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ABSTRACT 23 

This paper presents a concept for parametric modelling of mechanized tunnelling within a state of 24 

the art design environment, as the basis for design assessments for different levels of details (LoDs). 25 

To this end, a parametric representation of each system component (soil with excavation, tunnel 26 

lining with grouting, Tunnel Boring Machine (TBM) and buildings) is developed in an information 27 

model for three LoDs (high, medium and low) and used for the automated generation of numerical 28 

models of the tunnel construction process and soil-structure interaction. The platform enables a 29 

flexible, user-friendly generation of the tunnel structure for arbitrary alignments based on 30 

predefined structural templates for each component, supporting the design process and at the same 31 

time providing an insight into the stability and safety of the design. This model, with selected 32 

optimal LoDs for each component, dependent on the objective of the analysis, is used for efficient 33 

design and process optimisation in mechanized tunnelling. Efficiency and accuracy are further 34 

demonstrated through an error-free exchange of information between Building Information 35 

Modelling (BIM) and the numerical simulation and with significantly reduced computational effort. 36 

The interoperability of the proposed multi-level framework is enabled through the use of an 37 

efficient multi-level representation context of the Industry Foundation Classes (IFC). The results 38 

reveal that this approach is a major step towards sensible modelling and numerical analysis of 39 

complex tunnelling project information at the early design stages.  40 

 41 
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1. INTRODUCTION 45 

With increasing urbanisation and mobility, the need for underground tunnel facilities becomes 46 

evident. The efficient and safe design and construction of mechanised tunnels involves complex 47 

data management incorporating information not only about the tunnel structure, but also about the 48 

existing built infrastructure, the ground and the boring machine. In early design phases, crucial 49 

decisions have to be made, for example, on the alignment of the tunnel track in order to minimise 50 

the risks of settlement induced damage to existing buildings. This task can now be supported by 51 

sophisticated, process-oriented finite element (FE) analysis. However, the required FE models are 52 

characterised by a high degree of detail at high costs of preparation and computational effort 53 

preventing them from being readily applied during what-if scenario analyses at early design stages.  54 

The appraisal of different design alternatives is essential for ensuring optimal designs. Assessing 55 

the effects of various alternatives for tunnelling projects on the surrounding environment is a multi-56 

disciplinary and complex problem. The current state of the art process is cumbersome and requires 57 

significant computing resources and time (sophisticated simulations including all details can take 58 

days or weeks to complete). This often leads to sub-optimal solutions which are not optimal in their 59 

effect on the existing infrastructure. However, at the conceptual phase, a designer often only needs 60 

approximate estimations for number of different scenarios, e.g. tunnel track alternatives. To ensure 61 

a seamless workflow, the computation time should be minimised. If preliminary analysis (with 62 

consideration of uncertainties) indicates potential hazards, a more detailed evaluation of the model 63 

is required. 64 

BIM has gained increasing attention in complex infrastructure projects, simplifying the planning 65 

and analysis and increasing productivity in design and construction. In tunnelling applications, the 66 

BIM concept has been used to create a tunnel information modelling framework that creates and 67 

interlinks a ground model, a tunnel lining model, a tunnel boring machine model and a built 68 

environment model [1]. Furthermore, a multi-level information representation of the built 69 

environment has been developed to support planning and analysis tasks [2]. The use of Industry 70 

Foundation Classes (IFC) enables open data exchange between several BIM software and provides 71 

a high level of compatibility [3]. The IFC standard was originally developed for the modelling of 72 

buildings and has recently been [4] extended to other fields of application in civil engineering, 73 

including bridges [5], roads [6] and tunnels [1, 7]. Nevertheless, despite 20 years of continuous 74 

development and the fact that over 200 software tools are using IFC, the interoperability issues, 75 

such as data loss and misrepresentation, are still problematic in practical projects [3]. 76 

As the project dimensions in tunnelling projects significantly exceed those in building projects, the 77 

concept of multi-scale modelling using several level of details (LoDs) has been proposed [8, 2].  78 
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Borrmann et al. [8], for example, present a comprehensive concept for incorporating multi-scale 79 

representations with shield tunnel models to efficiently link BIM with Geographical Information 80 

Systems (GIS). Their approach uses spatial IFC elements for low LoD representations and physical 81 

IFC elements for the highest LoD representations. Very recently, Abualdenien and Bormann [9] 82 

have presented an approach to support the continuous refinement of a building from the conceptual 83 

to the detailed design stages using a multi-LOD meta-model. While the purpose of this meta-model 84 

is to ensure the consistency of both the geometric and the semantic information as well as the 85 

topological coherence across different LoDs within the information model, a link to a multi-LoD 86 

numerical model is not considered.  87 

As opposed to the concept of level of development (LOD), or level of model definition (LOMD), 88 

that has been introduced by the American Institute of Architects (AIA) in collaboration with the 89 

American BIMForum [10, 11], this paper refers to level of detail, LoD. According to BIMForum 90 

(2013), LoD defines how much detail is included in the model element, whereas LOD defines the 91 

degree to which the element’s geometry and semantic information have been thought through in 92 

the development process. LOD, in this sense, specifies the reliability and maturity of information 93 

in the model along the design process. In summary, this paper does not focus on the model 94 

development process, but on the degree of detail that is captured for both geometry (level of 95 

geometry – LOG) and semantic information (level of information – LOI) for each of the system 96 

components. 97 

In current engineering practice, the proof of tunnel design is often carried out by employing 98 

numerical simulations [12, 13, 14]. These models are usually generated based on design documents 99 

and reports. Even if the underlying information needed for numerical analysis is stored in a BIM, 100 

the translation from an information model to a computational model is still dominated by manual 101 

work. Such an approach therefore incurs significant effort carried out by experts, and is furthermore 102 

susceptible to human error. Hence, it is evident that an automated link between information 103 

management (in the form of a BIM) and numerical analysis is necessary. Such a link will enable 104 

the continuous, error-free exchange of information between BIM and numerical simulation for the 105 

stages of design, construction, and operation of a project. 106 

In the field of structural analysis, the link between information and numerical models has been 107 

recently addressed in [15, 16, 17, 18, 19] where FE methods and Isogeometric Analysis (IGA) are 108 

applied for the assessment of the structural behaviour. In tunnelling application, the first attempt of 109 

linking BIM and structural assessment by means of numerical modelling is presented in [20, 21, 110 

22], where data obtained from a Tunnel Information Model (TIM) [23] is used for the automated 111 
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generation of a numerical model for a real-world tunnelling project, the Wehrhahn metro line in 112 

Dusseldorf. 113 

Based on the above, it can be stated that there have been several successful attempts to (1) 114 

demonstrate the need of a multi-LoD information model, and (2) automate the link from an 115 

information model to a numerical model at one particular LoD. What is still missing is the link 116 

between, or integration of, a multi-LoD information model and a corresponding multi-LoD 117 

numerical model. As mentioned before, this link is required to ensure a seamless design-assessment 118 

workflow, with optimised modelling and computation time, for certain design stages.  For this 119 

reason, this paper presents a concept for Simulations for multi-level Analysis of interactions in 120 

Tunnelling based on the Building Information Modelling technology “SATBIM”. This forms the 121 

basis for multi-level structural analysis of the settlement behaviour [24]. To this end, parametric 122 

representations for each of the system components (tunnel lining with grouting, soil with 123 

excavation, existing buildings, and tunnel boring machine (TBM)) are developed for three different 124 

Levels of Detail.  125 

This parametric information model is then used to automatically generate numerical models to 126 

simulate the tunnel construction process taking into account appropriate LoDs per component and 127 

dependent on the current design objective. Finally, the integration of multiple LoD configurations 128 

into a single IFC file is implemented for each component to enable reusability of the model in the 129 

context of BIM. The proposed concept is implemented using Autodesk Revit and Dynamo, [25], 130 

and tested in a what-if scenario analysis for a small tunnelling project.  131 

2. METHODOLOGY 132 

2.1 Parametric multi-level modelling in urban tunnelling 133 

The main idea of the SATBIM concept is to dynamically generate simulation models from a multi-134 

level information model at the required LoD for the specific problem to be solved. For example, 135 

minimising the overall risk of damage to buildings induced by tunnelling needs high LoD for 136 

structures and topology of the soil, however for the lining structure and its installation process, a 137 

lower LoD is sufficient to achieve high accuracy of the solution (see Fig. 1, red arrows). For the 138 

assessment of the stability of the excavated soil, high LoD is required for the soil representation, 139 

medium for the lining structure, while the building can be represented at the low LoD, e.g.  140 

surcharge load (see Fig. 1, blue dotted arrows). On the other hand, estimating stresses in the tunnel 141 

structure needs low LoD for buildings and high LoD for lining and its installation process, while 142 

surface topology of the soil is not necessary for the accuracy of the results (see Fig. 1, black dashed 143 

arrows). 144 
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 145 

Figure 1:   Alternatives for selection of LoDs for individual components based on the objective of 146 

the analysis 147 

The shield-supported tunnel advance beneath groundwater table in soft soil requires permanent 148 

support of the surrounding underground to prevent the groundwater from flowing into the 149 

construction site. A realistic model to be applied during the design and construction phase has to 150 

represent all components of the tunnelling process relevant for the prognosis of the response of the 151 

surrounding soil during excavation. These components include:  152 

 soil and excavation domain,  153 

 segmental lining with the support measures applied at the tunnel face and at the tail void,  154 

 tunnel boring machine (TBM), and 155 

 existing infrastructure.  156 

For each component three LoDs are defined: low (LoD 1), medium (LoD 2) and high (LoD 3). In 157 

general, the LoD 1 has no volumetric representation of the components, since in the corresponding 158 

numerical model, components are not represented with structural models but instead with the 159 

analytical or empirical models assigned through a set of boundary conditions. The medium LoD 160 

defines for each component a volumetric representation, where the component is “occupying” the 161 

exact volume; however the geometry is simplified. Finally, the highest LoD includes more detail 162 

about the actual geometry of the component. However, components such as TBM still do not 163 

include details of the machinery and the equipment inside the shield, and therefore, an even higher 164 

representation (LoD 4) could be introduced as an extension. 165 
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For each component and each LoD, a template of the corresponding component is defined. In order 166 

to keep consistency between different LoDs, parametric consistency is defined as shown in Fig. 2. 167 

The full set of parameters defining a component is needed for the definition of the highest LoD 168 

(LoD 3), while only a subset of the same list is used for the definitions of medium and lower LoD 169 

(LoD 2, LoD 1), respectively. 170 

 171 

Figure 2:   Parametric multi-level modelling: parametric consistency between different LoDs for 172 

individual components. 173 

Combining all selected components at the selected LoDs (lining with its alignment and grouting, 174 

soil with excavation, TBM, and buildings), the complete tunnel information model is generated as 175 

shown in Figure 3. For each component, individual local parameters (LoD, geometrical and 176 

material parameters) are defined. On the other hand, there are also global parameters that are shared 177 

by multiple components such as ring length, excavation radius, number of steps/slices, overburden, 178 

etc.  Further extensions for the multi-level representation of parametric components in the IFC 179 

format are presented in Section 2.6. 180 

 181 

                              (a)                                            (b)                                           (c) 182 
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Figure 3:   Multi-level tunnel information and numerical modelling. (a) Combining sub-models 183 

based on local and global parameters. (b) Integrated tunnel information model. (c) Generated 184 

numerical model 185 

2.2 Modelling of the soil 186 

Tunnelling projects are often characterised by complex geological conditions, where the 187 

construction is conducted through different, non-homogeneous geological layers under the ground 188 

water level. A ground model is developed based on ground investigations using boreholes and trial 189 

pits, commonly complemented by in situ testing and geophysical surveys, as appropriate to local 190 

needs and circumstances. Nowadays, tunnel project data including geotechnical information 191 

(geometry, topology, and attribute information such as groundwater data, associated geotechnical 192 

parameters, etc.) is stored either in 3D Geographic Information System (GIS) models [26, 27] or 193 

Geo Building Information Models (GeoBIM) [28]. GeoBIM has been developed to not only enable 194 

the management of subsurface construction, but also to support geo-related (subsurface) data, such 195 

as geological, hydro-geological and geotechnical objects and properties [28]. 196 

In numerical simulations of the mechanised tunnelling process, one of the most important 197 

requirements is the proper modelling of the soil behaviour, including complex hydraulic conditions. 198 

In relatively simple numerical models for the soil-structure interactions in tunnelling, the soil is 199 

represented by a set of boundary conditions. This is the case in the subgrade reaction model for the 200 

analysis of tunnel lining [29, 30] or the modelling of buildings with, for example, the Limiting 201 

Tensile Strain Method (LTSM) [31] or the Winkler beam method. For a more detailed 202 

representation of the tunnel construction with soil excavation, an explicit soil model with proper 203 

constitutive framework for the description of the hydraulic behaviour of the soil, as well as a 204 

realistic description of the material (stress-strain) response of the soil skeleton, is required. 205 

2.2.1 Geometrical and numerical modelling 206 

In terms of geometric and physical modelling of the soil, SATBIM approach offers all previously 207 

mentioned modelling variants, from simple representation of the soil with sets of boundary 208 

conditions to models considering multi-phase composition of the soil as well as accurate 209 

geometrical representation. 210 
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Figure 4:   Representation of the soil in information and numerical models on different LoDs. 211 

Soil LoD 1. For the representation of the soil, a subgrade reaction model is adopted, where the soil 212 

is represented by infinitely thin, uncoupled springs neglecting the soil-structure interaction and the 213 

weight of the excavated soil (Fig. 4, LoD 1). The linear elastic subgrade reaction is obtained if the 214 

springs are linear (𝑝 =  𝐾𝑠 ⋅  𝑢), where p is the pressure between the structure and the soil, Ks is 215 

the subgrade reaction modulus, and 𝑢 is the deformation. The subgrade reaction approach permits 216 

the development of elegant analytical solutions for determining the deformation of buildings, using 217 

the Winkler equation: 218 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
=  𝑞0(𝑥) − 𝑟(𝑥)  where  𝑟(𝑥) = 𝐵 ∙  𝐾ℎ  ∙ 𝑤(𝑥)    (1) 219 

where EI is the beam stiffness, B is the beam width, Kh is the coefficient of the horizontal subgrade 220 

reaction, while w(x) and q0(x) are the deflection of the beam and load functions, respectively. 221 

However, the challenge is to determine the subgrade reaction coefficient Ks, which cannot be 222 

measured directly. In a simple model proposed in [32] this coefficient is given as: 223 

𝐾𝑠 =
𝐸𝑠

𝐵∙𝐼𝑝(1−𝜐2)
          (2) 224 
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where Ip is the shape factor of the foundation. When determining the subgrade reaction modulus of 225 

the springs for the lining model, according to [33], the stiffness of the spring is assumed to depend 226 

on the stiffness of the soil Es, Poison’s ratio 𝜈 and the radius of the tunnel lining r: 227 

𝐾𝑠 =
𝐸𝑠

𝑟
 

1−𝜐

(1+𝜐)(1−2𝜐)
         (3) 228 

Soil LoD 2. In this LoD, the soil is represented by a structural finite element model, and the 229 

geometry, determined as a bounding box, is used to delimit the simulation model. The soil is 230 

modelled as a two-phase fully saturated material, accounting for the soil matrix and the pore water 231 

as distinct phases according to the theory of porous media (see [34, 35] for details). 232 

Soil LoD 3. In terms of numerical modelling, the same FE representation of the soil (two-phase 233 

soil model for fully saturated soils) as for LoD 2 is employed here. However, the geometry is 234 

defined using the actual CAD geometry containing soil or rock layers, their boundaries, and their 235 

geotechnical properties in a standard format for tunnel ground models as shown in Figure 4. 236 

Therefore, for the representation of individual layers, distinct volumes are available, and hence 237 

distinct FE meshes are generated. In future extensions, interface conditions can be assigned 238 

between distinct soil layers to model interactions, sliding and redistribution of pore water pressures 239 

on the soil layer interfaces. 240 

2.2.2 Material modelling 241 

Besides establishing a proper constitutive framework for the description of the hydraulic behaviour 242 

of the soil, a key feature of a model for tunnelling is a realistic description of the material (stress-243 

strain) response of the soil skeleton. 244 

Figure 5:   Examples for soil material models on different LoDs: a) LoD 1: Linear elastic model 245 

(Young modulus E, volumetric strain 𝜀𝜈, deviatoric stress invariant J); b) LoD 2: Mohr Coulomb 246 

Model; c) LoD 3: Yield surface of CASM in principal stress state and in the p’-q plane [36].  247 
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Depending on the type of the soil and available material testing for model calibration, different 248 

material models can be applied. If there is no knowledge about the material behaviour, the simplest 249 

soil model which can be applied is a linear-elastic model (LoD 1). Since elastic behaviour is 250 

unrealistic for soils, different elasto-plastic constitutive models are available in KRATOS: the Mohr 251 

Coulomb and the Drucker Prager models, which are preferably used for sandy soils (LoD 2); and 252 

the more general Clay and Sand Model (CASM), characterised by non-associative plasticity and 253 

Lode-angle dependent yield surfaces [36], which is well suited for clayey soil (LoD 3) (see Figure 254 

5). 255 

2.3 Modelling of the segmental lining 256 

The application of segmental lining as the final tunnel support and lining is a worldwide standard 257 

for shield tunnelling technology [37] as it fulfils the main construction requirements: i) to ensure 258 

the tunnel stability behind the shield; ii) enable short installation times and iii) provide abutment 259 

for the hydraulic jacks.  260 

Each tunnel project has special lining requirements, depending on the diameter, soil conditions and 261 

alignment to guarantee a safe and durable tunnel structure for an expected lifetime of 100 years or 262 

more. In order to allow for a high modularity and efficient procedures for the production and 263 

logistics of the linings, the solution that is often adopted is to employ universal rings (see Fig. 6a). 264 

In most cases, the universal segment ring is made of several segments of the same size and of one 265 

smaller segment - the key-stone - closing the ring. The universal ring is characterised by an average 266 

ring length Lr, inner and outer radius of the ring (rinner and router), an angle describing the tapered 267 

geometry of the ring α, and the number of segments and their sequence within the ring. 268 

2.3.1 Alignment 269 

The designed alignment of the tunnel is accomplished by adjusting the rotations of the rings as 270 

shown in Fig 6a. For the curved parts, the rings are placed by lining up the key segments; for 271 

straight parts the rings are switched from upward key to downward key. The relative positioning 272 

of keys can be varied to modify the curved radius. The curvature of the alignment that can be 273 

achieved, given the geometry of the universal ring and the design theoretical alignment, is shown 274 

in Fig. 6b. Even though the final rotation of the ring will be determined dynamically during the 275 

tunnel construction to follow the TBM, in this paper, we developed an algorithm that determines 276 

these ring positions based on the initial design path. This is so to mimic reality and provide the best 277 

assessment of the design, taking into account the fact that ring rotations significantly affect the 278 

structural behaviour [38]. 279 
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Figure 6:   Forming the tunnel alignment based on the universal ring geometry: a) tapered 280 

geometry of universal ring (6+1); b) design alignment vs. adaptive alignment from appropriate 281 

rotations of ring segments 282 

An algorithm for the calculation of the adaptive alignment has been developed. Based on the set of 283 

initial lining-ring centre-points and parameters Lr (ring length), α (ring continuity) and θ (rotation 284 

in ring plane), a new adjusted list of lining-ring centre-points is created by determining the rotation 285 

of the lining ring such that the centre-point of the adjusted lining-ring has minimal distance from 286 

the initial centre-points. As an output, a list of adjusted lining-ring centre-points (list points) and a 287 

list of locations of   ring rotations in the plane normal to the alignment (ring rotations) are stored. 288 

The number of possible rotations in plane and, consequently, the angle Δ𝜃 depends on the number 289 

of segments and position of joints. There are alternatives in the ring installation strategy, such that, 290 

for instance, the next ring can be turned only for one Δ𝜃  clockwise or anti-clockwise, or 291 

alternatively it can be turned in any of possible rotation in the plane. Regardless of the ring rotation 292 

strategy, for any 3D design alignment, it is possible to determine the adjusted alignment following 293 

the geometrical transformation outlined below. Starting with an initial ring and its centreline 294 

coordinate xn-1, yn-1, zn-1, and adding a new ring, we move to the new alignment point by a certain 295 

differential displacement 296 

𝑥𝑛 =  𝑥𝑛−1 + Δ𝑥𝑛       𝑦𝑛 =  𝑦𝑛−1 + Δ𝑦𝑛      𝑧𝑛 =  𝑧𝑛−1 + Δ𝑧𝑛    (4) 297 

This differential displacement depends on the geometrical properties Lr and α, as well as the rotation 298 

θ of the ring in the ring plane as follows 299 
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Δ𝑥𝑛 = 𝐿𝑟 ∙ 𝑐𝑜𝑠 (𝛽𝑛−1 +
𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛−1) +

𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛))300 

∙ 𝑐𝑜𝑠 (𝛾𝑛−1 +
𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛−1) +

𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛)) , 301 

Δ𝑦𝑛 = 𝐿𝑟 ∙ 𝑠𝑖𝑛 (𝛽𝑛−1 +
𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛−1) +

𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛))302 

∙ 𝑐𝑜𝑠 (𝛾𝑛−1 +
𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛−1) +

𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛)) , 303 

Δ𝑧𝑛 = 𝐿𝑟 ∙ 𝑐𝑜𝑠 (𝛽𝑛−1 +
𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛−1) +

𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛)) 304 

∙ 𝑠𝑖𝑛 (𝛾𝑛−1 +
𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛−1) +

𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛))          (5) 305 

We obtain the new inclination of the ring in the global coordinate system (in the XY plane β and 306 

the YZ plane γ) as 307 

𝛽𝑛+1 = 𝛽𝑛 +
𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛−1) +

𝛼

2
∙ 𝑐𝑜𝑠(𝜃𝑛), 308 

𝛾𝑛+1 = 𝛾𝑛 +
𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛−1) +

𝛼

2
∙ 𝑠𝑖𝑛(𝜃𝑛)      (6) 309 

The algorithm initialises the lining-ring centre-points of the design alignment, and searches for the 310 

rotation in the normal plane θ such that the deviation of the next centre point from the design path 311 

is minimised. Our implementation allows any tunnel path in 3D space to be achieved using only 312 

one universal ring. The agreement between the designed and the adapted tunnel alignment for one 313 

arbitrary case is shown in Figure 7. 314 

Figure 7:   Comparison between designed alignment and computed adapted alignment based on 315 

universal ring in 3D in the a) XY plane, b) XZ plane. 316 

A numerical analysis of the influence of the joints of the segmental lining on the overall behaviour 317 

of the tunnel structure is typically performed without consideration of the complete tunnel 318 

construction analysis, but rather by applying sophisticated models for lining and joints, and 319 
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observing the behaviour under design loads, while the resistance of the soil is modelled by subgrade 320 

reaction springs [29]. On the other hand, most sophisticated 3D simulation models for mechanised 321 

tunnelling do not consider the segment-wise installation of tunnel lining and joints between 322 

segments. Instead, lining is modelled using linear-elastic solid or shell elements, where the 323 

complete lining rings are installed stepwise [39, 40, 41] . Recently, a 3D numerical models for the 324 

shield tunnelling process was developed, where the influence of the joint pattern of the lining for 325 

both segment joints and ring joints is taken into consideration [13]. This study has shown that the 326 

position and stiffness of the joints have significant effects on the bending moment and normal 327 

forces in the lining, while the effect of the joint pattern on the surface settlement is insignificant. 328 

In the SATBIM concept, an alternative for modelling of tunnel lining is implemented, as described 329 

below, using the multi-level approach. 330 

 331 

Figure 8:   Lining information and numerical models on different LoDs, b) details of the geometry 332 

of the lining model on LoD 2 and LoD 3. 333 

2.3.2 Geometrical modelling 334 

Lining LoD 1. At the lowest LoD, the effect of the confinement and support provided by the lining 335 

structure on shield tunnelling is accounted for without explicit modelling of the lining structure. 336 

This is done by implementing the volume loss method, describing the confinement with the volume 337 

loss coefficient 𝑉𝑙  =
(𝑉0−  𝑉𝑑𝑒𝑓 )

𝑉0
  . In this method, the volume loss resulting from the completion of 338 

excavation is prescribed together with the TBM passage (see Fig. 8a).  The injection process and 339 

the grout consolidation phase are represented by applying the change in diameter of the excavation 340 

boundary. The method assumes that the support pressure at the tunnel boundary is reduced in 341 

increments, and the generated volume loss can be monitored. 342 

In the implemented approach, the tunnel wall is allowed to move freely and is not controlled by 343 

confinement forces or prescribed displacements. Instead, after the de-confinement, the deformed 344 
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area of the tunnel is continuously calculated in each computation cycle during the displacement of 345 

the tunnel boundary. The deformations of the excavation boundaries are fixed when the volume 346 

loss value of the tunnel boundary is reached [42]. 347 

Lining LoD 2. The lining tube is modelled by means of volume elements that are activated during 348 

the simulated tunnel advance. Each lining ring is imported as a single volume, however, discretised 349 

by linear hexahedral finite elements (see Fig. 8 LoD 2). When simulating the tunnel advance, each 350 

lining ring is activated in a stress-free manner. This initialisation procedure is used to reset the 351 

reference configuration of the element. The new reference configuration of the re-activated element 352 

then matches the deformed state of the former structure. 353 

Lining LoD 3. In order to account for the reduced stiffness of the tunnel lining due to the presence 354 

of joints and for the segment-wise installation of the tunnel lining, a model for longitudinal (ring) 355 

and transverse (segment) joints is proposed in the simulation model. Longitudinal and 356 

circumferential joints, are modelled in a discrete manner. The reduced stiffness of segmental lining 357 

ring due to the presence of joints is modelled by introducing bolts represented by beam elements 358 

and a surface-to-surface normal contact condition between segments and transversal joins of the 359 

lining rings, see Fig. 8b LoD 3. Bolts are embedded in the solid matrix representing the lining 360 

segments, where tying conditions are imposed between the integration points of the beam elements 361 

and control points in the solid segment elements with the same global coordinates. An additional 362 

normal contact condition between the facing surfaces of the segments in longitudinal and transverse 363 

direction prevents the penetration of one volume into another. 364 

Grouting. The tail void grouting has a considerable effect on the changes of the initial stress state 365 

of the soil around the tail, which finally causes surface settlements. In particular, the re-distribution 366 

of the grouting mortar within the annular gap and the transition from liquid mortar, in the beginning, 367 

to solid state, after its hydration, plays a crucial role in maintaining the stress state of the 368 

surrounding soil and controlling the induced settlements. Therefore, in our simulation model, a 369 

constitutive model is applied that accounts for the time-dependent material behaviour of grouting 370 

mortar. Within the simulation model, the pressurization of the grouting mortar is accounted for 371 

using a two-phase formulation similar to the soil, as described in Section 2.2 for LoD 2/3. The 372 

hydration is described by time-dependent material properties for both the strength characteristics 373 

and the permeability. The formulation is based on the model for hydration of young concrete 374 

proposed in [43] and applied to grouting mortar in [44]. 375 

2.4 Modelling of the tunnel boring machine (TBM) 376 

In shield tunnelling, the TBM is pushed forward by elongation of hydraulic jacks, and excavates 377 

the soil by a rotating cutting wheel and supports the material around the excavation area via the 378 
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shield skin. In terms of numerical modelling, there are different approaches of representing the 379 

shield machine. Since the main function of the shield is to prevent that the material around the 380 

excavation area moves into the tunnel excavation, one option is to represent the TBM simply by 381 

boundary conditions limiting the deformation of the soil [45]. However, the TBM is also a 382 

deformable body and the taper of the TBM and the frictional contact of the shield skin with its 383 

surroundings play an important role for the re-distribution of stresses and pore pressures in the soil. 384 

Therefore, the TBM can be represented using a 3D model interacting with the surrounding soil 385 

through a frictional interface [46]. An additional advanced modelling feature is to account for the 386 

hydraulic jacks that are attached to the TBM by using the previously erected lining segments as 387 

thrust bearings. In order to prevent divergence of the machine from the alignment, the thrust jacks 388 

are also used to steer the shield by setting different jack pressures [18]. 389 

Figure 9:   Information and numerical modelling of the TBM on different LoDs. 390 

 391 

TBM LoD 1. To model the TBM as an obstacle for limiting the deformation of the soil, the shield 392 

is represented by boundary conditions [45], as illustrated in Figure 9. In this approach, the shield is 393 

represented by a set of n segments with length Lr with uniformly defined boundaries in terms of 394 

radial displacements that approximate the conical surface of the shield, where n = LTBM / Lr and 395 

LTBM  is the total length of the machine.  396 

TBM LoD 2. The TBM is modelled as a deformable body moving through the soil and interacting 397 

with the ground using surface-to-surface contact. By virtue of this modelling approach, the volume 398 
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loss due to the excavation process naturally follows the real, tapered geometry and the over-cutting 399 

of the shield machine [40]. The frictional contact between the shield skin with the surroundings 400 

plays an important role in the re-distribution of stresses and pore pressures in the soil. It is therefore 401 

modelled by means of surface-to-surface contact formulation introduced by [47]. The contact 402 

formulation imposes a geometric constraint between the contacting (“slave”) body (the TBM) and 403 

the contacted (“master”) body (the soil) which controls the interaction between the two bodies with 404 

independent deformations. The displacements of the TBM are prescribed at the TBM tail, and the 405 

direction of advance is determined by the calculated tunnel alignment vector. 406 

TBM LoD 3. The highest LoD describes the advancement of the TBM by elongation of hydraulic 407 

jacks, excavating the soil with a rotating cutting wheel. In order to realistically model the movement 408 

of the TBM and its interaction with the soil, to avoid drift off-course of the TBM and to simulate 409 

curved tunnel advances, an automatic steering algorithm, to control the individual jack thrusts 410 

similar to the one proposed in [44], is used to keep the TBM on the designed alignment path (see 411 

[18] for details). Identical to LoD 2, the interaction between the soil and TBM skin is modelled by 412 

applying frictional surface-to-surface contact conditions. 413 

2.5 Modelling of the existing infrastructure 414 

Tunnelling-induced settlements in urban areas are influenced by the interaction of existing 415 

structures (e.g. buildings) with the soil deformations. To consider this mutual influence, reduced 416 

models for structures are generally sufficient. However, if the objective of the analysis is to assess 417 

the effect of tunnelling on the behaviour of existing structures, detailed structural models are 418 

required. The selected LoDs for the representation of buildings are chosen such that the lowest LoD 419 

will not introduce any additional DoFs, but represent the buildings by means of additional stresses 420 

due to building weight, while the higher LoDs have a detailed representation of the building 421 

structure and include the relevant soil-structure interaction effects (see Figure 10). In the current 422 

state of development, a liner elastic material model is used for building representation, which can 423 

be used for damage detection using model updating techniques [48]. For direct estimation of a 424 

damage index, non-linear damage models are to be developed in future extensions of the 425 

framework. 426 
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Figure 10:   Information and numerical modelling of existing buildings using different LoDs 427 

Building LoD 1. The building is substituted by a dead load from the building weight acting on the 428 

soil surface as shown in Figure 10 (LoD 1). In this model, the effect of the soil-structure interaction 429 

and building stiffness are neglected. An algorithm is implemented to search the nodes in the soil 430 

domain that corresponds to the polygon of the building footprint. A distributed building dead load 431 

is applied to this group of nodes. 432 

Building LoD 2. Buildings are considered in the tunnelling model by means of reduced models 433 

with a substitute elastic stiffness E, height H and weight, computed according to an approach 434 

proposed in [49]. In the presented FE formulation, isotropic volume tri-linear hexahedra elements 435 

are adopted with respective structural properties, interacting with the soil through a mesh-436 

independent surface-to-surface contact algorithm, which prevents the penetration of the foundation 437 

of the building into the soil. It also takes into account the different mechanisms of the soil-structure 438 

interaction corresponding to the “sagging” and “hogging” modes. 439 

Building LoD 3. Buildings are modelled as full structural frame models. The columns and floors 440 

are both modelled with isotropic volume hexahedra elements. In order to control the number of 441 

DoF, a quadratic structured mesh is generated, where a user-defined parameter is assigned to 442 

control the mesh size. For a detailed assessment of the stresses induced in the structures, the 443 

appropriate mesh size should be determined based on convergence studies.  Since foundations 444 
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play a fundamental role in the transmission of the ground deformations to the building, surface-445 

to-surface contact conditions are introduced between the soil and foundation to simulate such 446 

relative deformations,. 447 

2.6 Multi-level information modelling in IFC 448 

The Industry Foundation Classes (IFC) are considered as an appropriate information exchange 449 

format to support several BIM use cases throughout the facilities life-cycle, such as high-fidelity 450 

one-way design transfer, design coordination and checking among different disciplines, facility 451 

management handover, facility inspection and maintenance as well as visualisation [50]. For this 452 

reason, it makes sense to come up with a concept for representing multi-LoD information models 453 

in IFC to eventually be able to support these use cases.  454 

Generally, there are two different approaches for representing geometry at different levels of detail 455 

in the Industry Foundation Classes (IFC). The first approach employs several separate IFC files for 456 

each level of detail. The second approach focuses on using different representation contexts to 457 

distinguish different levels of detail within one IFC File. Figure 11 outlines a class diagram that 458 

shows how to use such contexts. By concept, each IfcProduct, which includes geometrical 459 

representation, assigns an IfcProductRepresentation. Usually, this product representation includes 460 

exactly one IfcRepresentation, which defines one shape model. The actual geometric information 461 

is then assigned using one or multiple instances of IfcRepresentationItem. It also assigns a default 462 

IfcGeometricRepresentationContext that provides information about dimension, precision, 463 

coordinate system and true north. It further allows the assignment of multiple instances of 464 

IfcGeometricRepresentationSubContext “… to define semantically distinguished representation 465 

types for different information content … to control the level of detail of the shape representation 466 

that is most applicable to this geometric representation context.” [43]. 467 

Comparing these approaches, there are advantages and limitations to each. Using separate files for 468 

representing different levels of detail does not depend on the format itself. Also, it does not require 469 

target software to support different representation contexts, but it requires the user to maintain an 470 

appropriate naming structure outside the file format and loading different level of detail manually 471 

into the target software. When considering not only geometric content, but also different sets of 472 

properties, which are assigned to separate levels of detail, using different files is error-prone. 473 
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 474 

Figure 11: UML Class Diagram of IfcRepresentationContext 475 

Using the IFC built-in concept of the IfcRepresentationContext, a proper decoupling between 476 

semantic and geometry levels of detail can be implemented by concept but requires the target 477 

software to support such contexts. This approach also allows the storing of all possible levels for 478 

each product. However, in this case the modeller should account for not overloading the IFC 479 

content by unnecessary levels of detail that may result in performance issues. Furthermore, this 480 

approach only applies for the geometric content, whereas the different sets of properties cannot be 481 

bound to a specific context. A workaround could store different sets for each level of detail, which, 482 

for example, can be linked afterwards by using the IfcGeometricRepresentationContext’s value of 483 

the attribute UserDefinedTargetView, like “LoD1”, as an identifying prefix.  484 

3. IMPLEMENTATION AND CASE STUDIES 485 

3.1 Prototype implementation 486 

The multi-level information model for tunnelling is developed using the industry-standard tools 487 

Revit and Dynamo [25], allowing for consistent parametric modelling on different LoDs. For each 488 

tunnel component and for each LoD, a template for the corresponding component is created using 489 

“Revit families”. A family in Revit is a class with parametric definitions and constraints, allowing 490 

the definition of specific family attributes for individual family instances (Revit objects). In order 491 

to keep consistency between different LoDs, A parametric consistency between templates is 492 

defined in SATBIM as shown in Figure 2 and as introduced in Sections 2.2, 2.3, 2.4, and 2.5. The 493 

full set of parameters defining a component is needed for the definition on the highest LoD, while 494 
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only a subset of the parameter list is used for lower LoDs. This way of handling parameters allows 495 

for automated preservation of the consistency of the multi-scale model. 496 

For each model component for each LoD, a corresponding numerical model has been developed 497 

using the pre/post processor GiD [51] and the open source Finite Element simulation software 498 

KRATOS [52]. The generation of the complete structural model, consistency between individual 499 

components, simulation scripts and visualisation features are handled by our newly developed 500 

software called “SatBimModeller”. A Python routine, MaterialPropertiesUtility, is used to enable 501 

a user-friendly input of the material properties. All details about the newly developed modeller can 502 

be found in [53]. The validation of the proposed computational framework can be found in [20, 503 

21]. 504 

 505 

Figure 12:   Workflow and implementation of the SATBIM framework 506 

3.2  LoD selection for different scenarios of the analysis 507 

The choice of the component LoD in both information and numerical model depends on the 508 

scenario of the analysis and the maturity of the analysis (in earlier design stages only approximate 509 

or relative quantities are sufficient). Higher accuracy in modelling leads to more reliable design 510 

assessment. However, this will also incur high modelling and computational costs. Therefore, an 511 

optimal LoD should be selected depending on the objective of the analysis and information 512 

available at the current stage of design. The following examples will discuss different scenarios for 513 

the selection of LoDs for the analysis of tunnelling-induced settlements and deformation of the 514 

structure. 515 

The first problem exemplifies the selection of the building LoD for the estimation of tunnelling-516 

induced settlements. In the example shown in Figure 13, a building with dimensions 18.5 𝑚 ×517 
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12.5 𝑚 × 15.8 𝑚 (length × width × height) is located above a tunnel of 10 m diameter (D). The 518 

middle axis of the building is offset from the centreline of the tunnel by 10 m (1D), and the 519 

tunnelling-induced settlements trough is observed for a building representation at LoDs 1-3 520 

(accounting for building weight), soil at LoD 2, lining at LoD 1 (the volume loss method, with 𝑉𝑙 =521 

0.5 % ) and the TBM at LoD 1. The plot in Figure 13 shows the importance of the choice of the 522 

building LoD for both settlements and structural deformation. Maximum settlements are obtained 523 

for building LoD 1 due to the negligence of the building stiffness in soil-structure interaction. In 524 

contrast, for building LoD 2, this interaction effect is overestimated (very stiff structural response), 525 

compared to LoD 3, where a balance between soil and building stiffness is achieved.  526 

527 

Figure 13:   Impact of building LoD representation on tunnelling-induced settlements when the 528 

building is above the tunnel 529 

In contrast, if the building is located far from the tunnel (middle axis of the building is offset from 530 

the centreline of the tunnel by 50 m (5D)), as shown in Figure 14, the choice of the building LoD 531 

is irrelevant, since tunnelling-induced settlements do not depend on the building representation. A 532 

detailed analysis of the sensitivity of building LoD representation to the building distance from the 533 

tunnel alignment and the tunnel depth can be found in [54]. These analyses show that the LoD of 534 

the building is irrelevant if the distance of the building from the tunnel centreline is larger than 4D.  535 

536 

Figure 14:   Impact of building LoD representation on tunnelling induced settlements when the 537 

building is far away from the tunnel 538 
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The second scenario investigates the effect of the selection of the soil LoD on the tunnelling-539 

induced settlements and the deformation of the tunnel structure. In this example, lining and TBM 540 

are modelled at LoD 2, while the soil material is varied from LoD 1 (Linear Elastic model - LE), 541 

LoD 2 (Mohr Coulomb - MC) to LoD 3 (CASM) with the properties given in Table 1. From the 542 

plot shown in Figure 15, it is clear that introducing the non-linearity in soil behaviour, i.e. higher 543 

LoD, results in higher settlements. From the illustrated deformed tunnel ring, on the right side of 544 

Figure 15, it can be seen that higher settlements will cause higher vertical movement of the ring. 545 

However, the difference in ring shape is very small, because the ring moves almost as a rigid body. 546 

Therefore, the induced structural forces in all three cases are similar. Hence, if the target of analysis 547 

is the estimation of soil stability, then a higher LoD for the soil should be selected, however, the 548 

lining can be modelled at LoD 2.  549 

550 

Figure 15:   Tunnelling-induced surface settlements trough and lining ring deformation for soil 551 

representation using LoD 1: LE, LoD 2: MC, and LoD 3: CASM 552 

Table 1:   Material parameters for the soil models for examples in Figures 14, 15, 16 553 

Component Soil   Lining TBM

M 
Constitutive law LE MC CAS

M 

LE LE 

Young modulus (MPa) 80 80 80 2x104  2x105 

Poisson ratio 0.25 0.25 0.25 0.3 0.3 

Density (kg/m3) 1732 1732 1732 2500 7620 

Porosity 0.4 0.4 0.4 — — 

Cohesion  (kPa) — 200 — — — 

Hardening modulus  (MPa) — 58.3 — — — 

Friction angle (degrees) — 30 — — — 

Dilatancy angle (degrees) — 30 — — — 

Permeability (m/s) 0.00

1 

0.00

1 
0.001 — — 

Slope of the unload/reload curve in (v -ln p’) space, 𝜅 — — 0.001 — — 

Slope of the normal compression curve in (v-ln p’) space, 𝜆 — — 0.01 — — 
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Spacing ratio, r — — 0.2 — — 

Shape parameter of the yield surface, n — — 2 — — 

Slope of the critical state line under triaxial compression, M — — 1.08 — — 

Initial preconsolidation mean stress for soil, P0 (kN/m2) — — 1015 — — 

The third scenario, shown in Figure 16, investigates modelling of the tunnel lining, where the same 554 

model as in scenario 2 is used in terms of geometry and modelling of TBM. The soil is modelled 555 

at LoD 3, and the tunnel lining is modelled either using the volume loss method (LoD 1), as a solid 556 

ring (LoD 2), or as a segmented ring (LoD 3). For the volume loss method (lining LoD 1), we need 557 

to predefine the volume loss coefficient, which for this example 𝑉𝑙 = 0.8% is used. This resulted 558 

in a slightly different settlements trough for lining LoD 1 (0.3 mm) compared to lining LoD 2 and 559 

LoD 3, which are almost identical (see Figure 16 settlement trough). However, if the deformation 560 

of the lining ring for LoD 2 and LoD 3 are compared, we can see, as seen in scenario 2, that the 561 

solid ring moves vertically as a rigid body, while the segmented ring deforms to a more oval shape, 562 

which will induce higher forces. Hence, for the estimation of surface settlements lining LoD 2 is 563 

sufficient, however, if one needs detailed insight into the structural deformation, lining LoD 3 is 564 

required. 565 

566 

Figure 16:   Impact of lining LoD on the tunnelling-induced surface settlements trough and the 567 

lining ring deformation 568 

For further details about model sizes, FE meshing and simulations setup, all models are available 569 

in the SATBIM repository at https://github.com/satbim/satbim/.  570 

3.3 Multi-level simulation of a tunnelling project 571 

The SATBIM platform has been successfully applied for the generation of information and 572 

numerical models and for the visualisation of structural assessment. Depending on the design 573 

scenario, the optimal LoD of each individual component is selected, leading to a robust and 574 

computationally efficient numerical assessment (see Figure 17). Knowledge about the optimal 575 

building LoD for the scenario of shield tunnelling in the vicinity of existing infrastructure, taken 576 

https://github.com/satbim/satbim/
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from previous studies conducted based on the SATBIM concept [54], is applied to further optimise 577 

the size of the model without reducing the accuracy of the solution.  578 

 579 

Figure 17:   Parametric information model for a 200 m long tunnel section in Revit and Dynamo 580 

used for the generation of a large-scale simulation. Selection of the optimal LoD of the building 581 

in Dynamo user interface. 582 

In a first simulation all buildings included in the BIM model of the investigated tunnel section are 583 

modelled with the highest LoD (see Figure 18a), while in a second numerical analysis, only 584 

buildings having a high sensitivity w.r.t. the LoD are modelled with high accuracy, while the rest 585 

is modelled with LoD 2, which significantly reduces the size of the problem (see Figure 18b). In 586 

both models, LoD 2 is selected for the representation of the tunnel lining structure and the TBM. 587 

This model accounts for the shield as a deformable body moving through the soil and interacting 588 

with the ground through surface-to-surface contact. The tunnel advance is modelled by means of 589 

de-activation of soil elements and installation of the lining rings and grouting elements. Tunnelling-590 

induced deformations are controlled by applying the face support pressure and the grouting pressure 591 

at the tunnel face and in the steering gap, respectively. The elasto-plastic Mohr Coulomb model 592 

with associative flow rule is used as the constitutive relation between effective stresses and strains 593 

in the fully saturated soil. The groundwater level is assumed at the surface. The tunnel is constructed 594 

with 80 lining rings of 2.5m length and 10m radius are excavated under 17.5m of soil overburden.  595 

 596 
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 597 

                                   (a)                                                                         (b) 598 

Figure 18:   Information (design) and simulation model for a more than 200m long tunnel section 599 

used for the generation of a numerical simulation and results of FE simulation generated using 600 

“SATBIM-Modeller” for a) Model 1: highest LoD for representation of the infrastructure and b) 601 

Model 2: optimised LoD for representation of the infrastructure. 602 

Considering a spatial discretization of all components (soil, lining, TBM and buildings) the models 603 

are finally described with 1,258,264 and 1,091,101 Degrees of Freedom (DoFs) for Model 1- high 604 

(LoD3) and Model 2- optimised (LoD2 and LoD3) representation of buildings, respectively. 605 

Selecting the optimal LoD for the buildings, the model size has been reduced by 17% in terms of 606 

number of DoFs, while keeping the accuracy of the numerical solution, as shown in Figure 18a and 607 

b. The model size strongly influences the computational costs as shown in Table 2, where the 608 

individual as well as the total time for the solution are listed. 609 

Table 2:   Runtime for the solution steps of Model 1 and Model 2 from the Figure10. 610 

Computational costs Model 1 (high LoD) Model 2 (optimised LoD) 

Conditioning time per step[s] 4.2 3.6 

Assembly time per step  [s] 26.2 19.8 

Solve time per step [s] 281.7 244.2 

I/O time per step [s] 4.0 3.6 

Total time [min] 2916 2410 

Although the size of the model and consequently the computational costs differ significantly, the 611 

final output of the numerical analysis is identical for Models 1 and 2 as shown in Figure 18. This 612 

is due to fact that the complexity of the model is optimised without affecting the important, i.e. the 613 



27 

 

influencing features of the model w.r.t. the objective of the analysis, which in this case is tunnelling-614 

induced settlements and interaction with existing buildings. Further improvement of the 615 

computational efficiency of the SATBIM framework by means of parallelisation is presented in 616 

[54]. 617 

The SATBIM framework has also been tested on real tunnel data including 3D topology of the 618 

ground based on borehole data, 3D tunnel alignment, and building models created based on a City 619 

model data, to create and analyse a large tunnel section of approximately 1km length. Figure 19 (a) 620 

shows how the SATBIM framework is used for a fully automatic generation of the information 621 

model based on the CAD data. The information model was further used for the generation of the 622 

simulation models and design assessment of the tunnel construction as illustrated in Figure 19 (b). 623 

Initial calculations of a large tunnel section were conducted with a low LoD for the structural 624 

components. The evolution of tunnelling-induced displacements and their effects on the existing 625 

infrastructure were evaluated as illustrated in Figure 19 (b). Secondly, for the tunnel section, where 626 

potential risks on the existing structure have been identified, a more detailed analysis was 627 

conducted, adopting higher LoDs for the structural components (lining (LoD 3), buildings (LoD 3) 628 

and TBM (LoD 2)) as illustrated in Figure 20. 629 

 630 

Figure 19. (a) Automated workflow for design and assessment based on project data in SATBIM;  631 

(b) development of surface settlements and soil-structure interaction. 632 
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 633 

Figure 20. Further evaluation of critical sections considering a higher level of representation for 634 

structural components. 635 

3.4 Multi-level IFC representation of a tunnelling project 636 

While Revit only allows the export of one single configuration of the model, where the geometry 637 

of the domain models is fixed to a specific LoD, we developed a custom solution to implement the 638 

suggest LoD modelling concept. To this end, we implemented the so-called Zero Touch Extension 639 

for Dynamo, which uses the IFC Engine DLL Application Interface [55] to integrate multiple LoD 640 

configurations into a single IFC file. 641 

As the control of the representation contexts in IFC is limited to the project level, different domain 642 

models (buildings, tunnel, TBM and ground) are still exported to separate IFC files. Moreover, 643 

each building model of the existing infrastructure should provide different LoDs, resulting in 644 

separate IFC files, one per building. 645 

To exemplify the multi-level modelling approach, we present the object diagrams of one of the 646 

building models and the tunnel lining model. Figure 21 outlines the object diagram for one of the 647 

buildings. The spatial structure is restricted to the level of IfcBuilding. Here, the product 648 

representation includes three different representations of subtype IfcShapeModel. The first, 649 

representing geometry for LoD 1, just includes the footprint geometry of the building. The second, 650 

representing geometry for LoD 2, includes an extrusion geometry. The last, representing the 651 

geometry of LoD 3, includes a multitude of solid geometry elements to constitute the structural 652 

model. To link properties to a specific LoD, these representations are assigned to instances of 653 

IfcGeometricRepresentationSubcontext, whose value of the attribute UserDefinedTargetView 654 

identifies the LoD, namely either "LOD1", "LOD2" or "LOD3". 655 
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 656 

Figure 21: Object diagram demonstrating IFC multi-level modelling of the tunnel lining 657 

While the instantiation of one of the buildings models seems straightforward, the IFC 658 

representation of the tunnel lining is more sophisticated. First of all, because the IFC domain 659 

actually does not contain any specific classes within the domain of mechanized tunnelling, we 660 

utilize an extension previously published in [1], containing the classes IfcTunnel and 661 

IfcTunnelRing, inherited from IfcSpatialStructureElement as well as the class IfcTunnelSegment, 662 

inherited from IfcElement. IfcTunnel represents the most upper spatial definition of the tunnel 663 

lining, similar to the IfcBuilding class. It further decomposes into spatial structures for the tunnel 664 

rings (IfcTunnelRing). The actual physical tunnel segments are finally represented by means of 665 

IfcTunnelSegment. Figure 22 outlines the object diagram of the tunnel lining. 666 
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 667 

Figure 22: Object diagram demonstrating IFC multi-level modelling of the tunnel lining 668 

When modelling the buildings, the geometries have been assigned to multiple representations 669 

within the product representations of exactly one spatial structure instance (IfcBuilding). The 670 

assignment within the tunnel lining model, however, further applies to multiple levels of spatial 671 

structure. For the geometries of the lower levels, LoD 1 and LoD 2, a face model for the ring shell 672 

and a solid model for the solid body of a tunnel ring have been both assigned as separate 673 

representations to the spatial structure IfcTunnelRing. The corresponding contexts have been 674 

linked, accordingly. In contrast, the geometries for representing segment geometry have been 675 

assigned to separate physical elements of type IfcTunnelSegment, but all have been linked to the 676 

same context object, which identifies LoD 3.  677 
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Since common IFC viewers do not yet distinguish multiple representation contexts, and thus would 678 

show all geometries at the same time, we extended the IFC Web-Viewer, which has been introduced 679 

in [1], to support such contexts. Figure 23 depicts the configuration of Model 2 (see Fig. 18 b, 680 

optimised LoD 2 and LoD 3), which in this case, has not been configured from scratch, but by 681 

selecting the proper representation context for each of the exported domain models, e.g. tunnel 682 

lining at LoD 2, and building #5 at LoD 3. 683 

 684 

Figure 23: IFC Web-Viewer presenting model geometries from different LoD contexts 685 

4. CONCLUSIONS 686 

Due to increasing urbanisation and mobility there is a need for the efficient and safe design and 687 

construction of mechanised tunnels using the latest computer-supported technologies, such as BIM 688 

and FE simulations. In this context, existing literature has shown the potential of multi-LoD 689 

information models and the need for advanced numerical simulation models. What was missing is 690 

the multi-LoD integration of the information and the numerical model. 691 

This paper proposes a novel concept of parametric information modelling for multi-level decision 692 

support for mechanised tunnelling projects: SATBIM is an integrated, open-source platform for 693 

information modelling, structural analysis and visualisation. Within this platform, industry-694 

standard tools (Autodesk Revit and Dynamo) are employed for the design of the tunnel structure 695 
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and the surrounding infrastructure with consideration of LoDs for all system components. Based 696 

on the multi-level parametric BIM, multi-level numerical models are developed for each 697 

component, considering proper geometric as well as material representation, interfaces and the 698 

representation of the construction process. The numerical models are then, fully automatically, 699 

instantiated and executed based on the BIM. Finally, the simulation outputs are read back and 700 

visualised within Revit.  701 

SATBIM enables efficient design and assessment of design alternatives reducing the modelling 702 

efforts and computation time by: (i) minimisation of the efforts needed for model generation; (ii) 703 

representation at different LoDs leading to computationally efficient simulations; and (iii) effective 704 

visualisation of the simulation results. This modelling and computational efficiency is 705 

demonstrated in the numerical example presented in this paper. Applying the optimal LoDs of the 706 

components in the information models and automatically generating corresponding numerical 707 

simulations, have significantly reduced the computational efforts without affecting the accuracy of 708 

the assessment. Further improvement of the computational efficiency can be achieved by using 709 

parallelisation strategies or simulation-based meta models [54]. Moreover, the extension for 710 

representation of multiple LoD configurations of the TIM components into a single IFC file allows 711 

for interoperability of the proposed platform with other BIM tools in a structured and efficient way.  712 

The list below summarises the major contribution of the work presented in this article: 713 

• Concept and implementation of an integrated parametric multi-LoD information and numerical 714 

model for mechanised tunnelling that consistently links the corresponding LoD descriptions in 715 

both the information and the numerical worlds. 716 

• Software framework that assists the:  717 

o semi-automated parametric generation of multi-LoD information models 718 

o automated generation and analysis of a specific-LoD numerical model 719 

• Concept and implementation of a multi-LoD tunnel information model using the Industry 720 

Foundation Classes and their functionalities for relations modelling (LoD for the semantics of 721 

physical building elements) and for geometric representation contexts (LoD for the geometry of 722 

those elements) 723 

The current framework employs FE analysis for the design assessment, and it is well-known that 724 

for high accuracy of the numerical solution, a fine discretisation of the FE mesh is required. 725 

Therefore, in order to achieve high accuracy of the solution at low computational costs, we aim to 726 

integrate Iso-Geometric Analysis (IGA) and make a direct use of the B-rep geometries generated 727 

in the BIM for the definition of numerical models. This concept has been proven as successful for 728 
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the tunnel lining component [56], and in the future development of our framework, we will work 729 

toward integration of design and IGA for the other tunnel components addressed in this study. 730 

Another limitation of the current state of development of the framework is the numerical 731 

representation of structures at the highest LoD, which at the moment is restricted to geometrical 732 

models of the structural frame using linear elastic material models. For more realistic representation 733 

of structures and the structural damage induced by tunnelling, our future work will involve 734 

development and implementation of damage models, as well as improvements in modelling of 735 

details such as connections between the structural elements.  The SATBIM toolkit is made available 736 

as open source software together with technical report, and benchmark examples deposited in the 737 

Github repository: https://github.com/satbim. 738 

  739 
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