1,455 research outputs found

    COLLABORATIVE MULTI-SCALE 3D CITY AND INFRASTRUCTURE MODELING AND SIMULATION

    Get PDF

    Collaborative multi-scale 3D city and infrastructure modeling and simulation

    Get PDF
    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future

    Parametric Design and Isogeometric Analysis of Tunnel Linings within the Building Information Modelling Framework

    Get PDF
    Both planning and design phase of large infrastructural project require analysis, modelling, visualization, and numerical analysis. To perform these tasks, different tools such as Building Information Modelling (BIM) and numerical analysis software are commonly employed. However, in current engineering practice, there are no systematic solutions for the exchange between design and analysis models, and these tasks usually involve manual and error-prone model generation, setup and update. In this paper, focussing on tunnelling engineering, we demonstrate a systematic and versatile approach to efficiently generate a tunnel design and analyse the lining in different practical scenarios. To this end, a BIM-based approach is developed, which connects a user-friendly industry-standard BIM software with effective simulation tools for high-performance computing. A fully automatized design-through-analysis workflow solution for segmented tunnel lining is developed based on a fully parametric design model and an isogeometric analysis software, connected through an interface implemented with a Revit plugin

    An integrated platform for design and numerical analysis of shield tunnelling processes on different levels of detail

    Get PDF
    Building and construction information modelling for decision making during the life cycle of infrastructure projects are vital tools for the analysis of complex, integrated, multi-disciplinary systems. The traditional design process is cumbersome and involves significant manual, time-consuming preparation and analysis as well as significant computational resources. To ensure a seamless workflow during the design and analysis and to minimise the computation time, we propose a novel concept of multi-level numerical simulations, enabling the modelling on different Levels of Detail (LoDs) for each physical component, process information, and analysis type. In this paper, we present SATBIM, an integrated platform for information modelling, structural analysis and visualisation of the mechanised tunnelling process for design support. Based on a multi-level integrated parametric Tunnel Information Model, numerical models for each component on different LoDs are developed, considering proper geometric as well as material representation, interfaces and the representation of the construction process. Our fully automatic modeller for arbitrary tunnel alignments provides a high degree of automation for the generation, the setup and the execution of the simulation model, connecting the multi-level information model with the open-source simulation software KRATOS. The software of SATBIM is organized in a modular way in order to offer high flexibility not only for further extensions, but also for adaptation to future improvements of the simulation software. The SATBIM platform enables practical, yet flexible and user-friendly generation of the tunnel structure for arbitrary alignments on different LoDs, supporting the design process and providing an insight into soil-structure interactions during construction

    Computationally efficient simulation in urban mechanised tunnelling based on multi-level BIM models

    Get PDF
    The design of complex underground infrastructure projects involves various empirical, analytical or numerical models with different levels of complexity. The use of simulation models in current state-of-the-art tunnel design process can be cumbersome when significant manual, time-consuming preparation, analysis and excessive computing resources are required. This paper addresses the challenges connected with minimising the user workload and computational time, as well as enabling real-time computations during the construction. To ensure a seamless workflow during design and to minimise the computation time of the analysis, we propose a novel concept for BIM-based numerical simulations, enabling the modelling of the tunnel advance on different levels of detail in terms of geometrical representation, material modelling and modelling of the advancement process. To ensure computational efficiency, the simulation software has been developed with special emphasis on efficient implementation, including parallelisation strategies on shared and distributed memory systems. For real-time on-demand calculations, simulation based meta models are integrated into the software platform. The components of the BIM-based multi-level simulation concept are described and evaluated in detail by means of representative numerical examples

    From Analysis of Information Needs towards an Information Model of Railway Infrastructure

    Get PDF
    Railway is a tightly coupled network, where the operations are directly effected by the condition of rail infrastructure. With the advancement of ICT, a railway network exploit various computerized systems for efficient railway monitoring, maintenance and operations. However, these systems suffer from number of limitations, mainly, the data related to each asset type (e.g. Track, Bridge, etc) are stored in separate database management system. Such scattered and isolated nature of data present the island of information, while making it impossible to perform the sound decision analysis. In this paper, we propose a nework wide information model of railway infrastructure that structure the railway object, specify their properties and identify their inter-relationships. The presented information model supports the railway monitoring, maintenance and operations by providing the layout of railway infrastructure. Structuring data in the form of railway assets, railway risk assessment, railway load management, railway maintenance, and railway failure will provide a solid base to railway stakeholders, e.g. infrastructure managers, to take informed decisions based on data properties

    A new governance approach for multi-firm projects: lessons from Olkiluoto 3 and Flamanville 3 nuclear power plant projects

    Get PDF
    We analyze governance in two contemporary nuclear power plant projects: Olkiluoto 3 (Finland) and Flamanville 3 (France). We suggest that in the governance of large multi-firm projects, any of the prevalent governance approaches that rely on market, hierarchy, or hybrid forms, is not adequate as such. This paper opens up avenues towards a novel theory of governance in large projects by adopting a project network view with multiple networked firms within a single project, and by simultaneously going beyond organizational forms that cut across the traditional firm–market dichotomy. Our analysis suggests four changes in the prevailing perspective towards the governance of large projects. First, there should be a shift from viewing multi-firm projects as hierarchical contract organizations to viewing them as supply networks characterized by a complex and networked organizational structure. Second, there should be a shift in the emphasis of the predominant modes of governance, market and hierarchy towards novel governance approaches that emphasize network-level mechanisms such as self-regulation within the project. Third, there should be a shift from viewing projects as temporary endeavors to viewing projects as short-term events or episodes embedded in the long-term sphere of shared history and expected future activities among the involved actors. Fourth, there should be a shift from the prevailing narrow view of a hierarchical project management system towards an open system view of managing in complex and challenging institutional environments

    Model-driven software engineering for construction engineering: Quo vadis?

    Get PDF
    Models are an inherent part of the construction industry, which leverages from the steady advancements in information and communication technology. One of these advancements is Building Information Modeling (BIM), which denotes the move from 2D drawings to having semantically rich models of the objects subject to construction. Additionally, the way stakeholders collaborate in construction projects and their organization is revisited. This is commonly denoted as Integrated Project Delivery (IPD). Both BIM and IPD originate from the basic principles of Lean Construction, the vision to minimize waste, increase value, and continuous improvement. The application of Model-driven Software Engineering (MDSE) to BIM is a natural choice. Although several approaches utilizing MDSE for BIM have been proposed, so far no structured overview of the current state of the art has been conducted. Such an overview is vitally needed, because the existing literature is fragmented among multiple research areas. Consequently, in this paper, we present a systematic literature review on the application of MDSE to BIM, IPD and Lean Construction resulting in a systematically derived taxonomy, which we used to classify 97 papers published between 2008 and 2018. Based on the taxonomy, we provide an analysis of the classified research showing (a) where the discourse on model-driven construction engineering currently is, (b) the state of the art of model-driven techniques in construction engineering and (c) open research challenges

    Integrated parametric multi-level information and numerical modelling of mechanised tunnelling projects

    Get PDF
    This paper presents a concept for parametric modelling of mechanized tunnelling within a state of the art design environment, as the basis for design assessments for different levels of details (LoDs). To this end, a parametric representation of each system component (soil with excavation, tunnel lining with grouting, Tunnel Boring Machine (TBM) and buildings) is developed in an information model for three LoDs (high, medium and low) and used for the automated generation of numerical models of the tunnel construction process and soil-structure interaction. The platform enables a flexible, user-friendly generation of the tunnel structure for arbitrary alignments based on predefined structural templates for each component, supporting the design process and at the same time providing an insight into the stability and safety of the design. This model, with selected optimal LoDs for each component, dependent on the objective of the analysis, is used for efficient design and process optimisation in mechanized tunnelling. Efficiency and accuracy are further demonstrated through an error-free exchange of information between Building Information Modelling (BIM) and the numerical simulation and with significantly reduced computational effort. The interoperability of the proposed multi-level framework is enabled through the use of an efficient multi-level representation context of the Industry Foundation Classes (IFC). The results reveal that this approach is a major step towards sensible modelling and numerical analysis of complex tunnelling project information at the early design stages

    BIM implementation for infrastructure projects: Methods and tools for information modeling and management

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore