dense canopy cover (see Aicardi et 658 

al., 2016). Distinct spectral signatures can identify vegetation stress (Ustin et al., 2009). These 659 

observations enable detection of major disturbances on aspen populations caused by insect herbivory, 660 

pathogens or drought, among others (Oukrop et al., 2011; Hall et al., 2013). Furthermore, recent 661 

research indicates that imaging spectroscopy data are suitable for mapping species genotypes and for 662 

identifying areas of high or low genetic diversity (Madritch et al., (2014). Yamasaki et al. (2018) 663 

recommend that future research that combines genomics with remote sensing could help monitoring 664 

and predicting ecosystem dynamics. These findings will be particularly interesting to better 665 

understand aspen’s role in boreal ecosystems. 666 

Suitability of remote sensing data for biodiversity mapping and monitoring is also determined by 667 

geographical coverage, availability of multitemporal data and costs of data acquisition. For example, 668 

high-resolution hyperspectral and three-dimensional structural data can be acquired on-demand using 669 

a UAS, but this approach is only suitable for local-scale studies. Airborne hyperspectral and ALS 670 
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data acquisition by plane over larger areas (landscape scale) is typically conducted by service 671 

providers (Beland et al., 2019). Although hyperspectral and lidar airborne sensors have developed a 672 

lot over the past years, the data prices remain relatively high compared to traditional aerial and 673 

multispectral satellite images. This factor prevents more extensive exploitation of the data. Several 674 

spaceborne imaging spectrometers are currently under development; they should provide for the first 675 

time global coverage of hyperspectral data for vegetation mapping, although in coarser resolution 676 

compared to airborne data (Lee et al., 2015; Roth et al., 2015b). An important feature of spaceborne 677 

data is the continual availability of multitemporal and seasonal data. Utilising seasonal spectral data 678 

enables monitoring vegetation dynamics, provides valuable information for species detection and 679 

improve tree species classifications, as indicated by the reviewed studies. Furthermore, a recently 680 

developed multispectral laser scanning technique, which provides a dense point cloud together with 681 

spectral information, may have significant potential in tree species detection in the future (Yu et al., 682 

2017; Budei et al., 2018; Beland et al., 2019).  683 

Currently, increasing spatial, spectral and temporal resolutions—and the availability of three-684 

dimensional data—have brought remote sensing research closer to the scales of ecological research. 685 

Communication between experts in different research fields can foster innovations, generate new 686 

research directions and accelerate the development of new remote sensing products suitable for 687 

mapping different ecological features or biodiversity indicators (Pettorelli et al., 2018; Wang & 688 

Gamon 2019). In the case of aspen in boreal forests, or any other key ecological feature, collaboration 689 

between the disciplines of ecology, conservation science and remote sensing will improve the 690 

potential for remote sensing data to support biodiversity monitoring and management. Integration of 691 

ecological datasets with remote sensing data describing aspen occurrence and characteristics is a key 692 

for understanding the current and future distribution patterns of aspen-related biodiversity.  693 

 694 
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