2,028 research outputs found

    Disturbing synchronization: Propagation of perturbations in networks of coupled oscillators

    Full text link
    We study the response of an ensemble of synchronized phase oscillators to an external harmonic perturbation applied to one of the oscillators. Our main goal is to relate the propagation of the perturbation signal to the structure of the interaction network underlying the ensemble. The overall response of the system is resonant, exhibiting a maximum when the perturbation frequency coincides with the natural frequency of the phase oscillators. The individual response, on the other hand, can strongly depend on the distance to the place where the perturbation is applied. For small distances on a random network, the system behaves as a linear dissipative medium: the perturbation propagates at constant speed, while its amplitude decreases exponentially with the distance. For larger distances, the response saturates to an almost constant level. These different regimes can be analytically explained in terms of the length distribution of the paths that propagate the perturbation signal. We study the extension of these results to other interaction patterns, and show that essentially the same phenomena are observed in networks of chaotic oscillators.Comment: To appear in Eur. Phys. J.

    Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors

    Full text link
    We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame's response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al.~[Chaos 22, 023129 (2012)]. By analyzing the temporal variation of the phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.Comment: 18 pages, 7 figure

    Realizing the physics of motile cilia synchronization with driven colloids

    Full text link
    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves". These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically,and that a strong and long ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of the living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.Comment: 31 pages, to appear in Annual Review of Condensed Matter Physic

    Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks

    Get PDF
    The role of restorative coupling on synchronization of coupled identical harmonic oscillators is studied. Necessary and sufficient conditions, under which the individual systems' solutions converge to a common trajectory, are presented. Through simple physical examples, the meaning and limitations of the theorems are expounded. Also, to demonstrate their versatility, the results are extended to cover LTI passive electrical networks. One of the extensions generalizes the well-known link between the asymptotic stability of the synchronization subspace and the second smallest eigenvalue of the Laplacian matrix.Comment: 13 pages, 8 figure

    Quantum correlations and synchronization measures

    Full text link
    The phenomenon of spontaneous synchronization is universal and only recently advances have been made in the quantum domain. Being synchronization a kind of temporal correlation among systems, it is interesting to understand its connection with other measures of quantum correlations. We review here what is known in the field, putting emphasis on measures and indicators of synchronization which have been proposed in the literature, and comparing their validity for different dynamical systems, highlighting when they give similar insights and when they seem to fail.Comment: book chapter, 18 pages, 7 figures, Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer (2017

    Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains

    Get PDF
    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.Comment: Follow-up to arXiv:0706.3375. Journal submission 9 Jul 2007. Published 19 Dec 200

    Color Image Segmentation Based on Modified Kuramoto Model

    Get PDF
    AbstractA new approach for color image segmentation is proposed based on Kuramoto model in this paper. Firstly, the classic Kuramoto model which describes a global coupled oscillator network is changed to be one that is locally coupled to simulate the neuron activity in visual cortex and to describe the influence for phase changing by external stimuli. Secondly, a rebuilt method of coupled neuron activities is proposed by introducing and computing instantaneous frequency. Three oscillating curves corresponding to the pixel values of R, G, B for color image are formed by the coupled network and are added up to produce the superposition of oscillation. Finally, color images are segmented according to the synchronization of the oscillating superposition by extracting and checking the frequency of the oscillating curves. The performance is compared with that from other representative segmentation approaches

    Synchronization of small oscillations

    Get PDF
    Synchronization is studied in an array of identical oscillators undergoing small vibrations. The overall coupling is described by a pair of matrix-weighted Laplacian matrices; one representing the dissipative, the other the restorative connectors. A construction is proposed to combine these two real matrices in a single complex matrix. It is shown that whether the oscillators synchronize in the steady state or not depends on the number of eigenvalues of this complex matrix on the imaginary axis. Certain refinements of this condition for the special cases, where the restorative coupling is either weak or absent, are also presented.Comment: 16 pages, 6 figure
    • …
    corecore